1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Poul-Henning Kamp of the FreeBSD Project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ddb.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/capsicum.h> 46 #include <sys/counter.h> 47 #include <sys/filedesc.h> 48 #include <sys/fnv_hash.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/fcntl.h> 54 #include <sys/jail.h> 55 #include <sys/mount.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/seqc.h> 59 #include <sys/sdt.h> 60 #include <sys/smr.h> 61 #include <sys/smp.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/vnode.h> 66 #include <ck_queue.h> 67 #ifdef KTRACE 68 #include <sys/ktrace.h> 69 #endif 70 #ifdef INVARIANTS 71 #include <machine/_inttypes.h> 72 #endif 73 74 #include <sys/capsicum.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #include <vm/uma.h> 84 85 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 86 "Name cache"); 87 88 SDT_PROVIDER_DECLARE(vfs); 89 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", 90 "struct vnode *"); 91 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *", 92 "struct vnode *"); 93 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", 94 "char *"); 95 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *", 96 "const char *"); 97 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", 98 "struct namecache *", "int", "int"); 99 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *"); 100 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *", 101 "char *", "struct vnode *"); 102 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *"); 103 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int", 104 "struct vnode *", "char *"); 105 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *", 106 "struct vnode *"); 107 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative, 108 "struct vnode *", "char *"); 109 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *", 110 "char *"); 111 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *", 112 "struct componentname *"); 113 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *", 114 "struct componentname *"); 115 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *"); 116 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int"); 117 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *"); 118 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *"); 119 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *", 120 "struct vnode *"); 121 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *", 122 "char *"); 123 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *", 124 "char *"); 125 126 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool"); 127 SDT_PROBE_DECLARE(vfs, namei, lookup, entry); 128 SDT_PROBE_DECLARE(vfs, namei, lookup, return); 129 130 /* 131 * This structure describes the elements in the cache of recent 132 * names looked up by namei. 133 */ 134 struct negstate { 135 u_char neg_flag; 136 u_char neg_hit; 137 }; 138 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *), 139 "the state must fit in a union with a pointer without growing it"); 140 141 struct namecache { 142 LIST_ENTRY(namecache) nc_src; /* source vnode list */ 143 TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */ 144 CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */ 145 struct vnode *nc_dvp; /* vnode of parent of name */ 146 union { 147 struct vnode *nu_vp; /* vnode the name refers to */ 148 struct negstate nu_neg;/* negative entry state */ 149 } n_un; 150 u_char nc_flag; /* flag bits */ 151 u_char nc_nlen; /* length of name */ 152 char nc_name[0]; /* segment name + nul */ 153 }; 154 155 /* 156 * struct namecache_ts repeats struct namecache layout up to the 157 * nc_nlen member. 158 * struct namecache_ts is used in place of struct namecache when time(s) need 159 * to be stored. The nc_dotdottime field is used when a cache entry is mapping 160 * both a non-dotdot directory name plus dotdot for the directory's 161 * parent. 162 * 163 * See below for alignment requirement. 164 */ 165 struct namecache_ts { 166 struct timespec nc_time; /* timespec provided by fs */ 167 struct timespec nc_dotdottime; /* dotdot timespec provided by fs */ 168 int nc_ticks; /* ticks value when entry was added */ 169 int nc_pad; 170 struct namecache nc_nc; 171 }; 172 173 TAILQ_HEAD(cache_freebatch, namecache); 174 175 /* 176 * At least mips n32 performs 64-bit accesses to timespec as found 177 * in namecache_ts and requires them to be aligned. Since others 178 * may be in the same spot suffer a little bit and enforce the 179 * alignment for everyone. Note this is a nop for 64-bit platforms. 180 */ 181 #define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t) 182 183 /* 184 * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the 185 * 4.4 BSD codebase. Later on struct namecache was tweaked to become 186 * smaller and the value was bumped to retain the total size, but it 187 * was never re-evaluated for suitability. A simple test counting 188 * lengths during package building shows that the value of 45 covers 189 * about 86% of all added entries, reaching 99% at 65. 190 * 191 * Regardless of the above, use of dedicated zones instead of malloc may be 192 * inducing additional waste. This may be hard to address as said zones are 193 * tied to VFS SMR. Even if retaining them, the current split should be 194 * re-evaluated. 195 */ 196 #ifdef __LP64__ 197 #define CACHE_PATH_CUTOFF 45 198 #define CACHE_LARGE_PAD 6 199 #else 200 #define CACHE_PATH_CUTOFF 41 201 #define CACHE_LARGE_PAD 2 202 #endif 203 204 #define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1) 205 #define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE) 206 #define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD) 207 #define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE) 208 209 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 210 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 211 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 212 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 213 214 #define nc_vp n_un.nu_vp 215 #define nc_neg n_un.nu_neg 216 217 /* 218 * Flags in namecache.nc_flag 219 */ 220 #define NCF_WHITE 0x01 221 #define NCF_ISDOTDOT 0x02 222 #define NCF_TS 0x04 223 #define NCF_DTS 0x08 224 #define NCF_DVDROP 0x10 225 #define NCF_NEGATIVE 0x20 226 #define NCF_INVALID 0x40 227 #define NCF_WIP 0x80 228 229 /* 230 * Flags in negstate.neg_flag 231 */ 232 #define NEG_HOT 0x01 233 234 static bool cache_neg_evict_cond(u_long lnumcache); 235 236 /* 237 * Mark an entry as invalid. 238 * 239 * This is called before it starts getting deconstructed. 240 */ 241 static void 242 cache_ncp_invalidate(struct namecache *ncp) 243 { 244 245 KASSERT((ncp->nc_flag & NCF_INVALID) == 0, 246 ("%s: entry %p already invalid", __func__, ncp)); 247 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID); 248 atomic_thread_fence_rel(); 249 } 250 251 /* 252 * Check whether the entry can be safely used. 253 * 254 * All places which elide locks are supposed to call this after they are 255 * done with reading from an entry. 256 */ 257 #define cache_ncp_canuse(ncp) ({ \ 258 struct namecache *_ncp = (ncp); \ 259 u_char _nc_flag; \ 260 \ 261 atomic_thread_fence_acq(); \ 262 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 263 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \ 264 }) 265 266 /* 267 * Like the above but also checks NCF_WHITE. 268 */ 269 #define cache_fpl_neg_ncp_canuse(ncp) ({ \ 270 struct namecache *_ncp = (ncp); \ 271 u_char _nc_flag; \ 272 \ 273 atomic_thread_fence_acq(); \ 274 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 275 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \ 276 }) 277 278 /* 279 * Name caching works as follows: 280 * 281 * Names found by directory scans are retained in a cache 282 * for future reference. It is managed LRU, so frequently 283 * used names will hang around. Cache is indexed by hash value 284 * obtained from (dvp, name) where dvp refers to the directory 285 * containing name. 286 * 287 * If it is a "negative" entry, (i.e. for a name that is known NOT to 288 * exist) the vnode pointer will be NULL. 289 * 290 * Upon reaching the last segment of a path, if the reference 291 * is for DELETE, or NOCACHE is set (rewrite), and the 292 * name is located in the cache, it will be dropped. 293 * 294 * These locks are used (in the order in which they can be taken): 295 * NAME TYPE ROLE 296 * vnodelock mtx vnode lists and v_cache_dd field protection 297 * bucketlock mtx for access to given set of hash buckets 298 * neglist mtx negative entry LRU management 299 * 300 * It is legal to take multiple vnodelock and bucketlock locks. The locking 301 * order is lower address first. Both are recursive. 302 * 303 * "." lookups are lockless. 304 * 305 * ".." and vnode -> name lookups require vnodelock. 306 * 307 * name -> vnode lookup requires the relevant bucketlock to be held for reading. 308 * 309 * Insertions and removals of entries require involved vnodes and bucketlocks 310 * to be locked to provide safe operation against other threads modifying the 311 * cache. 312 * 313 * Some lookups result in removal of the found entry (e.g. getting rid of a 314 * negative entry with the intent to create a positive one), which poses a 315 * problem when multiple threads reach the state. Similarly, two different 316 * threads can purge two different vnodes and try to remove the same name. 317 * 318 * If the already held vnode lock is lower than the second required lock, we 319 * can just take the other lock. However, in the opposite case, this could 320 * deadlock. As such, this is resolved by trylocking and if that fails unlocking 321 * the first node, locking everything in order and revalidating the state. 322 */ 323 324 VFS_SMR_DECLARE; 325 326 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 327 "Name cache parameters"); 328 329 static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */ 330 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, 331 "Total namecache capacity"); 332 333 u_int ncsizefactor = 2; 334 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0, 335 "Size factor for namecache"); 336 337 static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */ 338 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, 339 "Ratio of negative namecache entries"); 340 341 /* 342 * Negative entry % of namecache capacity above which automatic eviction is allowed. 343 * 344 * Check cache_neg_evict_cond for details. 345 */ 346 static u_int ncnegminpct = 3; 347 348 static u_int __read_mostly neg_min; /* the above recomputed against ncsize */ 349 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0, 350 "Negative entry count above which automatic eviction is allowed"); 351 352 /* 353 * Structures associated with name caching. 354 */ 355 #define NCHHASH(hash) \ 356 (&nchashtbl[(hash) & nchash]) 357 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */ 358 static u_long __read_mostly nchash; /* size of hash table */ 359 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, 360 "Size of namecache hash table"); 361 static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */ 362 static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */ 363 364 struct nchstats nchstats; /* cache effectiveness statistics */ 365 366 static bool __read_frequently cache_fast_revlookup = true; 367 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW, 368 &cache_fast_revlookup, 0, ""); 369 370 static u_int __exclusive_cache_line neg_cycle; 371 372 #define ncneghash 3 373 #define numneglists (ncneghash + 1) 374 375 struct neglist { 376 struct mtx nl_evict_lock; 377 struct mtx nl_lock __aligned(CACHE_LINE_SIZE); 378 TAILQ_HEAD(, namecache) nl_list; 379 TAILQ_HEAD(, namecache) nl_hotlist; 380 u_long nl_hotnum; 381 } __aligned(CACHE_LINE_SIZE); 382 383 static struct neglist neglists[numneglists]; 384 385 static inline struct neglist * 386 NCP2NEGLIST(struct namecache *ncp) 387 { 388 389 return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]); 390 } 391 392 static inline struct negstate * 393 NCP2NEGSTATE(struct namecache *ncp) 394 { 395 396 MPASS(ncp->nc_flag & NCF_NEGATIVE); 397 return (&ncp->nc_neg); 398 } 399 400 #define numbucketlocks (ncbuckethash + 1) 401 static u_int __read_mostly ncbuckethash; 402 static struct mtx_padalign __read_mostly *bucketlocks; 403 #define HASH2BUCKETLOCK(hash) \ 404 ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)])) 405 406 #define numvnodelocks (ncvnodehash + 1) 407 static u_int __read_mostly ncvnodehash; 408 static struct mtx __read_mostly *vnodelocks; 409 static inline struct mtx * 410 VP2VNODELOCK(struct vnode *vp) 411 { 412 413 return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]); 414 } 415 416 static void 417 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp) 418 { 419 struct namecache_ts *ncp_ts; 420 421 KASSERT((ncp->nc_flag & NCF_TS) != 0 || 422 (tsp == NULL && ticksp == NULL), 423 ("No NCF_TS")); 424 425 if (tsp == NULL) 426 return; 427 428 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 429 *tsp = ncp_ts->nc_time; 430 *ticksp = ncp_ts->nc_ticks; 431 } 432 433 #ifdef DEBUG_CACHE 434 static int __read_mostly doingcache = 1; /* 1 => enable the cache */ 435 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, 436 "VFS namecache enabled"); 437 #endif 438 439 /* Export size information to userland */ 440 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, 441 sizeof(struct namecache), "sizeof(struct namecache)"); 442 443 /* 444 * The new name cache statistics 445 */ 446 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 447 "Name cache statistics"); 448 449 #define STATNODE_ULONG(name, varname, descr) \ 450 SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 451 #define STATNODE_COUNTER(name, varname, descr) \ 452 static COUNTER_U64_DEFINE_EARLY(varname); \ 453 SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \ 454 descr); 455 STATNODE_ULONG(neg, numneg, "Number of negative cache entries"); 456 STATNODE_ULONG(count, numcache, "Number of cache entries"); 457 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held"); 458 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit"); 459 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits"); 460 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits"); 461 STATNODE_COUNTER(miss, nummiss, "Number of cache misses"); 462 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache"); 463 STATNODE_COUNTER(posszaps, numposzaps, 464 "Number of cache hits (positive) we do not want to cache"); 465 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)"); 466 STATNODE_COUNTER(negzaps, numnegzaps, 467 "Number of cache hits (negative) we do not want to cache"); 468 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)"); 469 /* These count for vn_getcwd(), too. */ 470 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls"); 471 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)"); 472 STATNODE_COUNTER(fullpathfail2, numfullpathfail2, 473 "Number of fullpath search errors (VOP_VPTOCNP failures)"); 474 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)"); 475 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls"); 476 477 /* 478 * Debug or developer statistics. 479 */ 480 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 481 "Name cache debugging"); 482 #define DEBUGNODE_ULONG(name, varname, descr) \ 483 SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 484 #define DEBUGNODE_COUNTER(name, varname, descr) \ 485 static COUNTER_U64_DEFINE_EARLY(varname); \ 486 SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \ 487 descr); 488 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success, 489 "Number of successful removals after relocking"); 490 static long zap_bucket_fail; 491 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, ""); 492 static long zap_bucket_fail2; 493 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, ""); 494 static long cache_lock_vnodes_cel_3_failures; 495 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures, 496 "Number of times 3-way vnode locking failed"); 497 498 static void cache_zap_locked(struct namecache *ncp); 499 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, 500 char **freebuf, size_t *buflen); 501 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 502 char **retbuf, size_t *buflen, size_t addend); 503 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, 504 char **retbuf, size_t *buflen); 505 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, 506 char **retbuf, size_t *len, size_t addend); 507 508 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 509 510 static inline void 511 cache_assert_vlp_locked(struct mtx *vlp) 512 { 513 514 if (vlp != NULL) 515 mtx_assert(vlp, MA_OWNED); 516 } 517 518 static inline void 519 cache_assert_vnode_locked(struct vnode *vp) 520 { 521 struct mtx *vlp; 522 523 vlp = VP2VNODELOCK(vp); 524 cache_assert_vlp_locked(vlp); 525 } 526 527 /* 528 * Directory vnodes with entries are held for two reasons: 529 * 1. make them less of a target for reclamation in vnlru 530 * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided 531 * 532 * It will be feasible to stop doing it altogether if all filesystems start 533 * supporting lockless lookup. 534 */ 535 static void 536 cache_hold_vnode(struct vnode *vp) 537 { 538 539 cache_assert_vnode_locked(vp); 540 VNPASS(LIST_EMPTY(&vp->v_cache_src), vp); 541 vhold(vp); 542 counter_u64_add(numcachehv, 1); 543 } 544 545 static void 546 cache_drop_vnode(struct vnode *vp) 547 { 548 549 /* 550 * Called after all locks are dropped, meaning we can't assert 551 * on the state of v_cache_src. 552 */ 553 vdrop(vp); 554 counter_u64_add(numcachehv, -1); 555 } 556 557 /* 558 * UMA zones. 559 */ 560 static uma_zone_t __read_mostly cache_zone_small; 561 static uma_zone_t __read_mostly cache_zone_small_ts; 562 static uma_zone_t __read_mostly cache_zone_large; 563 static uma_zone_t __read_mostly cache_zone_large_ts; 564 565 static struct namecache * 566 cache_alloc_uma(int len, bool ts) 567 { 568 struct namecache_ts *ncp_ts; 569 struct namecache *ncp; 570 571 if (__predict_false(ts)) { 572 if (len <= CACHE_PATH_CUTOFF) 573 ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK); 574 else 575 ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK); 576 ncp = &ncp_ts->nc_nc; 577 } else { 578 if (len <= CACHE_PATH_CUTOFF) 579 ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK); 580 else 581 ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK); 582 } 583 return (ncp); 584 } 585 586 static void 587 cache_free_uma(struct namecache *ncp) 588 { 589 struct namecache_ts *ncp_ts; 590 591 if (__predict_false(ncp->nc_flag & NCF_TS)) { 592 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 593 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 594 uma_zfree_smr(cache_zone_small_ts, ncp_ts); 595 else 596 uma_zfree_smr(cache_zone_large_ts, ncp_ts); 597 } else { 598 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 599 uma_zfree_smr(cache_zone_small, ncp); 600 else 601 uma_zfree_smr(cache_zone_large, ncp); 602 } 603 } 604 605 static struct namecache * 606 cache_alloc(int len, bool ts) 607 { 608 u_long lnumcache; 609 610 /* 611 * Avoid blowout in namecache entries. 612 * 613 * Bugs: 614 * 1. filesystems may end up trying to add an already existing entry 615 * (for example this can happen after a cache miss during concurrent 616 * lookup), in which case we will call cache_neg_evict despite not 617 * adding anything. 618 * 2. the routine may fail to free anything and no provisions are made 619 * to make it try harder (see the inside for failure modes) 620 * 3. it only ever looks at negative entries. 621 */ 622 lnumcache = atomic_fetchadd_long(&numcache, 1) + 1; 623 if (cache_neg_evict_cond(lnumcache)) { 624 lnumcache = atomic_load_long(&numcache); 625 } 626 if (__predict_false(lnumcache >= ncsize)) { 627 atomic_subtract_long(&numcache, 1); 628 counter_u64_add(numdrops, 1); 629 return (NULL); 630 } 631 return (cache_alloc_uma(len, ts)); 632 } 633 634 static void 635 cache_free(struct namecache *ncp) 636 { 637 638 MPASS(ncp != NULL); 639 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 640 cache_drop_vnode(ncp->nc_dvp); 641 } 642 cache_free_uma(ncp); 643 atomic_subtract_long(&numcache, 1); 644 } 645 646 static void 647 cache_free_batch(struct cache_freebatch *batch) 648 { 649 struct namecache *ncp, *nnp; 650 int i; 651 652 i = 0; 653 if (TAILQ_EMPTY(batch)) 654 goto out; 655 TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) { 656 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 657 cache_drop_vnode(ncp->nc_dvp); 658 } 659 cache_free_uma(ncp); 660 i++; 661 } 662 atomic_subtract_long(&numcache, i); 663 out: 664 SDT_PROBE1(vfs, namecache, purge, batch, i); 665 } 666 667 /* 668 * TODO: With the value stored we can do better than computing the hash based 669 * on the address. The choice of FNV should also be revisited. 670 */ 671 static void 672 cache_prehash(struct vnode *vp) 673 { 674 675 vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT); 676 } 677 678 static uint32_t 679 cache_get_hash(char *name, u_char len, struct vnode *dvp) 680 { 681 682 return (fnv_32_buf(name, len, dvp->v_nchash)); 683 } 684 685 static inline struct nchashhead * 686 NCP2BUCKET(struct namecache *ncp) 687 { 688 uint32_t hash; 689 690 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 691 return (NCHHASH(hash)); 692 } 693 694 static inline struct mtx * 695 NCP2BUCKETLOCK(struct namecache *ncp) 696 { 697 uint32_t hash; 698 699 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 700 return (HASH2BUCKETLOCK(hash)); 701 } 702 703 #ifdef INVARIANTS 704 static void 705 cache_assert_bucket_locked(struct namecache *ncp) 706 { 707 struct mtx *blp; 708 709 blp = NCP2BUCKETLOCK(ncp); 710 mtx_assert(blp, MA_OWNED); 711 } 712 713 static void 714 cache_assert_bucket_unlocked(struct namecache *ncp) 715 { 716 struct mtx *blp; 717 718 blp = NCP2BUCKETLOCK(ncp); 719 mtx_assert(blp, MA_NOTOWNED); 720 } 721 #else 722 #define cache_assert_bucket_locked(x) do { } while (0) 723 #define cache_assert_bucket_unlocked(x) do { } while (0) 724 #endif 725 726 #define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y)) 727 static void 728 _cache_sort_vnodes(void **p1, void **p2) 729 { 730 void *tmp; 731 732 MPASS(*p1 != NULL || *p2 != NULL); 733 734 if (*p1 > *p2) { 735 tmp = *p2; 736 *p2 = *p1; 737 *p1 = tmp; 738 } 739 } 740 741 static void 742 cache_lock_all_buckets(void) 743 { 744 u_int i; 745 746 for (i = 0; i < numbucketlocks; i++) 747 mtx_lock(&bucketlocks[i]); 748 } 749 750 static void 751 cache_unlock_all_buckets(void) 752 { 753 u_int i; 754 755 for (i = 0; i < numbucketlocks; i++) 756 mtx_unlock(&bucketlocks[i]); 757 } 758 759 static void 760 cache_lock_all_vnodes(void) 761 { 762 u_int i; 763 764 for (i = 0; i < numvnodelocks; i++) 765 mtx_lock(&vnodelocks[i]); 766 } 767 768 static void 769 cache_unlock_all_vnodes(void) 770 { 771 u_int i; 772 773 for (i = 0; i < numvnodelocks; i++) 774 mtx_unlock(&vnodelocks[i]); 775 } 776 777 static int 778 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 779 { 780 781 cache_sort_vnodes(&vlp1, &vlp2); 782 783 if (vlp1 != NULL) { 784 if (!mtx_trylock(vlp1)) 785 return (EAGAIN); 786 } 787 if (!mtx_trylock(vlp2)) { 788 if (vlp1 != NULL) 789 mtx_unlock(vlp1); 790 return (EAGAIN); 791 } 792 793 return (0); 794 } 795 796 static void 797 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 798 { 799 800 MPASS(vlp1 != NULL || vlp2 != NULL); 801 MPASS(vlp1 <= vlp2); 802 803 if (vlp1 != NULL) 804 mtx_lock(vlp1); 805 if (vlp2 != NULL) 806 mtx_lock(vlp2); 807 } 808 809 static void 810 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 811 { 812 813 MPASS(vlp1 != NULL || vlp2 != NULL); 814 815 if (vlp1 != NULL) 816 mtx_unlock(vlp1); 817 if (vlp2 != NULL) 818 mtx_unlock(vlp2); 819 } 820 821 static int 822 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 823 { 824 struct nchstats snap; 825 826 if (req->oldptr == NULL) 827 return (SYSCTL_OUT(req, 0, sizeof(snap))); 828 829 snap = nchstats; 830 snap.ncs_goodhits = counter_u64_fetch(numposhits); 831 snap.ncs_neghits = counter_u64_fetch(numneghits); 832 snap.ncs_badhits = counter_u64_fetch(numposzaps) + 833 counter_u64_fetch(numnegzaps); 834 snap.ncs_miss = counter_u64_fetch(nummisszap) + 835 counter_u64_fetch(nummiss); 836 837 return (SYSCTL_OUT(req, &snap, sizeof(snap))); 838 } 839 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD | 840 CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", 841 "VFS cache effectiveness statistics"); 842 843 static void 844 cache_recalc_neg_min(u_int val) 845 { 846 847 neg_min = (ncsize * val) / 100; 848 } 849 850 static int 851 sysctl_negminpct(SYSCTL_HANDLER_ARGS) 852 { 853 u_int val; 854 int error; 855 856 val = ncnegminpct; 857 error = sysctl_handle_int(oidp, &val, 0, req); 858 if (error != 0 || req->newptr == NULL) 859 return (error); 860 861 if (val == ncnegminpct) 862 return (0); 863 if (val < 0 || val > 99) 864 return (EINVAL); 865 ncnegminpct = val; 866 cache_recalc_neg_min(val); 867 return (0); 868 } 869 870 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct, 871 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct, 872 "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed"); 873 874 #ifdef DIAGNOSTIC 875 /* 876 * Grab an atomic snapshot of the name cache hash chain lengths 877 */ 878 static SYSCTL_NODE(_debug, OID_AUTO, hashstat, 879 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 880 "hash table stats"); 881 882 static int 883 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS) 884 { 885 struct nchashhead *ncpp; 886 struct namecache *ncp; 887 int i, error, n_nchash, *cntbuf; 888 889 retry: 890 n_nchash = nchash + 1; /* nchash is max index, not count */ 891 if (req->oldptr == NULL) 892 return SYSCTL_OUT(req, 0, n_nchash * sizeof(int)); 893 cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK); 894 cache_lock_all_buckets(); 895 if (n_nchash != nchash + 1) { 896 cache_unlock_all_buckets(); 897 free(cntbuf, M_TEMP); 898 goto retry; 899 } 900 /* Scan hash tables counting entries */ 901 for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++) 902 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) 903 cntbuf[i]++; 904 cache_unlock_all_buckets(); 905 for (error = 0, i = 0; i < n_nchash; i++) 906 if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0) 907 break; 908 free(cntbuf, M_TEMP); 909 return (error); 910 } 911 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD| 912 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int", 913 "nchash chain lengths"); 914 915 static int 916 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS) 917 { 918 int error; 919 struct nchashhead *ncpp; 920 struct namecache *ncp; 921 int n_nchash; 922 int count, maxlength, used, pct; 923 924 if (!req->oldptr) 925 return SYSCTL_OUT(req, 0, 4 * sizeof(int)); 926 927 cache_lock_all_buckets(); 928 n_nchash = nchash + 1; /* nchash is max index, not count */ 929 used = 0; 930 maxlength = 0; 931 932 /* Scan hash tables for applicable entries */ 933 for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) { 934 count = 0; 935 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) { 936 count++; 937 } 938 if (count) 939 used++; 940 if (maxlength < count) 941 maxlength = count; 942 } 943 n_nchash = nchash + 1; 944 cache_unlock_all_buckets(); 945 pct = (used * 100) / (n_nchash / 100); 946 error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash)); 947 if (error) 948 return (error); 949 error = SYSCTL_OUT(req, &used, sizeof(used)); 950 if (error) 951 return (error); 952 error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength)); 953 if (error) 954 return (error); 955 error = SYSCTL_OUT(req, &pct, sizeof(pct)); 956 if (error) 957 return (error); 958 return (0); 959 } 960 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD| 961 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I", 962 "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)"); 963 #endif 964 965 /* 966 * Negative entries management 967 * 968 * Various workloads create plenty of negative entries and barely use them 969 * afterwards. Moreover malicious users can keep performing bogus lookups 970 * adding even more entries. For example "make tinderbox" as of writing this 971 * comment ends up with 2.6M namecache entries in total, 1.2M of which are 972 * negative. 973 * 974 * As such, a rather aggressive eviction method is needed. The currently 975 * employed method is a placeholder. 976 * 977 * Entries are split over numneglists separate lists, each of which is further 978 * split into hot and cold entries. Entries get promoted after getting a hit. 979 * Eviction happens on addition of new entry. 980 */ 981 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 982 "Name cache negative entry statistics"); 983 984 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0, 985 "Number of negative cache entries"); 986 987 static COUNTER_U64_DEFINE_EARLY(neg_created); 988 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, 989 "Number of created negative entries"); 990 991 static COUNTER_U64_DEFINE_EARLY(neg_evicted); 992 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted, 993 "Number of evicted negative entries"); 994 995 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty); 996 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD, 997 &neg_evict_skipped_empty, 998 "Number of times evicting failed due to lack of entries"); 999 1000 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed); 1001 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD, 1002 &neg_evict_skipped_missed, 1003 "Number of times evicting failed due to target entry disappearing"); 1004 1005 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended); 1006 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD, 1007 &neg_evict_skipped_contended, 1008 "Number of times evicting failed due to contention"); 1009 1010 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits, 1011 "Number of cache hits (negative)"); 1012 1013 static int 1014 sysctl_neg_hot(SYSCTL_HANDLER_ARGS) 1015 { 1016 int i, out; 1017 1018 out = 0; 1019 for (i = 0; i < numneglists; i++) 1020 out += neglists[i].nl_hotnum; 1021 1022 return (SYSCTL_OUT(req, &out, sizeof(out))); 1023 } 1024 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD | 1025 CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I", 1026 "Number of hot negative entries"); 1027 1028 static void 1029 cache_neg_init(struct namecache *ncp) 1030 { 1031 struct negstate *ns; 1032 1033 ncp->nc_flag |= NCF_NEGATIVE; 1034 ns = NCP2NEGSTATE(ncp); 1035 ns->neg_flag = 0; 1036 ns->neg_hit = 0; 1037 counter_u64_add(neg_created, 1); 1038 } 1039 1040 #define CACHE_NEG_PROMOTION_THRESH 2 1041 1042 static bool 1043 cache_neg_hit_prep(struct namecache *ncp) 1044 { 1045 struct negstate *ns; 1046 u_char n; 1047 1048 ns = NCP2NEGSTATE(ncp); 1049 n = atomic_load_char(&ns->neg_hit); 1050 for (;;) { 1051 if (n >= CACHE_NEG_PROMOTION_THRESH) 1052 return (false); 1053 if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1)) 1054 break; 1055 } 1056 return (n + 1 == CACHE_NEG_PROMOTION_THRESH); 1057 } 1058 1059 /* 1060 * Nothing to do here but it is provided for completeness as some 1061 * cache_neg_hit_prep callers may end up returning without even 1062 * trying to promote. 1063 */ 1064 #define cache_neg_hit_abort(ncp) do { } while (0) 1065 1066 static void 1067 cache_neg_hit_finish(struct namecache *ncp) 1068 { 1069 1070 SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name); 1071 counter_u64_add(numneghits, 1); 1072 } 1073 1074 /* 1075 * Move a negative entry to the hot list. 1076 */ 1077 static void 1078 cache_neg_promote_locked(struct namecache *ncp) 1079 { 1080 struct neglist *nl; 1081 struct negstate *ns; 1082 1083 ns = NCP2NEGSTATE(ncp); 1084 nl = NCP2NEGLIST(ncp); 1085 mtx_assert(&nl->nl_lock, MA_OWNED); 1086 if ((ns->neg_flag & NEG_HOT) == 0) { 1087 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1088 TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst); 1089 nl->nl_hotnum++; 1090 ns->neg_flag |= NEG_HOT; 1091 } 1092 } 1093 1094 /* 1095 * Move a hot negative entry to the cold list. 1096 */ 1097 static void 1098 cache_neg_demote_locked(struct namecache *ncp) 1099 { 1100 struct neglist *nl; 1101 struct negstate *ns; 1102 1103 ns = NCP2NEGSTATE(ncp); 1104 nl = NCP2NEGLIST(ncp); 1105 mtx_assert(&nl->nl_lock, MA_OWNED); 1106 MPASS(ns->neg_flag & NEG_HOT); 1107 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1108 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1109 nl->nl_hotnum--; 1110 ns->neg_flag &= ~NEG_HOT; 1111 atomic_store_char(&ns->neg_hit, 0); 1112 } 1113 1114 /* 1115 * Move a negative entry to the hot list if it matches the lookup. 1116 * 1117 * We have to take locks, but they may be contended and in the worst 1118 * case we may need to go off CPU. We don't want to spin within the 1119 * smr section and we can't block with it. Exiting the section means 1120 * the found entry could have been evicted. We are going to look it 1121 * up again. 1122 */ 1123 static bool 1124 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, 1125 struct namecache *oncp, uint32_t hash) 1126 { 1127 struct namecache *ncp; 1128 struct neglist *nl; 1129 u_char nc_flag; 1130 1131 nl = NCP2NEGLIST(oncp); 1132 1133 mtx_lock(&nl->nl_lock); 1134 /* 1135 * For hash iteration. 1136 */ 1137 vfs_smr_enter(); 1138 1139 /* 1140 * Avoid all surprises by only succeeding if we got the same entry and 1141 * bailing completely otherwise. 1142 * XXX There are no provisions to keep the vnode around, meaning we may 1143 * end up promoting a negative entry for a *new* vnode and returning 1144 * ENOENT on its account. This is the error we want to return anyway 1145 * and promotion is harmless. 1146 * 1147 * In particular at this point there can be a new ncp which matches the 1148 * search but hashes to a different neglist. 1149 */ 1150 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1151 if (ncp == oncp) 1152 break; 1153 } 1154 1155 /* 1156 * No match to begin with. 1157 */ 1158 if (__predict_false(ncp == NULL)) { 1159 goto out_abort; 1160 } 1161 1162 /* 1163 * The newly found entry may be something different... 1164 */ 1165 if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1166 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) { 1167 goto out_abort; 1168 } 1169 1170 /* 1171 * ... and not even negative. 1172 */ 1173 nc_flag = atomic_load_char(&ncp->nc_flag); 1174 if ((nc_flag & NCF_NEGATIVE) == 0) { 1175 goto out_abort; 1176 } 1177 1178 if (!cache_ncp_canuse(ncp)) { 1179 goto out_abort; 1180 } 1181 1182 cache_neg_promote_locked(ncp); 1183 cache_neg_hit_finish(ncp); 1184 vfs_smr_exit(); 1185 mtx_unlock(&nl->nl_lock); 1186 return (true); 1187 out_abort: 1188 vfs_smr_exit(); 1189 mtx_unlock(&nl->nl_lock); 1190 return (false); 1191 } 1192 1193 static void 1194 cache_neg_promote(struct namecache *ncp) 1195 { 1196 struct neglist *nl; 1197 1198 nl = NCP2NEGLIST(ncp); 1199 mtx_lock(&nl->nl_lock); 1200 cache_neg_promote_locked(ncp); 1201 mtx_unlock(&nl->nl_lock); 1202 } 1203 1204 static void 1205 cache_neg_insert(struct namecache *ncp) 1206 { 1207 struct neglist *nl; 1208 1209 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1210 cache_assert_bucket_locked(ncp); 1211 nl = NCP2NEGLIST(ncp); 1212 mtx_lock(&nl->nl_lock); 1213 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1214 mtx_unlock(&nl->nl_lock); 1215 atomic_add_long(&numneg, 1); 1216 } 1217 1218 static void 1219 cache_neg_remove(struct namecache *ncp) 1220 { 1221 struct neglist *nl; 1222 struct negstate *ns; 1223 1224 cache_assert_bucket_locked(ncp); 1225 nl = NCP2NEGLIST(ncp); 1226 ns = NCP2NEGSTATE(ncp); 1227 mtx_lock(&nl->nl_lock); 1228 if ((ns->neg_flag & NEG_HOT) != 0) { 1229 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1230 nl->nl_hotnum--; 1231 } else { 1232 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1233 } 1234 mtx_unlock(&nl->nl_lock); 1235 atomic_subtract_long(&numneg, 1); 1236 } 1237 1238 static struct neglist * 1239 cache_neg_evict_select_list(void) 1240 { 1241 struct neglist *nl; 1242 u_int c; 1243 1244 c = atomic_fetchadd_int(&neg_cycle, 1) + 1; 1245 nl = &neglists[c % numneglists]; 1246 if (!mtx_trylock(&nl->nl_evict_lock)) { 1247 counter_u64_add(neg_evict_skipped_contended, 1); 1248 return (NULL); 1249 } 1250 return (nl); 1251 } 1252 1253 static struct namecache * 1254 cache_neg_evict_select_entry(struct neglist *nl) 1255 { 1256 struct namecache *ncp, *lncp; 1257 struct negstate *ns, *lns; 1258 int i; 1259 1260 mtx_assert(&nl->nl_evict_lock, MA_OWNED); 1261 mtx_assert(&nl->nl_lock, MA_OWNED); 1262 ncp = TAILQ_FIRST(&nl->nl_list); 1263 if (ncp == NULL) 1264 return (NULL); 1265 lncp = ncp; 1266 lns = NCP2NEGSTATE(lncp); 1267 for (i = 1; i < 4; i++) { 1268 ncp = TAILQ_NEXT(ncp, nc_dst); 1269 if (ncp == NULL) 1270 break; 1271 ns = NCP2NEGSTATE(ncp); 1272 if (ns->neg_hit < lns->neg_hit) { 1273 lncp = ncp; 1274 lns = ns; 1275 } 1276 } 1277 return (lncp); 1278 } 1279 1280 static bool 1281 cache_neg_evict(void) 1282 { 1283 struct namecache *ncp, *ncp2; 1284 struct neglist *nl; 1285 struct vnode *dvp; 1286 struct mtx *dvlp; 1287 struct mtx *blp; 1288 uint32_t hash; 1289 u_char nlen; 1290 bool evicted; 1291 1292 nl = cache_neg_evict_select_list(); 1293 if (nl == NULL) { 1294 return (false); 1295 } 1296 1297 mtx_lock(&nl->nl_lock); 1298 ncp = TAILQ_FIRST(&nl->nl_hotlist); 1299 if (ncp != NULL) { 1300 cache_neg_demote_locked(ncp); 1301 } 1302 ncp = cache_neg_evict_select_entry(nl); 1303 if (ncp == NULL) { 1304 counter_u64_add(neg_evict_skipped_empty, 1); 1305 mtx_unlock(&nl->nl_lock); 1306 mtx_unlock(&nl->nl_evict_lock); 1307 return (false); 1308 } 1309 nlen = ncp->nc_nlen; 1310 dvp = ncp->nc_dvp; 1311 hash = cache_get_hash(ncp->nc_name, nlen, dvp); 1312 dvlp = VP2VNODELOCK(dvp); 1313 blp = HASH2BUCKETLOCK(hash); 1314 mtx_unlock(&nl->nl_lock); 1315 mtx_unlock(&nl->nl_evict_lock); 1316 mtx_lock(dvlp); 1317 mtx_lock(blp); 1318 /* 1319 * Note that since all locks were dropped above, the entry may be 1320 * gone or reallocated to be something else. 1321 */ 1322 CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) { 1323 if (ncp2 == ncp && ncp2->nc_dvp == dvp && 1324 ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0) 1325 break; 1326 } 1327 if (ncp2 == NULL) { 1328 counter_u64_add(neg_evict_skipped_missed, 1); 1329 ncp = NULL; 1330 evicted = false; 1331 } else { 1332 MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp)); 1333 MPASS(blp == NCP2BUCKETLOCK(ncp)); 1334 SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp, 1335 ncp->nc_name); 1336 cache_zap_locked(ncp); 1337 counter_u64_add(neg_evicted, 1); 1338 evicted = true; 1339 } 1340 mtx_unlock(blp); 1341 mtx_unlock(dvlp); 1342 if (ncp != NULL) 1343 cache_free(ncp); 1344 return (evicted); 1345 } 1346 1347 /* 1348 * Maybe evict a negative entry to create more room. 1349 * 1350 * The ncnegfactor parameter limits what fraction of the total count 1351 * can comprise of negative entries. However, if the cache is just 1352 * warming up this leads to excessive evictions. As such, ncnegminpct 1353 * (recomputed to neg_min) dictates whether the above should be 1354 * applied. 1355 * 1356 * Try evicting if the cache is close to full capacity regardless of 1357 * other considerations. 1358 */ 1359 static bool 1360 cache_neg_evict_cond(u_long lnumcache) 1361 { 1362 u_long lnumneg; 1363 1364 if (ncsize - 1000 < lnumcache) 1365 goto out_evict; 1366 lnumneg = atomic_load_long(&numneg); 1367 if (lnumneg < neg_min) 1368 return (false); 1369 if (lnumneg * ncnegfactor < lnumcache) 1370 return (false); 1371 out_evict: 1372 return (cache_neg_evict()); 1373 } 1374 1375 /* 1376 * cache_zap_locked(): 1377 * 1378 * Removes a namecache entry from cache, whether it contains an actual 1379 * pointer to a vnode or if it is just a negative cache entry. 1380 */ 1381 static void 1382 cache_zap_locked(struct namecache *ncp) 1383 { 1384 struct nchashhead *ncpp; 1385 1386 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1387 cache_assert_vnode_locked(ncp->nc_vp); 1388 cache_assert_vnode_locked(ncp->nc_dvp); 1389 cache_assert_bucket_locked(ncp); 1390 1391 cache_ncp_invalidate(ncp); 1392 1393 ncpp = NCP2BUCKET(ncp); 1394 CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash); 1395 if (!(ncp->nc_flag & NCF_NEGATIVE)) { 1396 SDT_PROBE3(vfs, namecache, zap, done, ncp->nc_dvp, 1397 ncp->nc_name, ncp->nc_vp); 1398 TAILQ_REMOVE(&ncp->nc_vp->v_cache_dst, ncp, nc_dst); 1399 if (ncp == ncp->nc_vp->v_cache_dd) { 1400 vn_seqc_write_begin_unheld(ncp->nc_vp); 1401 ncp->nc_vp->v_cache_dd = NULL; 1402 vn_seqc_write_end(ncp->nc_vp); 1403 } 1404 } else { 1405 SDT_PROBE2(vfs, namecache, zap_negative, done, ncp->nc_dvp, 1406 ncp->nc_name); 1407 cache_neg_remove(ncp); 1408 } 1409 if (ncp->nc_flag & NCF_ISDOTDOT) { 1410 if (ncp == ncp->nc_dvp->v_cache_dd) { 1411 vn_seqc_write_begin_unheld(ncp->nc_dvp); 1412 ncp->nc_dvp->v_cache_dd = NULL; 1413 vn_seqc_write_end(ncp->nc_dvp); 1414 } 1415 } else { 1416 LIST_REMOVE(ncp, nc_src); 1417 if (LIST_EMPTY(&ncp->nc_dvp->v_cache_src)) { 1418 ncp->nc_flag |= NCF_DVDROP; 1419 } 1420 } 1421 } 1422 1423 static void 1424 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp) 1425 { 1426 struct mtx *blp; 1427 1428 MPASS(ncp->nc_dvp == vp); 1429 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1430 cache_assert_vnode_locked(vp); 1431 1432 blp = NCP2BUCKETLOCK(ncp); 1433 mtx_lock(blp); 1434 cache_zap_locked(ncp); 1435 mtx_unlock(blp); 1436 } 1437 1438 static bool 1439 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, 1440 struct mtx **vlpp) 1441 { 1442 struct mtx *pvlp, *vlp1, *vlp2, *to_unlock; 1443 struct mtx *blp; 1444 1445 MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp); 1446 cache_assert_vnode_locked(vp); 1447 1448 if (ncp->nc_flag & NCF_NEGATIVE) { 1449 if (*vlpp != NULL) { 1450 mtx_unlock(*vlpp); 1451 *vlpp = NULL; 1452 } 1453 cache_zap_negative_locked_vnode_kl(ncp, vp); 1454 return (true); 1455 } 1456 1457 pvlp = VP2VNODELOCK(vp); 1458 blp = NCP2BUCKETLOCK(ncp); 1459 vlp1 = VP2VNODELOCK(ncp->nc_dvp); 1460 vlp2 = VP2VNODELOCK(ncp->nc_vp); 1461 1462 if (*vlpp == vlp1 || *vlpp == vlp2) { 1463 to_unlock = *vlpp; 1464 *vlpp = NULL; 1465 } else { 1466 if (*vlpp != NULL) { 1467 mtx_unlock(*vlpp); 1468 *vlpp = NULL; 1469 } 1470 cache_sort_vnodes(&vlp1, &vlp2); 1471 if (vlp1 == pvlp) { 1472 mtx_lock(vlp2); 1473 to_unlock = vlp2; 1474 } else { 1475 if (!mtx_trylock(vlp1)) 1476 goto out_relock; 1477 to_unlock = vlp1; 1478 } 1479 } 1480 mtx_lock(blp); 1481 cache_zap_locked(ncp); 1482 mtx_unlock(blp); 1483 if (to_unlock != NULL) 1484 mtx_unlock(to_unlock); 1485 return (true); 1486 1487 out_relock: 1488 mtx_unlock(vlp2); 1489 mtx_lock(vlp1); 1490 mtx_lock(vlp2); 1491 MPASS(*vlpp == NULL); 1492 *vlpp = vlp1; 1493 return (false); 1494 } 1495 1496 /* 1497 * If trylocking failed we can get here. We know enough to take all needed locks 1498 * in the right order and re-lookup the entry. 1499 */ 1500 static int 1501 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, 1502 struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, 1503 struct mtx *blp) 1504 { 1505 struct namecache *rncp; 1506 1507 cache_assert_bucket_unlocked(ncp); 1508 1509 cache_sort_vnodes(&dvlp, &vlp); 1510 cache_lock_vnodes(dvlp, vlp); 1511 mtx_lock(blp); 1512 CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) { 1513 if (rncp == ncp && rncp->nc_dvp == dvp && 1514 rncp->nc_nlen == cnp->cn_namelen && 1515 !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen)) 1516 break; 1517 } 1518 if (rncp != NULL) { 1519 cache_zap_locked(rncp); 1520 mtx_unlock(blp); 1521 cache_unlock_vnodes(dvlp, vlp); 1522 counter_u64_add(zap_bucket_relock_success, 1); 1523 return (0); 1524 } 1525 1526 mtx_unlock(blp); 1527 cache_unlock_vnodes(dvlp, vlp); 1528 return (EAGAIN); 1529 } 1530 1531 static int __noinline 1532 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, 1533 uint32_t hash, struct mtx *blp) 1534 { 1535 struct mtx *dvlp, *vlp; 1536 struct vnode *dvp; 1537 1538 cache_assert_bucket_locked(ncp); 1539 1540 dvlp = VP2VNODELOCK(ncp->nc_dvp); 1541 vlp = NULL; 1542 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1543 vlp = VP2VNODELOCK(ncp->nc_vp); 1544 if (cache_trylock_vnodes(dvlp, vlp) == 0) { 1545 cache_zap_locked(ncp); 1546 mtx_unlock(blp); 1547 cache_unlock_vnodes(dvlp, vlp); 1548 return (0); 1549 } 1550 1551 dvp = ncp->nc_dvp; 1552 mtx_unlock(blp); 1553 return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp)); 1554 } 1555 1556 static __noinline int 1557 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp) 1558 { 1559 struct namecache *ncp; 1560 struct mtx *blp; 1561 struct mtx *dvlp, *dvlp2; 1562 uint32_t hash; 1563 int error; 1564 1565 if (cnp->cn_namelen == 2 && 1566 cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') { 1567 dvlp = VP2VNODELOCK(dvp); 1568 dvlp2 = NULL; 1569 mtx_lock(dvlp); 1570 retry_dotdot: 1571 ncp = dvp->v_cache_dd; 1572 if (ncp == NULL) { 1573 mtx_unlock(dvlp); 1574 if (dvlp2 != NULL) 1575 mtx_unlock(dvlp2); 1576 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1577 return (0); 1578 } 1579 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1580 if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2)) 1581 goto retry_dotdot; 1582 MPASS(dvp->v_cache_dd == NULL); 1583 mtx_unlock(dvlp); 1584 if (dvlp2 != NULL) 1585 mtx_unlock(dvlp2); 1586 cache_free(ncp); 1587 } else { 1588 vn_seqc_write_begin(dvp); 1589 dvp->v_cache_dd = NULL; 1590 vn_seqc_write_end(dvp); 1591 mtx_unlock(dvlp); 1592 if (dvlp2 != NULL) 1593 mtx_unlock(dvlp2); 1594 } 1595 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1596 return (1); 1597 } 1598 1599 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1600 blp = HASH2BUCKETLOCK(hash); 1601 retry: 1602 if (CK_SLIST_EMPTY(NCHHASH(hash))) 1603 goto out_no_entry; 1604 1605 mtx_lock(blp); 1606 1607 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1608 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1609 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1610 break; 1611 } 1612 1613 if (ncp == NULL) { 1614 mtx_unlock(blp); 1615 goto out_no_entry; 1616 } 1617 1618 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1619 if (__predict_false(error != 0)) { 1620 zap_bucket_fail++; 1621 goto retry; 1622 } 1623 counter_u64_add(numposzaps, 1); 1624 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1625 cache_free(ncp); 1626 return (1); 1627 out_no_entry: 1628 counter_u64_add(nummisszap, 1); 1629 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1630 return (0); 1631 } 1632 1633 static int __noinline 1634 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1635 struct timespec *tsp, int *ticksp) 1636 { 1637 int ltype; 1638 1639 *vpp = dvp; 1640 counter_u64_add(dothits, 1); 1641 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp); 1642 if (tsp != NULL) 1643 timespecclear(tsp); 1644 if (ticksp != NULL) 1645 *ticksp = ticks; 1646 vrefact(*vpp); 1647 /* 1648 * When we lookup "." we still can be asked to lock it 1649 * differently... 1650 */ 1651 ltype = cnp->cn_lkflags & LK_TYPE_MASK; 1652 if (ltype != VOP_ISLOCKED(*vpp)) { 1653 if (ltype == LK_EXCLUSIVE) { 1654 vn_lock(*vpp, LK_UPGRADE | LK_RETRY); 1655 if (VN_IS_DOOMED((*vpp))) { 1656 /* forced unmount */ 1657 vrele(*vpp); 1658 *vpp = NULL; 1659 return (ENOENT); 1660 } 1661 } else 1662 vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY); 1663 } 1664 return (-1); 1665 } 1666 1667 static int __noinline 1668 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1669 struct timespec *tsp, int *ticksp) 1670 { 1671 struct namecache_ts *ncp_ts; 1672 struct namecache *ncp; 1673 struct mtx *dvlp; 1674 enum vgetstate vs; 1675 int error, ltype; 1676 bool whiteout; 1677 1678 MPASS((cnp->cn_flags & ISDOTDOT) != 0); 1679 1680 if ((cnp->cn_flags & MAKEENTRY) == 0) { 1681 cache_remove_cnp(dvp, cnp); 1682 return (0); 1683 } 1684 1685 counter_u64_add(dotdothits, 1); 1686 retry: 1687 dvlp = VP2VNODELOCK(dvp); 1688 mtx_lock(dvlp); 1689 ncp = dvp->v_cache_dd; 1690 if (ncp == NULL) { 1691 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, "..", NULL); 1692 mtx_unlock(dvlp); 1693 return (0); 1694 } 1695 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1696 if (ncp->nc_flag & NCF_NEGATIVE) 1697 *vpp = NULL; 1698 else 1699 *vpp = ncp->nc_vp; 1700 } else 1701 *vpp = ncp->nc_dvp; 1702 if (*vpp == NULL) 1703 goto negative_success; 1704 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp); 1705 cache_out_ts(ncp, tsp, ticksp); 1706 if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) == 1707 NCF_DTS && tsp != NULL) { 1708 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 1709 *tsp = ncp_ts->nc_dotdottime; 1710 } 1711 1712 MPASS(dvp != *vpp); 1713 ltype = VOP_ISLOCKED(dvp); 1714 VOP_UNLOCK(dvp); 1715 vs = vget_prep(*vpp); 1716 mtx_unlock(dvlp); 1717 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1718 vn_lock(dvp, ltype | LK_RETRY); 1719 if (VN_IS_DOOMED(dvp)) { 1720 if (error == 0) 1721 vput(*vpp); 1722 *vpp = NULL; 1723 return (ENOENT); 1724 } 1725 if (error) { 1726 *vpp = NULL; 1727 goto retry; 1728 } 1729 return (-1); 1730 negative_success: 1731 if (__predict_false(cnp->cn_nameiop == CREATE)) { 1732 if (cnp->cn_flags & ISLASTCN) { 1733 counter_u64_add(numnegzaps, 1); 1734 cache_zap_negative_locked_vnode_kl(ncp, dvp); 1735 mtx_unlock(dvlp); 1736 cache_free(ncp); 1737 return (0); 1738 } 1739 } 1740 1741 whiteout = (ncp->nc_flag & NCF_WHITE); 1742 cache_out_ts(ncp, tsp, ticksp); 1743 if (cache_neg_hit_prep(ncp)) 1744 cache_neg_promote(ncp); 1745 else 1746 cache_neg_hit_finish(ncp); 1747 mtx_unlock(dvlp); 1748 if (whiteout) 1749 cnp->cn_flags |= ISWHITEOUT; 1750 return (ENOENT); 1751 } 1752 1753 /** 1754 * Lookup a name in the name cache 1755 * 1756 * # Arguments 1757 * 1758 * - dvp: Parent directory in which to search. 1759 * - vpp: Return argument. Will contain desired vnode on cache hit. 1760 * - cnp: Parameters of the name search. The most interesting bits of 1761 * the cn_flags field have the following meanings: 1762 * - MAKEENTRY: If clear, free an entry from the cache rather than look 1763 * it up. 1764 * - ISDOTDOT: Must be set if and only if cn_nameptr == ".." 1765 * - tsp: Return storage for cache timestamp. On a successful (positive 1766 * or negative) lookup, tsp will be filled with any timespec that 1767 * was stored when this cache entry was created. However, it will 1768 * be clear for "." entries. 1769 * - ticks: Return storage for alternate cache timestamp. On a successful 1770 * (positive or negative) lookup, it will contain the ticks value 1771 * that was current when the cache entry was created, unless cnp 1772 * was ".". 1773 * 1774 * Either both tsp and ticks have to be provided or neither of them. 1775 * 1776 * # Returns 1777 * 1778 * - -1: A positive cache hit. vpp will contain the desired vnode. 1779 * - ENOENT: A negative cache hit, or dvp was recycled out from under us due 1780 * to a forced unmount. vpp will not be modified. If the entry 1781 * is a whiteout, then the ISWHITEOUT flag will be set in 1782 * cnp->cn_flags. 1783 * - 0: A cache miss. vpp will not be modified. 1784 * 1785 * # Locking 1786 * 1787 * On a cache hit, vpp will be returned locked and ref'd. If we're looking up 1788 * .., dvp is unlocked. If we're looking up . an extra ref is taken, but the 1789 * lock is not recursively acquired. 1790 */ 1791 static int __noinline 1792 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1793 struct timespec *tsp, int *ticksp) 1794 { 1795 struct namecache *ncp; 1796 struct mtx *blp; 1797 uint32_t hash; 1798 enum vgetstate vs; 1799 int error; 1800 bool whiteout; 1801 1802 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1803 MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0); 1804 1805 retry: 1806 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1807 blp = HASH2BUCKETLOCK(hash); 1808 mtx_lock(blp); 1809 1810 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1811 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1812 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1813 break; 1814 } 1815 1816 if (__predict_false(ncp == NULL)) { 1817 mtx_unlock(blp); 1818 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr, 1819 NULL); 1820 counter_u64_add(nummiss, 1); 1821 return (0); 1822 } 1823 1824 if (ncp->nc_flag & NCF_NEGATIVE) 1825 goto negative_success; 1826 1827 counter_u64_add(numposhits, 1); 1828 *vpp = ncp->nc_vp; 1829 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1830 cache_out_ts(ncp, tsp, ticksp); 1831 MPASS(dvp != *vpp); 1832 vs = vget_prep(*vpp); 1833 mtx_unlock(blp); 1834 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1835 if (error) { 1836 *vpp = NULL; 1837 goto retry; 1838 } 1839 return (-1); 1840 negative_success: 1841 /* 1842 * We don't get here with regular lookup apart from corner cases. 1843 */ 1844 if (__predict_true(cnp->cn_nameiop == CREATE)) { 1845 if (cnp->cn_flags & ISLASTCN) { 1846 counter_u64_add(numnegzaps, 1); 1847 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1848 if (__predict_false(error != 0)) { 1849 zap_bucket_fail2++; 1850 goto retry; 1851 } 1852 cache_free(ncp); 1853 return (0); 1854 } 1855 } 1856 1857 whiteout = (ncp->nc_flag & NCF_WHITE); 1858 cache_out_ts(ncp, tsp, ticksp); 1859 if (cache_neg_hit_prep(ncp)) 1860 cache_neg_promote(ncp); 1861 else 1862 cache_neg_hit_finish(ncp); 1863 mtx_unlock(blp); 1864 if (whiteout) 1865 cnp->cn_flags |= ISWHITEOUT; 1866 return (ENOENT); 1867 } 1868 1869 int 1870 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1871 struct timespec *tsp, int *ticksp) 1872 { 1873 struct namecache *ncp; 1874 uint32_t hash; 1875 enum vgetstate vs; 1876 int error; 1877 bool whiteout, neg_promote; 1878 u_short nc_flag; 1879 1880 MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL)); 1881 1882 #ifdef DEBUG_CACHE 1883 if (__predict_false(!doingcache)) { 1884 cnp->cn_flags &= ~MAKEENTRY; 1885 return (0); 1886 } 1887 #endif 1888 1889 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 1890 if (cnp->cn_namelen == 1) 1891 return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp)); 1892 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') 1893 return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp)); 1894 } 1895 1896 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1897 1898 if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) { 1899 cache_remove_cnp(dvp, cnp); 1900 return (0); 1901 } 1902 1903 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1904 vfs_smr_enter(); 1905 1906 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1907 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1908 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1909 break; 1910 } 1911 1912 if (__predict_false(ncp == NULL)) { 1913 vfs_smr_exit(); 1914 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr, 1915 NULL); 1916 counter_u64_add(nummiss, 1); 1917 return (0); 1918 } 1919 1920 nc_flag = atomic_load_char(&ncp->nc_flag); 1921 if (nc_flag & NCF_NEGATIVE) 1922 goto negative_success; 1923 1924 counter_u64_add(numposhits, 1); 1925 *vpp = ncp->nc_vp; 1926 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1927 cache_out_ts(ncp, tsp, ticksp); 1928 MPASS(dvp != *vpp); 1929 if (!cache_ncp_canuse(ncp)) { 1930 vfs_smr_exit(); 1931 *vpp = NULL; 1932 goto out_fallback; 1933 } 1934 vs = vget_prep_smr(*vpp); 1935 vfs_smr_exit(); 1936 if (__predict_false(vs == VGET_NONE)) { 1937 *vpp = NULL; 1938 goto out_fallback; 1939 } 1940 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1941 if (error) { 1942 *vpp = NULL; 1943 goto out_fallback; 1944 } 1945 return (-1); 1946 negative_success: 1947 if (cnp->cn_nameiop == CREATE) { 1948 if (cnp->cn_flags & ISLASTCN) { 1949 vfs_smr_exit(); 1950 goto out_fallback; 1951 } 1952 } 1953 1954 cache_out_ts(ncp, tsp, ticksp); 1955 whiteout = (ncp->nc_flag & NCF_WHITE); 1956 neg_promote = cache_neg_hit_prep(ncp); 1957 if (!cache_ncp_canuse(ncp)) { 1958 cache_neg_hit_abort(ncp); 1959 vfs_smr_exit(); 1960 goto out_fallback; 1961 } 1962 if (neg_promote) { 1963 vfs_smr_exit(); 1964 if (!cache_neg_promote_cond(dvp, cnp, ncp, hash)) 1965 goto out_fallback; 1966 } else { 1967 cache_neg_hit_finish(ncp); 1968 vfs_smr_exit(); 1969 } 1970 if (whiteout) 1971 cnp->cn_flags |= ISWHITEOUT; 1972 return (ENOENT); 1973 out_fallback: 1974 return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp)); 1975 } 1976 1977 struct celockstate { 1978 struct mtx *vlp[3]; 1979 struct mtx *blp[2]; 1980 }; 1981 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3)); 1982 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2)); 1983 1984 static inline void 1985 cache_celockstate_init(struct celockstate *cel) 1986 { 1987 1988 bzero(cel, sizeof(*cel)); 1989 } 1990 1991 static void 1992 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, 1993 struct vnode *dvp) 1994 { 1995 struct mtx *vlp1, *vlp2; 1996 1997 MPASS(cel->vlp[0] == NULL); 1998 MPASS(cel->vlp[1] == NULL); 1999 MPASS(cel->vlp[2] == NULL); 2000 2001 MPASS(vp != NULL || dvp != NULL); 2002 2003 vlp1 = VP2VNODELOCK(vp); 2004 vlp2 = VP2VNODELOCK(dvp); 2005 cache_sort_vnodes(&vlp1, &vlp2); 2006 2007 if (vlp1 != NULL) { 2008 mtx_lock(vlp1); 2009 cel->vlp[0] = vlp1; 2010 } 2011 mtx_lock(vlp2); 2012 cel->vlp[1] = vlp2; 2013 } 2014 2015 static void 2016 cache_unlock_vnodes_cel(struct celockstate *cel) 2017 { 2018 2019 MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL); 2020 2021 if (cel->vlp[0] != NULL) 2022 mtx_unlock(cel->vlp[0]); 2023 if (cel->vlp[1] != NULL) 2024 mtx_unlock(cel->vlp[1]); 2025 if (cel->vlp[2] != NULL) 2026 mtx_unlock(cel->vlp[2]); 2027 } 2028 2029 static bool 2030 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp) 2031 { 2032 struct mtx *vlp; 2033 bool ret; 2034 2035 cache_assert_vlp_locked(cel->vlp[0]); 2036 cache_assert_vlp_locked(cel->vlp[1]); 2037 MPASS(cel->vlp[2] == NULL); 2038 2039 MPASS(vp != NULL); 2040 vlp = VP2VNODELOCK(vp); 2041 2042 ret = true; 2043 if (vlp >= cel->vlp[1]) { 2044 mtx_lock(vlp); 2045 } else { 2046 if (mtx_trylock(vlp)) 2047 goto out; 2048 cache_lock_vnodes_cel_3_failures++; 2049 cache_unlock_vnodes_cel(cel); 2050 if (vlp < cel->vlp[0]) { 2051 mtx_lock(vlp); 2052 mtx_lock(cel->vlp[0]); 2053 mtx_lock(cel->vlp[1]); 2054 } else { 2055 if (cel->vlp[0] != NULL) 2056 mtx_lock(cel->vlp[0]); 2057 mtx_lock(vlp); 2058 mtx_lock(cel->vlp[1]); 2059 } 2060 ret = false; 2061 } 2062 out: 2063 cel->vlp[2] = vlp; 2064 return (ret); 2065 } 2066 2067 static void 2068 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, 2069 struct mtx *blp2) 2070 { 2071 2072 MPASS(cel->blp[0] == NULL); 2073 MPASS(cel->blp[1] == NULL); 2074 2075 cache_sort_vnodes(&blp1, &blp2); 2076 2077 if (blp1 != NULL) { 2078 mtx_lock(blp1); 2079 cel->blp[0] = blp1; 2080 } 2081 mtx_lock(blp2); 2082 cel->blp[1] = blp2; 2083 } 2084 2085 static void 2086 cache_unlock_buckets_cel(struct celockstate *cel) 2087 { 2088 2089 if (cel->blp[0] != NULL) 2090 mtx_unlock(cel->blp[0]); 2091 mtx_unlock(cel->blp[1]); 2092 } 2093 2094 /* 2095 * Lock part of the cache affected by the insertion. 2096 * 2097 * This means vnodelocks for dvp, vp and the relevant bucketlock. 2098 * However, insertion can result in removal of an old entry. In this 2099 * case we have an additional vnode and bucketlock pair to lock. 2100 * 2101 * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while 2102 * preserving the locking order (smaller address first). 2103 */ 2104 static void 2105 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2106 uint32_t hash) 2107 { 2108 struct namecache *ncp; 2109 struct mtx *blps[2]; 2110 2111 blps[0] = HASH2BUCKETLOCK(hash); 2112 for (;;) { 2113 blps[1] = NULL; 2114 cache_lock_vnodes_cel(cel, dvp, vp); 2115 if (vp == NULL || vp->v_type != VDIR) 2116 break; 2117 ncp = vp->v_cache_dd; 2118 if (ncp == NULL) 2119 break; 2120 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 2121 break; 2122 MPASS(ncp->nc_dvp == vp); 2123 blps[1] = NCP2BUCKETLOCK(ncp); 2124 if (ncp->nc_flag & NCF_NEGATIVE) 2125 break; 2126 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2127 break; 2128 /* 2129 * All vnodes got re-locked. Re-validate the state and if 2130 * nothing changed we are done. Otherwise restart. 2131 */ 2132 if (ncp == vp->v_cache_dd && 2133 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2134 blps[1] == NCP2BUCKETLOCK(ncp) && 2135 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2136 break; 2137 cache_unlock_vnodes_cel(cel); 2138 cel->vlp[0] = NULL; 2139 cel->vlp[1] = NULL; 2140 cel->vlp[2] = NULL; 2141 } 2142 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2143 } 2144 2145 static void 2146 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2147 uint32_t hash) 2148 { 2149 struct namecache *ncp; 2150 struct mtx *blps[2]; 2151 2152 blps[0] = HASH2BUCKETLOCK(hash); 2153 for (;;) { 2154 blps[1] = NULL; 2155 cache_lock_vnodes_cel(cel, dvp, vp); 2156 ncp = dvp->v_cache_dd; 2157 if (ncp == NULL) 2158 break; 2159 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 2160 break; 2161 MPASS(ncp->nc_dvp == dvp); 2162 blps[1] = NCP2BUCKETLOCK(ncp); 2163 if (ncp->nc_flag & NCF_NEGATIVE) 2164 break; 2165 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2166 break; 2167 if (ncp == dvp->v_cache_dd && 2168 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2169 blps[1] == NCP2BUCKETLOCK(ncp) && 2170 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2171 break; 2172 cache_unlock_vnodes_cel(cel); 2173 cel->vlp[0] = NULL; 2174 cel->vlp[1] = NULL; 2175 cel->vlp[2] = NULL; 2176 } 2177 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2178 } 2179 2180 static void 2181 cache_enter_unlock(struct celockstate *cel) 2182 { 2183 2184 cache_unlock_buckets_cel(cel); 2185 cache_unlock_vnodes_cel(cel); 2186 } 2187 2188 static void __noinline 2189 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, 2190 struct componentname *cnp) 2191 { 2192 struct celockstate cel; 2193 struct namecache *ncp; 2194 uint32_t hash; 2195 int len; 2196 2197 if (dvp->v_cache_dd == NULL) 2198 return; 2199 len = cnp->cn_namelen; 2200 cache_celockstate_init(&cel); 2201 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2202 cache_enter_lock_dd(&cel, dvp, vp, hash); 2203 vn_seqc_write_begin(dvp); 2204 ncp = dvp->v_cache_dd; 2205 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) { 2206 KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent")); 2207 cache_zap_locked(ncp); 2208 } else { 2209 ncp = NULL; 2210 } 2211 dvp->v_cache_dd = NULL; 2212 vn_seqc_write_end(dvp); 2213 cache_enter_unlock(&cel); 2214 if (ncp != NULL) 2215 cache_free(ncp); 2216 } 2217 2218 /* 2219 * Add an entry to the cache. 2220 */ 2221 void 2222 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2223 struct timespec *tsp, struct timespec *dtsp) 2224 { 2225 struct celockstate cel; 2226 struct namecache *ncp, *n2, *ndd; 2227 struct namecache_ts *ncp_ts; 2228 struct nchashhead *ncpp; 2229 uint32_t hash; 2230 int flag; 2231 int len; 2232 2233 VNPASS(dvp != vp, dvp); 2234 VNPASS(!VN_IS_DOOMED(dvp), dvp); 2235 VNPASS(dvp->v_type != VNON, dvp); 2236 if (vp != NULL) { 2237 VNPASS(!VN_IS_DOOMED(vp), vp); 2238 VNPASS(vp->v_type != VNON, vp); 2239 } 2240 2241 #ifdef DEBUG_CACHE 2242 if (__predict_false(!doingcache)) 2243 return; 2244 #endif 2245 2246 flag = 0; 2247 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2248 if (cnp->cn_namelen == 1) 2249 return; 2250 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 2251 cache_enter_dotdot_prep(dvp, vp, cnp); 2252 flag = NCF_ISDOTDOT; 2253 } 2254 } 2255 2256 ncp = cache_alloc(cnp->cn_namelen, tsp != NULL); 2257 if (ncp == NULL) 2258 return; 2259 2260 cache_celockstate_init(&cel); 2261 ndd = NULL; 2262 ncp_ts = NULL; 2263 2264 /* 2265 * Calculate the hash key and setup as much of the new 2266 * namecache entry as possible before acquiring the lock. 2267 */ 2268 ncp->nc_flag = flag | NCF_WIP; 2269 ncp->nc_vp = vp; 2270 if (vp == NULL) 2271 cache_neg_init(ncp); 2272 ncp->nc_dvp = dvp; 2273 if (tsp != NULL) { 2274 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 2275 ncp_ts->nc_time = *tsp; 2276 ncp_ts->nc_ticks = ticks; 2277 ncp_ts->nc_nc.nc_flag |= NCF_TS; 2278 if (dtsp != NULL) { 2279 ncp_ts->nc_dotdottime = *dtsp; 2280 ncp_ts->nc_nc.nc_flag |= NCF_DTS; 2281 } 2282 } 2283 len = ncp->nc_nlen = cnp->cn_namelen; 2284 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2285 memcpy(ncp->nc_name, cnp->cn_nameptr, len); 2286 ncp->nc_name[len] = '\0'; 2287 cache_enter_lock(&cel, dvp, vp, hash); 2288 2289 /* 2290 * See if this vnode or negative entry is already in the cache 2291 * with this name. This can happen with concurrent lookups of 2292 * the same path name. 2293 */ 2294 ncpp = NCHHASH(hash); 2295 CK_SLIST_FOREACH(n2, ncpp, nc_hash) { 2296 if (n2->nc_dvp == dvp && 2297 n2->nc_nlen == cnp->cn_namelen && 2298 !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) { 2299 MPASS(cache_ncp_canuse(n2)); 2300 if ((n2->nc_flag & NCF_NEGATIVE) != 0) 2301 KASSERT(vp == NULL, 2302 ("%s: found entry pointing to a different vnode (%p != %p)", 2303 __func__, NULL, vp)); 2304 else 2305 KASSERT(n2->nc_vp == vp, 2306 ("%s: found entry pointing to a different vnode (%p != %p)", 2307 __func__, n2->nc_vp, vp)); 2308 /* 2309 * Entries are supposed to be immutable unless in the 2310 * process of getting destroyed. Accommodating for 2311 * changing timestamps is possible but not worth it. 2312 * This should be harmless in terms of correctness, in 2313 * the worst case resulting in an earlier expiration. 2314 * Alternatively, the found entry can be replaced 2315 * altogether. 2316 */ 2317 MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS))); 2318 #if 0 2319 if (tsp != NULL) { 2320 KASSERT((n2->nc_flag & NCF_TS) != 0, 2321 ("no NCF_TS")); 2322 n2_ts = __containerof(n2, struct namecache_ts, nc_nc); 2323 n2_ts->nc_time = ncp_ts->nc_time; 2324 n2_ts->nc_ticks = ncp_ts->nc_ticks; 2325 if (dtsp != NULL) { 2326 n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime; 2327 n2_ts->nc_nc.nc_flag |= NCF_DTS; 2328 } 2329 } 2330 #endif 2331 SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name, 2332 vp); 2333 goto out_unlock_free; 2334 } 2335 } 2336 2337 if (flag == NCF_ISDOTDOT) { 2338 /* 2339 * See if we are trying to add .. entry, but some other lookup 2340 * has populated v_cache_dd pointer already. 2341 */ 2342 if (dvp->v_cache_dd != NULL) 2343 goto out_unlock_free; 2344 KASSERT(vp == NULL || vp->v_type == VDIR, 2345 ("wrong vnode type %p", vp)); 2346 vn_seqc_write_begin(dvp); 2347 dvp->v_cache_dd = ncp; 2348 vn_seqc_write_end(dvp); 2349 } 2350 2351 if (vp != NULL) { 2352 if (flag != NCF_ISDOTDOT) { 2353 /* 2354 * For this case, the cache entry maps both the 2355 * directory name in it and the name ".." for the 2356 * directory's parent. 2357 */ 2358 vn_seqc_write_begin(vp); 2359 if ((ndd = vp->v_cache_dd) != NULL) { 2360 if ((ndd->nc_flag & NCF_ISDOTDOT) != 0) 2361 cache_zap_locked(ndd); 2362 else 2363 ndd = NULL; 2364 } 2365 vp->v_cache_dd = ncp; 2366 vn_seqc_write_end(vp); 2367 } else if (vp->v_type != VDIR) { 2368 if (vp->v_cache_dd != NULL) { 2369 vn_seqc_write_begin(vp); 2370 vp->v_cache_dd = NULL; 2371 vn_seqc_write_end(vp); 2372 } 2373 } 2374 } 2375 2376 if (flag != NCF_ISDOTDOT) { 2377 if (LIST_EMPTY(&dvp->v_cache_src)) { 2378 cache_hold_vnode(dvp); 2379 } 2380 LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src); 2381 } 2382 2383 /* 2384 * If the entry is "negative", we place it into the 2385 * "negative" cache queue, otherwise, we place it into the 2386 * destination vnode's cache entries queue. 2387 */ 2388 if (vp != NULL) { 2389 TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst); 2390 SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name, 2391 vp); 2392 } else { 2393 if (cnp->cn_flags & ISWHITEOUT) 2394 ncp->nc_flag |= NCF_WHITE; 2395 cache_neg_insert(ncp); 2396 SDT_PROBE2(vfs, namecache, enter_negative, done, dvp, 2397 ncp->nc_name); 2398 } 2399 2400 /* 2401 * Insert the new namecache entry into the appropriate chain 2402 * within the cache entries table. 2403 */ 2404 CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash); 2405 2406 atomic_thread_fence_rel(); 2407 /* 2408 * Mark the entry as fully constructed. 2409 * It is immutable past this point until its removal. 2410 */ 2411 atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP); 2412 2413 cache_enter_unlock(&cel); 2414 if (ndd != NULL) 2415 cache_free(ndd); 2416 return; 2417 out_unlock_free: 2418 cache_enter_unlock(&cel); 2419 cache_free(ncp); 2420 return; 2421 } 2422 2423 static u_int 2424 cache_roundup_2(u_int val) 2425 { 2426 u_int res; 2427 2428 for (res = 1; res <= val; res <<= 1) 2429 continue; 2430 2431 return (res); 2432 } 2433 2434 static struct nchashhead * 2435 nchinittbl(u_long elements, u_long *hashmask) 2436 { 2437 struct nchashhead *hashtbl; 2438 u_long hashsize, i; 2439 2440 hashsize = cache_roundup_2(elements) / 2; 2441 2442 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK); 2443 for (i = 0; i < hashsize; i++) 2444 CK_SLIST_INIT(&hashtbl[i]); 2445 *hashmask = hashsize - 1; 2446 return (hashtbl); 2447 } 2448 2449 static void 2450 ncfreetbl(struct nchashhead *hashtbl) 2451 { 2452 2453 free(hashtbl, M_VFSCACHE); 2454 } 2455 2456 /* 2457 * Name cache initialization, from vfs_init() when we are booting 2458 */ 2459 static void 2460 nchinit(void *dummy __unused) 2461 { 2462 u_int i; 2463 2464 cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE, 2465 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2466 cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE, 2467 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2468 cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE, 2469 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2470 cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE, 2471 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2472 2473 VFS_SMR_ZONE_SET(cache_zone_small); 2474 VFS_SMR_ZONE_SET(cache_zone_small_ts); 2475 VFS_SMR_ZONE_SET(cache_zone_large); 2476 VFS_SMR_ZONE_SET(cache_zone_large_ts); 2477 2478 ncsize = desiredvnodes * ncsizefactor; 2479 cache_recalc_neg_min(ncnegminpct); 2480 nchashtbl = nchinittbl(desiredvnodes * 2, &nchash); 2481 ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1; 2482 if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */ 2483 ncbuckethash = 7; 2484 if (ncbuckethash > nchash) 2485 ncbuckethash = nchash; 2486 bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE, 2487 M_WAITOK | M_ZERO); 2488 for (i = 0; i < numbucketlocks; i++) 2489 mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE); 2490 ncvnodehash = ncbuckethash; 2491 vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE, 2492 M_WAITOK | M_ZERO); 2493 for (i = 0; i < numvnodelocks; i++) 2494 mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE); 2495 2496 for (i = 0; i < numneglists; i++) { 2497 mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF); 2498 mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF); 2499 TAILQ_INIT(&neglists[i].nl_list); 2500 TAILQ_INIT(&neglists[i].nl_hotlist); 2501 } 2502 } 2503 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL); 2504 2505 void 2506 cache_vnode_init(struct vnode *vp) 2507 { 2508 2509 LIST_INIT(&vp->v_cache_src); 2510 TAILQ_INIT(&vp->v_cache_dst); 2511 vp->v_cache_dd = NULL; 2512 cache_prehash(vp); 2513 } 2514 2515 void 2516 cache_changesize(u_long newmaxvnodes) 2517 { 2518 struct nchashhead *new_nchashtbl, *old_nchashtbl; 2519 u_long new_nchash, old_nchash; 2520 struct namecache *ncp; 2521 uint32_t hash; 2522 u_long newncsize; 2523 int i; 2524 2525 newncsize = newmaxvnodes * ncsizefactor; 2526 newmaxvnodes = cache_roundup_2(newmaxvnodes * 2); 2527 if (newmaxvnodes < numbucketlocks) 2528 newmaxvnodes = numbucketlocks; 2529 2530 new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash); 2531 /* If same hash table size, nothing to do */ 2532 if (nchash == new_nchash) { 2533 ncfreetbl(new_nchashtbl); 2534 return; 2535 } 2536 /* 2537 * Move everything from the old hash table to the new table. 2538 * None of the namecache entries in the table can be removed 2539 * because to do so, they have to be removed from the hash table. 2540 */ 2541 cache_lock_all_vnodes(); 2542 cache_lock_all_buckets(); 2543 old_nchashtbl = nchashtbl; 2544 old_nchash = nchash; 2545 nchashtbl = new_nchashtbl; 2546 nchash = new_nchash; 2547 for (i = 0; i <= old_nchash; i++) { 2548 while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) { 2549 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, 2550 ncp->nc_dvp); 2551 CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash); 2552 CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash); 2553 } 2554 } 2555 ncsize = newncsize; 2556 cache_recalc_neg_min(ncnegminpct); 2557 cache_unlock_all_buckets(); 2558 cache_unlock_all_vnodes(); 2559 ncfreetbl(old_nchashtbl); 2560 } 2561 2562 /* 2563 * Invalidate all entries from and to a particular vnode. 2564 */ 2565 static void 2566 cache_purge_impl(struct vnode *vp) 2567 { 2568 struct cache_freebatch batch; 2569 struct namecache *ncp; 2570 struct mtx *vlp, *vlp2; 2571 2572 TAILQ_INIT(&batch); 2573 vlp = VP2VNODELOCK(vp); 2574 vlp2 = NULL; 2575 mtx_lock(vlp); 2576 retry: 2577 while (!LIST_EMPTY(&vp->v_cache_src)) { 2578 ncp = LIST_FIRST(&vp->v_cache_src); 2579 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2580 goto retry; 2581 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2582 } 2583 while (!TAILQ_EMPTY(&vp->v_cache_dst)) { 2584 ncp = TAILQ_FIRST(&vp->v_cache_dst); 2585 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2586 goto retry; 2587 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2588 } 2589 ncp = vp->v_cache_dd; 2590 if (ncp != NULL) { 2591 KASSERT(ncp->nc_flag & NCF_ISDOTDOT, 2592 ("lost dotdot link")); 2593 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2594 goto retry; 2595 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2596 } 2597 KASSERT(vp->v_cache_dd == NULL, ("incomplete purge")); 2598 mtx_unlock(vlp); 2599 if (vlp2 != NULL) 2600 mtx_unlock(vlp2); 2601 cache_free_batch(&batch); 2602 } 2603 2604 /* 2605 * Opportunistic check to see if there is anything to do. 2606 */ 2607 static bool 2608 cache_has_entries(struct vnode *vp) 2609 { 2610 2611 if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) && 2612 vp->v_cache_dd == NULL) 2613 return (false); 2614 return (true); 2615 } 2616 2617 void 2618 cache_purge(struct vnode *vp) 2619 { 2620 2621 SDT_PROBE1(vfs, namecache, purge, done, vp); 2622 if (!cache_has_entries(vp)) 2623 return; 2624 cache_purge_impl(vp); 2625 } 2626 2627 /* 2628 * Only to be used by vgone. 2629 */ 2630 void 2631 cache_purge_vgone(struct vnode *vp) 2632 { 2633 struct mtx *vlp; 2634 2635 VNPASS(VN_IS_DOOMED(vp), vp); 2636 if (cache_has_entries(vp)) { 2637 cache_purge_impl(vp); 2638 return; 2639 } 2640 2641 /* 2642 * Serialize against a potential thread doing cache_purge. 2643 */ 2644 vlp = VP2VNODELOCK(vp); 2645 mtx_wait_unlocked(vlp); 2646 if (cache_has_entries(vp)) { 2647 cache_purge_impl(vp); 2648 return; 2649 } 2650 return; 2651 } 2652 2653 /* 2654 * Invalidate all negative entries for a particular directory vnode. 2655 */ 2656 void 2657 cache_purge_negative(struct vnode *vp) 2658 { 2659 struct cache_freebatch batch; 2660 struct namecache *ncp, *nnp; 2661 struct mtx *vlp; 2662 2663 SDT_PROBE1(vfs, namecache, purge_negative, done, vp); 2664 if (LIST_EMPTY(&vp->v_cache_src)) 2665 return; 2666 TAILQ_INIT(&batch); 2667 vlp = VP2VNODELOCK(vp); 2668 mtx_lock(vlp); 2669 LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) { 2670 if (!(ncp->nc_flag & NCF_NEGATIVE)) 2671 continue; 2672 cache_zap_negative_locked_vnode_kl(ncp, vp); 2673 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2674 } 2675 mtx_unlock(vlp); 2676 cache_free_batch(&batch); 2677 } 2678 2679 /* 2680 * Entry points for modifying VOP operations. 2681 */ 2682 void 2683 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, 2684 struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) 2685 { 2686 2687 ASSERT_VOP_IN_SEQC(fdvp); 2688 ASSERT_VOP_IN_SEQC(fvp); 2689 ASSERT_VOP_IN_SEQC(tdvp); 2690 if (tvp != NULL) 2691 ASSERT_VOP_IN_SEQC(tvp); 2692 2693 cache_purge(fvp); 2694 if (tvp != NULL) { 2695 cache_purge(tvp); 2696 KASSERT(!cache_remove_cnp(tdvp, tcnp), 2697 ("%s: lingering negative entry", __func__)); 2698 } else { 2699 cache_remove_cnp(tdvp, tcnp); 2700 } 2701 } 2702 2703 void 2704 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) 2705 { 2706 2707 ASSERT_VOP_IN_SEQC(dvp); 2708 ASSERT_VOP_IN_SEQC(vp); 2709 cache_purge(vp); 2710 } 2711 2712 #ifdef INVARIANTS 2713 /* 2714 * Validate that if an entry exists it matches. 2715 */ 2716 void 2717 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2718 { 2719 struct namecache *ncp; 2720 struct mtx *blp; 2721 uint32_t hash; 2722 2723 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2724 if (CK_SLIST_EMPTY(NCHHASH(hash))) 2725 return; 2726 blp = HASH2BUCKETLOCK(hash); 2727 mtx_lock(blp); 2728 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2729 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2730 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) { 2731 if (ncp->nc_vp != vp) 2732 panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p vp %p\n", 2733 __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp, 2734 ncp->nc_vp); 2735 } 2736 } 2737 mtx_unlock(blp); 2738 } 2739 #endif 2740 2741 /* 2742 * Flush all entries referencing a particular filesystem. 2743 */ 2744 void 2745 cache_purgevfs(struct mount *mp) 2746 { 2747 struct vnode *vp, *mvp; 2748 2749 SDT_PROBE1(vfs, namecache, purgevfs, done, mp); 2750 /* 2751 * Somewhat wasteful iteration over all vnodes. Would be better to 2752 * support filtering and avoid the interlock to begin with. 2753 */ 2754 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 2755 if (!cache_has_entries(vp)) { 2756 VI_UNLOCK(vp); 2757 continue; 2758 } 2759 vholdl(vp); 2760 VI_UNLOCK(vp); 2761 cache_purge(vp); 2762 vdrop(vp); 2763 } 2764 } 2765 2766 /* 2767 * Perform canonical checks and cache lookup and pass on to filesystem 2768 * through the vop_cachedlookup only if needed. 2769 */ 2770 2771 int 2772 vfs_cache_lookup(struct vop_lookup_args *ap) 2773 { 2774 struct vnode *dvp; 2775 int error; 2776 struct vnode **vpp = ap->a_vpp; 2777 struct componentname *cnp = ap->a_cnp; 2778 int flags = cnp->cn_flags; 2779 2780 *vpp = NULL; 2781 dvp = ap->a_dvp; 2782 2783 if (dvp->v_type != VDIR) 2784 return (ENOTDIR); 2785 2786 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 2787 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 2788 return (EROFS); 2789 2790 error = vn_dir_check_exec(dvp, cnp); 2791 if (error != 0) 2792 return (error); 2793 2794 error = cache_lookup(dvp, vpp, cnp, NULL, NULL); 2795 if (error == 0) 2796 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp)); 2797 if (error == -1) 2798 return (0); 2799 return (error); 2800 } 2801 2802 /* Implementation of the getcwd syscall. */ 2803 int 2804 sys___getcwd(struct thread *td, struct __getcwd_args *uap) 2805 { 2806 char *buf, *retbuf; 2807 size_t buflen; 2808 int error; 2809 2810 buflen = uap->buflen; 2811 if (__predict_false(buflen < 2)) 2812 return (EINVAL); 2813 if (buflen > MAXPATHLEN) 2814 buflen = MAXPATHLEN; 2815 2816 buf = uma_zalloc(namei_zone, M_WAITOK); 2817 error = vn_getcwd(buf, &retbuf, &buflen); 2818 if (error == 0) 2819 error = copyout(retbuf, uap->buf, buflen); 2820 uma_zfree(namei_zone, buf); 2821 return (error); 2822 } 2823 2824 int 2825 vn_getcwd(char *buf, char **retbuf, size_t *buflen) 2826 { 2827 struct pwd *pwd; 2828 int error; 2829 2830 vfs_smr_enter(); 2831 pwd = pwd_get_smr(); 2832 error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, 2833 buflen, 0); 2834 VFS_SMR_ASSERT_NOT_ENTERED(); 2835 if (error < 0) { 2836 pwd = pwd_hold(curthread); 2837 error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf, 2838 retbuf, buflen); 2839 pwd_drop(pwd); 2840 } 2841 2842 #ifdef KTRACE 2843 if (KTRPOINT(curthread, KTR_NAMEI) && error == 0) 2844 ktrnamei(*retbuf); 2845 #endif 2846 return (error); 2847 } 2848 2849 static int 2850 kern___realpathat(struct thread *td, int fd, const char *path, char *buf, 2851 size_t size, int flags, enum uio_seg pathseg) 2852 { 2853 struct nameidata nd; 2854 char *retbuf, *freebuf; 2855 int error; 2856 2857 if (flags != 0) 2858 return (EINVAL); 2859 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1, 2860 pathseg, path, fd, &cap_fstat_rights, td); 2861 if ((error = namei(&nd)) != 0) 2862 return (error); 2863 error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size); 2864 if (error == 0) { 2865 error = copyout(retbuf, buf, size); 2866 free(freebuf, M_TEMP); 2867 } 2868 NDFREE(&nd, 0); 2869 return (error); 2870 } 2871 2872 int 2873 sys___realpathat(struct thread *td, struct __realpathat_args *uap) 2874 { 2875 2876 return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size, 2877 uap->flags, UIO_USERSPACE)); 2878 } 2879 2880 /* 2881 * Retrieve the full filesystem path that correspond to a vnode from the name 2882 * cache (if available) 2883 */ 2884 int 2885 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf) 2886 { 2887 struct pwd *pwd; 2888 char *buf; 2889 size_t buflen; 2890 int error; 2891 2892 if (__predict_false(vp == NULL)) 2893 return (EINVAL); 2894 2895 buflen = MAXPATHLEN; 2896 buf = malloc(buflen, M_TEMP, M_WAITOK); 2897 vfs_smr_enter(); 2898 pwd = pwd_get_smr(); 2899 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0); 2900 VFS_SMR_ASSERT_NOT_ENTERED(); 2901 if (error < 0) { 2902 pwd = pwd_hold(curthread); 2903 error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen); 2904 pwd_drop(pwd); 2905 } 2906 if (error == 0) 2907 *freebuf = buf; 2908 else 2909 free(buf, M_TEMP); 2910 return (error); 2911 } 2912 2913 /* 2914 * This function is similar to vn_fullpath, but it attempts to lookup the 2915 * pathname relative to the global root mount point. This is required for the 2916 * auditing sub-system, as audited pathnames must be absolute, relative to the 2917 * global root mount point. 2918 */ 2919 int 2920 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf) 2921 { 2922 char *buf; 2923 size_t buflen; 2924 int error; 2925 2926 if (__predict_false(vp == NULL)) 2927 return (EINVAL); 2928 buflen = MAXPATHLEN; 2929 buf = malloc(buflen, M_TEMP, M_WAITOK); 2930 vfs_smr_enter(); 2931 error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0); 2932 VFS_SMR_ASSERT_NOT_ENTERED(); 2933 if (error < 0) { 2934 error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen); 2935 } 2936 if (error == 0) 2937 *freebuf = buf; 2938 else 2939 free(buf, M_TEMP); 2940 return (error); 2941 } 2942 2943 static struct namecache * 2944 vn_dd_from_dst(struct vnode *vp) 2945 { 2946 struct namecache *ncp; 2947 2948 cache_assert_vnode_locked(vp); 2949 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) { 2950 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 2951 return (ncp); 2952 } 2953 return (NULL); 2954 } 2955 2956 int 2957 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen) 2958 { 2959 struct vnode *dvp; 2960 struct namecache *ncp; 2961 struct mtx *vlp; 2962 int error; 2963 2964 vlp = VP2VNODELOCK(*vp); 2965 mtx_lock(vlp); 2966 ncp = (*vp)->v_cache_dd; 2967 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) { 2968 KASSERT(ncp == vn_dd_from_dst(*vp), 2969 ("%s: mismatch for dd entry (%p != %p)", __func__, 2970 ncp, vn_dd_from_dst(*vp))); 2971 } else { 2972 ncp = vn_dd_from_dst(*vp); 2973 } 2974 if (ncp != NULL) { 2975 if (*buflen < ncp->nc_nlen) { 2976 mtx_unlock(vlp); 2977 vrele(*vp); 2978 counter_u64_add(numfullpathfail4, 1); 2979 error = ENOMEM; 2980 SDT_PROBE3(vfs, namecache, fullpath, return, error, 2981 vp, NULL); 2982 return (error); 2983 } 2984 *buflen -= ncp->nc_nlen; 2985 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 2986 SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp, 2987 ncp->nc_name, vp); 2988 dvp = *vp; 2989 *vp = ncp->nc_dvp; 2990 vref(*vp); 2991 mtx_unlock(vlp); 2992 vrele(dvp); 2993 return (0); 2994 } 2995 SDT_PROBE1(vfs, namecache, fullpath, miss, vp); 2996 2997 mtx_unlock(vlp); 2998 vn_lock(*vp, LK_SHARED | LK_RETRY); 2999 error = VOP_VPTOCNP(*vp, &dvp, buf, buflen); 3000 vput(*vp); 3001 if (error) { 3002 counter_u64_add(numfullpathfail2, 1); 3003 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3004 return (error); 3005 } 3006 3007 *vp = dvp; 3008 if (VN_IS_DOOMED(dvp)) { 3009 /* forced unmount */ 3010 vrele(dvp); 3011 error = ENOENT; 3012 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3013 return (error); 3014 } 3015 /* 3016 * *vp has its use count incremented still. 3017 */ 3018 3019 return (0); 3020 } 3021 3022 /* 3023 * Resolve a directory to a pathname. 3024 * 3025 * The name of the directory can always be found in the namecache or fetched 3026 * from the filesystem. There is also guaranteed to be only one parent, meaning 3027 * we can just follow vnodes up until we find the root. 3028 * 3029 * The vnode must be referenced. 3030 */ 3031 static int 3032 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3033 size_t *len, size_t addend) 3034 { 3035 #ifdef KDTRACE_HOOKS 3036 struct vnode *startvp = vp; 3037 #endif 3038 struct vnode *vp1; 3039 size_t buflen; 3040 int error; 3041 bool slash_prefixed; 3042 3043 VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp); 3044 VNPASS(vp->v_usecount > 0, vp); 3045 3046 buflen = *len; 3047 3048 slash_prefixed = true; 3049 if (addend == 0) { 3050 MPASS(*len >= 2); 3051 buflen--; 3052 buf[buflen] = '\0'; 3053 slash_prefixed = false; 3054 } 3055 3056 error = 0; 3057 3058 SDT_PROBE1(vfs, namecache, fullpath, entry, vp); 3059 counter_u64_add(numfullpathcalls, 1); 3060 while (vp != rdir && vp != rootvnode) { 3061 /* 3062 * The vp vnode must be already fully constructed, 3063 * since it is either found in namecache or obtained 3064 * from VOP_VPTOCNP(). We may test for VV_ROOT safely 3065 * without obtaining the vnode lock. 3066 */ 3067 if ((vp->v_vflag & VV_ROOT) != 0) { 3068 vn_lock(vp, LK_RETRY | LK_SHARED); 3069 3070 /* 3071 * With the vnode locked, check for races with 3072 * unmount, forced or not. Note that we 3073 * already verified that vp is not equal to 3074 * the root vnode, which means that 3075 * mnt_vnodecovered can be NULL only for the 3076 * case of unmount. 3077 */ 3078 if (VN_IS_DOOMED(vp) || 3079 (vp1 = vp->v_mount->mnt_vnodecovered) == NULL || 3080 vp1->v_mountedhere != vp->v_mount) { 3081 vput(vp); 3082 error = ENOENT; 3083 SDT_PROBE3(vfs, namecache, fullpath, return, 3084 error, vp, NULL); 3085 break; 3086 } 3087 3088 vref(vp1); 3089 vput(vp); 3090 vp = vp1; 3091 continue; 3092 } 3093 if (vp->v_type != VDIR) { 3094 vrele(vp); 3095 counter_u64_add(numfullpathfail1, 1); 3096 error = ENOTDIR; 3097 SDT_PROBE3(vfs, namecache, fullpath, return, 3098 error, vp, NULL); 3099 break; 3100 } 3101 error = vn_vptocnp(&vp, buf, &buflen); 3102 if (error) 3103 break; 3104 if (buflen == 0) { 3105 vrele(vp); 3106 error = ENOMEM; 3107 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3108 startvp, NULL); 3109 break; 3110 } 3111 buf[--buflen] = '/'; 3112 slash_prefixed = true; 3113 } 3114 if (error) 3115 return (error); 3116 if (!slash_prefixed) { 3117 if (buflen == 0) { 3118 vrele(vp); 3119 counter_u64_add(numfullpathfail4, 1); 3120 SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM, 3121 startvp, NULL); 3122 return (ENOMEM); 3123 } 3124 buf[--buflen] = '/'; 3125 } 3126 counter_u64_add(numfullpathfound, 1); 3127 vrele(vp); 3128 3129 *retbuf = buf + buflen; 3130 SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf); 3131 *len -= buflen; 3132 *len += addend; 3133 return (0); 3134 } 3135 3136 /* 3137 * Resolve an arbitrary vnode to a pathname. 3138 * 3139 * Note 2 caveats: 3140 * - hardlinks are not tracked, thus if the vnode is not a directory this can 3141 * resolve to a different path than the one used to find it 3142 * - namecache is not mandatory, meaning names are not guaranteed to be added 3143 * (in which case resolving fails) 3144 */ 3145 static void __inline 3146 cache_rev_failed_impl(int *reason, int line) 3147 { 3148 3149 *reason = line; 3150 } 3151 #define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__) 3152 3153 static int 3154 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 3155 char **retbuf, size_t *buflen, size_t addend) 3156 { 3157 #ifdef KDTRACE_HOOKS 3158 struct vnode *startvp = vp; 3159 #endif 3160 struct vnode *tvp; 3161 struct mount *mp; 3162 struct namecache *ncp; 3163 size_t orig_buflen; 3164 int reason; 3165 int error; 3166 #ifdef KDTRACE_HOOKS 3167 int i; 3168 #endif 3169 seqc_t vp_seqc, tvp_seqc; 3170 u_char nc_flag; 3171 3172 VFS_SMR_ASSERT_ENTERED(); 3173 3174 if (!cache_fast_revlookup) { 3175 vfs_smr_exit(); 3176 return (-1); 3177 } 3178 3179 orig_buflen = *buflen; 3180 3181 if (addend == 0) { 3182 MPASS(*buflen >= 2); 3183 *buflen -= 1; 3184 buf[*buflen] = '\0'; 3185 } 3186 3187 if (vp == rdir || vp == rootvnode) { 3188 if (addend == 0) { 3189 *buflen -= 1; 3190 buf[*buflen] = '/'; 3191 } 3192 goto out_ok; 3193 } 3194 3195 #ifdef KDTRACE_HOOKS 3196 i = 0; 3197 #endif 3198 error = -1; 3199 ncp = NULL; /* for sdt probe down below */ 3200 vp_seqc = vn_seqc_read_any(vp); 3201 if (seqc_in_modify(vp_seqc)) { 3202 cache_rev_failed(&reason); 3203 goto out_abort; 3204 } 3205 3206 for (;;) { 3207 #ifdef KDTRACE_HOOKS 3208 i++; 3209 #endif 3210 if ((vp->v_vflag & VV_ROOT) != 0) { 3211 mp = atomic_load_ptr(&vp->v_mount); 3212 if (mp == NULL) { 3213 cache_rev_failed(&reason); 3214 goto out_abort; 3215 } 3216 tvp = atomic_load_ptr(&mp->mnt_vnodecovered); 3217 tvp_seqc = vn_seqc_read_any(tvp); 3218 if (seqc_in_modify(tvp_seqc)) { 3219 cache_rev_failed(&reason); 3220 goto out_abort; 3221 } 3222 if (!vn_seqc_consistent(vp, vp_seqc)) { 3223 cache_rev_failed(&reason); 3224 goto out_abort; 3225 } 3226 vp = tvp; 3227 vp_seqc = tvp_seqc; 3228 continue; 3229 } 3230 ncp = atomic_load_ptr(&vp->v_cache_dd); 3231 if (ncp == NULL) { 3232 cache_rev_failed(&reason); 3233 goto out_abort; 3234 } 3235 nc_flag = atomic_load_char(&ncp->nc_flag); 3236 if ((nc_flag & NCF_ISDOTDOT) != 0) { 3237 cache_rev_failed(&reason); 3238 goto out_abort; 3239 } 3240 if (!cache_ncp_canuse(ncp)) { 3241 cache_rev_failed(&reason); 3242 goto out_abort; 3243 } 3244 if (ncp->nc_nlen >= *buflen) { 3245 cache_rev_failed(&reason); 3246 error = ENOMEM; 3247 goto out_abort; 3248 } 3249 *buflen -= ncp->nc_nlen; 3250 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3251 *buflen -= 1; 3252 buf[*buflen] = '/'; 3253 tvp = ncp->nc_dvp; 3254 tvp_seqc = vn_seqc_read_any(tvp); 3255 if (seqc_in_modify(tvp_seqc)) { 3256 cache_rev_failed(&reason); 3257 goto out_abort; 3258 } 3259 if (!vn_seqc_consistent(vp, vp_seqc)) { 3260 cache_rev_failed(&reason); 3261 goto out_abort; 3262 } 3263 vp = tvp; 3264 vp_seqc = tvp_seqc; 3265 if (vp == rdir || vp == rootvnode) 3266 break; 3267 } 3268 out_ok: 3269 vfs_smr_exit(); 3270 *retbuf = buf + *buflen; 3271 *buflen = orig_buflen - *buflen + addend; 3272 SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf); 3273 return (0); 3274 3275 out_abort: 3276 *buflen = orig_buflen; 3277 SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i); 3278 vfs_smr_exit(); 3279 return (error); 3280 } 3281 3282 static int 3283 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3284 size_t *buflen) 3285 { 3286 size_t orig_buflen, addend; 3287 int error; 3288 3289 if (*buflen < 2) 3290 return (EINVAL); 3291 3292 orig_buflen = *buflen; 3293 3294 vref(vp); 3295 addend = 0; 3296 if (vp->v_type != VDIR) { 3297 *buflen -= 1; 3298 buf[*buflen] = '\0'; 3299 error = vn_vptocnp(&vp, buf, buflen); 3300 if (error) 3301 return (error); 3302 if (*buflen == 0) { 3303 vrele(vp); 3304 return (ENOMEM); 3305 } 3306 *buflen -= 1; 3307 buf[*buflen] = '/'; 3308 addend = orig_buflen - *buflen; 3309 } 3310 3311 return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend)); 3312 } 3313 3314 /* 3315 * Resolve an arbitrary vnode to a pathname (taking care of hardlinks). 3316 * 3317 * Since the namecache does not track hardlinks, the caller is expected to first 3318 * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei. 3319 * 3320 * Then we have 2 cases: 3321 * - if the found vnode is a directory, the path can be constructed just by 3322 * following names up the chain 3323 * - otherwise we populate the buffer with the saved name and start resolving 3324 * from the parent 3325 */ 3326 static int 3327 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf, 3328 size_t *buflen) 3329 { 3330 char *buf, *tmpbuf; 3331 struct pwd *pwd; 3332 struct componentname *cnp; 3333 struct vnode *vp; 3334 size_t addend; 3335 int error; 3336 enum vtype type; 3337 3338 if (*buflen < 2) 3339 return (EINVAL); 3340 if (*buflen > MAXPATHLEN) 3341 *buflen = MAXPATHLEN; 3342 3343 buf = malloc(*buflen, M_TEMP, M_WAITOK); 3344 3345 addend = 0; 3346 vp = ndp->ni_vp; 3347 /* 3348 * Check for VBAD to work around the vp_crossmp bug in lookup(). 3349 * 3350 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be 3351 * set to mount point's root vnode while ni_dvp will be vp_crossmp. 3352 * If the type is VDIR (like in this very case) we can skip looking 3353 * at ni_dvp in the first place. However, since vnodes get passed here 3354 * unlocked the target may transition to doomed state (type == VBAD) 3355 * before we get to evaluate the condition. If this happens, we will 3356 * populate part of the buffer and descend to vn_fullpath_dir with 3357 * vp == vp_crossmp. Prevent the problem by checking for VBAD. 3358 * 3359 * This should be atomic_load(&vp->v_type) but it is illegal to take 3360 * an address of a bit field, even if said field is sized to char. 3361 * Work around the problem by reading the value into a full-sized enum 3362 * and then re-reading it with atomic_load which will still prevent 3363 * the compiler from re-reading down the road. 3364 */ 3365 type = vp->v_type; 3366 type = atomic_load_int(&type); 3367 if (type == VBAD) { 3368 error = ENOENT; 3369 goto out_bad; 3370 } 3371 if (type != VDIR) { 3372 cnp = &ndp->ni_cnd; 3373 addend = cnp->cn_namelen + 2; 3374 if (*buflen < addend) { 3375 error = ENOMEM; 3376 goto out_bad; 3377 } 3378 *buflen -= addend; 3379 tmpbuf = buf + *buflen; 3380 tmpbuf[0] = '/'; 3381 memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen); 3382 tmpbuf[addend - 1] = '\0'; 3383 vp = ndp->ni_dvp; 3384 } 3385 3386 vfs_smr_enter(); 3387 pwd = pwd_get_smr(); 3388 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3389 addend); 3390 VFS_SMR_ASSERT_NOT_ENTERED(); 3391 if (error < 0) { 3392 pwd = pwd_hold(curthread); 3393 vref(vp); 3394 error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3395 addend); 3396 pwd_drop(pwd); 3397 if (error != 0) 3398 goto out_bad; 3399 } 3400 3401 *freebuf = buf; 3402 3403 return (0); 3404 out_bad: 3405 free(buf, M_TEMP); 3406 return (error); 3407 } 3408 3409 struct vnode * 3410 vn_dir_dd_ino(struct vnode *vp) 3411 { 3412 struct namecache *ncp; 3413 struct vnode *ddvp; 3414 struct mtx *vlp; 3415 enum vgetstate vs; 3416 3417 ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino"); 3418 vlp = VP2VNODELOCK(vp); 3419 mtx_lock(vlp); 3420 TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) { 3421 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) 3422 continue; 3423 ddvp = ncp->nc_dvp; 3424 vs = vget_prep(ddvp); 3425 mtx_unlock(vlp); 3426 if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs)) 3427 return (NULL); 3428 return (ddvp); 3429 } 3430 mtx_unlock(vlp); 3431 return (NULL); 3432 } 3433 3434 int 3435 vn_commname(struct vnode *vp, char *buf, u_int buflen) 3436 { 3437 struct namecache *ncp; 3438 struct mtx *vlp; 3439 int l; 3440 3441 vlp = VP2VNODELOCK(vp); 3442 mtx_lock(vlp); 3443 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) 3444 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3445 break; 3446 if (ncp == NULL) { 3447 mtx_unlock(vlp); 3448 return (ENOENT); 3449 } 3450 l = min(ncp->nc_nlen, buflen - 1); 3451 memcpy(buf, ncp->nc_name, l); 3452 mtx_unlock(vlp); 3453 buf[l] = '\0'; 3454 return (0); 3455 } 3456 3457 /* 3458 * This function updates path string to vnode's full global path 3459 * and checks the size of the new path string against the pathlen argument. 3460 * 3461 * Requires a locked, referenced vnode. 3462 * Vnode is re-locked on success or ENODEV, otherwise unlocked. 3463 * 3464 * If vp is a directory, the call to vn_fullpath_global() always succeeds 3465 * because it falls back to the ".." lookup if the namecache lookup fails. 3466 */ 3467 int 3468 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, 3469 u_int pathlen) 3470 { 3471 struct nameidata nd; 3472 struct vnode *vp1; 3473 char *rpath, *fbuf; 3474 int error; 3475 3476 ASSERT_VOP_ELOCKED(vp, __func__); 3477 3478 /* Construct global filesystem path from vp. */ 3479 VOP_UNLOCK(vp); 3480 error = vn_fullpath_global(vp, &rpath, &fbuf); 3481 3482 if (error != 0) { 3483 vrele(vp); 3484 return (error); 3485 } 3486 3487 if (strlen(rpath) >= pathlen) { 3488 vrele(vp); 3489 error = ENAMETOOLONG; 3490 goto out; 3491 } 3492 3493 /* 3494 * Re-lookup the vnode by path to detect a possible rename. 3495 * As a side effect, the vnode is relocked. 3496 * If vnode was renamed, return ENOENT. 3497 */ 3498 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 3499 UIO_SYSSPACE, path, td); 3500 error = namei(&nd); 3501 if (error != 0) { 3502 vrele(vp); 3503 goto out; 3504 } 3505 NDFREE(&nd, NDF_ONLY_PNBUF); 3506 vp1 = nd.ni_vp; 3507 vrele(vp); 3508 if (vp1 == vp) 3509 strcpy(path, rpath); 3510 else { 3511 vput(vp1); 3512 error = ENOENT; 3513 } 3514 3515 out: 3516 free(fbuf, M_TEMP); 3517 return (error); 3518 } 3519 3520 #ifdef DDB 3521 static void 3522 db_print_vpath(struct vnode *vp) 3523 { 3524 3525 while (vp != NULL) { 3526 db_printf("%p: ", vp); 3527 if (vp == rootvnode) { 3528 db_printf("/"); 3529 vp = NULL; 3530 } else { 3531 if (vp->v_vflag & VV_ROOT) { 3532 db_printf("<mount point>"); 3533 vp = vp->v_mount->mnt_vnodecovered; 3534 } else { 3535 struct namecache *ncp; 3536 char *ncn; 3537 int i; 3538 3539 ncp = TAILQ_FIRST(&vp->v_cache_dst); 3540 if (ncp != NULL) { 3541 ncn = ncp->nc_name; 3542 for (i = 0; i < ncp->nc_nlen; i++) 3543 db_printf("%c", *ncn++); 3544 vp = ncp->nc_dvp; 3545 } else { 3546 vp = NULL; 3547 } 3548 } 3549 } 3550 db_printf("\n"); 3551 } 3552 3553 return; 3554 } 3555 3556 DB_SHOW_COMMAND(vpath, db_show_vpath) 3557 { 3558 struct vnode *vp; 3559 3560 if (!have_addr) { 3561 db_printf("usage: show vpath <struct vnode *>\n"); 3562 return; 3563 } 3564 3565 vp = (struct vnode *)addr; 3566 db_print_vpath(vp); 3567 } 3568 3569 #endif 3570 3571 static bool __read_frequently cache_fast_lookup = true; 3572 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_lookup, CTLFLAG_RW, 3573 &cache_fast_lookup, 0, ""); 3574 3575 #define CACHE_FPL_FAILED -2020 3576 3577 /* 3578 * Components of nameidata (or objects it can point to) which may 3579 * need restoring in case fast path lookup fails. 3580 */ 3581 struct nameidata_saved { 3582 long cn_namelen; 3583 char *cn_nameptr; 3584 size_t ni_pathlen; 3585 int cn_flags; 3586 }; 3587 3588 struct cache_fpl { 3589 struct nameidata *ndp; 3590 struct componentname *cnp; 3591 struct pwd *pwd; 3592 struct vnode *dvp; 3593 struct vnode *tvp; 3594 seqc_t dvp_seqc; 3595 seqc_t tvp_seqc; 3596 struct nameidata_saved snd; 3597 int line; 3598 enum cache_fpl_status status:8; 3599 bool in_smr; 3600 bool fsearch; 3601 }; 3602 3603 static void 3604 cache_fpl_cleanup_cnp(struct componentname *cnp) 3605 { 3606 3607 uma_zfree(namei_zone, cnp->cn_pnbuf); 3608 #ifdef DIAGNOSTIC 3609 cnp->cn_pnbuf = NULL; 3610 cnp->cn_nameptr = NULL; 3611 #endif 3612 } 3613 3614 static struct vnode * 3615 cache_fpl_handle_root(struct cache_fpl *fpl) 3616 { 3617 struct nameidata *ndp; 3618 struct componentname *cnp; 3619 3620 ndp = fpl->ndp; 3621 cnp = fpl->cnp; 3622 3623 while (*(cnp->cn_nameptr) == '/') { 3624 cnp->cn_nameptr++; 3625 ndp->ni_pathlen--; 3626 } 3627 3628 return (ndp->ni_rootdir); 3629 } 3630 3631 static void 3632 cache_fpl_checkpoint(struct cache_fpl *fpl, struct nameidata_saved *snd) 3633 { 3634 3635 snd->cn_flags = fpl->ndp->ni_cnd.cn_flags; 3636 snd->cn_namelen = fpl->ndp->ni_cnd.cn_namelen; 3637 snd->cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr; 3638 snd->ni_pathlen = fpl->ndp->ni_pathlen; 3639 } 3640 3641 static void 3642 cache_fpl_restore_partial(struct cache_fpl *fpl, struct nameidata_saved *snd) 3643 { 3644 3645 fpl->ndp->ni_cnd.cn_flags = snd->cn_flags; 3646 fpl->ndp->ni_cnd.cn_namelen = snd->cn_namelen; 3647 fpl->ndp->ni_cnd.cn_nameptr = snd->cn_nameptr; 3648 fpl->ndp->ni_pathlen = snd->ni_pathlen; 3649 } 3650 3651 static void 3652 cache_fpl_restore_abort(struct cache_fpl *fpl, struct nameidata_saved *snd) 3653 { 3654 3655 cache_fpl_restore_partial(fpl, snd); 3656 /* 3657 * It is 0 on entry by API contract. 3658 */ 3659 fpl->ndp->ni_resflags = 0; 3660 } 3661 3662 #ifdef INVARIANTS 3663 #define cache_fpl_smr_assert_entered(fpl) ({ \ 3664 struct cache_fpl *_fpl = (fpl); \ 3665 MPASS(_fpl->in_smr == true); \ 3666 VFS_SMR_ASSERT_ENTERED(); \ 3667 }) 3668 #define cache_fpl_smr_assert_not_entered(fpl) ({ \ 3669 struct cache_fpl *_fpl = (fpl); \ 3670 MPASS(_fpl->in_smr == false); \ 3671 VFS_SMR_ASSERT_NOT_ENTERED(); \ 3672 }) 3673 #else 3674 #define cache_fpl_smr_assert_entered(fpl) do { } while (0) 3675 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0) 3676 #endif 3677 3678 #define cache_fpl_smr_enter_initial(fpl) ({ \ 3679 struct cache_fpl *_fpl = (fpl); \ 3680 vfs_smr_enter(); \ 3681 _fpl->in_smr = true; \ 3682 }) 3683 3684 #define cache_fpl_smr_enter(fpl) ({ \ 3685 struct cache_fpl *_fpl = (fpl); \ 3686 MPASS(_fpl->in_smr == false); \ 3687 vfs_smr_enter(); \ 3688 _fpl->in_smr = true; \ 3689 }) 3690 3691 #define cache_fpl_smr_exit(fpl) ({ \ 3692 struct cache_fpl *_fpl = (fpl); \ 3693 MPASS(_fpl->in_smr == true); \ 3694 vfs_smr_exit(); \ 3695 _fpl->in_smr = false; \ 3696 }) 3697 3698 static int 3699 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line) 3700 { 3701 3702 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 3703 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 3704 ("%s: converting to abort from %d at %d, set at %d\n", 3705 __func__, fpl->status, line, fpl->line)); 3706 } 3707 fpl->status = CACHE_FPL_STATUS_ABORTED; 3708 fpl->line = line; 3709 return (CACHE_FPL_FAILED); 3710 } 3711 3712 #define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__) 3713 3714 static int 3715 cache_fpl_partial_impl(struct cache_fpl *fpl, int line) 3716 { 3717 3718 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 3719 ("%s: setting to partial at %d, but already set to %d at %d\n", 3720 __func__, line, fpl->status, fpl->line)); 3721 cache_fpl_smr_assert_entered(fpl); 3722 fpl->status = CACHE_FPL_STATUS_PARTIAL; 3723 fpl->line = line; 3724 return (CACHE_FPL_FAILED); 3725 } 3726 3727 #define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__) 3728 3729 static int 3730 cache_fpl_handled_impl(struct cache_fpl *fpl, int error, int line) 3731 { 3732 3733 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 3734 ("%s: setting to handled at %d, but already set to %d at %d\n", 3735 __func__, line, fpl->status, fpl->line)); 3736 cache_fpl_smr_assert_not_entered(fpl); 3737 MPASS(error != CACHE_FPL_FAILED); 3738 fpl->status = CACHE_FPL_STATUS_HANDLED; 3739 fpl->line = line; 3740 return (error); 3741 } 3742 3743 #define cache_fpl_handled(x, e) cache_fpl_handled_impl((x), (e), __LINE__) 3744 3745 static bool 3746 cache_fpl_terminated(struct cache_fpl *fpl) 3747 { 3748 3749 return (fpl->status != CACHE_FPL_STATUS_UNSET); 3750 } 3751 3752 #define CACHE_FPL_SUPPORTED_CN_FLAGS \ 3753 (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \ 3754 FAILIFEXISTS | FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | \ 3755 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK) 3756 3757 #define CACHE_FPL_INTERNAL_CN_FLAGS \ 3758 (ISDOTDOT | MAKEENTRY | ISLASTCN) 3759 3760 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 3761 "supported and internal flags overlap"); 3762 3763 static bool cache_fplookup_is_mp(struct cache_fpl *fpl); 3764 static int cache_fplookup_cross_mount(struct cache_fpl *fpl); 3765 3766 static bool 3767 cache_fpl_islastcn(struct nameidata *ndp) 3768 { 3769 3770 return (*ndp->ni_next == 0); 3771 } 3772 3773 static bool 3774 cache_fpl_isdotdot(struct componentname *cnp) 3775 { 3776 3777 if (cnp->cn_namelen == 2 && 3778 cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') 3779 return (true); 3780 return (false); 3781 } 3782 3783 static bool 3784 cache_can_fplookup(struct cache_fpl *fpl) 3785 { 3786 struct nameidata *ndp; 3787 struct componentname *cnp; 3788 struct thread *td; 3789 3790 ndp = fpl->ndp; 3791 cnp = fpl->cnp; 3792 td = cnp->cn_thread; 3793 3794 if (!cache_fast_lookup) { 3795 cache_fpl_aborted(fpl); 3796 return (false); 3797 } 3798 #ifdef MAC 3799 if (mac_vnode_check_lookup_enabled()) { 3800 cache_fpl_aborted(fpl); 3801 return (false); 3802 } 3803 #endif 3804 if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) { 3805 cache_fpl_aborted(fpl); 3806 return (false); 3807 } 3808 if (IN_CAPABILITY_MODE(td)) { 3809 cache_fpl_aborted(fpl); 3810 return (false); 3811 } 3812 if (AUDITING_TD(td)) { 3813 cache_fpl_aborted(fpl); 3814 return (false); 3815 } 3816 if (ndp->ni_startdir != NULL) { 3817 cache_fpl_aborted(fpl); 3818 return (false); 3819 } 3820 return (true); 3821 } 3822 3823 static int 3824 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp) 3825 { 3826 struct nameidata *ndp; 3827 int error; 3828 bool fsearch; 3829 3830 ndp = fpl->ndp; 3831 error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch); 3832 if (__predict_false(error != 0)) { 3833 cache_fpl_smr_exit(fpl); 3834 return (cache_fpl_aborted(fpl)); 3835 } 3836 fpl->fsearch = fsearch; 3837 return (0); 3838 } 3839 3840 static bool 3841 cache_fplookup_vnode_supported(struct vnode *vp) 3842 { 3843 3844 return (vp->v_type != VLNK); 3845 } 3846 3847 static int __noinline 3848 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, 3849 uint32_t hash) 3850 { 3851 struct componentname *cnp; 3852 struct vnode *dvp; 3853 3854 cnp = fpl->cnp; 3855 dvp = fpl->dvp; 3856 3857 cache_fpl_smr_exit(fpl); 3858 if (cache_neg_promote_cond(dvp, cnp, oncp, hash)) 3859 return (cache_fpl_handled(fpl, ENOENT)); 3860 else 3861 return (cache_fpl_aborted(fpl)); 3862 } 3863 3864 /* 3865 * The target vnode is not supported, prepare for the slow path to take over. 3866 */ 3867 static int __noinline 3868 cache_fplookup_partial_setup(struct cache_fpl *fpl) 3869 { 3870 struct nameidata *ndp; 3871 struct componentname *cnp; 3872 enum vgetstate dvs; 3873 struct vnode *dvp; 3874 struct pwd *pwd; 3875 seqc_t dvp_seqc; 3876 3877 ndp = fpl->ndp; 3878 cnp = fpl->cnp; 3879 pwd = fpl->pwd; 3880 dvp = fpl->dvp; 3881 dvp_seqc = fpl->dvp_seqc; 3882 3883 if (!pwd_hold_smr(pwd)) { 3884 cache_fpl_smr_exit(fpl); 3885 return (cache_fpl_aborted(fpl)); 3886 } 3887 3888 /* 3889 * Note that seqc is checked before the vnode is locked, so by 3890 * the time regular lookup gets to it it may have moved. 3891 * 3892 * Ultimately this does not affect correctness, any lookup errors 3893 * are userspace racing with itself. It is guaranteed that any 3894 * path which ultimatley gets found could also have been found 3895 * by regular lookup going all the way in absence of concurrent 3896 * modifications. 3897 */ 3898 dvs = vget_prep_smr(dvp); 3899 cache_fpl_smr_exit(fpl); 3900 if (__predict_false(dvs == VGET_NONE)) { 3901 pwd_drop(pwd); 3902 return (cache_fpl_aborted(fpl)); 3903 } 3904 3905 vget_finish_ref(dvp, dvs); 3906 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 3907 vrele(dvp); 3908 pwd_drop(pwd); 3909 return (cache_fpl_aborted(fpl)); 3910 } 3911 3912 cache_fpl_restore_partial(fpl, &fpl->snd); 3913 3914 ndp->ni_startdir = dvp; 3915 cnp->cn_flags |= MAKEENTRY; 3916 if (cache_fpl_islastcn(ndp)) 3917 cnp->cn_flags |= ISLASTCN; 3918 if (cache_fpl_isdotdot(cnp)) 3919 cnp->cn_flags |= ISDOTDOT; 3920 3921 return (0); 3922 } 3923 3924 static int 3925 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs) 3926 { 3927 struct componentname *cnp; 3928 struct vnode *tvp; 3929 seqc_t tvp_seqc; 3930 int error, lkflags; 3931 3932 cnp = fpl->cnp; 3933 tvp = fpl->tvp; 3934 tvp_seqc = fpl->tvp_seqc; 3935 3936 if ((cnp->cn_flags & LOCKLEAF) != 0) { 3937 lkflags = LK_SHARED; 3938 if ((cnp->cn_flags & LOCKSHARED) == 0) 3939 lkflags = LK_EXCLUSIVE; 3940 error = vget_finish(tvp, lkflags, tvs); 3941 if (__predict_false(error != 0)) { 3942 return (cache_fpl_aborted(fpl)); 3943 } 3944 } else { 3945 vget_finish_ref(tvp, tvs); 3946 } 3947 3948 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 3949 if ((cnp->cn_flags & LOCKLEAF) != 0) 3950 vput(tvp); 3951 else 3952 vrele(tvp); 3953 return (cache_fpl_aborted(fpl)); 3954 } 3955 3956 return (cache_fpl_handled(fpl, 0)); 3957 } 3958 3959 /* 3960 * They want to possibly modify the state of the namecache. 3961 */ 3962 static int __noinline 3963 cache_fplookup_final_modifying(struct cache_fpl *fpl) 3964 { 3965 struct nameidata *ndp; 3966 struct componentname *cnp; 3967 enum vgetstate dvs; 3968 struct vnode *dvp, *tvp; 3969 struct mount *mp; 3970 seqc_t dvp_seqc; 3971 int error; 3972 bool docache; 3973 3974 ndp = fpl->ndp; 3975 cnp = fpl->cnp; 3976 dvp = fpl->dvp; 3977 dvp_seqc = fpl->dvp_seqc; 3978 3979 MPASS(cache_fpl_islastcn(ndp)); 3980 if ((cnp->cn_flags & LOCKPARENT) == 0) 3981 MPASS((cnp->cn_flags & WANTPARENT) != 0); 3982 MPASS((cnp->cn_flags & TRAILINGSLASH) == 0); 3983 MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE || 3984 cnp->cn_nameiop == RENAME); 3985 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 3986 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 3987 3988 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 3989 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 3990 docache = false; 3991 3992 mp = atomic_load_ptr(&dvp->v_mount); 3993 if (__predict_false(mp == NULL)) { 3994 return (cache_fpl_aborted(fpl)); 3995 } 3996 3997 if (__predict_false(mp->mnt_flag & MNT_RDONLY)) { 3998 cache_fpl_smr_exit(fpl); 3999 /* 4000 * Original code keeps not checking for CREATE which 4001 * might be a bug. For now let the old lookup decide. 4002 */ 4003 if (cnp->cn_nameiop == CREATE) { 4004 return (cache_fpl_aborted(fpl)); 4005 } 4006 return (cache_fpl_handled(fpl, EROFS)); 4007 } 4008 4009 if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) { 4010 cache_fpl_smr_exit(fpl); 4011 return (cache_fpl_handled(fpl, EEXIST)); 4012 } 4013 4014 /* 4015 * Secure access to dvp; check cache_fplookup_partial_setup for 4016 * reasoning. 4017 * 4018 * XXX At least UFS requires its lookup routine to be called for 4019 * the last path component, which leads to some level of complicaton 4020 * and inefficiency: 4021 * - the target routine always locks the target vnode, but our caller 4022 * may not need it locked 4023 * - some of the VOP machinery asserts that the parent is locked, which 4024 * once more may be not required 4025 * 4026 * TODO: add a flag for filesystems which don't need this. 4027 */ 4028 dvs = vget_prep_smr(dvp); 4029 cache_fpl_smr_exit(fpl); 4030 if (__predict_false(dvs == VGET_NONE)) { 4031 return (cache_fpl_aborted(fpl)); 4032 } 4033 4034 vget_finish_ref(dvp, dvs); 4035 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4036 vrele(dvp); 4037 return (cache_fpl_aborted(fpl)); 4038 } 4039 4040 error = vn_lock(dvp, LK_EXCLUSIVE); 4041 if (__predict_false(error != 0)) { 4042 vrele(dvp); 4043 return (cache_fpl_aborted(fpl)); 4044 } 4045 4046 tvp = NULL; 4047 cnp->cn_flags |= ISLASTCN; 4048 if (docache) 4049 cnp->cn_flags |= MAKEENTRY; 4050 if (cache_fpl_isdotdot(cnp)) 4051 cnp->cn_flags |= ISDOTDOT; 4052 cnp->cn_lkflags = LK_EXCLUSIVE; 4053 error = VOP_LOOKUP(dvp, &tvp, cnp); 4054 switch (error) { 4055 case EJUSTRETURN: 4056 case 0: 4057 break; 4058 case ENOTDIR: 4059 case ENOENT: 4060 vput(dvp); 4061 return (cache_fpl_handled(fpl, error)); 4062 default: 4063 vput(dvp); 4064 return (cache_fpl_aborted(fpl)); 4065 } 4066 4067 fpl->tvp = tvp; 4068 4069 if (tvp == NULL) { 4070 if ((cnp->cn_flags & SAVESTART) != 0) { 4071 ndp->ni_startdir = dvp; 4072 vrefact(ndp->ni_startdir); 4073 cnp->cn_flags |= SAVENAME; 4074 } 4075 MPASS(error == EJUSTRETURN); 4076 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4077 VOP_UNLOCK(dvp); 4078 } 4079 return (cache_fpl_handled(fpl, 0)); 4080 } 4081 4082 /* 4083 * There are very hairy corner cases concerning various flag combinations 4084 * and locking state. In particular here we only hold one lock instead of 4085 * two. 4086 * 4087 * Skip the complexity as it is of no significance for normal workloads. 4088 */ 4089 if (__predict_false(tvp == dvp)) { 4090 vput(dvp); 4091 vrele(tvp); 4092 return (cache_fpl_aborted(fpl)); 4093 } 4094 4095 /* 4096 * Check if the target is either a symlink or a mount point. 4097 * Since we expect this to be the terminal vnode it should 4098 * almost never be true. 4099 */ 4100 if (__predict_false(!cache_fplookup_vnode_supported(tvp) || 4101 cache_fplookup_is_mp(fpl))) { 4102 vput(dvp); 4103 vput(tvp); 4104 return (cache_fpl_aborted(fpl)); 4105 } 4106 4107 if ((cnp->cn_flags & FAILIFEXISTS) != 0) { 4108 vput(dvp); 4109 vput(tvp); 4110 return (cache_fpl_handled(fpl, EEXIST)); 4111 } 4112 4113 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4114 VOP_UNLOCK(tvp); 4115 } 4116 4117 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4118 VOP_UNLOCK(dvp); 4119 } 4120 4121 if ((cnp->cn_flags & SAVESTART) != 0) { 4122 ndp->ni_startdir = dvp; 4123 vrefact(ndp->ni_startdir); 4124 cnp->cn_flags |= SAVENAME; 4125 } 4126 4127 return (cache_fpl_handled(fpl, 0)); 4128 } 4129 4130 static int __noinline 4131 cache_fplookup_modifying(struct cache_fpl *fpl) 4132 { 4133 struct nameidata *ndp; 4134 4135 ndp = fpl->ndp; 4136 4137 if (!cache_fpl_islastcn(ndp)) { 4138 return (cache_fpl_partial(fpl)); 4139 } 4140 return (cache_fplookup_final_modifying(fpl)); 4141 } 4142 4143 static int __noinline 4144 cache_fplookup_final_withparent(struct cache_fpl *fpl) 4145 { 4146 struct componentname *cnp; 4147 enum vgetstate dvs, tvs; 4148 struct vnode *dvp, *tvp; 4149 seqc_t dvp_seqc; 4150 int error; 4151 4152 cnp = fpl->cnp; 4153 dvp = fpl->dvp; 4154 dvp_seqc = fpl->dvp_seqc; 4155 tvp = fpl->tvp; 4156 4157 MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0); 4158 4159 /* 4160 * This is less efficient than it can be for simplicity. 4161 */ 4162 dvs = vget_prep_smr(dvp); 4163 if (__predict_false(dvs == VGET_NONE)) { 4164 return (cache_fpl_aborted(fpl)); 4165 } 4166 tvs = vget_prep_smr(tvp); 4167 if (__predict_false(tvs == VGET_NONE)) { 4168 cache_fpl_smr_exit(fpl); 4169 vget_abort(dvp, dvs); 4170 return (cache_fpl_aborted(fpl)); 4171 } 4172 4173 cache_fpl_smr_exit(fpl); 4174 4175 if ((cnp->cn_flags & LOCKPARENT) != 0) { 4176 error = vget_finish(dvp, LK_EXCLUSIVE, dvs); 4177 if (__predict_false(error != 0)) { 4178 vget_abort(tvp, tvs); 4179 return (cache_fpl_aborted(fpl)); 4180 } 4181 } else { 4182 vget_finish_ref(dvp, dvs); 4183 } 4184 4185 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4186 vget_abort(tvp, tvs); 4187 if ((cnp->cn_flags & LOCKPARENT) != 0) 4188 vput(dvp); 4189 else 4190 vrele(dvp); 4191 return (cache_fpl_aborted(fpl)); 4192 } 4193 4194 error = cache_fplookup_final_child(fpl, tvs); 4195 if (__predict_false(error != 0)) { 4196 MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED); 4197 if ((cnp->cn_flags & LOCKPARENT) != 0) 4198 vput(dvp); 4199 else 4200 vrele(dvp); 4201 return (error); 4202 } 4203 4204 MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED); 4205 return (0); 4206 } 4207 4208 static int 4209 cache_fplookup_final(struct cache_fpl *fpl) 4210 { 4211 struct componentname *cnp; 4212 enum vgetstate tvs; 4213 struct vnode *dvp, *tvp; 4214 seqc_t dvp_seqc; 4215 4216 cnp = fpl->cnp; 4217 dvp = fpl->dvp; 4218 dvp_seqc = fpl->dvp_seqc; 4219 tvp = fpl->tvp; 4220 4221 if (cnp->cn_nameiop != LOOKUP) { 4222 return (cache_fplookup_final_modifying(fpl)); 4223 } 4224 4225 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) 4226 return (cache_fplookup_final_withparent(fpl)); 4227 4228 tvs = vget_prep_smr(tvp); 4229 if (__predict_false(tvs == VGET_NONE)) { 4230 return (cache_fpl_partial(fpl)); 4231 } 4232 4233 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4234 cache_fpl_smr_exit(fpl); 4235 vget_abort(tvp, tvs); 4236 return (cache_fpl_aborted(fpl)); 4237 } 4238 4239 cache_fpl_smr_exit(fpl); 4240 return (cache_fplookup_final_child(fpl, tvs)); 4241 } 4242 4243 /* 4244 * Comment from locked lookup: 4245 * Check for degenerate name (e.g. / or "") which is a way of talking about a 4246 * directory, e.g. like "/." or ".". 4247 */ 4248 static int __noinline 4249 cache_fplookup_degenerate(struct cache_fpl *fpl) 4250 { 4251 struct componentname *cnp; 4252 struct vnode *dvp; 4253 enum vgetstate dvs; 4254 int error, lkflags; 4255 4256 fpl->tvp = fpl->dvp; 4257 fpl->tvp_seqc = fpl->dvp_seqc; 4258 4259 cnp = fpl->cnp; 4260 dvp = fpl->dvp; 4261 4262 if (__predict_false(cnp->cn_nameiop != LOOKUP)) { 4263 cache_fpl_smr_exit(fpl); 4264 return (cache_fpl_handled(fpl, EISDIR)); 4265 } 4266 4267 MPASS((cnp->cn_flags & SAVESTART) == 0); 4268 4269 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) { 4270 return (cache_fplookup_final_withparent(fpl)); 4271 } 4272 4273 dvs = vget_prep_smr(dvp); 4274 cache_fpl_smr_exit(fpl); 4275 if (__predict_false(dvs == VGET_NONE)) { 4276 return (cache_fpl_aborted(fpl)); 4277 } 4278 4279 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4280 lkflags = LK_SHARED; 4281 if ((cnp->cn_flags & LOCKSHARED) == 0) 4282 lkflags = LK_EXCLUSIVE; 4283 error = vget_finish(dvp, lkflags, dvs); 4284 if (__predict_false(error != 0)) { 4285 return (cache_fpl_aborted(fpl)); 4286 } 4287 } else { 4288 vget_finish_ref(dvp, dvs); 4289 } 4290 return (cache_fpl_handled(fpl, 0)); 4291 } 4292 4293 static int __noinline 4294 cache_fplookup_noentry(struct cache_fpl *fpl) 4295 { 4296 struct nameidata *ndp; 4297 struct componentname *cnp; 4298 enum vgetstate dvs; 4299 struct vnode *dvp, *tvp; 4300 seqc_t dvp_seqc; 4301 int error; 4302 bool docache; 4303 4304 ndp = fpl->ndp; 4305 cnp = fpl->cnp; 4306 dvp = fpl->dvp; 4307 dvp_seqc = fpl->dvp_seqc; 4308 4309 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4310 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4311 MPASS(!cache_fpl_isdotdot(cnp)); 4312 4313 if (cnp->cn_nameiop != LOOKUP) { 4314 fpl->tvp = NULL; 4315 return (cache_fplookup_modifying(fpl)); 4316 } 4317 4318 MPASS((cnp->cn_flags & SAVESTART) == 0); 4319 4320 /* 4321 * Only try to fill in the component if it is the last one, 4322 * otherwise not only there may be several to handle but the 4323 * walk may be complicated. 4324 */ 4325 if (!cache_fpl_islastcn(ndp)) { 4326 return (cache_fpl_partial(fpl)); 4327 } 4328 4329 /* 4330 * Secure access to dvp; check cache_fplookup_partial_setup for 4331 * reasoning. 4332 */ 4333 dvs = vget_prep_smr(dvp); 4334 cache_fpl_smr_exit(fpl); 4335 if (__predict_false(dvs == VGET_NONE)) { 4336 return (cache_fpl_aborted(fpl)); 4337 } 4338 4339 vget_finish_ref(dvp, dvs); 4340 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4341 vrele(dvp); 4342 return (cache_fpl_aborted(fpl)); 4343 } 4344 4345 error = vn_lock(dvp, LK_SHARED); 4346 if (__predict_false(error != 0)) { 4347 vrele(dvp); 4348 return (cache_fpl_aborted(fpl)); 4349 } 4350 4351 tvp = NULL; 4352 /* 4353 * TODO: provide variants which don't require locking either vnode. 4354 */ 4355 cnp->cn_flags |= ISLASTCN; 4356 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4357 if (docache) 4358 cnp->cn_flags |= MAKEENTRY; 4359 cnp->cn_lkflags = LK_SHARED; 4360 if ((cnp->cn_flags & LOCKSHARED) == 0) { 4361 cnp->cn_lkflags = LK_EXCLUSIVE; 4362 } 4363 error = VOP_LOOKUP(dvp, &tvp, cnp); 4364 switch (error) { 4365 case EJUSTRETURN: 4366 case 0: 4367 break; 4368 case ENOTDIR: 4369 case ENOENT: 4370 vput(dvp); 4371 return (cache_fpl_handled(fpl, error)); 4372 default: 4373 vput(dvp); 4374 return (cache_fpl_aborted(fpl)); 4375 } 4376 4377 fpl->tvp = tvp; 4378 4379 if (tvp == NULL) { 4380 MPASS(error == EJUSTRETURN); 4381 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4382 vput(dvp); 4383 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4384 VOP_UNLOCK(dvp); 4385 } 4386 return (cache_fpl_handled(fpl, 0)); 4387 } 4388 4389 if (__predict_false(!cache_fplookup_vnode_supported(tvp) || 4390 cache_fplookup_is_mp(fpl))) { 4391 vput(dvp); 4392 vput(tvp); 4393 return (cache_fpl_aborted(fpl)); 4394 } 4395 4396 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4397 VOP_UNLOCK(tvp); 4398 } 4399 4400 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4401 vput(dvp); 4402 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4403 VOP_UNLOCK(dvp); 4404 } 4405 return (cache_fpl_handled(fpl, 0)); 4406 } 4407 4408 static int __noinline 4409 cache_fplookup_dot(struct cache_fpl *fpl) 4410 { 4411 int error; 4412 4413 MPASS(!seqc_in_modify(fpl->dvp_seqc)); 4414 /* 4415 * Just re-assign the value. seqc will be checked later for the first 4416 * non-dot path component in line and/or before deciding to return the 4417 * vnode. 4418 */ 4419 fpl->tvp = fpl->dvp; 4420 fpl->tvp_seqc = fpl->dvp_seqc; 4421 if (cache_fplookup_is_mp(fpl)) { 4422 error = cache_fplookup_cross_mount(fpl); 4423 if (__predict_false(error != 0)) { 4424 return (error); 4425 } 4426 } 4427 4428 counter_u64_add(dothits, 1); 4429 SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp); 4430 return (0); 4431 } 4432 4433 static int __noinline 4434 cache_fplookup_dotdot(struct cache_fpl *fpl) 4435 { 4436 struct nameidata *ndp; 4437 struct componentname *cnp; 4438 struct namecache *ncp; 4439 struct vnode *dvp; 4440 struct prison *pr; 4441 u_char nc_flag; 4442 4443 ndp = fpl->ndp; 4444 cnp = fpl->cnp; 4445 dvp = fpl->dvp; 4446 4447 MPASS(cache_fpl_isdotdot(cnp)); 4448 4449 /* 4450 * XXX this is racy the same way regular lookup is 4451 */ 4452 for (pr = cnp->cn_cred->cr_prison; pr != NULL; 4453 pr = pr->pr_parent) 4454 if (dvp == pr->pr_root) 4455 break; 4456 4457 if (dvp == ndp->ni_rootdir || 4458 dvp == ndp->ni_topdir || 4459 dvp == rootvnode || 4460 pr != NULL) { 4461 fpl->tvp = dvp; 4462 fpl->tvp_seqc = vn_seqc_read_any(dvp); 4463 if (seqc_in_modify(fpl->tvp_seqc)) { 4464 return (cache_fpl_aborted(fpl)); 4465 } 4466 return (0); 4467 } 4468 4469 if ((dvp->v_vflag & VV_ROOT) != 0) { 4470 /* 4471 * TODO 4472 * The opposite of climb mount is needed here. 4473 */ 4474 return (cache_fpl_aborted(fpl)); 4475 } 4476 4477 ncp = atomic_load_ptr(&dvp->v_cache_dd); 4478 if (ncp == NULL) { 4479 return (cache_fpl_aborted(fpl)); 4480 } 4481 4482 nc_flag = atomic_load_char(&ncp->nc_flag); 4483 if ((nc_flag & NCF_ISDOTDOT) != 0) { 4484 if ((nc_flag & NCF_NEGATIVE) != 0) 4485 return (cache_fpl_aborted(fpl)); 4486 fpl->tvp = ncp->nc_vp; 4487 } else { 4488 fpl->tvp = ncp->nc_dvp; 4489 } 4490 4491 if (!cache_ncp_canuse(ncp)) { 4492 return (cache_fpl_aborted(fpl)); 4493 } 4494 4495 fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp); 4496 if (seqc_in_modify(fpl->tvp_seqc)) { 4497 return (cache_fpl_partial(fpl)); 4498 } 4499 4500 counter_u64_add(dotdothits, 1); 4501 return (0); 4502 } 4503 4504 static int __noinline 4505 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash) 4506 { 4507 u_char nc_flag; 4508 bool neg_promote; 4509 4510 nc_flag = atomic_load_char(&ncp->nc_flag); 4511 MPASS((nc_flag & NCF_NEGATIVE) != 0); 4512 /* 4513 * If they want to create an entry we need to replace this one. 4514 */ 4515 if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) { 4516 fpl->tvp = NULL; 4517 return (cache_fplookup_modifying(fpl)); 4518 } 4519 neg_promote = cache_neg_hit_prep(ncp); 4520 if (!cache_fpl_neg_ncp_canuse(ncp)) { 4521 cache_neg_hit_abort(ncp); 4522 return (cache_fpl_partial(fpl)); 4523 } 4524 if (neg_promote) { 4525 return (cache_fplookup_negative_promote(fpl, ncp, hash)); 4526 } 4527 cache_neg_hit_finish(ncp); 4528 cache_fpl_smr_exit(fpl); 4529 return (cache_fpl_handled(fpl, ENOENT)); 4530 } 4531 4532 static int 4533 cache_fplookup_next(struct cache_fpl *fpl) 4534 { 4535 struct componentname *cnp; 4536 struct namecache *ncp; 4537 struct vnode *dvp, *tvp; 4538 u_char nc_flag; 4539 uint32_t hash; 4540 int error; 4541 4542 cnp = fpl->cnp; 4543 dvp = fpl->dvp; 4544 4545 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 4546 if (cnp->cn_namelen == 1) { 4547 return (cache_fplookup_dot(fpl)); 4548 } 4549 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 4550 return (cache_fplookup_dotdot(fpl)); 4551 } 4552 } 4553 4554 MPASS(!cache_fpl_isdotdot(cnp)); 4555 4556 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 4557 4558 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 4559 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 4560 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 4561 break; 4562 } 4563 4564 if (__predict_false(ncp == NULL)) { 4565 return (cache_fplookup_noentry(fpl)); 4566 } 4567 4568 tvp = atomic_load_ptr(&ncp->nc_vp); 4569 nc_flag = atomic_load_char(&ncp->nc_flag); 4570 if ((nc_flag & NCF_NEGATIVE) != 0) { 4571 return (cache_fplookup_neg(fpl, ncp, hash)); 4572 } 4573 4574 if (!cache_ncp_canuse(ncp)) { 4575 return (cache_fpl_partial(fpl)); 4576 } 4577 4578 fpl->tvp = tvp; 4579 fpl->tvp_seqc = vn_seqc_read_any(tvp); 4580 if (seqc_in_modify(fpl->tvp_seqc)) { 4581 return (cache_fpl_partial(fpl)); 4582 } 4583 4584 if (!cache_fplookup_vnode_supported(tvp)) { 4585 return (cache_fpl_partial(fpl)); 4586 } 4587 4588 if (cache_fplookup_is_mp(fpl)) { 4589 error = cache_fplookup_cross_mount(fpl); 4590 if (__predict_false(error != 0)) { 4591 return (error); 4592 } 4593 } 4594 4595 counter_u64_add(numposhits, 1); 4596 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp); 4597 return (0); 4598 } 4599 4600 static bool 4601 cache_fplookup_mp_supported(struct mount *mp) 4602 { 4603 4604 MPASS(mp != NULL); 4605 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0) 4606 return (false); 4607 return (true); 4608 } 4609 4610 /* 4611 * Walk up the mount stack (if any). 4612 * 4613 * Correctness is provided in the following ways: 4614 * - all vnodes are protected from freeing with SMR 4615 * - struct mount objects are type stable making them always safe to access 4616 * - stability of the particular mount is provided by busying it 4617 * - relationship between the vnode which is mounted on and the mount is 4618 * verified with the vnode sequence counter after busying 4619 * - association between root vnode of the mount and the mount is protected 4620 * by busy 4621 * 4622 * From that point on we can read the sequence counter of the root vnode 4623 * and get the next mount on the stack (if any) using the same protection. 4624 * 4625 * By the end of successful walk we are guaranteed the reached state was 4626 * indeed present at least at some point which matches the regular lookup. 4627 */ 4628 static int __noinline 4629 cache_fplookup_climb_mount(struct cache_fpl *fpl) 4630 { 4631 struct mount *mp, *prev_mp; 4632 struct mount_pcpu *mpcpu, *prev_mpcpu; 4633 struct vnode *vp; 4634 seqc_t vp_seqc; 4635 4636 vp = fpl->tvp; 4637 vp_seqc = fpl->tvp_seqc; 4638 4639 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 4640 mp = atomic_load_ptr(&vp->v_mountedhere); 4641 if (__predict_false(mp == NULL)) { 4642 return (0); 4643 } 4644 4645 prev_mp = NULL; 4646 for (;;) { 4647 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 4648 if (prev_mp != NULL) 4649 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4650 return (cache_fpl_partial(fpl)); 4651 } 4652 if (prev_mp != NULL) 4653 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4654 if (!vn_seqc_consistent(vp, vp_seqc)) { 4655 vfs_op_thread_exit_crit(mp, mpcpu); 4656 return (cache_fpl_partial(fpl)); 4657 } 4658 if (!cache_fplookup_mp_supported(mp)) { 4659 vfs_op_thread_exit_crit(mp, mpcpu); 4660 return (cache_fpl_partial(fpl)); 4661 } 4662 vp = atomic_load_ptr(&mp->mnt_rootvnode); 4663 if (vp == NULL || VN_IS_DOOMED(vp)) { 4664 vfs_op_thread_exit_crit(mp, mpcpu); 4665 return (cache_fpl_partial(fpl)); 4666 } 4667 vp_seqc = vn_seqc_read_any(vp); 4668 if (seqc_in_modify(vp_seqc)) { 4669 vfs_op_thread_exit_crit(mp, mpcpu); 4670 return (cache_fpl_partial(fpl)); 4671 } 4672 prev_mp = mp; 4673 prev_mpcpu = mpcpu; 4674 mp = atomic_load_ptr(&vp->v_mountedhere); 4675 if (mp == NULL) 4676 break; 4677 } 4678 4679 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4680 fpl->tvp = vp; 4681 fpl->tvp_seqc = vp_seqc; 4682 return (0); 4683 } 4684 4685 static int __noinline 4686 cache_fplookup_cross_mount(struct cache_fpl *fpl) 4687 { 4688 struct mount *mp; 4689 struct mount_pcpu *mpcpu; 4690 struct vnode *vp; 4691 seqc_t vp_seqc; 4692 4693 vp = fpl->tvp; 4694 vp_seqc = fpl->tvp_seqc; 4695 4696 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 4697 mp = atomic_load_ptr(&vp->v_mountedhere); 4698 if (__predict_false(mp == NULL)) { 4699 return (0); 4700 } 4701 4702 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 4703 return (cache_fpl_partial(fpl)); 4704 } 4705 if (!vn_seqc_consistent(vp, vp_seqc)) { 4706 vfs_op_thread_exit_crit(mp, mpcpu); 4707 return (cache_fpl_partial(fpl)); 4708 } 4709 if (!cache_fplookup_mp_supported(mp)) { 4710 vfs_op_thread_exit_crit(mp, mpcpu); 4711 return (cache_fpl_partial(fpl)); 4712 } 4713 vp = atomic_load_ptr(&mp->mnt_rootvnode); 4714 if (__predict_false(vp == NULL || VN_IS_DOOMED(vp))) { 4715 vfs_op_thread_exit_crit(mp, mpcpu); 4716 return (cache_fpl_partial(fpl)); 4717 } 4718 vp_seqc = vn_seqc_read_any(vp); 4719 vfs_op_thread_exit_crit(mp, mpcpu); 4720 if (seqc_in_modify(vp_seqc)) { 4721 return (cache_fpl_partial(fpl)); 4722 } 4723 mp = atomic_load_ptr(&vp->v_mountedhere); 4724 if (__predict_false(mp != NULL)) { 4725 /* 4726 * There are possibly more mount points on top. 4727 * Normally this does not happen so for simplicity just start 4728 * over. 4729 */ 4730 return (cache_fplookup_climb_mount(fpl)); 4731 } 4732 4733 fpl->tvp = vp; 4734 fpl->tvp_seqc = vp_seqc; 4735 return (0); 4736 } 4737 4738 /* 4739 * Check if a vnode is mounted on. 4740 */ 4741 static bool 4742 cache_fplookup_is_mp(struct cache_fpl *fpl) 4743 { 4744 struct mount *mp; 4745 struct vnode *vp; 4746 4747 vp = fpl->tvp; 4748 4749 /* 4750 * Hack: while this is a union, the pointer tends to be NULL so save on 4751 * a branch. 4752 */ 4753 mp = atomic_load_ptr(&vp->v_mountedhere); 4754 if (mp == NULL) 4755 return (false); 4756 if (vp->v_type == VDIR) 4757 return (true); 4758 return (false); 4759 } 4760 4761 /* 4762 * Parse the path. 4763 * 4764 * The code was originally copy-pasted from regular lookup and despite 4765 * clean ups leaves performance on the table. Any modifications here 4766 * must take into account that in case off fallback the resulting 4767 * nameidata state has to be compatible with the original. 4768 */ 4769 static int 4770 cache_fplookup_preparse(struct cache_fpl *fpl) 4771 { 4772 struct nameidata *ndp; 4773 struct componentname *cnp; 4774 4775 ndp = fpl->ndp; 4776 cnp = fpl->cnp; 4777 4778 if (__predict_false(cnp->cn_nameptr[0] == '\0')) { 4779 return (cache_fplookup_degenerate(fpl)); 4780 } 4781 4782 /* 4783 * By this point the shortest possible pathname is one character + nul 4784 * terminator, hence 2. 4785 */ 4786 KASSERT(ndp->ni_pathlen >= 2, ("%s: ni_pathlen %zu\n", __func__, 4787 ndp->ni_pathlen)); 4788 4789 if (__predict_false(cnp->cn_nameptr[ndp->ni_pathlen - 2] == '/')) { 4790 /* 4791 * TODO 4792 * Regular lookup performs the following: 4793 * *ndp->ni_next = '\0'; 4794 * cnp->cn_flags |= TRAILINGSLASH; 4795 * 4796 * Which is problematic since it modifies data read 4797 * from userspace. Then if fast path lookup was to 4798 * abort we would have to either restore it or convey 4799 * the flag. Since this is a corner case just ignore 4800 * it for simplicity. 4801 */ 4802 return (cache_fpl_aborted(fpl)); 4803 } 4804 return (0); 4805 } 4806 4807 static int 4808 cache_fplookup_parse(struct cache_fpl *fpl) 4809 { 4810 struct nameidata *ndp; 4811 struct componentname *cnp; 4812 char *cp; 4813 4814 ndp = fpl->ndp; 4815 cnp = fpl->cnp; 4816 4817 /* 4818 * Find the end of this path component, it is either / or nul. 4819 * 4820 * Store / as a temporary sentinel so that we only have one character 4821 * to test for. Pathnames tend to be short so this should not be 4822 * resulting in cache misses. 4823 */ 4824 KASSERT(cnp->cn_nameptr[ndp->ni_pathlen - 1] == '\0', 4825 ("%s: expected nul at %p + %zu; string [%s]\n", __func__, 4826 cnp->cn_nameptr, ndp->ni_pathlen - 1, cnp->cn_nameptr)); 4827 cnp->cn_nameptr[ndp->ni_pathlen - 1] = '/'; 4828 for (cp = cnp->cn_nameptr; *cp != '/'; cp++) { 4829 KASSERT(*cp != '\0', 4830 ("%s: encountered unexpected nul; string [%s]\n", __func__, 4831 cnp->cn_nameptr)); 4832 continue; 4833 } 4834 cnp->cn_nameptr[ndp->ni_pathlen - 1] = '\0'; 4835 4836 cnp->cn_namelen = cp - cnp->cn_nameptr; 4837 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 4838 cache_fpl_smr_exit(fpl); 4839 return (cache_fpl_handled(fpl, ENAMETOOLONG)); 4840 } 4841 ndp->ni_pathlen -= cnp->cn_namelen; 4842 KASSERT(ndp->ni_pathlen <= PATH_MAX, 4843 ("%s: ni_pathlen underflow to %zd\n", __func__, ndp->ni_pathlen)); 4844 ndp->ni_next = cp; 4845 4846 #ifdef INVARIANTS 4847 /* 4848 * Code below is only here to assure compatibility with regular lookup. 4849 * It covers handling of trailing slashles and names like "/", both of 4850 * which of can be taken care of upfront which lockless lookup does 4851 * in cache_fplookup_preparse. Regular lookup performs these for each 4852 * path component. 4853 */ 4854 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) { 4855 cp++; 4856 if (*cp == '\0') { 4857 panic("%s: ran into TRAILINGSLASH handling from [%s]\n", 4858 __func__, cnp->cn_pnbuf); 4859 } 4860 } 4861 4862 if (cnp->cn_nameptr[0] == '\0') { 4863 panic("%s: ran into degenerate name from [%s]\n", __func__, cnp->cn_pnbuf); 4864 } 4865 #endif 4866 return (0); 4867 } 4868 4869 static void 4870 cache_fplookup_parse_advance(struct cache_fpl *fpl) 4871 { 4872 struct nameidata *ndp; 4873 struct componentname *cnp; 4874 4875 ndp = fpl->ndp; 4876 cnp = fpl->cnp; 4877 4878 cnp->cn_nameptr = ndp->ni_next; 4879 while (*cnp->cn_nameptr == '/') { 4880 cnp->cn_nameptr++; 4881 ndp->ni_pathlen--; 4882 } 4883 } 4884 4885 /* 4886 * See the API contract for VOP_FPLOOKUP_VEXEC. 4887 */ 4888 static int __noinline 4889 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error) 4890 { 4891 struct vnode *dvp; 4892 seqc_t dvp_seqc; 4893 4894 dvp = fpl->dvp; 4895 dvp_seqc = fpl->dvp_seqc; 4896 4897 /* 4898 * Hack: they may be looking up foo/bar, where foo is a 4899 * regular file. In such a case we need to turn ENOTDIR, 4900 * but we may happen to get here with a different error. 4901 */ 4902 if (dvp->v_type != VDIR) { 4903 /* 4904 * The check here is predominantly to catch 4905 * EOPNOTSUPP from dead_vnodeops. If the vnode 4906 * gets doomed past this point it is going to 4907 * fail seqc verification. 4908 */ 4909 if (VN_IS_DOOMED(dvp)) { 4910 return (cache_fpl_aborted(fpl)); 4911 } 4912 error = ENOTDIR; 4913 } 4914 4915 /* 4916 * Hack: handle O_SEARCH. 4917 * 4918 * Open Group Base Specifications Issue 7, 2018 edition states: 4919 * If the access mode of the open file description associated with the 4920 * file descriptor is not O_SEARCH, the function shall check whether 4921 * directory searches are permitted using the current permissions of 4922 * the directory underlying the file descriptor. If the access mode is 4923 * O_SEARCH, the function shall not perform the check. 4924 * 4925 * Regular lookup tests for the NOEXECCHECK flag for every path 4926 * component to decide whether to do the permission check. However, 4927 * since most lookups never have the flag (and when they do it is only 4928 * present for the first path component), lockless lookup only acts on 4929 * it if there is a permission problem. Here the flag is represented 4930 * with a boolean so that we don't have to clear it on the way out. 4931 * 4932 * For simplicity this always aborts. 4933 * TODO: check if this is the first lookup and ignore the permission 4934 * problem. Note the flag has to survive fallback (if it happens to be 4935 * performed). 4936 */ 4937 if (fpl->fsearch) { 4938 return (cache_fpl_aborted(fpl)); 4939 } 4940 4941 switch (error) { 4942 case EAGAIN: 4943 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4944 error = cache_fpl_aborted(fpl); 4945 } else { 4946 cache_fpl_partial(fpl); 4947 } 4948 break; 4949 default: 4950 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4951 error = cache_fpl_aborted(fpl); 4952 } else { 4953 cache_fpl_smr_exit(fpl); 4954 cache_fpl_handled(fpl, error); 4955 } 4956 break; 4957 } 4958 return (error); 4959 } 4960 4961 static int 4962 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl) 4963 { 4964 struct nameidata *ndp; 4965 struct componentname *cnp; 4966 struct mount *mp; 4967 int error; 4968 4969 error = CACHE_FPL_FAILED; 4970 ndp = fpl->ndp; 4971 cnp = fpl->cnp; 4972 4973 cache_fpl_checkpoint(fpl, &fpl->snd); 4974 4975 fpl->dvp = dvp; 4976 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 4977 if (seqc_in_modify(fpl->dvp_seqc)) { 4978 cache_fpl_aborted(fpl); 4979 goto out; 4980 } 4981 mp = atomic_load_ptr(&dvp->v_mount); 4982 if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) { 4983 cache_fpl_aborted(fpl); 4984 goto out; 4985 } 4986 4987 VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp); 4988 4989 error = cache_fplookup_preparse(fpl); 4990 if (__predict_false(cache_fpl_terminated(fpl))) { 4991 goto out; 4992 } 4993 4994 for (;;) { 4995 error = cache_fplookup_parse(fpl); 4996 if (__predict_false(error != 0)) { 4997 break; 4998 } 4999 5000 VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp); 5001 5002 error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred); 5003 if (__predict_false(error != 0)) { 5004 error = cache_fplookup_failed_vexec(fpl, error); 5005 break; 5006 } 5007 5008 error = cache_fplookup_next(fpl); 5009 if (__predict_false(cache_fpl_terminated(fpl))) { 5010 break; 5011 } 5012 5013 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); 5014 5015 if (cache_fpl_islastcn(ndp)) { 5016 error = cache_fplookup_final(fpl); 5017 break; 5018 } 5019 5020 if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) { 5021 error = cache_fpl_aborted(fpl); 5022 break; 5023 } 5024 5025 fpl->dvp = fpl->tvp; 5026 fpl->dvp_seqc = fpl->tvp_seqc; 5027 5028 cache_fplookup_parse_advance(fpl); 5029 cache_fpl_checkpoint(fpl, &fpl->snd); 5030 } 5031 out: 5032 switch (fpl->status) { 5033 case CACHE_FPL_STATUS_UNSET: 5034 __assert_unreachable(); 5035 break; 5036 case CACHE_FPL_STATUS_PARTIAL: 5037 cache_fpl_smr_assert_entered(fpl); 5038 return (cache_fplookup_partial_setup(fpl)); 5039 case CACHE_FPL_STATUS_ABORTED: 5040 if (fpl->in_smr) 5041 cache_fpl_smr_exit(fpl); 5042 return (CACHE_FPL_FAILED); 5043 case CACHE_FPL_STATUS_HANDLED: 5044 MPASS(error != CACHE_FPL_FAILED); 5045 cache_fpl_smr_assert_not_entered(fpl); 5046 /* 5047 * A common error is ENOENT. 5048 */ 5049 if (error != 0) { 5050 ndp->ni_dvp = NULL; 5051 ndp->ni_vp = NULL; 5052 cache_fpl_cleanup_cnp(cnp); 5053 return (error); 5054 } 5055 ndp->ni_dvp = fpl->dvp; 5056 ndp->ni_vp = fpl->tvp; 5057 if (cnp->cn_flags & SAVENAME) 5058 cnp->cn_flags |= HASBUF; 5059 else 5060 cache_fpl_cleanup_cnp(cnp); 5061 return (error); 5062 } 5063 __assert_unreachable(); 5064 } 5065 5066 /* 5067 * Fast path lookup protected with SMR and sequence counters. 5068 * 5069 * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one. 5070 * 5071 * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria 5072 * outlined below. 5073 * 5074 * Traditional vnode lookup conceptually looks like this: 5075 * 5076 * vn_lock(current); 5077 * for (;;) { 5078 * next = find(); 5079 * vn_lock(next); 5080 * vn_unlock(current); 5081 * current = next; 5082 * if (last) 5083 * break; 5084 * } 5085 * return (current); 5086 * 5087 * Each jump to the next vnode is safe memory-wise and atomic with respect to 5088 * any modifications thanks to holding respective locks. 5089 * 5090 * The same guarantee can be provided with a combination of safe memory 5091 * reclamation and sequence counters instead. If all operations which affect 5092 * the relationship between the current vnode and the one we are looking for 5093 * also modify the counter, we can verify whether all the conditions held as 5094 * we made the jump. This includes things like permissions, mount points etc. 5095 * Counter modification is provided by enclosing relevant places in 5096 * vn_seqc_write_begin()/end() calls. 5097 * 5098 * Thus this translates to: 5099 * 5100 * vfs_smr_enter(); 5101 * dvp_seqc = seqc_read_any(dvp); 5102 * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode 5103 * abort(); 5104 * for (;;) { 5105 * tvp = find(); 5106 * tvp_seqc = seqc_read_any(tvp); 5107 * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode 5108 * abort(); 5109 * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode 5110 * abort(); 5111 * dvp = tvp; // we know nothing of importance has changed 5112 * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration 5113 * if (last) 5114 * break; 5115 * } 5116 * vget(); // secure the vnode 5117 * if (!seqc_consistent(tvp, tvp_seqc) // final check 5118 * abort(); 5119 * // at this point we know nothing has changed for any parent<->child pair 5120 * // as they were crossed during the lookup, meaning we matched the guarantee 5121 * // of the locked variant 5122 * return (tvp); 5123 * 5124 * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows: 5125 * - they are called while within vfs_smr protection which they must never exit 5126 * - EAGAIN can be returned to denote checking could not be performed, it is 5127 * always valid to return it 5128 * - if the sequence counter has not changed the result must be valid 5129 * - if the sequence counter has changed both false positives and false negatives 5130 * are permitted (since the result will be rejected later) 5131 * - for simple cases of unix permission checks vaccess_vexec_smr can be used 5132 * 5133 * Caveats to watch out for: 5134 * - vnodes are passed unlocked and unreferenced with nothing stopping 5135 * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised 5136 * to use atomic_load_ptr to fetch it. 5137 * - the aforementioned object can also get freed, meaning absent other means it 5138 * should be protected with vfs_smr 5139 * - either safely checking permissions as they are modified or guaranteeing 5140 * their stability is left to the routine 5141 */ 5142 int 5143 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, 5144 struct pwd **pwdp) 5145 { 5146 struct cache_fpl fpl; 5147 struct pwd *pwd; 5148 struct vnode *dvp; 5149 struct componentname *cnp; 5150 struct nameidata_saved orig; 5151 int error; 5152 5153 MPASS(ndp->ni_lcf == 0); 5154 5155 fpl.status = CACHE_FPL_STATUS_UNSET; 5156 fpl.ndp = ndp; 5157 fpl.cnp = &ndp->ni_cnd; 5158 MPASS(curthread == fpl.cnp->cn_thread); 5159 KASSERT ((fpl.cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 5160 ("%s: internal flags found in cn_flags %" PRIx64, __func__, 5161 fpl.cnp->cn_flags)); 5162 5163 if ((fpl.cnp->cn_flags & SAVESTART) != 0) 5164 MPASS(fpl.cnp->cn_nameiop != LOOKUP); 5165 5166 if (!cache_can_fplookup(&fpl)) { 5167 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 5168 *status = fpl.status; 5169 return (EOPNOTSUPP); 5170 } 5171 5172 cache_fpl_checkpoint(&fpl, &orig); 5173 5174 cache_fpl_smr_enter_initial(&fpl); 5175 fpl.fsearch = false; 5176 pwd = pwd_get_smr(); 5177 fpl.pwd = pwd; 5178 ndp->ni_rootdir = pwd->pwd_rdir; 5179 ndp->ni_topdir = pwd->pwd_jdir; 5180 5181 cnp = fpl.cnp; 5182 cnp->cn_nameptr = cnp->cn_pnbuf; 5183 if (cnp->cn_pnbuf[0] == '/') { 5184 dvp = cache_fpl_handle_root(&fpl); 5185 ndp->ni_resflags |= NIRES_ABS; 5186 } else { 5187 if (ndp->ni_dirfd == AT_FDCWD) { 5188 dvp = pwd->pwd_cdir; 5189 } else { 5190 error = cache_fplookup_dirfd(&fpl, &dvp); 5191 if (__predict_false(error != 0)) { 5192 goto out; 5193 } 5194 } 5195 } 5196 5197 SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true); 5198 5199 error = cache_fplookup_impl(dvp, &fpl); 5200 out: 5201 cache_fpl_smr_assert_not_entered(&fpl); 5202 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 5203 5204 *status = fpl.status; 5205 switch (fpl.status) { 5206 case CACHE_FPL_STATUS_UNSET: 5207 __assert_unreachable(); 5208 break; 5209 case CACHE_FPL_STATUS_HANDLED: 5210 SDT_PROBE3(vfs, namei, lookup, return, error, 5211 (error == 0 ? ndp->ni_vp : NULL), true); 5212 break; 5213 case CACHE_FPL_STATUS_PARTIAL: 5214 *pwdp = fpl.pwd; 5215 /* 5216 * Status restored by cache_fplookup_partial_setup. 5217 */ 5218 break; 5219 case CACHE_FPL_STATUS_ABORTED: 5220 cache_fpl_restore_abort(&fpl, &orig); 5221 break; 5222 } 5223 return (error); 5224 } 5225