xref: /freebsd/sys/kern/vfs_cache.c (revision da477bcdc0c335171bb0ed3813f570026de6df85)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/rwlock.h>
59 #include <sys/seqc.h>
60 #include <sys/sdt.h>
61 #include <sys/smr.h>
62 #include <sys/smp.h>
63 #include <sys/syscallsubr.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysproto.h>
66 #include <sys/vnode.h>
67 #include <ck_queue.h>
68 #ifdef KTRACE
69 #include <sys/ktrace.h>
70 #endif
71 
72 #include <sys/capsicum.h>
73 
74 #include <security/audit/audit.h>
75 #include <security/mac/mac_framework.h>
76 
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #endif
80 
81 #include <vm/uma.h>
82 
83 SDT_PROVIDER_DECLARE(vfs);
84 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
85     "struct vnode *");
86 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
87     "char *");
88 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
89 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
90     "char *", "struct vnode *");
91 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
92 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
93     "struct vnode *", "char *");
94 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
95     "struct vnode *");
96 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
97     "struct vnode *", "char *");
98 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
99     "char *");
100 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
101     "struct componentname *");
102 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
103     "struct componentname *");
104 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *");
105 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
106 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
107 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
108     "struct vnode *");
109 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
110     "char *");
111 SDT_PROBE_DEFINE2(vfs, namecache, shrink_negative, done, "struct vnode *",
112     "char *");
113 
114 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
115 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
116 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
117 
118 /*
119  * This structure describes the elements in the cache of recent
120  * names looked up by namei.
121  */
122 struct negstate {
123 	u_char neg_flag;
124 };
125 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
126     "the state must fit in a union with a pointer without growing it");
127 
128 struct	namecache {
129 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
130 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
131 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
132 	struct	vnode *nc_dvp;		/* vnode of parent of name */
133 	union {
134 		struct	vnode *nu_vp;	/* vnode the name refers to */
135 		struct	negstate nu_neg;/* negative entry state */
136 	} n_un;
137 	u_char	nc_flag;		/* flag bits */
138 	u_char	nc_nlen;		/* length of name */
139 	char	nc_name[0];		/* segment name + nul */
140 };
141 
142 /*
143  * struct namecache_ts repeats struct namecache layout up to the
144  * nc_nlen member.
145  * struct namecache_ts is used in place of struct namecache when time(s) need
146  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
147  * both a non-dotdot directory name plus dotdot for the directory's
148  * parent.
149  *
150  * See below for alignment requirement.
151  */
152 struct	namecache_ts {
153 	struct	timespec nc_time;	/* timespec provided by fs */
154 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
155 	int	nc_ticks;		/* ticks value when entry was added */
156 	struct namecache nc_nc;
157 };
158 
159 /*
160  * At least mips n32 performs 64-bit accesses to timespec as found
161  * in namecache_ts and requires them to be aligned. Since others
162  * may be in the same spot suffer a little bit and enforce the
163  * alignment for everyone. Note this is a nop for 64-bit platforms.
164  */
165 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
166 #define	CACHE_PATH_CUTOFF	39
167 
168 #define CACHE_ZONE_SMALL_SIZE		(sizeof(struct namecache) + CACHE_PATH_CUTOFF + 1)
169 #define CACHE_ZONE_SMALL_TS_SIZE	(sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1)
170 #define CACHE_ZONE_LARGE_SIZE		(sizeof(struct namecache) + NAME_MAX + 1)
171 #define CACHE_ZONE_LARGE_TS_SIZE	(sizeof(struct namecache_ts) + NAME_MAX + 1)
172 
173 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
174 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
175 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
176 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
177 
178 #define	nc_vp		n_un.nu_vp
179 #define	nc_neg		n_un.nu_neg
180 
181 /*
182  * Flags in namecache.nc_flag
183  */
184 #define NCF_WHITE	0x01
185 #define NCF_ISDOTDOT	0x02
186 #define	NCF_TS		0x04
187 #define	NCF_DTS		0x08
188 #define	NCF_DVDROP	0x10
189 #define	NCF_NEGATIVE	0x20
190 #define	NCF_INVALID	0x40
191 #define	NCF_WIP		0x80
192 
193 /*
194  * Flags in negstate.neg_flag
195  */
196 #define NEG_HOT		0x01
197 
198 /*
199  * Mark an entry as invalid.
200  *
201  * This is called before it starts getting deconstructed.
202  */
203 static void
204 cache_ncp_invalidate(struct namecache *ncp)
205 {
206 
207 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
208 	    ("%s: entry %p already invalid", __func__, ncp));
209 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
210 	atomic_thread_fence_rel();
211 }
212 
213 /*
214  * Check whether the entry can be safely used.
215  *
216  * All places which elide locks are supposed to call this after they are
217  * done with reading from an entry.
218  */
219 static bool
220 cache_ncp_canuse(struct namecache *ncp)
221 {
222 
223 	atomic_thread_fence_acq();
224 	return ((atomic_load_char(&ncp->nc_flag) & (NCF_INVALID | NCF_WIP)) == 0);
225 }
226 
227 /*
228  * Name caching works as follows:
229  *
230  * Names found by directory scans are retained in a cache
231  * for future reference.  It is managed LRU, so frequently
232  * used names will hang around.  Cache is indexed by hash value
233  * obtained from (dvp, name) where dvp refers to the directory
234  * containing name.
235  *
236  * If it is a "negative" entry, (i.e. for a name that is known NOT to
237  * exist) the vnode pointer will be NULL.
238  *
239  * Upon reaching the last segment of a path, if the reference
240  * is for DELETE, or NOCACHE is set (rewrite), and the
241  * name is located in the cache, it will be dropped.
242  *
243  * These locks are used (in the order in which they can be taken):
244  * NAME		TYPE	ROLE
245  * vnodelock	mtx	vnode lists and v_cache_dd field protection
246  * bucketlock	rwlock	for access to given set of hash buckets
247  * neglist	mtx	negative entry LRU management
248  *
249  * Additionally, ncneg_shrink_lock mtx is used to have at most one thread
250  * shrinking the LRU list.
251  *
252  * It is legal to take multiple vnodelock and bucketlock locks. The locking
253  * order is lower address first. Both are recursive.
254  *
255  * "." lookups are lockless.
256  *
257  * ".." and vnode -> name lookups require vnodelock.
258  *
259  * name -> vnode lookup requires the relevant bucketlock to be held for reading.
260  *
261  * Insertions and removals of entries require involved vnodes and bucketlocks
262  * to be write-locked to prevent other threads from seeing the entry.
263  *
264  * Some lookups result in removal of the found entry (e.g. getting rid of a
265  * negative entry with the intent to create a positive one), which poses a
266  * problem when multiple threads reach the state. Similarly, two different
267  * threads can purge two different vnodes and try to remove the same name.
268  *
269  * If the already held vnode lock is lower than the second required lock, we
270  * can just take the other lock. However, in the opposite case, this could
271  * deadlock. As such, this is resolved by trylocking and if that fails unlocking
272  * the first node, locking everything in order and revalidating the state.
273  */
274 
275 VFS_SMR_DECLARE;
276 
277 /*
278  * Structures associated with name caching.
279  */
280 #define NCHHASH(hash) \
281 	(&nchashtbl[(hash) & nchash])
282 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
283 static u_long __read_mostly	nchash;			/* size of hash table */
284 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
285     "Size of namecache hash table");
286 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
287 SYSCTL_ULONG(_vfs, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
288     "Ratio of negative namecache entries");
289 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
290 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
291 u_int ncsizefactor = 2;
292 SYSCTL_UINT(_vfs, OID_AUTO, ncsizefactor, CTLFLAG_RW, &ncsizefactor, 0,
293     "Size factor for namecache");
294 static u_int __read_mostly	ncpurgeminvnodes;
295 SYSCTL_UINT(_vfs, OID_AUTO, ncpurgeminvnodes, CTLFLAG_RW, &ncpurgeminvnodes, 0,
296     "Number of vnodes below which purgevfs ignores the request");
297 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
298 
299 struct nchstats	nchstats;		/* cache effectiveness statistics */
300 
301 static struct mtx __exclusive_cache_line	ncneg_shrink_lock;
302 
303 struct neglist {
304 	struct mtx		nl_lock;
305 	TAILQ_HEAD(, namecache) nl_list;
306 } __aligned(CACHE_LINE_SIZE);
307 
308 static struct neglist __read_mostly	*neglists;
309 static struct neglist ncneg_hot;
310 static u_long numhotneg;
311 
312 #define ncneghash	3
313 #define	numneglists	(ncneghash + 1)
314 static inline struct neglist *
315 NCP2NEGLIST(struct namecache *ncp)
316 {
317 
318 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
319 }
320 
321 static inline struct negstate *
322 NCP2NEGSTATE(struct namecache *ncp)
323 {
324 
325 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
326 	return (&ncp->nc_neg);
327 }
328 
329 #define	numbucketlocks (ncbuckethash + 1)
330 static u_int __read_mostly  ncbuckethash;
331 static struct rwlock_padalign __read_mostly  *bucketlocks;
332 #define	HASH2BUCKETLOCK(hash) \
333 	((struct rwlock *)(&bucketlocks[((hash) & ncbuckethash)]))
334 
335 #define	numvnodelocks (ncvnodehash + 1)
336 static u_int __read_mostly  ncvnodehash;
337 static struct mtx __read_mostly *vnodelocks;
338 static inline struct mtx *
339 VP2VNODELOCK(struct vnode *vp)
340 {
341 
342 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
343 }
344 
345 /*
346  * UMA zones for the VFS cache.
347  *
348  * The small cache is used for entries with short names, which are the
349  * most common.  The large cache is used for entries which are too big to
350  * fit in the small cache.
351  */
352 static uma_zone_t __read_mostly cache_zone_small;
353 static uma_zone_t __read_mostly cache_zone_small_ts;
354 static uma_zone_t __read_mostly cache_zone_large;
355 static uma_zone_t __read_mostly cache_zone_large_ts;
356 
357 static struct namecache *
358 cache_alloc(int len, int ts)
359 {
360 	struct namecache_ts *ncp_ts;
361 	struct namecache *ncp;
362 
363 	if (__predict_false(ts)) {
364 		if (len <= CACHE_PATH_CUTOFF)
365 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
366 		else
367 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
368 		ncp = &ncp_ts->nc_nc;
369 	} else {
370 		if (len <= CACHE_PATH_CUTOFF)
371 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
372 		else
373 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
374 	}
375 	return (ncp);
376 }
377 
378 static void
379 cache_free(struct namecache *ncp)
380 {
381 	struct namecache_ts *ncp_ts;
382 
383 	if (ncp == NULL)
384 		return;
385 	if ((ncp->nc_flag & NCF_DVDROP) != 0)
386 		vdrop(ncp->nc_dvp);
387 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
388 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
389 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
390 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
391 		else
392 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
393 	} else {
394 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
395 			uma_zfree_smr(cache_zone_small, ncp);
396 		else
397 			uma_zfree_smr(cache_zone_large, ncp);
398 	}
399 }
400 
401 static void
402 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
403 {
404 	struct namecache_ts *ncp_ts;
405 
406 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
407 	    (tsp == NULL && ticksp == NULL),
408 	    ("No NCF_TS"));
409 
410 	if (tsp == NULL && ticksp == NULL)
411 		return;
412 
413 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
414 	if (tsp != NULL)
415 		*tsp = ncp_ts->nc_time;
416 	if (ticksp != NULL)
417 		*ticksp = ncp_ts->nc_ticks;
418 }
419 
420 #ifdef DEBUG_CACHE
421 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
422 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
423     "VFS namecache enabled");
424 #endif
425 
426 /* Export size information to userland */
427 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
428     sizeof(struct namecache), "sizeof(struct namecache)");
429 
430 /*
431  * The new name cache statistics
432  */
433 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
434     "Name cache statistics");
435 #define STATNODE_ULONG(name, descr)					\
436 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, descr);
437 #define STATNODE_COUNTER(name, descr)					\
438 	static COUNTER_U64_DEFINE_EARLY(name);				\
439 	SYSCTL_COUNTER_U64(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, \
440 	    descr);
441 STATNODE_ULONG(numneg, "Number of negative cache entries");
442 STATNODE_ULONG(numcache, "Number of cache entries");
443 STATNODE_COUNTER(numcachehv, "Number of namecache entries with vnodes held");
444 STATNODE_COUNTER(numdrops, "Number of dropped entries due to reaching the limit");
445 STATNODE_COUNTER(dothits, "Number of '.' hits");
446 STATNODE_COUNTER(dotdothits, "Number of '..' hits");
447 STATNODE_COUNTER(nummiss, "Number of cache misses");
448 STATNODE_COUNTER(nummisszap, "Number of cache misses we do not want to cache");
449 STATNODE_COUNTER(numposzaps,
450     "Number of cache hits (positive) we do not want to cache");
451 STATNODE_COUNTER(numposhits, "Number of cache hits (positive)");
452 STATNODE_COUNTER(numnegzaps,
453     "Number of cache hits (negative) we do not want to cache");
454 STATNODE_COUNTER(numneghits, "Number of cache hits (negative)");
455 /* These count for vn_getcwd(), too. */
456 STATNODE_COUNTER(numfullpathcalls, "Number of fullpath search calls");
457 STATNODE_COUNTER(numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
458 STATNODE_COUNTER(numfullpathfail2,
459     "Number of fullpath search errors (VOP_VPTOCNP failures)");
460 STATNODE_COUNTER(numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
461 STATNODE_COUNTER(numfullpathfound, "Number of successful fullpath calls");
462 STATNODE_COUNTER(zap_and_exit_bucket_relock_success,
463     "Number of successful removals after relocking");
464 static long zap_and_exit_bucket_fail; STATNODE_ULONG(zap_and_exit_bucket_fail,
465     "Number of times zap_and_exit failed to lock");
466 static long zap_and_exit_bucket_fail2; STATNODE_ULONG(zap_and_exit_bucket_fail2,
467     "Number of times zap_and_exit failed to lock");
468 static long cache_lock_vnodes_cel_3_failures;
469 STATNODE_ULONG(cache_lock_vnodes_cel_3_failures,
470     "Number of times 3-way vnode locking failed");
471 STATNODE_ULONG(numhotneg, "Number of hot negative entries");
472 STATNODE_COUNTER(numneg_evicted,
473     "Number of negative entries evicted when adding a new entry");
474 STATNODE_COUNTER(shrinking_skipped,
475     "Number of times shrinking was already in progress");
476 
477 static void cache_zap_locked(struct namecache *ncp);
478 static int vn_fullpath_hardlink(struct thread *td, struct nameidata *ndp, char **retbuf,
479     char **freebuf, size_t *buflen);
480 static int vn_fullpath_any(struct thread *td, struct vnode *vp, struct vnode *rdir,
481     char *buf, char **retbuf, size_t *buflen);
482 static int vn_fullpath_dir(struct thread *td, struct vnode *vp, struct vnode *rdir,
483     char *buf, char **retbuf, size_t *len, bool slash_prefixed, size_t addend);
484 
485 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
486 
487 static int cache_yield;
488 SYSCTL_INT(_vfs_cache, OID_AUTO, yield, CTLFLAG_RD, &cache_yield, 0,
489     "Number of times cache called yield");
490 
491 static void __noinline
492 cache_maybe_yield(void)
493 {
494 
495 	if (should_yield()) {
496 		cache_yield++;
497 		kern_yield(PRI_USER);
498 	}
499 }
500 
501 static inline void
502 cache_assert_vlp_locked(struct mtx *vlp)
503 {
504 
505 	if (vlp != NULL)
506 		mtx_assert(vlp, MA_OWNED);
507 }
508 
509 static inline void
510 cache_assert_vnode_locked(struct vnode *vp)
511 {
512 	struct mtx *vlp;
513 
514 	vlp = VP2VNODELOCK(vp);
515 	cache_assert_vlp_locked(vlp);
516 }
517 
518 /*
519  * TODO: With the value stored we can do better than computing the hash based
520  * on the address. The choice of FNV should also be revisited.
521  */
522 static void
523 cache_prehash(struct vnode *vp)
524 {
525 
526 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
527 }
528 
529 static uint32_t
530 cache_get_hash(char *name, u_char len, struct vnode *dvp)
531 {
532 
533 	return (fnv_32_buf(name, len, dvp->v_nchash));
534 }
535 
536 static inline struct nchashhead *
537 NCP2BUCKET(struct namecache *ncp)
538 {
539 	uint32_t hash;
540 
541 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
542 	return (NCHHASH(hash));
543 }
544 
545 static inline struct rwlock *
546 NCP2BUCKETLOCK(struct namecache *ncp)
547 {
548 	uint32_t hash;
549 
550 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
551 	return (HASH2BUCKETLOCK(hash));
552 }
553 
554 #ifdef INVARIANTS
555 static void
556 cache_assert_bucket_locked(struct namecache *ncp, int mode)
557 {
558 	struct rwlock *blp;
559 
560 	blp = NCP2BUCKETLOCK(ncp);
561 	rw_assert(blp, mode);
562 }
563 #else
564 #define cache_assert_bucket_locked(x, y) do { } while (0)
565 #endif
566 
567 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
568 static void
569 _cache_sort_vnodes(void **p1, void **p2)
570 {
571 	void *tmp;
572 
573 	MPASS(*p1 != NULL || *p2 != NULL);
574 
575 	if (*p1 > *p2) {
576 		tmp = *p2;
577 		*p2 = *p1;
578 		*p1 = tmp;
579 	}
580 }
581 
582 static void
583 cache_lock_all_buckets(void)
584 {
585 	u_int i;
586 
587 	for (i = 0; i < numbucketlocks; i++)
588 		rw_wlock(&bucketlocks[i]);
589 }
590 
591 static void
592 cache_unlock_all_buckets(void)
593 {
594 	u_int i;
595 
596 	for (i = 0; i < numbucketlocks; i++)
597 		rw_wunlock(&bucketlocks[i]);
598 }
599 
600 static void
601 cache_lock_all_vnodes(void)
602 {
603 	u_int i;
604 
605 	for (i = 0; i < numvnodelocks; i++)
606 		mtx_lock(&vnodelocks[i]);
607 }
608 
609 static void
610 cache_unlock_all_vnodes(void)
611 {
612 	u_int i;
613 
614 	for (i = 0; i < numvnodelocks; i++)
615 		mtx_unlock(&vnodelocks[i]);
616 }
617 
618 static int
619 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
620 {
621 
622 	cache_sort_vnodes(&vlp1, &vlp2);
623 
624 	if (vlp1 != NULL) {
625 		if (!mtx_trylock(vlp1))
626 			return (EAGAIN);
627 	}
628 	if (!mtx_trylock(vlp2)) {
629 		if (vlp1 != NULL)
630 			mtx_unlock(vlp1);
631 		return (EAGAIN);
632 	}
633 
634 	return (0);
635 }
636 
637 static void
638 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
639 {
640 
641 	MPASS(vlp1 != NULL || vlp2 != NULL);
642 	MPASS(vlp1 <= vlp2);
643 
644 	if (vlp1 != NULL)
645 		mtx_lock(vlp1);
646 	if (vlp2 != NULL)
647 		mtx_lock(vlp2);
648 }
649 
650 static void
651 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
652 {
653 
654 	MPASS(vlp1 != NULL || vlp2 != NULL);
655 
656 	if (vlp1 != NULL)
657 		mtx_unlock(vlp1);
658 	if (vlp2 != NULL)
659 		mtx_unlock(vlp2);
660 }
661 
662 static int
663 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
664 {
665 	struct nchstats snap;
666 
667 	if (req->oldptr == NULL)
668 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
669 
670 	snap = nchstats;
671 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
672 	snap.ncs_neghits = counter_u64_fetch(numneghits);
673 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
674 	    counter_u64_fetch(numnegzaps);
675 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
676 	    counter_u64_fetch(nummiss);
677 
678 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
679 }
680 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
681     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
682     "VFS cache effectiveness statistics");
683 
684 #ifdef DIAGNOSTIC
685 /*
686  * Grab an atomic snapshot of the name cache hash chain lengths
687  */
688 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
689     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
690     "hash table stats");
691 
692 static int
693 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
694 {
695 	struct nchashhead *ncpp;
696 	struct namecache *ncp;
697 	int i, error, n_nchash, *cntbuf;
698 
699 retry:
700 	n_nchash = nchash + 1;	/* nchash is max index, not count */
701 	if (req->oldptr == NULL)
702 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
703 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
704 	cache_lock_all_buckets();
705 	if (n_nchash != nchash + 1) {
706 		cache_unlock_all_buckets();
707 		free(cntbuf, M_TEMP);
708 		goto retry;
709 	}
710 	/* Scan hash tables counting entries */
711 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
712 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
713 			cntbuf[i]++;
714 	cache_unlock_all_buckets();
715 	for (error = 0, i = 0; i < n_nchash; i++)
716 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
717 			break;
718 	free(cntbuf, M_TEMP);
719 	return (error);
720 }
721 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
722     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
723     "nchash chain lengths");
724 
725 static int
726 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
727 {
728 	int error;
729 	struct nchashhead *ncpp;
730 	struct namecache *ncp;
731 	int n_nchash;
732 	int count, maxlength, used, pct;
733 
734 	if (!req->oldptr)
735 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
736 
737 	cache_lock_all_buckets();
738 	n_nchash = nchash + 1;	/* nchash is max index, not count */
739 	used = 0;
740 	maxlength = 0;
741 
742 	/* Scan hash tables for applicable entries */
743 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
744 		count = 0;
745 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
746 			count++;
747 		}
748 		if (count)
749 			used++;
750 		if (maxlength < count)
751 			maxlength = count;
752 	}
753 	n_nchash = nchash + 1;
754 	cache_unlock_all_buckets();
755 	pct = (used * 100) / (n_nchash / 100);
756 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
757 	if (error)
758 		return (error);
759 	error = SYSCTL_OUT(req, &used, sizeof(used));
760 	if (error)
761 		return (error);
762 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
763 	if (error)
764 		return (error);
765 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
766 	if (error)
767 		return (error);
768 	return (0);
769 }
770 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
771     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
772     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
773 #endif
774 
775 /*
776  * Negative entries management
777  *
778  * A variation of LRU scheme is used. New entries are hashed into one of
779  * numneglists cold lists. Entries get promoted to the hot list on first hit.
780  *
781  * The shrinker will demote hot list head and evict from the cold list in a
782  * round-robin manner.
783  */
784 static void
785 cache_negative_init(struct namecache *ncp)
786 {
787 	struct negstate *negstate;
788 
789 	ncp->nc_flag |= NCF_NEGATIVE;
790 	negstate = NCP2NEGSTATE(ncp);
791 	negstate->neg_flag = 0;
792 }
793 
794 static void
795 cache_negative_hit(struct namecache *ncp)
796 {
797 	struct neglist *neglist;
798 	struct negstate *negstate;
799 
800 	negstate = NCP2NEGSTATE(ncp);
801 	if ((negstate->neg_flag & NEG_HOT) != 0)
802 		return;
803 	neglist = NCP2NEGLIST(ncp);
804 	mtx_lock(&ncneg_hot.nl_lock);
805 	mtx_lock(&neglist->nl_lock);
806 	if ((negstate->neg_flag & NEG_HOT) == 0) {
807 		numhotneg++;
808 		TAILQ_REMOVE(&neglist->nl_list, ncp, nc_dst);
809 		TAILQ_INSERT_TAIL(&ncneg_hot.nl_list, ncp, nc_dst);
810 		negstate->neg_flag |= NEG_HOT;
811 	}
812 	mtx_unlock(&neglist->nl_lock);
813 	mtx_unlock(&ncneg_hot.nl_lock);
814 }
815 
816 static void
817 cache_negative_insert(struct namecache *ncp)
818 {
819 	struct neglist *neglist;
820 
821 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
822 	cache_assert_bucket_locked(ncp, RA_WLOCKED);
823 	neglist = NCP2NEGLIST(ncp);
824 	mtx_lock(&neglist->nl_lock);
825 	TAILQ_INSERT_TAIL(&neglist->nl_list, ncp, nc_dst);
826 	mtx_unlock(&neglist->nl_lock);
827 	atomic_add_rel_long(&numneg, 1);
828 }
829 
830 static void
831 cache_negative_remove(struct namecache *ncp)
832 {
833 	struct neglist *neglist;
834 	struct negstate *negstate;
835 	bool hot_locked = false;
836 	bool list_locked = false;
837 
838 	cache_assert_bucket_locked(ncp, RA_WLOCKED);
839 	neglist = NCP2NEGLIST(ncp);
840 	negstate = NCP2NEGSTATE(ncp);
841 	if ((negstate->neg_flag & NEG_HOT) != 0) {
842 		hot_locked = true;
843 		mtx_lock(&ncneg_hot.nl_lock);
844 		if ((negstate->neg_flag & NEG_HOT) == 0) {
845 			list_locked = true;
846 			mtx_lock(&neglist->nl_lock);
847 		}
848 	} else {
849 		list_locked = true;
850 		mtx_lock(&neglist->nl_lock);
851 		/*
852 		 * We may be racing against promotion in lockless lookup.
853 		 */
854 		if ((negstate->neg_flag & NEG_HOT) != 0) {
855 			mtx_unlock(&neglist->nl_lock);
856 			hot_locked = true;
857 			mtx_lock(&ncneg_hot.nl_lock);
858 			mtx_lock(&neglist->nl_lock);
859 		}
860 	}
861 	if ((negstate->neg_flag & NEG_HOT) != 0) {
862 		mtx_assert(&ncneg_hot.nl_lock, MA_OWNED);
863 		TAILQ_REMOVE(&ncneg_hot.nl_list, ncp, nc_dst);
864 		numhotneg--;
865 	} else {
866 		mtx_assert(&neglist->nl_lock, MA_OWNED);
867 		TAILQ_REMOVE(&neglist->nl_list, ncp, nc_dst);
868 	}
869 	if (list_locked)
870 		mtx_unlock(&neglist->nl_lock);
871 	if (hot_locked)
872 		mtx_unlock(&ncneg_hot.nl_lock);
873 	atomic_subtract_rel_long(&numneg, 1);
874 }
875 
876 static void
877 cache_negative_shrink_select(struct namecache **ncpp,
878     struct neglist **neglistpp)
879 {
880 	struct neglist *neglist;
881 	struct namecache *ncp;
882 	static u_int cycle;
883 	u_int i;
884 
885 	*ncpp = ncp = NULL;
886 
887 	for (i = 0; i < numneglists; i++) {
888 		neglist = &neglists[(cycle + i) % numneglists];
889 		if (TAILQ_FIRST(&neglist->nl_list) == NULL)
890 			continue;
891 		mtx_lock(&neglist->nl_lock);
892 		ncp = TAILQ_FIRST(&neglist->nl_list);
893 		if (ncp != NULL)
894 			break;
895 		mtx_unlock(&neglist->nl_lock);
896 	}
897 
898 	*neglistpp = neglist;
899 	*ncpp = ncp;
900 	cycle++;
901 }
902 
903 static void
904 cache_negative_zap_one(void)
905 {
906 	struct namecache *ncp, *ncp2;
907 	struct neglist *neglist;
908 	struct negstate *negstate;
909 	struct mtx *dvlp;
910 	struct rwlock *blp;
911 
912 	if (mtx_owner(&ncneg_shrink_lock) != NULL ||
913 	    !mtx_trylock(&ncneg_shrink_lock)) {
914 		counter_u64_add(shrinking_skipped, 1);
915 		return;
916 	}
917 
918 	mtx_lock(&ncneg_hot.nl_lock);
919 	ncp = TAILQ_FIRST(&ncneg_hot.nl_list);
920 	if (ncp != NULL) {
921 		neglist = NCP2NEGLIST(ncp);
922 		negstate = NCP2NEGSTATE(ncp);
923 		mtx_lock(&neglist->nl_lock);
924 		MPASS((negstate->neg_flag & NEG_HOT) != 0);
925 		TAILQ_REMOVE(&ncneg_hot.nl_list, ncp, nc_dst);
926 		TAILQ_INSERT_TAIL(&neglist->nl_list, ncp, nc_dst);
927 		negstate->neg_flag &= ~NEG_HOT;
928 		numhotneg--;
929 		mtx_unlock(&neglist->nl_lock);
930 	}
931 	mtx_unlock(&ncneg_hot.nl_lock);
932 
933 	cache_negative_shrink_select(&ncp, &neglist);
934 
935 	mtx_unlock(&ncneg_shrink_lock);
936 	if (ncp == NULL)
937 		return;
938 
939 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
940 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
941 	blp = NCP2BUCKETLOCK(ncp);
942 	mtx_unlock(&neglist->nl_lock);
943 	mtx_lock(dvlp);
944 	rw_wlock(blp);
945 	/*
946 	 * Enter SMR to safely check the negative list.
947 	 * Even if the found pointer matches, the entry may now be reallocated
948 	 * and used by a different vnode.
949 	 */
950 	vfs_smr_enter();
951 	ncp2 = TAILQ_FIRST(&neglist->nl_list);
952 	if (ncp != ncp2 || dvlp != VP2VNODELOCK(ncp2->nc_dvp) ||
953 	    blp != NCP2BUCKETLOCK(ncp2)) {
954 		vfs_smr_exit();
955 		ncp = NULL;
956 	} else {
957 		vfs_smr_exit();
958 		SDT_PROBE2(vfs, namecache, shrink_negative, done, ncp->nc_dvp,
959 		    ncp->nc_name);
960 		cache_zap_locked(ncp);
961 		counter_u64_add(numneg_evicted, 1);
962 	}
963 	rw_wunlock(blp);
964 	mtx_unlock(dvlp);
965 	cache_free(ncp);
966 }
967 
968 /*
969  * cache_zap_locked():
970  *
971  *   Removes a namecache entry from cache, whether it contains an actual
972  *   pointer to a vnode or if it is just a negative cache entry.
973  */
974 static void
975 cache_zap_locked(struct namecache *ncp)
976 {
977 	struct nchashhead *ncpp;
978 
979 	if (!(ncp->nc_flag & NCF_NEGATIVE))
980 		cache_assert_vnode_locked(ncp->nc_vp);
981 	cache_assert_vnode_locked(ncp->nc_dvp);
982 	cache_assert_bucket_locked(ncp, RA_WLOCKED);
983 
984 	CTR2(KTR_VFS, "cache_zap(%p) vp %p", ncp,
985 	    (ncp->nc_flag & NCF_NEGATIVE) ? NULL : ncp->nc_vp);
986 
987 	cache_ncp_invalidate(ncp);
988 
989 	ncpp = NCP2BUCKET(ncp);
990 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
991 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
992 		SDT_PROBE3(vfs, namecache, zap, done, ncp->nc_dvp,
993 		    ncp->nc_name, ncp->nc_vp);
994 		TAILQ_REMOVE(&ncp->nc_vp->v_cache_dst, ncp, nc_dst);
995 		if (ncp == ncp->nc_vp->v_cache_dd) {
996 			vn_seqc_write_begin_unheld(ncp->nc_vp);
997 			ncp->nc_vp->v_cache_dd = NULL;
998 			vn_seqc_write_end(ncp->nc_vp);
999 		}
1000 	} else {
1001 		SDT_PROBE2(vfs, namecache, zap_negative, done, ncp->nc_dvp,
1002 		    ncp->nc_name);
1003 		cache_negative_remove(ncp);
1004 	}
1005 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1006 		if (ncp == ncp->nc_dvp->v_cache_dd) {
1007 			vn_seqc_write_begin_unheld(ncp->nc_dvp);
1008 			ncp->nc_dvp->v_cache_dd = NULL;
1009 			vn_seqc_write_end(ncp->nc_dvp);
1010 		}
1011 	} else {
1012 		LIST_REMOVE(ncp, nc_src);
1013 		if (LIST_EMPTY(&ncp->nc_dvp->v_cache_src)) {
1014 			ncp->nc_flag |= NCF_DVDROP;
1015 			counter_u64_add(numcachehv, -1);
1016 		}
1017 	}
1018 	atomic_subtract_rel_long(&numcache, 1);
1019 }
1020 
1021 static void
1022 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1023 {
1024 	struct rwlock *blp;
1025 
1026 	MPASS(ncp->nc_dvp == vp);
1027 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1028 	cache_assert_vnode_locked(vp);
1029 
1030 	blp = NCP2BUCKETLOCK(ncp);
1031 	rw_wlock(blp);
1032 	cache_zap_locked(ncp);
1033 	rw_wunlock(blp);
1034 }
1035 
1036 static bool
1037 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1038     struct mtx **vlpp)
1039 {
1040 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1041 	struct rwlock *blp;
1042 
1043 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1044 	cache_assert_vnode_locked(vp);
1045 
1046 	if (ncp->nc_flag & NCF_NEGATIVE) {
1047 		if (*vlpp != NULL) {
1048 			mtx_unlock(*vlpp);
1049 			*vlpp = NULL;
1050 		}
1051 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1052 		return (true);
1053 	}
1054 
1055 	pvlp = VP2VNODELOCK(vp);
1056 	blp = NCP2BUCKETLOCK(ncp);
1057 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1058 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1059 
1060 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1061 		to_unlock = *vlpp;
1062 		*vlpp = NULL;
1063 	} else {
1064 		if (*vlpp != NULL) {
1065 			mtx_unlock(*vlpp);
1066 			*vlpp = NULL;
1067 		}
1068 		cache_sort_vnodes(&vlp1, &vlp2);
1069 		if (vlp1 == pvlp) {
1070 			mtx_lock(vlp2);
1071 			to_unlock = vlp2;
1072 		} else {
1073 			if (!mtx_trylock(vlp1))
1074 				goto out_relock;
1075 			to_unlock = vlp1;
1076 		}
1077 	}
1078 	rw_wlock(blp);
1079 	cache_zap_locked(ncp);
1080 	rw_wunlock(blp);
1081 	if (to_unlock != NULL)
1082 		mtx_unlock(to_unlock);
1083 	return (true);
1084 
1085 out_relock:
1086 	mtx_unlock(vlp2);
1087 	mtx_lock(vlp1);
1088 	mtx_lock(vlp2);
1089 	MPASS(*vlpp == NULL);
1090 	*vlpp = vlp1;
1091 	return (false);
1092 }
1093 
1094 static int __noinline
1095 cache_zap_locked_vnode(struct namecache *ncp, struct vnode *vp)
1096 {
1097 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1098 	struct rwlock *blp;
1099 	int error = 0;
1100 
1101 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1102 	cache_assert_vnode_locked(vp);
1103 
1104 	pvlp = VP2VNODELOCK(vp);
1105 	if (ncp->nc_flag & NCF_NEGATIVE) {
1106 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1107 		goto out;
1108 	}
1109 
1110 	blp = NCP2BUCKETLOCK(ncp);
1111 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1112 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1113 	cache_sort_vnodes(&vlp1, &vlp2);
1114 	if (vlp1 == pvlp) {
1115 		mtx_lock(vlp2);
1116 		to_unlock = vlp2;
1117 	} else {
1118 		if (!mtx_trylock(vlp1)) {
1119 			error = EAGAIN;
1120 			goto out;
1121 		}
1122 		to_unlock = vlp1;
1123 	}
1124 	rw_wlock(blp);
1125 	cache_zap_locked(ncp);
1126 	rw_wunlock(blp);
1127 	mtx_unlock(to_unlock);
1128 out:
1129 	mtx_unlock(pvlp);
1130 	return (error);
1131 }
1132 
1133 /*
1134  * If trylocking failed we can get here. We know enough to take all needed locks
1135  * in the right order and re-lookup the entry.
1136  */
1137 static int
1138 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1139     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1140     struct rwlock *blp)
1141 {
1142 	struct namecache *rncp;
1143 
1144 	cache_assert_bucket_locked(ncp, RA_UNLOCKED);
1145 
1146 	cache_sort_vnodes(&dvlp, &vlp);
1147 	cache_lock_vnodes(dvlp, vlp);
1148 	rw_wlock(blp);
1149 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1150 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1151 		    rncp->nc_nlen == cnp->cn_namelen &&
1152 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1153 			break;
1154 	}
1155 	if (rncp != NULL) {
1156 		cache_zap_locked(rncp);
1157 		rw_wunlock(blp);
1158 		cache_unlock_vnodes(dvlp, vlp);
1159 		counter_u64_add(zap_and_exit_bucket_relock_success, 1);
1160 		return (0);
1161 	}
1162 
1163 	rw_wunlock(blp);
1164 	cache_unlock_vnodes(dvlp, vlp);
1165 	return (EAGAIN);
1166 }
1167 
1168 static int __noinline
1169 cache_zap_wlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1170     uint32_t hash, struct rwlock *blp)
1171 {
1172 	struct mtx *dvlp, *vlp;
1173 	struct vnode *dvp;
1174 
1175 	cache_assert_bucket_locked(ncp, RA_WLOCKED);
1176 
1177 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1178 	vlp = NULL;
1179 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1180 		vlp = VP2VNODELOCK(ncp->nc_vp);
1181 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1182 		cache_zap_locked(ncp);
1183 		rw_wunlock(blp);
1184 		cache_unlock_vnodes(dvlp, vlp);
1185 		return (0);
1186 	}
1187 
1188 	dvp = ncp->nc_dvp;
1189 	rw_wunlock(blp);
1190 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1191 }
1192 
1193 static int __noinline
1194 cache_zap_rlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1195     uint32_t hash, struct rwlock *blp)
1196 {
1197 	struct mtx *dvlp, *vlp;
1198 	struct vnode *dvp;
1199 
1200 	cache_assert_bucket_locked(ncp, RA_RLOCKED);
1201 
1202 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1203 	vlp = NULL;
1204 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1205 		vlp = VP2VNODELOCK(ncp->nc_vp);
1206 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1207 		rw_runlock(blp);
1208 		rw_wlock(blp);
1209 		cache_zap_locked(ncp);
1210 		rw_wunlock(blp);
1211 		cache_unlock_vnodes(dvlp, vlp);
1212 		return (0);
1213 	}
1214 
1215 	dvp = ncp->nc_dvp;
1216 	rw_runlock(blp);
1217 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1218 }
1219 
1220 static int
1221 cache_zap_wlocked_bucket_kl(struct namecache *ncp, struct rwlock *blp,
1222     struct mtx **vlpp1, struct mtx **vlpp2)
1223 {
1224 	struct mtx *dvlp, *vlp;
1225 
1226 	cache_assert_bucket_locked(ncp, RA_WLOCKED);
1227 
1228 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1229 	vlp = NULL;
1230 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1231 		vlp = VP2VNODELOCK(ncp->nc_vp);
1232 	cache_sort_vnodes(&dvlp, &vlp);
1233 
1234 	if (*vlpp1 == dvlp && *vlpp2 == vlp) {
1235 		cache_zap_locked(ncp);
1236 		cache_unlock_vnodes(dvlp, vlp);
1237 		*vlpp1 = NULL;
1238 		*vlpp2 = NULL;
1239 		return (0);
1240 	}
1241 
1242 	if (*vlpp1 != NULL)
1243 		mtx_unlock(*vlpp1);
1244 	if (*vlpp2 != NULL)
1245 		mtx_unlock(*vlpp2);
1246 	*vlpp1 = NULL;
1247 	*vlpp2 = NULL;
1248 
1249 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1250 		cache_zap_locked(ncp);
1251 		cache_unlock_vnodes(dvlp, vlp);
1252 		return (0);
1253 	}
1254 
1255 	rw_wunlock(blp);
1256 	*vlpp1 = dvlp;
1257 	*vlpp2 = vlp;
1258 	if (*vlpp1 != NULL)
1259 		mtx_lock(*vlpp1);
1260 	mtx_lock(*vlpp2);
1261 	rw_wlock(blp);
1262 	return (EAGAIN);
1263 }
1264 
1265 static void
1266 cache_lookup_unlock(struct rwlock *blp, struct mtx *vlp)
1267 {
1268 
1269 	if (blp != NULL) {
1270 		rw_runlock(blp);
1271 	} else {
1272 		mtx_unlock(vlp);
1273 	}
1274 }
1275 
1276 static int __noinline
1277 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1278     struct timespec *tsp, int *ticksp)
1279 {
1280 	int ltype;
1281 
1282 	*vpp = dvp;
1283 	CTR2(KTR_VFS, "cache_lookup(%p, %s) found via .",
1284 			dvp, cnp->cn_nameptr);
1285 	counter_u64_add(dothits, 1);
1286 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1287 	if (tsp != NULL)
1288 		timespecclear(tsp);
1289 	if (ticksp != NULL)
1290 		*ticksp = ticks;
1291 	vrefact(*vpp);
1292 	/*
1293 	 * When we lookup "." we still can be asked to lock it
1294 	 * differently...
1295 	 */
1296 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1297 	if (ltype != VOP_ISLOCKED(*vpp)) {
1298 		if (ltype == LK_EXCLUSIVE) {
1299 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1300 			if (VN_IS_DOOMED((*vpp))) {
1301 				/* forced unmount */
1302 				vrele(*vpp);
1303 				*vpp = NULL;
1304 				return (ENOENT);
1305 			}
1306 		} else
1307 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1308 	}
1309 	return (-1);
1310 }
1311 
1312 static __noinline int
1313 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1314 {
1315 	struct namecache *ncp;
1316 	struct rwlock *blp;
1317 	struct mtx *dvlp, *dvlp2;
1318 	uint32_t hash;
1319 	int error;
1320 
1321 	if (cnp->cn_namelen == 2 &&
1322 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1323 		dvlp = VP2VNODELOCK(dvp);
1324 		dvlp2 = NULL;
1325 		mtx_lock(dvlp);
1326 retry_dotdot:
1327 		ncp = dvp->v_cache_dd;
1328 		if (ncp == NULL) {
1329 			mtx_unlock(dvlp);
1330 			if (dvlp2 != NULL)
1331 				mtx_unlock(dvlp2);
1332 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1333 			return (0);
1334 		}
1335 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1336 			if (ncp->nc_dvp != dvp)
1337 				panic("dvp %p v_cache_dd %p\n", dvp, ncp);
1338 			if (!cache_zap_locked_vnode_kl2(ncp,
1339 			    dvp, &dvlp2))
1340 				goto retry_dotdot;
1341 			MPASS(dvp->v_cache_dd == NULL);
1342 			mtx_unlock(dvlp);
1343 			if (dvlp2 != NULL)
1344 				mtx_unlock(dvlp2);
1345 			cache_free(ncp);
1346 		} else {
1347 			vn_seqc_write_begin(dvp);
1348 			dvp->v_cache_dd = NULL;
1349 			vn_seqc_write_end(dvp);
1350 			mtx_unlock(dvlp);
1351 			if (dvlp2 != NULL)
1352 				mtx_unlock(dvlp2);
1353 		}
1354 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1355 		return (1);
1356 	}
1357 
1358 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1359 	blp = HASH2BUCKETLOCK(hash);
1360 retry:
1361 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1362 		goto out_no_entry;
1363 
1364 	rw_wlock(blp);
1365 
1366 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1367 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1368 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1369 			break;
1370 	}
1371 
1372 	/* We failed to find an entry */
1373 	if (ncp == NULL) {
1374 		rw_wunlock(blp);
1375 		goto out_no_entry;
1376 	}
1377 
1378 	error = cache_zap_wlocked_bucket(ncp, cnp, hash, blp);
1379 	if (__predict_false(error != 0)) {
1380 		zap_and_exit_bucket_fail++;
1381 		cache_maybe_yield();
1382 		goto retry;
1383 	}
1384 	counter_u64_add(numposzaps, 1);
1385 	cache_free(ncp);
1386 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1387 	return (1);
1388 out_no_entry:
1389 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1390 	counter_u64_add(nummisszap, 1);
1391 	return (0);
1392 }
1393 
1394 /**
1395  * Lookup a name in the name cache
1396  *
1397  * # Arguments
1398  *
1399  * - dvp:	Parent directory in which to search.
1400  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1401  * - cnp:	Parameters of the name search.  The most interesting bits of
1402  *   		the cn_flags field have the following meanings:
1403  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1404  *   			it up.
1405  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1406  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1407  *   		or negative) lookup, tsp will be filled with any timespec that
1408  *   		was stored when this cache entry was created.  However, it will
1409  *   		be clear for "." entries.
1410  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1411  *   		(positive or negative) lookup, it will contain the ticks value
1412  *   		that was current when the cache entry was created, unless cnp
1413  *   		was ".".
1414  *
1415  * # Returns
1416  *
1417  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1418  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1419  *		to a forced unmount.  vpp will not be modified.  If the entry
1420  *		is a whiteout, then the ISWHITEOUT flag will be set in
1421  *		cnp->cn_flags.
1422  * - 0:		A cache miss.  vpp will not be modified.
1423  *
1424  * # Locking
1425  *
1426  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1427  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1428  * lock is not recursively acquired.
1429  */
1430 int
1431 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1432     struct timespec *tsp, int *ticksp)
1433 {
1434 	struct namecache_ts *ncp_ts;
1435 	struct namecache *ncp;
1436 	struct negstate *negstate;
1437 	struct rwlock *blp;
1438 	struct mtx *dvlp;
1439 	uint32_t hash;
1440 	enum vgetstate vs;
1441 	int error, ltype;
1442 	bool try_smr, doing_smr, whiteout;
1443 
1444 #ifdef DEBUG_CACHE
1445 	if (__predict_false(!doingcache)) {
1446 		cnp->cn_flags &= ~MAKEENTRY;
1447 		return (0);
1448 	}
1449 #endif
1450 
1451 	if (__predict_false(cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.'))
1452 		return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
1453 
1454 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1455 		cache_remove_cnp(dvp, cnp);
1456 		return (0);
1457 	}
1458 
1459 	try_smr = true;
1460 	if (cnp->cn_nameiop == CREATE)
1461 		try_smr = false;
1462 retry:
1463 	doing_smr = false;
1464 	blp = NULL;
1465 	dvlp = NULL;
1466 	error = 0;
1467 	if (cnp->cn_namelen == 2 &&
1468 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1469 		counter_u64_add(dotdothits, 1);
1470 		dvlp = VP2VNODELOCK(dvp);
1471 		mtx_lock(dvlp);
1472 		ncp = dvp->v_cache_dd;
1473 		if (ncp == NULL) {
1474 			SDT_PROBE3(vfs, namecache, lookup, miss, dvp,
1475 			    "..", NULL);
1476 			mtx_unlock(dvlp);
1477 			return (0);
1478 		}
1479 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1480 			if (ncp->nc_flag & NCF_NEGATIVE)
1481 				*vpp = NULL;
1482 			else
1483 				*vpp = ncp->nc_vp;
1484 		} else
1485 			*vpp = ncp->nc_dvp;
1486 		/* Return failure if negative entry was found. */
1487 		if (*vpp == NULL)
1488 			goto negative_success;
1489 		CTR3(KTR_VFS, "cache_lookup(%p, %s) found %p via ..",
1490 		    dvp, cnp->cn_nameptr, *vpp);
1491 		SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..",
1492 		    *vpp);
1493 		cache_out_ts(ncp, tsp, ticksp);
1494 		if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1495 		    NCF_DTS && tsp != NULL) {
1496 			ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1497 			*tsp = ncp_ts->nc_dotdottime;
1498 		}
1499 		goto success;
1500 	}
1501 
1502 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1503 retry_hashed:
1504 	if (try_smr) {
1505 		vfs_smr_enter();
1506 		doing_smr = true;
1507 		try_smr = false;
1508 	} else {
1509 		blp = HASH2BUCKETLOCK(hash);
1510 		rw_rlock(blp);
1511 	}
1512 
1513 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1514 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1515 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1516 			break;
1517 	}
1518 
1519 	/* We failed to find an entry */
1520 	if (__predict_false(ncp == NULL)) {
1521 		if (doing_smr)
1522 			vfs_smr_exit();
1523 		else
1524 			rw_runlock(blp);
1525 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1526 		    NULL);
1527 		counter_u64_add(nummiss, 1);
1528 		return (0);
1529 	}
1530 
1531 	if (ncp->nc_flag & NCF_NEGATIVE)
1532 		goto negative_success;
1533 
1534 	/* We found a "positive" match, return the vnode */
1535 	counter_u64_add(numposhits, 1);
1536 	*vpp = ncp->nc_vp;
1537 	CTR4(KTR_VFS, "cache_lookup(%p, %s) found %p via ncp %p",
1538 	    dvp, cnp->cn_nameptr, *vpp, ncp);
1539 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name,
1540 	    *vpp);
1541 	cache_out_ts(ncp, tsp, ticksp);
1542 success:
1543 	/*
1544 	 * On success we return a locked and ref'd vnode as per the lookup
1545 	 * protocol.
1546 	 */
1547 	MPASS(dvp != *vpp);
1548 	ltype = 0;	/* silence gcc warning */
1549 	if (cnp->cn_flags & ISDOTDOT) {
1550 		ltype = VOP_ISLOCKED(dvp);
1551 		VOP_UNLOCK(dvp);
1552 	}
1553 	if (doing_smr) {
1554 		if (!cache_ncp_canuse(ncp)) {
1555 			vfs_smr_exit();
1556 			*vpp = NULL;
1557 			goto retry;
1558 		}
1559 		vs = vget_prep_smr(*vpp);
1560 		vfs_smr_exit();
1561 		if (__predict_false(vs == VGET_NONE)) {
1562 			*vpp = NULL;
1563 			goto retry;
1564 		}
1565 	} else {
1566 		vs = vget_prep(*vpp);
1567 		cache_lookup_unlock(blp, dvlp);
1568 	}
1569 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1570 	if (cnp->cn_flags & ISDOTDOT) {
1571 		vn_lock(dvp, ltype | LK_RETRY);
1572 		if (VN_IS_DOOMED(dvp)) {
1573 			if (error == 0)
1574 				vput(*vpp);
1575 			*vpp = NULL;
1576 			return (ENOENT);
1577 		}
1578 	}
1579 	if (error) {
1580 		*vpp = NULL;
1581 		goto retry;
1582 	}
1583 	if ((cnp->cn_flags & ISLASTCN) &&
1584 	    (cnp->cn_lkflags & LK_TYPE_MASK) == LK_EXCLUSIVE) {
1585 		ASSERT_VOP_ELOCKED(*vpp, "cache_lookup");
1586 	}
1587 	return (-1);
1588 
1589 negative_success:
1590 	/* We found a negative match, and want to create it, so purge */
1591 	if (cnp->cn_nameiop == CREATE) {
1592 		MPASS(!doing_smr);
1593 		counter_u64_add(numnegzaps, 1);
1594 		goto zap_and_exit;
1595 	}
1596 
1597 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp, ncp->nc_name);
1598 	cache_out_ts(ncp, tsp, ticksp);
1599 	counter_u64_add(numneghits, 1);
1600 	whiteout = (ncp->nc_flag & NCF_WHITE);
1601 
1602 	if (doing_smr) {
1603 		/*
1604 		 * We need to take locks to promote an entry.
1605 		 */
1606 		negstate = NCP2NEGSTATE(ncp);
1607 		if ((negstate->neg_flag & NEG_HOT) == 0 ||
1608 		    !cache_ncp_canuse(ncp)) {
1609 			vfs_smr_exit();
1610 			doing_smr = false;
1611 			goto retry_hashed;
1612 		}
1613 		vfs_smr_exit();
1614 	} else {
1615 		cache_negative_hit(ncp);
1616 		cache_lookup_unlock(blp, dvlp);
1617 	}
1618 	if (whiteout)
1619 		cnp->cn_flags |= ISWHITEOUT;
1620 	return (ENOENT);
1621 
1622 zap_and_exit:
1623 	MPASS(!doing_smr);
1624 	if (blp != NULL)
1625 		error = cache_zap_rlocked_bucket(ncp, cnp, hash, blp);
1626 	else
1627 		error = cache_zap_locked_vnode(ncp, dvp);
1628 	if (__predict_false(error != 0)) {
1629 		zap_and_exit_bucket_fail2++;
1630 		cache_maybe_yield();
1631 		goto retry;
1632 	}
1633 	cache_free(ncp);
1634 	return (0);
1635 }
1636 
1637 struct celockstate {
1638 	struct mtx *vlp[3];
1639 	struct rwlock *blp[2];
1640 };
1641 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
1642 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
1643 
1644 static inline void
1645 cache_celockstate_init(struct celockstate *cel)
1646 {
1647 
1648 	bzero(cel, sizeof(*cel));
1649 }
1650 
1651 static void
1652 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
1653     struct vnode *dvp)
1654 {
1655 	struct mtx *vlp1, *vlp2;
1656 
1657 	MPASS(cel->vlp[0] == NULL);
1658 	MPASS(cel->vlp[1] == NULL);
1659 	MPASS(cel->vlp[2] == NULL);
1660 
1661 	MPASS(vp != NULL || dvp != NULL);
1662 
1663 	vlp1 = VP2VNODELOCK(vp);
1664 	vlp2 = VP2VNODELOCK(dvp);
1665 	cache_sort_vnodes(&vlp1, &vlp2);
1666 
1667 	if (vlp1 != NULL) {
1668 		mtx_lock(vlp1);
1669 		cel->vlp[0] = vlp1;
1670 	}
1671 	mtx_lock(vlp2);
1672 	cel->vlp[1] = vlp2;
1673 }
1674 
1675 static void
1676 cache_unlock_vnodes_cel(struct celockstate *cel)
1677 {
1678 
1679 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
1680 
1681 	if (cel->vlp[0] != NULL)
1682 		mtx_unlock(cel->vlp[0]);
1683 	if (cel->vlp[1] != NULL)
1684 		mtx_unlock(cel->vlp[1]);
1685 	if (cel->vlp[2] != NULL)
1686 		mtx_unlock(cel->vlp[2]);
1687 }
1688 
1689 static bool
1690 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
1691 {
1692 	struct mtx *vlp;
1693 	bool ret;
1694 
1695 	cache_assert_vlp_locked(cel->vlp[0]);
1696 	cache_assert_vlp_locked(cel->vlp[1]);
1697 	MPASS(cel->vlp[2] == NULL);
1698 
1699 	MPASS(vp != NULL);
1700 	vlp = VP2VNODELOCK(vp);
1701 
1702 	ret = true;
1703 	if (vlp >= cel->vlp[1]) {
1704 		mtx_lock(vlp);
1705 	} else {
1706 		if (mtx_trylock(vlp))
1707 			goto out;
1708 		cache_lock_vnodes_cel_3_failures++;
1709 		cache_unlock_vnodes_cel(cel);
1710 		if (vlp < cel->vlp[0]) {
1711 			mtx_lock(vlp);
1712 			mtx_lock(cel->vlp[0]);
1713 			mtx_lock(cel->vlp[1]);
1714 		} else {
1715 			if (cel->vlp[0] != NULL)
1716 				mtx_lock(cel->vlp[0]);
1717 			mtx_lock(vlp);
1718 			mtx_lock(cel->vlp[1]);
1719 		}
1720 		ret = false;
1721 	}
1722 out:
1723 	cel->vlp[2] = vlp;
1724 	return (ret);
1725 }
1726 
1727 static void
1728 cache_lock_buckets_cel(struct celockstate *cel, struct rwlock *blp1,
1729     struct rwlock *blp2)
1730 {
1731 
1732 	MPASS(cel->blp[0] == NULL);
1733 	MPASS(cel->blp[1] == NULL);
1734 
1735 	cache_sort_vnodes(&blp1, &blp2);
1736 
1737 	if (blp1 != NULL) {
1738 		rw_wlock(blp1);
1739 		cel->blp[0] = blp1;
1740 	}
1741 	rw_wlock(blp2);
1742 	cel->blp[1] = blp2;
1743 }
1744 
1745 static void
1746 cache_unlock_buckets_cel(struct celockstate *cel)
1747 {
1748 
1749 	if (cel->blp[0] != NULL)
1750 		rw_wunlock(cel->blp[0]);
1751 	rw_wunlock(cel->blp[1]);
1752 }
1753 
1754 /*
1755  * Lock part of the cache affected by the insertion.
1756  *
1757  * This means vnodelocks for dvp, vp and the relevant bucketlock.
1758  * However, insertion can result in removal of an old entry. In this
1759  * case we have an additional vnode and bucketlock pair to lock. If the
1760  * entry is negative, ncelock is locked instead of the vnode.
1761  *
1762  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
1763  * preserving the locking order (smaller address first).
1764  */
1765 static void
1766 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
1767     uint32_t hash)
1768 {
1769 	struct namecache *ncp;
1770 	struct rwlock *blps[2];
1771 
1772 	blps[0] = HASH2BUCKETLOCK(hash);
1773 	for (;;) {
1774 		blps[1] = NULL;
1775 		cache_lock_vnodes_cel(cel, dvp, vp);
1776 		if (vp == NULL || vp->v_type != VDIR)
1777 			break;
1778 		ncp = vp->v_cache_dd;
1779 		if (ncp == NULL)
1780 			break;
1781 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
1782 			break;
1783 		MPASS(ncp->nc_dvp == vp);
1784 		blps[1] = NCP2BUCKETLOCK(ncp);
1785 		if (ncp->nc_flag & NCF_NEGATIVE)
1786 			break;
1787 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
1788 			break;
1789 		/*
1790 		 * All vnodes got re-locked. Re-validate the state and if
1791 		 * nothing changed we are done. Otherwise restart.
1792 		 */
1793 		if (ncp == vp->v_cache_dd &&
1794 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
1795 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
1796 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
1797 			break;
1798 		cache_unlock_vnodes_cel(cel);
1799 		cel->vlp[0] = NULL;
1800 		cel->vlp[1] = NULL;
1801 		cel->vlp[2] = NULL;
1802 	}
1803 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
1804 }
1805 
1806 static void
1807 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
1808     uint32_t hash)
1809 {
1810 	struct namecache *ncp;
1811 	struct rwlock *blps[2];
1812 
1813 	blps[0] = HASH2BUCKETLOCK(hash);
1814 	for (;;) {
1815 		blps[1] = NULL;
1816 		cache_lock_vnodes_cel(cel, dvp, vp);
1817 		ncp = dvp->v_cache_dd;
1818 		if (ncp == NULL)
1819 			break;
1820 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
1821 			break;
1822 		MPASS(ncp->nc_dvp == dvp);
1823 		blps[1] = NCP2BUCKETLOCK(ncp);
1824 		if (ncp->nc_flag & NCF_NEGATIVE)
1825 			break;
1826 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
1827 			break;
1828 		if (ncp == dvp->v_cache_dd &&
1829 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
1830 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
1831 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
1832 			break;
1833 		cache_unlock_vnodes_cel(cel);
1834 		cel->vlp[0] = NULL;
1835 		cel->vlp[1] = NULL;
1836 		cel->vlp[2] = NULL;
1837 	}
1838 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
1839 }
1840 
1841 static void
1842 cache_enter_unlock(struct celockstate *cel)
1843 {
1844 
1845 	cache_unlock_buckets_cel(cel);
1846 	cache_unlock_vnodes_cel(cel);
1847 }
1848 
1849 static void __noinline
1850 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
1851     struct componentname *cnp)
1852 {
1853 	struct celockstate cel;
1854 	struct namecache *ncp;
1855 	uint32_t hash;
1856 	int len;
1857 
1858 	if (dvp->v_cache_dd == NULL)
1859 		return;
1860 	len = cnp->cn_namelen;
1861 	cache_celockstate_init(&cel);
1862 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
1863 	cache_enter_lock_dd(&cel, dvp, vp, hash);
1864 	vn_seqc_write_begin(dvp);
1865 	ncp = dvp->v_cache_dd;
1866 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
1867 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
1868 		cache_zap_locked(ncp);
1869 	} else {
1870 		ncp = NULL;
1871 	}
1872 	dvp->v_cache_dd = NULL;
1873 	vn_seqc_write_end(dvp);
1874 	cache_enter_unlock(&cel);
1875 	cache_free(ncp);
1876 }
1877 
1878 /*
1879  * Add an entry to the cache.
1880  */
1881 void
1882 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
1883     struct timespec *tsp, struct timespec *dtsp)
1884 {
1885 	struct celockstate cel;
1886 	struct namecache *ncp, *n2, *ndd;
1887 	struct namecache_ts *ncp_ts, *n2_ts;
1888 	struct nchashhead *ncpp;
1889 	uint32_t hash;
1890 	int flag;
1891 	int len;
1892 	u_long lnumcache;
1893 
1894 	CTR3(KTR_VFS, "cache_enter(%p, %p, %s)", dvp, vp, cnp->cn_nameptr);
1895 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
1896 	VNPASS(dvp->v_type != VNON, dvp);
1897 	if (vp != NULL) {
1898 		VNPASS(!VN_IS_DOOMED(vp), vp);
1899 		VNPASS(vp->v_type != VNON, vp);
1900 	}
1901 
1902 #ifdef DEBUG_CACHE
1903 	if (__predict_false(!doingcache))
1904 		return;
1905 #endif
1906 
1907 	flag = 0;
1908 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
1909 		if (cnp->cn_namelen == 1)
1910 			return;
1911 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
1912 			cache_enter_dotdot_prep(dvp, vp, cnp);
1913 			flag = NCF_ISDOTDOT;
1914 		}
1915 	}
1916 
1917 	/*
1918 	 * Avoid blowout in namecache entries.
1919 	 */
1920 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
1921 	if (__predict_false(lnumcache >= ncsize)) {
1922 		atomic_add_long(&numcache, -1);
1923 		counter_u64_add(numdrops, 1);
1924 		return;
1925 	}
1926 
1927 	cache_celockstate_init(&cel);
1928 	ndd = NULL;
1929 	ncp_ts = NULL;
1930 
1931 	/*
1932 	 * Calculate the hash key and setup as much of the new
1933 	 * namecache entry as possible before acquiring the lock.
1934 	 */
1935 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
1936 	ncp->nc_flag = flag | NCF_WIP;
1937 	ncp->nc_vp = vp;
1938 	if (vp == NULL)
1939 		cache_negative_init(ncp);
1940 	ncp->nc_dvp = dvp;
1941 	if (tsp != NULL) {
1942 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1943 		ncp_ts->nc_time = *tsp;
1944 		ncp_ts->nc_ticks = ticks;
1945 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
1946 		if (dtsp != NULL) {
1947 			ncp_ts->nc_dotdottime = *dtsp;
1948 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
1949 		}
1950 	}
1951 	len = ncp->nc_nlen = cnp->cn_namelen;
1952 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
1953 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
1954 	ncp->nc_name[len] = '\0';
1955 	cache_enter_lock(&cel, dvp, vp, hash);
1956 
1957 	/*
1958 	 * See if this vnode or negative entry is already in the cache
1959 	 * with this name.  This can happen with concurrent lookups of
1960 	 * the same path name.
1961 	 */
1962 	ncpp = NCHHASH(hash);
1963 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
1964 		if (n2->nc_dvp == dvp &&
1965 		    n2->nc_nlen == cnp->cn_namelen &&
1966 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
1967 			MPASS(cache_ncp_canuse(n2));
1968 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
1969 				KASSERT(vp == NULL,
1970 				    ("%s: found entry pointing to a different vnode (%p != %p)",
1971 				    __func__, NULL, vp));
1972 			else
1973 				KASSERT(n2->nc_vp == vp,
1974 				    ("%s: found entry pointing to a different vnode (%p != %p)",
1975 				    __func__, n2->nc_vp, vp));
1976 			if (tsp != NULL) {
1977 				KASSERT((n2->nc_flag & NCF_TS) != 0,
1978 				    ("no NCF_TS"));
1979 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
1980 				n2_ts->nc_time = ncp_ts->nc_time;
1981 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
1982 				if (dtsp != NULL) {
1983 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
1984 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
1985 				}
1986 			}
1987 			goto out_unlock_free;
1988 		}
1989 	}
1990 
1991 	if (flag == NCF_ISDOTDOT) {
1992 		/*
1993 		 * See if we are trying to add .. entry, but some other lookup
1994 		 * has populated v_cache_dd pointer already.
1995 		 */
1996 		if (dvp->v_cache_dd != NULL)
1997 			goto out_unlock_free;
1998 		KASSERT(vp == NULL || vp->v_type == VDIR,
1999 		    ("wrong vnode type %p", vp));
2000 		vn_seqc_write_begin(dvp);
2001 		dvp->v_cache_dd = ncp;
2002 		vn_seqc_write_end(dvp);
2003 	}
2004 
2005 	if (vp != NULL) {
2006 		if (vp->v_type == VDIR) {
2007 			if (flag != NCF_ISDOTDOT) {
2008 				/*
2009 				 * For this case, the cache entry maps both the
2010 				 * directory name in it and the name ".." for the
2011 				 * directory's parent.
2012 				 */
2013 				vn_seqc_write_begin(vp);
2014 				if ((ndd = vp->v_cache_dd) != NULL) {
2015 					if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2016 						cache_zap_locked(ndd);
2017 					else
2018 						ndd = NULL;
2019 				}
2020 				vp->v_cache_dd = ncp;
2021 				vn_seqc_write_end(vp);
2022 			}
2023 		} else {
2024 			if (vp->v_cache_dd != NULL) {
2025 				vn_seqc_write_begin(vp);
2026 				vp->v_cache_dd = NULL;
2027 				vn_seqc_write_end(vp);
2028 			}
2029 		}
2030 	}
2031 
2032 	if (flag != NCF_ISDOTDOT) {
2033 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2034 			vhold(dvp);
2035 			counter_u64_add(numcachehv, 1);
2036 		}
2037 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2038 	}
2039 
2040 	/*
2041 	 * If the entry is "negative", we place it into the
2042 	 * "negative" cache queue, otherwise, we place it into the
2043 	 * destination vnode's cache entries queue.
2044 	 */
2045 	if (vp != NULL) {
2046 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2047 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2048 		    vp);
2049 	} else {
2050 		if (cnp->cn_flags & ISWHITEOUT)
2051 			ncp->nc_flag |= NCF_WHITE;
2052 		cache_negative_insert(ncp);
2053 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2054 		    ncp->nc_name);
2055 	}
2056 
2057 	/*
2058 	 * Insert the new namecache entry into the appropriate chain
2059 	 * within the cache entries table.
2060 	 */
2061 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2062 
2063 	atomic_thread_fence_rel();
2064 	/*
2065 	 * Mark the entry as fully constructed.
2066 	 * It is immutable past this point until its removal.
2067 	 */
2068 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2069 
2070 	cache_enter_unlock(&cel);
2071 	if (numneg * ncnegfactor > lnumcache)
2072 		cache_negative_zap_one();
2073 	cache_free(ndd);
2074 	return;
2075 out_unlock_free:
2076 	cache_enter_unlock(&cel);
2077 	atomic_add_long(&numcache, -1);
2078 	cache_free(ncp);
2079 	return;
2080 }
2081 
2082 static u_int
2083 cache_roundup_2(u_int val)
2084 {
2085 	u_int res;
2086 
2087 	for (res = 1; res <= val; res <<= 1)
2088 		continue;
2089 
2090 	return (res);
2091 }
2092 
2093 static struct nchashhead *
2094 nchinittbl(u_long elements, u_long *hashmask)
2095 {
2096 	struct nchashhead *hashtbl;
2097 	u_long hashsize, i;
2098 
2099 	hashsize = cache_roundup_2(elements) / 2;
2100 
2101 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2102 	for (i = 0; i < hashsize; i++)
2103 		CK_SLIST_INIT(&hashtbl[i]);
2104 	*hashmask = hashsize - 1;
2105 	return (hashtbl);
2106 }
2107 
2108 static void
2109 ncfreetbl(struct nchashhead *hashtbl)
2110 {
2111 
2112 	free(hashtbl, M_VFSCACHE);
2113 }
2114 
2115 /*
2116  * Name cache initialization, from vfs_init() when we are booting
2117  */
2118 static void
2119 nchinit(void *dummy __unused)
2120 {
2121 	u_int i;
2122 
2123 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2124 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2125 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2126 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2127 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2128 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2129 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2130 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2131 
2132 	VFS_SMR_ZONE_SET(cache_zone_small);
2133 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2134 	VFS_SMR_ZONE_SET(cache_zone_large);
2135 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2136 
2137 	ncsize = desiredvnodes * ncsizefactor;
2138 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2139 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2140 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2141 		ncbuckethash = 7;
2142 	if (ncbuckethash > nchash)
2143 		ncbuckethash = nchash;
2144 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2145 	    M_WAITOK | M_ZERO);
2146 	for (i = 0; i < numbucketlocks; i++)
2147 		rw_init_flags(&bucketlocks[i], "ncbuc", RW_DUPOK | RW_RECURSE);
2148 	ncvnodehash = ncbuckethash;
2149 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2150 	    M_WAITOK | M_ZERO);
2151 	for (i = 0; i < numvnodelocks; i++)
2152 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2153 	ncpurgeminvnodes = numbucketlocks * 2;
2154 
2155 	neglists = malloc(sizeof(*neglists) * numneglists, M_VFSCACHE,
2156 	    M_WAITOK | M_ZERO);
2157 	for (i = 0; i < numneglists; i++) {
2158 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2159 		TAILQ_INIT(&neglists[i].nl_list);
2160 	}
2161 	mtx_init(&ncneg_hot.nl_lock, "ncneglh", NULL, MTX_DEF);
2162 	TAILQ_INIT(&ncneg_hot.nl_list);
2163 
2164 	mtx_init(&ncneg_shrink_lock, "ncnegs", NULL, MTX_DEF);
2165 }
2166 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2167 
2168 void
2169 cache_vnode_init(struct vnode *vp)
2170 {
2171 
2172 	LIST_INIT(&vp->v_cache_src);
2173 	TAILQ_INIT(&vp->v_cache_dst);
2174 	vp->v_cache_dd = NULL;
2175 	cache_prehash(vp);
2176 }
2177 
2178 void
2179 cache_changesize(u_long newmaxvnodes)
2180 {
2181 	struct nchashhead *new_nchashtbl, *old_nchashtbl;
2182 	u_long new_nchash, old_nchash;
2183 	struct namecache *ncp;
2184 	uint32_t hash;
2185 	u_long newncsize;
2186 	int i;
2187 
2188 	newncsize = newmaxvnodes * ncsizefactor;
2189 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2190 	if (newmaxvnodes < numbucketlocks)
2191 		newmaxvnodes = numbucketlocks;
2192 
2193 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2194 	/* If same hash table size, nothing to do */
2195 	if (nchash == new_nchash) {
2196 		ncfreetbl(new_nchashtbl);
2197 		return;
2198 	}
2199 	/*
2200 	 * Move everything from the old hash table to the new table.
2201 	 * None of the namecache entries in the table can be removed
2202 	 * because to do so, they have to be removed from the hash table.
2203 	 */
2204 	cache_lock_all_vnodes();
2205 	cache_lock_all_buckets();
2206 	old_nchashtbl = nchashtbl;
2207 	old_nchash = nchash;
2208 	nchashtbl = new_nchashtbl;
2209 	nchash = new_nchash;
2210 	for (i = 0; i <= old_nchash; i++) {
2211 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2212 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2213 			    ncp->nc_dvp);
2214 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2215 			CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2216 		}
2217 	}
2218 	ncsize = newncsize;
2219 	cache_unlock_all_buckets();
2220 	cache_unlock_all_vnodes();
2221 	ncfreetbl(old_nchashtbl);
2222 }
2223 
2224 /*
2225  * Invalidate all entries from and to a particular vnode.
2226  */
2227 static void
2228 cache_purge_impl(struct vnode *vp)
2229 {
2230 	TAILQ_HEAD(, namecache) ncps;
2231 	struct namecache *ncp, *nnp;
2232 	struct mtx *vlp, *vlp2;
2233 
2234 	TAILQ_INIT(&ncps);
2235 	vlp = VP2VNODELOCK(vp);
2236 	vlp2 = NULL;
2237 	mtx_assert(vlp, MA_OWNED);
2238 retry:
2239 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2240 		ncp = LIST_FIRST(&vp->v_cache_src);
2241 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2242 			goto retry;
2243 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2244 	}
2245 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2246 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2247 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2248 			goto retry;
2249 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2250 	}
2251 	ncp = vp->v_cache_dd;
2252 	if (ncp != NULL) {
2253 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2254 		   ("lost dotdot link"));
2255 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2256 			goto retry;
2257 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2258 	}
2259 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2260 	mtx_unlock(vlp);
2261 	if (vlp2 != NULL)
2262 		mtx_unlock(vlp2);
2263 	TAILQ_FOREACH_SAFE(ncp, &ncps, nc_dst, nnp) {
2264 		cache_free(ncp);
2265 	}
2266 }
2267 
2268 void
2269 cache_purge(struct vnode *vp)
2270 {
2271 	struct mtx *vlp;
2272 
2273 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2274 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2275 	    vp->v_cache_dd == NULL)
2276 		return;
2277 	vlp = VP2VNODELOCK(vp);
2278 	mtx_lock(vlp);
2279 	cache_purge_impl(vp);
2280 }
2281 
2282 /*
2283  * Only to be used by vgone.
2284  */
2285 void
2286 cache_purge_vgone(struct vnode *vp)
2287 {
2288 	struct mtx *vlp;
2289 
2290 	VNPASS(VN_IS_DOOMED(vp), vp);
2291 	vlp = VP2VNODELOCK(vp);
2292 	if (!(LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2293 	    vp->v_cache_dd == NULL)) {
2294 		mtx_lock(vlp);
2295 		cache_purge_impl(vp);
2296 		mtx_assert(vlp, MA_NOTOWNED);
2297 		return;
2298 	}
2299 
2300 	/*
2301 	 * All the NULL pointer state we found above may be transient.
2302 	 * Serialize against a possible thread doing cache_purge.
2303 	 */
2304 	mtx_wait_unlocked(vlp);
2305 	if (!(LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2306 	    vp->v_cache_dd == NULL)) {
2307 		mtx_lock(vlp);
2308 		cache_purge_impl(vp);
2309 		mtx_assert(vlp, MA_NOTOWNED);
2310 		return;
2311 	}
2312 	return;
2313 }
2314 
2315 /*
2316  * Invalidate all negative entries for a particular directory vnode.
2317  */
2318 void
2319 cache_purge_negative(struct vnode *vp)
2320 {
2321 	TAILQ_HEAD(, namecache) ncps;
2322 	struct namecache *ncp, *nnp;
2323 	struct mtx *vlp;
2324 
2325 	CTR1(KTR_VFS, "cache_purge_negative(%p)", vp);
2326 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2327 	if (LIST_EMPTY(&vp->v_cache_src))
2328 		return;
2329 	TAILQ_INIT(&ncps);
2330 	vlp = VP2VNODELOCK(vp);
2331 	mtx_lock(vlp);
2332 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2333 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2334 			continue;
2335 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2336 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2337 	}
2338 	mtx_unlock(vlp);
2339 	TAILQ_FOREACH_SAFE(ncp, &ncps, nc_dst, nnp) {
2340 		cache_free(ncp);
2341 	}
2342 }
2343 
2344 void
2345 cache_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2346     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2347 {
2348 
2349 	ASSERT_VOP_IN_SEQC(fdvp);
2350 	ASSERT_VOP_IN_SEQC(fvp);
2351 	ASSERT_VOP_IN_SEQC(tdvp);
2352 	if (tvp != NULL)
2353 		ASSERT_VOP_IN_SEQC(tvp);
2354 
2355 	cache_purge(fvp);
2356 	if (tvp != NULL) {
2357 		cache_purge(tvp);
2358 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2359 		    ("%s: lingering negative entry", __func__));
2360 	} else {
2361 		cache_remove_cnp(tdvp, tcnp);
2362 	}
2363 }
2364 
2365 /*
2366  * Flush all entries referencing a particular filesystem.
2367  */
2368 void
2369 cache_purgevfs(struct mount *mp, bool force)
2370 {
2371 	TAILQ_HEAD(, namecache) ncps;
2372 	struct mtx *vlp1, *vlp2;
2373 	struct rwlock *blp;
2374 	struct nchashhead *bucket;
2375 	struct namecache *ncp, *nnp;
2376 	u_long i, j, n_nchash;
2377 	int error;
2378 
2379 	/* Scan hash tables for applicable entries */
2380 	SDT_PROBE1(vfs, namecache, purgevfs, done, mp);
2381 	if (!force && mp->mnt_nvnodelistsize <= ncpurgeminvnodes)
2382 		return;
2383 	TAILQ_INIT(&ncps);
2384 	n_nchash = nchash + 1;
2385 	vlp1 = vlp2 = NULL;
2386 	for (i = 0; i < numbucketlocks; i++) {
2387 		blp = (struct rwlock *)&bucketlocks[i];
2388 		rw_wlock(blp);
2389 		for (j = i; j < n_nchash; j += numbucketlocks) {
2390 retry:
2391 			bucket = &nchashtbl[j];
2392 			CK_SLIST_FOREACH_SAFE(ncp, bucket, nc_hash, nnp) {
2393 				cache_assert_bucket_locked(ncp, RA_WLOCKED);
2394 				if (ncp->nc_dvp->v_mount != mp)
2395 					continue;
2396 				error = cache_zap_wlocked_bucket_kl(ncp, blp,
2397 				    &vlp1, &vlp2);
2398 				if (error != 0)
2399 					goto retry;
2400 				TAILQ_INSERT_HEAD(&ncps, ncp, nc_dst);
2401 			}
2402 		}
2403 		rw_wunlock(blp);
2404 		if (vlp1 == NULL && vlp2 == NULL)
2405 			cache_maybe_yield();
2406 	}
2407 	if (vlp1 != NULL)
2408 		mtx_unlock(vlp1);
2409 	if (vlp2 != NULL)
2410 		mtx_unlock(vlp2);
2411 
2412 	TAILQ_FOREACH_SAFE(ncp, &ncps, nc_dst, nnp) {
2413 		cache_free(ncp);
2414 	}
2415 }
2416 
2417 /*
2418  * Perform canonical checks and cache lookup and pass on to filesystem
2419  * through the vop_cachedlookup only if needed.
2420  */
2421 
2422 int
2423 vfs_cache_lookup(struct vop_lookup_args *ap)
2424 {
2425 	struct vnode *dvp;
2426 	int error;
2427 	struct vnode **vpp = ap->a_vpp;
2428 	struct componentname *cnp = ap->a_cnp;
2429 	int flags = cnp->cn_flags;
2430 
2431 	*vpp = NULL;
2432 	dvp = ap->a_dvp;
2433 
2434 	if (dvp->v_type != VDIR)
2435 		return (ENOTDIR);
2436 
2437 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
2438 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
2439 		return (EROFS);
2440 
2441 	error = vn_dir_check_exec(dvp, cnp);
2442 	if (error != 0)
2443 		return (error);
2444 
2445 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
2446 	if (error == 0)
2447 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
2448 	if (error == -1)
2449 		return (0);
2450 	return (error);
2451 }
2452 
2453 /* Implementation of the getcwd syscall. */
2454 int
2455 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
2456 {
2457 	char *buf, *retbuf;
2458 	size_t buflen;
2459 	int error;
2460 
2461 	buflen = uap->buflen;
2462 	if (__predict_false(buflen < 2))
2463 		return (EINVAL);
2464 	if (buflen > MAXPATHLEN)
2465 		buflen = MAXPATHLEN;
2466 
2467 	buf = uma_zalloc(namei_zone, M_WAITOK);
2468 	error = vn_getcwd(td, buf, &retbuf, &buflen);
2469 	if (error == 0)
2470 		error = copyout(retbuf, uap->buf, buflen);
2471 	uma_zfree(namei_zone, buf);
2472 	return (error);
2473 }
2474 
2475 int
2476 vn_getcwd(struct thread *td, char *buf, char **retbuf, size_t *buflen)
2477 {
2478 	struct pwd *pwd;
2479 	int error;
2480 
2481 	pwd = pwd_hold(td);
2482 	error = vn_fullpath_any(td, pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, buflen);
2483 	pwd_drop(pwd);
2484 
2485 #ifdef KTRACE
2486 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
2487 		ktrnamei(*retbuf);
2488 #endif
2489 	return (error);
2490 }
2491 
2492 static int
2493 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
2494     size_t size, int flags, enum uio_seg pathseg)
2495 {
2496 	struct nameidata nd;
2497 	char *retbuf, *freebuf;
2498 	int error;
2499 
2500 	if (flags != 0)
2501 		return (EINVAL);
2502 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1,
2503 	    pathseg, path, fd, &cap_fstat_rights, td);
2504 	if ((error = namei(&nd)) != 0)
2505 		return (error);
2506 	error = vn_fullpath_hardlink(td, &nd, &retbuf, &freebuf, &size);
2507 	if (error == 0) {
2508 		error = copyout(retbuf, buf, size);
2509 		free(freebuf, M_TEMP);
2510 	}
2511 	NDFREE(&nd, 0);
2512 	return (error);
2513 }
2514 
2515 int
2516 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
2517 {
2518 
2519 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
2520 	    uap->flags, UIO_USERSPACE));
2521 }
2522 
2523 /*
2524  * Retrieve the full filesystem path that correspond to a vnode from the name
2525  * cache (if available)
2526  */
2527 int
2528 vn_fullpath(struct thread *td, struct vnode *vn, char **retbuf, char **freebuf)
2529 {
2530 	struct pwd *pwd;
2531 	char *buf;
2532 	size_t buflen;
2533 	int error;
2534 
2535 	if (__predict_false(vn == NULL))
2536 		return (EINVAL);
2537 
2538 	buflen = MAXPATHLEN;
2539 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2540 	pwd = pwd_hold(td);
2541 	error = vn_fullpath_any(td, vn, pwd->pwd_rdir, buf, retbuf, &buflen);
2542 	pwd_drop(pwd);
2543 
2544 	if (!error)
2545 		*freebuf = buf;
2546 	else
2547 		free(buf, M_TEMP);
2548 	return (error);
2549 }
2550 
2551 /*
2552  * This function is similar to vn_fullpath, but it attempts to lookup the
2553  * pathname relative to the global root mount point.  This is required for the
2554  * auditing sub-system, as audited pathnames must be absolute, relative to the
2555  * global root mount point.
2556  */
2557 int
2558 vn_fullpath_global(struct thread *td, struct vnode *vn,
2559     char **retbuf, char **freebuf)
2560 {
2561 	char *buf;
2562 	size_t buflen;
2563 	int error;
2564 
2565 	if (__predict_false(vn == NULL))
2566 		return (EINVAL);
2567 	buflen = MAXPATHLEN;
2568 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2569 	error = vn_fullpath_any(td, vn, rootvnode, buf, retbuf, &buflen);
2570 	if (!error)
2571 		*freebuf = buf;
2572 	else
2573 		free(buf, M_TEMP);
2574 	return (error);
2575 }
2576 
2577 int
2578 vn_vptocnp(struct vnode **vp, struct ucred *cred, char *buf, size_t *buflen)
2579 {
2580 	struct vnode *dvp;
2581 	struct namecache *ncp;
2582 	struct mtx *vlp;
2583 	int error;
2584 
2585 	vlp = VP2VNODELOCK(*vp);
2586 	mtx_lock(vlp);
2587 	TAILQ_FOREACH(ncp, &((*vp)->v_cache_dst), nc_dst) {
2588 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2589 			break;
2590 	}
2591 	if (ncp != NULL) {
2592 		if (*buflen < ncp->nc_nlen) {
2593 			mtx_unlock(vlp);
2594 			vrele(*vp);
2595 			counter_u64_add(numfullpathfail4, 1);
2596 			error = ENOMEM;
2597 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
2598 			    vp, NULL);
2599 			return (error);
2600 		}
2601 		*buflen -= ncp->nc_nlen;
2602 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
2603 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
2604 		    ncp->nc_name, vp);
2605 		dvp = *vp;
2606 		*vp = ncp->nc_dvp;
2607 		vref(*vp);
2608 		mtx_unlock(vlp);
2609 		vrele(dvp);
2610 		return (0);
2611 	}
2612 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
2613 
2614 	mtx_unlock(vlp);
2615 	vn_lock(*vp, LK_SHARED | LK_RETRY);
2616 	error = VOP_VPTOCNP(*vp, &dvp, cred, buf, buflen);
2617 	vput(*vp);
2618 	if (error) {
2619 		counter_u64_add(numfullpathfail2, 1);
2620 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
2621 		return (error);
2622 	}
2623 
2624 	*vp = dvp;
2625 	if (VN_IS_DOOMED(dvp)) {
2626 		/* forced unmount */
2627 		vrele(dvp);
2628 		error = ENOENT;
2629 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
2630 		return (error);
2631 	}
2632 	/*
2633 	 * *vp has its use count incremented still.
2634 	 */
2635 
2636 	return (0);
2637 }
2638 
2639 /*
2640  * Resolve a directory to a pathname.
2641  *
2642  * The name of the directory can always be found in the namecache or fetched
2643  * from the filesystem. There is also guaranteed to be only one parent, meaning
2644  * we can just follow vnodes up until we find the root.
2645  *
2646  * The vnode must be referenced.
2647  */
2648 static int
2649 vn_fullpath_dir(struct thread *td, struct vnode *vp, struct vnode *rdir,
2650     char *buf, char **retbuf, size_t *len, bool slash_prefixed, size_t addend)
2651 {
2652 #ifdef KDTRACE_HOOKS
2653 	struct vnode *startvp = vp;
2654 #endif
2655 	struct vnode *vp1;
2656 	size_t buflen;
2657 	int error;
2658 
2659 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
2660 	VNPASS(vp->v_usecount > 0, vp);
2661 
2662 	buflen = *len;
2663 
2664 	if (!slash_prefixed) {
2665 		MPASS(*len >= 2);
2666 		buflen--;
2667 		buf[buflen] = '\0';
2668 	}
2669 
2670 	error = 0;
2671 
2672 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
2673 	counter_u64_add(numfullpathcalls, 1);
2674 	while (vp != rdir && vp != rootvnode) {
2675 		/*
2676 		 * The vp vnode must be already fully constructed,
2677 		 * since it is either found in namecache or obtained
2678 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
2679 		 * without obtaining the vnode lock.
2680 		 */
2681 		if ((vp->v_vflag & VV_ROOT) != 0) {
2682 			vn_lock(vp, LK_RETRY | LK_SHARED);
2683 
2684 			/*
2685 			 * With the vnode locked, check for races with
2686 			 * unmount, forced or not.  Note that we
2687 			 * already verified that vp is not equal to
2688 			 * the root vnode, which means that
2689 			 * mnt_vnodecovered can be NULL only for the
2690 			 * case of unmount.
2691 			 */
2692 			if (VN_IS_DOOMED(vp) ||
2693 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
2694 			    vp1->v_mountedhere != vp->v_mount) {
2695 				vput(vp);
2696 				error = ENOENT;
2697 				SDT_PROBE3(vfs, namecache, fullpath, return,
2698 				    error, vp, NULL);
2699 				break;
2700 			}
2701 
2702 			vref(vp1);
2703 			vput(vp);
2704 			vp = vp1;
2705 			continue;
2706 		}
2707 		if (vp->v_type != VDIR) {
2708 			vrele(vp);
2709 			counter_u64_add(numfullpathfail1, 1);
2710 			error = ENOTDIR;
2711 			SDT_PROBE3(vfs, namecache, fullpath, return,
2712 			    error, vp, NULL);
2713 			break;
2714 		}
2715 		error = vn_vptocnp(&vp, td->td_ucred, buf, &buflen);
2716 		if (error)
2717 			break;
2718 		if (buflen == 0) {
2719 			vrele(vp);
2720 			error = ENOMEM;
2721 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
2722 			    startvp, NULL);
2723 			break;
2724 		}
2725 		buf[--buflen] = '/';
2726 		slash_prefixed = true;
2727 	}
2728 	if (error)
2729 		return (error);
2730 	if (!slash_prefixed) {
2731 		if (buflen == 0) {
2732 			vrele(vp);
2733 			counter_u64_add(numfullpathfail4, 1);
2734 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
2735 			    startvp, NULL);
2736 			return (ENOMEM);
2737 		}
2738 		buf[--buflen] = '/';
2739 	}
2740 	counter_u64_add(numfullpathfound, 1);
2741 	vrele(vp);
2742 
2743 	*retbuf = buf + buflen;
2744 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
2745 	*len -= buflen;
2746 	*len += addend;
2747 	return (0);
2748 }
2749 
2750 /*
2751  * Resolve an arbitrary vnode to a pathname.
2752  *
2753  * Note 2 caveats:
2754  * - hardlinks are not tracked, thus if the vnode is not a directory this can
2755  *   resolve to a different path than the one used to find it
2756  * - namecache is not mandatory, meaning names are not guaranteed to be added
2757  *   (in which case resolving fails)
2758  */
2759 static int
2760 vn_fullpath_any(struct thread *td, struct vnode *vp, struct vnode *rdir,
2761     char *buf, char **retbuf, size_t *buflen)
2762 {
2763 	size_t orig_buflen;
2764 	bool slash_prefixed;
2765 	int error;
2766 
2767 	if (*buflen < 2)
2768 		return (EINVAL);
2769 
2770 	orig_buflen = *buflen;
2771 
2772 	vref(vp);
2773 	slash_prefixed = false;
2774 	if (vp->v_type != VDIR) {
2775 		*buflen -= 1;
2776 		buf[*buflen] = '\0';
2777 		error = vn_vptocnp(&vp, td->td_ucred, buf, buflen);
2778 		if (error)
2779 			return (error);
2780 		if (*buflen == 0) {
2781 			vrele(vp);
2782 			return (ENOMEM);
2783 		}
2784 		*buflen -= 1;
2785 		buf[*buflen] = '/';
2786 		slash_prefixed = true;
2787 	}
2788 
2789 	return (vn_fullpath_dir(td, vp, rdir, buf, retbuf, buflen, slash_prefixed,
2790 	    orig_buflen - *buflen));
2791 }
2792 
2793 /*
2794  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
2795  *
2796  * Since the namecache does not track handlings, the caller is expected to first
2797  * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei.
2798  *
2799  * Then we have 2 cases:
2800  * - if the found vnode is a directory, the path can be constructed just by
2801  *   fullowing names up the chain
2802  * - otherwise we populate the buffer with the saved name and start resolving
2803  *   from the parent
2804  */
2805 static int
2806 vn_fullpath_hardlink(struct thread *td, struct nameidata *ndp, char **retbuf,
2807     char **freebuf, size_t *buflen)
2808 {
2809 	char *buf, *tmpbuf;
2810 	struct pwd *pwd;
2811 	struct componentname *cnp;
2812 	struct vnode *vp;
2813 	size_t addend;
2814 	int error;
2815 	bool slash_prefixed;
2816 	enum vtype type;
2817 
2818 	if (*buflen < 2)
2819 		return (EINVAL);
2820 	if (*buflen > MAXPATHLEN)
2821 		*buflen = MAXPATHLEN;
2822 
2823 	slash_prefixed = false;
2824 
2825 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
2826 	pwd = pwd_hold(td);
2827 
2828 	addend = 0;
2829 	vp = ndp->ni_vp;
2830 	/*
2831 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
2832 	 *
2833 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
2834 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
2835 	 * If the type is VDIR (like in this very case) we can skip looking
2836 	 * at ni_dvp in the first place. However, since vnodes get passed here
2837 	 * unlocked the target may transition to doomed state (type == VBAD)
2838 	 * before we get to evaluate the condition. If this happens, we will
2839 	 * populate part of the buffer and descend to vn_fullpath_dir with
2840 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
2841 	 *
2842 	 * This should be atomic_load(&vp->v_type) but it is ilegal to take
2843 	 * an address of a bit field, even if said field is sized to char.
2844 	 * Work around the problem by reading the value into a full-sized enum
2845 	 * and then re-reading it with atomic_load which will still prevent
2846 	 * the compiler from re-reading down the road.
2847 	 */
2848 	type = vp->v_type;
2849 	type = atomic_load_int(&type);
2850 	if (type == VBAD) {
2851 		error = ENOENT;
2852 		goto out_bad;
2853 	}
2854 	if (type != VDIR) {
2855 		cnp = &ndp->ni_cnd;
2856 		addend = cnp->cn_namelen + 2;
2857 		if (*buflen < addend) {
2858 			error = ENOMEM;
2859 			goto out_bad;
2860 		}
2861 		*buflen -= addend;
2862 		tmpbuf = buf + *buflen;
2863 		tmpbuf[0] = '/';
2864 		memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen);
2865 		tmpbuf[addend - 1] = '\0';
2866 		slash_prefixed = true;
2867 		vp = ndp->ni_dvp;
2868 	}
2869 
2870 	vref(vp);
2871 	error = vn_fullpath_dir(td, vp, pwd->pwd_rdir, buf, retbuf, buflen,
2872 	    slash_prefixed, addend);
2873 	if (error != 0)
2874 		goto out_bad;
2875 
2876 	pwd_drop(pwd);
2877 	*freebuf = buf;
2878 
2879 	return (0);
2880 out_bad:
2881 	pwd_drop(pwd);
2882 	free(buf, M_TEMP);
2883 	return (error);
2884 }
2885 
2886 struct vnode *
2887 vn_dir_dd_ino(struct vnode *vp)
2888 {
2889 	struct namecache *ncp;
2890 	struct vnode *ddvp;
2891 	struct mtx *vlp;
2892 	enum vgetstate vs;
2893 
2894 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
2895 	vlp = VP2VNODELOCK(vp);
2896 	mtx_lock(vlp);
2897 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
2898 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
2899 			continue;
2900 		ddvp = ncp->nc_dvp;
2901 		vs = vget_prep(ddvp);
2902 		mtx_unlock(vlp);
2903 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
2904 			return (NULL);
2905 		return (ddvp);
2906 	}
2907 	mtx_unlock(vlp);
2908 	return (NULL);
2909 }
2910 
2911 int
2912 vn_commname(struct vnode *vp, char *buf, u_int buflen)
2913 {
2914 	struct namecache *ncp;
2915 	struct mtx *vlp;
2916 	int l;
2917 
2918 	vlp = VP2VNODELOCK(vp);
2919 	mtx_lock(vlp);
2920 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
2921 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2922 			break;
2923 	if (ncp == NULL) {
2924 		mtx_unlock(vlp);
2925 		return (ENOENT);
2926 	}
2927 	l = min(ncp->nc_nlen, buflen - 1);
2928 	memcpy(buf, ncp->nc_name, l);
2929 	mtx_unlock(vlp);
2930 	buf[l] = '\0';
2931 	return (0);
2932 }
2933 
2934 /*
2935  * This function updates path string to vnode's full global path
2936  * and checks the size of the new path string against the pathlen argument.
2937  *
2938  * Requires a locked, referenced vnode.
2939  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
2940  *
2941  * If vp is a directory, the call to vn_fullpath_global() always succeeds
2942  * because it falls back to the ".." lookup if the namecache lookup fails.
2943  */
2944 int
2945 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
2946     u_int pathlen)
2947 {
2948 	struct nameidata nd;
2949 	struct vnode *vp1;
2950 	char *rpath, *fbuf;
2951 	int error;
2952 
2953 	ASSERT_VOP_ELOCKED(vp, __func__);
2954 
2955 	/* Construct global filesystem path from vp. */
2956 	VOP_UNLOCK(vp);
2957 	error = vn_fullpath_global(td, vp, &rpath, &fbuf);
2958 
2959 	if (error != 0) {
2960 		vrele(vp);
2961 		return (error);
2962 	}
2963 
2964 	if (strlen(rpath) >= pathlen) {
2965 		vrele(vp);
2966 		error = ENAMETOOLONG;
2967 		goto out;
2968 	}
2969 
2970 	/*
2971 	 * Re-lookup the vnode by path to detect a possible rename.
2972 	 * As a side effect, the vnode is relocked.
2973 	 * If vnode was renamed, return ENOENT.
2974 	 */
2975 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
2976 	    UIO_SYSSPACE, path, td);
2977 	error = namei(&nd);
2978 	if (error != 0) {
2979 		vrele(vp);
2980 		goto out;
2981 	}
2982 	NDFREE(&nd, NDF_ONLY_PNBUF);
2983 	vp1 = nd.ni_vp;
2984 	vrele(vp);
2985 	if (vp1 == vp)
2986 		strcpy(path, rpath);
2987 	else {
2988 		vput(vp1);
2989 		error = ENOENT;
2990 	}
2991 
2992 out:
2993 	free(fbuf, M_TEMP);
2994 	return (error);
2995 }
2996 
2997 #ifdef DDB
2998 static void
2999 db_print_vpath(struct vnode *vp)
3000 {
3001 
3002 	while (vp != NULL) {
3003 		db_printf("%p: ", vp);
3004 		if (vp == rootvnode) {
3005 			db_printf("/");
3006 			vp = NULL;
3007 		} else {
3008 			if (vp->v_vflag & VV_ROOT) {
3009 				db_printf("<mount point>");
3010 				vp = vp->v_mount->mnt_vnodecovered;
3011 			} else {
3012 				struct namecache *ncp;
3013 				char *ncn;
3014 				int i;
3015 
3016 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3017 				if (ncp != NULL) {
3018 					ncn = ncp->nc_name;
3019 					for (i = 0; i < ncp->nc_nlen; i++)
3020 						db_printf("%c", *ncn++);
3021 					vp = ncp->nc_dvp;
3022 				} else {
3023 					vp = NULL;
3024 				}
3025 			}
3026 		}
3027 		db_printf("\n");
3028 	}
3029 
3030 	return;
3031 }
3032 
3033 DB_SHOW_COMMAND(vpath, db_show_vpath)
3034 {
3035 	struct vnode *vp;
3036 
3037 	if (!have_addr) {
3038 		db_printf("usage: show vpath <struct vnode *>\n");
3039 		return;
3040 	}
3041 
3042 	vp = (struct vnode *)addr;
3043 	db_print_vpath(vp);
3044 }
3045 
3046 #endif
3047 
3048 static bool __read_frequently cache_fast_lookup = true;
3049 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_lookup, CTLFLAG_RW,
3050     &cache_fast_lookup, 0, "");
3051 
3052 #define CACHE_FPL_FAILED	-2020
3053 
3054 static void
3055 cache_fpl_cleanup_cnp(struct componentname *cnp)
3056 {
3057 
3058 	uma_zfree(namei_zone, cnp->cn_pnbuf);
3059 #ifdef DIAGNOSTIC
3060 	cnp->cn_pnbuf = NULL;
3061 	cnp->cn_nameptr = NULL;
3062 #endif
3063 }
3064 
3065 static void
3066 cache_fpl_handle_root(struct nameidata *ndp, struct vnode **dpp)
3067 {
3068 	struct componentname *cnp;
3069 
3070 	cnp = &ndp->ni_cnd;
3071 	while (*(cnp->cn_nameptr) == '/') {
3072 		cnp->cn_nameptr++;
3073 		ndp->ni_pathlen--;
3074 	}
3075 
3076 	*dpp = ndp->ni_rootdir;
3077 }
3078 
3079 /*
3080  * Components of nameidata (or objects it can point to) which may
3081  * need restoring in case fast path lookup fails.
3082  */
3083 struct nameidata_saved {
3084 	long cn_namelen;
3085 	char *cn_nameptr;
3086 	size_t ni_pathlen;
3087 	int cn_flags;
3088 };
3089 
3090 struct cache_fpl {
3091 	struct nameidata *ndp;
3092 	struct componentname *cnp;
3093 	struct pwd *pwd;
3094 	struct vnode *dvp;
3095 	struct vnode *tvp;
3096 	seqc_t dvp_seqc;
3097 	seqc_t tvp_seqc;
3098 	struct nameidata_saved snd;
3099 	int line;
3100 	enum cache_fpl_status status:8;
3101 	bool in_smr;
3102 };
3103 
3104 static void
3105 cache_fpl_checkpoint(struct cache_fpl *fpl, struct nameidata_saved *snd)
3106 {
3107 
3108 	snd->cn_flags = fpl->ndp->ni_cnd.cn_flags;
3109 	snd->cn_namelen = fpl->ndp->ni_cnd.cn_namelen;
3110 	snd->cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
3111 	snd->ni_pathlen = fpl->ndp->ni_pathlen;
3112 }
3113 
3114 static void
3115 cache_fpl_restore(struct cache_fpl *fpl, struct nameidata_saved *snd)
3116 {
3117 
3118 	fpl->ndp->ni_cnd.cn_flags = snd->cn_flags;
3119 	fpl->ndp->ni_cnd.cn_namelen = snd->cn_namelen;
3120 	fpl->ndp->ni_cnd.cn_nameptr = snd->cn_nameptr;
3121 	fpl->ndp->ni_pathlen = snd->ni_pathlen;
3122 }
3123 
3124 #ifdef INVARIANTS
3125 #define cache_fpl_smr_assert_entered(fpl) ({			\
3126 	struct cache_fpl *_fpl = (fpl);				\
3127 	MPASS(_fpl->in_smr == true);				\
3128 	VFS_SMR_ASSERT_ENTERED();				\
3129 })
3130 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
3131 	struct cache_fpl *_fpl = (fpl);				\
3132 	MPASS(_fpl->in_smr == false);				\
3133 	VFS_SMR_ASSERT_NOT_ENTERED();				\
3134 })
3135 #else
3136 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
3137 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
3138 #endif
3139 
3140 #define cache_fpl_smr_enter_initial(fpl) ({			\
3141 	struct cache_fpl *_fpl = (fpl);				\
3142 	vfs_smr_enter();					\
3143 	_fpl->in_smr = true;					\
3144 })
3145 
3146 #define cache_fpl_smr_enter(fpl) ({				\
3147 	struct cache_fpl *_fpl = (fpl);				\
3148 	MPASS(_fpl->in_smr == false);				\
3149 	vfs_smr_enter();					\
3150 	_fpl->in_smr = true;					\
3151 })
3152 
3153 #define cache_fpl_smr_exit(fpl) ({				\
3154 	struct cache_fpl *_fpl = (fpl);				\
3155 	MPASS(_fpl->in_smr == true);				\
3156 	vfs_smr_exit();						\
3157 	_fpl->in_smr = false;					\
3158 })
3159 
3160 static int
3161 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
3162 {
3163 
3164 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
3165 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
3166 		    ("%s: converting to abort from %d at %d, set at %d\n",
3167 		    __func__, fpl->status, line, fpl->line));
3168 	}
3169 	fpl->status = CACHE_FPL_STATUS_ABORTED;
3170 	fpl->line = line;
3171 	return (CACHE_FPL_FAILED);
3172 }
3173 
3174 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
3175 
3176 static int
3177 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
3178 {
3179 
3180 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3181 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
3182 	    __func__, line, fpl->status, fpl->line));
3183 	cache_fpl_smr_assert_entered(fpl);
3184 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
3185 	fpl->line = line;
3186 	return (CACHE_FPL_FAILED);
3187 }
3188 
3189 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
3190 
3191 static int
3192 cache_fpl_handled_impl(struct cache_fpl *fpl, int error, int line)
3193 {
3194 
3195 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3196 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
3197 	    __func__, line, fpl->status, fpl->line));
3198 	cache_fpl_smr_assert_not_entered(fpl);
3199 	MPASS(error != CACHE_FPL_FAILED);
3200 	fpl->status = CACHE_FPL_STATUS_HANDLED;
3201 	fpl->line = line;
3202 	return (error);
3203 }
3204 
3205 #define cache_fpl_handled(x, e)	cache_fpl_handled_impl((x), (e), __LINE__)
3206 
3207 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
3208 	(LOCKLEAF | LOCKPARENT | WANTPARENT | NOCACHE | FOLLOW | LOCKSHARED | SAVENAME | \
3209 	 SAVESTART | WILLBEDIR | ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK)
3210 
3211 #define CACHE_FPL_INTERNAL_CN_FLAGS \
3212 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
3213 
3214 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
3215     "supported and internal flags overlap");
3216 
3217 static bool
3218 cache_fpl_islastcn(struct nameidata *ndp)
3219 {
3220 
3221 	return (*ndp->ni_next == 0);
3222 }
3223 
3224 static bool
3225 cache_fpl_isdotdot(struct componentname *cnp)
3226 {
3227 
3228 	if (cnp->cn_namelen == 2 &&
3229 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
3230 		return (true);
3231 	return (false);
3232 }
3233 
3234 static bool
3235 cache_can_fplookup(struct cache_fpl *fpl)
3236 {
3237 	struct nameidata *ndp;
3238 	struct componentname *cnp;
3239 	struct thread *td;
3240 
3241 	ndp = fpl->ndp;
3242 	cnp = fpl->cnp;
3243 	td = cnp->cn_thread;
3244 
3245 	if (!cache_fast_lookup) {
3246 		cache_fpl_aborted(fpl);
3247 		return (false);
3248 	}
3249 #ifdef MAC
3250 	if (mac_vnode_check_lookup_enabled()) {
3251 		cache_fpl_aborted(fpl);
3252 		return (false);
3253 	}
3254 #endif
3255 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
3256 		cache_fpl_aborted(fpl);
3257 		return (false);
3258 	}
3259 	if (ndp->ni_dirfd != AT_FDCWD) {
3260 		cache_fpl_aborted(fpl);
3261 		return (false);
3262 	}
3263 	if (IN_CAPABILITY_MODE(td)) {
3264 		cache_fpl_aborted(fpl);
3265 		return (false);
3266 	}
3267 	if (AUDITING_TD(td)) {
3268 		cache_fpl_aborted(fpl);
3269 		return (false);
3270 	}
3271 	if (ndp->ni_startdir != NULL) {
3272 		cache_fpl_aborted(fpl);
3273 		return (false);
3274 	}
3275 	return (true);
3276 }
3277 
3278 static bool
3279 cache_fplookup_vnode_supported(struct vnode *vp)
3280 {
3281 
3282 	return (vp->v_type != VLNK);
3283 }
3284 
3285 /*
3286  * Move a negative entry to the hot list.
3287  *
3288  * We have to take locks, but they may be contended and in the worst
3289  * case we may need to go off CPU. We don't want to spin within the
3290  * smr section and we can't block with it. Instead we are going to
3291  * look up the entry again.
3292  */
3293 static int __noinline
3294 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
3295     uint32_t hash)
3296 {
3297 	struct componentname *cnp;
3298 	struct namecache *ncp;
3299 	struct neglist *neglist;
3300 	struct negstate *negstate;
3301 	struct vnode *dvp;
3302 	u_char nc_flag;
3303 
3304 	cnp = fpl->cnp;
3305 	dvp = fpl->dvp;
3306 
3307 	if (!vhold_smr(dvp))
3308 		return (cache_fpl_aborted(fpl));
3309 
3310 	neglist = NCP2NEGLIST(oncp);
3311 	cache_fpl_smr_exit(fpl);
3312 
3313 	mtx_lock(&ncneg_hot.nl_lock);
3314 	mtx_lock(&neglist->nl_lock);
3315 	/*
3316 	 * For hash iteration.
3317 	 */
3318 	cache_fpl_smr_enter(fpl);
3319 
3320 	/*
3321 	 * Avoid all surprises by only succeeding if we got the same entry and
3322 	 * bailing completely otherwise.
3323 	 *
3324 	 * In particular at this point there can be a new ncp which matches the
3325 	 * search but hashes to a different neglist.
3326 	 */
3327 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3328 		if (ncp == oncp)
3329 			break;
3330 	}
3331 
3332 	/*
3333 	 * No match to begin with.
3334 	 */
3335 	if (__predict_false(ncp == NULL)) {
3336 		goto out_abort;
3337 	}
3338 
3339 	/*
3340 	 * The newly found entry may be something different...
3341 	 */
3342 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3343 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
3344 		goto out_abort;
3345 	}
3346 
3347 	/*
3348 	 * ... and not even negative.
3349 	 */
3350 	nc_flag = atomic_load_char(&ncp->nc_flag);
3351 	if ((nc_flag & NCF_NEGATIVE) == 0) {
3352 		goto out_abort;
3353 	}
3354 
3355 	if (__predict_false(!cache_ncp_canuse(ncp))) {
3356 		goto out_abort;
3357 	}
3358 
3359 	negstate = NCP2NEGSTATE(ncp);
3360 	if ((negstate->neg_flag & NEG_HOT) == 0) {
3361 		numhotneg++;
3362 		TAILQ_REMOVE(&neglist->nl_list, ncp, nc_dst);
3363 		TAILQ_INSERT_TAIL(&ncneg_hot.nl_list, ncp, nc_dst);
3364 		negstate->neg_flag |= NEG_HOT;
3365 	}
3366 
3367 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp, ncp->nc_name);
3368 	counter_u64_add(numneghits, 1);
3369 	cache_fpl_smr_exit(fpl);
3370 	mtx_unlock(&neglist->nl_lock);
3371 	mtx_unlock(&ncneg_hot.nl_lock);
3372 	vdrop(dvp);
3373 	return (cache_fpl_handled(fpl, ENOENT));
3374 out_abort:
3375 	cache_fpl_smr_exit(fpl);
3376 	mtx_unlock(&neglist->nl_lock);
3377 	mtx_unlock(&ncneg_hot.nl_lock);
3378 	vdrop(dvp);
3379 	return (cache_fpl_aborted(fpl));
3380 }
3381 
3382 /*
3383  * The target vnode is not supported, prepare for the slow path to take over.
3384  */
3385 static int __noinline
3386 cache_fplookup_partial_setup(struct cache_fpl *fpl)
3387 {
3388 	struct nameidata *ndp;
3389 	struct componentname *cnp;
3390 	enum vgetstate dvs;
3391 	struct vnode *dvp;
3392 	struct pwd *pwd;
3393 	seqc_t dvp_seqc;
3394 
3395 	ndp = fpl->ndp;
3396 	cnp = fpl->cnp;
3397 	dvp = fpl->dvp;
3398 	dvp_seqc = fpl->dvp_seqc;
3399 
3400 	dvs = vget_prep_smr(dvp);
3401 	if (__predict_false(dvs == VGET_NONE)) {
3402 		cache_fpl_smr_exit(fpl);
3403 		return (cache_fpl_aborted(fpl));
3404 	}
3405 
3406 	cache_fpl_smr_exit(fpl);
3407 
3408 	vget_finish_ref(dvp, dvs);
3409 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3410 		vrele(dvp);
3411 		return (cache_fpl_aborted(fpl));
3412 	}
3413 
3414 	pwd = pwd_hold(curthread);
3415 	if (fpl->pwd != pwd) {
3416 		vrele(dvp);
3417 		pwd_drop(pwd);
3418 		return (cache_fpl_aborted(fpl));
3419 	}
3420 
3421 	cache_fpl_restore(fpl, &fpl->snd);
3422 
3423 	ndp->ni_startdir = dvp;
3424 	cnp->cn_flags |= MAKEENTRY;
3425 	if (cache_fpl_islastcn(ndp))
3426 		cnp->cn_flags |= ISLASTCN;
3427 	if (cache_fpl_isdotdot(cnp))
3428 		cnp->cn_flags |= ISDOTDOT;
3429 
3430 	return (0);
3431 }
3432 
3433 static int
3434 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
3435 {
3436 	struct componentname *cnp;
3437 	struct vnode *tvp;
3438 	seqc_t tvp_seqc;
3439 	int error, lkflags;
3440 
3441 	cnp = fpl->cnp;
3442 	tvp = fpl->tvp;
3443 	tvp_seqc = fpl->tvp_seqc;
3444 
3445 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
3446 		lkflags = LK_SHARED;
3447 		if ((cnp->cn_flags & LOCKSHARED) == 0)
3448 			lkflags = LK_EXCLUSIVE;
3449 		error = vget_finish(tvp, lkflags, tvs);
3450 		if (__predict_false(error != 0)) {
3451 			return (cache_fpl_aborted(fpl));
3452 		}
3453 	} else {
3454 		vget_finish_ref(tvp, tvs);
3455 	}
3456 
3457 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
3458 		if ((cnp->cn_flags & LOCKLEAF) != 0)
3459 			vput(tvp);
3460 		else
3461 			vrele(tvp);
3462 		return (cache_fpl_aborted(fpl));
3463 	}
3464 
3465 	return (cache_fpl_handled(fpl, 0));
3466 }
3467 
3468 /*
3469  * They want to possibly modify the state of the namecache.
3470  *
3471  * Don't try to match the API contract, just leave.
3472  * TODO: this leaves scalability on the table
3473  */
3474 static int
3475 cache_fplookup_final_modifying(struct cache_fpl *fpl)
3476 {
3477 	struct componentname *cnp;
3478 
3479 	cnp = fpl->cnp;
3480 	MPASS(cnp->cn_nameiop != LOOKUP);
3481 	return (cache_fpl_partial(fpl));
3482 }
3483 
3484 static int __noinline
3485 cache_fplookup_final_withparent(struct cache_fpl *fpl)
3486 {
3487 	struct componentname *cnp;
3488 	enum vgetstate dvs, tvs;
3489 	struct vnode *dvp, *tvp;
3490 	seqc_t dvp_seqc, tvp_seqc;
3491 	int error;
3492 
3493 	cnp = fpl->cnp;
3494 	dvp = fpl->dvp;
3495 	dvp_seqc = fpl->dvp_seqc;
3496 	tvp = fpl->tvp;
3497 	tvp_seqc = fpl->tvp_seqc;
3498 
3499 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
3500 
3501 	/*
3502 	 * This is less efficient than it can be for simplicity.
3503 	 */
3504 	dvs = vget_prep_smr(dvp);
3505 	if (__predict_false(dvs == VGET_NONE)) {
3506 		return (cache_fpl_aborted(fpl));
3507 	}
3508 	tvs = vget_prep_smr(tvp);
3509 	if (__predict_false(tvs == VGET_NONE)) {
3510 		cache_fpl_smr_exit(fpl);
3511 		vget_abort(dvp, dvs);
3512 		return (cache_fpl_aborted(fpl));
3513 	}
3514 
3515 	cache_fpl_smr_exit(fpl);
3516 
3517 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
3518 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
3519 		if (__predict_false(error != 0)) {
3520 			vget_abort(tvp, tvs);
3521 			return (cache_fpl_aborted(fpl));
3522 		}
3523 	} else {
3524 		vget_finish_ref(dvp, dvs);
3525 	}
3526 
3527 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3528 		vget_abort(tvp, tvs);
3529 		if ((cnp->cn_flags & LOCKPARENT) != 0)
3530 			vput(dvp);
3531 		else
3532 			vrele(dvp);
3533 		return (cache_fpl_aborted(fpl));
3534 	}
3535 
3536 	error = cache_fplookup_final_child(fpl, tvs);
3537 	if (__predict_false(error != 0)) {
3538 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED);
3539 		if ((cnp->cn_flags & LOCKPARENT) != 0)
3540 			vput(dvp);
3541 		else
3542 			vrele(dvp);
3543 		return (error);
3544 	}
3545 
3546 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
3547 	return (0);
3548 }
3549 
3550 static int
3551 cache_fplookup_final(struct cache_fpl *fpl)
3552 {
3553 	struct componentname *cnp;
3554 	enum vgetstate tvs;
3555 	struct vnode *dvp, *tvp;
3556 	seqc_t dvp_seqc, tvp_seqc;
3557 
3558 	cnp = fpl->cnp;
3559 	dvp = fpl->dvp;
3560 	dvp_seqc = fpl->dvp_seqc;
3561 	tvp = fpl->tvp;
3562 	tvp_seqc = fpl->tvp_seqc;
3563 
3564 	VNPASS(cache_fplookup_vnode_supported(dvp), dvp);
3565 
3566 	if (cnp->cn_nameiop != LOOKUP) {
3567 		return (cache_fplookup_final_modifying(fpl));
3568 	}
3569 
3570 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
3571 		return (cache_fplookup_final_withparent(fpl));
3572 
3573 	tvs = vget_prep_smr(tvp);
3574 	if (__predict_false(tvs == VGET_NONE)) {
3575 		return (cache_fpl_partial(fpl));
3576 	}
3577 
3578 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3579 		cache_fpl_smr_exit(fpl);
3580 		vget_abort(tvp, tvs);
3581 		return (cache_fpl_aborted(fpl));
3582 	}
3583 
3584 	cache_fpl_smr_exit(fpl);
3585 	return (cache_fplookup_final_child(fpl, tvs));
3586 }
3587 
3588 static int __noinline
3589 cache_fplookup_dot(struct cache_fpl *fpl)
3590 {
3591 	struct vnode *dvp;
3592 
3593 	dvp = fpl->dvp;
3594 
3595 	fpl->tvp = dvp;
3596 	fpl->tvp_seqc = vn_seqc_read_any(dvp);
3597 	if (seqc_in_modify(fpl->tvp_seqc)) {
3598 		return (cache_fpl_aborted(fpl));
3599 	}
3600 
3601 	counter_u64_add(dothits, 1);
3602 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", dvp);
3603 
3604 	return (0);
3605 }
3606 
3607 static int __noinline
3608 cache_fplookup_dotdot(struct cache_fpl *fpl)
3609 {
3610 	struct nameidata *ndp;
3611 	struct componentname *cnp;
3612 	struct namecache *ncp;
3613 	struct vnode *dvp;
3614 	struct prison *pr;
3615 	u_char nc_flag;
3616 
3617 	ndp = fpl->ndp;
3618 	cnp = fpl->cnp;
3619 	dvp = fpl->dvp;
3620 
3621 	/*
3622 	 * XXX this is racy the same way regular lookup is
3623 	 */
3624 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
3625 	    pr = pr->pr_parent)
3626 		if (dvp == pr->pr_root)
3627 			break;
3628 
3629 	if (dvp == ndp->ni_rootdir ||
3630 	    dvp == ndp->ni_topdir ||
3631 	    dvp == rootvnode ||
3632 	    pr != NULL) {
3633 		fpl->tvp = dvp;
3634 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
3635 		if (seqc_in_modify(fpl->tvp_seqc)) {
3636 			return (cache_fpl_aborted(fpl));
3637 		}
3638 		return (0);
3639 	}
3640 
3641 	if ((dvp->v_vflag & VV_ROOT) != 0) {
3642 		/*
3643 		 * TODO
3644 		 * The opposite of climb mount is needed here.
3645 		 */
3646 		return (cache_fpl_aborted(fpl));
3647 	}
3648 
3649 	ncp = atomic_load_ptr(&dvp->v_cache_dd);
3650 	if (ncp == NULL) {
3651 		return (cache_fpl_aborted(fpl));
3652 	}
3653 
3654 	nc_flag = atomic_load_char(&ncp->nc_flag);
3655 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
3656 		if ((nc_flag & NCF_NEGATIVE) != 0)
3657 			return (cache_fpl_aborted(fpl));
3658 		fpl->tvp = ncp->nc_vp;
3659 	} else {
3660 		fpl->tvp = ncp->nc_dvp;
3661 	}
3662 
3663 	if (__predict_false(!cache_ncp_canuse(ncp))) {
3664 		return (cache_fpl_aborted(fpl));
3665 	}
3666 
3667 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
3668 	if (seqc_in_modify(fpl->tvp_seqc)) {
3669 		return (cache_fpl_partial(fpl));
3670 	}
3671 
3672 	counter_u64_add(dotdothits, 1);
3673 	return (0);
3674 }
3675 
3676 static int
3677 cache_fplookup_next(struct cache_fpl *fpl)
3678 {
3679 	struct componentname *cnp;
3680 	struct namecache *ncp;
3681 	struct negstate *negstate;
3682 	struct vnode *dvp, *tvp;
3683 	u_char nc_flag;
3684 	uint32_t hash;
3685 	bool neg_hot;
3686 
3687 	cnp = fpl->cnp;
3688 	dvp = fpl->dvp;
3689 
3690 	if (__predict_false(cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')) {
3691 		return (cache_fplookup_dot(fpl));
3692 	}
3693 
3694 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3695 
3696 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3697 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3698 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
3699 			break;
3700 	}
3701 
3702 	/*
3703 	 * If there is no entry we have to punt to the slow path to perform
3704 	 * actual lookup. Should there be nothing with this name a negative
3705 	 * entry will be created.
3706 	 */
3707 	if (__predict_false(ncp == NULL)) {
3708 		return (cache_fpl_partial(fpl));
3709 	}
3710 
3711 	tvp = atomic_load_ptr(&ncp->nc_vp);
3712 	nc_flag = atomic_load_char(&ncp->nc_flag);
3713 	if ((nc_flag & NCF_NEGATIVE) != 0) {
3714 		/*
3715 		 * If they want to create an entry we need to replace this one.
3716 		 */
3717 		if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
3718 			return (cache_fpl_partial(fpl));
3719 		}
3720 		negstate = NCP2NEGSTATE(ncp);
3721 		neg_hot = ((negstate->neg_flag & NEG_HOT) != 0);
3722 		if (__predict_false(!cache_ncp_canuse(ncp))) {
3723 			return (cache_fpl_partial(fpl));
3724 		}
3725 		if (__predict_false((nc_flag & NCF_WHITE) != 0)) {
3726 			return (cache_fpl_partial(fpl));
3727 		}
3728 		if (!neg_hot) {
3729 			return (cache_fplookup_negative_promote(fpl, ncp, hash));
3730 		}
3731 		SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp,
3732 		    ncp->nc_name);
3733 		counter_u64_add(numneghits, 1);
3734 		cache_fpl_smr_exit(fpl);
3735 		return (cache_fpl_handled(fpl, ENOENT));
3736 	}
3737 
3738 	if (__predict_false(!cache_ncp_canuse(ncp))) {
3739 		return (cache_fpl_partial(fpl));
3740 	}
3741 
3742 	fpl->tvp = tvp;
3743 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
3744 	if (seqc_in_modify(fpl->tvp_seqc)) {
3745 		return (cache_fpl_partial(fpl));
3746 	}
3747 
3748 	if (!cache_fplookup_vnode_supported(tvp)) {
3749 		return (cache_fpl_partial(fpl));
3750 	}
3751 
3752 	counter_u64_add(numposhits, 1);
3753 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
3754 	return (0);
3755 }
3756 
3757 static bool
3758 cache_fplookup_mp_supported(struct mount *mp)
3759 {
3760 
3761 	if (mp == NULL)
3762 		return (false);
3763 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
3764 		return (false);
3765 	return (true);
3766 }
3767 
3768 /*
3769  * Walk up the mount stack (if any).
3770  *
3771  * Correctness is provided in the following ways:
3772  * - all vnodes are protected from freeing with SMR
3773  * - struct mount objects are type stable making them always safe to access
3774  * - stability of the particular mount is provided by busying it
3775  * - relationship between the vnode which is mounted on and the mount is
3776  *   verified with the vnode sequence counter after busying
3777  * - association between root vnode of the mount and the mount is protected
3778  *   by busy
3779  *
3780  * From that point on we can read the sequence counter of the root vnode
3781  * and get the next mount on the stack (if any) using the same protection.
3782  *
3783  * By the end of successful walk we are guaranteed the reached state was
3784  * indeed present at least at some point which matches the regular lookup.
3785  */
3786 static int __noinline
3787 cache_fplookup_climb_mount(struct cache_fpl *fpl)
3788 {
3789 	struct mount *mp, *prev_mp;
3790 	struct vnode *vp;
3791 	seqc_t vp_seqc;
3792 
3793 	vp = fpl->tvp;
3794 	vp_seqc = fpl->tvp_seqc;
3795 
3796 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
3797 	mp = atomic_load_ptr(&vp->v_mountedhere);
3798 	if (mp == NULL)
3799 		return (0);
3800 
3801 	prev_mp = NULL;
3802 	for (;;) {
3803 		if (!vfs_op_thread_enter_crit(mp)) {
3804 			if (prev_mp != NULL)
3805 				vfs_op_thread_exit_crit(prev_mp);
3806 			return (cache_fpl_partial(fpl));
3807 		}
3808 		if (prev_mp != NULL)
3809 			vfs_op_thread_exit_crit(prev_mp);
3810 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3811 			vfs_op_thread_exit_crit(mp);
3812 			return (cache_fpl_partial(fpl));
3813 		}
3814 		if (!cache_fplookup_mp_supported(mp)) {
3815 			vfs_op_thread_exit_crit(mp);
3816 			return (cache_fpl_partial(fpl));
3817 		}
3818 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
3819 		if (vp == NULL || VN_IS_DOOMED(vp)) {
3820 			vfs_op_thread_exit_crit(mp);
3821 			return (cache_fpl_partial(fpl));
3822 		}
3823 		vp_seqc = vn_seqc_read_any(vp);
3824 		if (seqc_in_modify(vp_seqc)) {
3825 			vfs_op_thread_exit_crit(mp);
3826 			return (cache_fpl_partial(fpl));
3827 		}
3828 		prev_mp = mp;
3829 		mp = atomic_load_ptr(&vp->v_mountedhere);
3830 		if (mp == NULL)
3831 			break;
3832 	}
3833 
3834 	vfs_op_thread_exit_crit(prev_mp);
3835 	fpl->tvp = vp;
3836 	fpl->tvp_seqc = vp_seqc;
3837 	return (0);
3838 }
3839 
3840 static bool
3841 cache_fplookup_need_climb_mount(struct cache_fpl *fpl)
3842 {
3843 	struct mount *mp;
3844 	struct vnode *vp;
3845 
3846 	vp = fpl->tvp;
3847 
3848 	/*
3849 	 * Hack: while this is a union, the pointer tends to be NULL so save on
3850 	 * a branch.
3851 	 */
3852 	mp = atomic_load_ptr(&vp->v_mountedhere);
3853 	if (mp == NULL)
3854 		return (false);
3855 	if (vp->v_type == VDIR)
3856 		return (true);
3857 	return (false);
3858 }
3859 
3860 /*
3861  * Parse the path.
3862  *
3863  * The code is mostly copy-pasted from regular lookup, see lookup().
3864  * The structure is maintained along with comments for easier maintenance.
3865  * Deduplicating the code will become feasible after fast path lookup
3866  * becomes more feature-complete.
3867  */
3868 static int
3869 cache_fplookup_parse(struct cache_fpl *fpl)
3870 {
3871 	struct nameidata *ndp;
3872 	struct componentname *cnp;
3873 	char *cp;
3874 
3875 	ndp = fpl->ndp;
3876 	cnp = fpl->cnp;
3877 
3878 	/*
3879 	 * Search a new directory.
3880 	 *
3881 	 * The last component of the filename is left accessible via
3882 	 * cnp->cn_nameptr for callers that need the name. Callers needing
3883 	 * the name set the SAVENAME flag. When done, they assume
3884 	 * responsibility for freeing the pathname buffer.
3885 	 */
3886 	for (cp = cnp->cn_nameptr; *cp != 0 && *cp != '/'; cp++)
3887 		continue;
3888 	cnp->cn_namelen = cp - cnp->cn_nameptr;
3889 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
3890 		cache_fpl_smr_exit(fpl);
3891 		return (cache_fpl_handled(fpl, ENAMETOOLONG));
3892 	}
3893 	ndp->ni_pathlen -= cnp->cn_namelen;
3894 	KASSERT(ndp->ni_pathlen <= PATH_MAX,
3895 	    ("%s: ni_pathlen underflow to %zd\n", __func__, ndp->ni_pathlen));
3896 	ndp->ni_next = cp;
3897 
3898 	/*
3899 	 * Replace multiple slashes by a single slash and trailing slashes
3900 	 * by a null.  This must be done before VOP_LOOKUP() because some
3901 	 * fs's don't know about trailing slashes.  Remember if there were
3902 	 * trailing slashes to handle symlinks, existing non-directories
3903 	 * and non-existing files that won't be directories specially later.
3904 	 */
3905 	while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
3906 		cp++;
3907 		ndp->ni_pathlen--;
3908 		if (*cp == '\0') {
3909 			/*
3910 			 * TODO
3911 			 * Regular lookup performs the following:
3912 			 * *ndp->ni_next = '\0';
3913 			 * cnp->cn_flags |= TRAILINGSLASH;
3914 			 *
3915 			 * Which is problematic since it modifies data read
3916 			 * from userspace. Then if fast path lookup was to
3917 			 * abort we would have to either restore it or convey
3918 			 * the flag. Since this is a corner case just ignore
3919 			 * it for simplicity.
3920 			 */
3921 			return (cache_fpl_partial(fpl));
3922 		}
3923 	}
3924 	ndp->ni_next = cp;
3925 
3926 	/*
3927 	 * Check for degenerate name (e.g. / or "")
3928 	 * which is a way of talking about a directory,
3929 	 * e.g. like "/." or ".".
3930 	 *
3931 	 * TODO
3932 	 * Another corner case handled by the regular lookup
3933 	 */
3934 	if (__predict_false(cnp->cn_nameptr[0] == '\0')) {
3935 		return (cache_fpl_partial(fpl));
3936 	}
3937 	return (0);
3938 }
3939 
3940 static void
3941 cache_fplookup_parse_advance(struct cache_fpl *fpl)
3942 {
3943 	struct nameidata *ndp;
3944 	struct componentname *cnp;
3945 
3946 	ndp = fpl->ndp;
3947 	cnp = fpl->cnp;
3948 
3949 	cnp->cn_nameptr = ndp->ni_next;
3950 	while (*cnp->cn_nameptr == '/') {
3951 		cnp->cn_nameptr++;
3952 		ndp->ni_pathlen--;
3953 	}
3954 }
3955 
3956 static int __noinline
3957 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
3958 {
3959 
3960 	switch (error) {
3961 	case EAGAIN:
3962 		/*
3963 		 * Can happen when racing against vgone.
3964 		 * */
3965 	case EOPNOTSUPP:
3966 		cache_fpl_partial(fpl);
3967 		break;
3968 	default:
3969 		/*
3970 		 * See the API contract for VOP_FPLOOKUP_VEXEC.
3971 		 */
3972 		if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
3973 			error = cache_fpl_aborted(fpl);
3974 		} else {
3975 			cache_fpl_smr_exit(fpl);
3976 			cache_fpl_handled(fpl, error);
3977 		}
3978 		break;
3979 	}
3980 	return (error);
3981 }
3982 
3983 static int
3984 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
3985 {
3986 	struct nameidata *ndp;
3987 	struct componentname *cnp;
3988 	struct mount *mp;
3989 	int error;
3990 
3991 	error = CACHE_FPL_FAILED;
3992 	ndp = fpl->ndp;
3993 	cnp = fpl->cnp;
3994 
3995 	cache_fpl_checkpoint(fpl, &fpl->snd);
3996 
3997 	fpl->dvp = dvp;
3998 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
3999 	if (seqc_in_modify(fpl->dvp_seqc)) {
4000 		cache_fpl_aborted(fpl);
4001 		goto out;
4002 	}
4003 	mp = atomic_load_ptr(&fpl->dvp->v_mount);
4004 	if (!cache_fplookup_mp_supported(mp)) {
4005 		cache_fpl_aborted(fpl);
4006 		goto out;
4007 	}
4008 
4009 	VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
4010 
4011 	for (;;) {
4012 		error = cache_fplookup_parse(fpl);
4013 		if (__predict_false(error != 0)) {
4014 			break;
4015 		}
4016 
4017 		VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
4018 
4019 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
4020 		if (__predict_false(error != 0)) {
4021 			error = cache_fplookup_failed_vexec(fpl, error);
4022 			break;
4023 		}
4024 
4025 		if (__predict_false(cache_fpl_isdotdot(cnp))) {
4026 			error = cache_fplookup_dotdot(fpl);
4027 			if (__predict_false(error != 0)) {
4028 				break;
4029 			}
4030 		} else {
4031 			error = cache_fplookup_next(fpl);
4032 			if (__predict_false(error != 0)) {
4033 				break;
4034 			}
4035 
4036 			VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
4037 
4038 			if (cache_fplookup_need_climb_mount(fpl)) {
4039 				error = cache_fplookup_climb_mount(fpl);
4040 				if (__predict_false(error != 0)) {
4041 					break;
4042 				}
4043 			}
4044 		}
4045 
4046 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
4047 
4048 		if (cache_fpl_islastcn(ndp)) {
4049 			error = cache_fplookup_final(fpl);
4050 			break;
4051 		}
4052 
4053 		if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
4054 			error = cache_fpl_aborted(fpl);
4055 			break;
4056 		}
4057 
4058 		fpl->dvp = fpl->tvp;
4059 		fpl->dvp_seqc = fpl->tvp_seqc;
4060 
4061 		cache_fplookup_parse_advance(fpl);
4062 		cache_fpl_checkpoint(fpl, &fpl->snd);
4063 	}
4064 out:
4065 	switch (fpl->status) {
4066 	case CACHE_FPL_STATUS_UNSET:
4067 		__assert_unreachable();
4068 		break;
4069 	case CACHE_FPL_STATUS_PARTIAL:
4070 		cache_fpl_smr_assert_entered(fpl);
4071 		return (cache_fplookup_partial_setup(fpl));
4072 	case CACHE_FPL_STATUS_ABORTED:
4073 		if (fpl->in_smr)
4074 			cache_fpl_smr_exit(fpl);
4075 		return (CACHE_FPL_FAILED);
4076 	case CACHE_FPL_STATUS_HANDLED:
4077 		MPASS(error != CACHE_FPL_FAILED);
4078 		cache_fpl_smr_assert_not_entered(fpl);
4079 		if (__predict_false(error != 0)) {
4080 			ndp->ni_dvp = NULL;
4081 			ndp->ni_vp = NULL;
4082 			cache_fpl_cleanup_cnp(cnp);
4083 			return (error);
4084 		}
4085 		ndp->ni_dvp = fpl->dvp;
4086 		ndp->ni_vp = fpl->tvp;
4087 		if (cnp->cn_flags & SAVENAME)
4088 			cnp->cn_flags |= HASBUF;
4089 		else
4090 			cache_fpl_cleanup_cnp(cnp);
4091 		return (error);
4092 	}
4093 }
4094 
4095 /*
4096  * Fast path lookup protected with SMR and sequence counters.
4097  *
4098  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
4099  *
4100  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
4101  * outlined below.
4102  *
4103  * Traditional vnode lookup conceptually looks like this:
4104  *
4105  * vn_lock(current);
4106  * for (;;) {
4107  *	next = find();
4108  *	vn_lock(next);
4109  *	vn_unlock(current);
4110  *	current = next;
4111  *	if (last)
4112  *	    break;
4113  * }
4114  * return (current);
4115  *
4116  * Each jump to the next vnode is safe memory-wise and atomic with respect to
4117  * any modifications thanks to holding respective locks.
4118  *
4119  * The same guarantee can be provided with a combination of safe memory
4120  * reclamation and sequence counters instead. If all operations which affect
4121  * the relationship between the current vnode and the one we are looking for
4122  * also modify the counter, we can verify whether all the conditions held as
4123  * we made the jump. This includes things like permissions, mount points etc.
4124  * Counter modification is provided by enclosing relevant places in
4125  * vn_seqc_write_begin()/end() calls.
4126  *
4127  * Thus this translates to:
4128  *
4129  * vfs_smr_enter();
4130  * dvp_seqc = seqc_read_any(dvp);
4131  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
4132  *     abort();
4133  * for (;;) {
4134  * 	tvp = find();
4135  * 	tvp_seqc = seqc_read_any(tvp);
4136  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
4137  * 	    abort();
4138  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
4139  * 	    abort();
4140  * 	dvp = tvp; // we know nothing of importance has changed
4141  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
4142  * 	if (last)
4143  * 	    break;
4144  * }
4145  * vget(); // secure the vnode
4146  * if (!seqc_consistent(tvp, tvp_seqc) // final check
4147  * 	    abort();
4148  * // at this point we know nothing has changed for any parent<->child pair
4149  * // as they were crossed during the lookup, meaning we matched the guarantee
4150  * // of the locked variant
4151  * return (tvp);
4152  *
4153  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
4154  * - they are called while within vfs_smr protection which they must never exit
4155  * - EAGAIN can be returned to denote checking could not be performed, it is
4156  *   always valid to return it
4157  * - if the sequence counter has not changed the result must be valid
4158  * - if the sequence counter has changed both false positives and false negatives
4159  *   are permitted (since the result will be rejected later)
4160  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
4161  *
4162  * Caveats to watch out for:
4163  * - vnodes are passed unlocked and unreferenced with nothing stopping
4164  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
4165  *   to use atomic_load_ptr to fetch it.
4166  * - the aforementioned object can also get freed, meaning absent other means it
4167  *   should be protected with vfs_smr
4168  * - either safely checking permissions as they are modified or guaranteeing
4169  *   their stability is left to the routine
4170  */
4171 int
4172 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
4173     struct pwd **pwdp)
4174 {
4175 	struct cache_fpl fpl;
4176 	struct pwd *pwd;
4177 	struct vnode *dvp;
4178 	struct componentname *cnp;
4179 	struct nameidata_saved orig;
4180 	int error;
4181 
4182 	MPASS(ndp->ni_lcf == 0);
4183 
4184 	fpl.status = CACHE_FPL_STATUS_UNSET;
4185 	fpl.ndp = ndp;
4186 	fpl.cnp = &ndp->ni_cnd;
4187 	MPASS(curthread == fpl.cnp->cn_thread);
4188 
4189 	if ((fpl.cnp->cn_flags & SAVESTART) != 0)
4190 		MPASS(fpl.cnp->cn_nameiop != LOOKUP);
4191 
4192 	if (!cache_can_fplookup(&fpl)) {
4193 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
4194 		*status = fpl.status;
4195 		return (EOPNOTSUPP);
4196 	}
4197 
4198 	cache_fpl_checkpoint(&fpl, &orig);
4199 
4200 	cache_fpl_smr_enter_initial(&fpl);
4201 	pwd = pwd_get_smr();
4202 	fpl.pwd = pwd;
4203 	ndp->ni_rootdir = pwd->pwd_rdir;
4204 	ndp->ni_topdir = pwd->pwd_jdir;
4205 
4206 	cnp = fpl.cnp;
4207 	cnp->cn_nameptr = cnp->cn_pnbuf;
4208 	if (cnp->cn_pnbuf[0] == '/') {
4209 		cache_fpl_handle_root(ndp, &dvp);
4210 	} else {
4211 		MPASS(ndp->ni_dirfd == AT_FDCWD);
4212 		dvp = pwd->pwd_cdir;
4213 	}
4214 
4215 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
4216 
4217 	error = cache_fplookup_impl(dvp, &fpl);
4218 	cache_fpl_smr_assert_not_entered(&fpl);
4219 	SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
4220 
4221 	*status = fpl.status;
4222 	switch (fpl.status) {
4223 	case CACHE_FPL_STATUS_UNSET:
4224 		__assert_unreachable();
4225 		break;
4226 	case CACHE_FPL_STATUS_HANDLED:
4227 		SDT_PROBE3(vfs, namei, lookup, return, error,
4228 		    (error == 0 ? ndp->ni_vp : NULL), true);
4229 		break;
4230 	case CACHE_FPL_STATUS_PARTIAL:
4231 		*pwdp = fpl.pwd;
4232 		/*
4233 		 * Status restored by cache_fplookup_partial_setup.
4234 		 */
4235 		break;
4236 	case CACHE_FPL_STATUS_ABORTED:
4237 		cache_fpl_restore(&fpl, &orig);
4238 		break;
4239 	}
4240 	return (error);
4241 }
4242