xref: /freebsd/sys/kern/vfs_cache.c (revision f7f4bd06a8d4e5d1e92d0d2905a68a2a03ed9c0c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/counter.h>
45 #include <sys/filedesc.h>
46 #include <sys/fnv_hash.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/fcntl.h>
52 #include <sys/jail.h>
53 #include <sys/mount.h>
54 #include <sys/namei.h>
55 #include <sys/proc.h>
56 #include <sys/seqc.h>
57 #include <sys/sdt.h>
58 #include <sys/smr.h>
59 #include <sys/smp.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/sysctl.h>
62 #include <sys/sysproto.h>
63 #include <sys/vnode.h>
64 #include <ck_queue.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #ifdef INVARIANTS
69 #include <machine/_inttypes.h>
70 #endif
71 
72 #include <security/audit/audit.h>
73 #include <security/mac/mac_framework.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 #include <vm/uma.h>
80 
81 /*
82  * High level overview of name caching in the VFS layer.
83  *
84  * Originally caching was implemented as part of UFS, later extracted to allow
85  * use by other filesystems. A decision was made to make it optional and
86  * completely detached from the rest of the kernel, which comes with limitations
87  * outlined near the end of this comment block.
88  *
89  * This fundamental choice needs to be revisited. In the meantime, the current
90  * state is described below. Significance of all notable routines is explained
91  * in comments placed above their implementation. Scattered thoroughout the
92  * file are TODO comments indicating shortcomings which can be fixed without
93  * reworking everything (most of the fixes will likely be reusable). Various
94  * details are omitted from this explanation to not clutter the overview, they
95  * have to be checked by reading the code and associated commentary.
96  *
97  * Keep in mind that it's individual path components which are cached, not full
98  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
99  * one for each name.
100  *
101  * I. Data organization
102  *
103  * Entries are described by "struct namecache" objects and stored in a hash
104  * table. See cache_get_hash for more information.
105  *
106  * "struct vnode" contains pointers to source entries (names which can be found
107  * when traversing through said vnode), destination entries (names of that
108  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
109  * the parent vnode.
110  *
111  * The (directory vnode; name) tuple reliably determines the target entry if
112  * it exists.
113  *
114  * Since there are no small locks at this time (all are 32 bytes in size on
115  * LP64), the code works around the problem by introducing lock arrays to
116  * protect hash buckets and vnode lists.
117  *
118  * II. Filesystem integration
119  *
120  * Filesystems participating in name caching do the following:
121  * - set vop_lookup routine to vfs_cache_lookup
122  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
123  * - if they support lockless lookup (see below), vop_fplookup_vexec and
124  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
125  *   mount point
126  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
127  *   applicable
128  * - call cache_enter to add entries depending on the MAKEENTRY flag
129  *
130  * With the above in mind, there are 2 entry points when doing lookups:
131  * - ... -> namei -> cache_fplookup -- this is the default
132  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
133  *   should the above fail
134  *
135  * Example code flow how an entry is added:
136  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
137  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
138  *
139  * III. Performance considerations
140  *
141  * For lockless case forward lookup avoids any writes to shared areas apart
142  * from the terminal path component. In other words non-modifying lookups of
143  * different files don't suffer any scalability problems in the namecache.
144  * Looking up the same file is limited by VFS and goes beyond the scope of this
145  * file.
146  *
147  * At least on amd64 the single-threaded bottleneck for long paths is hashing
148  * (see cache_get_hash). There are cases where the code issues acquire fence
149  * multiple times, they can be combined on architectures which suffer from it.
150  *
151  * For locked case each encountered vnode has to be referenced and locked in
152  * order to be handed out to the caller (normally that's namei). This
153  * introduces significant hit single-threaded and serialization multi-threaded.
154  *
155  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
156  * avoids any writes to shared areas to any components.
157  *
158  * Unrelated insertions are partially serialized on updating the global entry
159  * counter and possibly serialized on colliding bucket or vnode locks.
160  *
161  * IV. Observability
162  *
163  * Note not everything has an explicit dtrace probe nor it should have, thus
164  * some of the one-liners below depend on implementation details.
165  *
166  * Examples:
167  *
168  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
169  * # line number, column 2 is status code (see cache_fpl_status)
170  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
171  *
172  * # Lengths of names added by binary name
173  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
174  *
175  * # Same as above but only those which exceed 64 characters
176  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
177  *
178  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
179  * # path is it
180  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
181  *
182  * V. Limitations and implementation defects
183  *
184  * - since it is possible there is no entry for an open file, tools like
185  *   "procstat" may fail to resolve fd -> vnode -> path to anything
186  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
187  *   shortage) in which case the above problem applies
188  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
189  *   way, resolving a name may return a different path than the one used to
190  *   open it (even if said path is still valid)
191  * - by default entries are not added for newly created files
192  * - adding an entry may need to evict negative entry first, which happens in 2
193  *   distinct places (evicting on lookup, adding in a later VOP) making it
194  *   impossible to simply reuse it
195  * - there is a simple scheme to evict negative entries as the cache is approaching
196  *   its capacity, but it is very unclear if doing so is a good idea to begin with
197  * - vnodes are subject to being recycled even if target inode is left in memory,
198  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
199  *   names get duplicated -- kept by filesystem itself and namecache separately
200  * - struct namecache has a fixed size and comes in 2 variants, often wasting
201  *   space.  now hard to replace with malloc due to dependence on SMR, which
202  *   requires UMA zones to opt in
203  * - lack of better integration with the kernel also turns nullfs into a layered
204  *   filesystem instead of something which can take advantage of caching
205  *
206  * Appendix A: where is the time lost, expanding on paragraph III
207  *
208  * While some care went into optimizing lookups, there is still plenty of
209  * performance left on the table, most notably from single-threaded standpoint.
210  * Below is a woefully incomplete list of changes which can help.  Ideas are
211  * mostly sketched out, no claim is made all kinks or prerequisites are laid
212  * out.
213  *
214  * Note there is performance lost all over VFS.
215  *
216  * === SMR-only lookup
217  *
218  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
219  * lockless lookup could refrain from refing/locking the found vnode and
220  * instead return while within the SMR section. Then a call to, say,
221  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
222  * would be validated with seqc not changing. This would be faster
223  * single-threaded as it dodges atomics and would provide full scalability for
224  * multicore uses. This would *not* work for open(2) or other calls which need
225  * the vnode to hang around for the long haul, but would work for aforementioned
226  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
227  *
228  * === hotpatching for sdt probes
229  *
230  * They result in *tons* of branches all over with rather regrettable codegen
231  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
232  * Reworking the code to patch itself at runtime with asm goto would solve it.
233  * asm goto is fully supported by gcc and clang.
234  *
235  * === copyinstr
236  *
237  * On all architectures it operates one byte at a time, while it could be
238  * word-sized instead thanks to the Mycroft trick.
239  *
240  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
241  * *optionally* filling in the length parameter.
242  *
243  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
244  * size which is a multiply of the word (and never zero), with the length
245  * always returned. On top of it the routine could be allowed to transform the
246  * buffer in arbitrary ways, most notably writing past the found length (not to
247  * be confused with writing past buffer size) -- this would allow word-sized
248  * movs while checking for '\0' later.
249  *
250  * === detour through namei
251  *
252  * Currently one suffers being called from namei, which then has to check if
253  * things worked out locklessly. Instead the lockless lookup could be the
254  * actual entry point which calls what is currently namei as a fallback.
255  *
256  * === avoidable branches in cache_can_fplookup
257  *
258  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
259  * this is off, none of fplookup code should execute).
260  *
261  * Both audit and capsicum branches can be combined into one, but it requires
262  * paying off a lot of tech debt first.
263  *
264  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
265  * branch.
266  *
267  * === mount stacks
268  *
269  * Crossing a mount requires checking if perhaps something is mounted on top.
270  * Instead, an additional entry could be added to struct mount with a pointer
271  * to the final mount on the stack. This would be recalculated on each
272  * mount/unmount.
273  *
274  * === root vnodes
275  *
276  * It could become part of the API contract to *always* have a rootvnode set in
277  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
278  * to be modified to always skip them.
279  */
280 
281 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
282     "Name cache");
283 
284 SDT_PROVIDER_DECLARE(vfs);
285 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
286     "struct vnode *");
287 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
288     "struct vnode *");
289 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
290     "char *");
291 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
292     "const char *");
293 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
294     "struct namecache *", "int", "int");
295 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
296 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
297     "char *", "struct vnode *");
298 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
299 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
300     "struct vnode *", "char *");
301 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
302     "struct vnode *");
303 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
304     "struct vnode *", "char *");
305 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
306     "char *");
307 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
308     "struct componentname *");
309 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
310     "struct componentname *");
311 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
312 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
313 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
314 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
315 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
316     "struct vnode *");
317 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
318     "char *");
319 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
320     "char *");
321 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
322 
323 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
324 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
325 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
326 
327 static char __read_frequently cache_fast_lookup_enabled = true;
328 
329 /*
330  * This structure describes the elements in the cache of recent
331  * names looked up by namei.
332  */
333 struct negstate {
334 	u_char neg_flag;
335 	u_char neg_hit;
336 };
337 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
338     "the state must fit in a union with a pointer without growing it");
339 
340 struct	namecache {
341 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
342 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
343 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
344 	struct	vnode *nc_dvp;		/* vnode of parent of name */
345 	union {
346 		struct	vnode *nu_vp;	/* vnode the name refers to */
347 		struct	negstate nu_neg;/* negative entry state */
348 	} n_un;
349 	u_char	nc_flag;		/* flag bits */
350 	u_char	nc_nlen;		/* length of name */
351 	char	nc_name[];		/* segment name + nul */
352 };
353 
354 /*
355  * struct namecache_ts repeats struct namecache layout up to the
356  * nc_nlen member.
357  * struct namecache_ts is used in place of struct namecache when time(s) need
358  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
359  * both a non-dotdot directory name plus dotdot for the directory's
360  * parent.
361  *
362  * See below for alignment requirement.
363  */
364 struct	namecache_ts {
365 	struct	timespec nc_time;	/* timespec provided by fs */
366 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
367 	int	nc_ticks;		/* ticks value when entry was added */
368 	int	nc_pad;
369 	struct namecache nc_nc;
370 };
371 
372 TAILQ_HEAD(cache_freebatch, namecache);
373 
374 /*
375  * At least mips n32 performs 64-bit accesses to timespec as found
376  * in namecache_ts and requires them to be aligned. Since others
377  * may be in the same spot suffer a little bit and enforce the
378  * alignment for everyone. Note this is a nop for 64-bit platforms.
379  */
380 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
381 
382 /*
383  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
384  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
385  * smaller and the value was bumped to retain the total size, but it
386  * was never re-evaluated for suitability. A simple test counting
387  * lengths during package building shows that the value of 45 covers
388  * about 86% of all added entries, reaching 99% at 65.
389  *
390  * Regardless of the above, use of dedicated zones instead of malloc may be
391  * inducing additional waste. This may be hard to address as said zones are
392  * tied to VFS SMR. Even if retaining them, the current split should be
393  * re-evaluated.
394  */
395 #ifdef __LP64__
396 #define	CACHE_PATH_CUTOFF	45
397 #define	CACHE_LARGE_PAD		6
398 #else
399 #define	CACHE_PATH_CUTOFF	41
400 #define	CACHE_LARGE_PAD		2
401 #endif
402 
403 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
404 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
405 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
406 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
407 
408 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
409 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
410 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
411 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
412 
413 #define	nc_vp		n_un.nu_vp
414 #define	nc_neg		n_un.nu_neg
415 
416 /*
417  * Flags in namecache.nc_flag
418  */
419 #define NCF_WHITE	0x01
420 #define NCF_ISDOTDOT	0x02
421 #define	NCF_TS		0x04
422 #define	NCF_DTS		0x08
423 #define	NCF_DVDROP	0x10
424 #define	NCF_NEGATIVE	0x20
425 #define	NCF_INVALID	0x40
426 #define	NCF_WIP		0x80
427 
428 /*
429  * Flags in negstate.neg_flag
430  */
431 #define NEG_HOT		0x01
432 
433 static bool	cache_neg_evict_cond(u_long lnumcache);
434 
435 /*
436  * Mark an entry as invalid.
437  *
438  * This is called before it starts getting deconstructed.
439  */
440 static void
441 cache_ncp_invalidate(struct namecache *ncp)
442 {
443 
444 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
445 	    ("%s: entry %p already invalid", __func__, ncp));
446 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
447 	atomic_thread_fence_rel();
448 }
449 
450 /*
451  * Check whether the entry can be safely used.
452  *
453  * All places which elide locks are supposed to call this after they are
454  * done with reading from an entry.
455  */
456 #define cache_ncp_canuse(ncp)	({					\
457 	struct namecache *_ncp = (ncp);					\
458 	u_char _nc_flag;						\
459 									\
460 	atomic_thread_fence_acq();					\
461 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
462 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
463 })
464 
465 /*
466  * Like the above but also checks NCF_WHITE.
467  */
468 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
469 	struct namecache *_ncp = (ncp);					\
470 	u_char _nc_flag;						\
471 									\
472 	atomic_thread_fence_acq();					\
473 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
474 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
475 })
476 
477 VFS_SMR_DECLARE;
478 
479 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
480     "Name cache parameters");
481 
482 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
483 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
484     "Total namecache capacity");
485 
486 u_int ncsizefactor = 2;
487 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
488     "Size factor for namecache");
489 
490 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
491 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
492     "Ratio of negative namecache entries");
493 
494 /*
495  * Negative entry % of namecache capacity above which automatic eviction is allowed.
496  *
497  * Check cache_neg_evict_cond for details.
498  */
499 static u_int ncnegminpct = 3;
500 
501 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
502 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
503     "Negative entry count above which automatic eviction is allowed");
504 
505 /*
506  * Structures associated with name caching.
507  */
508 #define NCHHASH(hash) \
509 	(&nchashtbl[(hash) & nchash])
510 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
511 static u_long __read_mostly	nchash;			/* size of hash table */
512 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
513     "Size of namecache hash table");
514 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
515 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
516 
517 struct nchstats	nchstats;		/* cache effectiveness statistics */
518 
519 static u_int __exclusive_cache_line neg_cycle;
520 
521 #define ncneghash	3
522 #define	numneglists	(ncneghash + 1)
523 
524 struct neglist {
525 	struct mtx		nl_evict_lock;
526 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
527 	TAILQ_HEAD(, namecache) nl_list;
528 	TAILQ_HEAD(, namecache) nl_hotlist;
529 	u_long			nl_hotnum;
530 } __aligned(CACHE_LINE_SIZE);
531 
532 static struct neglist neglists[numneglists];
533 
534 static inline struct neglist *
535 NCP2NEGLIST(struct namecache *ncp)
536 {
537 
538 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
539 }
540 
541 static inline struct negstate *
542 NCP2NEGSTATE(struct namecache *ncp)
543 {
544 
545 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
546 	return (&ncp->nc_neg);
547 }
548 
549 #define	numbucketlocks (ncbuckethash + 1)
550 static u_int __read_mostly  ncbuckethash;
551 static struct mtx_padalign __read_mostly  *bucketlocks;
552 #define	HASH2BUCKETLOCK(hash) \
553 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
554 
555 #define	numvnodelocks (ncvnodehash + 1)
556 static u_int __read_mostly  ncvnodehash;
557 static struct mtx __read_mostly *vnodelocks;
558 static inline struct mtx *
559 VP2VNODELOCK(struct vnode *vp)
560 {
561 
562 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
563 }
564 
565 static void
566 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
567 {
568 	struct namecache_ts *ncp_ts;
569 
570 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
571 	    (tsp == NULL && ticksp == NULL),
572 	    ("No NCF_TS"));
573 
574 	if (tsp == NULL)
575 		return;
576 
577 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
578 	*tsp = ncp_ts->nc_time;
579 	*ticksp = ncp_ts->nc_ticks;
580 }
581 
582 #ifdef DEBUG_CACHE
583 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
584 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
585     "VFS namecache enabled");
586 #endif
587 
588 /* Export size information to userland */
589 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
590     sizeof(struct namecache), "sizeof(struct namecache)");
591 
592 /*
593  * The new name cache statistics
594  */
595 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
596     "Name cache statistics");
597 
598 #define STATNODE_ULONG(name, varname, descr)					\
599 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
600 #define STATNODE_COUNTER(name, varname, descr)					\
601 	static COUNTER_U64_DEFINE_EARLY(varname);				\
602 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
603 	    descr);
604 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
605 STATNODE_ULONG(count, numcache, "Number of cache entries");
606 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
607 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
608 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
609 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
610 STATNODE_COUNTER(poszaps, numposzaps,
611     "Number of cache hits (positive) we do not want to cache");
612 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
613 STATNODE_COUNTER(negzaps, numnegzaps,
614     "Number of cache hits (negative) we do not want to cache");
615 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
616 /* These count for vn_getcwd(), too. */
617 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
618 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
619     "Number of fullpath search errors (VOP_VPTOCNP failures)");
620 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
621 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
622 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
623 
624 /*
625  * Debug or developer statistics.
626  */
627 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
628     "Name cache debugging");
629 #define DEBUGNODE_ULONG(name, varname, descr)					\
630 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
631 #define DEBUGNODE_COUNTER(name, varname, descr)					\
632 	static COUNTER_U64_DEFINE_EARLY(varname);				\
633 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
634 	    descr);
635 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
636     "Number of successful removals after relocking");
637 static long zap_bucket_fail;
638 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
639 static long zap_bucket_fail2;
640 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
641 static long cache_lock_vnodes_cel_3_failures;
642 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
643     "Number of times 3-way vnode locking failed");
644 
645 static void cache_zap_locked(struct namecache *ncp);
646 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
647     char **retbuf, size_t *buflen, size_t addend);
648 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
649     char **retbuf, size_t *buflen);
650 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
651     char **retbuf, size_t *len, size_t addend);
652 
653 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
654 
655 static inline void
656 cache_assert_vlp_locked(struct mtx *vlp)
657 {
658 
659 	if (vlp != NULL)
660 		mtx_assert(vlp, MA_OWNED);
661 }
662 
663 static inline void
664 cache_assert_vnode_locked(struct vnode *vp)
665 {
666 	struct mtx *vlp;
667 
668 	vlp = VP2VNODELOCK(vp);
669 	cache_assert_vlp_locked(vlp);
670 }
671 
672 /*
673  * Directory vnodes with entries are held for two reasons:
674  * 1. make them less of a target for reclamation in vnlru
675  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
676  *
677  * It will be feasible to stop doing it altogether if all filesystems start
678  * supporting lockless lookup.
679  */
680 static void
681 cache_hold_vnode(struct vnode *vp)
682 {
683 
684 	cache_assert_vnode_locked(vp);
685 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
686 	vhold(vp);
687 	counter_u64_add(numcachehv, 1);
688 }
689 
690 static void
691 cache_drop_vnode(struct vnode *vp)
692 {
693 
694 	/*
695 	 * Called after all locks are dropped, meaning we can't assert
696 	 * on the state of v_cache_src.
697 	 */
698 	vdrop(vp);
699 	counter_u64_add(numcachehv, -1);
700 }
701 
702 /*
703  * UMA zones.
704  */
705 static uma_zone_t __read_mostly cache_zone_small;
706 static uma_zone_t __read_mostly cache_zone_small_ts;
707 static uma_zone_t __read_mostly cache_zone_large;
708 static uma_zone_t __read_mostly cache_zone_large_ts;
709 
710 char *
711 cache_symlink_alloc(size_t size, int flags)
712 {
713 
714 	if (size < CACHE_ZONE_SMALL_SIZE) {
715 		return (uma_zalloc_smr(cache_zone_small, flags));
716 	}
717 	if (size < CACHE_ZONE_LARGE_SIZE) {
718 		return (uma_zalloc_smr(cache_zone_large, flags));
719 	}
720 	counter_u64_add(symlinktoobig, 1);
721 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
722 	return (NULL);
723 }
724 
725 void
726 cache_symlink_free(char *string, size_t size)
727 {
728 
729 	MPASS(string != NULL);
730 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
731 	    ("%s: size %zu too big", __func__, size));
732 
733 	if (size < CACHE_ZONE_SMALL_SIZE) {
734 		uma_zfree_smr(cache_zone_small, string);
735 		return;
736 	}
737 	if (size < CACHE_ZONE_LARGE_SIZE) {
738 		uma_zfree_smr(cache_zone_large, string);
739 		return;
740 	}
741 	__assert_unreachable();
742 }
743 
744 static struct namecache *
745 cache_alloc_uma(int len, bool ts)
746 {
747 	struct namecache_ts *ncp_ts;
748 	struct namecache *ncp;
749 
750 	if (__predict_false(ts)) {
751 		if (len <= CACHE_PATH_CUTOFF)
752 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
753 		else
754 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
755 		ncp = &ncp_ts->nc_nc;
756 	} else {
757 		if (len <= CACHE_PATH_CUTOFF)
758 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
759 		else
760 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
761 	}
762 	return (ncp);
763 }
764 
765 static void
766 cache_free_uma(struct namecache *ncp)
767 {
768 	struct namecache_ts *ncp_ts;
769 
770 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
771 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
772 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
773 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
774 		else
775 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
776 	} else {
777 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
778 			uma_zfree_smr(cache_zone_small, ncp);
779 		else
780 			uma_zfree_smr(cache_zone_large, ncp);
781 	}
782 }
783 
784 static struct namecache *
785 cache_alloc(int len, bool ts)
786 {
787 	u_long lnumcache;
788 
789 	/*
790 	 * Avoid blowout in namecache entries.
791 	 *
792 	 * Bugs:
793 	 * 1. filesystems may end up trying to add an already existing entry
794 	 * (for example this can happen after a cache miss during concurrent
795 	 * lookup), in which case we will call cache_neg_evict despite not
796 	 * adding anything.
797 	 * 2. the routine may fail to free anything and no provisions are made
798 	 * to make it try harder (see the inside for failure modes)
799 	 * 3. it only ever looks at negative entries.
800 	 */
801 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
802 	if (cache_neg_evict_cond(lnumcache)) {
803 		lnumcache = atomic_load_long(&numcache);
804 	}
805 	if (__predict_false(lnumcache >= ncsize)) {
806 		atomic_subtract_long(&numcache, 1);
807 		counter_u64_add(numdrops, 1);
808 		return (NULL);
809 	}
810 	return (cache_alloc_uma(len, ts));
811 }
812 
813 static void
814 cache_free(struct namecache *ncp)
815 {
816 
817 	MPASS(ncp != NULL);
818 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
819 		cache_drop_vnode(ncp->nc_dvp);
820 	}
821 	cache_free_uma(ncp);
822 	atomic_subtract_long(&numcache, 1);
823 }
824 
825 static void
826 cache_free_batch(struct cache_freebatch *batch)
827 {
828 	struct namecache *ncp, *nnp;
829 	int i;
830 
831 	i = 0;
832 	if (TAILQ_EMPTY(batch))
833 		goto out;
834 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
835 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
836 			cache_drop_vnode(ncp->nc_dvp);
837 		}
838 		cache_free_uma(ncp);
839 		i++;
840 	}
841 	atomic_subtract_long(&numcache, i);
842 out:
843 	SDT_PROBE1(vfs, namecache, purge, batch, i);
844 }
845 
846 /*
847  * Hashing.
848  *
849  * The code was made to use FNV in 2001 and this choice needs to be revisited.
850  *
851  * Short summary of the difficulty:
852  * The longest name which can be inserted is NAME_MAX characters in length (or
853  * 255 at the time of writing this comment), while majority of names used in
854  * practice are significantly shorter (mostly below 10). More importantly
855  * majority of lookups performed find names are even shorter than that.
856  *
857  * This poses a problem where hashes which do better than FNV past word size
858  * (or so) tend to come with additional overhead when finalizing the result,
859  * making them noticeably slower for the most commonly used range.
860  *
861  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
862  *
863  * When looking it up the most time consuming part by a large margin (at least
864  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
865  * input would make the slowest part stand out even more.
866  */
867 
868 /*
869  * TODO: With the value stored we can do better than computing the hash based
870  * on the address.
871  */
872 static void
873 cache_prehash(struct vnode *vp)
874 {
875 
876 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
877 }
878 
879 static uint32_t
880 cache_get_hash(char *name, u_char len, struct vnode *dvp)
881 {
882 
883 	return (fnv_32_buf(name, len, dvp->v_nchash));
884 }
885 
886 static uint32_t
887 cache_get_hash_iter_start(struct vnode *dvp)
888 {
889 
890 	return (dvp->v_nchash);
891 }
892 
893 static uint32_t
894 cache_get_hash_iter(char c, uint32_t hash)
895 {
896 
897 	return (fnv_32_buf(&c, 1, hash));
898 }
899 
900 static uint32_t
901 cache_get_hash_iter_finish(uint32_t hash)
902 {
903 
904 	return (hash);
905 }
906 
907 static inline struct nchashhead *
908 NCP2BUCKET(struct namecache *ncp)
909 {
910 	uint32_t hash;
911 
912 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
913 	return (NCHHASH(hash));
914 }
915 
916 static inline struct mtx *
917 NCP2BUCKETLOCK(struct namecache *ncp)
918 {
919 	uint32_t hash;
920 
921 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
922 	return (HASH2BUCKETLOCK(hash));
923 }
924 
925 #ifdef INVARIANTS
926 static void
927 cache_assert_bucket_locked(struct namecache *ncp)
928 {
929 	struct mtx *blp;
930 
931 	blp = NCP2BUCKETLOCK(ncp);
932 	mtx_assert(blp, MA_OWNED);
933 }
934 
935 static void
936 cache_assert_bucket_unlocked(struct namecache *ncp)
937 {
938 	struct mtx *blp;
939 
940 	blp = NCP2BUCKETLOCK(ncp);
941 	mtx_assert(blp, MA_NOTOWNED);
942 }
943 #else
944 #define cache_assert_bucket_locked(x) do { } while (0)
945 #define cache_assert_bucket_unlocked(x) do { } while (0)
946 #endif
947 
948 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
949 static void
950 _cache_sort_vnodes(void **p1, void **p2)
951 {
952 	void *tmp;
953 
954 	MPASS(*p1 != NULL || *p2 != NULL);
955 
956 	if (*p1 > *p2) {
957 		tmp = *p2;
958 		*p2 = *p1;
959 		*p1 = tmp;
960 	}
961 }
962 
963 static void
964 cache_lock_all_buckets(void)
965 {
966 	u_int i;
967 
968 	for (i = 0; i < numbucketlocks; i++)
969 		mtx_lock(&bucketlocks[i]);
970 }
971 
972 static void
973 cache_unlock_all_buckets(void)
974 {
975 	u_int i;
976 
977 	for (i = 0; i < numbucketlocks; i++)
978 		mtx_unlock(&bucketlocks[i]);
979 }
980 
981 static void
982 cache_lock_all_vnodes(void)
983 {
984 	u_int i;
985 
986 	for (i = 0; i < numvnodelocks; i++)
987 		mtx_lock(&vnodelocks[i]);
988 }
989 
990 static void
991 cache_unlock_all_vnodes(void)
992 {
993 	u_int i;
994 
995 	for (i = 0; i < numvnodelocks; i++)
996 		mtx_unlock(&vnodelocks[i]);
997 }
998 
999 static int
1000 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1001 {
1002 
1003 	cache_sort_vnodes(&vlp1, &vlp2);
1004 
1005 	if (vlp1 != NULL) {
1006 		if (!mtx_trylock(vlp1))
1007 			return (EAGAIN);
1008 	}
1009 	if (!mtx_trylock(vlp2)) {
1010 		if (vlp1 != NULL)
1011 			mtx_unlock(vlp1);
1012 		return (EAGAIN);
1013 	}
1014 
1015 	return (0);
1016 }
1017 
1018 static void
1019 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1020 {
1021 
1022 	MPASS(vlp1 != NULL || vlp2 != NULL);
1023 	MPASS(vlp1 <= vlp2);
1024 
1025 	if (vlp1 != NULL)
1026 		mtx_lock(vlp1);
1027 	if (vlp2 != NULL)
1028 		mtx_lock(vlp2);
1029 }
1030 
1031 static void
1032 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1033 {
1034 
1035 	MPASS(vlp1 != NULL || vlp2 != NULL);
1036 
1037 	if (vlp1 != NULL)
1038 		mtx_unlock(vlp1);
1039 	if (vlp2 != NULL)
1040 		mtx_unlock(vlp2);
1041 }
1042 
1043 static int
1044 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1045 {
1046 	struct nchstats snap;
1047 
1048 	if (req->oldptr == NULL)
1049 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1050 
1051 	snap = nchstats;
1052 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1053 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1054 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1055 	    counter_u64_fetch(numnegzaps);
1056 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1057 	    counter_u64_fetch(nummiss);
1058 
1059 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1060 }
1061 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1062     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1063     "VFS cache effectiveness statistics");
1064 
1065 static void
1066 cache_recalc_neg_min(void)
1067 {
1068 
1069 	neg_min = (ncsize * ncnegminpct) / 100;
1070 }
1071 
1072 static int
1073 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1074 {
1075 	u_int val;
1076 	int error;
1077 
1078 	val = ncnegminpct;
1079 	error = sysctl_handle_int(oidp, &val, 0, req);
1080 	if (error != 0 || req->newptr == NULL)
1081 		return (error);
1082 
1083 	if (val == ncnegminpct)
1084 		return (0);
1085 	if (val < 0 || val > 99)
1086 		return (EINVAL);
1087 	ncnegminpct = val;
1088 	cache_recalc_neg_min();
1089 	return (0);
1090 }
1091 
1092 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1093     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1094     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1095 
1096 #ifdef DEBUG_CACHE
1097 /*
1098  * Grab an atomic snapshot of the name cache hash chain lengths
1099  */
1100 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1101     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1102     "hash table stats");
1103 
1104 static int
1105 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1106 {
1107 	struct nchashhead *ncpp;
1108 	struct namecache *ncp;
1109 	int i, error, n_nchash, *cntbuf;
1110 
1111 retry:
1112 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1113 	if (req->oldptr == NULL)
1114 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1115 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1116 	cache_lock_all_buckets();
1117 	if (n_nchash != nchash + 1) {
1118 		cache_unlock_all_buckets();
1119 		free(cntbuf, M_TEMP);
1120 		goto retry;
1121 	}
1122 	/* Scan hash tables counting entries */
1123 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1124 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1125 			cntbuf[i]++;
1126 	cache_unlock_all_buckets();
1127 	for (error = 0, i = 0; i < n_nchash; i++)
1128 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1129 			break;
1130 	free(cntbuf, M_TEMP);
1131 	return (error);
1132 }
1133 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1134     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1135     "nchash chain lengths");
1136 
1137 static int
1138 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1139 {
1140 	int error;
1141 	struct nchashhead *ncpp;
1142 	struct namecache *ncp;
1143 	int n_nchash;
1144 	int count, maxlength, used, pct;
1145 
1146 	if (!req->oldptr)
1147 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1148 
1149 	cache_lock_all_buckets();
1150 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1151 	used = 0;
1152 	maxlength = 0;
1153 
1154 	/* Scan hash tables for applicable entries */
1155 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1156 		count = 0;
1157 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1158 			count++;
1159 		}
1160 		if (count)
1161 			used++;
1162 		if (maxlength < count)
1163 			maxlength = count;
1164 	}
1165 	n_nchash = nchash + 1;
1166 	cache_unlock_all_buckets();
1167 	pct = (used * 100) / (n_nchash / 100);
1168 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1169 	if (error)
1170 		return (error);
1171 	error = SYSCTL_OUT(req, &used, sizeof(used));
1172 	if (error)
1173 		return (error);
1174 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1175 	if (error)
1176 		return (error);
1177 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1178 	if (error)
1179 		return (error);
1180 	return (0);
1181 }
1182 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1183     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1184     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1185 #endif
1186 
1187 /*
1188  * Negative entries management
1189  *
1190  * Various workloads create plenty of negative entries and barely use them
1191  * afterwards. Moreover malicious users can keep performing bogus lookups
1192  * adding even more entries. For example "make tinderbox" as of writing this
1193  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1194  * negative.
1195  *
1196  * As such, a rather aggressive eviction method is needed. The currently
1197  * employed method is a placeholder.
1198  *
1199  * Entries are split over numneglists separate lists, each of which is further
1200  * split into hot and cold entries. Entries get promoted after getting a hit.
1201  * Eviction happens on addition of new entry.
1202  */
1203 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1204     "Name cache negative entry statistics");
1205 
1206 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1207     "Number of negative cache entries");
1208 
1209 static COUNTER_U64_DEFINE_EARLY(neg_created);
1210 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1211     "Number of created negative entries");
1212 
1213 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1214 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1215     "Number of evicted negative entries");
1216 
1217 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1218 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1219     &neg_evict_skipped_empty,
1220     "Number of times evicting failed due to lack of entries");
1221 
1222 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1223 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1224     &neg_evict_skipped_missed,
1225     "Number of times evicting failed due to target entry disappearing");
1226 
1227 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1228 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1229     &neg_evict_skipped_contended,
1230     "Number of times evicting failed due to contention");
1231 
1232 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1233     "Number of cache hits (negative)");
1234 
1235 static int
1236 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1237 {
1238 	int i, out;
1239 
1240 	out = 0;
1241 	for (i = 0; i < numneglists; i++)
1242 		out += neglists[i].nl_hotnum;
1243 
1244 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1245 }
1246 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1247     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1248     "Number of hot negative entries");
1249 
1250 static void
1251 cache_neg_init(struct namecache *ncp)
1252 {
1253 	struct negstate *ns;
1254 
1255 	ncp->nc_flag |= NCF_NEGATIVE;
1256 	ns = NCP2NEGSTATE(ncp);
1257 	ns->neg_flag = 0;
1258 	ns->neg_hit = 0;
1259 	counter_u64_add(neg_created, 1);
1260 }
1261 
1262 #define CACHE_NEG_PROMOTION_THRESH 2
1263 
1264 static bool
1265 cache_neg_hit_prep(struct namecache *ncp)
1266 {
1267 	struct negstate *ns;
1268 	u_char n;
1269 
1270 	ns = NCP2NEGSTATE(ncp);
1271 	n = atomic_load_char(&ns->neg_hit);
1272 	for (;;) {
1273 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1274 			return (false);
1275 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1276 			break;
1277 	}
1278 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1279 }
1280 
1281 /*
1282  * Nothing to do here but it is provided for completeness as some
1283  * cache_neg_hit_prep callers may end up returning without even
1284  * trying to promote.
1285  */
1286 #define cache_neg_hit_abort(ncp)	do { } while (0)
1287 
1288 static void
1289 cache_neg_hit_finish(struct namecache *ncp)
1290 {
1291 
1292 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1293 	counter_u64_add(numneghits, 1);
1294 }
1295 
1296 /*
1297  * Move a negative entry to the hot list.
1298  */
1299 static void
1300 cache_neg_promote_locked(struct namecache *ncp)
1301 {
1302 	struct neglist *nl;
1303 	struct negstate *ns;
1304 
1305 	ns = NCP2NEGSTATE(ncp);
1306 	nl = NCP2NEGLIST(ncp);
1307 	mtx_assert(&nl->nl_lock, MA_OWNED);
1308 	if ((ns->neg_flag & NEG_HOT) == 0) {
1309 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1310 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1311 		nl->nl_hotnum++;
1312 		ns->neg_flag |= NEG_HOT;
1313 	}
1314 }
1315 
1316 /*
1317  * Move a hot negative entry to the cold list.
1318  */
1319 static void
1320 cache_neg_demote_locked(struct namecache *ncp)
1321 {
1322 	struct neglist *nl;
1323 	struct negstate *ns;
1324 
1325 	ns = NCP2NEGSTATE(ncp);
1326 	nl = NCP2NEGLIST(ncp);
1327 	mtx_assert(&nl->nl_lock, MA_OWNED);
1328 	MPASS(ns->neg_flag & NEG_HOT);
1329 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1330 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1331 	nl->nl_hotnum--;
1332 	ns->neg_flag &= ~NEG_HOT;
1333 	atomic_store_char(&ns->neg_hit, 0);
1334 }
1335 
1336 /*
1337  * Move a negative entry to the hot list if it matches the lookup.
1338  *
1339  * We have to take locks, but they may be contended and in the worst
1340  * case we may need to go off CPU. We don't want to spin within the
1341  * smr section and we can't block with it. Exiting the section means
1342  * the found entry could have been evicted. We are going to look it
1343  * up again.
1344  */
1345 static bool
1346 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1347     struct namecache *oncp, uint32_t hash)
1348 {
1349 	struct namecache *ncp;
1350 	struct neglist *nl;
1351 	u_char nc_flag;
1352 
1353 	nl = NCP2NEGLIST(oncp);
1354 
1355 	mtx_lock(&nl->nl_lock);
1356 	/*
1357 	 * For hash iteration.
1358 	 */
1359 	vfs_smr_enter();
1360 
1361 	/*
1362 	 * Avoid all surprises by only succeeding if we got the same entry and
1363 	 * bailing completely otherwise.
1364 	 * XXX There are no provisions to keep the vnode around, meaning we may
1365 	 * end up promoting a negative entry for a *new* vnode and returning
1366 	 * ENOENT on its account. This is the error we want to return anyway
1367 	 * and promotion is harmless.
1368 	 *
1369 	 * In particular at this point there can be a new ncp which matches the
1370 	 * search but hashes to a different neglist.
1371 	 */
1372 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1373 		if (ncp == oncp)
1374 			break;
1375 	}
1376 
1377 	/*
1378 	 * No match to begin with.
1379 	 */
1380 	if (__predict_false(ncp == NULL)) {
1381 		goto out_abort;
1382 	}
1383 
1384 	/*
1385 	 * The newly found entry may be something different...
1386 	 */
1387 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1388 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1389 		goto out_abort;
1390 	}
1391 
1392 	/*
1393 	 * ... and not even negative.
1394 	 */
1395 	nc_flag = atomic_load_char(&ncp->nc_flag);
1396 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1397 		goto out_abort;
1398 	}
1399 
1400 	if (!cache_ncp_canuse(ncp)) {
1401 		goto out_abort;
1402 	}
1403 
1404 	cache_neg_promote_locked(ncp);
1405 	cache_neg_hit_finish(ncp);
1406 	vfs_smr_exit();
1407 	mtx_unlock(&nl->nl_lock);
1408 	return (true);
1409 out_abort:
1410 	vfs_smr_exit();
1411 	mtx_unlock(&nl->nl_lock);
1412 	return (false);
1413 }
1414 
1415 static void
1416 cache_neg_promote(struct namecache *ncp)
1417 {
1418 	struct neglist *nl;
1419 
1420 	nl = NCP2NEGLIST(ncp);
1421 	mtx_lock(&nl->nl_lock);
1422 	cache_neg_promote_locked(ncp);
1423 	mtx_unlock(&nl->nl_lock);
1424 }
1425 
1426 static void
1427 cache_neg_insert(struct namecache *ncp)
1428 {
1429 	struct neglist *nl;
1430 
1431 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1432 	cache_assert_bucket_locked(ncp);
1433 	nl = NCP2NEGLIST(ncp);
1434 	mtx_lock(&nl->nl_lock);
1435 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1436 	mtx_unlock(&nl->nl_lock);
1437 	atomic_add_long(&numneg, 1);
1438 }
1439 
1440 static void
1441 cache_neg_remove(struct namecache *ncp)
1442 {
1443 	struct neglist *nl;
1444 	struct negstate *ns;
1445 
1446 	cache_assert_bucket_locked(ncp);
1447 	nl = NCP2NEGLIST(ncp);
1448 	ns = NCP2NEGSTATE(ncp);
1449 	mtx_lock(&nl->nl_lock);
1450 	if ((ns->neg_flag & NEG_HOT) != 0) {
1451 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1452 		nl->nl_hotnum--;
1453 	} else {
1454 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1455 	}
1456 	mtx_unlock(&nl->nl_lock);
1457 	atomic_subtract_long(&numneg, 1);
1458 }
1459 
1460 static struct neglist *
1461 cache_neg_evict_select_list(void)
1462 {
1463 	struct neglist *nl;
1464 	u_int c;
1465 
1466 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1467 	nl = &neglists[c % numneglists];
1468 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1469 		counter_u64_add(neg_evict_skipped_contended, 1);
1470 		return (NULL);
1471 	}
1472 	return (nl);
1473 }
1474 
1475 static struct namecache *
1476 cache_neg_evict_select_entry(struct neglist *nl)
1477 {
1478 	struct namecache *ncp, *lncp;
1479 	struct negstate *ns, *lns;
1480 	int i;
1481 
1482 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1483 	mtx_assert(&nl->nl_lock, MA_OWNED);
1484 	ncp = TAILQ_FIRST(&nl->nl_list);
1485 	if (ncp == NULL)
1486 		return (NULL);
1487 	lncp = ncp;
1488 	lns = NCP2NEGSTATE(lncp);
1489 	for (i = 1; i < 4; i++) {
1490 		ncp = TAILQ_NEXT(ncp, nc_dst);
1491 		if (ncp == NULL)
1492 			break;
1493 		ns = NCP2NEGSTATE(ncp);
1494 		if (ns->neg_hit < lns->neg_hit) {
1495 			lncp = ncp;
1496 			lns = ns;
1497 		}
1498 	}
1499 	return (lncp);
1500 }
1501 
1502 static bool
1503 cache_neg_evict(void)
1504 {
1505 	struct namecache *ncp, *ncp2;
1506 	struct neglist *nl;
1507 	struct vnode *dvp;
1508 	struct mtx *dvlp;
1509 	struct mtx *blp;
1510 	uint32_t hash;
1511 	u_char nlen;
1512 	bool evicted;
1513 
1514 	nl = cache_neg_evict_select_list();
1515 	if (nl == NULL) {
1516 		return (false);
1517 	}
1518 
1519 	mtx_lock(&nl->nl_lock);
1520 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1521 	if (ncp != NULL) {
1522 		cache_neg_demote_locked(ncp);
1523 	}
1524 	ncp = cache_neg_evict_select_entry(nl);
1525 	if (ncp == NULL) {
1526 		counter_u64_add(neg_evict_skipped_empty, 1);
1527 		mtx_unlock(&nl->nl_lock);
1528 		mtx_unlock(&nl->nl_evict_lock);
1529 		return (false);
1530 	}
1531 	nlen = ncp->nc_nlen;
1532 	dvp = ncp->nc_dvp;
1533 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1534 	dvlp = VP2VNODELOCK(dvp);
1535 	blp = HASH2BUCKETLOCK(hash);
1536 	mtx_unlock(&nl->nl_lock);
1537 	mtx_unlock(&nl->nl_evict_lock);
1538 	mtx_lock(dvlp);
1539 	mtx_lock(blp);
1540 	/*
1541 	 * Note that since all locks were dropped above, the entry may be
1542 	 * gone or reallocated to be something else.
1543 	 */
1544 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1545 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1546 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1547 			break;
1548 	}
1549 	if (ncp2 == NULL) {
1550 		counter_u64_add(neg_evict_skipped_missed, 1);
1551 		ncp = NULL;
1552 		evicted = false;
1553 	} else {
1554 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1555 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1556 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1557 		    ncp->nc_name);
1558 		cache_zap_locked(ncp);
1559 		counter_u64_add(neg_evicted, 1);
1560 		evicted = true;
1561 	}
1562 	mtx_unlock(blp);
1563 	mtx_unlock(dvlp);
1564 	if (ncp != NULL)
1565 		cache_free(ncp);
1566 	return (evicted);
1567 }
1568 
1569 /*
1570  * Maybe evict a negative entry to create more room.
1571  *
1572  * The ncnegfactor parameter limits what fraction of the total count
1573  * can comprise of negative entries. However, if the cache is just
1574  * warming up this leads to excessive evictions.  As such, ncnegminpct
1575  * (recomputed to neg_min) dictates whether the above should be
1576  * applied.
1577  *
1578  * Try evicting if the cache is close to full capacity regardless of
1579  * other considerations.
1580  */
1581 static bool
1582 cache_neg_evict_cond(u_long lnumcache)
1583 {
1584 	u_long lnumneg;
1585 
1586 	if (ncsize - 1000 < lnumcache)
1587 		goto out_evict;
1588 	lnumneg = atomic_load_long(&numneg);
1589 	if (lnumneg < neg_min)
1590 		return (false);
1591 	if (lnumneg * ncnegfactor < lnumcache)
1592 		return (false);
1593 out_evict:
1594 	return (cache_neg_evict());
1595 }
1596 
1597 /*
1598  * cache_zap_locked():
1599  *
1600  *   Removes a namecache entry from cache, whether it contains an actual
1601  *   pointer to a vnode or if it is just a negative cache entry.
1602  */
1603 static void
1604 cache_zap_locked(struct namecache *ncp)
1605 {
1606 	struct nchashhead *ncpp;
1607 	struct vnode *dvp, *vp;
1608 
1609 	dvp = ncp->nc_dvp;
1610 	vp = ncp->nc_vp;
1611 
1612 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1613 		cache_assert_vnode_locked(vp);
1614 	cache_assert_vnode_locked(dvp);
1615 	cache_assert_bucket_locked(ncp);
1616 
1617 	cache_ncp_invalidate(ncp);
1618 
1619 	ncpp = NCP2BUCKET(ncp);
1620 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1621 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1622 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1623 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1624 		if (ncp == vp->v_cache_dd) {
1625 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1626 		}
1627 	} else {
1628 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1629 		cache_neg_remove(ncp);
1630 	}
1631 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1632 		if (ncp == dvp->v_cache_dd) {
1633 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1634 		}
1635 	} else {
1636 		LIST_REMOVE(ncp, nc_src);
1637 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1638 			ncp->nc_flag |= NCF_DVDROP;
1639 		}
1640 	}
1641 }
1642 
1643 static void
1644 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1645 {
1646 	struct mtx *blp;
1647 
1648 	MPASS(ncp->nc_dvp == vp);
1649 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1650 	cache_assert_vnode_locked(vp);
1651 
1652 	blp = NCP2BUCKETLOCK(ncp);
1653 	mtx_lock(blp);
1654 	cache_zap_locked(ncp);
1655 	mtx_unlock(blp);
1656 }
1657 
1658 static bool
1659 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1660     struct mtx **vlpp)
1661 {
1662 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1663 	struct mtx *blp;
1664 
1665 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1666 	cache_assert_vnode_locked(vp);
1667 
1668 	if (ncp->nc_flag & NCF_NEGATIVE) {
1669 		if (*vlpp != NULL) {
1670 			mtx_unlock(*vlpp);
1671 			*vlpp = NULL;
1672 		}
1673 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1674 		return (true);
1675 	}
1676 
1677 	pvlp = VP2VNODELOCK(vp);
1678 	blp = NCP2BUCKETLOCK(ncp);
1679 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1680 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1681 
1682 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1683 		to_unlock = *vlpp;
1684 		*vlpp = NULL;
1685 	} else {
1686 		if (*vlpp != NULL) {
1687 			mtx_unlock(*vlpp);
1688 			*vlpp = NULL;
1689 		}
1690 		cache_sort_vnodes(&vlp1, &vlp2);
1691 		if (vlp1 == pvlp) {
1692 			mtx_lock(vlp2);
1693 			to_unlock = vlp2;
1694 		} else {
1695 			if (!mtx_trylock(vlp1))
1696 				goto out_relock;
1697 			to_unlock = vlp1;
1698 		}
1699 	}
1700 	mtx_lock(blp);
1701 	cache_zap_locked(ncp);
1702 	mtx_unlock(blp);
1703 	if (to_unlock != NULL)
1704 		mtx_unlock(to_unlock);
1705 	return (true);
1706 
1707 out_relock:
1708 	mtx_unlock(vlp2);
1709 	mtx_lock(vlp1);
1710 	mtx_lock(vlp2);
1711 	MPASS(*vlpp == NULL);
1712 	*vlpp = vlp1;
1713 	return (false);
1714 }
1715 
1716 /*
1717  * If trylocking failed we can get here. We know enough to take all needed locks
1718  * in the right order and re-lookup the entry.
1719  */
1720 static int
1721 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1722     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1723     struct mtx *blp)
1724 {
1725 	struct namecache *rncp;
1726 
1727 	cache_assert_bucket_unlocked(ncp);
1728 
1729 	cache_sort_vnodes(&dvlp, &vlp);
1730 	cache_lock_vnodes(dvlp, vlp);
1731 	mtx_lock(blp);
1732 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1733 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1734 		    rncp->nc_nlen == cnp->cn_namelen &&
1735 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1736 			break;
1737 	}
1738 	if (rncp != NULL) {
1739 		cache_zap_locked(rncp);
1740 		mtx_unlock(blp);
1741 		cache_unlock_vnodes(dvlp, vlp);
1742 		counter_u64_add(zap_bucket_relock_success, 1);
1743 		return (0);
1744 	}
1745 
1746 	mtx_unlock(blp);
1747 	cache_unlock_vnodes(dvlp, vlp);
1748 	return (EAGAIN);
1749 }
1750 
1751 static int __noinline
1752 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1753     uint32_t hash, struct mtx *blp)
1754 {
1755 	struct mtx *dvlp, *vlp;
1756 	struct vnode *dvp;
1757 
1758 	cache_assert_bucket_locked(ncp);
1759 
1760 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1761 	vlp = NULL;
1762 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1763 		vlp = VP2VNODELOCK(ncp->nc_vp);
1764 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1765 		cache_zap_locked(ncp);
1766 		mtx_unlock(blp);
1767 		cache_unlock_vnodes(dvlp, vlp);
1768 		return (0);
1769 	}
1770 
1771 	dvp = ncp->nc_dvp;
1772 	mtx_unlock(blp);
1773 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1774 }
1775 
1776 static __noinline int
1777 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1778 {
1779 	struct namecache *ncp;
1780 	struct mtx *blp;
1781 	struct mtx *dvlp, *dvlp2;
1782 	uint32_t hash;
1783 	int error;
1784 
1785 	if (cnp->cn_namelen == 2 &&
1786 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1787 		dvlp = VP2VNODELOCK(dvp);
1788 		dvlp2 = NULL;
1789 		mtx_lock(dvlp);
1790 retry_dotdot:
1791 		ncp = dvp->v_cache_dd;
1792 		if (ncp == NULL) {
1793 			mtx_unlock(dvlp);
1794 			if (dvlp2 != NULL)
1795 				mtx_unlock(dvlp2);
1796 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1797 			return (0);
1798 		}
1799 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1800 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1801 				goto retry_dotdot;
1802 			MPASS(dvp->v_cache_dd == NULL);
1803 			mtx_unlock(dvlp);
1804 			if (dvlp2 != NULL)
1805 				mtx_unlock(dvlp2);
1806 			cache_free(ncp);
1807 		} else {
1808 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1809 			mtx_unlock(dvlp);
1810 			if (dvlp2 != NULL)
1811 				mtx_unlock(dvlp2);
1812 		}
1813 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1814 		return (1);
1815 	}
1816 
1817 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1818 	blp = HASH2BUCKETLOCK(hash);
1819 retry:
1820 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1821 		goto out_no_entry;
1822 
1823 	mtx_lock(blp);
1824 
1825 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1826 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1827 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1828 			break;
1829 	}
1830 
1831 	if (ncp == NULL) {
1832 		mtx_unlock(blp);
1833 		goto out_no_entry;
1834 	}
1835 
1836 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1837 	if (__predict_false(error != 0)) {
1838 		zap_bucket_fail++;
1839 		goto retry;
1840 	}
1841 	counter_u64_add(numposzaps, 1);
1842 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1843 	cache_free(ncp);
1844 	return (1);
1845 out_no_entry:
1846 	counter_u64_add(nummisszap, 1);
1847 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1848 	return (0);
1849 }
1850 
1851 static int __noinline
1852 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1853     struct timespec *tsp, int *ticksp)
1854 {
1855 	int ltype;
1856 
1857 	*vpp = dvp;
1858 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1859 	if (tsp != NULL)
1860 		timespecclear(tsp);
1861 	if (ticksp != NULL)
1862 		*ticksp = ticks;
1863 	vrefact(*vpp);
1864 	/*
1865 	 * When we lookup "." we still can be asked to lock it
1866 	 * differently...
1867 	 */
1868 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1869 	if (ltype != VOP_ISLOCKED(*vpp)) {
1870 		if (ltype == LK_EXCLUSIVE) {
1871 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1872 			if (VN_IS_DOOMED((*vpp))) {
1873 				/* forced unmount */
1874 				vrele(*vpp);
1875 				*vpp = NULL;
1876 				return (ENOENT);
1877 			}
1878 		} else
1879 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1880 	}
1881 	return (-1);
1882 }
1883 
1884 static int __noinline
1885 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1886     struct timespec *tsp, int *ticksp)
1887 {
1888 	struct namecache_ts *ncp_ts;
1889 	struct namecache *ncp;
1890 	struct mtx *dvlp;
1891 	enum vgetstate vs;
1892 	int error, ltype;
1893 	bool whiteout;
1894 
1895 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1896 
1897 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1898 		cache_remove_cnp(dvp, cnp);
1899 		return (0);
1900 	}
1901 
1902 retry:
1903 	dvlp = VP2VNODELOCK(dvp);
1904 	mtx_lock(dvlp);
1905 	ncp = dvp->v_cache_dd;
1906 	if (ncp == NULL) {
1907 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1908 		mtx_unlock(dvlp);
1909 		return (0);
1910 	}
1911 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1912 		if (ncp->nc_flag & NCF_NEGATIVE)
1913 			*vpp = NULL;
1914 		else
1915 			*vpp = ncp->nc_vp;
1916 	} else
1917 		*vpp = ncp->nc_dvp;
1918 	if (*vpp == NULL)
1919 		goto negative_success;
1920 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1921 	cache_out_ts(ncp, tsp, ticksp);
1922 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1923 	    NCF_DTS && tsp != NULL) {
1924 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1925 		*tsp = ncp_ts->nc_dotdottime;
1926 	}
1927 
1928 	MPASS(dvp != *vpp);
1929 	ltype = VOP_ISLOCKED(dvp);
1930 	VOP_UNLOCK(dvp);
1931 	vs = vget_prep(*vpp);
1932 	mtx_unlock(dvlp);
1933 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1934 	vn_lock(dvp, ltype | LK_RETRY);
1935 	if (VN_IS_DOOMED(dvp)) {
1936 		if (error == 0)
1937 			vput(*vpp);
1938 		*vpp = NULL;
1939 		return (ENOENT);
1940 	}
1941 	if (error) {
1942 		*vpp = NULL;
1943 		goto retry;
1944 	}
1945 	return (-1);
1946 negative_success:
1947 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1948 		if (cnp->cn_flags & ISLASTCN) {
1949 			counter_u64_add(numnegzaps, 1);
1950 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1951 			mtx_unlock(dvlp);
1952 			cache_free(ncp);
1953 			return (0);
1954 		}
1955 	}
1956 
1957 	whiteout = (ncp->nc_flag & NCF_WHITE);
1958 	cache_out_ts(ncp, tsp, ticksp);
1959 	if (cache_neg_hit_prep(ncp))
1960 		cache_neg_promote(ncp);
1961 	else
1962 		cache_neg_hit_finish(ncp);
1963 	mtx_unlock(dvlp);
1964 	if (whiteout)
1965 		cnp->cn_flags |= ISWHITEOUT;
1966 	return (ENOENT);
1967 }
1968 
1969 /**
1970  * Lookup a name in the name cache
1971  *
1972  * # Arguments
1973  *
1974  * - dvp:	Parent directory in which to search.
1975  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1976  * - cnp:	Parameters of the name search.  The most interesting bits of
1977  *   		the cn_flags field have the following meanings:
1978  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1979  *   			it up.
1980  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1981  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1982  *   		or negative) lookup, tsp will be filled with any timespec that
1983  *   		was stored when this cache entry was created.  However, it will
1984  *   		be clear for "." entries.
1985  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1986  *   		(positive or negative) lookup, it will contain the ticks value
1987  *   		that was current when the cache entry was created, unless cnp
1988  *   		was ".".
1989  *
1990  * Either both tsp and ticks have to be provided or neither of them.
1991  *
1992  * # Returns
1993  *
1994  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1995  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1996  *		to a forced unmount.  vpp will not be modified.  If the entry
1997  *		is a whiteout, then the ISWHITEOUT flag will be set in
1998  *		cnp->cn_flags.
1999  * - 0:		A cache miss.  vpp will not be modified.
2000  *
2001  * # Locking
2002  *
2003  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2004  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2005  * lock is not recursively acquired.
2006  */
2007 static int __noinline
2008 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2009     struct timespec *tsp, int *ticksp)
2010 {
2011 	struct namecache *ncp;
2012 	struct mtx *blp;
2013 	uint32_t hash;
2014 	enum vgetstate vs;
2015 	int error;
2016 	bool whiteout;
2017 
2018 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2019 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2020 
2021 retry:
2022 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2023 	blp = HASH2BUCKETLOCK(hash);
2024 	mtx_lock(blp);
2025 
2026 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2027 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2028 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2029 			break;
2030 	}
2031 
2032 	if (__predict_false(ncp == NULL)) {
2033 		mtx_unlock(blp);
2034 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2035 		counter_u64_add(nummiss, 1);
2036 		return (0);
2037 	}
2038 
2039 	if (ncp->nc_flag & NCF_NEGATIVE)
2040 		goto negative_success;
2041 
2042 	counter_u64_add(numposhits, 1);
2043 	*vpp = ncp->nc_vp;
2044 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2045 	cache_out_ts(ncp, tsp, ticksp);
2046 	MPASS(dvp != *vpp);
2047 	vs = vget_prep(*vpp);
2048 	mtx_unlock(blp);
2049 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2050 	if (error) {
2051 		*vpp = NULL;
2052 		goto retry;
2053 	}
2054 	return (-1);
2055 negative_success:
2056 	/*
2057 	 * We don't get here with regular lookup apart from corner cases.
2058 	 */
2059 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2060 		if (cnp->cn_flags & ISLASTCN) {
2061 			counter_u64_add(numnegzaps, 1);
2062 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2063 			if (__predict_false(error != 0)) {
2064 				zap_bucket_fail2++;
2065 				goto retry;
2066 			}
2067 			cache_free(ncp);
2068 			return (0);
2069 		}
2070 	}
2071 
2072 	whiteout = (ncp->nc_flag & NCF_WHITE);
2073 	cache_out_ts(ncp, tsp, ticksp);
2074 	if (cache_neg_hit_prep(ncp))
2075 		cache_neg_promote(ncp);
2076 	else
2077 		cache_neg_hit_finish(ncp);
2078 	mtx_unlock(blp);
2079 	if (whiteout)
2080 		cnp->cn_flags |= ISWHITEOUT;
2081 	return (ENOENT);
2082 }
2083 
2084 int
2085 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2086     struct timespec *tsp, int *ticksp)
2087 {
2088 	struct namecache *ncp;
2089 	uint32_t hash;
2090 	enum vgetstate vs;
2091 	int error;
2092 	bool whiteout, neg_promote;
2093 	u_short nc_flag;
2094 
2095 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2096 
2097 #ifdef DEBUG_CACHE
2098 	if (__predict_false(!doingcache)) {
2099 		cnp->cn_flags &= ~MAKEENTRY;
2100 		return (0);
2101 	}
2102 #endif
2103 
2104 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2105 		if (cnp->cn_namelen == 1)
2106 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2107 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2108 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2109 	}
2110 
2111 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2112 
2113 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2114 		cache_remove_cnp(dvp, cnp);
2115 		return (0);
2116 	}
2117 
2118 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2119 	vfs_smr_enter();
2120 
2121 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2122 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2123 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2124 			break;
2125 	}
2126 
2127 	if (__predict_false(ncp == NULL)) {
2128 		vfs_smr_exit();
2129 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2130 		counter_u64_add(nummiss, 1);
2131 		return (0);
2132 	}
2133 
2134 	nc_flag = atomic_load_char(&ncp->nc_flag);
2135 	if (nc_flag & NCF_NEGATIVE)
2136 		goto negative_success;
2137 
2138 	counter_u64_add(numposhits, 1);
2139 	*vpp = ncp->nc_vp;
2140 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2141 	cache_out_ts(ncp, tsp, ticksp);
2142 	MPASS(dvp != *vpp);
2143 	if (!cache_ncp_canuse(ncp)) {
2144 		vfs_smr_exit();
2145 		*vpp = NULL;
2146 		goto out_fallback;
2147 	}
2148 	vs = vget_prep_smr(*vpp);
2149 	vfs_smr_exit();
2150 	if (__predict_false(vs == VGET_NONE)) {
2151 		*vpp = NULL;
2152 		goto out_fallback;
2153 	}
2154 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2155 	if (error) {
2156 		*vpp = NULL;
2157 		goto out_fallback;
2158 	}
2159 	return (-1);
2160 negative_success:
2161 	if (cnp->cn_nameiop == CREATE) {
2162 		if (cnp->cn_flags & ISLASTCN) {
2163 			vfs_smr_exit();
2164 			goto out_fallback;
2165 		}
2166 	}
2167 
2168 	cache_out_ts(ncp, tsp, ticksp);
2169 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2170 	neg_promote = cache_neg_hit_prep(ncp);
2171 	if (!cache_ncp_canuse(ncp)) {
2172 		cache_neg_hit_abort(ncp);
2173 		vfs_smr_exit();
2174 		goto out_fallback;
2175 	}
2176 	if (neg_promote) {
2177 		vfs_smr_exit();
2178 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2179 			goto out_fallback;
2180 	} else {
2181 		cache_neg_hit_finish(ncp);
2182 		vfs_smr_exit();
2183 	}
2184 	if (whiteout)
2185 		cnp->cn_flags |= ISWHITEOUT;
2186 	return (ENOENT);
2187 out_fallback:
2188 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2189 }
2190 
2191 struct celockstate {
2192 	struct mtx *vlp[3];
2193 	struct mtx *blp[2];
2194 };
2195 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2196 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2197 
2198 static inline void
2199 cache_celockstate_init(struct celockstate *cel)
2200 {
2201 
2202 	bzero(cel, sizeof(*cel));
2203 }
2204 
2205 static void
2206 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2207     struct vnode *dvp)
2208 {
2209 	struct mtx *vlp1, *vlp2;
2210 
2211 	MPASS(cel->vlp[0] == NULL);
2212 	MPASS(cel->vlp[1] == NULL);
2213 	MPASS(cel->vlp[2] == NULL);
2214 
2215 	MPASS(vp != NULL || dvp != NULL);
2216 
2217 	vlp1 = VP2VNODELOCK(vp);
2218 	vlp2 = VP2VNODELOCK(dvp);
2219 	cache_sort_vnodes(&vlp1, &vlp2);
2220 
2221 	if (vlp1 != NULL) {
2222 		mtx_lock(vlp1);
2223 		cel->vlp[0] = vlp1;
2224 	}
2225 	mtx_lock(vlp2);
2226 	cel->vlp[1] = vlp2;
2227 }
2228 
2229 static void
2230 cache_unlock_vnodes_cel(struct celockstate *cel)
2231 {
2232 
2233 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2234 
2235 	if (cel->vlp[0] != NULL)
2236 		mtx_unlock(cel->vlp[0]);
2237 	if (cel->vlp[1] != NULL)
2238 		mtx_unlock(cel->vlp[1]);
2239 	if (cel->vlp[2] != NULL)
2240 		mtx_unlock(cel->vlp[2]);
2241 }
2242 
2243 static bool
2244 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2245 {
2246 	struct mtx *vlp;
2247 	bool ret;
2248 
2249 	cache_assert_vlp_locked(cel->vlp[0]);
2250 	cache_assert_vlp_locked(cel->vlp[1]);
2251 	MPASS(cel->vlp[2] == NULL);
2252 
2253 	MPASS(vp != NULL);
2254 	vlp = VP2VNODELOCK(vp);
2255 
2256 	ret = true;
2257 	if (vlp >= cel->vlp[1]) {
2258 		mtx_lock(vlp);
2259 	} else {
2260 		if (mtx_trylock(vlp))
2261 			goto out;
2262 		cache_lock_vnodes_cel_3_failures++;
2263 		cache_unlock_vnodes_cel(cel);
2264 		if (vlp < cel->vlp[0]) {
2265 			mtx_lock(vlp);
2266 			mtx_lock(cel->vlp[0]);
2267 			mtx_lock(cel->vlp[1]);
2268 		} else {
2269 			if (cel->vlp[0] != NULL)
2270 				mtx_lock(cel->vlp[0]);
2271 			mtx_lock(vlp);
2272 			mtx_lock(cel->vlp[1]);
2273 		}
2274 		ret = false;
2275 	}
2276 out:
2277 	cel->vlp[2] = vlp;
2278 	return (ret);
2279 }
2280 
2281 static void
2282 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2283     struct mtx *blp2)
2284 {
2285 
2286 	MPASS(cel->blp[0] == NULL);
2287 	MPASS(cel->blp[1] == NULL);
2288 
2289 	cache_sort_vnodes(&blp1, &blp2);
2290 
2291 	if (blp1 != NULL) {
2292 		mtx_lock(blp1);
2293 		cel->blp[0] = blp1;
2294 	}
2295 	mtx_lock(blp2);
2296 	cel->blp[1] = blp2;
2297 }
2298 
2299 static void
2300 cache_unlock_buckets_cel(struct celockstate *cel)
2301 {
2302 
2303 	if (cel->blp[0] != NULL)
2304 		mtx_unlock(cel->blp[0]);
2305 	mtx_unlock(cel->blp[1]);
2306 }
2307 
2308 /*
2309  * Lock part of the cache affected by the insertion.
2310  *
2311  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2312  * However, insertion can result in removal of an old entry. In this
2313  * case we have an additional vnode and bucketlock pair to lock.
2314  *
2315  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2316  * preserving the locking order (smaller address first).
2317  */
2318 static void
2319 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2320     uint32_t hash)
2321 {
2322 	struct namecache *ncp;
2323 	struct mtx *blps[2];
2324 	u_char nc_flag;
2325 
2326 	blps[0] = HASH2BUCKETLOCK(hash);
2327 	for (;;) {
2328 		blps[1] = NULL;
2329 		cache_lock_vnodes_cel(cel, dvp, vp);
2330 		if (vp == NULL || vp->v_type != VDIR)
2331 			break;
2332 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2333 		if (ncp == NULL)
2334 			break;
2335 		nc_flag = atomic_load_char(&ncp->nc_flag);
2336 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2337 			break;
2338 		MPASS(ncp->nc_dvp == vp);
2339 		blps[1] = NCP2BUCKETLOCK(ncp);
2340 		if ((nc_flag & NCF_NEGATIVE) != 0)
2341 			break;
2342 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2343 			break;
2344 		/*
2345 		 * All vnodes got re-locked. Re-validate the state and if
2346 		 * nothing changed we are done. Otherwise restart.
2347 		 */
2348 		if (ncp == vp->v_cache_dd &&
2349 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2350 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2351 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2352 			break;
2353 		cache_unlock_vnodes_cel(cel);
2354 		cel->vlp[0] = NULL;
2355 		cel->vlp[1] = NULL;
2356 		cel->vlp[2] = NULL;
2357 	}
2358 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2359 }
2360 
2361 static void
2362 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2363     uint32_t hash)
2364 {
2365 	struct namecache *ncp;
2366 	struct mtx *blps[2];
2367 	u_char nc_flag;
2368 
2369 	blps[0] = HASH2BUCKETLOCK(hash);
2370 	for (;;) {
2371 		blps[1] = NULL;
2372 		cache_lock_vnodes_cel(cel, dvp, vp);
2373 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2374 		if (ncp == NULL)
2375 			break;
2376 		nc_flag = atomic_load_char(&ncp->nc_flag);
2377 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2378 			break;
2379 		MPASS(ncp->nc_dvp == dvp);
2380 		blps[1] = NCP2BUCKETLOCK(ncp);
2381 		if ((nc_flag & NCF_NEGATIVE) != 0)
2382 			break;
2383 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2384 			break;
2385 		if (ncp == dvp->v_cache_dd &&
2386 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2387 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2388 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2389 			break;
2390 		cache_unlock_vnodes_cel(cel);
2391 		cel->vlp[0] = NULL;
2392 		cel->vlp[1] = NULL;
2393 		cel->vlp[2] = NULL;
2394 	}
2395 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2396 }
2397 
2398 static void
2399 cache_enter_unlock(struct celockstate *cel)
2400 {
2401 
2402 	cache_unlock_buckets_cel(cel);
2403 	cache_unlock_vnodes_cel(cel);
2404 }
2405 
2406 static void __noinline
2407 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2408     struct componentname *cnp)
2409 {
2410 	struct celockstate cel;
2411 	struct namecache *ncp;
2412 	uint32_t hash;
2413 	int len;
2414 
2415 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2416 		return;
2417 	len = cnp->cn_namelen;
2418 	cache_celockstate_init(&cel);
2419 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2420 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2421 	ncp = dvp->v_cache_dd;
2422 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2423 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2424 		cache_zap_locked(ncp);
2425 	} else {
2426 		ncp = NULL;
2427 	}
2428 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2429 	cache_enter_unlock(&cel);
2430 	if (ncp != NULL)
2431 		cache_free(ncp);
2432 }
2433 
2434 /*
2435  * Add an entry to the cache.
2436  */
2437 void
2438 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2439     struct timespec *tsp, struct timespec *dtsp)
2440 {
2441 	struct celockstate cel;
2442 	struct namecache *ncp, *n2, *ndd;
2443 	struct namecache_ts *ncp_ts;
2444 	struct nchashhead *ncpp;
2445 	uint32_t hash;
2446 	int flag;
2447 	int len;
2448 
2449 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2450 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2451 	    NAME_MAX));
2452 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2453 	VNPASS(dvp->v_type != VNON, dvp);
2454 	if (vp != NULL) {
2455 		VNPASS(!VN_IS_DOOMED(vp), vp);
2456 		VNPASS(vp->v_type != VNON, vp);
2457 	}
2458 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2459 		KASSERT(dvp == vp,
2460 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2461 		    dvp, vp));
2462 	} else {
2463 		KASSERT(dvp != vp,
2464 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2465 		    cnp->cn_nameptr, dvp));
2466 	}
2467 
2468 #ifdef DEBUG_CACHE
2469 	if (__predict_false(!doingcache))
2470 		return;
2471 #endif
2472 
2473 	flag = 0;
2474 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2475 		if (cnp->cn_namelen == 1)
2476 			return;
2477 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2478 			cache_enter_dotdot_prep(dvp, vp, cnp);
2479 			flag = NCF_ISDOTDOT;
2480 		}
2481 	}
2482 
2483 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2484 	if (ncp == NULL)
2485 		return;
2486 
2487 	cache_celockstate_init(&cel);
2488 	ndd = NULL;
2489 	ncp_ts = NULL;
2490 
2491 	/*
2492 	 * Calculate the hash key and setup as much of the new
2493 	 * namecache entry as possible before acquiring the lock.
2494 	 */
2495 	ncp->nc_flag = flag | NCF_WIP;
2496 	ncp->nc_vp = vp;
2497 	if (vp == NULL)
2498 		cache_neg_init(ncp);
2499 	ncp->nc_dvp = dvp;
2500 	if (tsp != NULL) {
2501 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2502 		ncp_ts->nc_time = *tsp;
2503 		ncp_ts->nc_ticks = ticks;
2504 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2505 		if (dtsp != NULL) {
2506 			ncp_ts->nc_dotdottime = *dtsp;
2507 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2508 		}
2509 	}
2510 	len = ncp->nc_nlen = cnp->cn_namelen;
2511 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2512 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2513 	ncp->nc_name[len] = '\0';
2514 	cache_enter_lock(&cel, dvp, vp, hash);
2515 
2516 	/*
2517 	 * See if this vnode or negative entry is already in the cache
2518 	 * with this name.  This can happen with concurrent lookups of
2519 	 * the same path name.
2520 	 */
2521 	ncpp = NCHHASH(hash);
2522 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2523 		if (n2->nc_dvp == dvp &&
2524 		    n2->nc_nlen == cnp->cn_namelen &&
2525 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2526 			MPASS(cache_ncp_canuse(n2));
2527 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2528 				KASSERT(vp == NULL,
2529 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2530 				    __func__, NULL, vp, cnp->cn_nameptr));
2531 			else
2532 				KASSERT(n2->nc_vp == vp,
2533 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2534 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2535 			/*
2536 			 * Entries are supposed to be immutable unless in the
2537 			 * process of getting destroyed. Accommodating for
2538 			 * changing timestamps is possible but not worth it.
2539 			 * This should be harmless in terms of correctness, in
2540 			 * the worst case resulting in an earlier expiration.
2541 			 * Alternatively, the found entry can be replaced
2542 			 * altogether.
2543 			 */
2544 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2545 #if 0
2546 			if (tsp != NULL) {
2547 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2548 				    ("no NCF_TS"));
2549 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2550 				n2_ts->nc_time = ncp_ts->nc_time;
2551 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2552 				if (dtsp != NULL) {
2553 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2554 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2555 				}
2556 			}
2557 #endif
2558 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2559 			    vp);
2560 			goto out_unlock_free;
2561 		}
2562 	}
2563 
2564 	if (flag == NCF_ISDOTDOT) {
2565 		/*
2566 		 * See if we are trying to add .. entry, but some other lookup
2567 		 * has populated v_cache_dd pointer already.
2568 		 */
2569 		if (dvp->v_cache_dd != NULL)
2570 			goto out_unlock_free;
2571 		KASSERT(vp == NULL || vp->v_type == VDIR,
2572 		    ("wrong vnode type %p", vp));
2573 		atomic_thread_fence_rel();
2574 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2575 	}
2576 
2577 	if (vp != NULL) {
2578 		if (flag != NCF_ISDOTDOT) {
2579 			/*
2580 			 * For this case, the cache entry maps both the
2581 			 * directory name in it and the name ".." for the
2582 			 * directory's parent.
2583 			 */
2584 			if ((ndd = vp->v_cache_dd) != NULL) {
2585 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2586 					cache_zap_locked(ndd);
2587 				else
2588 					ndd = NULL;
2589 			}
2590 			atomic_thread_fence_rel();
2591 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2592 		} else if (vp->v_type != VDIR) {
2593 			if (vp->v_cache_dd != NULL) {
2594 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2595 			}
2596 		}
2597 	}
2598 
2599 	if (flag != NCF_ISDOTDOT) {
2600 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2601 			cache_hold_vnode(dvp);
2602 		}
2603 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2604 	}
2605 
2606 	/*
2607 	 * If the entry is "negative", we place it into the
2608 	 * "negative" cache queue, otherwise, we place it into the
2609 	 * destination vnode's cache entries queue.
2610 	 */
2611 	if (vp != NULL) {
2612 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2613 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2614 		    vp);
2615 	} else {
2616 		if (cnp->cn_flags & ISWHITEOUT)
2617 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2618 		cache_neg_insert(ncp);
2619 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2620 		    ncp->nc_name);
2621 	}
2622 
2623 	/*
2624 	 * Insert the new namecache entry into the appropriate chain
2625 	 * within the cache entries table.
2626 	 */
2627 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2628 
2629 	atomic_thread_fence_rel();
2630 	/*
2631 	 * Mark the entry as fully constructed.
2632 	 * It is immutable past this point until its removal.
2633 	 */
2634 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2635 
2636 	cache_enter_unlock(&cel);
2637 	if (ndd != NULL)
2638 		cache_free(ndd);
2639 	return;
2640 out_unlock_free:
2641 	cache_enter_unlock(&cel);
2642 	cache_free(ncp);
2643 	return;
2644 }
2645 
2646 /*
2647  * A variant of the above accepting flags.
2648  *
2649  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2650  *
2651  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2652  * happens to match and it is doing it in an inefficient manner. It was added
2653  * to accommodate NFS which runs into a case where the target for a given name
2654  * may change from under it. Note this does nothing to solve the following
2655  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2656  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2657  */
2658 void
2659 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2660     struct timespec *tsp, struct timespec *dtsp, int flags)
2661 {
2662 
2663 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2664 
2665 	if (flags & VFS_CACHE_DROPOLD)
2666 		cache_remove_cnp(dvp, cnp);
2667 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2668 }
2669 
2670 static u_long
2671 cache_roundup_2(u_long val)
2672 {
2673 	u_long res;
2674 
2675 	for (res = 1; res <= val; res <<= 1)
2676 		continue;
2677 
2678 	return (res);
2679 }
2680 
2681 static struct nchashhead *
2682 nchinittbl(u_long elements, u_long *hashmask)
2683 {
2684 	struct nchashhead *hashtbl;
2685 	u_long hashsize, i;
2686 
2687 	hashsize = cache_roundup_2(elements) / 2;
2688 
2689 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2690 	for (i = 0; i < hashsize; i++)
2691 		CK_SLIST_INIT(&hashtbl[i]);
2692 	*hashmask = hashsize - 1;
2693 	return (hashtbl);
2694 }
2695 
2696 static void
2697 ncfreetbl(struct nchashhead *hashtbl)
2698 {
2699 
2700 	free(hashtbl, M_VFSCACHE);
2701 }
2702 
2703 /*
2704  * Name cache initialization, from vfs_init() when we are booting
2705  */
2706 static void
2707 nchinit(void *dummy __unused)
2708 {
2709 	u_int i;
2710 
2711 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2712 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2713 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2714 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2715 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2716 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2717 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2718 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2719 
2720 	VFS_SMR_ZONE_SET(cache_zone_small);
2721 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2722 	VFS_SMR_ZONE_SET(cache_zone_large);
2723 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2724 
2725 	ncsize = desiredvnodes * ncsizefactor;
2726 	cache_recalc_neg_min();
2727 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2728 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2729 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2730 		ncbuckethash = 7;
2731 	if (ncbuckethash > nchash)
2732 		ncbuckethash = nchash;
2733 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2734 	    M_WAITOK | M_ZERO);
2735 	for (i = 0; i < numbucketlocks; i++)
2736 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2737 	ncvnodehash = ncbuckethash;
2738 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2739 	    M_WAITOK | M_ZERO);
2740 	for (i = 0; i < numvnodelocks; i++)
2741 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2742 
2743 	for (i = 0; i < numneglists; i++) {
2744 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2745 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2746 		TAILQ_INIT(&neglists[i].nl_list);
2747 		TAILQ_INIT(&neglists[i].nl_hotlist);
2748 	}
2749 }
2750 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2751 
2752 void
2753 cache_vnode_init(struct vnode *vp)
2754 {
2755 
2756 	LIST_INIT(&vp->v_cache_src);
2757 	TAILQ_INIT(&vp->v_cache_dst);
2758 	vp->v_cache_dd = NULL;
2759 	cache_prehash(vp);
2760 }
2761 
2762 /*
2763  * Induce transient cache misses for lockless operation in cache_lookup() by
2764  * using a temporary hash table.
2765  *
2766  * This will force a fs lookup.
2767  *
2768  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2769  * to observe all CPUs not performing the lookup.
2770  */
2771 static void
2772 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2773 {
2774 
2775 	MPASS(temphash < nchash);
2776 	/*
2777 	 * Change the size. The new size is smaller and can safely be used
2778 	 * against the existing table. All lookups which now hash wrong will
2779 	 * result in a cache miss, which all callers are supposed to know how
2780 	 * to handle.
2781 	 */
2782 	atomic_store_long(&nchash, temphash);
2783 	atomic_thread_fence_rel();
2784 	vfs_smr_synchronize();
2785 	/*
2786 	 * At this point everyone sees the updated hash value, but they still
2787 	 * see the old table.
2788 	 */
2789 	atomic_store_ptr(&nchashtbl, temptbl);
2790 	atomic_thread_fence_rel();
2791 	vfs_smr_synchronize();
2792 	/*
2793 	 * At this point everyone sees the updated table pointer and size pair.
2794 	 */
2795 }
2796 
2797 /*
2798  * Set the new hash table.
2799  *
2800  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2801  * lockless operation in cache_lookup().
2802  */
2803 static void
2804 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2805 {
2806 
2807 	MPASS(nchash < new_hash);
2808 	/*
2809 	 * Change the pointer first. This wont result in out of bounds access
2810 	 * since the temporary table is guaranteed to be smaller.
2811 	 */
2812 	atomic_store_ptr(&nchashtbl, new_tbl);
2813 	atomic_thread_fence_rel();
2814 	vfs_smr_synchronize();
2815 	/*
2816 	 * At this point everyone sees the updated pointer value, but they
2817 	 * still see the old size.
2818 	 */
2819 	atomic_store_long(&nchash, new_hash);
2820 	atomic_thread_fence_rel();
2821 	vfs_smr_synchronize();
2822 	/*
2823 	 * At this point everyone sees the updated table pointer and size pair.
2824 	 */
2825 }
2826 
2827 void
2828 cache_changesize(u_long newmaxvnodes)
2829 {
2830 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2831 	u_long new_nchash, old_nchash, temphash;
2832 	struct namecache *ncp;
2833 	uint32_t hash;
2834 	u_long newncsize;
2835 	u_long i;
2836 
2837 	newncsize = newmaxvnodes * ncsizefactor;
2838 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2839 	if (newmaxvnodes < numbucketlocks)
2840 		newmaxvnodes = numbucketlocks;
2841 
2842 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2843 	/* If same hash table size, nothing to do */
2844 	if (nchash == new_nchash) {
2845 		ncfreetbl(new_nchashtbl);
2846 		return;
2847 	}
2848 
2849 	temptbl = nchinittbl(1, &temphash);
2850 
2851 	/*
2852 	 * Move everything from the old hash table to the new table.
2853 	 * None of the namecache entries in the table can be removed
2854 	 * because to do so, they have to be removed from the hash table.
2855 	 */
2856 	cache_lock_all_vnodes();
2857 	cache_lock_all_buckets();
2858 	old_nchashtbl = nchashtbl;
2859 	old_nchash = nchash;
2860 	cache_changesize_set_temp(temptbl, temphash);
2861 	for (i = 0; i <= old_nchash; i++) {
2862 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2863 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2864 			    ncp->nc_dvp);
2865 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2866 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2867 		}
2868 	}
2869 	ncsize = newncsize;
2870 	cache_recalc_neg_min();
2871 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2872 	cache_unlock_all_buckets();
2873 	cache_unlock_all_vnodes();
2874 	ncfreetbl(old_nchashtbl);
2875 	ncfreetbl(temptbl);
2876 }
2877 
2878 /*
2879  * Remove all entries from and to a particular vnode.
2880  */
2881 static void
2882 cache_purge_impl(struct vnode *vp)
2883 {
2884 	struct cache_freebatch batch;
2885 	struct namecache *ncp;
2886 	struct mtx *vlp, *vlp2;
2887 
2888 	TAILQ_INIT(&batch);
2889 	vlp = VP2VNODELOCK(vp);
2890 	vlp2 = NULL;
2891 	mtx_lock(vlp);
2892 retry:
2893 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2894 		ncp = LIST_FIRST(&vp->v_cache_src);
2895 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2896 			goto retry;
2897 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2898 	}
2899 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2900 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2901 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2902 			goto retry;
2903 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2904 	}
2905 	ncp = vp->v_cache_dd;
2906 	if (ncp != NULL) {
2907 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2908 		   ("lost dotdot link"));
2909 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2910 			goto retry;
2911 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2912 	}
2913 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2914 	mtx_unlock(vlp);
2915 	if (vlp2 != NULL)
2916 		mtx_unlock(vlp2);
2917 	cache_free_batch(&batch);
2918 }
2919 
2920 /*
2921  * Opportunistic check to see if there is anything to do.
2922  */
2923 static bool
2924 cache_has_entries(struct vnode *vp)
2925 {
2926 
2927 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2928 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2929 		return (false);
2930 	return (true);
2931 }
2932 
2933 void
2934 cache_purge(struct vnode *vp)
2935 {
2936 
2937 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2938 	if (!cache_has_entries(vp))
2939 		return;
2940 	cache_purge_impl(vp);
2941 }
2942 
2943 /*
2944  * Only to be used by vgone.
2945  */
2946 void
2947 cache_purge_vgone(struct vnode *vp)
2948 {
2949 	struct mtx *vlp;
2950 
2951 	VNPASS(VN_IS_DOOMED(vp), vp);
2952 	if (cache_has_entries(vp)) {
2953 		cache_purge_impl(vp);
2954 		return;
2955 	}
2956 
2957 	/*
2958 	 * Serialize against a potential thread doing cache_purge.
2959 	 */
2960 	vlp = VP2VNODELOCK(vp);
2961 	mtx_wait_unlocked(vlp);
2962 	if (cache_has_entries(vp)) {
2963 		cache_purge_impl(vp);
2964 		return;
2965 	}
2966 	return;
2967 }
2968 
2969 /*
2970  * Remove all negative entries for a particular directory vnode.
2971  */
2972 void
2973 cache_purge_negative(struct vnode *vp)
2974 {
2975 	struct cache_freebatch batch;
2976 	struct namecache *ncp, *nnp;
2977 	struct mtx *vlp;
2978 
2979 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2980 	if (LIST_EMPTY(&vp->v_cache_src))
2981 		return;
2982 	TAILQ_INIT(&batch);
2983 	vlp = VP2VNODELOCK(vp);
2984 	mtx_lock(vlp);
2985 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2986 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2987 			continue;
2988 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2989 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2990 	}
2991 	mtx_unlock(vlp);
2992 	cache_free_batch(&batch);
2993 }
2994 
2995 /*
2996  * Entry points for modifying VOP operations.
2997  */
2998 void
2999 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3000     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3001 {
3002 
3003 	ASSERT_VOP_IN_SEQC(fdvp);
3004 	ASSERT_VOP_IN_SEQC(fvp);
3005 	ASSERT_VOP_IN_SEQC(tdvp);
3006 	if (tvp != NULL)
3007 		ASSERT_VOP_IN_SEQC(tvp);
3008 
3009 	cache_purge(fvp);
3010 	if (tvp != NULL) {
3011 		cache_purge(tvp);
3012 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3013 		    ("%s: lingering negative entry", __func__));
3014 	} else {
3015 		cache_remove_cnp(tdvp, tcnp);
3016 	}
3017 
3018 	/*
3019 	 * TODO
3020 	 *
3021 	 * Historically renaming was always purging all revelang entries,
3022 	 * but that's quite wasteful. In particular turns out that in many cases
3023 	 * the target file is immediately accessed after rename, inducing a cache
3024 	 * miss.
3025 	 *
3026 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3027 	 * instead of just removing it above and allocating a new one here.
3028 	 */
3029 	cache_enter(tdvp, fvp, tcnp);
3030 }
3031 
3032 void
3033 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3034 {
3035 
3036 	ASSERT_VOP_IN_SEQC(dvp);
3037 	ASSERT_VOP_IN_SEQC(vp);
3038 	cache_purge(vp);
3039 }
3040 
3041 #ifdef INVARIANTS
3042 /*
3043  * Validate that if an entry exists it matches.
3044  */
3045 void
3046 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3047 {
3048 	struct namecache *ncp;
3049 	struct mtx *blp;
3050 	uint32_t hash;
3051 
3052 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3053 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3054 		return;
3055 	blp = HASH2BUCKETLOCK(hash);
3056 	mtx_lock(blp);
3057 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3058 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3059 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
3060 			if (ncp->nc_vp != vp)
3061 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3062 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3063 		}
3064 	}
3065 	mtx_unlock(blp);
3066 }
3067 
3068 void
3069 cache_assert_no_entries(struct vnode *vp)
3070 {
3071 
3072 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3073 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3074 	VNPASS(vp->v_cache_dd == NULL, vp);
3075 }
3076 #endif
3077 
3078 /*
3079  * Flush all entries referencing a particular filesystem.
3080  */
3081 void
3082 cache_purgevfs(struct mount *mp)
3083 {
3084 	struct vnode *vp, *mvp;
3085 	size_t visited __sdt_used, purged __sdt_used;
3086 
3087 	visited = purged = 0;
3088 	/*
3089 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3090 	 * support filtering and avoid the interlock to begin with.
3091 	 */
3092 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3093 		visited++;
3094 		if (!cache_has_entries(vp)) {
3095 			VI_UNLOCK(vp);
3096 			continue;
3097 		}
3098 		vholdl(vp);
3099 		VI_UNLOCK(vp);
3100 		cache_purge(vp);
3101 		purged++;
3102 		vdrop(vp);
3103 	}
3104 
3105 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3106 }
3107 
3108 /*
3109  * Perform canonical checks and cache lookup and pass on to filesystem
3110  * through the vop_cachedlookup only if needed.
3111  */
3112 
3113 int
3114 vfs_cache_lookup(struct vop_lookup_args *ap)
3115 {
3116 	struct vnode *dvp;
3117 	int error;
3118 	struct vnode **vpp = ap->a_vpp;
3119 	struct componentname *cnp = ap->a_cnp;
3120 	int flags = cnp->cn_flags;
3121 
3122 	*vpp = NULL;
3123 	dvp = ap->a_dvp;
3124 
3125 	if (dvp->v_type != VDIR)
3126 		return (ENOTDIR);
3127 
3128 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3129 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3130 		return (EROFS);
3131 
3132 	error = vn_dir_check_exec(dvp, cnp);
3133 	if (error != 0)
3134 		return (error);
3135 
3136 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3137 	if (error == 0)
3138 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3139 	if (error == -1)
3140 		return (0);
3141 	return (error);
3142 }
3143 
3144 /* Implementation of the getcwd syscall. */
3145 int
3146 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3147 {
3148 	char *buf, *retbuf;
3149 	size_t buflen;
3150 	int error;
3151 
3152 	buflen = uap->buflen;
3153 	if (__predict_false(buflen < 2))
3154 		return (EINVAL);
3155 	if (buflen > MAXPATHLEN)
3156 		buflen = MAXPATHLEN;
3157 
3158 	buf = uma_zalloc(namei_zone, M_WAITOK);
3159 	error = vn_getcwd(buf, &retbuf, &buflen);
3160 	if (error == 0)
3161 		error = copyout(retbuf, uap->buf, buflen);
3162 	uma_zfree(namei_zone, buf);
3163 	return (error);
3164 }
3165 
3166 int
3167 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3168 {
3169 	struct pwd *pwd;
3170 	int error;
3171 
3172 	vfs_smr_enter();
3173 	pwd = pwd_get_smr();
3174 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3175 	    buflen, 0);
3176 	VFS_SMR_ASSERT_NOT_ENTERED();
3177 	if (error < 0) {
3178 		pwd = pwd_hold(curthread);
3179 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3180 		    retbuf, buflen);
3181 		pwd_drop(pwd);
3182 	}
3183 
3184 #ifdef KTRACE
3185 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3186 		ktrnamei(*retbuf);
3187 #endif
3188 	return (error);
3189 }
3190 
3191 /*
3192  * Canonicalize a path by walking it forward and back.
3193  *
3194  * BUGS:
3195  * - Nothing guarantees the integrity of the entire chain. Consider the case
3196  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3197  *   "foo" into "quux" during the backwards walk. The result will be
3198  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3199  *   walk in userspace. Moreover, the path we return is inaccessible if the
3200  *   calling thread lacks permission to traverse "quux".
3201  */
3202 static int
3203 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3204     size_t size, int flags, enum uio_seg pathseg)
3205 {
3206 	struct nameidata nd;
3207 	char *retbuf, *freebuf;
3208 	int error;
3209 
3210 	if (flags != 0)
3211 		return (EINVAL);
3212 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3213 	    pathseg, path, fd, &cap_fstat_rights);
3214 	if ((error = namei(&nd)) != 0)
3215 		return (error);
3216 
3217 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3218 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3219 		/*
3220 		 * This happens if vp is a file mount. The call to
3221 		 * vn_fullpath_hardlink can panic if path resolution can't be
3222 		 * handled without the directory.
3223 		 *
3224 		 * To resolve this, we find the vnode which was mounted on -
3225 		 * this should have a unique global path since we disallow
3226 		 * mounting on linked files.
3227 		 */
3228 		struct vnode *covered_vp;
3229 		error = vn_lock(nd.ni_vp, LK_SHARED);
3230 		if (error != 0)
3231 			goto out;
3232 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3233 		vref(covered_vp);
3234 		VOP_UNLOCK(nd.ni_vp);
3235 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3236 		vrele(covered_vp);
3237 	} else {
3238 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3239 		    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3240 	}
3241 	if (error == 0) {
3242 		error = copyout(retbuf, buf, size);
3243 		free(freebuf, M_TEMP);
3244 	}
3245 out:
3246 	vrele(nd.ni_vp);
3247 	vrele(nd.ni_dvp);
3248 	NDFREE_PNBUF(&nd);
3249 	return (error);
3250 }
3251 
3252 int
3253 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3254 {
3255 
3256 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3257 	    uap->flags, UIO_USERSPACE));
3258 }
3259 
3260 /*
3261  * Retrieve the full filesystem path that correspond to a vnode from the name
3262  * cache (if available)
3263  */
3264 int
3265 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3266 {
3267 	struct pwd *pwd;
3268 	char *buf;
3269 	size_t buflen;
3270 	int error;
3271 
3272 	if (__predict_false(vp == NULL))
3273 		return (EINVAL);
3274 
3275 	buflen = MAXPATHLEN;
3276 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3277 	vfs_smr_enter();
3278 	pwd = pwd_get_smr();
3279 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3280 	VFS_SMR_ASSERT_NOT_ENTERED();
3281 	if (error < 0) {
3282 		pwd = pwd_hold(curthread);
3283 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3284 		pwd_drop(pwd);
3285 	}
3286 	if (error == 0)
3287 		*freebuf = buf;
3288 	else
3289 		free(buf, M_TEMP);
3290 	return (error);
3291 }
3292 
3293 /*
3294  * This function is similar to vn_fullpath, but it attempts to lookup the
3295  * pathname relative to the global root mount point.  This is required for the
3296  * auditing sub-system, as audited pathnames must be absolute, relative to the
3297  * global root mount point.
3298  */
3299 int
3300 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3301 {
3302 	char *buf;
3303 	size_t buflen;
3304 	int error;
3305 
3306 	if (__predict_false(vp == NULL))
3307 		return (EINVAL);
3308 	buflen = MAXPATHLEN;
3309 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3310 	vfs_smr_enter();
3311 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3312 	VFS_SMR_ASSERT_NOT_ENTERED();
3313 	if (error < 0) {
3314 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3315 	}
3316 	if (error == 0)
3317 		*freebuf = buf;
3318 	else
3319 		free(buf, M_TEMP);
3320 	return (error);
3321 }
3322 
3323 static struct namecache *
3324 vn_dd_from_dst(struct vnode *vp)
3325 {
3326 	struct namecache *ncp;
3327 
3328 	cache_assert_vnode_locked(vp);
3329 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3330 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3331 			return (ncp);
3332 	}
3333 	return (NULL);
3334 }
3335 
3336 int
3337 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3338 {
3339 	struct vnode *dvp;
3340 	struct namecache *ncp;
3341 	struct mtx *vlp;
3342 	int error;
3343 
3344 	vlp = VP2VNODELOCK(*vp);
3345 	mtx_lock(vlp);
3346 	ncp = (*vp)->v_cache_dd;
3347 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3348 		KASSERT(ncp == vn_dd_from_dst(*vp),
3349 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3350 		    ncp, vn_dd_from_dst(*vp)));
3351 	} else {
3352 		ncp = vn_dd_from_dst(*vp);
3353 	}
3354 	if (ncp != NULL) {
3355 		if (*buflen < ncp->nc_nlen) {
3356 			mtx_unlock(vlp);
3357 			vrele(*vp);
3358 			counter_u64_add(numfullpathfail4, 1);
3359 			error = ENOMEM;
3360 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3361 			    vp, NULL);
3362 			return (error);
3363 		}
3364 		*buflen -= ncp->nc_nlen;
3365 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3366 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3367 		    ncp->nc_name, vp);
3368 		dvp = *vp;
3369 		*vp = ncp->nc_dvp;
3370 		vref(*vp);
3371 		mtx_unlock(vlp);
3372 		vrele(dvp);
3373 		return (0);
3374 	}
3375 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3376 
3377 	mtx_unlock(vlp);
3378 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3379 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3380 	vput(*vp);
3381 	if (error) {
3382 		counter_u64_add(numfullpathfail2, 1);
3383 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3384 		return (error);
3385 	}
3386 
3387 	*vp = dvp;
3388 	if (VN_IS_DOOMED(dvp)) {
3389 		/* forced unmount */
3390 		vrele(dvp);
3391 		error = ENOENT;
3392 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3393 		return (error);
3394 	}
3395 	/*
3396 	 * *vp has its use count incremented still.
3397 	 */
3398 
3399 	return (0);
3400 }
3401 
3402 /*
3403  * Resolve a directory to a pathname.
3404  *
3405  * The name of the directory can always be found in the namecache or fetched
3406  * from the filesystem. There is also guaranteed to be only one parent, meaning
3407  * we can just follow vnodes up until we find the root.
3408  *
3409  * The vnode must be referenced.
3410  */
3411 static int
3412 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3413     size_t *len, size_t addend)
3414 {
3415 #ifdef KDTRACE_HOOKS
3416 	struct vnode *startvp = vp;
3417 #endif
3418 	struct vnode *vp1;
3419 	size_t buflen;
3420 	int error;
3421 	bool slash_prefixed;
3422 
3423 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3424 	VNPASS(vp->v_usecount > 0, vp);
3425 
3426 	buflen = *len;
3427 
3428 	slash_prefixed = true;
3429 	if (addend == 0) {
3430 		MPASS(*len >= 2);
3431 		buflen--;
3432 		buf[buflen] = '\0';
3433 		slash_prefixed = false;
3434 	}
3435 
3436 	error = 0;
3437 
3438 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3439 	counter_u64_add(numfullpathcalls, 1);
3440 	while (vp != rdir && vp != rootvnode) {
3441 		/*
3442 		 * The vp vnode must be already fully constructed,
3443 		 * since it is either found in namecache or obtained
3444 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3445 		 * without obtaining the vnode lock.
3446 		 */
3447 		if ((vp->v_vflag & VV_ROOT) != 0) {
3448 			vn_lock(vp, LK_RETRY | LK_SHARED);
3449 
3450 			/*
3451 			 * With the vnode locked, check for races with
3452 			 * unmount, forced or not.  Note that we
3453 			 * already verified that vp is not equal to
3454 			 * the root vnode, which means that
3455 			 * mnt_vnodecovered can be NULL only for the
3456 			 * case of unmount.
3457 			 */
3458 			if (VN_IS_DOOMED(vp) ||
3459 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3460 			    vp1->v_mountedhere != vp->v_mount) {
3461 				vput(vp);
3462 				error = ENOENT;
3463 				SDT_PROBE3(vfs, namecache, fullpath, return,
3464 				    error, vp, NULL);
3465 				break;
3466 			}
3467 
3468 			vref(vp1);
3469 			vput(vp);
3470 			vp = vp1;
3471 			continue;
3472 		}
3473 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3474 		error = vn_vptocnp(&vp, buf, &buflen);
3475 		if (error)
3476 			break;
3477 		if (buflen == 0) {
3478 			vrele(vp);
3479 			error = ENOMEM;
3480 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3481 			    startvp, NULL);
3482 			break;
3483 		}
3484 		buf[--buflen] = '/';
3485 		slash_prefixed = true;
3486 	}
3487 	if (error)
3488 		return (error);
3489 	if (!slash_prefixed) {
3490 		if (buflen == 0) {
3491 			vrele(vp);
3492 			counter_u64_add(numfullpathfail4, 1);
3493 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3494 			    startvp, NULL);
3495 			return (ENOMEM);
3496 		}
3497 		buf[--buflen] = '/';
3498 	}
3499 	counter_u64_add(numfullpathfound, 1);
3500 	vrele(vp);
3501 
3502 	*retbuf = buf + buflen;
3503 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3504 	*len -= buflen;
3505 	*len += addend;
3506 	return (0);
3507 }
3508 
3509 /*
3510  * Resolve an arbitrary vnode to a pathname.
3511  *
3512  * Note 2 caveats:
3513  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3514  *   resolve to a different path than the one used to find it
3515  * - namecache is not mandatory, meaning names are not guaranteed to be added
3516  *   (in which case resolving fails)
3517  */
3518 static void __inline
3519 cache_rev_failed_impl(int *reason, int line)
3520 {
3521 
3522 	*reason = line;
3523 }
3524 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3525 
3526 static int
3527 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3528     char **retbuf, size_t *buflen, size_t addend)
3529 {
3530 #ifdef KDTRACE_HOOKS
3531 	struct vnode *startvp = vp;
3532 #endif
3533 	struct vnode *tvp;
3534 	struct mount *mp;
3535 	struct namecache *ncp;
3536 	size_t orig_buflen;
3537 	int reason;
3538 	int error;
3539 #ifdef KDTRACE_HOOKS
3540 	int i;
3541 #endif
3542 	seqc_t vp_seqc, tvp_seqc;
3543 	u_char nc_flag;
3544 
3545 	VFS_SMR_ASSERT_ENTERED();
3546 
3547 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3548 		vfs_smr_exit();
3549 		return (-1);
3550 	}
3551 
3552 	orig_buflen = *buflen;
3553 
3554 	if (addend == 0) {
3555 		MPASS(*buflen >= 2);
3556 		*buflen -= 1;
3557 		buf[*buflen] = '\0';
3558 	}
3559 
3560 	if (vp == rdir || vp == rootvnode) {
3561 		if (addend == 0) {
3562 			*buflen -= 1;
3563 			buf[*buflen] = '/';
3564 		}
3565 		goto out_ok;
3566 	}
3567 
3568 #ifdef KDTRACE_HOOKS
3569 	i = 0;
3570 #endif
3571 	error = -1;
3572 	ncp = NULL; /* for sdt probe down below */
3573 	vp_seqc = vn_seqc_read_any(vp);
3574 	if (seqc_in_modify(vp_seqc)) {
3575 		cache_rev_failed(&reason);
3576 		goto out_abort;
3577 	}
3578 
3579 	for (;;) {
3580 #ifdef KDTRACE_HOOKS
3581 		i++;
3582 #endif
3583 		if ((vp->v_vflag & VV_ROOT) != 0) {
3584 			mp = atomic_load_ptr(&vp->v_mount);
3585 			if (mp == NULL) {
3586 				cache_rev_failed(&reason);
3587 				goto out_abort;
3588 			}
3589 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3590 			tvp_seqc = vn_seqc_read_any(tvp);
3591 			if (seqc_in_modify(tvp_seqc)) {
3592 				cache_rev_failed(&reason);
3593 				goto out_abort;
3594 			}
3595 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3596 				cache_rev_failed(&reason);
3597 				goto out_abort;
3598 			}
3599 			vp = tvp;
3600 			vp_seqc = tvp_seqc;
3601 			continue;
3602 		}
3603 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3604 		if (ncp == NULL) {
3605 			cache_rev_failed(&reason);
3606 			goto out_abort;
3607 		}
3608 		nc_flag = atomic_load_char(&ncp->nc_flag);
3609 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3610 			cache_rev_failed(&reason);
3611 			goto out_abort;
3612 		}
3613 		if (ncp->nc_nlen >= *buflen) {
3614 			cache_rev_failed(&reason);
3615 			error = ENOMEM;
3616 			goto out_abort;
3617 		}
3618 		*buflen -= ncp->nc_nlen;
3619 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3620 		*buflen -= 1;
3621 		buf[*buflen] = '/';
3622 		tvp = ncp->nc_dvp;
3623 		tvp_seqc = vn_seqc_read_any(tvp);
3624 		if (seqc_in_modify(tvp_seqc)) {
3625 			cache_rev_failed(&reason);
3626 			goto out_abort;
3627 		}
3628 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3629 			cache_rev_failed(&reason);
3630 			goto out_abort;
3631 		}
3632 		/*
3633 		 * Acquire fence provided by vn_seqc_read_any above.
3634 		 */
3635 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3636 			cache_rev_failed(&reason);
3637 			goto out_abort;
3638 		}
3639 		if (!cache_ncp_canuse(ncp)) {
3640 			cache_rev_failed(&reason);
3641 			goto out_abort;
3642 		}
3643 		vp = tvp;
3644 		vp_seqc = tvp_seqc;
3645 		if (vp == rdir || vp == rootvnode)
3646 			break;
3647 	}
3648 out_ok:
3649 	vfs_smr_exit();
3650 	*retbuf = buf + *buflen;
3651 	*buflen = orig_buflen - *buflen + addend;
3652 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3653 	return (0);
3654 
3655 out_abort:
3656 	*buflen = orig_buflen;
3657 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3658 	vfs_smr_exit();
3659 	return (error);
3660 }
3661 
3662 static int
3663 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3664     size_t *buflen)
3665 {
3666 	size_t orig_buflen, addend;
3667 	int error;
3668 
3669 	if (*buflen < 2)
3670 		return (EINVAL);
3671 
3672 	orig_buflen = *buflen;
3673 
3674 	vref(vp);
3675 	addend = 0;
3676 	if (vp->v_type != VDIR) {
3677 		*buflen -= 1;
3678 		buf[*buflen] = '\0';
3679 		error = vn_vptocnp(&vp, buf, buflen);
3680 		if (error)
3681 			return (error);
3682 		if (*buflen == 0) {
3683 			vrele(vp);
3684 			return (ENOMEM);
3685 		}
3686 		*buflen -= 1;
3687 		buf[*buflen] = '/';
3688 		addend = orig_buflen - *buflen;
3689 	}
3690 
3691 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3692 }
3693 
3694 /*
3695  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3696  *
3697  * Since the namecache does not track hardlinks, the caller is expected to
3698  * first look up the target vnode with WANTPARENT flag passed to namei to get
3699  * dvp and vp.
3700  *
3701  * Then we have 2 cases:
3702  * - if the found vnode is a directory, the path can be constructed just by
3703  *   following names up the chain
3704  * - otherwise we populate the buffer with the saved name and start resolving
3705  *   from the parent
3706  */
3707 int
3708 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3709     const char *hrdl_name, size_t hrdl_name_length,
3710     char **retbuf, char **freebuf, size_t *buflen)
3711 {
3712 	char *buf, *tmpbuf;
3713 	struct pwd *pwd;
3714 	size_t addend;
3715 	int error;
3716 	__enum_uint8(vtype) type;
3717 
3718 	if (*buflen < 2)
3719 		return (EINVAL);
3720 	if (*buflen > MAXPATHLEN)
3721 		*buflen = MAXPATHLEN;
3722 
3723 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3724 
3725 	addend = 0;
3726 
3727 	/*
3728 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3729 	 *
3730 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3731 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3732 	 * If the type is VDIR (like in this very case) we can skip looking
3733 	 * at ni_dvp in the first place. However, since vnodes get passed here
3734 	 * unlocked the target may transition to doomed state (type == VBAD)
3735 	 * before we get to evaluate the condition. If this happens, we will
3736 	 * populate part of the buffer and descend to vn_fullpath_dir with
3737 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3738 	 */
3739 	type = atomic_load_8(&vp->v_type);
3740 	if (type == VBAD) {
3741 		error = ENOENT;
3742 		goto out_bad;
3743 	}
3744 	if (type != VDIR) {
3745 		addend = hrdl_name_length + 2;
3746 		if (*buflen < addend) {
3747 			error = ENOMEM;
3748 			goto out_bad;
3749 		}
3750 		*buflen -= addend;
3751 		tmpbuf = buf + *buflen;
3752 		tmpbuf[0] = '/';
3753 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3754 		tmpbuf[addend - 1] = '\0';
3755 		vp = dvp;
3756 	}
3757 
3758 	vfs_smr_enter();
3759 	pwd = pwd_get_smr();
3760 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3761 	    addend);
3762 	VFS_SMR_ASSERT_NOT_ENTERED();
3763 	if (error < 0) {
3764 		pwd = pwd_hold(curthread);
3765 		vref(vp);
3766 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3767 		    addend);
3768 		pwd_drop(pwd);
3769 	}
3770 	if (error != 0)
3771 		goto out_bad;
3772 
3773 	*freebuf = buf;
3774 
3775 	return (0);
3776 out_bad:
3777 	free(buf, M_TEMP);
3778 	return (error);
3779 }
3780 
3781 struct vnode *
3782 vn_dir_dd_ino(struct vnode *vp)
3783 {
3784 	struct namecache *ncp;
3785 	struct vnode *ddvp;
3786 	struct mtx *vlp;
3787 	enum vgetstate vs;
3788 
3789 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3790 	vlp = VP2VNODELOCK(vp);
3791 	mtx_lock(vlp);
3792 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3793 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3794 			continue;
3795 		ddvp = ncp->nc_dvp;
3796 		vs = vget_prep(ddvp);
3797 		mtx_unlock(vlp);
3798 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3799 			return (NULL);
3800 		return (ddvp);
3801 	}
3802 	mtx_unlock(vlp);
3803 	return (NULL);
3804 }
3805 
3806 int
3807 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3808 {
3809 	struct namecache *ncp;
3810 	struct mtx *vlp;
3811 	int l;
3812 
3813 	vlp = VP2VNODELOCK(vp);
3814 	mtx_lock(vlp);
3815 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3816 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3817 			break;
3818 	if (ncp == NULL) {
3819 		mtx_unlock(vlp);
3820 		return (ENOENT);
3821 	}
3822 	l = min(ncp->nc_nlen, buflen - 1);
3823 	memcpy(buf, ncp->nc_name, l);
3824 	mtx_unlock(vlp);
3825 	buf[l] = '\0';
3826 	return (0);
3827 }
3828 
3829 /*
3830  * This function updates path string to vnode's full global path
3831  * and checks the size of the new path string against the pathlen argument.
3832  *
3833  * Requires a locked, referenced vnode.
3834  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3835  *
3836  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3837  * because it falls back to the ".." lookup if the namecache lookup fails.
3838  */
3839 int
3840 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3841     u_int pathlen)
3842 {
3843 	struct nameidata nd;
3844 	struct vnode *vp1;
3845 	char *rpath, *fbuf;
3846 	int error;
3847 
3848 	ASSERT_VOP_ELOCKED(vp, __func__);
3849 
3850 	/* Construct global filesystem path from vp. */
3851 	VOP_UNLOCK(vp);
3852 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3853 
3854 	if (error != 0) {
3855 		vrele(vp);
3856 		return (error);
3857 	}
3858 
3859 	if (strlen(rpath) >= pathlen) {
3860 		vrele(vp);
3861 		error = ENAMETOOLONG;
3862 		goto out;
3863 	}
3864 
3865 	/*
3866 	 * Re-lookup the vnode by path to detect a possible rename.
3867 	 * As a side effect, the vnode is relocked.
3868 	 * If vnode was renamed, return ENOENT.
3869 	 */
3870 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3871 	error = namei(&nd);
3872 	if (error != 0) {
3873 		vrele(vp);
3874 		goto out;
3875 	}
3876 	NDFREE_PNBUF(&nd);
3877 	vp1 = nd.ni_vp;
3878 	vrele(vp);
3879 	if (vp1 == vp)
3880 		strcpy(path, rpath);
3881 	else {
3882 		vput(vp1);
3883 		error = ENOENT;
3884 	}
3885 
3886 out:
3887 	free(fbuf, M_TEMP);
3888 	return (error);
3889 }
3890 
3891 /*
3892  * This is similar to vn_path_to_global_path but allows for regular
3893  * files which may not be present in the cache.
3894  *
3895  * Requires a locked, referenced vnode.
3896  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3897  */
3898 int
3899 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3900     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3901     size_t leaf_length)
3902 {
3903 	struct nameidata nd;
3904 	struct vnode *vp1;
3905 	char *rpath, *fbuf;
3906 	size_t len;
3907 	int error;
3908 
3909 	ASSERT_VOP_ELOCKED(vp, __func__);
3910 
3911 	/*
3912 	 * Construct global filesystem path from dvp, vp and leaf
3913 	 * name.
3914 	 */
3915 	VOP_UNLOCK(vp);
3916 	len = pathlen;
3917 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3918 	    &rpath, &fbuf, &len);
3919 
3920 	if (error != 0) {
3921 		vrele(vp);
3922 		return (error);
3923 	}
3924 
3925 	if (strlen(rpath) >= pathlen) {
3926 		vrele(vp);
3927 		error = ENAMETOOLONG;
3928 		goto out;
3929 	}
3930 
3931 	/*
3932 	 * Re-lookup the vnode by path to detect a possible rename.
3933 	 * As a side effect, the vnode is relocked.
3934 	 * If vnode was renamed, return ENOENT.
3935 	 */
3936 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3937 	error = namei(&nd);
3938 	if (error != 0) {
3939 		vrele(vp);
3940 		goto out;
3941 	}
3942 	NDFREE_PNBUF(&nd);
3943 	vp1 = nd.ni_vp;
3944 	vrele(vp);
3945 	if (vp1 == vp)
3946 		strcpy(path, rpath);
3947 	else {
3948 		vput(vp1);
3949 		error = ENOENT;
3950 	}
3951 
3952 out:
3953 	free(fbuf, M_TEMP);
3954 	return (error);
3955 }
3956 
3957 #ifdef DDB
3958 static void
3959 db_print_vpath(struct vnode *vp)
3960 {
3961 
3962 	while (vp != NULL) {
3963 		db_printf("%p: ", vp);
3964 		if (vp == rootvnode) {
3965 			db_printf("/");
3966 			vp = NULL;
3967 		} else {
3968 			if (vp->v_vflag & VV_ROOT) {
3969 				db_printf("<mount point>");
3970 				vp = vp->v_mount->mnt_vnodecovered;
3971 			} else {
3972 				struct namecache *ncp;
3973 				char *ncn;
3974 				int i;
3975 
3976 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3977 				if (ncp != NULL) {
3978 					ncn = ncp->nc_name;
3979 					for (i = 0; i < ncp->nc_nlen; i++)
3980 						db_printf("%c", *ncn++);
3981 					vp = ncp->nc_dvp;
3982 				} else {
3983 					vp = NULL;
3984 				}
3985 			}
3986 		}
3987 		db_printf("\n");
3988 	}
3989 
3990 	return;
3991 }
3992 
3993 DB_SHOW_COMMAND(vpath, db_show_vpath)
3994 {
3995 	struct vnode *vp;
3996 
3997 	if (!have_addr) {
3998 		db_printf("usage: show vpath <struct vnode *>\n");
3999 		return;
4000 	}
4001 
4002 	vp = (struct vnode *)addr;
4003 	db_print_vpath(vp);
4004 }
4005 
4006 #endif
4007 
4008 static int cache_fast_lookup = 1;
4009 
4010 #define CACHE_FPL_FAILED	-2020
4011 
4012 static int
4013 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4014 {
4015 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4016 	panic("no proper vop_fplookup_vexec");
4017 }
4018 
4019 static int
4020 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4021 {
4022 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4023 	panic("no proper vop_fplookup_symlink");
4024 }
4025 
4026 void
4027 cache_vop_vector_register(struct vop_vector *v)
4028 {
4029 	size_t ops;
4030 
4031 	ops = 0;
4032 	if (v->vop_fplookup_vexec != NULL) {
4033 		ops++;
4034 	}
4035 	if (v->vop_fplookup_symlink != NULL) {
4036 		ops++;
4037 	}
4038 
4039 	if (ops == 2) {
4040 		return;
4041 	}
4042 
4043 	if (ops == 0) {
4044 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4045 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4046 		return;
4047 	}
4048 
4049 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4050 	    "need to be provided",  __func__, v);
4051 	if (v->vop_fplookup_vexec == NULL) {
4052 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4053 	}
4054 	if (v->vop_fplookup_symlink == NULL) {
4055 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4056 	}
4057 	panic("bad vop vector %p", v);
4058 }
4059 
4060 #ifdef INVARIANTS
4061 void
4062 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4063 {
4064 	if (mp == NULL)
4065 		return;
4066 
4067 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4068 		return;
4069 
4070 	if (vops->vop_fplookup_vexec == NULL ||
4071 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4072 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4073 		    vops, mp->mnt_vfc->vfc_name);
4074 
4075 	if (vops->vop_fplookup_symlink == NULL ||
4076 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4077 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4078 		    vops, mp->mnt_vfc->vfc_name);
4079 }
4080 #endif
4081 
4082 void
4083 cache_fast_lookup_enabled_recalc(void)
4084 {
4085 	int lookup_flag;
4086 	int mac_on;
4087 
4088 #ifdef MAC
4089 	mac_on = mac_vnode_check_lookup_enabled();
4090 	mac_on |= mac_vnode_check_readlink_enabled();
4091 #else
4092 	mac_on = 0;
4093 #endif
4094 
4095 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4096 	if (lookup_flag && !mac_on) {
4097 		atomic_store_char(&cache_fast_lookup_enabled, true);
4098 	} else {
4099 		atomic_store_char(&cache_fast_lookup_enabled, false);
4100 	}
4101 }
4102 
4103 static int
4104 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4105 {
4106 	int error, old;
4107 
4108 	old = atomic_load_int(&cache_fast_lookup);
4109 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4110 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4111 		cache_fast_lookup_enabled_recalc();
4112 	return (error);
4113 }
4114 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4115     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4116 
4117 /*
4118  * Components of nameidata (or objects it can point to) which may
4119  * need restoring in case fast path lookup fails.
4120  */
4121 struct nameidata_outer {
4122 	size_t ni_pathlen;
4123 	int cn_flags;
4124 };
4125 
4126 struct nameidata_saved {
4127 #ifdef INVARIANTS
4128 	char *cn_nameptr;
4129 	size_t ni_pathlen;
4130 #endif
4131 };
4132 
4133 #ifdef INVARIANTS
4134 struct cache_fpl_debug {
4135 	size_t ni_pathlen;
4136 };
4137 #endif
4138 
4139 struct cache_fpl {
4140 	struct nameidata *ndp;
4141 	struct componentname *cnp;
4142 	char *nulchar;
4143 	struct vnode *dvp;
4144 	struct vnode *tvp;
4145 	seqc_t dvp_seqc;
4146 	seqc_t tvp_seqc;
4147 	uint32_t hash;
4148 	struct nameidata_saved snd;
4149 	struct nameidata_outer snd_outer;
4150 	int line;
4151 	enum cache_fpl_status status:8;
4152 	bool in_smr;
4153 	bool fsearch;
4154 	struct pwd **pwd;
4155 #ifdef INVARIANTS
4156 	struct cache_fpl_debug debug;
4157 #endif
4158 };
4159 
4160 static bool cache_fplookup_mp_supported(struct mount *mp);
4161 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4162 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4163 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4164 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4165 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4166 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4167 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4168 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4169 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4170 
4171 static void
4172 cache_fpl_cleanup_cnp(struct componentname *cnp)
4173 {
4174 
4175 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4176 	cnp->cn_pnbuf = NULL;
4177 	cnp->cn_nameptr = NULL;
4178 }
4179 
4180 static struct vnode *
4181 cache_fpl_handle_root(struct cache_fpl *fpl)
4182 {
4183 	struct nameidata *ndp;
4184 	struct componentname *cnp;
4185 
4186 	ndp = fpl->ndp;
4187 	cnp = fpl->cnp;
4188 
4189 	MPASS(*(cnp->cn_nameptr) == '/');
4190 	cnp->cn_nameptr++;
4191 	cache_fpl_pathlen_dec(fpl);
4192 
4193 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4194 		do {
4195 			cnp->cn_nameptr++;
4196 			cache_fpl_pathlen_dec(fpl);
4197 		} while (*(cnp->cn_nameptr) == '/');
4198 	}
4199 
4200 	return (ndp->ni_rootdir);
4201 }
4202 
4203 static void
4204 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4205 {
4206 
4207 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4208 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4209 }
4210 
4211 static void
4212 cache_fpl_checkpoint(struct cache_fpl *fpl)
4213 {
4214 
4215 #ifdef INVARIANTS
4216 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4217 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4218 #endif
4219 }
4220 
4221 static void
4222 cache_fpl_restore_partial(struct cache_fpl *fpl)
4223 {
4224 
4225 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4226 #ifdef INVARIANTS
4227 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4228 #endif
4229 }
4230 
4231 static void
4232 cache_fpl_restore_abort(struct cache_fpl *fpl)
4233 {
4234 
4235 	cache_fpl_restore_partial(fpl);
4236 	/*
4237 	 * It is 0 on entry by API contract.
4238 	 */
4239 	fpl->ndp->ni_resflags = 0;
4240 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4241 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4242 }
4243 
4244 #ifdef INVARIANTS
4245 #define cache_fpl_smr_assert_entered(fpl) ({			\
4246 	struct cache_fpl *_fpl = (fpl);				\
4247 	MPASS(_fpl->in_smr == true);				\
4248 	VFS_SMR_ASSERT_ENTERED();				\
4249 })
4250 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4251 	struct cache_fpl *_fpl = (fpl);				\
4252 	MPASS(_fpl->in_smr == false);				\
4253 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4254 })
4255 static void
4256 cache_fpl_assert_status(struct cache_fpl *fpl)
4257 {
4258 
4259 	switch (fpl->status) {
4260 	case CACHE_FPL_STATUS_UNSET:
4261 		__assert_unreachable();
4262 		break;
4263 	case CACHE_FPL_STATUS_DESTROYED:
4264 	case CACHE_FPL_STATUS_ABORTED:
4265 	case CACHE_FPL_STATUS_PARTIAL:
4266 	case CACHE_FPL_STATUS_HANDLED:
4267 		break;
4268 	}
4269 }
4270 #else
4271 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4272 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4273 #define cache_fpl_assert_status(fpl) do { } while (0)
4274 #endif
4275 
4276 #define cache_fpl_smr_enter_initial(fpl) ({			\
4277 	struct cache_fpl *_fpl = (fpl);				\
4278 	vfs_smr_enter();					\
4279 	_fpl->in_smr = true;					\
4280 })
4281 
4282 #define cache_fpl_smr_enter(fpl) ({				\
4283 	struct cache_fpl *_fpl = (fpl);				\
4284 	MPASS(_fpl->in_smr == false);				\
4285 	vfs_smr_enter();					\
4286 	_fpl->in_smr = true;					\
4287 })
4288 
4289 #define cache_fpl_smr_exit(fpl) ({				\
4290 	struct cache_fpl *_fpl = (fpl);				\
4291 	MPASS(_fpl->in_smr == true);				\
4292 	vfs_smr_exit();						\
4293 	_fpl->in_smr = false;					\
4294 })
4295 
4296 static int
4297 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4298 {
4299 
4300 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4301 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4302 		    ("%s: converting to abort from %d at %d, set at %d\n",
4303 		    __func__, fpl->status, line, fpl->line));
4304 	}
4305 	cache_fpl_smr_assert_not_entered(fpl);
4306 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4307 	fpl->line = line;
4308 	return (CACHE_FPL_FAILED);
4309 }
4310 
4311 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4312 
4313 static int __noinline
4314 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4315 {
4316 	struct nameidata *ndp;
4317 	struct componentname *cnp;
4318 
4319 	ndp = fpl->ndp;
4320 	cnp = fpl->cnp;
4321 
4322 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4323 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4324 		    ("%s: converting to abort from %d at %d, set at %d\n",
4325 		    __func__, fpl->status, line, fpl->line));
4326 	}
4327 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4328 	fpl->line = line;
4329 	if (fpl->in_smr)
4330 		cache_fpl_smr_exit(fpl);
4331 	cache_fpl_restore_abort(fpl);
4332 	/*
4333 	 * Resolving symlinks overwrites data passed by the caller.
4334 	 * Let namei know.
4335 	 */
4336 	if (ndp->ni_loopcnt > 0) {
4337 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4338 		cache_fpl_cleanup_cnp(cnp);
4339 	}
4340 	return (CACHE_FPL_FAILED);
4341 }
4342 
4343 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4344 
4345 static int __noinline
4346 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4347 {
4348 
4349 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4350 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4351 	    __func__, line, fpl->status, fpl->line));
4352 	cache_fpl_smr_assert_entered(fpl);
4353 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4354 	fpl->line = line;
4355 	return (cache_fplookup_partial_setup(fpl));
4356 }
4357 
4358 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4359 
4360 static int
4361 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4362 {
4363 
4364 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4365 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4366 	    __func__, line, fpl->status, fpl->line));
4367 	cache_fpl_smr_assert_not_entered(fpl);
4368 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4369 	fpl->line = line;
4370 	return (0);
4371 }
4372 
4373 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4374 
4375 static int
4376 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4377 {
4378 
4379 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4380 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4381 	    __func__, line, fpl->status, fpl->line));
4382 	MPASS(error != 0);
4383 	MPASS(error != CACHE_FPL_FAILED);
4384 	cache_fpl_smr_assert_not_entered(fpl);
4385 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4386 	fpl->line = line;
4387 	fpl->dvp = NULL;
4388 	fpl->tvp = NULL;
4389 	return (error);
4390 }
4391 
4392 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4393 
4394 static bool
4395 cache_fpl_terminated(struct cache_fpl *fpl)
4396 {
4397 
4398 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4399 }
4400 
4401 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4402 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4403 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4404 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4405 	 OPENWRITE | WANTIOCTLCAPS)
4406 
4407 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4408 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4409 
4410 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4411     "supported and internal flags overlap");
4412 
4413 static bool
4414 cache_fpl_islastcn(struct nameidata *ndp)
4415 {
4416 
4417 	return (*ndp->ni_next == 0);
4418 }
4419 
4420 static bool
4421 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4422 {
4423 
4424 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4425 	return (*(fpl->nulchar - 1) == '/');
4426 }
4427 
4428 static bool
4429 cache_fpl_isdotdot(struct componentname *cnp)
4430 {
4431 
4432 	if (cnp->cn_namelen == 2 &&
4433 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4434 		return (true);
4435 	return (false);
4436 }
4437 
4438 static bool
4439 cache_can_fplookup(struct cache_fpl *fpl)
4440 {
4441 	struct nameidata *ndp;
4442 	struct componentname *cnp;
4443 	struct thread *td;
4444 
4445 	ndp = fpl->ndp;
4446 	cnp = fpl->cnp;
4447 	td = curthread;
4448 
4449 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4450 		cache_fpl_aborted_early(fpl);
4451 		return (false);
4452 	}
4453 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4454 		cache_fpl_aborted_early(fpl);
4455 		return (false);
4456 	}
4457 	if (IN_CAPABILITY_MODE(td)) {
4458 		cache_fpl_aborted_early(fpl);
4459 		return (false);
4460 	}
4461 	if (AUDITING_TD(td)) {
4462 		cache_fpl_aborted_early(fpl);
4463 		return (false);
4464 	}
4465 	if (ndp->ni_startdir != NULL) {
4466 		cache_fpl_aborted_early(fpl);
4467 		return (false);
4468 	}
4469 	return (true);
4470 }
4471 
4472 static int __noinline
4473 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4474 {
4475 	struct nameidata *ndp;
4476 	struct componentname *cnp;
4477 	int error;
4478 	bool fsearch;
4479 
4480 	ndp = fpl->ndp;
4481 	cnp = fpl->cnp;
4482 
4483 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
4484 	if (__predict_false(error != 0)) {
4485 		return (cache_fpl_aborted(fpl));
4486 	}
4487 	fpl->fsearch = fsearch;
4488 	if ((*vpp)->v_type != VDIR) {
4489 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4490 			cache_fpl_smr_exit(fpl);
4491 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4492 		}
4493 	}
4494 	return (0);
4495 }
4496 
4497 static int __noinline
4498 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4499     uint32_t hash)
4500 {
4501 	struct componentname *cnp;
4502 	struct vnode *dvp;
4503 
4504 	cnp = fpl->cnp;
4505 	dvp = fpl->dvp;
4506 
4507 	cache_fpl_smr_exit(fpl);
4508 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4509 		return (cache_fpl_handled_error(fpl, ENOENT));
4510 	else
4511 		return (cache_fpl_aborted(fpl));
4512 }
4513 
4514 /*
4515  * The target vnode is not supported, prepare for the slow path to take over.
4516  */
4517 static int __noinline
4518 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4519 {
4520 	struct nameidata *ndp;
4521 	struct componentname *cnp;
4522 	enum vgetstate dvs;
4523 	struct vnode *dvp;
4524 	struct pwd *pwd;
4525 	seqc_t dvp_seqc;
4526 
4527 	ndp = fpl->ndp;
4528 	cnp = fpl->cnp;
4529 	pwd = *(fpl->pwd);
4530 	dvp = fpl->dvp;
4531 	dvp_seqc = fpl->dvp_seqc;
4532 
4533 	if (!pwd_hold_smr(pwd)) {
4534 		return (cache_fpl_aborted(fpl));
4535 	}
4536 
4537 	/*
4538 	 * Note that seqc is checked before the vnode is locked, so by
4539 	 * the time regular lookup gets to it it may have moved.
4540 	 *
4541 	 * Ultimately this does not affect correctness, any lookup errors
4542 	 * are userspace racing with itself. It is guaranteed that any
4543 	 * path which ultimately gets found could also have been found
4544 	 * by regular lookup going all the way in absence of concurrent
4545 	 * modifications.
4546 	 */
4547 	dvs = vget_prep_smr(dvp);
4548 	cache_fpl_smr_exit(fpl);
4549 	if (__predict_false(dvs == VGET_NONE)) {
4550 		pwd_drop(pwd);
4551 		return (cache_fpl_aborted(fpl));
4552 	}
4553 
4554 	vget_finish_ref(dvp, dvs);
4555 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4556 		vrele(dvp);
4557 		pwd_drop(pwd);
4558 		return (cache_fpl_aborted(fpl));
4559 	}
4560 
4561 	cache_fpl_restore_partial(fpl);
4562 #ifdef INVARIANTS
4563 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4564 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4565 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4566 	}
4567 #endif
4568 
4569 	ndp->ni_startdir = dvp;
4570 	cnp->cn_flags |= MAKEENTRY;
4571 	if (cache_fpl_islastcn(ndp))
4572 		cnp->cn_flags |= ISLASTCN;
4573 	if (cache_fpl_isdotdot(cnp))
4574 		cnp->cn_flags |= ISDOTDOT;
4575 
4576 	/*
4577 	 * Skip potential extra slashes parsing did not take care of.
4578 	 * cache_fplookup_skip_slashes explains the mechanism.
4579 	 */
4580 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4581 		do {
4582 			cnp->cn_nameptr++;
4583 			cache_fpl_pathlen_dec(fpl);
4584 		} while (*(cnp->cn_nameptr) == '/');
4585 	}
4586 
4587 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4588 #ifdef INVARIANTS
4589 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4590 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4591 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4592 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4593 	}
4594 #endif
4595 	return (0);
4596 }
4597 
4598 static int
4599 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4600 {
4601 	struct componentname *cnp;
4602 	struct vnode *tvp;
4603 	seqc_t tvp_seqc;
4604 	int error, lkflags;
4605 
4606 	cnp = fpl->cnp;
4607 	tvp = fpl->tvp;
4608 	tvp_seqc = fpl->tvp_seqc;
4609 
4610 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4611 		lkflags = LK_SHARED;
4612 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4613 			lkflags = LK_EXCLUSIVE;
4614 		error = vget_finish(tvp, lkflags, tvs);
4615 		if (__predict_false(error != 0)) {
4616 			return (cache_fpl_aborted(fpl));
4617 		}
4618 	} else {
4619 		vget_finish_ref(tvp, tvs);
4620 	}
4621 
4622 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4623 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4624 			vput(tvp);
4625 		else
4626 			vrele(tvp);
4627 		return (cache_fpl_aborted(fpl));
4628 	}
4629 
4630 	return (cache_fpl_handled(fpl));
4631 }
4632 
4633 /*
4634  * They want to possibly modify the state of the namecache.
4635  */
4636 static int __noinline
4637 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4638 {
4639 	struct nameidata *ndp __diagused;
4640 	struct componentname *cnp;
4641 	enum vgetstate dvs;
4642 	struct vnode *dvp, *tvp;
4643 	struct mount *mp;
4644 	seqc_t dvp_seqc;
4645 	int error;
4646 	bool docache;
4647 
4648 	ndp = fpl->ndp;
4649 	cnp = fpl->cnp;
4650 	dvp = fpl->dvp;
4651 	dvp_seqc = fpl->dvp_seqc;
4652 
4653 	MPASS(*(cnp->cn_nameptr) != '/');
4654 	MPASS(cache_fpl_islastcn(ndp));
4655 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4656 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4657 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4658 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4659 	    cnp->cn_nameiop == RENAME);
4660 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4661 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4662 
4663 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4664 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4665 		docache = false;
4666 
4667 	/*
4668 	 * Regular lookup nulifies the slash, which we don't do here.
4669 	 * Don't take chances with filesystem routines seeing it for
4670 	 * the last entry.
4671 	 */
4672 	if (cache_fpl_istrailingslash(fpl)) {
4673 		return (cache_fpl_partial(fpl));
4674 	}
4675 
4676 	mp = atomic_load_ptr(&dvp->v_mount);
4677 	if (__predict_false(mp == NULL)) {
4678 		return (cache_fpl_aborted(fpl));
4679 	}
4680 
4681 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4682 		cache_fpl_smr_exit(fpl);
4683 		/*
4684 		 * Original code keeps not checking for CREATE which
4685 		 * might be a bug. For now let the old lookup decide.
4686 		 */
4687 		if (cnp->cn_nameiop == CREATE) {
4688 			return (cache_fpl_aborted(fpl));
4689 		}
4690 		return (cache_fpl_handled_error(fpl, EROFS));
4691 	}
4692 
4693 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4694 		cache_fpl_smr_exit(fpl);
4695 		return (cache_fpl_handled_error(fpl, EEXIST));
4696 	}
4697 
4698 	/*
4699 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4700 	 * reasoning.
4701 	 *
4702 	 * XXX At least UFS requires its lookup routine to be called for
4703 	 * the last path component, which leads to some level of complication
4704 	 * and inefficiency:
4705 	 * - the target routine always locks the target vnode, but our caller
4706 	 *   may not need it locked
4707 	 * - some of the VOP machinery asserts that the parent is locked, which
4708 	 *   once more may be not required
4709 	 *
4710 	 * TODO: add a flag for filesystems which don't need this.
4711 	 */
4712 	dvs = vget_prep_smr(dvp);
4713 	cache_fpl_smr_exit(fpl);
4714 	if (__predict_false(dvs == VGET_NONE)) {
4715 		return (cache_fpl_aborted(fpl));
4716 	}
4717 
4718 	vget_finish_ref(dvp, dvs);
4719 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4720 		vrele(dvp);
4721 		return (cache_fpl_aborted(fpl));
4722 	}
4723 
4724 	error = vn_lock(dvp, LK_EXCLUSIVE);
4725 	if (__predict_false(error != 0)) {
4726 		vrele(dvp);
4727 		return (cache_fpl_aborted(fpl));
4728 	}
4729 
4730 	tvp = NULL;
4731 	cnp->cn_flags |= ISLASTCN;
4732 	if (docache)
4733 		cnp->cn_flags |= MAKEENTRY;
4734 	if (cache_fpl_isdotdot(cnp))
4735 		cnp->cn_flags |= ISDOTDOT;
4736 	cnp->cn_lkflags = LK_EXCLUSIVE;
4737 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4738 	switch (error) {
4739 	case EJUSTRETURN:
4740 	case 0:
4741 		break;
4742 	case ENOTDIR:
4743 	case ENOENT:
4744 		vput(dvp);
4745 		return (cache_fpl_handled_error(fpl, error));
4746 	default:
4747 		vput(dvp);
4748 		return (cache_fpl_aborted(fpl));
4749 	}
4750 
4751 	fpl->tvp = tvp;
4752 
4753 	if (tvp == NULL) {
4754 		MPASS(error == EJUSTRETURN);
4755 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4756 			VOP_UNLOCK(dvp);
4757 		}
4758 		return (cache_fpl_handled(fpl));
4759 	}
4760 
4761 	/*
4762 	 * There are very hairy corner cases concerning various flag combinations
4763 	 * and locking state. In particular here we only hold one lock instead of
4764 	 * two.
4765 	 *
4766 	 * Skip the complexity as it is of no significance for normal workloads.
4767 	 */
4768 	if (__predict_false(tvp == dvp)) {
4769 		vput(dvp);
4770 		vrele(tvp);
4771 		return (cache_fpl_aborted(fpl));
4772 	}
4773 
4774 	/*
4775 	 * If they want the symlink itself we are fine, but if they want to
4776 	 * follow it regular lookup has to be engaged.
4777 	 */
4778 	if (tvp->v_type == VLNK) {
4779 		if ((cnp->cn_flags & FOLLOW) != 0) {
4780 			vput(dvp);
4781 			vput(tvp);
4782 			return (cache_fpl_aborted(fpl));
4783 		}
4784 	}
4785 
4786 	/*
4787 	 * Since we expect this to be the terminal vnode it should almost never
4788 	 * be a mount point.
4789 	 */
4790 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4791 		vput(dvp);
4792 		vput(tvp);
4793 		return (cache_fpl_aborted(fpl));
4794 	}
4795 
4796 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4797 		vput(dvp);
4798 		vput(tvp);
4799 		return (cache_fpl_handled_error(fpl, EEXIST));
4800 	}
4801 
4802 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4803 		VOP_UNLOCK(tvp);
4804 	}
4805 
4806 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4807 		VOP_UNLOCK(dvp);
4808 	}
4809 
4810 	return (cache_fpl_handled(fpl));
4811 }
4812 
4813 static int __noinline
4814 cache_fplookup_modifying(struct cache_fpl *fpl)
4815 {
4816 	struct nameidata *ndp;
4817 
4818 	ndp = fpl->ndp;
4819 
4820 	if (!cache_fpl_islastcn(ndp)) {
4821 		return (cache_fpl_partial(fpl));
4822 	}
4823 	return (cache_fplookup_final_modifying(fpl));
4824 }
4825 
4826 static int __noinline
4827 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4828 {
4829 	struct componentname *cnp;
4830 	enum vgetstate dvs, tvs;
4831 	struct vnode *dvp, *tvp;
4832 	seqc_t dvp_seqc;
4833 	int error;
4834 
4835 	cnp = fpl->cnp;
4836 	dvp = fpl->dvp;
4837 	dvp_seqc = fpl->dvp_seqc;
4838 	tvp = fpl->tvp;
4839 
4840 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4841 
4842 	/*
4843 	 * This is less efficient than it can be for simplicity.
4844 	 */
4845 	dvs = vget_prep_smr(dvp);
4846 	if (__predict_false(dvs == VGET_NONE)) {
4847 		return (cache_fpl_aborted(fpl));
4848 	}
4849 	tvs = vget_prep_smr(tvp);
4850 	if (__predict_false(tvs == VGET_NONE)) {
4851 		cache_fpl_smr_exit(fpl);
4852 		vget_abort(dvp, dvs);
4853 		return (cache_fpl_aborted(fpl));
4854 	}
4855 
4856 	cache_fpl_smr_exit(fpl);
4857 
4858 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4859 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4860 		if (__predict_false(error != 0)) {
4861 			vget_abort(tvp, tvs);
4862 			return (cache_fpl_aborted(fpl));
4863 		}
4864 	} else {
4865 		vget_finish_ref(dvp, dvs);
4866 	}
4867 
4868 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4869 		vget_abort(tvp, tvs);
4870 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4871 			vput(dvp);
4872 		else
4873 			vrele(dvp);
4874 		return (cache_fpl_aborted(fpl));
4875 	}
4876 
4877 	error = cache_fplookup_final_child(fpl, tvs);
4878 	if (__predict_false(error != 0)) {
4879 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4880 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4881 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4882 			vput(dvp);
4883 		else
4884 			vrele(dvp);
4885 		return (error);
4886 	}
4887 
4888 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4889 	return (0);
4890 }
4891 
4892 static int
4893 cache_fplookup_final(struct cache_fpl *fpl)
4894 {
4895 	struct componentname *cnp;
4896 	enum vgetstate tvs;
4897 	struct vnode *dvp, *tvp;
4898 	seqc_t dvp_seqc;
4899 
4900 	cnp = fpl->cnp;
4901 	dvp = fpl->dvp;
4902 	dvp_seqc = fpl->dvp_seqc;
4903 	tvp = fpl->tvp;
4904 
4905 	MPASS(*(cnp->cn_nameptr) != '/');
4906 
4907 	if (cnp->cn_nameiop != LOOKUP) {
4908 		return (cache_fplookup_final_modifying(fpl));
4909 	}
4910 
4911 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4912 		return (cache_fplookup_final_withparent(fpl));
4913 
4914 	tvs = vget_prep_smr(tvp);
4915 	if (__predict_false(tvs == VGET_NONE)) {
4916 		return (cache_fpl_partial(fpl));
4917 	}
4918 
4919 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4920 		cache_fpl_smr_exit(fpl);
4921 		vget_abort(tvp, tvs);
4922 		return (cache_fpl_aborted(fpl));
4923 	}
4924 
4925 	cache_fpl_smr_exit(fpl);
4926 	return (cache_fplookup_final_child(fpl, tvs));
4927 }
4928 
4929 /*
4930  * Comment from locked lookup:
4931  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4932  * directory, e.g. like "/." or ".".
4933  */
4934 static int __noinline
4935 cache_fplookup_degenerate(struct cache_fpl *fpl)
4936 {
4937 	struct componentname *cnp;
4938 	struct vnode *dvp;
4939 	enum vgetstate dvs;
4940 	int error, lkflags;
4941 #ifdef INVARIANTS
4942 	char *cp;
4943 #endif
4944 
4945 	fpl->tvp = fpl->dvp;
4946 	fpl->tvp_seqc = fpl->dvp_seqc;
4947 
4948 	cnp = fpl->cnp;
4949 	dvp = fpl->dvp;
4950 
4951 #ifdef INVARIANTS
4952 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4953 		KASSERT(*cp == '/',
4954 		    ("%s: encountered non-slash; string [%s]\n", __func__,
4955 		    cnp->cn_pnbuf));
4956 	}
4957 #endif
4958 
4959 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4960 		cache_fpl_smr_exit(fpl);
4961 		return (cache_fpl_handled_error(fpl, EISDIR));
4962 	}
4963 
4964 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4965 		return (cache_fplookup_final_withparent(fpl));
4966 	}
4967 
4968 	dvs = vget_prep_smr(dvp);
4969 	cache_fpl_smr_exit(fpl);
4970 	if (__predict_false(dvs == VGET_NONE)) {
4971 		return (cache_fpl_aborted(fpl));
4972 	}
4973 
4974 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4975 		lkflags = LK_SHARED;
4976 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4977 			lkflags = LK_EXCLUSIVE;
4978 		error = vget_finish(dvp, lkflags, dvs);
4979 		if (__predict_false(error != 0)) {
4980 			return (cache_fpl_aborted(fpl));
4981 		}
4982 	} else {
4983 		vget_finish_ref(dvp, dvs);
4984 	}
4985 	return (cache_fpl_handled(fpl));
4986 }
4987 
4988 static int __noinline
4989 cache_fplookup_emptypath(struct cache_fpl *fpl)
4990 {
4991 	struct nameidata *ndp;
4992 	struct componentname *cnp;
4993 	enum vgetstate tvs;
4994 	struct vnode *tvp;
4995 	int error, lkflags;
4996 
4997 	fpl->tvp = fpl->dvp;
4998 	fpl->tvp_seqc = fpl->dvp_seqc;
4999 
5000 	ndp = fpl->ndp;
5001 	cnp = fpl->cnp;
5002 	tvp = fpl->tvp;
5003 
5004 	MPASS(*cnp->cn_pnbuf == '\0');
5005 
5006 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5007 		cache_fpl_smr_exit(fpl);
5008 		return (cache_fpl_handled_error(fpl, ENOENT));
5009 	}
5010 
5011 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5012 
5013 	tvs = vget_prep_smr(tvp);
5014 	cache_fpl_smr_exit(fpl);
5015 	if (__predict_false(tvs == VGET_NONE)) {
5016 		return (cache_fpl_aborted(fpl));
5017 	}
5018 
5019 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5020 		lkflags = LK_SHARED;
5021 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5022 			lkflags = LK_EXCLUSIVE;
5023 		error = vget_finish(tvp, lkflags, tvs);
5024 		if (__predict_false(error != 0)) {
5025 			return (cache_fpl_aborted(fpl));
5026 		}
5027 	} else {
5028 		vget_finish_ref(tvp, tvs);
5029 	}
5030 
5031 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5032 	return (cache_fpl_handled(fpl));
5033 }
5034 
5035 static int __noinline
5036 cache_fplookup_noentry(struct cache_fpl *fpl)
5037 {
5038 	struct nameidata *ndp;
5039 	struct componentname *cnp;
5040 	enum vgetstate dvs;
5041 	struct vnode *dvp, *tvp;
5042 	seqc_t dvp_seqc;
5043 	int error;
5044 
5045 	ndp = fpl->ndp;
5046 	cnp = fpl->cnp;
5047 	dvp = fpl->dvp;
5048 	dvp_seqc = fpl->dvp_seqc;
5049 
5050 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5051 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5052 	if (cnp->cn_nameiop == LOOKUP)
5053 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5054 	MPASS(!cache_fpl_isdotdot(cnp));
5055 
5056 	/*
5057 	 * Hack: delayed name len checking.
5058 	 */
5059 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5060 		cache_fpl_smr_exit(fpl);
5061 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5062 	}
5063 
5064 	if (cnp->cn_nameptr[0] == '/') {
5065 		return (cache_fplookup_skip_slashes(fpl));
5066 	}
5067 
5068 	if (cnp->cn_pnbuf[0] == '\0') {
5069 		return (cache_fplookup_emptypath(fpl));
5070 	}
5071 
5072 	if (cnp->cn_nameptr[0] == '\0') {
5073 		if (fpl->tvp == NULL) {
5074 			return (cache_fplookup_degenerate(fpl));
5075 		}
5076 		return (cache_fplookup_trailingslash(fpl));
5077 	}
5078 
5079 	if (cnp->cn_nameiop != LOOKUP) {
5080 		fpl->tvp = NULL;
5081 		return (cache_fplookup_modifying(fpl));
5082 	}
5083 
5084 	/*
5085 	 * Only try to fill in the component if it is the last one,
5086 	 * otherwise not only there may be several to handle but the
5087 	 * walk may be complicated.
5088 	 */
5089 	if (!cache_fpl_islastcn(ndp)) {
5090 		return (cache_fpl_partial(fpl));
5091 	}
5092 
5093 	/*
5094 	 * Regular lookup nulifies the slash, which we don't do here.
5095 	 * Don't take chances with filesystem routines seeing it for
5096 	 * the last entry.
5097 	 */
5098 	if (cache_fpl_istrailingslash(fpl)) {
5099 		return (cache_fpl_partial(fpl));
5100 	}
5101 
5102 	/*
5103 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5104 	 * reasoning.
5105 	 */
5106 	dvs = vget_prep_smr(dvp);
5107 	cache_fpl_smr_exit(fpl);
5108 	if (__predict_false(dvs == VGET_NONE)) {
5109 		return (cache_fpl_aborted(fpl));
5110 	}
5111 
5112 	vget_finish_ref(dvp, dvs);
5113 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5114 		vrele(dvp);
5115 		return (cache_fpl_aborted(fpl));
5116 	}
5117 
5118 	error = vn_lock(dvp, LK_SHARED);
5119 	if (__predict_false(error != 0)) {
5120 		vrele(dvp);
5121 		return (cache_fpl_aborted(fpl));
5122 	}
5123 
5124 	tvp = NULL;
5125 	/*
5126 	 * TODO: provide variants which don't require locking either vnode.
5127 	 */
5128 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5129 	cnp->cn_lkflags = LK_SHARED;
5130 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5131 		cnp->cn_lkflags = LK_EXCLUSIVE;
5132 	}
5133 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5134 	switch (error) {
5135 	case EJUSTRETURN:
5136 	case 0:
5137 		break;
5138 	case ENOTDIR:
5139 	case ENOENT:
5140 		vput(dvp);
5141 		return (cache_fpl_handled_error(fpl, error));
5142 	default:
5143 		vput(dvp);
5144 		return (cache_fpl_aborted(fpl));
5145 	}
5146 
5147 	fpl->tvp = tvp;
5148 
5149 	if (tvp == NULL) {
5150 		MPASS(error == EJUSTRETURN);
5151 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5152 			vput(dvp);
5153 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5154 			VOP_UNLOCK(dvp);
5155 		}
5156 		return (cache_fpl_handled(fpl));
5157 	}
5158 
5159 	if (tvp->v_type == VLNK) {
5160 		if ((cnp->cn_flags & FOLLOW) != 0) {
5161 			vput(dvp);
5162 			vput(tvp);
5163 			return (cache_fpl_aborted(fpl));
5164 		}
5165 	}
5166 
5167 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5168 		vput(dvp);
5169 		vput(tvp);
5170 		return (cache_fpl_aborted(fpl));
5171 	}
5172 
5173 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5174 		VOP_UNLOCK(tvp);
5175 	}
5176 
5177 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5178 		vput(dvp);
5179 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5180 		VOP_UNLOCK(dvp);
5181 	}
5182 	return (cache_fpl_handled(fpl));
5183 }
5184 
5185 static int __noinline
5186 cache_fplookup_dot(struct cache_fpl *fpl)
5187 {
5188 	int error;
5189 
5190 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5191 
5192 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5193 		cache_fpl_smr_exit(fpl);
5194 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5195 	}
5196 
5197 	/*
5198 	 * Just re-assign the value. seqc will be checked later for the first
5199 	 * non-dot path component in line and/or before deciding to return the
5200 	 * vnode.
5201 	 */
5202 	fpl->tvp = fpl->dvp;
5203 	fpl->tvp_seqc = fpl->dvp_seqc;
5204 
5205 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5206 
5207 	error = 0;
5208 	if (cache_fplookup_is_mp(fpl)) {
5209 		error = cache_fplookup_cross_mount(fpl);
5210 	}
5211 	return (error);
5212 }
5213 
5214 static int __noinline
5215 cache_fplookup_dotdot(struct cache_fpl *fpl)
5216 {
5217 	struct nameidata *ndp;
5218 	struct componentname *cnp;
5219 	struct namecache *ncp;
5220 	struct vnode *dvp;
5221 	struct prison *pr;
5222 	u_char nc_flag;
5223 
5224 	ndp = fpl->ndp;
5225 	cnp = fpl->cnp;
5226 	dvp = fpl->dvp;
5227 
5228 	MPASS(cache_fpl_isdotdot(cnp));
5229 
5230 	/*
5231 	 * XXX this is racy the same way regular lookup is
5232 	 */
5233 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5234 	    pr = pr->pr_parent)
5235 		if (dvp == pr->pr_root)
5236 			break;
5237 
5238 	if (dvp == ndp->ni_rootdir ||
5239 	    dvp == ndp->ni_topdir ||
5240 	    dvp == rootvnode ||
5241 	    pr != NULL) {
5242 		fpl->tvp = dvp;
5243 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5244 		if (seqc_in_modify(fpl->tvp_seqc)) {
5245 			return (cache_fpl_aborted(fpl));
5246 		}
5247 		return (0);
5248 	}
5249 
5250 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5251 		/*
5252 		 * TODO
5253 		 * The opposite of climb mount is needed here.
5254 		 */
5255 		return (cache_fpl_partial(fpl));
5256 	}
5257 
5258 	if (__predict_false(dvp->v_type != VDIR)) {
5259 		cache_fpl_smr_exit(fpl);
5260 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5261 	}
5262 
5263 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5264 	if (ncp == NULL) {
5265 		return (cache_fpl_aborted(fpl));
5266 	}
5267 
5268 	nc_flag = atomic_load_char(&ncp->nc_flag);
5269 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5270 		if ((nc_flag & NCF_NEGATIVE) != 0)
5271 			return (cache_fpl_aborted(fpl));
5272 		fpl->tvp = ncp->nc_vp;
5273 	} else {
5274 		fpl->tvp = ncp->nc_dvp;
5275 	}
5276 
5277 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5278 	if (seqc_in_modify(fpl->tvp_seqc)) {
5279 		return (cache_fpl_partial(fpl));
5280 	}
5281 
5282 	/*
5283 	 * Acquire fence provided by vn_seqc_read_any above.
5284 	 */
5285 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5286 		return (cache_fpl_aborted(fpl));
5287 	}
5288 
5289 	if (!cache_ncp_canuse(ncp)) {
5290 		return (cache_fpl_aborted(fpl));
5291 	}
5292 
5293 	return (0);
5294 }
5295 
5296 static int __noinline
5297 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5298 {
5299 	u_char nc_flag __diagused;
5300 	bool neg_promote;
5301 
5302 #ifdef INVARIANTS
5303 	nc_flag = atomic_load_char(&ncp->nc_flag);
5304 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5305 #endif
5306 	/*
5307 	 * If they want to create an entry we need to replace this one.
5308 	 */
5309 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5310 		fpl->tvp = NULL;
5311 		return (cache_fplookup_modifying(fpl));
5312 	}
5313 	neg_promote = cache_neg_hit_prep(ncp);
5314 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5315 		cache_neg_hit_abort(ncp);
5316 		return (cache_fpl_partial(fpl));
5317 	}
5318 	if (neg_promote) {
5319 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5320 	}
5321 	cache_neg_hit_finish(ncp);
5322 	cache_fpl_smr_exit(fpl);
5323 	return (cache_fpl_handled_error(fpl, ENOENT));
5324 }
5325 
5326 /*
5327  * Resolve a symlink. Called by filesystem-specific routines.
5328  *
5329  * Code flow is:
5330  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5331  */
5332 int
5333 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5334 {
5335 	struct nameidata *ndp;
5336 	struct componentname *cnp;
5337 	size_t adjust;
5338 
5339 	ndp = fpl->ndp;
5340 	cnp = fpl->cnp;
5341 
5342 	if (__predict_false(len == 0)) {
5343 		return (ENOENT);
5344 	}
5345 
5346 	if (__predict_false(len > MAXPATHLEN - 2)) {
5347 		if (cache_fpl_istrailingslash(fpl)) {
5348 			return (EAGAIN);
5349 		}
5350 	}
5351 
5352 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5353 #ifdef INVARIANTS
5354 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5355 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5356 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5357 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5358 	}
5359 #endif
5360 
5361 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5362 		return (ENAMETOOLONG);
5363 	}
5364 
5365 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5366 		return (ELOOP);
5367 	}
5368 
5369 	adjust = len;
5370 	if (ndp->ni_pathlen > 1) {
5371 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5372 	} else {
5373 		if (cache_fpl_istrailingslash(fpl)) {
5374 			adjust = len + 1;
5375 			cnp->cn_pnbuf[len] = '/';
5376 			cnp->cn_pnbuf[len + 1] = '\0';
5377 		} else {
5378 			cnp->cn_pnbuf[len] = '\0';
5379 		}
5380 	}
5381 	bcopy(string, cnp->cn_pnbuf, len);
5382 
5383 	ndp->ni_pathlen += adjust;
5384 	cache_fpl_pathlen_add(fpl, adjust);
5385 	cnp->cn_nameptr = cnp->cn_pnbuf;
5386 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5387 	fpl->tvp = NULL;
5388 	return (0);
5389 }
5390 
5391 static int __noinline
5392 cache_fplookup_symlink(struct cache_fpl *fpl)
5393 {
5394 	struct mount *mp;
5395 	struct nameidata *ndp;
5396 	struct componentname *cnp;
5397 	struct vnode *dvp, *tvp;
5398 	int error;
5399 
5400 	ndp = fpl->ndp;
5401 	cnp = fpl->cnp;
5402 	dvp = fpl->dvp;
5403 	tvp = fpl->tvp;
5404 
5405 	if (cache_fpl_islastcn(ndp)) {
5406 		if ((cnp->cn_flags & FOLLOW) == 0) {
5407 			return (cache_fplookup_final(fpl));
5408 		}
5409 	}
5410 
5411 	mp = atomic_load_ptr(&dvp->v_mount);
5412 	if (__predict_false(mp == NULL)) {
5413 		return (cache_fpl_aborted(fpl));
5414 	}
5415 
5416 	/*
5417 	 * Note this check races against setting the flag just like regular
5418 	 * lookup.
5419 	 */
5420 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5421 		cache_fpl_smr_exit(fpl);
5422 		return (cache_fpl_handled_error(fpl, EACCES));
5423 	}
5424 
5425 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5426 	if (__predict_false(error != 0)) {
5427 		switch (error) {
5428 		case EAGAIN:
5429 			return (cache_fpl_partial(fpl));
5430 		case ENOENT:
5431 		case ENAMETOOLONG:
5432 		case ELOOP:
5433 			cache_fpl_smr_exit(fpl);
5434 			return (cache_fpl_handled_error(fpl, error));
5435 		default:
5436 			return (cache_fpl_aborted(fpl));
5437 		}
5438 	}
5439 
5440 	if (*(cnp->cn_nameptr) == '/') {
5441 		fpl->dvp = cache_fpl_handle_root(fpl);
5442 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5443 		if (seqc_in_modify(fpl->dvp_seqc)) {
5444 			return (cache_fpl_aborted(fpl));
5445 		}
5446 		/*
5447 		 * The main loop assumes that ->dvp points to a vnode belonging
5448 		 * to a filesystem which can do lockless lookup, but the absolute
5449 		 * symlink can be wandering off to one which does not.
5450 		 */
5451 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5452 		if (__predict_false(mp == NULL)) {
5453 			return (cache_fpl_aborted(fpl));
5454 		}
5455 		if (!cache_fplookup_mp_supported(mp)) {
5456 			cache_fpl_checkpoint(fpl);
5457 			return (cache_fpl_partial(fpl));
5458 		}
5459 	}
5460 	return (0);
5461 }
5462 
5463 static int
5464 cache_fplookup_next(struct cache_fpl *fpl)
5465 {
5466 	struct componentname *cnp;
5467 	struct namecache *ncp;
5468 	struct vnode *dvp, *tvp;
5469 	u_char nc_flag;
5470 	uint32_t hash;
5471 	int error;
5472 
5473 	cnp = fpl->cnp;
5474 	dvp = fpl->dvp;
5475 	hash = fpl->hash;
5476 
5477 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5478 		if (cnp->cn_namelen == 1) {
5479 			return (cache_fplookup_dot(fpl));
5480 		}
5481 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5482 			return (cache_fplookup_dotdot(fpl));
5483 		}
5484 	}
5485 
5486 	MPASS(!cache_fpl_isdotdot(cnp));
5487 
5488 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5489 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5490 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5491 			break;
5492 	}
5493 
5494 	if (__predict_false(ncp == NULL)) {
5495 		return (cache_fplookup_noentry(fpl));
5496 	}
5497 
5498 	tvp = atomic_load_ptr(&ncp->nc_vp);
5499 	nc_flag = atomic_load_char(&ncp->nc_flag);
5500 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5501 		return (cache_fplookup_neg(fpl, ncp, hash));
5502 	}
5503 
5504 	if (!cache_ncp_canuse(ncp)) {
5505 		return (cache_fpl_partial(fpl));
5506 	}
5507 
5508 	fpl->tvp = tvp;
5509 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5510 	if (seqc_in_modify(fpl->tvp_seqc)) {
5511 		return (cache_fpl_partial(fpl));
5512 	}
5513 
5514 	counter_u64_add(numposhits, 1);
5515 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5516 
5517 	error = 0;
5518 	if (cache_fplookup_is_mp(fpl)) {
5519 		error = cache_fplookup_cross_mount(fpl);
5520 	}
5521 	return (error);
5522 }
5523 
5524 static bool
5525 cache_fplookup_mp_supported(struct mount *mp)
5526 {
5527 
5528 	MPASS(mp != NULL);
5529 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5530 		return (false);
5531 	return (true);
5532 }
5533 
5534 /*
5535  * Walk up the mount stack (if any).
5536  *
5537  * Correctness is provided in the following ways:
5538  * - all vnodes are protected from freeing with SMR
5539  * - struct mount objects are type stable making them always safe to access
5540  * - stability of the particular mount is provided by busying it
5541  * - relationship between the vnode which is mounted on and the mount is
5542  *   verified with the vnode sequence counter after busying
5543  * - association between root vnode of the mount and the mount is protected
5544  *   by busy
5545  *
5546  * From that point on we can read the sequence counter of the root vnode
5547  * and get the next mount on the stack (if any) using the same protection.
5548  *
5549  * By the end of successful walk we are guaranteed the reached state was
5550  * indeed present at least at some point which matches the regular lookup.
5551  */
5552 static int __noinline
5553 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5554 {
5555 	struct mount *mp, *prev_mp;
5556 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5557 	struct vnode *vp;
5558 	seqc_t vp_seqc;
5559 
5560 	vp = fpl->tvp;
5561 	vp_seqc = fpl->tvp_seqc;
5562 
5563 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5564 	mp = atomic_load_ptr(&vp->v_mountedhere);
5565 	if (__predict_false(mp == NULL)) {
5566 		return (0);
5567 	}
5568 
5569 	prev_mp = NULL;
5570 	for (;;) {
5571 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5572 			if (prev_mp != NULL)
5573 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5574 			return (cache_fpl_partial(fpl));
5575 		}
5576 		if (prev_mp != NULL)
5577 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5578 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5579 			vfs_op_thread_exit_crit(mp, mpcpu);
5580 			return (cache_fpl_partial(fpl));
5581 		}
5582 		if (!cache_fplookup_mp_supported(mp)) {
5583 			vfs_op_thread_exit_crit(mp, mpcpu);
5584 			return (cache_fpl_partial(fpl));
5585 		}
5586 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5587 		if (vp == NULL) {
5588 			vfs_op_thread_exit_crit(mp, mpcpu);
5589 			return (cache_fpl_partial(fpl));
5590 		}
5591 		vp_seqc = vn_seqc_read_any(vp);
5592 		if (seqc_in_modify(vp_seqc)) {
5593 			vfs_op_thread_exit_crit(mp, mpcpu);
5594 			return (cache_fpl_partial(fpl));
5595 		}
5596 		prev_mp = mp;
5597 		prev_mpcpu = mpcpu;
5598 		mp = atomic_load_ptr(&vp->v_mountedhere);
5599 		if (mp == NULL)
5600 			break;
5601 	}
5602 
5603 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5604 	fpl->tvp = vp;
5605 	fpl->tvp_seqc = vp_seqc;
5606 	return (0);
5607 }
5608 
5609 static int __noinline
5610 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5611 {
5612 	struct mount *mp;
5613 	struct mount_pcpu *mpcpu;
5614 	struct vnode *vp;
5615 	seqc_t vp_seqc;
5616 
5617 	vp = fpl->tvp;
5618 	vp_seqc = fpl->tvp_seqc;
5619 
5620 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5621 	mp = atomic_load_ptr(&vp->v_mountedhere);
5622 	if (__predict_false(mp == NULL)) {
5623 		return (0);
5624 	}
5625 
5626 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5627 		return (cache_fpl_partial(fpl));
5628 	}
5629 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5630 		vfs_op_thread_exit_crit(mp, mpcpu);
5631 		return (cache_fpl_partial(fpl));
5632 	}
5633 	if (!cache_fplookup_mp_supported(mp)) {
5634 		vfs_op_thread_exit_crit(mp, mpcpu);
5635 		return (cache_fpl_partial(fpl));
5636 	}
5637 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5638 	if (__predict_false(vp == NULL)) {
5639 		vfs_op_thread_exit_crit(mp, mpcpu);
5640 		return (cache_fpl_partial(fpl));
5641 	}
5642 	vp_seqc = vn_seqc_read_any(vp);
5643 	vfs_op_thread_exit_crit(mp, mpcpu);
5644 	if (seqc_in_modify(vp_seqc)) {
5645 		return (cache_fpl_partial(fpl));
5646 	}
5647 	mp = atomic_load_ptr(&vp->v_mountedhere);
5648 	if (__predict_false(mp != NULL)) {
5649 		/*
5650 		 * There are possibly more mount points on top.
5651 		 * Normally this does not happen so for simplicity just start
5652 		 * over.
5653 		 */
5654 		return (cache_fplookup_climb_mount(fpl));
5655 	}
5656 
5657 	fpl->tvp = vp;
5658 	fpl->tvp_seqc = vp_seqc;
5659 	return (0);
5660 }
5661 
5662 /*
5663  * Check if a vnode is mounted on.
5664  */
5665 static bool
5666 cache_fplookup_is_mp(struct cache_fpl *fpl)
5667 {
5668 	struct vnode *vp;
5669 
5670 	vp = fpl->tvp;
5671 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5672 }
5673 
5674 /*
5675  * Parse the path.
5676  *
5677  * The code was originally copy-pasted from regular lookup and despite
5678  * clean ups leaves performance on the table. Any modifications here
5679  * must take into account that in case off fallback the resulting
5680  * nameidata state has to be compatible with the original.
5681  */
5682 
5683 /*
5684  * Debug ni_pathlen tracking.
5685  */
5686 #ifdef INVARIANTS
5687 static void
5688 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5689 {
5690 
5691 	fpl->debug.ni_pathlen += n;
5692 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5693 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5694 }
5695 
5696 static void
5697 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5698 {
5699 
5700 	fpl->debug.ni_pathlen -= n;
5701 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5702 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5703 }
5704 
5705 static void
5706 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5707 {
5708 
5709 	cache_fpl_pathlen_add(fpl, 1);
5710 }
5711 
5712 static void
5713 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5714 {
5715 
5716 	cache_fpl_pathlen_sub(fpl, 1);
5717 }
5718 #else
5719 static void
5720 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5721 {
5722 }
5723 
5724 static void
5725 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5726 {
5727 }
5728 
5729 static void
5730 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5731 {
5732 }
5733 
5734 static void
5735 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5736 {
5737 }
5738 #endif
5739 
5740 static void
5741 cache_fplookup_parse(struct cache_fpl *fpl)
5742 {
5743 	struct nameidata *ndp;
5744 	struct componentname *cnp;
5745 	struct vnode *dvp;
5746 	char *cp;
5747 	uint32_t hash;
5748 
5749 	ndp = fpl->ndp;
5750 	cnp = fpl->cnp;
5751 	dvp = fpl->dvp;
5752 
5753 	/*
5754 	 * Find the end of this path component, it is either / or nul.
5755 	 *
5756 	 * Store / as a temporary sentinel so that we only have one character
5757 	 * to test for. Pathnames tend to be short so this should not be
5758 	 * resulting in cache misses.
5759 	 *
5760 	 * TODO: fix this to be word-sized.
5761 	 */
5762 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5763 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5764 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5765 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5766 	    fpl->nulchar, cnp->cn_pnbuf));
5767 	KASSERT(*fpl->nulchar == '\0',
5768 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5769 	    cnp->cn_pnbuf));
5770 	hash = cache_get_hash_iter_start(dvp);
5771 	*fpl->nulchar = '/';
5772 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5773 		KASSERT(*cp != '\0',
5774 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5775 		    cnp->cn_nameptr));
5776 		hash = cache_get_hash_iter(*cp, hash);
5777 		continue;
5778 	}
5779 	*fpl->nulchar = '\0';
5780 	fpl->hash = cache_get_hash_iter_finish(hash);
5781 
5782 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5783 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5784 
5785 #ifdef INVARIANTS
5786 	/*
5787 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5788 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5789 	 */
5790 	if (cnp->cn_namelen <= NAME_MAX) {
5791 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5792 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5793 			    cnp->cn_nameptr, cnp->cn_namelen);
5794 		}
5795 	}
5796 #endif
5797 
5798 	/*
5799 	 * Hack: we have to check if the found path component's length exceeds
5800 	 * NAME_MAX. However, the condition is very rarely true and check can
5801 	 * be elided in the common case -- if an entry was found in the cache,
5802 	 * then it could not have been too long to begin with.
5803 	 */
5804 	ndp->ni_next = cp;
5805 }
5806 
5807 static void
5808 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5809 {
5810 	struct nameidata *ndp;
5811 	struct componentname *cnp;
5812 
5813 	ndp = fpl->ndp;
5814 	cnp = fpl->cnp;
5815 
5816 	cnp->cn_nameptr = ndp->ni_next;
5817 	KASSERT(*(cnp->cn_nameptr) == '/',
5818 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5819 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5820 	cnp->cn_nameptr++;
5821 	cache_fpl_pathlen_dec(fpl);
5822 }
5823 
5824 /*
5825  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5826  *
5827  * Lockless lookup tries to elide checking for spurious slashes and should they
5828  * be present is guaranteed to fail to find an entry. In this case the caller
5829  * must check if the name starts with a slash and call this routine.  It is
5830  * going to fast forward across the spurious slashes and set the state up for
5831  * retry.
5832  */
5833 static int __noinline
5834 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5835 {
5836 	struct nameidata *ndp;
5837 	struct componentname *cnp;
5838 
5839 	ndp = fpl->ndp;
5840 	cnp = fpl->cnp;
5841 
5842 	MPASS(*(cnp->cn_nameptr) == '/');
5843 	do {
5844 		cnp->cn_nameptr++;
5845 		cache_fpl_pathlen_dec(fpl);
5846 	} while (*(cnp->cn_nameptr) == '/');
5847 
5848 	/*
5849 	 * Go back to one slash so that cache_fplookup_parse_advance has
5850 	 * something to skip.
5851 	 */
5852 	cnp->cn_nameptr--;
5853 	cache_fpl_pathlen_inc(fpl);
5854 
5855 	/*
5856 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5857 	 */
5858 	ndp->ni_next = cnp->cn_nameptr;
5859 
5860 	/*
5861 	 * See cache_fplookup_dot.
5862 	 */
5863 	fpl->tvp = fpl->dvp;
5864 	fpl->tvp_seqc = fpl->dvp_seqc;
5865 
5866 	return (0);
5867 }
5868 
5869 /*
5870  * Handle trailing slashes (e.g., "foo/").
5871  *
5872  * If a trailing slash is found the terminal vnode must be a directory.
5873  * Regular lookup shortens the path by nulifying the first trailing slash and
5874  * sets the TRAILINGSLASH flag to denote this took place. There are several
5875  * checks on it performed later.
5876  *
5877  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5878  * manner relying on an invariant that a non-directory vnode will get a miss.
5879  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5880  *
5881  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5882  * and denotes this is the last path component, which avoids looping back.
5883  *
5884  * Only plain lookups are supported for now to restrict corner cases to handle.
5885  */
5886 static int __noinline
5887 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5888 {
5889 #ifdef INVARIANTS
5890 	size_t ni_pathlen;
5891 #endif
5892 	struct nameidata *ndp;
5893 	struct componentname *cnp;
5894 	struct namecache *ncp;
5895 	struct vnode *tvp;
5896 	char *cn_nameptr_orig, *cn_nameptr_slash;
5897 	seqc_t tvp_seqc;
5898 	u_char nc_flag;
5899 
5900 	ndp = fpl->ndp;
5901 	cnp = fpl->cnp;
5902 	tvp = fpl->tvp;
5903 	tvp_seqc = fpl->tvp_seqc;
5904 
5905 	MPASS(fpl->dvp == fpl->tvp);
5906 	KASSERT(cache_fpl_istrailingslash(fpl),
5907 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5908 	    cnp->cn_pnbuf));
5909 	KASSERT(cnp->cn_nameptr[0] == '\0',
5910 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5911 	    cnp->cn_pnbuf));
5912 	KASSERT(cnp->cn_namelen == 0,
5913 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5914 	    cnp->cn_pnbuf));
5915 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5916 
5917 	if (cnp->cn_nameiop != LOOKUP) {
5918 		return (cache_fpl_aborted(fpl));
5919 	}
5920 
5921 	if (__predict_false(tvp->v_type != VDIR)) {
5922 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5923 			return (cache_fpl_aborted(fpl));
5924 		}
5925 		cache_fpl_smr_exit(fpl);
5926 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5927 	}
5928 
5929 	/*
5930 	 * Denote the last component.
5931 	 */
5932 	ndp->ni_next = &cnp->cn_nameptr[0];
5933 	MPASS(cache_fpl_islastcn(ndp));
5934 
5935 	/*
5936 	 * Unwind trailing slashes.
5937 	 */
5938 	cn_nameptr_orig = cnp->cn_nameptr;
5939 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5940 		cnp->cn_nameptr--;
5941 		if (cnp->cn_nameptr[0] != '/') {
5942 			break;
5943 		}
5944 	}
5945 
5946 	/*
5947 	 * Unwind to the beginning of the path component.
5948 	 *
5949 	 * Note the path may or may not have started with a slash.
5950 	 */
5951 	cn_nameptr_slash = cnp->cn_nameptr;
5952 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5953 		cnp->cn_nameptr--;
5954 		if (cnp->cn_nameptr[0] == '/') {
5955 			break;
5956 		}
5957 	}
5958 	if (cnp->cn_nameptr[0] == '/') {
5959 		cnp->cn_nameptr++;
5960 	}
5961 
5962 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5963 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5964 	cache_fpl_checkpoint(fpl);
5965 
5966 #ifdef INVARIANTS
5967 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
5968 	if (ni_pathlen != fpl->debug.ni_pathlen) {
5969 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5970 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5971 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5972 	}
5973 #endif
5974 
5975 	/*
5976 	 * If this was a "./" lookup the parent directory is already correct.
5977 	 */
5978 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
5979 		return (0);
5980 	}
5981 
5982 	/*
5983 	 * Otherwise we need to look it up.
5984 	 */
5985 	tvp = fpl->tvp;
5986 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
5987 	if (__predict_false(ncp == NULL)) {
5988 		return (cache_fpl_aborted(fpl));
5989 	}
5990 	nc_flag = atomic_load_char(&ncp->nc_flag);
5991 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5992 		return (cache_fpl_aborted(fpl));
5993 	}
5994 	fpl->dvp = ncp->nc_dvp;
5995 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5996 	if (seqc_in_modify(fpl->dvp_seqc)) {
5997 		return (cache_fpl_aborted(fpl));
5998 	}
5999 	return (0);
6000 }
6001 
6002 /*
6003  * See the API contract for VOP_FPLOOKUP_VEXEC.
6004  */
6005 static int __noinline
6006 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6007 {
6008 	struct componentname *cnp;
6009 	struct vnode *dvp;
6010 	seqc_t dvp_seqc;
6011 
6012 	cnp = fpl->cnp;
6013 	dvp = fpl->dvp;
6014 	dvp_seqc = fpl->dvp_seqc;
6015 
6016 	/*
6017 	 * Hack: delayed empty path checking.
6018 	 */
6019 	if (cnp->cn_pnbuf[0] == '\0') {
6020 		return (cache_fplookup_emptypath(fpl));
6021 	}
6022 
6023 	/*
6024 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6025 	 * permission check on the last dir when it should not be doing it.  It
6026 	 * may fail, but said failure should be ignored. It is possible to fix
6027 	 * it up fully without resorting to regular lookup, but for now just
6028 	 * abort.
6029 	 */
6030 	if (cache_fpl_istrailingslash(fpl)) {
6031 		return (cache_fpl_aborted(fpl));
6032 	}
6033 
6034 	/*
6035 	 * Hack: delayed degenerate path checking.
6036 	 */
6037 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6038 		return (cache_fplookup_degenerate(fpl));
6039 	}
6040 
6041 	/*
6042 	 * Hack: delayed name len checking.
6043 	 */
6044 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6045 		cache_fpl_smr_exit(fpl);
6046 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6047 	}
6048 
6049 	/*
6050 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6051 	 * In such a case we need to return ENOTDIR, but we may happen to get
6052 	 * here with a different error.
6053 	 */
6054 	if (dvp->v_type != VDIR) {
6055 		error = ENOTDIR;
6056 	}
6057 
6058 	/*
6059 	 * Hack: handle O_SEARCH.
6060 	 *
6061 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6062 	 * <quote>
6063 	 * If the access mode of the open file description associated with the
6064 	 * file descriptor is not O_SEARCH, the function shall check whether
6065 	 * directory searches are permitted using the current permissions of
6066 	 * the directory underlying the file descriptor. If the access mode is
6067 	 * O_SEARCH, the function shall not perform the check.
6068 	 * </quote>
6069 	 *
6070 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6071 	 * component to decide whether to do the permission check. However,
6072 	 * since most lookups never have the flag (and when they do it is only
6073 	 * present for the first path component), lockless lookup only acts on
6074 	 * it if there is a permission problem. Here the flag is represented
6075 	 * with a boolean so that we don't have to clear it on the way out.
6076 	 *
6077 	 * For simplicity this always aborts.
6078 	 * TODO: check if this is the first lookup and ignore the permission
6079 	 * problem. Note the flag has to survive fallback (if it happens to be
6080 	 * performed).
6081 	 */
6082 	if (fpl->fsearch) {
6083 		return (cache_fpl_aborted(fpl));
6084 	}
6085 
6086 	switch (error) {
6087 	case EAGAIN:
6088 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6089 			error = cache_fpl_aborted(fpl);
6090 		} else {
6091 			cache_fpl_partial(fpl);
6092 		}
6093 		break;
6094 	default:
6095 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6096 			error = cache_fpl_aborted(fpl);
6097 		} else {
6098 			cache_fpl_smr_exit(fpl);
6099 			cache_fpl_handled_error(fpl, error);
6100 		}
6101 		break;
6102 	}
6103 	return (error);
6104 }
6105 
6106 static int
6107 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6108 {
6109 	struct nameidata *ndp;
6110 	struct componentname *cnp;
6111 	struct mount *mp;
6112 	int error;
6113 
6114 	ndp = fpl->ndp;
6115 	cnp = fpl->cnp;
6116 
6117 	cache_fpl_checkpoint(fpl);
6118 
6119 	/*
6120 	 * The vnode at hand is almost always stable, skip checking for it.
6121 	 * Worst case this postpones the check towards the end of the iteration
6122 	 * of the main loop.
6123 	 */
6124 	fpl->dvp = dvp;
6125 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6126 
6127 	mp = atomic_load_ptr(&dvp->v_mount);
6128 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6129 		return (cache_fpl_aborted(fpl));
6130 	}
6131 
6132 	MPASS(fpl->tvp == NULL);
6133 
6134 	for (;;) {
6135 		cache_fplookup_parse(fpl);
6136 
6137 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6138 		if (__predict_false(error != 0)) {
6139 			error = cache_fplookup_failed_vexec(fpl, error);
6140 			break;
6141 		}
6142 
6143 		error = cache_fplookup_next(fpl);
6144 		if (__predict_false(cache_fpl_terminated(fpl))) {
6145 			break;
6146 		}
6147 
6148 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6149 
6150 		if (fpl->tvp->v_type == VLNK) {
6151 			error = cache_fplookup_symlink(fpl);
6152 			if (cache_fpl_terminated(fpl)) {
6153 				break;
6154 			}
6155 		} else {
6156 			if (cache_fpl_islastcn(ndp)) {
6157 				error = cache_fplookup_final(fpl);
6158 				break;
6159 			}
6160 
6161 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6162 				error = cache_fpl_aborted(fpl);
6163 				break;
6164 			}
6165 
6166 			fpl->dvp = fpl->tvp;
6167 			fpl->dvp_seqc = fpl->tvp_seqc;
6168 			cache_fplookup_parse_advance(fpl);
6169 		}
6170 
6171 		cache_fpl_checkpoint(fpl);
6172 	}
6173 
6174 	return (error);
6175 }
6176 
6177 /*
6178  * Fast path lookup protected with SMR and sequence counters.
6179  *
6180  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6181  *
6182  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6183  * outlined below.
6184  *
6185  * Traditional vnode lookup conceptually looks like this:
6186  *
6187  * vn_lock(current);
6188  * for (;;) {
6189  *	next = find();
6190  *	vn_lock(next);
6191  *	vn_unlock(current);
6192  *	current = next;
6193  *	if (last)
6194  *	    break;
6195  * }
6196  * return (current);
6197  *
6198  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6199  * any modifications thanks to holding respective locks.
6200  *
6201  * The same guarantee can be provided with a combination of safe memory
6202  * reclamation and sequence counters instead. If all operations which affect
6203  * the relationship between the current vnode and the one we are looking for
6204  * also modify the counter, we can verify whether all the conditions held as
6205  * we made the jump. This includes things like permissions, mount points etc.
6206  * Counter modification is provided by enclosing relevant places in
6207  * vn_seqc_write_begin()/end() calls.
6208  *
6209  * Thus this translates to:
6210  *
6211  * vfs_smr_enter();
6212  * dvp_seqc = seqc_read_any(dvp);
6213  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6214  *     abort();
6215  * for (;;) {
6216  * 	tvp = find();
6217  * 	tvp_seqc = seqc_read_any(tvp);
6218  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6219  * 	    abort();
6220  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6221  * 	    abort();
6222  * 	dvp = tvp; // we know nothing of importance has changed
6223  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6224  * 	if (last)
6225  * 	    break;
6226  * }
6227  * vget(); // secure the vnode
6228  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6229  * 	    abort();
6230  * // at this point we know nothing has changed for any parent<->child pair
6231  * // as they were crossed during the lookup, meaning we matched the guarantee
6232  * // of the locked variant
6233  * return (tvp);
6234  *
6235  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6236  * - they are called while within vfs_smr protection which they must never exit
6237  * - EAGAIN can be returned to denote checking could not be performed, it is
6238  *   always valid to return it
6239  * - if the sequence counter has not changed the result must be valid
6240  * - if the sequence counter has changed both false positives and false negatives
6241  *   are permitted (since the result will be rejected later)
6242  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6243  *
6244  * Caveats to watch out for:
6245  * - vnodes are passed unlocked and unreferenced with nothing stopping
6246  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6247  *   to use atomic_load_ptr to fetch it.
6248  * - the aforementioned object can also get freed, meaning absent other means it
6249  *   should be protected with vfs_smr
6250  * - either safely checking permissions as they are modified or guaranteeing
6251  *   their stability is left to the routine
6252  */
6253 int
6254 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6255     struct pwd **pwdp)
6256 {
6257 	struct cache_fpl fpl;
6258 	struct pwd *pwd;
6259 	struct vnode *dvp;
6260 	struct componentname *cnp;
6261 	int error;
6262 
6263 	fpl.status = CACHE_FPL_STATUS_UNSET;
6264 	fpl.in_smr = false;
6265 	fpl.ndp = ndp;
6266 	fpl.cnp = cnp = &ndp->ni_cnd;
6267 	MPASS(ndp->ni_lcf == 0);
6268 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6269 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6270 	    cnp->cn_flags));
6271 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6272 	MPASS(ndp->ni_resflags == 0);
6273 
6274 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6275 		*status = fpl.status;
6276 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6277 		return (EOPNOTSUPP);
6278 	}
6279 
6280 	cache_fpl_checkpoint_outer(&fpl);
6281 
6282 	cache_fpl_smr_enter_initial(&fpl);
6283 #ifdef INVARIANTS
6284 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6285 #endif
6286 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6287 	fpl.fsearch = false;
6288 	fpl.tvp = NULL; /* for degenerate path handling */
6289 	fpl.pwd = pwdp;
6290 	pwd = pwd_get_smr();
6291 	*(fpl.pwd) = pwd;
6292 	namei_setup_rootdir(ndp, cnp, pwd);
6293 	ndp->ni_topdir = pwd->pwd_jdir;
6294 
6295 	if (cnp->cn_pnbuf[0] == '/') {
6296 		dvp = cache_fpl_handle_root(&fpl);
6297 		ndp->ni_resflags = NIRES_ABS;
6298 	} else {
6299 		if (ndp->ni_dirfd == AT_FDCWD) {
6300 			dvp = pwd->pwd_cdir;
6301 		} else {
6302 			error = cache_fplookup_dirfd(&fpl, &dvp);
6303 			if (__predict_false(error != 0)) {
6304 				goto out;
6305 			}
6306 		}
6307 	}
6308 
6309 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6310 	error = cache_fplookup_impl(dvp, &fpl);
6311 out:
6312 	cache_fpl_smr_assert_not_entered(&fpl);
6313 	cache_fpl_assert_status(&fpl);
6314 	*status = fpl.status;
6315 	if (SDT_PROBES_ENABLED()) {
6316 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6317 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6318 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6319 			    ndp);
6320 	}
6321 
6322 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6323 		MPASS(error != CACHE_FPL_FAILED);
6324 		if (error != 0) {
6325 			cache_fpl_cleanup_cnp(fpl.cnp);
6326 			MPASS(fpl.dvp == NULL);
6327 			MPASS(fpl.tvp == NULL);
6328 		}
6329 		ndp->ni_dvp = fpl.dvp;
6330 		ndp->ni_vp = fpl.tvp;
6331 	}
6332 	return (error);
6333 }
6334