1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Poul-Henning Kamp of the FreeBSD Project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ddb.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/capsicum.h> 46 #include <sys/counter.h> 47 #include <sys/filedesc.h> 48 #include <sys/fnv_hash.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/fcntl.h> 54 #include <sys/jail.h> 55 #include <sys/mount.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/seqc.h> 59 #include <sys/sdt.h> 60 #include <sys/smr.h> 61 #include <sys/smp.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/vnode.h> 66 #include <ck_queue.h> 67 #ifdef KTRACE 68 #include <sys/ktrace.h> 69 #endif 70 #ifdef INVARIANTS 71 #include <machine/_inttypes.h> 72 #endif 73 74 #include <sys/capsicum.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #include <vm/uma.h> 84 85 /* 86 * High level overview of name caching in the VFS layer. 87 * 88 * Originally caching was implemented as part of UFS, later extracted to allow 89 * use by other filesystems. A decision was made to make it optional and 90 * completely detached from the rest of the kernel, which comes with limitations 91 * outlined near the end of this comment block. 92 * 93 * This fundamental choice needs to be revisited. In the meantime, the current 94 * state is described below. Significance of all notable routines is explained 95 * in comments placed above their implementation. Scattered thoroughout the 96 * file are TODO comments indicating shortcomings which can be fixed without 97 * reworking everything (most of the fixes will likely be reusable). Various 98 * details are omitted from this explanation to not clutter the overview, they 99 * have to be checked by reading the code and associated commentary. 100 * 101 * Keep in mind that it's individual path components which are cached, not full 102 * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries, 103 * one for each name. 104 * 105 * I. Data organization 106 * 107 * Entries are described by "struct namecache" objects and stored in a hash 108 * table. See cache_get_hash for more information. 109 * 110 * "struct vnode" contains pointers to source entries (names which can be found 111 * when traversing through said vnode), destination entries (names of that 112 * vnode (see "Limitations" for a breakdown on the subject) and a pointer to 113 * the parent vnode. 114 * 115 * The (directory vnode; name) tuple reliably determines the target entry if 116 * it exists. 117 * 118 * Since there are no small locks at this time (all are 32 bytes in size on 119 * LP64), the code works around the problem by introducing lock arrays to 120 * protect hash buckets and vnode lists. 121 * 122 * II. Filesystem integration 123 * 124 * Filesystems participating in name caching do the following: 125 * - set vop_lookup routine to vfs_cache_lookup 126 * - set vop_cachedlookup to whatever can perform the lookup if the above fails 127 * - if they support lockless lookup (see below), vop_fplookup_vexec and 128 * vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the 129 * mount point 130 * - call cache_purge or cache_vop_* routines to eliminate stale entries as 131 * applicable 132 * - call cache_enter to add entries depending on the MAKEENTRY flag 133 * 134 * With the above in mind, there are 2 entry points when doing lookups: 135 * - ... -> namei -> cache_fplookup -- this is the default 136 * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei 137 * should the above fail 138 * 139 * Example code flow how an entry is added: 140 * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP -> 141 * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter 142 * 143 * III. Performance considerations 144 * 145 * For lockless case forward lookup avoids any writes to shared areas apart 146 * from the terminal path component. In other words non-modifying lookups of 147 * different files don't suffer any scalability problems in the namecache. 148 * Looking up the same file is limited by VFS and goes beyond the scope of this 149 * file. 150 * 151 * At least on amd64 the single-threaded bottleneck for long paths is hashing 152 * (see cache_get_hash). There are cases where the code issues acquire fence 153 * multiple times, they can be combined on architectures which suffer from it. 154 * 155 * For locked case each encountered vnode has to be referenced and locked in 156 * order to be handed out to the caller (normally that's namei). This 157 * introduces significant hit single-threaded and serialization multi-threaded. 158 * 159 * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached -- 160 * avoids any writes to shared areas to any components. 161 * 162 * Unrelated insertions are partially serialized on updating the global entry 163 * counter and possibly serialized on colliding bucket or vnode locks. 164 * 165 * IV. Observability 166 * 167 * Note not everything has an explicit dtrace probe nor it should have, thus 168 * some of the one-liners below depend on implementation details. 169 * 170 * Examples: 171 * 172 * # Check what lookups failed to be handled in a lockless manner. Column 1 is 173 * # line number, column 2 is status code (see cache_fpl_status) 174 * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }' 175 * 176 * # Lengths of names added by binary name 177 * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }' 178 * 179 * # Same as above but only those which exceed 64 characters 180 * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }' 181 * 182 * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what 183 * # path is it 184 * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }' 185 * 186 * V. Limitations and implementation defects 187 * 188 * - since it is possible there is no entry for an open file, tools like 189 * "procstat" may fail to resolve fd -> vnode -> path to anything 190 * - even if a filesystem adds an entry, it may get purged (e.g., due to memory 191 * shortage) in which case the above problem applies 192 * - hardlinks are not tracked, thus if a vnode is reachable in more than one 193 * way, resolving a name may return a different path than the one used to 194 * open it (even if said path is still valid) 195 * - by default entries are not added for newly created files 196 * - adding an entry may need to evict negative entry first, which happens in 2 197 * distinct places (evicting on lookup, adding in a later VOP) making it 198 * impossible to simply reuse it 199 * - there is a simple scheme to evict negative entries as the cache is approaching 200 * its capacity, but it is very unclear if doing so is a good idea to begin with 201 * - vnodes are subject to being recycled even if target inode is left in memory, 202 * which loses the name cache entries when it perhaps should not. in case of tmpfs 203 * names get duplicated -- kept by filesystem itself and namecache separately 204 * - struct namecache has a fixed size and comes in 2 variants, often wasting space. 205 * now hard to replace with malloc due to dependence on SMR. 206 * - lack of better integration with the kernel also turns nullfs into a layered 207 * filesystem instead of something which can take advantage of caching 208 */ 209 210 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 211 "Name cache"); 212 213 SDT_PROVIDER_DECLARE(vfs); 214 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", 215 "struct vnode *"); 216 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *", 217 "struct vnode *"); 218 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", 219 "char *"); 220 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *", 221 "const char *"); 222 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", 223 "struct namecache *", "int", "int"); 224 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *"); 225 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *", 226 "char *", "struct vnode *"); 227 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *"); 228 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int", 229 "struct vnode *", "char *"); 230 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *", 231 "struct vnode *"); 232 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative, 233 "struct vnode *", "char *"); 234 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *", 235 "char *"); 236 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *", 237 "struct componentname *"); 238 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *", 239 "struct componentname *"); 240 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *"); 241 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int"); 242 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *"); 243 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *"); 244 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *", 245 "struct vnode *"); 246 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *", 247 "char *"); 248 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *", 249 "char *"); 250 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t"); 251 252 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool"); 253 SDT_PROBE_DECLARE(vfs, namei, lookup, entry); 254 SDT_PROBE_DECLARE(vfs, namei, lookup, return); 255 256 static char __read_frequently cache_fast_lookup_enabled = true; 257 258 /* 259 * This structure describes the elements in the cache of recent 260 * names looked up by namei. 261 */ 262 struct negstate { 263 u_char neg_flag; 264 u_char neg_hit; 265 }; 266 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *), 267 "the state must fit in a union with a pointer without growing it"); 268 269 struct namecache { 270 LIST_ENTRY(namecache) nc_src; /* source vnode list */ 271 TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */ 272 CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */ 273 struct vnode *nc_dvp; /* vnode of parent of name */ 274 union { 275 struct vnode *nu_vp; /* vnode the name refers to */ 276 struct negstate nu_neg;/* negative entry state */ 277 } n_un; 278 u_char nc_flag; /* flag bits */ 279 u_char nc_nlen; /* length of name */ 280 char nc_name[0]; /* segment name + nul */ 281 }; 282 283 /* 284 * struct namecache_ts repeats struct namecache layout up to the 285 * nc_nlen member. 286 * struct namecache_ts is used in place of struct namecache when time(s) need 287 * to be stored. The nc_dotdottime field is used when a cache entry is mapping 288 * both a non-dotdot directory name plus dotdot for the directory's 289 * parent. 290 * 291 * See below for alignment requirement. 292 */ 293 struct namecache_ts { 294 struct timespec nc_time; /* timespec provided by fs */ 295 struct timespec nc_dotdottime; /* dotdot timespec provided by fs */ 296 int nc_ticks; /* ticks value when entry was added */ 297 int nc_pad; 298 struct namecache nc_nc; 299 }; 300 301 TAILQ_HEAD(cache_freebatch, namecache); 302 303 /* 304 * At least mips n32 performs 64-bit accesses to timespec as found 305 * in namecache_ts and requires them to be aligned. Since others 306 * may be in the same spot suffer a little bit and enforce the 307 * alignment for everyone. Note this is a nop for 64-bit platforms. 308 */ 309 #define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t) 310 311 /* 312 * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the 313 * 4.4 BSD codebase. Later on struct namecache was tweaked to become 314 * smaller and the value was bumped to retain the total size, but it 315 * was never re-evaluated for suitability. A simple test counting 316 * lengths during package building shows that the value of 45 covers 317 * about 86% of all added entries, reaching 99% at 65. 318 * 319 * Regardless of the above, use of dedicated zones instead of malloc may be 320 * inducing additional waste. This may be hard to address as said zones are 321 * tied to VFS SMR. Even if retaining them, the current split should be 322 * re-evaluated. 323 */ 324 #ifdef __LP64__ 325 #define CACHE_PATH_CUTOFF 45 326 #define CACHE_LARGE_PAD 6 327 #else 328 #define CACHE_PATH_CUTOFF 41 329 #define CACHE_LARGE_PAD 2 330 #endif 331 332 #define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1) 333 #define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE) 334 #define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD) 335 #define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE) 336 337 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 338 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 339 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 340 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 341 342 #define nc_vp n_un.nu_vp 343 #define nc_neg n_un.nu_neg 344 345 /* 346 * Flags in namecache.nc_flag 347 */ 348 #define NCF_WHITE 0x01 349 #define NCF_ISDOTDOT 0x02 350 #define NCF_TS 0x04 351 #define NCF_DTS 0x08 352 #define NCF_DVDROP 0x10 353 #define NCF_NEGATIVE 0x20 354 #define NCF_INVALID 0x40 355 #define NCF_WIP 0x80 356 357 /* 358 * Flags in negstate.neg_flag 359 */ 360 #define NEG_HOT 0x01 361 362 static bool cache_neg_evict_cond(u_long lnumcache); 363 364 /* 365 * Mark an entry as invalid. 366 * 367 * This is called before it starts getting deconstructed. 368 */ 369 static void 370 cache_ncp_invalidate(struct namecache *ncp) 371 { 372 373 KASSERT((ncp->nc_flag & NCF_INVALID) == 0, 374 ("%s: entry %p already invalid", __func__, ncp)); 375 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID); 376 atomic_thread_fence_rel(); 377 } 378 379 /* 380 * Check whether the entry can be safely used. 381 * 382 * All places which elide locks are supposed to call this after they are 383 * done with reading from an entry. 384 */ 385 #define cache_ncp_canuse(ncp) ({ \ 386 struct namecache *_ncp = (ncp); \ 387 u_char _nc_flag; \ 388 \ 389 atomic_thread_fence_acq(); \ 390 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 391 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \ 392 }) 393 394 /* 395 * Like the above but also checks NCF_WHITE. 396 */ 397 #define cache_fpl_neg_ncp_canuse(ncp) ({ \ 398 struct namecache *_ncp = (ncp); \ 399 u_char _nc_flag; \ 400 \ 401 atomic_thread_fence_acq(); \ 402 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 403 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \ 404 }) 405 406 VFS_SMR_DECLARE; 407 408 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 409 "Name cache parameters"); 410 411 static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */ 412 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, 413 "Total namecache capacity"); 414 415 u_int ncsizefactor = 2; 416 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0, 417 "Size factor for namecache"); 418 419 static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */ 420 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, 421 "Ratio of negative namecache entries"); 422 423 /* 424 * Negative entry % of namecache capacity above which automatic eviction is allowed. 425 * 426 * Check cache_neg_evict_cond for details. 427 */ 428 static u_int ncnegminpct = 3; 429 430 static u_int __read_mostly neg_min; /* the above recomputed against ncsize */ 431 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0, 432 "Negative entry count above which automatic eviction is allowed"); 433 434 /* 435 * Structures associated with name caching. 436 */ 437 #define NCHHASH(hash) \ 438 (&nchashtbl[(hash) & nchash]) 439 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */ 440 static u_long __read_mostly nchash; /* size of hash table */ 441 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, 442 "Size of namecache hash table"); 443 static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */ 444 static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */ 445 446 struct nchstats nchstats; /* cache effectiveness statistics */ 447 448 static bool __read_mostly cache_rename_add = true; 449 SYSCTL_BOOL(_vfs, OID_AUTO, cache_rename_add, CTLFLAG_RW, 450 &cache_rename_add, 0, ""); 451 452 static u_int __exclusive_cache_line neg_cycle; 453 454 #define ncneghash 3 455 #define numneglists (ncneghash + 1) 456 457 struct neglist { 458 struct mtx nl_evict_lock; 459 struct mtx nl_lock __aligned(CACHE_LINE_SIZE); 460 TAILQ_HEAD(, namecache) nl_list; 461 TAILQ_HEAD(, namecache) nl_hotlist; 462 u_long nl_hotnum; 463 } __aligned(CACHE_LINE_SIZE); 464 465 static struct neglist neglists[numneglists]; 466 467 static inline struct neglist * 468 NCP2NEGLIST(struct namecache *ncp) 469 { 470 471 return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]); 472 } 473 474 static inline struct negstate * 475 NCP2NEGSTATE(struct namecache *ncp) 476 { 477 478 MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE); 479 return (&ncp->nc_neg); 480 } 481 482 #define numbucketlocks (ncbuckethash + 1) 483 static u_int __read_mostly ncbuckethash; 484 static struct mtx_padalign __read_mostly *bucketlocks; 485 #define HASH2BUCKETLOCK(hash) \ 486 ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)])) 487 488 #define numvnodelocks (ncvnodehash + 1) 489 static u_int __read_mostly ncvnodehash; 490 static struct mtx __read_mostly *vnodelocks; 491 static inline struct mtx * 492 VP2VNODELOCK(struct vnode *vp) 493 { 494 495 return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]); 496 } 497 498 static void 499 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp) 500 { 501 struct namecache_ts *ncp_ts; 502 503 KASSERT((ncp->nc_flag & NCF_TS) != 0 || 504 (tsp == NULL && ticksp == NULL), 505 ("No NCF_TS")); 506 507 if (tsp == NULL) 508 return; 509 510 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 511 *tsp = ncp_ts->nc_time; 512 *ticksp = ncp_ts->nc_ticks; 513 } 514 515 #ifdef DEBUG_CACHE 516 static int __read_mostly doingcache = 1; /* 1 => enable the cache */ 517 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, 518 "VFS namecache enabled"); 519 #endif 520 521 /* Export size information to userland */ 522 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, 523 sizeof(struct namecache), "sizeof(struct namecache)"); 524 525 /* 526 * The new name cache statistics 527 */ 528 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 529 "Name cache statistics"); 530 531 #define STATNODE_ULONG(name, varname, descr) \ 532 SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 533 #define STATNODE_COUNTER(name, varname, descr) \ 534 static COUNTER_U64_DEFINE_EARLY(varname); \ 535 SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \ 536 descr); 537 STATNODE_ULONG(neg, numneg, "Number of negative cache entries"); 538 STATNODE_ULONG(count, numcache, "Number of cache entries"); 539 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held"); 540 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit"); 541 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits"); 542 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits"); 543 STATNODE_COUNTER(miss, nummiss, "Number of cache misses"); 544 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache"); 545 STATNODE_COUNTER(posszaps, numposzaps, 546 "Number of cache hits (positive) we do not want to cache"); 547 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)"); 548 STATNODE_COUNTER(negzaps, numnegzaps, 549 "Number of cache hits (negative) we do not want to cache"); 550 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)"); 551 /* These count for vn_getcwd(), too. */ 552 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls"); 553 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)"); 554 STATNODE_COUNTER(fullpathfail2, numfullpathfail2, 555 "Number of fullpath search errors (VOP_VPTOCNP failures)"); 556 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)"); 557 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls"); 558 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache"); 559 560 /* 561 * Debug or developer statistics. 562 */ 563 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 564 "Name cache debugging"); 565 #define DEBUGNODE_ULONG(name, varname, descr) \ 566 SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 567 #define DEBUGNODE_COUNTER(name, varname, descr) \ 568 static COUNTER_U64_DEFINE_EARLY(varname); \ 569 SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \ 570 descr); 571 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success, 572 "Number of successful removals after relocking"); 573 static long zap_bucket_fail; 574 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, ""); 575 static long zap_bucket_fail2; 576 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, ""); 577 static long cache_lock_vnodes_cel_3_failures; 578 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures, 579 "Number of times 3-way vnode locking failed"); 580 581 static void cache_zap_locked(struct namecache *ncp); 582 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, 583 char **freebuf, size_t *buflen); 584 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 585 char **retbuf, size_t *buflen, size_t addend); 586 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, 587 char **retbuf, size_t *buflen); 588 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, 589 char **retbuf, size_t *len, size_t addend); 590 591 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 592 593 static inline void 594 cache_assert_vlp_locked(struct mtx *vlp) 595 { 596 597 if (vlp != NULL) 598 mtx_assert(vlp, MA_OWNED); 599 } 600 601 static inline void 602 cache_assert_vnode_locked(struct vnode *vp) 603 { 604 struct mtx *vlp; 605 606 vlp = VP2VNODELOCK(vp); 607 cache_assert_vlp_locked(vlp); 608 } 609 610 /* 611 * Directory vnodes with entries are held for two reasons: 612 * 1. make them less of a target for reclamation in vnlru 613 * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided 614 * 615 * It will be feasible to stop doing it altogether if all filesystems start 616 * supporting lockless lookup. 617 */ 618 static void 619 cache_hold_vnode(struct vnode *vp) 620 { 621 622 cache_assert_vnode_locked(vp); 623 VNPASS(LIST_EMPTY(&vp->v_cache_src), vp); 624 vhold(vp); 625 counter_u64_add(numcachehv, 1); 626 } 627 628 static void 629 cache_drop_vnode(struct vnode *vp) 630 { 631 632 /* 633 * Called after all locks are dropped, meaning we can't assert 634 * on the state of v_cache_src. 635 */ 636 vdrop(vp); 637 counter_u64_add(numcachehv, -1); 638 } 639 640 /* 641 * UMA zones. 642 */ 643 static uma_zone_t __read_mostly cache_zone_small; 644 static uma_zone_t __read_mostly cache_zone_small_ts; 645 static uma_zone_t __read_mostly cache_zone_large; 646 static uma_zone_t __read_mostly cache_zone_large_ts; 647 648 char * 649 cache_symlink_alloc(size_t size, int flags) 650 { 651 652 if (size < CACHE_ZONE_SMALL_SIZE) { 653 return (uma_zalloc_smr(cache_zone_small, flags)); 654 } 655 if (size < CACHE_ZONE_LARGE_SIZE) { 656 return (uma_zalloc_smr(cache_zone_large, flags)); 657 } 658 counter_u64_add(symlinktoobig, 1); 659 SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size); 660 return (NULL); 661 } 662 663 void 664 cache_symlink_free(char *string, size_t size) 665 { 666 667 MPASS(string != NULL); 668 KASSERT(size < CACHE_ZONE_LARGE_SIZE, 669 ("%s: size %zu too big", __func__, size)); 670 671 if (size < CACHE_ZONE_SMALL_SIZE) { 672 uma_zfree_smr(cache_zone_small, string); 673 return; 674 } 675 if (size < CACHE_ZONE_LARGE_SIZE) { 676 uma_zfree_smr(cache_zone_large, string); 677 return; 678 } 679 __assert_unreachable(); 680 } 681 682 static struct namecache * 683 cache_alloc_uma(int len, bool ts) 684 { 685 struct namecache_ts *ncp_ts; 686 struct namecache *ncp; 687 688 if (__predict_false(ts)) { 689 if (len <= CACHE_PATH_CUTOFF) 690 ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK); 691 else 692 ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK); 693 ncp = &ncp_ts->nc_nc; 694 } else { 695 if (len <= CACHE_PATH_CUTOFF) 696 ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK); 697 else 698 ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK); 699 } 700 return (ncp); 701 } 702 703 static void 704 cache_free_uma(struct namecache *ncp) 705 { 706 struct namecache_ts *ncp_ts; 707 708 if (__predict_false(ncp->nc_flag & NCF_TS)) { 709 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 710 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 711 uma_zfree_smr(cache_zone_small_ts, ncp_ts); 712 else 713 uma_zfree_smr(cache_zone_large_ts, ncp_ts); 714 } else { 715 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 716 uma_zfree_smr(cache_zone_small, ncp); 717 else 718 uma_zfree_smr(cache_zone_large, ncp); 719 } 720 } 721 722 static struct namecache * 723 cache_alloc(int len, bool ts) 724 { 725 u_long lnumcache; 726 727 /* 728 * Avoid blowout in namecache entries. 729 * 730 * Bugs: 731 * 1. filesystems may end up trying to add an already existing entry 732 * (for example this can happen after a cache miss during concurrent 733 * lookup), in which case we will call cache_neg_evict despite not 734 * adding anything. 735 * 2. the routine may fail to free anything and no provisions are made 736 * to make it try harder (see the inside for failure modes) 737 * 3. it only ever looks at negative entries. 738 */ 739 lnumcache = atomic_fetchadd_long(&numcache, 1) + 1; 740 if (cache_neg_evict_cond(lnumcache)) { 741 lnumcache = atomic_load_long(&numcache); 742 } 743 if (__predict_false(lnumcache >= ncsize)) { 744 atomic_subtract_long(&numcache, 1); 745 counter_u64_add(numdrops, 1); 746 return (NULL); 747 } 748 return (cache_alloc_uma(len, ts)); 749 } 750 751 static void 752 cache_free(struct namecache *ncp) 753 { 754 755 MPASS(ncp != NULL); 756 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 757 cache_drop_vnode(ncp->nc_dvp); 758 } 759 cache_free_uma(ncp); 760 atomic_subtract_long(&numcache, 1); 761 } 762 763 static void 764 cache_free_batch(struct cache_freebatch *batch) 765 { 766 struct namecache *ncp, *nnp; 767 int i; 768 769 i = 0; 770 if (TAILQ_EMPTY(batch)) 771 goto out; 772 TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) { 773 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 774 cache_drop_vnode(ncp->nc_dvp); 775 } 776 cache_free_uma(ncp); 777 i++; 778 } 779 atomic_subtract_long(&numcache, i); 780 out: 781 SDT_PROBE1(vfs, namecache, purge, batch, i); 782 } 783 784 /* 785 * Hashing. 786 * 787 * The code was made to use FNV in 2001 and this choice needs to be revisited. 788 * 789 * Short summary of the difficulty: 790 * The longest name which can be inserted is NAME_MAX characters in length (or 791 * 255 at the time of writing this comment), while majority of names used in 792 * practice are significantly shorter (mostly below 10). More importantly 793 * majority of lookups performed find names are even shorter than that. 794 * 795 * This poses a problem where hashes which do better than FNV past word size 796 * (or so) tend to come with additional overhead when finalizing the result, 797 * making them noticeably slower for the most commonly used range. 798 * 799 * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c 800 * 801 * When looking it up the most time consuming part by a large margin (at least 802 * on amd64) is hashing. Replacing FNV with something which pessimizes short 803 * input would make the slowest part stand out even more. 804 */ 805 806 /* 807 * TODO: With the value stored we can do better than computing the hash based 808 * on the address. 809 */ 810 static void 811 cache_prehash(struct vnode *vp) 812 { 813 814 vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT); 815 } 816 817 static uint32_t 818 cache_get_hash(char *name, u_char len, struct vnode *dvp) 819 { 820 821 return (fnv_32_buf(name, len, dvp->v_nchash)); 822 } 823 824 static uint32_t 825 cache_get_hash_iter_start(struct vnode *dvp) 826 { 827 828 return (dvp->v_nchash); 829 } 830 831 static uint32_t 832 cache_get_hash_iter(char c, uint32_t hash) 833 { 834 835 return (fnv_32_buf(&c, 1, hash)); 836 } 837 838 static uint32_t 839 cache_get_hash_iter_finish(uint32_t hash) 840 { 841 842 return (hash); 843 } 844 845 static inline struct nchashhead * 846 NCP2BUCKET(struct namecache *ncp) 847 { 848 uint32_t hash; 849 850 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 851 return (NCHHASH(hash)); 852 } 853 854 static inline struct mtx * 855 NCP2BUCKETLOCK(struct namecache *ncp) 856 { 857 uint32_t hash; 858 859 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 860 return (HASH2BUCKETLOCK(hash)); 861 } 862 863 #ifdef INVARIANTS 864 static void 865 cache_assert_bucket_locked(struct namecache *ncp) 866 { 867 struct mtx *blp; 868 869 blp = NCP2BUCKETLOCK(ncp); 870 mtx_assert(blp, MA_OWNED); 871 } 872 873 static void 874 cache_assert_bucket_unlocked(struct namecache *ncp) 875 { 876 struct mtx *blp; 877 878 blp = NCP2BUCKETLOCK(ncp); 879 mtx_assert(blp, MA_NOTOWNED); 880 } 881 #else 882 #define cache_assert_bucket_locked(x) do { } while (0) 883 #define cache_assert_bucket_unlocked(x) do { } while (0) 884 #endif 885 886 #define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y)) 887 static void 888 _cache_sort_vnodes(void **p1, void **p2) 889 { 890 void *tmp; 891 892 MPASS(*p1 != NULL || *p2 != NULL); 893 894 if (*p1 > *p2) { 895 tmp = *p2; 896 *p2 = *p1; 897 *p1 = tmp; 898 } 899 } 900 901 static void 902 cache_lock_all_buckets(void) 903 { 904 u_int i; 905 906 for (i = 0; i < numbucketlocks; i++) 907 mtx_lock(&bucketlocks[i]); 908 } 909 910 static void 911 cache_unlock_all_buckets(void) 912 { 913 u_int i; 914 915 for (i = 0; i < numbucketlocks; i++) 916 mtx_unlock(&bucketlocks[i]); 917 } 918 919 static void 920 cache_lock_all_vnodes(void) 921 { 922 u_int i; 923 924 for (i = 0; i < numvnodelocks; i++) 925 mtx_lock(&vnodelocks[i]); 926 } 927 928 static void 929 cache_unlock_all_vnodes(void) 930 { 931 u_int i; 932 933 for (i = 0; i < numvnodelocks; i++) 934 mtx_unlock(&vnodelocks[i]); 935 } 936 937 static int 938 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 939 { 940 941 cache_sort_vnodes(&vlp1, &vlp2); 942 943 if (vlp1 != NULL) { 944 if (!mtx_trylock(vlp1)) 945 return (EAGAIN); 946 } 947 if (!mtx_trylock(vlp2)) { 948 if (vlp1 != NULL) 949 mtx_unlock(vlp1); 950 return (EAGAIN); 951 } 952 953 return (0); 954 } 955 956 static void 957 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 958 { 959 960 MPASS(vlp1 != NULL || vlp2 != NULL); 961 MPASS(vlp1 <= vlp2); 962 963 if (vlp1 != NULL) 964 mtx_lock(vlp1); 965 if (vlp2 != NULL) 966 mtx_lock(vlp2); 967 } 968 969 static void 970 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 971 { 972 973 MPASS(vlp1 != NULL || vlp2 != NULL); 974 975 if (vlp1 != NULL) 976 mtx_unlock(vlp1); 977 if (vlp2 != NULL) 978 mtx_unlock(vlp2); 979 } 980 981 static int 982 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 983 { 984 struct nchstats snap; 985 986 if (req->oldptr == NULL) 987 return (SYSCTL_OUT(req, 0, sizeof(snap))); 988 989 snap = nchstats; 990 snap.ncs_goodhits = counter_u64_fetch(numposhits); 991 snap.ncs_neghits = counter_u64_fetch(numneghits); 992 snap.ncs_badhits = counter_u64_fetch(numposzaps) + 993 counter_u64_fetch(numnegzaps); 994 snap.ncs_miss = counter_u64_fetch(nummisszap) + 995 counter_u64_fetch(nummiss); 996 997 return (SYSCTL_OUT(req, &snap, sizeof(snap))); 998 } 999 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD | 1000 CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", 1001 "VFS cache effectiveness statistics"); 1002 1003 static void 1004 cache_recalc_neg_min(u_int val) 1005 { 1006 1007 neg_min = (ncsize * val) / 100; 1008 } 1009 1010 static int 1011 sysctl_negminpct(SYSCTL_HANDLER_ARGS) 1012 { 1013 u_int val; 1014 int error; 1015 1016 val = ncnegminpct; 1017 error = sysctl_handle_int(oidp, &val, 0, req); 1018 if (error != 0 || req->newptr == NULL) 1019 return (error); 1020 1021 if (val == ncnegminpct) 1022 return (0); 1023 if (val < 0 || val > 99) 1024 return (EINVAL); 1025 ncnegminpct = val; 1026 cache_recalc_neg_min(val); 1027 return (0); 1028 } 1029 1030 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct, 1031 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct, 1032 "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed"); 1033 1034 #ifdef DIAGNOSTIC 1035 /* 1036 * Grab an atomic snapshot of the name cache hash chain lengths 1037 */ 1038 static SYSCTL_NODE(_debug, OID_AUTO, hashstat, 1039 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 1040 "hash table stats"); 1041 1042 static int 1043 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS) 1044 { 1045 struct nchashhead *ncpp; 1046 struct namecache *ncp; 1047 int i, error, n_nchash, *cntbuf; 1048 1049 retry: 1050 n_nchash = nchash + 1; /* nchash is max index, not count */ 1051 if (req->oldptr == NULL) 1052 return SYSCTL_OUT(req, 0, n_nchash * sizeof(int)); 1053 cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK); 1054 cache_lock_all_buckets(); 1055 if (n_nchash != nchash + 1) { 1056 cache_unlock_all_buckets(); 1057 free(cntbuf, M_TEMP); 1058 goto retry; 1059 } 1060 /* Scan hash tables counting entries */ 1061 for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++) 1062 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) 1063 cntbuf[i]++; 1064 cache_unlock_all_buckets(); 1065 for (error = 0, i = 0; i < n_nchash; i++) 1066 if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0) 1067 break; 1068 free(cntbuf, M_TEMP); 1069 return (error); 1070 } 1071 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD| 1072 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int", 1073 "nchash chain lengths"); 1074 1075 static int 1076 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS) 1077 { 1078 int error; 1079 struct nchashhead *ncpp; 1080 struct namecache *ncp; 1081 int n_nchash; 1082 int count, maxlength, used, pct; 1083 1084 if (!req->oldptr) 1085 return SYSCTL_OUT(req, 0, 4 * sizeof(int)); 1086 1087 cache_lock_all_buckets(); 1088 n_nchash = nchash + 1; /* nchash is max index, not count */ 1089 used = 0; 1090 maxlength = 0; 1091 1092 /* Scan hash tables for applicable entries */ 1093 for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) { 1094 count = 0; 1095 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) { 1096 count++; 1097 } 1098 if (count) 1099 used++; 1100 if (maxlength < count) 1101 maxlength = count; 1102 } 1103 n_nchash = nchash + 1; 1104 cache_unlock_all_buckets(); 1105 pct = (used * 100) / (n_nchash / 100); 1106 error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash)); 1107 if (error) 1108 return (error); 1109 error = SYSCTL_OUT(req, &used, sizeof(used)); 1110 if (error) 1111 return (error); 1112 error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength)); 1113 if (error) 1114 return (error); 1115 error = SYSCTL_OUT(req, &pct, sizeof(pct)); 1116 if (error) 1117 return (error); 1118 return (0); 1119 } 1120 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD| 1121 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I", 1122 "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)"); 1123 #endif 1124 1125 /* 1126 * Negative entries management 1127 * 1128 * Various workloads create plenty of negative entries and barely use them 1129 * afterwards. Moreover malicious users can keep performing bogus lookups 1130 * adding even more entries. For example "make tinderbox" as of writing this 1131 * comment ends up with 2.6M namecache entries in total, 1.2M of which are 1132 * negative. 1133 * 1134 * As such, a rather aggressive eviction method is needed. The currently 1135 * employed method is a placeholder. 1136 * 1137 * Entries are split over numneglists separate lists, each of which is further 1138 * split into hot and cold entries. Entries get promoted after getting a hit. 1139 * Eviction happens on addition of new entry. 1140 */ 1141 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1142 "Name cache negative entry statistics"); 1143 1144 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0, 1145 "Number of negative cache entries"); 1146 1147 static COUNTER_U64_DEFINE_EARLY(neg_created); 1148 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, 1149 "Number of created negative entries"); 1150 1151 static COUNTER_U64_DEFINE_EARLY(neg_evicted); 1152 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted, 1153 "Number of evicted negative entries"); 1154 1155 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty); 1156 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD, 1157 &neg_evict_skipped_empty, 1158 "Number of times evicting failed due to lack of entries"); 1159 1160 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed); 1161 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD, 1162 &neg_evict_skipped_missed, 1163 "Number of times evicting failed due to target entry disappearing"); 1164 1165 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended); 1166 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD, 1167 &neg_evict_skipped_contended, 1168 "Number of times evicting failed due to contention"); 1169 1170 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits, 1171 "Number of cache hits (negative)"); 1172 1173 static int 1174 sysctl_neg_hot(SYSCTL_HANDLER_ARGS) 1175 { 1176 int i, out; 1177 1178 out = 0; 1179 for (i = 0; i < numneglists; i++) 1180 out += neglists[i].nl_hotnum; 1181 1182 return (SYSCTL_OUT(req, &out, sizeof(out))); 1183 } 1184 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD | 1185 CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I", 1186 "Number of hot negative entries"); 1187 1188 static void 1189 cache_neg_init(struct namecache *ncp) 1190 { 1191 struct negstate *ns; 1192 1193 ncp->nc_flag |= NCF_NEGATIVE; 1194 ns = NCP2NEGSTATE(ncp); 1195 ns->neg_flag = 0; 1196 ns->neg_hit = 0; 1197 counter_u64_add(neg_created, 1); 1198 } 1199 1200 #define CACHE_NEG_PROMOTION_THRESH 2 1201 1202 static bool 1203 cache_neg_hit_prep(struct namecache *ncp) 1204 { 1205 struct negstate *ns; 1206 u_char n; 1207 1208 ns = NCP2NEGSTATE(ncp); 1209 n = atomic_load_char(&ns->neg_hit); 1210 for (;;) { 1211 if (n >= CACHE_NEG_PROMOTION_THRESH) 1212 return (false); 1213 if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1)) 1214 break; 1215 } 1216 return (n + 1 == CACHE_NEG_PROMOTION_THRESH); 1217 } 1218 1219 /* 1220 * Nothing to do here but it is provided for completeness as some 1221 * cache_neg_hit_prep callers may end up returning without even 1222 * trying to promote. 1223 */ 1224 #define cache_neg_hit_abort(ncp) do { } while (0) 1225 1226 static void 1227 cache_neg_hit_finish(struct namecache *ncp) 1228 { 1229 1230 SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name); 1231 counter_u64_add(numneghits, 1); 1232 } 1233 1234 /* 1235 * Move a negative entry to the hot list. 1236 */ 1237 static void 1238 cache_neg_promote_locked(struct namecache *ncp) 1239 { 1240 struct neglist *nl; 1241 struct negstate *ns; 1242 1243 ns = NCP2NEGSTATE(ncp); 1244 nl = NCP2NEGLIST(ncp); 1245 mtx_assert(&nl->nl_lock, MA_OWNED); 1246 if ((ns->neg_flag & NEG_HOT) == 0) { 1247 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1248 TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst); 1249 nl->nl_hotnum++; 1250 ns->neg_flag |= NEG_HOT; 1251 } 1252 } 1253 1254 /* 1255 * Move a hot negative entry to the cold list. 1256 */ 1257 static void 1258 cache_neg_demote_locked(struct namecache *ncp) 1259 { 1260 struct neglist *nl; 1261 struct negstate *ns; 1262 1263 ns = NCP2NEGSTATE(ncp); 1264 nl = NCP2NEGLIST(ncp); 1265 mtx_assert(&nl->nl_lock, MA_OWNED); 1266 MPASS(ns->neg_flag & NEG_HOT); 1267 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1268 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1269 nl->nl_hotnum--; 1270 ns->neg_flag &= ~NEG_HOT; 1271 atomic_store_char(&ns->neg_hit, 0); 1272 } 1273 1274 /* 1275 * Move a negative entry to the hot list if it matches the lookup. 1276 * 1277 * We have to take locks, but they may be contended and in the worst 1278 * case we may need to go off CPU. We don't want to spin within the 1279 * smr section and we can't block with it. Exiting the section means 1280 * the found entry could have been evicted. We are going to look it 1281 * up again. 1282 */ 1283 static bool 1284 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, 1285 struct namecache *oncp, uint32_t hash) 1286 { 1287 struct namecache *ncp; 1288 struct neglist *nl; 1289 u_char nc_flag; 1290 1291 nl = NCP2NEGLIST(oncp); 1292 1293 mtx_lock(&nl->nl_lock); 1294 /* 1295 * For hash iteration. 1296 */ 1297 vfs_smr_enter(); 1298 1299 /* 1300 * Avoid all surprises by only succeeding if we got the same entry and 1301 * bailing completely otherwise. 1302 * XXX There are no provisions to keep the vnode around, meaning we may 1303 * end up promoting a negative entry for a *new* vnode and returning 1304 * ENOENT on its account. This is the error we want to return anyway 1305 * and promotion is harmless. 1306 * 1307 * In particular at this point there can be a new ncp which matches the 1308 * search but hashes to a different neglist. 1309 */ 1310 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1311 if (ncp == oncp) 1312 break; 1313 } 1314 1315 /* 1316 * No match to begin with. 1317 */ 1318 if (__predict_false(ncp == NULL)) { 1319 goto out_abort; 1320 } 1321 1322 /* 1323 * The newly found entry may be something different... 1324 */ 1325 if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1326 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) { 1327 goto out_abort; 1328 } 1329 1330 /* 1331 * ... and not even negative. 1332 */ 1333 nc_flag = atomic_load_char(&ncp->nc_flag); 1334 if ((nc_flag & NCF_NEGATIVE) == 0) { 1335 goto out_abort; 1336 } 1337 1338 if (!cache_ncp_canuse(ncp)) { 1339 goto out_abort; 1340 } 1341 1342 cache_neg_promote_locked(ncp); 1343 cache_neg_hit_finish(ncp); 1344 vfs_smr_exit(); 1345 mtx_unlock(&nl->nl_lock); 1346 return (true); 1347 out_abort: 1348 vfs_smr_exit(); 1349 mtx_unlock(&nl->nl_lock); 1350 return (false); 1351 } 1352 1353 static void 1354 cache_neg_promote(struct namecache *ncp) 1355 { 1356 struct neglist *nl; 1357 1358 nl = NCP2NEGLIST(ncp); 1359 mtx_lock(&nl->nl_lock); 1360 cache_neg_promote_locked(ncp); 1361 mtx_unlock(&nl->nl_lock); 1362 } 1363 1364 static void 1365 cache_neg_insert(struct namecache *ncp) 1366 { 1367 struct neglist *nl; 1368 1369 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1370 cache_assert_bucket_locked(ncp); 1371 nl = NCP2NEGLIST(ncp); 1372 mtx_lock(&nl->nl_lock); 1373 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1374 mtx_unlock(&nl->nl_lock); 1375 atomic_add_long(&numneg, 1); 1376 } 1377 1378 static void 1379 cache_neg_remove(struct namecache *ncp) 1380 { 1381 struct neglist *nl; 1382 struct negstate *ns; 1383 1384 cache_assert_bucket_locked(ncp); 1385 nl = NCP2NEGLIST(ncp); 1386 ns = NCP2NEGSTATE(ncp); 1387 mtx_lock(&nl->nl_lock); 1388 if ((ns->neg_flag & NEG_HOT) != 0) { 1389 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1390 nl->nl_hotnum--; 1391 } else { 1392 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1393 } 1394 mtx_unlock(&nl->nl_lock); 1395 atomic_subtract_long(&numneg, 1); 1396 } 1397 1398 static struct neglist * 1399 cache_neg_evict_select_list(void) 1400 { 1401 struct neglist *nl; 1402 u_int c; 1403 1404 c = atomic_fetchadd_int(&neg_cycle, 1) + 1; 1405 nl = &neglists[c % numneglists]; 1406 if (!mtx_trylock(&nl->nl_evict_lock)) { 1407 counter_u64_add(neg_evict_skipped_contended, 1); 1408 return (NULL); 1409 } 1410 return (nl); 1411 } 1412 1413 static struct namecache * 1414 cache_neg_evict_select_entry(struct neglist *nl) 1415 { 1416 struct namecache *ncp, *lncp; 1417 struct negstate *ns, *lns; 1418 int i; 1419 1420 mtx_assert(&nl->nl_evict_lock, MA_OWNED); 1421 mtx_assert(&nl->nl_lock, MA_OWNED); 1422 ncp = TAILQ_FIRST(&nl->nl_list); 1423 if (ncp == NULL) 1424 return (NULL); 1425 lncp = ncp; 1426 lns = NCP2NEGSTATE(lncp); 1427 for (i = 1; i < 4; i++) { 1428 ncp = TAILQ_NEXT(ncp, nc_dst); 1429 if (ncp == NULL) 1430 break; 1431 ns = NCP2NEGSTATE(ncp); 1432 if (ns->neg_hit < lns->neg_hit) { 1433 lncp = ncp; 1434 lns = ns; 1435 } 1436 } 1437 return (lncp); 1438 } 1439 1440 static bool 1441 cache_neg_evict(void) 1442 { 1443 struct namecache *ncp, *ncp2; 1444 struct neglist *nl; 1445 struct vnode *dvp; 1446 struct mtx *dvlp; 1447 struct mtx *blp; 1448 uint32_t hash; 1449 u_char nlen; 1450 bool evicted; 1451 1452 nl = cache_neg_evict_select_list(); 1453 if (nl == NULL) { 1454 return (false); 1455 } 1456 1457 mtx_lock(&nl->nl_lock); 1458 ncp = TAILQ_FIRST(&nl->nl_hotlist); 1459 if (ncp != NULL) { 1460 cache_neg_demote_locked(ncp); 1461 } 1462 ncp = cache_neg_evict_select_entry(nl); 1463 if (ncp == NULL) { 1464 counter_u64_add(neg_evict_skipped_empty, 1); 1465 mtx_unlock(&nl->nl_lock); 1466 mtx_unlock(&nl->nl_evict_lock); 1467 return (false); 1468 } 1469 nlen = ncp->nc_nlen; 1470 dvp = ncp->nc_dvp; 1471 hash = cache_get_hash(ncp->nc_name, nlen, dvp); 1472 dvlp = VP2VNODELOCK(dvp); 1473 blp = HASH2BUCKETLOCK(hash); 1474 mtx_unlock(&nl->nl_lock); 1475 mtx_unlock(&nl->nl_evict_lock); 1476 mtx_lock(dvlp); 1477 mtx_lock(blp); 1478 /* 1479 * Note that since all locks were dropped above, the entry may be 1480 * gone or reallocated to be something else. 1481 */ 1482 CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) { 1483 if (ncp2 == ncp && ncp2->nc_dvp == dvp && 1484 ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0) 1485 break; 1486 } 1487 if (ncp2 == NULL) { 1488 counter_u64_add(neg_evict_skipped_missed, 1); 1489 ncp = NULL; 1490 evicted = false; 1491 } else { 1492 MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp)); 1493 MPASS(blp == NCP2BUCKETLOCK(ncp)); 1494 SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp, 1495 ncp->nc_name); 1496 cache_zap_locked(ncp); 1497 counter_u64_add(neg_evicted, 1); 1498 evicted = true; 1499 } 1500 mtx_unlock(blp); 1501 mtx_unlock(dvlp); 1502 if (ncp != NULL) 1503 cache_free(ncp); 1504 return (evicted); 1505 } 1506 1507 /* 1508 * Maybe evict a negative entry to create more room. 1509 * 1510 * The ncnegfactor parameter limits what fraction of the total count 1511 * can comprise of negative entries. However, if the cache is just 1512 * warming up this leads to excessive evictions. As such, ncnegminpct 1513 * (recomputed to neg_min) dictates whether the above should be 1514 * applied. 1515 * 1516 * Try evicting if the cache is close to full capacity regardless of 1517 * other considerations. 1518 */ 1519 static bool 1520 cache_neg_evict_cond(u_long lnumcache) 1521 { 1522 u_long lnumneg; 1523 1524 if (ncsize - 1000 < lnumcache) 1525 goto out_evict; 1526 lnumneg = atomic_load_long(&numneg); 1527 if (lnumneg < neg_min) 1528 return (false); 1529 if (lnumneg * ncnegfactor < lnumcache) 1530 return (false); 1531 out_evict: 1532 return (cache_neg_evict()); 1533 } 1534 1535 /* 1536 * cache_zap_locked(): 1537 * 1538 * Removes a namecache entry from cache, whether it contains an actual 1539 * pointer to a vnode or if it is just a negative cache entry. 1540 */ 1541 static void 1542 cache_zap_locked(struct namecache *ncp) 1543 { 1544 struct nchashhead *ncpp; 1545 struct vnode *dvp, *vp; 1546 1547 dvp = ncp->nc_dvp; 1548 vp = ncp->nc_vp; 1549 1550 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1551 cache_assert_vnode_locked(vp); 1552 cache_assert_vnode_locked(dvp); 1553 cache_assert_bucket_locked(ncp); 1554 1555 cache_ncp_invalidate(ncp); 1556 1557 ncpp = NCP2BUCKET(ncp); 1558 CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash); 1559 if (!(ncp->nc_flag & NCF_NEGATIVE)) { 1560 SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp); 1561 TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst); 1562 if (ncp == vp->v_cache_dd) { 1563 atomic_store_ptr(&vp->v_cache_dd, NULL); 1564 } 1565 } else { 1566 SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name); 1567 cache_neg_remove(ncp); 1568 } 1569 if (ncp->nc_flag & NCF_ISDOTDOT) { 1570 if (ncp == dvp->v_cache_dd) { 1571 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1572 } 1573 } else { 1574 LIST_REMOVE(ncp, nc_src); 1575 if (LIST_EMPTY(&dvp->v_cache_src)) { 1576 ncp->nc_flag |= NCF_DVDROP; 1577 } 1578 } 1579 } 1580 1581 static void 1582 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp) 1583 { 1584 struct mtx *blp; 1585 1586 MPASS(ncp->nc_dvp == vp); 1587 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1588 cache_assert_vnode_locked(vp); 1589 1590 blp = NCP2BUCKETLOCK(ncp); 1591 mtx_lock(blp); 1592 cache_zap_locked(ncp); 1593 mtx_unlock(blp); 1594 } 1595 1596 static bool 1597 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, 1598 struct mtx **vlpp) 1599 { 1600 struct mtx *pvlp, *vlp1, *vlp2, *to_unlock; 1601 struct mtx *blp; 1602 1603 MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp); 1604 cache_assert_vnode_locked(vp); 1605 1606 if (ncp->nc_flag & NCF_NEGATIVE) { 1607 if (*vlpp != NULL) { 1608 mtx_unlock(*vlpp); 1609 *vlpp = NULL; 1610 } 1611 cache_zap_negative_locked_vnode_kl(ncp, vp); 1612 return (true); 1613 } 1614 1615 pvlp = VP2VNODELOCK(vp); 1616 blp = NCP2BUCKETLOCK(ncp); 1617 vlp1 = VP2VNODELOCK(ncp->nc_dvp); 1618 vlp2 = VP2VNODELOCK(ncp->nc_vp); 1619 1620 if (*vlpp == vlp1 || *vlpp == vlp2) { 1621 to_unlock = *vlpp; 1622 *vlpp = NULL; 1623 } else { 1624 if (*vlpp != NULL) { 1625 mtx_unlock(*vlpp); 1626 *vlpp = NULL; 1627 } 1628 cache_sort_vnodes(&vlp1, &vlp2); 1629 if (vlp1 == pvlp) { 1630 mtx_lock(vlp2); 1631 to_unlock = vlp2; 1632 } else { 1633 if (!mtx_trylock(vlp1)) 1634 goto out_relock; 1635 to_unlock = vlp1; 1636 } 1637 } 1638 mtx_lock(blp); 1639 cache_zap_locked(ncp); 1640 mtx_unlock(blp); 1641 if (to_unlock != NULL) 1642 mtx_unlock(to_unlock); 1643 return (true); 1644 1645 out_relock: 1646 mtx_unlock(vlp2); 1647 mtx_lock(vlp1); 1648 mtx_lock(vlp2); 1649 MPASS(*vlpp == NULL); 1650 *vlpp = vlp1; 1651 return (false); 1652 } 1653 1654 /* 1655 * If trylocking failed we can get here. We know enough to take all needed locks 1656 * in the right order and re-lookup the entry. 1657 */ 1658 static int 1659 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, 1660 struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, 1661 struct mtx *blp) 1662 { 1663 struct namecache *rncp; 1664 1665 cache_assert_bucket_unlocked(ncp); 1666 1667 cache_sort_vnodes(&dvlp, &vlp); 1668 cache_lock_vnodes(dvlp, vlp); 1669 mtx_lock(blp); 1670 CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) { 1671 if (rncp == ncp && rncp->nc_dvp == dvp && 1672 rncp->nc_nlen == cnp->cn_namelen && 1673 !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen)) 1674 break; 1675 } 1676 if (rncp != NULL) { 1677 cache_zap_locked(rncp); 1678 mtx_unlock(blp); 1679 cache_unlock_vnodes(dvlp, vlp); 1680 counter_u64_add(zap_bucket_relock_success, 1); 1681 return (0); 1682 } 1683 1684 mtx_unlock(blp); 1685 cache_unlock_vnodes(dvlp, vlp); 1686 return (EAGAIN); 1687 } 1688 1689 static int __noinline 1690 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, 1691 uint32_t hash, struct mtx *blp) 1692 { 1693 struct mtx *dvlp, *vlp; 1694 struct vnode *dvp; 1695 1696 cache_assert_bucket_locked(ncp); 1697 1698 dvlp = VP2VNODELOCK(ncp->nc_dvp); 1699 vlp = NULL; 1700 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1701 vlp = VP2VNODELOCK(ncp->nc_vp); 1702 if (cache_trylock_vnodes(dvlp, vlp) == 0) { 1703 cache_zap_locked(ncp); 1704 mtx_unlock(blp); 1705 cache_unlock_vnodes(dvlp, vlp); 1706 return (0); 1707 } 1708 1709 dvp = ncp->nc_dvp; 1710 mtx_unlock(blp); 1711 return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp)); 1712 } 1713 1714 static __noinline int 1715 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp) 1716 { 1717 struct namecache *ncp; 1718 struct mtx *blp; 1719 struct mtx *dvlp, *dvlp2; 1720 uint32_t hash; 1721 int error; 1722 1723 if (cnp->cn_namelen == 2 && 1724 cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') { 1725 dvlp = VP2VNODELOCK(dvp); 1726 dvlp2 = NULL; 1727 mtx_lock(dvlp); 1728 retry_dotdot: 1729 ncp = dvp->v_cache_dd; 1730 if (ncp == NULL) { 1731 mtx_unlock(dvlp); 1732 if (dvlp2 != NULL) 1733 mtx_unlock(dvlp2); 1734 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1735 return (0); 1736 } 1737 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1738 if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2)) 1739 goto retry_dotdot; 1740 MPASS(dvp->v_cache_dd == NULL); 1741 mtx_unlock(dvlp); 1742 if (dvlp2 != NULL) 1743 mtx_unlock(dvlp2); 1744 cache_free(ncp); 1745 } else { 1746 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1747 mtx_unlock(dvlp); 1748 if (dvlp2 != NULL) 1749 mtx_unlock(dvlp2); 1750 } 1751 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1752 return (1); 1753 } 1754 1755 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1756 blp = HASH2BUCKETLOCK(hash); 1757 retry: 1758 if (CK_SLIST_EMPTY(NCHHASH(hash))) 1759 goto out_no_entry; 1760 1761 mtx_lock(blp); 1762 1763 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1764 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1765 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1766 break; 1767 } 1768 1769 if (ncp == NULL) { 1770 mtx_unlock(blp); 1771 goto out_no_entry; 1772 } 1773 1774 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1775 if (__predict_false(error != 0)) { 1776 zap_bucket_fail++; 1777 goto retry; 1778 } 1779 counter_u64_add(numposzaps, 1); 1780 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1781 cache_free(ncp); 1782 return (1); 1783 out_no_entry: 1784 counter_u64_add(nummisszap, 1); 1785 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1786 return (0); 1787 } 1788 1789 static int __noinline 1790 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1791 struct timespec *tsp, int *ticksp) 1792 { 1793 int ltype; 1794 1795 *vpp = dvp; 1796 counter_u64_add(dothits, 1); 1797 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp); 1798 if (tsp != NULL) 1799 timespecclear(tsp); 1800 if (ticksp != NULL) 1801 *ticksp = ticks; 1802 vrefact(*vpp); 1803 /* 1804 * When we lookup "." we still can be asked to lock it 1805 * differently... 1806 */ 1807 ltype = cnp->cn_lkflags & LK_TYPE_MASK; 1808 if (ltype != VOP_ISLOCKED(*vpp)) { 1809 if (ltype == LK_EXCLUSIVE) { 1810 vn_lock(*vpp, LK_UPGRADE | LK_RETRY); 1811 if (VN_IS_DOOMED((*vpp))) { 1812 /* forced unmount */ 1813 vrele(*vpp); 1814 *vpp = NULL; 1815 return (ENOENT); 1816 } 1817 } else 1818 vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY); 1819 } 1820 return (-1); 1821 } 1822 1823 static int __noinline 1824 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1825 struct timespec *tsp, int *ticksp) 1826 { 1827 struct namecache_ts *ncp_ts; 1828 struct namecache *ncp; 1829 struct mtx *dvlp; 1830 enum vgetstate vs; 1831 int error, ltype; 1832 bool whiteout; 1833 1834 MPASS((cnp->cn_flags & ISDOTDOT) != 0); 1835 1836 if ((cnp->cn_flags & MAKEENTRY) == 0) { 1837 cache_remove_cnp(dvp, cnp); 1838 return (0); 1839 } 1840 1841 counter_u64_add(dotdothits, 1); 1842 retry: 1843 dvlp = VP2VNODELOCK(dvp); 1844 mtx_lock(dvlp); 1845 ncp = dvp->v_cache_dd; 1846 if (ncp == NULL) { 1847 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, ".."); 1848 mtx_unlock(dvlp); 1849 return (0); 1850 } 1851 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1852 if (ncp->nc_flag & NCF_NEGATIVE) 1853 *vpp = NULL; 1854 else 1855 *vpp = ncp->nc_vp; 1856 } else 1857 *vpp = ncp->nc_dvp; 1858 if (*vpp == NULL) 1859 goto negative_success; 1860 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp); 1861 cache_out_ts(ncp, tsp, ticksp); 1862 if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) == 1863 NCF_DTS && tsp != NULL) { 1864 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 1865 *tsp = ncp_ts->nc_dotdottime; 1866 } 1867 1868 MPASS(dvp != *vpp); 1869 ltype = VOP_ISLOCKED(dvp); 1870 VOP_UNLOCK(dvp); 1871 vs = vget_prep(*vpp); 1872 mtx_unlock(dvlp); 1873 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1874 vn_lock(dvp, ltype | LK_RETRY); 1875 if (VN_IS_DOOMED(dvp)) { 1876 if (error == 0) 1877 vput(*vpp); 1878 *vpp = NULL; 1879 return (ENOENT); 1880 } 1881 if (error) { 1882 *vpp = NULL; 1883 goto retry; 1884 } 1885 return (-1); 1886 negative_success: 1887 if (__predict_false(cnp->cn_nameiop == CREATE)) { 1888 if (cnp->cn_flags & ISLASTCN) { 1889 counter_u64_add(numnegzaps, 1); 1890 cache_zap_negative_locked_vnode_kl(ncp, dvp); 1891 mtx_unlock(dvlp); 1892 cache_free(ncp); 1893 return (0); 1894 } 1895 } 1896 1897 whiteout = (ncp->nc_flag & NCF_WHITE); 1898 cache_out_ts(ncp, tsp, ticksp); 1899 if (cache_neg_hit_prep(ncp)) 1900 cache_neg_promote(ncp); 1901 else 1902 cache_neg_hit_finish(ncp); 1903 mtx_unlock(dvlp); 1904 if (whiteout) 1905 cnp->cn_flags |= ISWHITEOUT; 1906 return (ENOENT); 1907 } 1908 1909 /** 1910 * Lookup a name in the name cache 1911 * 1912 * # Arguments 1913 * 1914 * - dvp: Parent directory in which to search. 1915 * - vpp: Return argument. Will contain desired vnode on cache hit. 1916 * - cnp: Parameters of the name search. The most interesting bits of 1917 * the cn_flags field have the following meanings: 1918 * - MAKEENTRY: If clear, free an entry from the cache rather than look 1919 * it up. 1920 * - ISDOTDOT: Must be set if and only if cn_nameptr == ".." 1921 * - tsp: Return storage for cache timestamp. On a successful (positive 1922 * or negative) lookup, tsp will be filled with any timespec that 1923 * was stored when this cache entry was created. However, it will 1924 * be clear for "." entries. 1925 * - ticks: Return storage for alternate cache timestamp. On a successful 1926 * (positive or negative) lookup, it will contain the ticks value 1927 * that was current when the cache entry was created, unless cnp 1928 * was ".". 1929 * 1930 * Either both tsp and ticks have to be provided or neither of them. 1931 * 1932 * # Returns 1933 * 1934 * - -1: A positive cache hit. vpp will contain the desired vnode. 1935 * - ENOENT: A negative cache hit, or dvp was recycled out from under us due 1936 * to a forced unmount. vpp will not be modified. If the entry 1937 * is a whiteout, then the ISWHITEOUT flag will be set in 1938 * cnp->cn_flags. 1939 * - 0: A cache miss. vpp will not be modified. 1940 * 1941 * # Locking 1942 * 1943 * On a cache hit, vpp will be returned locked and ref'd. If we're looking up 1944 * .., dvp is unlocked. If we're looking up . an extra ref is taken, but the 1945 * lock is not recursively acquired. 1946 */ 1947 static int __noinline 1948 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1949 struct timespec *tsp, int *ticksp) 1950 { 1951 struct namecache *ncp; 1952 struct mtx *blp; 1953 uint32_t hash; 1954 enum vgetstate vs; 1955 int error; 1956 bool whiteout; 1957 1958 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1959 MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0); 1960 1961 retry: 1962 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1963 blp = HASH2BUCKETLOCK(hash); 1964 mtx_lock(blp); 1965 1966 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1967 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1968 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1969 break; 1970 } 1971 1972 if (__predict_false(ncp == NULL)) { 1973 mtx_unlock(blp); 1974 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); 1975 counter_u64_add(nummiss, 1); 1976 return (0); 1977 } 1978 1979 if (ncp->nc_flag & NCF_NEGATIVE) 1980 goto negative_success; 1981 1982 counter_u64_add(numposhits, 1); 1983 *vpp = ncp->nc_vp; 1984 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1985 cache_out_ts(ncp, tsp, ticksp); 1986 MPASS(dvp != *vpp); 1987 vs = vget_prep(*vpp); 1988 mtx_unlock(blp); 1989 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1990 if (error) { 1991 *vpp = NULL; 1992 goto retry; 1993 } 1994 return (-1); 1995 negative_success: 1996 /* 1997 * We don't get here with regular lookup apart from corner cases. 1998 */ 1999 if (__predict_true(cnp->cn_nameiop == CREATE)) { 2000 if (cnp->cn_flags & ISLASTCN) { 2001 counter_u64_add(numnegzaps, 1); 2002 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 2003 if (__predict_false(error != 0)) { 2004 zap_bucket_fail2++; 2005 goto retry; 2006 } 2007 cache_free(ncp); 2008 return (0); 2009 } 2010 } 2011 2012 whiteout = (ncp->nc_flag & NCF_WHITE); 2013 cache_out_ts(ncp, tsp, ticksp); 2014 if (cache_neg_hit_prep(ncp)) 2015 cache_neg_promote(ncp); 2016 else 2017 cache_neg_hit_finish(ncp); 2018 mtx_unlock(blp); 2019 if (whiteout) 2020 cnp->cn_flags |= ISWHITEOUT; 2021 return (ENOENT); 2022 } 2023 2024 int 2025 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 2026 struct timespec *tsp, int *ticksp) 2027 { 2028 struct namecache *ncp; 2029 uint32_t hash; 2030 enum vgetstate vs; 2031 int error; 2032 bool whiteout, neg_promote; 2033 u_short nc_flag; 2034 2035 MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL)); 2036 2037 #ifdef DEBUG_CACHE 2038 if (__predict_false(!doingcache)) { 2039 cnp->cn_flags &= ~MAKEENTRY; 2040 return (0); 2041 } 2042 #endif 2043 2044 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2045 if (cnp->cn_namelen == 1) 2046 return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp)); 2047 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') 2048 return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp)); 2049 } 2050 2051 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 2052 2053 if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) { 2054 cache_remove_cnp(dvp, cnp); 2055 return (0); 2056 } 2057 2058 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2059 vfs_smr_enter(); 2060 2061 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2062 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2063 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 2064 break; 2065 } 2066 2067 if (__predict_false(ncp == NULL)) { 2068 vfs_smr_exit(); 2069 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); 2070 counter_u64_add(nummiss, 1); 2071 return (0); 2072 } 2073 2074 nc_flag = atomic_load_char(&ncp->nc_flag); 2075 if (nc_flag & NCF_NEGATIVE) 2076 goto negative_success; 2077 2078 counter_u64_add(numposhits, 1); 2079 *vpp = ncp->nc_vp; 2080 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 2081 cache_out_ts(ncp, tsp, ticksp); 2082 MPASS(dvp != *vpp); 2083 if (!cache_ncp_canuse(ncp)) { 2084 vfs_smr_exit(); 2085 *vpp = NULL; 2086 goto out_fallback; 2087 } 2088 vs = vget_prep_smr(*vpp); 2089 vfs_smr_exit(); 2090 if (__predict_false(vs == VGET_NONE)) { 2091 *vpp = NULL; 2092 goto out_fallback; 2093 } 2094 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 2095 if (error) { 2096 *vpp = NULL; 2097 goto out_fallback; 2098 } 2099 return (-1); 2100 negative_success: 2101 if (cnp->cn_nameiop == CREATE) { 2102 if (cnp->cn_flags & ISLASTCN) { 2103 vfs_smr_exit(); 2104 goto out_fallback; 2105 } 2106 } 2107 2108 cache_out_ts(ncp, tsp, ticksp); 2109 whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE); 2110 neg_promote = cache_neg_hit_prep(ncp); 2111 if (!cache_ncp_canuse(ncp)) { 2112 cache_neg_hit_abort(ncp); 2113 vfs_smr_exit(); 2114 goto out_fallback; 2115 } 2116 if (neg_promote) { 2117 vfs_smr_exit(); 2118 if (!cache_neg_promote_cond(dvp, cnp, ncp, hash)) 2119 goto out_fallback; 2120 } else { 2121 cache_neg_hit_finish(ncp); 2122 vfs_smr_exit(); 2123 } 2124 if (whiteout) 2125 cnp->cn_flags |= ISWHITEOUT; 2126 return (ENOENT); 2127 out_fallback: 2128 return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp)); 2129 } 2130 2131 struct celockstate { 2132 struct mtx *vlp[3]; 2133 struct mtx *blp[2]; 2134 }; 2135 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3)); 2136 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2)); 2137 2138 static inline void 2139 cache_celockstate_init(struct celockstate *cel) 2140 { 2141 2142 bzero(cel, sizeof(*cel)); 2143 } 2144 2145 static void 2146 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, 2147 struct vnode *dvp) 2148 { 2149 struct mtx *vlp1, *vlp2; 2150 2151 MPASS(cel->vlp[0] == NULL); 2152 MPASS(cel->vlp[1] == NULL); 2153 MPASS(cel->vlp[2] == NULL); 2154 2155 MPASS(vp != NULL || dvp != NULL); 2156 2157 vlp1 = VP2VNODELOCK(vp); 2158 vlp2 = VP2VNODELOCK(dvp); 2159 cache_sort_vnodes(&vlp1, &vlp2); 2160 2161 if (vlp1 != NULL) { 2162 mtx_lock(vlp1); 2163 cel->vlp[0] = vlp1; 2164 } 2165 mtx_lock(vlp2); 2166 cel->vlp[1] = vlp2; 2167 } 2168 2169 static void 2170 cache_unlock_vnodes_cel(struct celockstate *cel) 2171 { 2172 2173 MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL); 2174 2175 if (cel->vlp[0] != NULL) 2176 mtx_unlock(cel->vlp[0]); 2177 if (cel->vlp[1] != NULL) 2178 mtx_unlock(cel->vlp[1]); 2179 if (cel->vlp[2] != NULL) 2180 mtx_unlock(cel->vlp[2]); 2181 } 2182 2183 static bool 2184 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp) 2185 { 2186 struct mtx *vlp; 2187 bool ret; 2188 2189 cache_assert_vlp_locked(cel->vlp[0]); 2190 cache_assert_vlp_locked(cel->vlp[1]); 2191 MPASS(cel->vlp[2] == NULL); 2192 2193 MPASS(vp != NULL); 2194 vlp = VP2VNODELOCK(vp); 2195 2196 ret = true; 2197 if (vlp >= cel->vlp[1]) { 2198 mtx_lock(vlp); 2199 } else { 2200 if (mtx_trylock(vlp)) 2201 goto out; 2202 cache_lock_vnodes_cel_3_failures++; 2203 cache_unlock_vnodes_cel(cel); 2204 if (vlp < cel->vlp[0]) { 2205 mtx_lock(vlp); 2206 mtx_lock(cel->vlp[0]); 2207 mtx_lock(cel->vlp[1]); 2208 } else { 2209 if (cel->vlp[0] != NULL) 2210 mtx_lock(cel->vlp[0]); 2211 mtx_lock(vlp); 2212 mtx_lock(cel->vlp[1]); 2213 } 2214 ret = false; 2215 } 2216 out: 2217 cel->vlp[2] = vlp; 2218 return (ret); 2219 } 2220 2221 static void 2222 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, 2223 struct mtx *blp2) 2224 { 2225 2226 MPASS(cel->blp[0] == NULL); 2227 MPASS(cel->blp[1] == NULL); 2228 2229 cache_sort_vnodes(&blp1, &blp2); 2230 2231 if (blp1 != NULL) { 2232 mtx_lock(blp1); 2233 cel->blp[0] = blp1; 2234 } 2235 mtx_lock(blp2); 2236 cel->blp[1] = blp2; 2237 } 2238 2239 static void 2240 cache_unlock_buckets_cel(struct celockstate *cel) 2241 { 2242 2243 if (cel->blp[0] != NULL) 2244 mtx_unlock(cel->blp[0]); 2245 mtx_unlock(cel->blp[1]); 2246 } 2247 2248 /* 2249 * Lock part of the cache affected by the insertion. 2250 * 2251 * This means vnodelocks for dvp, vp and the relevant bucketlock. 2252 * However, insertion can result in removal of an old entry. In this 2253 * case we have an additional vnode and bucketlock pair to lock. 2254 * 2255 * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while 2256 * preserving the locking order (smaller address first). 2257 */ 2258 static void 2259 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2260 uint32_t hash) 2261 { 2262 struct namecache *ncp; 2263 struct mtx *blps[2]; 2264 u_char nc_flag; 2265 2266 blps[0] = HASH2BUCKETLOCK(hash); 2267 for (;;) { 2268 blps[1] = NULL; 2269 cache_lock_vnodes_cel(cel, dvp, vp); 2270 if (vp == NULL || vp->v_type != VDIR) 2271 break; 2272 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 2273 if (ncp == NULL) 2274 break; 2275 nc_flag = atomic_load_char(&ncp->nc_flag); 2276 if ((nc_flag & NCF_ISDOTDOT) == 0) 2277 break; 2278 MPASS(ncp->nc_dvp == vp); 2279 blps[1] = NCP2BUCKETLOCK(ncp); 2280 if ((nc_flag & NCF_NEGATIVE) != 0) 2281 break; 2282 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2283 break; 2284 /* 2285 * All vnodes got re-locked. Re-validate the state and if 2286 * nothing changed we are done. Otherwise restart. 2287 */ 2288 if (ncp == vp->v_cache_dd && 2289 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2290 blps[1] == NCP2BUCKETLOCK(ncp) && 2291 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2292 break; 2293 cache_unlock_vnodes_cel(cel); 2294 cel->vlp[0] = NULL; 2295 cel->vlp[1] = NULL; 2296 cel->vlp[2] = NULL; 2297 } 2298 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2299 } 2300 2301 static void 2302 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2303 uint32_t hash) 2304 { 2305 struct namecache *ncp; 2306 struct mtx *blps[2]; 2307 u_char nc_flag; 2308 2309 blps[0] = HASH2BUCKETLOCK(hash); 2310 for (;;) { 2311 blps[1] = NULL; 2312 cache_lock_vnodes_cel(cel, dvp, vp); 2313 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 2314 if (ncp == NULL) 2315 break; 2316 nc_flag = atomic_load_char(&ncp->nc_flag); 2317 if ((nc_flag & NCF_ISDOTDOT) == 0) 2318 break; 2319 MPASS(ncp->nc_dvp == dvp); 2320 blps[1] = NCP2BUCKETLOCK(ncp); 2321 if ((nc_flag & NCF_NEGATIVE) != 0) 2322 break; 2323 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2324 break; 2325 if (ncp == dvp->v_cache_dd && 2326 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2327 blps[1] == NCP2BUCKETLOCK(ncp) && 2328 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2329 break; 2330 cache_unlock_vnodes_cel(cel); 2331 cel->vlp[0] = NULL; 2332 cel->vlp[1] = NULL; 2333 cel->vlp[2] = NULL; 2334 } 2335 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2336 } 2337 2338 static void 2339 cache_enter_unlock(struct celockstate *cel) 2340 { 2341 2342 cache_unlock_buckets_cel(cel); 2343 cache_unlock_vnodes_cel(cel); 2344 } 2345 2346 static void __noinline 2347 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, 2348 struct componentname *cnp) 2349 { 2350 struct celockstate cel; 2351 struct namecache *ncp; 2352 uint32_t hash; 2353 int len; 2354 2355 if (atomic_load_ptr(&dvp->v_cache_dd) == NULL) 2356 return; 2357 len = cnp->cn_namelen; 2358 cache_celockstate_init(&cel); 2359 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2360 cache_enter_lock_dd(&cel, dvp, vp, hash); 2361 ncp = dvp->v_cache_dd; 2362 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) { 2363 KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent")); 2364 cache_zap_locked(ncp); 2365 } else { 2366 ncp = NULL; 2367 } 2368 atomic_store_ptr(&dvp->v_cache_dd, NULL); 2369 cache_enter_unlock(&cel); 2370 if (ncp != NULL) 2371 cache_free(ncp); 2372 } 2373 2374 /* 2375 * Add an entry to the cache. 2376 */ 2377 void 2378 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2379 struct timespec *tsp, struct timespec *dtsp) 2380 { 2381 struct celockstate cel; 2382 struct namecache *ncp, *n2, *ndd; 2383 struct namecache_ts *ncp_ts; 2384 struct nchashhead *ncpp; 2385 uint32_t hash; 2386 int flag; 2387 int len; 2388 2389 KASSERT(cnp->cn_namelen <= NAME_MAX, 2390 ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen, 2391 NAME_MAX)); 2392 #ifdef notyet 2393 /* 2394 * Not everything doing this is weeded out yet. 2395 */ 2396 VNPASS(dvp != vp, dvp); 2397 #endif 2398 VNPASS(!VN_IS_DOOMED(dvp), dvp); 2399 VNPASS(dvp->v_type != VNON, dvp); 2400 if (vp != NULL) { 2401 VNPASS(!VN_IS_DOOMED(vp), vp); 2402 VNPASS(vp->v_type != VNON, vp); 2403 } 2404 2405 #ifdef DEBUG_CACHE 2406 if (__predict_false(!doingcache)) 2407 return; 2408 #endif 2409 2410 flag = 0; 2411 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2412 if (cnp->cn_namelen == 1) 2413 return; 2414 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 2415 cache_enter_dotdot_prep(dvp, vp, cnp); 2416 flag = NCF_ISDOTDOT; 2417 } 2418 } 2419 2420 ncp = cache_alloc(cnp->cn_namelen, tsp != NULL); 2421 if (ncp == NULL) 2422 return; 2423 2424 cache_celockstate_init(&cel); 2425 ndd = NULL; 2426 ncp_ts = NULL; 2427 2428 /* 2429 * Calculate the hash key and setup as much of the new 2430 * namecache entry as possible before acquiring the lock. 2431 */ 2432 ncp->nc_flag = flag | NCF_WIP; 2433 ncp->nc_vp = vp; 2434 if (vp == NULL) 2435 cache_neg_init(ncp); 2436 ncp->nc_dvp = dvp; 2437 if (tsp != NULL) { 2438 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 2439 ncp_ts->nc_time = *tsp; 2440 ncp_ts->nc_ticks = ticks; 2441 ncp_ts->nc_nc.nc_flag |= NCF_TS; 2442 if (dtsp != NULL) { 2443 ncp_ts->nc_dotdottime = *dtsp; 2444 ncp_ts->nc_nc.nc_flag |= NCF_DTS; 2445 } 2446 } 2447 len = ncp->nc_nlen = cnp->cn_namelen; 2448 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2449 memcpy(ncp->nc_name, cnp->cn_nameptr, len); 2450 ncp->nc_name[len] = '\0'; 2451 cache_enter_lock(&cel, dvp, vp, hash); 2452 2453 /* 2454 * See if this vnode or negative entry is already in the cache 2455 * with this name. This can happen with concurrent lookups of 2456 * the same path name. 2457 */ 2458 ncpp = NCHHASH(hash); 2459 CK_SLIST_FOREACH(n2, ncpp, nc_hash) { 2460 if (n2->nc_dvp == dvp && 2461 n2->nc_nlen == cnp->cn_namelen && 2462 !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) { 2463 MPASS(cache_ncp_canuse(n2)); 2464 if ((n2->nc_flag & NCF_NEGATIVE) != 0) 2465 KASSERT(vp == NULL, 2466 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", 2467 __func__, NULL, vp, cnp->cn_nameptr)); 2468 else 2469 KASSERT(n2->nc_vp == vp, 2470 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", 2471 __func__, n2->nc_vp, vp, cnp->cn_nameptr)); 2472 /* 2473 * Entries are supposed to be immutable unless in the 2474 * process of getting destroyed. Accommodating for 2475 * changing timestamps is possible but not worth it. 2476 * This should be harmless in terms of correctness, in 2477 * the worst case resulting in an earlier expiration. 2478 * Alternatively, the found entry can be replaced 2479 * altogether. 2480 */ 2481 MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS))); 2482 #if 0 2483 if (tsp != NULL) { 2484 KASSERT((n2->nc_flag & NCF_TS) != 0, 2485 ("no NCF_TS")); 2486 n2_ts = __containerof(n2, struct namecache_ts, nc_nc); 2487 n2_ts->nc_time = ncp_ts->nc_time; 2488 n2_ts->nc_ticks = ncp_ts->nc_ticks; 2489 if (dtsp != NULL) { 2490 n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime; 2491 n2_ts->nc_nc.nc_flag |= NCF_DTS; 2492 } 2493 } 2494 #endif 2495 SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name, 2496 vp); 2497 goto out_unlock_free; 2498 } 2499 } 2500 2501 if (flag == NCF_ISDOTDOT) { 2502 /* 2503 * See if we are trying to add .. entry, but some other lookup 2504 * has populated v_cache_dd pointer already. 2505 */ 2506 if (dvp->v_cache_dd != NULL) 2507 goto out_unlock_free; 2508 KASSERT(vp == NULL || vp->v_type == VDIR, 2509 ("wrong vnode type %p", vp)); 2510 atomic_thread_fence_rel(); 2511 atomic_store_ptr(&dvp->v_cache_dd, ncp); 2512 } 2513 2514 if (vp != NULL) { 2515 if (flag != NCF_ISDOTDOT) { 2516 /* 2517 * For this case, the cache entry maps both the 2518 * directory name in it and the name ".." for the 2519 * directory's parent. 2520 */ 2521 if ((ndd = vp->v_cache_dd) != NULL) { 2522 if ((ndd->nc_flag & NCF_ISDOTDOT) != 0) 2523 cache_zap_locked(ndd); 2524 else 2525 ndd = NULL; 2526 } 2527 atomic_thread_fence_rel(); 2528 atomic_store_ptr(&vp->v_cache_dd, ncp); 2529 } else if (vp->v_type != VDIR) { 2530 if (vp->v_cache_dd != NULL) { 2531 atomic_store_ptr(&vp->v_cache_dd, NULL); 2532 } 2533 } 2534 } 2535 2536 if (flag != NCF_ISDOTDOT) { 2537 if (LIST_EMPTY(&dvp->v_cache_src)) { 2538 cache_hold_vnode(dvp); 2539 } 2540 LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src); 2541 } 2542 2543 /* 2544 * If the entry is "negative", we place it into the 2545 * "negative" cache queue, otherwise, we place it into the 2546 * destination vnode's cache entries queue. 2547 */ 2548 if (vp != NULL) { 2549 TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst); 2550 SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name, 2551 vp); 2552 } else { 2553 if (cnp->cn_flags & ISWHITEOUT) 2554 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE); 2555 cache_neg_insert(ncp); 2556 SDT_PROBE2(vfs, namecache, enter_negative, done, dvp, 2557 ncp->nc_name); 2558 } 2559 2560 /* 2561 * Insert the new namecache entry into the appropriate chain 2562 * within the cache entries table. 2563 */ 2564 CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash); 2565 2566 atomic_thread_fence_rel(); 2567 /* 2568 * Mark the entry as fully constructed. 2569 * It is immutable past this point until its removal. 2570 */ 2571 atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP); 2572 2573 cache_enter_unlock(&cel); 2574 if (ndd != NULL) 2575 cache_free(ndd); 2576 return; 2577 out_unlock_free: 2578 cache_enter_unlock(&cel); 2579 cache_free(ncp); 2580 return; 2581 } 2582 2583 /* 2584 * A variant of the above accepting flags. 2585 * 2586 * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it. 2587 * 2588 * TODO: this routine is a hack. It blindly removes the old entry, even if it 2589 * happens to match and it is doing it in an inefficient manner. It was added 2590 * to accomodate NFS which runs into a case where the target for a given name 2591 * may change from under it. Note this does nothing to solve the following 2592 * race: 2 callers of cache_enter_time_flags pass a different target vnode for 2593 * the same [dvp, cnp]. It may be argued that code doing this is broken. 2594 */ 2595 void 2596 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2597 struct timespec *tsp, struct timespec *dtsp, int flags) 2598 { 2599 2600 MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0); 2601 2602 if (flags & VFS_CACHE_DROPOLD) 2603 cache_remove_cnp(dvp, cnp); 2604 cache_enter_time(dvp, vp, cnp, tsp, dtsp); 2605 } 2606 2607 static u_int 2608 cache_roundup_2(u_int val) 2609 { 2610 u_int res; 2611 2612 for (res = 1; res <= val; res <<= 1) 2613 continue; 2614 2615 return (res); 2616 } 2617 2618 static struct nchashhead * 2619 nchinittbl(u_long elements, u_long *hashmask) 2620 { 2621 struct nchashhead *hashtbl; 2622 u_long hashsize, i; 2623 2624 hashsize = cache_roundup_2(elements) / 2; 2625 2626 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK); 2627 for (i = 0; i < hashsize; i++) 2628 CK_SLIST_INIT(&hashtbl[i]); 2629 *hashmask = hashsize - 1; 2630 return (hashtbl); 2631 } 2632 2633 static void 2634 ncfreetbl(struct nchashhead *hashtbl) 2635 { 2636 2637 free(hashtbl, M_VFSCACHE); 2638 } 2639 2640 /* 2641 * Name cache initialization, from vfs_init() when we are booting 2642 */ 2643 static void 2644 nchinit(void *dummy __unused) 2645 { 2646 u_int i; 2647 2648 cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE, 2649 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2650 cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE, 2651 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2652 cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE, 2653 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2654 cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE, 2655 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2656 2657 VFS_SMR_ZONE_SET(cache_zone_small); 2658 VFS_SMR_ZONE_SET(cache_zone_small_ts); 2659 VFS_SMR_ZONE_SET(cache_zone_large); 2660 VFS_SMR_ZONE_SET(cache_zone_large_ts); 2661 2662 ncsize = desiredvnodes * ncsizefactor; 2663 cache_recalc_neg_min(ncnegminpct); 2664 nchashtbl = nchinittbl(desiredvnodes * 2, &nchash); 2665 ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1; 2666 if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */ 2667 ncbuckethash = 7; 2668 if (ncbuckethash > nchash) 2669 ncbuckethash = nchash; 2670 bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE, 2671 M_WAITOK | M_ZERO); 2672 for (i = 0; i < numbucketlocks; i++) 2673 mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE); 2674 ncvnodehash = ncbuckethash; 2675 vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE, 2676 M_WAITOK | M_ZERO); 2677 for (i = 0; i < numvnodelocks; i++) 2678 mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE); 2679 2680 for (i = 0; i < numneglists; i++) { 2681 mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF); 2682 mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF); 2683 TAILQ_INIT(&neglists[i].nl_list); 2684 TAILQ_INIT(&neglists[i].nl_hotlist); 2685 } 2686 } 2687 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL); 2688 2689 void 2690 cache_vnode_init(struct vnode *vp) 2691 { 2692 2693 LIST_INIT(&vp->v_cache_src); 2694 TAILQ_INIT(&vp->v_cache_dst); 2695 vp->v_cache_dd = NULL; 2696 cache_prehash(vp); 2697 } 2698 2699 /* 2700 * Induce transient cache misses for lockless operation in cache_lookup() by 2701 * using a temporary hash table. 2702 * 2703 * This will force a fs lookup. 2704 * 2705 * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time 2706 * to observe all CPUs not performing the lookup. 2707 */ 2708 static void 2709 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash) 2710 { 2711 2712 MPASS(temphash < nchash); 2713 /* 2714 * Change the size. The new size is smaller and can safely be used 2715 * against the existing table. All lookups which now hash wrong will 2716 * result in a cache miss, which all callers are supposed to know how 2717 * to handle. 2718 */ 2719 atomic_store_long(&nchash, temphash); 2720 atomic_thread_fence_rel(); 2721 vfs_smr_synchronize(); 2722 /* 2723 * At this point everyone sees the updated hash value, but they still 2724 * see the old table. 2725 */ 2726 atomic_store_ptr(&nchashtbl, temptbl); 2727 atomic_thread_fence_rel(); 2728 vfs_smr_synchronize(); 2729 /* 2730 * At this point everyone sees the updated table pointer and size pair. 2731 */ 2732 } 2733 2734 /* 2735 * Set the new hash table. 2736 * 2737 * Similarly to cache_changesize_set_temp(), this has to synchronize against 2738 * lockless operation in cache_lookup(). 2739 */ 2740 static void 2741 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash) 2742 { 2743 2744 MPASS(nchash < new_hash); 2745 /* 2746 * Change the pointer first. This wont result in out of bounds access 2747 * since the temporary table is guaranteed to be smaller. 2748 */ 2749 atomic_store_ptr(&nchashtbl, new_tbl); 2750 atomic_thread_fence_rel(); 2751 vfs_smr_synchronize(); 2752 /* 2753 * At this point everyone sees the updated pointer value, but they 2754 * still see the old size. 2755 */ 2756 atomic_store_long(&nchash, new_hash); 2757 atomic_thread_fence_rel(); 2758 vfs_smr_synchronize(); 2759 /* 2760 * At this point everyone sees the updated table pointer and size pair. 2761 */ 2762 } 2763 2764 void 2765 cache_changesize(u_long newmaxvnodes) 2766 { 2767 struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl; 2768 u_long new_nchash, old_nchash, temphash; 2769 struct namecache *ncp; 2770 uint32_t hash; 2771 u_long newncsize; 2772 int i; 2773 2774 newncsize = newmaxvnodes * ncsizefactor; 2775 newmaxvnodes = cache_roundup_2(newmaxvnodes * 2); 2776 if (newmaxvnodes < numbucketlocks) 2777 newmaxvnodes = numbucketlocks; 2778 2779 new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash); 2780 /* If same hash table size, nothing to do */ 2781 if (nchash == new_nchash) { 2782 ncfreetbl(new_nchashtbl); 2783 return; 2784 } 2785 2786 temptbl = nchinittbl(1, &temphash); 2787 2788 /* 2789 * Move everything from the old hash table to the new table. 2790 * None of the namecache entries in the table can be removed 2791 * because to do so, they have to be removed from the hash table. 2792 */ 2793 cache_lock_all_vnodes(); 2794 cache_lock_all_buckets(); 2795 old_nchashtbl = nchashtbl; 2796 old_nchash = nchash; 2797 cache_changesize_set_temp(temptbl, temphash); 2798 for (i = 0; i <= old_nchash; i++) { 2799 while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) { 2800 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, 2801 ncp->nc_dvp); 2802 CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash); 2803 CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash); 2804 } 2805 } 2806 ncsize = newncsize; 2807 cache_recalc_neg_min(ncnegminpct); 2808 cache_changesize_set_new(new_nchashtbl, new_nchash); 2809 cache_unlock_all_buckets(); 2810 cache_unlock_all_vnodes(); 2811 ncfreetbl(old_nchashtbl); 2812 ncfreetbl(temptbl); 2813 } 2814 2815 /* 2816 * Remove all entries from and to a particular vnode. 2817 */ 2818 static void 2819 cache_purge_impl(struct vnode *vp) 2820 { 2821 struct cache_freebatch batch; 2822 struct namecache *ncp; 2823 struct mtx *vlp, *vlp2; 2824 2825 TAILQ_INIT(&batch); 2826 vlp = VP2VNODELOCK(vp); 2827 vlp2 = NULL; 2828 mtx_lock(vlp); 2829 retry: 2830 while (!LIST_EMPTY(&vp->v_cache_src)) { 2831 ncp = LIST_FIRST(&vp->v_cache_src); 2832 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2833 goto retry; 2834 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2835 } 2836 while (!TAILQ_EMPTY(&vp->v_cache_dst)) { 2837 ncp = TAILQ_FIRST(&vp->v_cache_dst); 2838 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2839 goto retry; 2840 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2841 } 2842 ncp = vp->v_cache_dd; 2843 if (ncp != NULL) { 2844 KASSERT(ncp->nc_flag & NCF_ISDOTDOT, 2845 ("lost dotdot link")); 2846 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2847 goto retry; 2848 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2849 } 2850 KASSERT(vp->v_cache_dd == NULL, ("incomplete purge")); 2851 mtx_unlock(vlp); 2852 if (vlp2 != NULL) 2853 mtx_unlock(vlp2); 2854 cache_free_batch(&batch); 2855 } 2856 2857 /* 2858 * Opportunistic check to see if there is anything to do. 2859 */ 2860 static bool 2861 cache_has_entries(struct vnode *vp) 2862 { 2863 2864 if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) && 2865 atomic_load_ptr(&vp->v_cache_dd) == NULL) 2866 return (false); 2867 return (true); 2868 } 2869 2870 void 2871 cache_purge(struct vnode *vp) 2872 { 2873 2874 SDT_PROBE1(vfs, namecache, purge, done, vp); 2875 if (!cache_has_entries(vp)) 2876 return; 2877 cache_purge_impl(vp); 2878 } 2879 2880 /* 2881 * Only to be used by vgone. 2882 */ 2883 void 2884 cache_purge_vgone(struct vnode *vp) 2885 { 2886 struct mtx *vlp; 2887 2888 VNPASS(VN_IS_DOOMED(vp), vp); 2889 if (cache_has_entries(vp)) { 2890 cache_purge_impl(vp); 2891 return; 2892 } 2893 2894 /* 2895 * Serialize against a potential thread doing cache_purge. 2896 */ 2897 vlp = VP2VNODELOCK(vp); 2898 mtx_wait_unlocked(vlp); 2899 if (cache_has_entries(vp)) { 2900 cache_purge_impl(vp); 2901 return; 2902 } 2903 return; 2904 } 2905 2906 /* 2907 * Remove all negative entries for a particular directory vnode. 2908 */ 2909 void 2910 cache_purge_negative(struct vnode *vp) 2911 { 2912 struct cache_freebatch batch; 2913 struct namecache *ncp, *nnp; 2914 struct mtx *vlp; 2915 2916 SDT_PROBE1(vfs, namecache, purge_negative, done, vp); 2917 if (LIST_EMPTY(&vp->v_cache_src)) 2918 return; 2919 TAILQ_INIT(&batch); 2920 vlp = VP2VNODELOCK(vp); 2921 mtx_lock(vlp); 2922 LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) { 2923 if (!(ncp->nc_flag & NCF_NEGATIVE)) 2924 continue; 2925 cache_zap_negative_locked_vnode_kl(ncp, vp); 2926 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2927 } 2928 mtx_unlock(vlp); 2929 cache_free_batch(&batch); 2930 } 2931 2932 /* 2933 * Entry points for modifying VOP operations. 2934 */ 2935 void 2936 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, 2937 struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) 2938 { 2939 2940 ASSERT_VOP_IN_SEQC(fdvp); 2941 ASSERT_VOP_IN_SEQC(fvp); 2942 ASSERT_VOP_IN_SEQC(tdvp); 2943 if (tvp != NULL) 2944 ASSERT_VOP_IN_SEQC(tvp); 2945 2946 cache_purge(fvp); 2947 if (tvp != NULL) { 2948 cache_purge(tvp); 2949 KASSERT(!cache_remove_cnp(tdvp, tcnp), 2950 ("%s: lingering negative entry", __func__)); 2951 } else { 2952 cache_remove_cnp(tdvp, tcnp); 2953 } 2954 2955 /* 2956 * TODO 2957 * 2958 * Historically renaming was always purging all revelang entries, 2959 * but that's quite wasteful. In particular turns out that in many cases 2960 * the target file is immediately accessed after rename, inducing a cache 2961 * miss. 2962 * 2963 * Recode this to reduce relocking and reuse the existing entry (if any) 2964 * instead of just removing it above and allocating a new one here. 2965 */ 2966 if (cache_rename_add) { 2967 cache_enter(tdvp, fvp, tcnp); 2968 } 2969 } 2970 2971 void 2972 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) 2973 { 2974 2975 ASSERT_VOP_IN_SEQC(dvp); 2976 ASSERT_VOP_IN_SEQC(vp); 2977 cache_purge(vp); 2978 } 2979 2980 #ifdef INVARIANTS 2981 /* 2982 * Validate that if an entry exists it matches. 2983 */ 2984 void 2985 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2986 { 2987 struct namecache *ncp; 2988 struct mtx *blp; 2989 uint32_t hash; 2990 2991 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2992 if (CK_SLIST_EMPTY(NCHHASH(hash))) 2993 return; 2994 blp = HASH2BUCKETLOCK(hash); 2995 mtx_lock(blp); 2996 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2997 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2998 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) { 2999 if (ncp->nc_vp != vp) 3000 panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n", 3001 __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp); 3002 } 3003 } 3004 mtx_unlock(blp); 3005 } 3006 #endif 3007 3008 /* 3009 * Flush all entries referencing a particular filesystem. 3010 */ 3011 void 3012 cache_purgevfs(struct mount *mp) 3013 { 3014 struct vnode *vp, *mvp; 3015 3016 SDT_PROBE1(vfs, namecache, purgevfs, done, mp); 3017 /* 3018 * Somewhat wasteful iteration over all vnodes. Would be better to 3019 * support filtering and avoid the interlock to begin with. 3020 */ 3021 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3022 if (!cache_has_entries(vp)) { 3023 VI_UNLOCK(vp); 3024 continue; 3025 } 3026 vholdl(vp); 3027 VI_UNLOCK(vp); 3028 cache_purge(vp); 3029 vdrop(vp); 3030 } 3031 } 3032 3033 /* 3034 * Perform canonical checks and cache lookup and pass on to filesystem 3035 * through the vop_cachedlookup only if needed. 3036 */ 3037 3038 int 3039 vfs_cache_lookup(struct vop_lookup_args *ap) 3040 { 3041 struct vnode *dvp; 3042 int error; 3043 struct vnode **vpp = ap->a_vpp; 3044 struct componentname *cnp = ap->a_cnp; 3045 int flags = cnp->cn_flags; 3046 3047 *vpp = NULL; 3048 dvp = ap->a_dvp; 3049 3050 if (dvp->v_type != VDIR) 3051 return (ENOTDIR); 3052 3053 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 3054 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 3055 return (EROFS); 3056 3057 error = vn_dir_check_exec(dvp, cnp); 3058 if (error != 0) 3059 return (error); 3060 3061 error = cache_lookup(dvp, vpp, cnp, NULL, NULL); 3062 if (error == 0) 3063 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp)); 3064 if (error == -1) 3065 return (0); 3066 return (error); 3067 } 3068 3069 /* Implementation of the getcwd syscall. */ 3070 int 3071 sys___getcwd(struct thread *td, struct __getcwd_args *uap) 3072 { 3073 char *buf, *retbuf; 3074 size_t buflen; 3075 int error; 3076 3077 buflen = uap->buflen; 3078 if (__predict_false(buflen < 2)) 3079 return (EINVAL); 3080 if (buflen > MAXPATHLEN) 3081 buflen = MAXPATHLEN; 3082 3083 buf = uma_zalloc(namei_zone, M_WAITOK); 3084 error = vn_getcwd(buf, &retbuf, &buflen); 3085 if (error == 0) 3086 error = copyout(retbuf, uap->buf, buflen); 3087 uma_zfree(namei_zone, buf); 3088 return (error); 3089 } 3090 3091 int 3092 vn_getcwd(char *buf, char **retbuf, size_t *buflen) 3093 { 3094 struct pwd *pwd; 3095 int error; 3096 3097 vfs_smr_enter(); 3098 pwd = pwd_get_smr(); 3099 error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, 3100 buflen, 0); 3101 VFS_SMR_ASSERT_NOT_ENTERED(); 3102 if (error < 0) { 3103 pwd = pwd_hold(curthread); 3104 error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf, 3105 retbuf, buflen); 3106 pwd_drop(pwd); 3107 } 3108 3109 #ifdef KTRACE 3110 if (KTRPOINT(curthread, KTR_NAMEI) && error == 0) 3111 ktrnamei(*retbuf); 3112 #endif 3113 return (error); 3114 } 3115 3116 static int 3117 kern___realpathat(struct thread *td, int fd, const char *path, char *buf, 3118 size_t size, int flags, enum uio_seg pathseg) 3119 { 3120 struct nameidata nd; 3121 char *retbuf, *freebuf; 3122 int error; 3123 3124 if (flags != 0) 3125 return (EINVAL); 3126 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1, 3127 pathseg, path, fd, &cap_fstat_rights, td); 3128 if ((error = namei(&nd)) != 0) 3129 return (error); 3130 error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size); 3131 if (error == 0) { 3132 error = copyout(retbuf, buf, size); 3133 free(freebuf, M_TEMP); 3134 } 3135 NDFREE(&nd, 0); 3136 return (error); 3137 } 3138 3139 int 3140 sys___realpathat(struct thread *td, struct __realpathat_args *uap) 3141 { 3142 3143 return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size, 3144 uap->flags, UIO_USERSPACE)); 3145 } 3146 3147 /* 3148 * Retrieve the full filesystem path that correspond to a vnode from the name 3149 * cache (if available) 3150 */ 3151 int 3152 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf) 3153 { 3154 struct pwd *pwd; 3155 char *buf; 3156 size_t buflen; 3157 int error; 3158 3159 if (__predict_false(vp == NULL)) 3160 return (EINVAL); 3161 3162 buflen = MAXPATHLEN; 3163 buf = malloc(buflen, M_TEMP, M_WAITOK); 3164 vfs_smr_enter(); 3165 pwd = pwd_get_smr(); 3166 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0); 3167 VFS_SMR_ASSERT_NOT_ENTERED(); 3168 if (error < 0) { 3169 pwd = pwd_hold(curthread); 3170 error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen); 3171 pwd_drop(pwd); 3172 } 3173 if (error == 0) 3174 *freebuf = buf; 3175 else 3176 free(buf, M_TEMP); 3177 return (error); 3178 } 3179 3180 /* 3181 * This function is similar to vn_fullpath, but it attempts to lookup the 3182 * pathname relative to the global root mount point. This is required for the 3183 * auditing sub-system, as audited pathnames must be absolute, relative to the 3184 * global root mount point. 3185 */ 3186 int 3187 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf) 3188 { 3189 char *buf; 3190 size_t buflen; 3191 int error; 3192 3193 if (__predict_false(vp == NULL)) 3194 return (EINVAL); 3195 buflen = MAXPATHLEN; 3196 buf = malloc(buflen, M_TEMP, M_WAITOK); 3197 vfs_smr_enter(); 3198 error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0); 3199 VFS_SMR_ASSERT_NOT_ENTERED(); 3200 if (error < 0) { 3201 error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen); 3202 } 3203 if (error == 0) 3204 *freebuf = buf; 3205 else 3206 free(buf, M_TEMP); 3207 return (error); 3208 } 3209 3210 static struct namecache * 3211 vn_dd_from_dst(struct vnode *vp) 3212 { 3213 struct namecache *ncp; 3214 3215 cache_assert_vnode_locked(vp); 3216 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) { 3217 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3218 return (ncp); 3219 } 3220 return (NULL); 3221 } 3222 3223 int 3224 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen) 3225 { 3226 struct vnode *dvp; 3227 struct namecache *ncp; 3228 struct mtx *vlp; 3229 int error; 3230 3231 vlp = VP2VNODELOCK(*vp); 3232 mtx_lock(vlp); 3233 ncp = (*vp)->v_cache_dd; 3234 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) { 3235 KASSERT(ncp == vn_dd_from_dst(*vp), 3236 ("%s: mismatch for dd entry (%p != %p)", __func__, 3237 ncp, vn_dd_from_dst(*vp))); 3238 } else { 3239 ncp = vn_dd_from_dst(*vp); 3240 } 3241 if (ncp != NULL) { 3242 if (*buflen < ncp->nc_nlen) { 3243 mtx_unlock(vlp); 3244 vrele(*vp); 3245 counter_u64_add(numfullpathfail4, 1); 3246 error = ENOMEM; 3247 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3248 vp, NULL); 3249 return (error); 3250 } 3251 *buflen -= ncp->nc_nlen; 3252 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3253 SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp, 3254 ncp->nc_name, vp); 3255 dvp = *vp; 3256 *vp = ncp->nc_dvp; 3257 vref(*vp); 3258 mtx_unlock(vlp); 3259 vrele(dvp); 3260 return (0); 3261 } 3262 SDT_PROBE1(vfs, namecache, fullpath, miss, vp); 3263 3264 mtx_unlock(vlp); 3265 vn_lock(*vp, LK_SHARED | LK_RETRY); 3266 error = VOP_VPTOCNP(*vp, &dvp, buf, buflen); 3267 vput(*vp); 3268 if (error) { 3269 counter_u64_add(numfullpathfail2, 1); 3270 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3271 return (error); 3272 } 3273 3274 *vp = dvp; 3275 if (VN_IS_DOOMED(dvp)) { 3276 /* forced unmount */ 3277 vrele(dvp); 3278 error = ENOENT; 3279 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3280 return (error); 3281 } 3282 /* 3283 * *vp has its use count incremented still. 3284 */ 3285 3286 return (0); 3287 } 3288 3289 /* 3290 * Resolve a directory to a pathname. 3291 * 3292 * The name of the directory can always be found in the namecache or fetched 3293 * from the filesystem. There is also guaranteed to be only one parent, meaning 3294 * we can just follow vnodes up until we find the root. 3295 * 3296 * The vnode must be referenced. 3297 */ 3298 static int 3299 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3300 size_t *len, size_t addend) 3301 { 3302 #ifdef KDTRACE_HOOKS 3303 struct vnode *startvp = vp; 3304 #endif 3305 struct vnode *vp1; 3306 size_t buflen; 3307 int error; 3308 bool slash_prefixed; 3309 3310 VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp); 3311 VNPASS(vp->v_usecount > 0, vp); 3312 3313 buflen = *len; 3314 3315 slash_prefixed = true; 3316 if (addend == 0) { 3317 MPASS(*len >= 2); 3318 buflen--; 3319 buf[buflen] = '\0'; 3320 slash_prefixed = false; 3321 } 3322 3323 error = 0; 3324 3325 SDT_PROBE1(vfs, namecache, fullpath, entry, vp); 3326 counter_u64_add(numfullpathcalls, 1); 3327 while (vp != rdir && vp != rootvnode) { 3328 /* 3329 * The vp vnode must be already fully constructed, 3330 * since it is either found in namecache or obtained 3331 * from VOP_VPTOCNP(). We may test for VV_ROOT safely 3332 * without obtaining the vnode lock. 3333 */ 3334 if ((vp->v_vflag & VV_ROOT) != 0) { 3335 vn_lock(vp, LK_RETRY | LK_SHARED); 3336 3337 /* 3338 * With the vnode locked, check for races with 3339 * unmount, forced or not. Note that we 3340 * already verified that vp is not equal to 3341 * the root vnode, which means that 3342 * mnt_vnodecovered can be NULL only for the 3343 * case of unmount. 3344 */ 3345 if (VN_IS_DOOMED(vp) || 3346 (vp1 = vp->v_mount->mnt_vnodecovered) == NULL || 3347 vp1->v_mountedhere != vp->v_mount) { 3348 vput(vp); 3349 error = ENOENT; 3350 SDT_PROBE3(vfs, namecache, fullpath, return, 3351 error, vp, NULL); 3352 break; 3353 } 3354 3355 vref(vp1); 3356 vput(vp); 3357 vp = vp1; 3358 continue; 3359 } 3360 if (vp->v_type != VDIR) { 3361 vrele(vp); 3362 counter_u64_add(numfullpathfail1, 1); 3363 error = ENOTDIR; 3364 SDT_PROBE3(vfs, namecache, fullpath, return, 3365 error, vp, NULL); 3366 break; 3367 } 3368 error = vn_vptocnp(&vp, buf, &buflen); 3369 if (error) 3370 break; 3371 if (buflen == 0) { 3372 vrele(vp); 3373 error = ENOMEM; 3374 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3375 startvp, NULL); 3376 break; 3377 } 3378 buf[--buflen] = '/'; 3379 slash_prefixed = true; 3380 } 3381 if (error) 3382 return (error); 3383 if (!slash_prefixed) { 3384 if (buflen == 0) { 3385 vrele(vp); 3386 counter_u64_add(numfullpathfail4, 1); 3387 SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM, 3388 startvp, NULL); 3389 return (ENOMEM); 3390 } 3391 buf[--buflen] = '/'; 3392 } 3393 counter_u64_add(numfullpathfound, 1); 3394 vrele(vp); 3395 3396 *retbuf = buf + buflen; 3397 SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf); 3398 *len -= buflen; 3399 *len += addend; 3400 return (0); 3401 } 3402 3403 /* 3404 * Resolve an arbitrary vnode to a pathname. 3405 * 3406 * Note 2 caveats: 3407 * - hardlinks are not tracked, thus if the vnode is not a directory this can 3408 * resolve to a different path than the one used to find it 3409 * - namecache is not mandatory, meaning names are not guaranteed to be added 3410 * (in which case resolving fails) 3411 */ 3412 static void __inline 3413 cache_rev_failed_impl(int *reason, int line) 3414 { 3415 3416 *reason = line; 3417 } 3418 #define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__) 3419 3420 static int 3421 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 3422 char **retbuf, size_t *buflen, size_t addend) 3423 { 3424 #ifdef KDTRACE_HOOKS 3425 struct vnode *startvp = vp; 3426 #endif 3427 struct vnode *tvp; 3428 struct mount *mp; 3429 struct namecache *ncp; 3430 size_t orig_buflen; 3431 int reason; 3432 int error; 3433 #ifdef KDTRACE_HOOKS 3434 int i; 3435 #endif 3436 seqc_t vp_seqc, tvp_seqc; 3437 u_char nc_flag; 3438 3439 VFS_SMR_ASSERT_ENTERED(); 3440 3441 if (!atomic_load_char(&cache_fast_lookup_enabled)) { 3442 vfs_smr_exit(); 3443 return (-1); 3444 } 3445 3446 orig_buflen = *buflen; 3447 3448 if (addend == 0) { 3449 MPASS(*buflen >= 2); 3450 *buflen -= 1; 3451 buf[*buflen] = '\0'; 3452 } 3453 3454 if (vp == rdir || vp == rootvnode) { 3455 if (addend == 0) { 3456 *buflen -= 1; 3457 buf[*buflen] = '/'; 3458 } 3459 goto out_ok; 3460 } 3461 3462 #ifdef KDTRACE_HOOKS 3463 i = 0; 3464 #endif 3465 error = -1; 3466 ncp = NULL; /* for sdt probe down below */ 3467 vp_seqc = vn_seqc_read_any(vp); 3468 if (seqc_in_modify(vp_seqc)) { 3469 cache_rev_failed(&reason); 3470 goto out_abort; 3471 } 3472 3473 for (;;) { 3474 #ifdef KDTRACE_HOOKS 3475 i++; 3476 #endif 3477 if ((vp->v_vflag & VV_ROOT) != 0) { 3478 mp = atomic_load_ptr(&vp->v_mount); 3479 if (mp == NULL) { 3480 cache_rev_failed(&reason); 3481 goto out_abort; 3482 } 3483 tvp = atomic_load_ptr(&mp->mnt_vnodecovered); 3484 tvp_seqc = vn_seqc_read_any(tvp); 3485 if (seqc_in_modify(tvp_seqc)) { 3486 cache_rev_failed(&reason); 3487 goto out_abort; 3488 } 3489 if (!vn_seqc_consistent(vp, vp_seqc)) { 3490 cache_rev_failed(&reason); 3491 goto out_abort; 3492 } 3493 vp = tvp; 3494 vp_seqc = tvp_seqc; 3495 continue; 3496 } 3497 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 3498 if (ncp == NULL) { 3499 cache_rev_failed(&reason); 3500 goto out_abort; 3501 } 3502 nc_flag = atomic_load_char(&ncp->nc_flag); 3503 if ((nc_flag & NCF_ISDOTDOT) != 0) { 3504 cache_rev_failed(&reason); 3505 goto out_abort; 3506 } 3507 if (ncp->nc_nlen >= *buflen) { 3508 cache_rev_failed(&reason); 3509 error = ENOMEM; 3510 goto out_abort; 3511 } 3512 *buflen -= ncp->nc_nlen; 3513 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3514 *buflen -= 1; 3515 buf[*buflen] = '/'; 3516 tvp = ncp->nc_dvp; 3517 tvp_seqc = vn_seqc_read_any(tvp); 3518 if (seqc_in_modify(tvp_seqc)) { 3519 cache_rev_failed(&reason); 3520 goto out_abort; 3521 } 3522 if (!vn_seqc_consistent(vp, vp_seqc)) { 3523 cache_rev_failed(&reason); 3524 goto out_abort; 3525 } 3526 /* 3527 * Acquire fence provided by vn_seqc_read_any above. 3528 */ 3529 if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) { 3530 cache_rev_failed(&reason); 3531 goto out_abort; 3532 } 3533 if (!cache_ncp_canuse(ncp)) { 3534 cache_rev_failed(&reason); 3535 goto out_abort; 3536 } 3537 vp = tvp; 3538 vp_seqc = tvp_seqc; 3539 if (vp == rdir || vp == rootvnode) 3540 break; 3541 } 3542 out_ok: 3543 vfs_smr_exit(); 3544 *retbuf = buf + *buflen; 3545 *buflen = orig_buflen - *buflen + addend; 3546 SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf); 3547 return (0); 3548 3549 out_abort: 3550 *buflen = orig_buflen; 3551 SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i); 3552 vfs_smr_exit(); 3553 return (error); 3554 } 3555 3556 static int 3557 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3558 size_t *buflen) 3559 { 3560 size_t orig_buflen, addend; 3561 int error; 3562 3563 if (*buflen < 2) 3564 return (EINVAL); 3565 3566 orig_buflen = *buflen; 3567 3568 vref(vp); 3569 addend = 0; 3570 if (vp->v_type != VDIR) { 3571 *buflen -= 1; 3572 buf[*buflen] = '\0'; 3573 error = vn_vptocnp(&vp, buf, buflen); 3574 if (error) 3575 return (error); 3576 if (*buflen == 0) { 3577 vrele(vp); 3578 return (ENOMEM); 3579 } 3580 *buflen -= 1; 3581 buf[*buflen] = '/'; 3582 addend = orig_buflen - *buflen; 3583 } 3584 3585 return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend)); 3586 } 3587 3588 /* 3589 * Resolve an arbitrary vnode to a pathname (taking care of hardlinks). 3590 * 3591 * Since the namecache does not track hardlinks, the caller is expected to first 3592 * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei. 3593 * 3594 * Then we have 2 cases: 3595 * - if the found vnode is a directory, the path can be constructed just by 3596 * following names up the chain 3597 * - otherwise we populate the buffer with the saved name and start resolving 3598 * from the parent 3599 */ 3600 static int 3601 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf, 3602 size_t *buflen) 3603 { 3604 char *buf, *tmpbuf; 3605 struct pwd *pwd; 3606 struct componentname *cnp; 3607 struct vnode *vp; 3608 size_t addend; 3609 int error; 3610 enum vtype type; 3611 3612 if (*buflen < 2) 3613 return (EINVAL); 3614 if (*buflen > MAXPATHLEN) 3615 *buflen = MAXPATHLEN; 3616 3617 buf = malloc(*buflen, M_TEMP, M_WAITOK); 3618 3619 addend = 0; 3620 vp = ndp->ni_vp; 3621 /* 3622 * Check for VBAD to work around the vp_crossmp bug in lookup(). 3623 * 3624 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be 3625 * set to mount point's root vnode while ni_dvp will be vp_crossmp. 3626 * If the type is VDIR (like in this very case) we can skip looking 3627 * at ni_dvp in the first place. However, since vnodes get passed here 3628 * unlocked the target may transition to doomed state (type == VBAD) 3629 * before we get to evaluate the condition. If this happens, we will 3630 * populate part of the buffer and descend to vn_fullpath_dir with 3631 * vp == vp_crossmp. Prevent the problem by checking for VBAD. 3632 * 3633 * This should be atomic_load(&vp->v_type) but it is illegal to take 3634 * an address of a bit field, even if said field is sized to char. 3635 * Work around the problem by reading the value into a full-sized enum 3636 * and then re-reading it with atomic_load which will still prevent 3637 * the compiler from re-reading down the road. 3638 */ 3639 type = vp->v_type; 3640 type = atomic_load_int(&type); 3641 if (type == VBAD) { 3642 error = ENOENT; 3643 goto out_bad; 3644 } 3645 if (type != VDIR) { 3646 cnp = &ndp->ni_cnd; 3647 addend = cnp->cn_namelen + 2; 3648 if (*buflen < addend) { 3649 error = ENOMEM; 3650 goto out_bad; 3651 } 3652 *buflen -= addend; 3653 tmpbuf = buf + *buflen; 3654 tmpbuf[0] = '/'; 3655 memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen); 3656 tmpbuf[addend - 1] = '\0'; 3657 vp = ndp->ni_dvp; 3658 } 3659 3660 vfs_smr_enter(); 3661 pwd = pwd_get_smr(); 3662 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3663 addend); 3664 VFS_SMR_ASSERT_NOT_ENTERED(); 3665 if (error < 0) { 3666 pwd = pwd_hold(curthread); 3667 vref(vp); 3668 error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3669 addend); 3670 pwd_drop(pwd); 3671 } 3672 if (error != 0) 3673 goto out_bad; 3674 3675 *freebuf = buf; 3676 3677 return (0); 3678 out_bad: 3679 free(buf, M_TEMP); 3680 return (error); 3681 } 3682 3683 struct vnode * 3684 vn_dir_dd_ino(struct vnode *vp) 3685 { 3686 struct namecache *ncp; 3687 struct vnode *ddvp; 3688 struct mtx *vlp; 3689 enum vgetstate vs; 3690 3691 ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino"); 3692 vlp = VP2VNODELOCK(vp); 3693 mtx_lock(vlp); 3694 TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) { 3695 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) 3696 continue; 3697 ddvp = ncp->nc_dvp; 3698 vs = vget_prep(ddvp); 3699 mtx_unlock(vlp); 3700 if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs)) 3701 return (NULL); 3702 return (ddvp); 3703 } 3704 mtx_unlock(vlp); 3705 return (NULL); 3706 } 3707 3708 int 3709 vn_commname(struct vnode *vp, char *buf, u_int buflen) 3710 { 3711 struct namecache *ncp; 3712 struct mtx *vlp; 3713 int l; 3714 3715 vlp = VP2VNODELOCK(vp); 3716 mtx_lock(vlp); 3717 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) 3718 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3719 break; 3720 if (ncp == NULL) { 3721 mtx_unlock(vlp); 3722 return (ENOENT); 3723 } 3724 l = min(ncp->nc_nlen, buflen - 1); 3725 memcpy(buf, ncp->nc_name, l); 3726 mtx_unlock(vlp); 3727 buf[l] = '\0'; 3728 return (0); 3729 } 3730 3731 /* 3732 * This function updates path string to vnode's full global path 3733 * and checks the size of the new path string against the pathlen argument. 3734 * 3735 * Requires a locked, referenced vnode. 3736 * Vnode is re-locked on success or ENODEV, otherwise unlocked. 3737 * 3738 * If vp is a directory, the call to vn_fullpath_global() always succeeds 3739 * because it falls back to the ".." lookup if the namecache lookup fails. 3740 */ 3741 int 3742 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, 3743 u_int pathlen) 3744 { 3745 struct nameidata nd; 3746 struct vnode *vp1; 3747 char *rpath, *fbuf; 3748 int error; 3749 3750 ASSERT_VOP_ELOCKED(vp, __func__); 3751 3752 /* Construct global filesystem path from vp. */ 3753 VOP_UNLOCK(vp); 3754 error = vn_fullpath_global(vp, &rpath, &fbuf); 3755 3756 if (error != 0) { 3757 vrele(vp); 3758 return (error); 3759 } 3760 3761 if (strlen(rpath) >= pathlen) { 3762 vrele(vp); 3763 error = ENAMETOOLONG; 3764 goto out; 3765 } 3766 3767 /* 3768 * Re-lookup the vnode by path to detect a possible rename. 3769 * As a side effect, the vnode is relocked. 3770 * If vnode was renamed, return ENOENT. 3771 */ 3772 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 3773 UIO_SYSSPACE, path, td); 3774 error = namei(&nd); 3775 if (error != 0) { 3776 vrele(vp); 3777 goto out; 3778 } 3779 NDFREE(&nd, NDF_ONLY_PNBUF); 3780 vp1 = nd.ni_vp; 3781 vrele(vp); 3782 if (vp1 == vp) 3783 strcpy(path, rpath); 3784 else { 3785 vput(vp1); 3786 error = ENOENT; 3787 } 3788 3789 out: 3790 free(fbuf, M_TEMP); 3791 return (error); 3792 } 3793 3794 #ifdef DDB 3795 static void 3796 db_print_vpath(struct vnode *vp) 3797 { 3798 3799 while (vp != NULL) { 3800 db_printf("%p: ", vp); 3801 if (vp == rootvnode) { 3802 db_printf("/"); 3803 vp = NULL; 3804 } else { 3805 if (vp->v_vflag & VV_ROOT) { 3806 db_printf("<mount point>"); 3807 vp = vp->v_mount->mnt_vnodecovered; 3808 } else { 3809 struct namecache *ncp; 3810 char *ncn; 3811 int i; 3812 3813 ncp = TAILQ_FIRST(&vp->v_cache_dst); 3814 if (ncp != NULL) { 3815 ncn = ncp->nc_name; 3816 for (i = 0; i < ncp->nc_nlen; i++) 3817 db_printf("%c", *ncn++); 3818 vp = ncp->nc_dvp; 3819 } else { 3820 vp = NULL; 3821 } 3822 } 3823 } 3824 db_printf("\n"); 3825 } 3826 3827 return; 3828 } 3829 3830 DB_SHOW_COMMAND(vpath, db_show_vpath) 3831 { 3832 struct vnode *vp; 3833 3834 if (!have_addr) { 3835 db_printf("usage: show vpath <struct vnode *>\n"); 3836 return; 3837 } 3838 3839 vp = (struct vnode *)addr; 3840 db_print_vpath(vp); 3841 } 3842 3843 #endif 3844 3845 static int cache_fast_lookup = 1; 3846 3847 #define CACHE_FPL_FAILED -2020 3848 3849 void 3850 cache_fast_lookup_enabled_recalc(void) 3851 { 3852 int lookup_flag; 3853 int mac_on; 3854 3855 #ifdef MAC 3856 mac_on = mac_vnode_check_lookup_enabled(); 3857 mac_on |= mac_vnode_check_readlink_enabled(); 3858 #else 3859 mac_on = 0; 3860 #endif 3861 3862 lookup_flag = atomic_load_int(&cache_fast_lookup); 3863 if (lookup_flag && !mac_on) { 3864 atomic_store_char(&cache_fast_lookup_enabled, true); 3865 } else { 3866 atomic_store_char(&cache_fast_lookup_enabled, false); 3867 } 3868 } 3869 3870 static int 3871 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS) 3872 { 3873 int error, old; 3874 3875 old = atomic_load_int(&cache_fast_lookup); 3876 error = sysctl_handle_int(oidp, arg1, arg2, req); 3877 if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup)) 3878 cache_fast_lookup_enabled_recalc(); 3879 return (error); 3880 } 3881 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, 3882 &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", ""); 3883 3884 /* 3885 * Components of nameidata (or objects it can point to) which may 3886 * need restoring in case fast path lookup fails. 3887 */ 3888 struct nameidata_outer { 3889 size_t ni_pathlen; 3890 int cn_flags; 3891 }; 3892 3893 struct nameidata_saved { 3894 #ifdef INVARIANTS 3895 char *cn_nameptr; 3896 size_t ni_pathlen; 3897 #endif 3898 }; 3899 3900 #ifdef INVARIANTS 3901 struct cache_fpl_debug { 3902 size_t ni_pathlen; 3903 }; 3904 #endif 3905 3906 struct cache_fpl { 3907 struct nameidata *ndp; 3908 struct componentname *cnp; 3909 char *nulchar; 3910 struct vnode *dvp; 3911 struct vnode *tvp; 3912 seqc_t dvp_seqc; 3913 seqc_t tvp_seqc; 3914 uint32_t hash; 3915 struct nameidata_saved snd; 3916 struct nameidata_outer snd_outer; 3917 int line; 3918 enum cache_fpl_status status:8; 3919 bool in_smr; 3920 bool fsearch; 3921 bool savename; 3922 struct pwd **pwd; 3923 #ifdef INVARIANTS 3924 struct cache_fpl_debug debug; 3925 #endif 3926 }; 3927 3928 static bool cache_fplookup_mp_supported(struct mount *mp); 3929 static bool cache_fplookup_is_mp(struct cache_fpl *fpl); 3930 static int cache_fplookup_cross_mount(struct cache_fpl *fpl); 3931 static int cache_fplookup_partial_setup(struct cache_fpl *fpl); 3932 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl); 3933 static int cache_fplookup_trailingslash(struct cache_fpl *fpl); 3934 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl); 3935 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl); 3936 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n); 3937 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n); 3938 3939 static void 3940 cache_fpl_cleanup_cnp(struct componentname *cnp) 3941 { 3942 3943 uma_zfree(namei_zone, cnp->cn_pnbuf); 3944 #ifdef DIAGNOSTIC 3945 cnp->cn_pnbuf = NULL; 3946 cnp->cn_nameptr = NULL; 3947 #endif 3948 } 3949 3950 static struct vnode * 3951 cache_fpl_handle_root(struct cache_fpl *fpl) 3952 { 3953 struct nameidata *ndp; 3954 struct componentname *cnp; 3955 3956 ndp = fpl->ndp; 3957 cnp = fpl->cnp; 3958 3959 MPASS(*(cnp->cn_nameptr) == '/'); 3960 cnp->cn_nameptr++; 3961 cache_fpl_pathlen_dec(fpl); 3962 3963 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 3964 do { 3965 cnp->cn_nameptr++; 3966 cache_fpl_pathlen_dec(fpl); 3967 } while (*(cnp->cn_nameptr) == '/'); 3968 } 3969 3970 return (ndp->ni_rootdir); 3971 } 3972 3973 static void 3974 cache_fpl_checkpoint_outer(struct cache_fpl *fpl) 3975 { 3976 3977 fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen; 3978 fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags; 3979 } 3980 3981 static void 3982 cache_fpl_checkpoint(struct cache_fpl *fpl) 3983 { 3984 3985 #ifdef INVARIANTS 3986 fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr; 3987 fpl->snd.ni_pathlen = fpl->debug.ni_pathlen; 3988 #endif 3989 } 3990 3991 static void 3992 cache_fpl_restore_partial(struct cache_fpl *fpl) 3993 { 3994 3995 fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags; 3996 #ifdef INVARIANTS 3997 fpl->debug.ni_pathlen = fpl->snd.ni_pathlen; 3998 #endif 3999 } 4000 4001 static void 4002 cache_fpl_restore_abort(struct cache_fpl *fpl) 4003 { 4004 4005 cache_fpl_restore_partial(fpl); 4006 /* 4007 * It is 0 on entry by API contract. 4008 */ 4009 fpl->ndp->ni_resflags = 0; 4010 fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf; 4011 fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen; 4012 } 4013 4014 #ifdef INVARIANTS 4015 #define cache_fpl_smr_assert_entered(fpl) ({ \ 4016 struct cache_fpl *_fpl = (fpl); \ 4017 MPASS(_fpl->in_smr == true); \ 4018 VFS_SMR_ASSERT_ENTERED(); \ 4019 }) 4020 #define cache_fpl_smr_assert_not_entered(fpl) ({ \ 4021 struct cache_fpl *_fpl = (fpl); \ 4022 MPASS(_fpl->in_smr == false); \ 4023 VFS_SMR_ASSERT_NOT_ENTERED(); \ 4024 }) 4025 static void 4026 cache_fpl_assert_status(struct cache_fpl *fpl) 4027 { 4028 4029 switch (fpl->status) { 4030 case CACHE_FPL_STATUS_UNSET: 4031 __assert_unreachable(); 4032 break; 4033 case CACHE_FPL_STATUS_DESTROYED: 4034 case CACHE_FPL_STATUS_ABORTED: 4035 case CACHE_FPL_STATUS_PARTIAL: 4036 case CACHE_FPL_STATUS_HANDLED: 4037 break; 4038 } 4039 } 4040 #else 4041 #define cache_fpl_smr_assert_entered(fpl) do { } while (0) 4042 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0) 4043 #define cache_fpl_assert_status(fpl) do { } while (0) 4044 #endif 4045 4046 #define cache_fpl_smr_enter_initial(fpl) ({ \ 4047 struct cache_fpl *_fpl = (fpl); \ 4048 vfs_smr_enter(); \ 4049 _fpl->in_smr = true; \ 4050 }) 4051 4052 #define cache_fpl_smr_enter(fpl) ({ \ 4053 struct cache_fpl *_fpl = (fpl); \ 4054 MPASS(_fpl->in_smr == false); \ 4055 vfs_smr_enter(); \ 4056 _fpl->in_smr = true; \ 4057 }) 4058 4059 #define cache_fpl_smr_exit(fpl) ({ \ 4060 struct cache_fpl *_fpl = (fpl); \ 4061 MPASS(_fpl->in_smr == true); \ 4062 vfs_smr_exit(); \ 4063 _fpl->in_smr = false; \ 4064 }) 4065 4066 static int 4067 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line) 4068 { 4069 4070 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 4071 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 4072 ("%s: converting to abort from %d at %d, set at %d\n", 4073 __func__, fpl->status, line, fpl->line)); 4074 } 4075 cache_fpl_smr_assert_not_entered(fpl); 4076 fpl->status = CACHE_FPL_STATUS_ABORTED; 4077 fpl->line = line; 4078 return (CACHE_FPL_FAILED); 4079 } 4080 4081 #define cache_fpl_aborted_early(x) cache_fpl_aborted_early_impl((x), __LINE__) 4082 4083 static int __noinline 4084 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line) 4085 { 4086 struct nameidata *ndp; 4087 struct componentname *cnp; 4088 4089 ndp = fpl->ndp; 4090 cnp = fpl->cnp; 4091 4092 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 4093 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 4094 ("%s: converting to abort from %d at %d, set at %d\n", 4095 __func__, fpl->status, line, fpl->line)); 4096 } 4097 fpl->status = CACHE_FPL_STATUS_ABORTED; 4098 fpl->line = line; 4099 if (fpl->in_smr) 4100 cache_fpl_smr_exit(fpl); 4101 cache_fpl_restore_abort(fpl); 4102 /* 4103 * Resolving symlinks overwrites data passed by the caller. 4104 * Let namei know. 4105 */ 4106 if (ndp->ni_loopcnt > 0) { 4107 fpl->status = CACHE_FPL_STATUS_DESTROYED; 4108 cache_fpl_cleanup_cnp(cnp); 4109 } 4110 return (CACHE_FPL_FAILED); 4111 } 4112 4113 #define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__) 4114 4115 static int __noinline 4116 cache_fpl_partial_impl(struct cache_fpl *fpl, int line) 4117 { 4118 4119 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4120 ("%s: setting to partial at %d, but already set to %d at %d\n", 4121 __func__, line, fpl->status, fpl->line)); 4122 cache_fpl_smr_assert_entered(fpl); 4123 fpl->status = CACHE_FPL_STATUS_PARTIAL; 4124 fpl->line = line; 4125 return (cache_fplookup_partial_setup(fpl)); 4126 } 4127 4128 #define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__) 4129 4130 static int 4131 cache_fpl_handled_impl(struct cache_fpl *fpl, int line) 4132 { 4133 4134 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4135 ("%s: setting to handled at %d, but already set to %d at %d\n", 4136 __func__, line, fpl->status, fpl->line)); 4137 cache_fpl_smr_assert_not_entered(fpl); 4138 fpl->status = CACHE_FPL_STATUS_HANDLED; 4139 fpl->line = line; 4140 return (0); 4141 } 4142 4143 #define cache_fpl_handled(x) cache_fpl_handled_impl((x), __LINE__) 4144 4145 static int 4146 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line) 4147 { 4148 4149 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4150 ("%s: setting to handled at %d, but already set to %d at %d\n", 4151 __func__, line, fpl->status, fpl->line)); 4152 MPASS(error != 0); 4153 MPASS(error != CACHE_FPL_FAILED); 4154 cache_fpl_smr_assert_not_entered(fpl); 4155 fpl->status = CACHE_FPL_STATUS_HANDLED; 4156 fpl->line = line; 4157 fpl->dvp = NULL; 4158 fpl->tvp = NULL; 4159 fpl->savename = false; 4160 return (error); 4161 } 4162 4163 #define cache_fpl_handled_error(x, e) cache_fpl_handled_error_impl((x), (e), __LINE__) 4164 4165 static bool 4166 cache_fpl_terminated(struct cache_fpl *fpl) 4167 { 4168 4169 return (fpl->status != CACHE_FPL_STATUS_UNSET); 4170 } 4171 4172 #define CACHE_FPL_SUPPORTED_CN_FLAGS \ 4173 (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \ 4174 FAILIFEXISTS | FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | \ 4175 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \ 4176 OPENWRITE) 4177 4178 #define CACHE_FPL_INTERNAL_CN_FLAGS \ 4179 (ISDOTDOT | MAKEENTRY | ISLASTCN) 4180 4181 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 4182 "supported and internal flags overlap"); 4183 4184 static bool 4185 cache_fpl_islastcn(struct nameidata *ndp) 4186 { 4187 4188 return (*ndp->ni_next == 0); 4189 } 4190 4191 static bool 4192 cache_fpl_istrailingslash(struct cache_fpl *fpl) 4193 { 4194 4195 return (*(fpl->nulchar - 1) == '/'); 4196 } 4197 4198 static bool 4199 cache_fpl_isdotdot(struct componentname *cnp) 4200 { 4201 4202 if (cnp->cn_namelen == 2 && 4203 cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') 4204 return (true); 4205 return (false); 4206 } 4207 4208 static bool 4209 cache_can_fplookup(struct cache_fpl *fpl) 4210 { 4211 struct nameidata *ndp; 4212 struct componentname *cnp; 4213 struct thread *td; 4214 4215 ndp = fpl->ndp; 4216 cnp = fpl->cnp; 4217 td = cnp->cn_thread; 4218 4219 if (!atomic_load_char(&cache_fast_lookup_enabled)) { 4220 cache_fpl_aborted_early(fpl); 4221 return (false); 4222 } 4223 if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) { 4224 cache_fpl_aborted_early(fpl); 4225 return (false); 4226 } 4227 if (IN_CAPABILITY_MODE(td)) { 4228 cache_fpl_aborted_early(fpl); 4229 return (false); 4230 } 4231 if (AUDITING_TD(td)) { 4232 cache_fpl_aborted_early(fpl); 4233 return (false); 4234 } 4235 if (ndp->ni_startdir != NULL) { 4236 cache_fpl_aborted_early(fpl); 4237 return (false); 4238 } 4239 return (true); 4240 } 4241 4242 static int 4243 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp) 4244 { 4245 struct nameidata *ndp; 4246 int error; 4247 bool fsearch; 4248 4249 ndp = fpl->ndp; 4250 error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch); 4251 if (__predict_false(error != 0)) { 4252 return (cache_fpl_aborted(fpl)); 4253 } 4254 fpl->fsearch = fsearch; 4255 return (0); 4256 } 4257 4258 static int __noinline 4259 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, 4260 uint32_t hash) 4261 { 4262 struct componentname *cnp; 4263 struct vnode *dvp; 4264 4265 cnp = fpl->cnp; 4266 dvp = fpl->dvp; 4267 4268 cache_fpl_smr_exit(fpl); 4269 if (cache_neg_promote_cond(dvp, cnp, oncp, hash)) 4270 return (cache_fpl_handled_error(fpl, ENOENT)); 4271 else 4272 return (cache_fpl_aborted(fpl)); 4273 } 4274 4275 /* 4276 * The target vnode is not supported, prepare for the slow path to take over. 4277 */ 4278 static int __noinline 4279 cache_fplookup_partial_setup(struct cache_fpl *fpl) 4280 { 4281 struct nameidata *ndp; 4282 struct componentname *cnp; 4283 enum vgetstate dvs; 4284 struct vnode *dvp; 4285 struct pwd *pwd; 4286 seqc_t dvp_seqc; 4287 4288 ndp = fpl->ndp; 4289 cnp = fpl->cnp; 4290 pwd = *(fpl->pwd); 4291 dvp = fpl->dvp; 4292 dvp_seqc = fpl->dvp_seqc; 4293 4294 if (!pwd_hold_smr(pwd)) { 4295 return (cache_fpl_aborted(fpl)); 4296 } 4297 4298 /* 4299 * Note that seqc is checked before the vnode is locked, so by 4300 * the time regular lookup gets to it it may have moved. 4301 * 4302 * Ultimately this does not affect correctness, any lookup errors 4303 * are userspace racing with itself. It is guaranteed that any 4304 * path which ultimately gets found could also have been found 4305 * by regular lookup going all the way in absence of concurrent 4306 * modifications. 4307 */ 4308 dvs = vget_prep_smr(dvp); 4309 cache_fpl_smr_exit(fpl); 4310 if (__predict_false(dvs == VGET_NONE)) { 4311 pwd_drop(pwd); 4312 return (cache_fpl_aborted(fpl)); 4313 } 4314 4315 vget_finish_ref(dvp, dvs); 4316 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4317 vrele(dvp); 4318 pwd_drop(pwd); 4319 return (cache_fpl_aborted(fpl)); 4320 } 4321 4322 cache_fpl_restore_partial(fpl); 4323 #ifdef INVARIANTS 4324 if (cnp->cn_nameptr != fpl->snd.cn_nameptr) { 4325 panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__, 4326 cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf); 4327 } 4328 #endif 4329 4330 ndp->ni_startdir = dvp; 4331 cnp->cn_flags |= MAKEENTRY; 4332 if (cache_fpl_islastcn(ndp)) 4333 cnp->cn_flags |= ISLASTCN; 4334 if (cache_fpl_isdotdot(cnp)) 4335 cnp->cn_flags |= ISDOTDOT; 4336 4337 /* 4338 * Skip potential extra slashes parsing did not take care of. 4339 * cache_fplookup_skip_slashes explains the mechanism. 4340 */ 4341 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 4342 do { 4343 cnp->cn_nameptr++; 4344 cache_fpl_pathlen_dec(fpl); 4345 } while (*(cnp->cn_nameptr) == '/'); 4346 } 4347 4348 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; 4349 #ifdef INVARIANTS 4350 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 4351 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 4352 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 4353 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 4354 } 4355 #endif 4356 return (0); 4357 } 4358 4359 static int 4360 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs) 4361 { 4362 struct componentname *cnp; 4363 struct vnode *tvp; 4364 seqc_t tvp_seqc; 4365 int error, lkflags; 4366 4367 cnp = fpl->cnp; 4368 tvp = fpl->tvp; 4369 tvp_seqc = fpl->tvp_seqc; 4370 4371 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4372 lkflags = LK_SHARED; 4373 if ((cnp->cn_flags & LOCKSHARED) == 0) 4374 lkflags = LK_EXCLUSIVE; 4375 error = vget_finish(tvp, lkflags, tvs); 4376 if (__predict_false(error != 0)) { 4377 return (cache_fpl_aborted(fpl)); 4378 } 4379 } else { 4380 vget_finish_ref(tvp, tvs); 4381 } 4382 4383 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 4384 if ((cnp->cn_flags & LOCKLEAF) != 0) 4385 vput(tvp); 4386 else 4387 vrele(tvp); 4388 return (cache_fpl_aborted(fpl)); 4389 } 4390 4391 return (cache_fpl_handled(fpl)); 4392 } 4393 4394 /* 4395 * They want to possibly modify the state of the namecache. 4396 */ 4397 static int __noinline 4398 cache_fplookup_final_modifying(struct cache_fpl *fpl) 4399 { 4400 struct nameidata *ndp; 4401 struct componentname *cnp; 4402 enum vgetstate dvs; 4403 struct vnode *dvp, *tvp; 4404 struct mount *mp; 4405 seqc_t dvp_seqc; 4406 int error; 4407 bool docache; 4408 4409 ndp = fpl->ndp; 4410 cnp = fpl->cnp; 4411 dvp = fpl->dvp; 4412 dvp_seqc = fpl->dvp_seqc; 4413 4414 MPASS(*(cnp->cn_nameptr) != '/'); 4415 MPASS(cache_fpl_islastcn(ndp)); 4416 if ((cnp->cn_flags & LOCKPARENT) == 0) 4417 MPASS((cnp->cn_flags & WANTPARENT) != 0); 4418 MPASS((cnp->cn_flags & TRAILINGSLASH) == 0); 4419 MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE || 4420 cnp->cn_nameiop == RENAME); 4421 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4422 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4423 4424 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4425 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 4426 docache = false; 4427 4428 /* 4429 * Regular lookup nulifies the slash, which we don't do here. 4430 * Don't take chances with filesystem routines seeing it for 4431 * the last entry. 4432 */ 4433 if (cache_fpl_istrailingslash(fpl)) { 4434 return (cache_fpl_partial(fpl)); 4435 } 4436 4437 mp = atomic_load_ptr(&dvp->v_mount); 4438 if (__predict_false(mp == NULL)) { 4439 return (cache_fpl_aborted(fpl)); 4440 } 4441 4442 if (__predict_false(mp->mnt_flag & MNT_RDONLY)) { 4443 cache_fpl_smr_exit(fpl); 4444 /* 4445 * Original code keeps not checking for CREATE which 4446 * might be a bug. For now let the old lookup decide. 4447 */ 4448 if (cnp->cn_nameiop == CREATE) { 4449 return (cache_fpl_aborted(fpl)); 4450 } 4451 return (cache_fpl_handled_error(fpl, EROFS)); 4452 } 4453 4454 if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) { 4455 cache_fpl_smr_exit(fpl); 4456 return (cache_fpl_handled_error(fpl, EEXIST)); 4457 } 4458 4459 /* 4460 * Secure access to dvp; check cache_fplookup_partial_setup for 4461 * reasoning. 4462 * 4463 * XXX At least UFS requires its lookup routine to be called for 4464 * the last path component, which leads to some level of complication 4465 * and inefficiency: 4466 * - the target routine always locks the target vnode, but our caller 4467 * may not need it locked 4468 * - some of the VOP machinery asserts that the parent is locked, which 4469 * once more may be not required 4470 * 4471 * TODO: add a flag for filesystems which don't need this. 4472 */ 4473 dvs = vget_prep_smr(dvp); 4474 cache_fpl_smr_exit(fpl); 4475 if (__predict_false(dvs == VGET_NONE)) { 4476 return (cache_fpl_aborted(fpl)); 4477 } 4478 4479 vget_finish_ref(dvp, dvs); 4480 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4481 vrele(dvp); 4482 return (cache_fpl_aborted(fpl)); 4483 } 4484 4485 error = vn_lock(dvp, LK_EXCLUSIVE); 4486 if (__predict_false(error != 0)) { 4487 vrele(dvp); 4488 return (cache_fpl_aborted(fpl)); 4489 } 4490 4491 tvp = NULL; 4492 cnp->cn_flags |= ISLASTCN; 4493 if (docache) 4494 cnp->cn_flags |= MAKEENTRY; 4495 if (cache_fpl_isdotdot(cnp)) 4496 cnp->cn_flags |= ISDOTDOT; 4497 cnp->cn_lkflags = LK_EXCLUSIVE; 4498 error = VOP_LOOKUP(dvp, &tvp, cnp); 4499 switch (error) { 4500 case EJUSTRETURN: 4501 case 0: 4502 break; 4503 case ENOTDIR: 4504 case ENOENT: 4505 vput(dvp); 4506 return (cache_fpl_handled_error(fpl, error)); 4507 default: 4508 vput(dvp); 4509 return (cache_fpl_aborted(fpl)); 4510 } 4511 4512 fpl->tvp = tvp; 4513 fpl->savename = (cnp->cn_flags & SAVENAME) != 0; 4514 4515 if (tvp == NULL) { 4516 if ((cnp->cn_flags & SAVESTART) != 0) { 4517 ndp->ni_startdir = dvp; 4518 vrefact(ndp->ni_startdir); 4519 cnp->cn_flags |= SAVENAME; 4520 fpl->savename = true; 4521 } 4522 MPASS(error == EJUSTRETURN); 4523 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4524 VOP_UNLOCK(dvp); 4525 } 4526 return (cache_fpl_handled(fpl)); 4527 } 4528 4529 /* 4530 * There are very hairy corner cases concerning various flag combinations 4531 * and locking state. In particular here we only hold one lock instead of 4532 * two. 4533 * 4534 * Skip the complexity as it is of no significance for normal workloads. 4535 */ 4536 if (__predict_false(tvp == dvp)) { 4537 vput(dvp); 4538 vrele(tvp); 4539 return (cache_fpl_aborted(fpl)); 4540 } 4541 4542 /* 4543 * If they want the symlink itself we are fine, but if they want to 4544 * follow it regular lookup has to be engaged. 4545 */ 4546 if (tvp->v_type == VLNK) { 4547 if ((cnp->cn_flags & FOLLOW) != 0) { 4548 vput(dvp); 4549 vput(tvp); 4550 return (cache_fpl_aborted(fpl)); 4551 } 4552 } 4553 4554 /* 4555 * Since we expect this to be the terminal vnode it should almost never 4556 * be a mount point. 4557 */ 4558 if (__predict_false(cache_fplookup_is_mp(fpl))) { 4559 vput(dvp); 4560 vput(tvp); 4561 return (cache_fpl_aborted(fpl)); 4562 } 4563 4564 if ((cnp->cn_flags & FAILIFEXISTS) != 0) { 4565 vput(dvp); 4566 vput(tvp); 4567 return (cache_fpl_handled_error(fpl, EEXIST)); 4568 } 4569 4570 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4571 VOP_UNLOCK(tvp); 4572 } 4573 4574 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4575 VOP_UNLOCK(dvp); 4576 } 4577 4578 if ((cnp->cn_flags & SAVESTART) != 0) { 4579 ndp->ni_startdir = dvp; 4580 vrefact(ndp->ni_startdir); 4581 cnp->cn_flags |= SAVENAME; 4582 fpl->savename = true; 4583 } 4584 4585 return (cache_fpl_handled(fpl)); 4586 } 4587 4588 static int __noinline 4589 cache_fplookup_modifying(struct cache_fpl *fpl) 4590 { 4591 struct nameidata *ndp; 4592 4593 ndp = fpl->ndp; 4594 4595 if (!cache_fpl_islastcn(ndp)) { 4596 return (cache_fpl_partial(fpl)); 4597 } 4598 return (cache_fplookup_final_modifying(fpl)); 4599 } 4600 4601 static int __noinline 4602 cache_fplookup_final_withparent(struct cache_fpl *fpl) 4603 { 4604 struct componentname *cnp; 4605 enum vgetstate dvs, tvs; 4606 struct vnode *dvp, *tvp; 4607 seqc_t dvp_seqc; 4608 int error; 4609 4610 cnp = fpl->cnp; 4611 dvp = fpl->dvp; 4612 dvp_seqc = fpl->dvp_seqc; 4613 tvp = fpl->tvp; 4614 4615 MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0); 4616 4617 /* 4618 * This is less efficient than it can be for simplicity. 4619 */ 4620 dvs = vget_prep_smr(dvp); 4621 if (__predict_false(dvs == VGET_NONE)) { 4622 return (cache_fpl_aborted(fpl)); 4623 } 4624 tvs = vget_prep_smr(tvp); 4625 if (__predict_false(tvs == VGET_NONE)) { 4626 cache_fpl_smr_exit(fpl); 4627 vget_abort(dvp, dvs); 4628 return (cache_fpl_aborted(fpl)); 4629 } 4630 4631 cache_fpl_smr_exit(fpl); 4632 4633 if ((cnp->cn_flags & LOCKPARENT) != 0) { 4634 error = vget_finish(dvp, LK_EXCLUSIVE, dvs); 4635 if (__predict_false(error != 0)) { 4636 vget_abort(tvp, tvs); 4637 return (cache_fpl_aborted(fpl)); 4638 } 4639 } else { 4640 vget_finish_ref(dvp, dvs); 4641 } 4642 4643 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4644 vget_abort(tvp, tvs); 4645 if ((cnp->cn_flags & LOCKPARENT) != 0) 4646 vput(dvp); 4647 else 4648 vrele(dvp); 4649 return (cache_fpl_aborted(fpl)); 4650 } 4651 4652 error = cache_fplookup_final_child(fpl, tvs); 4653 if (__predict_false(error != 0)) { 4654 MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED || 4655 fpl->status == CACHE_FPL_STATUS_DESTROYED); 4656 if ((cnp->cn_flags & LOCKPARENT) != 0) 4657 vput(dvp); 4658 else 4659 vrele(dvp); 4660 return (error); 4661 } 4662 4663 MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED); 4664 return (0); 4665 } 4666 4667 static int 4668 cache_fplookup_final(struct cache_fpl *fpl) 4669 { 4670 struct componentname *cnp; 4671 enum vgetstate tvs; 4672 struct vnode *dvp, *tvp; 4673 seqc_t dvp_seqc; 4674 4675 cnp = fpl->cnp; 4676 dvp = fpl->dvp; 4677 dvp_seqc = fpl->dvp_seqc; 4678 tvp = fpl->tvp; 4679 4680 MPASS(*(cnp->cn_nameptr) != '/'); 4681 4682 if (cnp->cn_nameiop != LOOKUP) { 4683 return (cache_fplookup_final_modifying(fpl)); 4684 } 4685 4686 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) 4687 return (cache_fplookup_final_withparent(fpl)); 4688 4689 tvs = vget_prep_smr(tvp); 4690 if (__predict_false(tvs == VGET_NONE)) { 4691 return (cache_fpl_partial(fpl)); 4692 } 4693 4694 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4695 cache_fpl_smr_exit(fpl); 4696 vget_abort(tvp, tvs); 4697 return (cache_fpl_aborted(fpl)); 4698 } 4699 4700 cache_fpl_smr_exit(fpl); 4701 return (cache_fplookup_final_child(fpl, tvs)); 4702 } 4703 4704 /* 4705 * Comment from locked lookup: 4706 * Check for degenerate name (e.g. / or "") which is a way of talking about a 4707 * directory, e.g. like "/." or ".". 4708 */ 4709 static int __noinline 4710 cache_fplookup_degenerate(struct cache_fpl *fpl) 4711 { 4712 struct componentname *cnp; 4713 struct vnode *dvp; 4714 enum vgetstate dvs; 4715 int error, lkflags; 4716 #ifdef INVARIANTS 4717 char *cp; 4718 #endif 4719 4720 fpl->tvp = fpl->dvp; 4721 fpl->tvp_seqc = fpl->dvp_seqc; 4722 4723 cnp = fpl->cnp; 4724 dvp = fpl->dvp; 4725 4726 #ifdef INVARIANTS 4727 for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) { 4728 KASSERT(*cp == '/', 4729 ("%s: encountered non-slash; string [%s]\n", __func__, 4730 cnp->cn_pnbuf)); 4731 } 4732 #endif 4733 4734 if (__predict_false(cnp->cn_nameiop != LOOKUP)) { 4735 cache_fpl_smr_exit(fpl); 4736 return (cache_fpl_handled_error(fpl, EISDIR)); 4737 } 4738 4739 MPASS((cnp->cn_flags & SAVESTART) == 0); 4740 4741 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) { 4742 return (cache_fplookup_final_withparent(fpl)); 4743 } 4744 4745 dvs = vget_prep_smr(dvp); 4746 cache_fpl_smr_exit(fpl); 4747 if (__predict_false(dvs == VGET_NONE)) { 4748 return (cache_fpl_aborted(fpl)); 4749 } 4750 4751 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4752 lkflags = LK_SHARED; 4753 if ((cnp->cn_flags & LOCKSHARED) == 0) 4754 lkflags = LK_EXCLUSIVE; 4755 error = vget_finish(dvp, lkflags, dvs); 4756 if (__predict_false(error != 0)) { 4757 return (cache_fpl_aborted(fpl)); 4758 } 4759 } else { 4760 vget_finish_ref(dvp, dvs); 4761 } 4762 return (cache_fpl_handled(fpl)); 4763 } 4764 4765 static int __noinline 4766 cache_fplookup_noentry(struct cache_fpl *fpl) 4767 { 4768 struct nameidata *ndp; 4769 struct componentname *cnp; 4770 enum vgetstate dvs; 4771 struct vnode *dvp, *tvp; 4772 seqc_t dvp_seqc; 4773 int error; 4774 bool docache; 4775 4776 ndp = fpl->ndp; 4777 cnp = fpl->cnp; 4778 dvp = fpl->dvp; 4779 dvp_seqc = fpl->dvp_seqc; 4780 4781 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4782 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4783 MPASS(!cache_fpl_isdotdot(cnp)); 4784 4785 /* 4786 * Hack: delayed name len checking. 4787 */ 4788 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 4789 cache_fpl_smr_exit(fpl); 4790 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 4791 } 4792 4793 if (cnp->cn_nameptr[0] == '/') { 4794 return (cache_fplookup_skip_slashes(fpl)); 4795 } 4796 4797 if (cnp->cn_nameptr[0] == '\0') { 4798 if (fpl->tvp == NULL) { 4799 return (cache_fplookup_degenerate(fpl)); 4800 } 4801 return (cache_fplookup_trailingslash(fpl)); 4802 } 4803 4804 if (cnp->cn_nameiop != LOOKUP) { 4805 fpl->tvp = NULL; 4806 return (cache_fplookup_modifying(fpl)); 4807 } 4808 4809 MPASS((cnp->cn_flags & SAVESTART) == 0); 4810 4811 /* 4812 * Only try to fill in the component if it is the last one, 4813 * otherwise not only there may be several to handle but the 4814 * walk may be complicated. 4815 */ 4816 if (!cache_fpl_islastcn(ndp)) { 4817 return (cache_fpl_partial(fpl)); 4818 } 4819 4820 /* 4821 * Regular lookup nulifies the slash, which we don't do here. 4822 * Don't take chances with filesystem routines seeing it for 4823 * the last entry. 4824 */ 4825 if (cache_fpl_istrailingslash(fpl)) { 4826 return (cache_fpl_partial(fpl)); 4827 } 4828 4829 /* 4830 * Secure access to dvp; check cache_fplookup_partial_setup for 4831 * reasoning. 4832 */ 4833 dvs = vget_prep_smr(dvp); 4834 cache_fpl_smr_exit(fpl); 4835 if (__predict_false(dvs == VGET_NONE)) { 4836 return (cache_fpl_aborted(fpl)); 4837 } 4838 4839 vget_finish_ref(dvp, dvs); 4840 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4841 vrele(dvp); 4842 return (cache_fpl_aborted(fpl)); 4843 } 4844 4845 error = vn_lock(dvp, LK_SHARED); 4846 if (__predict_false(error != 0)) { 4847 vrele(dvp); 4848 return (cache_fpl_aborted(fpl)); 4849 } 4850 4851 tvp = NULL; 4852 /* 4853 * TODO: provide variants which don't require locking either vnode. 4854 */ 4855 cnp->cn_flags |= ISLASTCN; 4856 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4857 if (docache) 4858 cnp->cn_flags |= MAKEENTRY; 4859 cnp->cn_lkflags = LK_SHARED; 4860 if ((cnp->cn_flags & LOCKSHARED) == 0) { 4861 cnp->cn_lkflags = LK_EXCLUSIVE; 4862 } 4863 error = VOP_LOOKUP(dvp, &tvp, cnp); 4864 switch (error) { 4865 case EJUSTRETURN: 4866 case 0: 4867 break; 4868 case ENOTDIR: 4869 case ENOENT: 4870 vput(dvp); 4871 return (cache_fpl_handled_error(fpl, error)); 4872 default: 4873 vput(dvp); 4874 return (cache_fpl_aborted(fpl)); 4875 } 4876 4877 fpl->tvp = tvp; 4878 if (!fpl->savename) { 4879 MPASS((cnp->cn_flags & SAVENAME) == 0); 4880 } 4881 4882 if (tvp == NULL) { 4883 MPASS(error == EJUSTRETURN); 4884 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4885 vput(dvp); 4886 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4887 VOP_UNLOCK(dvp); 4888 } 4889 return (cache_fpl_handled(fpl)); 4890 } 4891 4892 if (tvp->v_type == VLNK) { 4893 if ((cnp->cn_flags & FOLLOW) != 0) { 4894 vput(dvp); 4895 vput(tvp); 4896 return (cache_fpl_aborted(fpl)); 4897 } 4898 } 4899 4900 if (__predict_false(cache_fplookup_is_mp(fpl))) { 4901 vput(dvp); 4902 vput(tvp); 4903 return (cache_fpl_aborted(fpl)); 4904 } 4905 4906 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4907 VOP_UNLOCK(tvp); 4908 } 4909 4910 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4911 vput(dvp); 4912 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4913 VOP_UNLOCK(dvp); 4914 } 4915 return (cache_fpl_handled(fpl)); 4916 } 4917 4918 static int __noinline 4919 cache_fplookup_dot(struct cache_fpl *fpl) 4920 { 4921 int error; 4922 4923 MPASS(!seqc_in_modify(fpl->dvp_seqc)); 4924 /* 4925 * Just re-assign the value. seqc will be checked later for the first 4926 * non-dot path component in line and/or before deciding to return the 4927 * vnode. 4928 */ 4929 fpl->tvp = fpl->dvp; 4930 fpl->tvp_seqc = fpl->dvp_seqc; 4931 4932 counter_u64_add(dothits, 1); 4933 SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp); 4934 4935 error = 0; 4936 if (cache_fplookup_is_mp(fpl)) { 4937 error = cache_fplookup_cross_mount(fpl); 4938 } 4939 return (error); 4940 } 4941 4942 static int __noinline 4943 cache_fplookup_dotdot(struct cache_fpl *fpl) 4944 { 4945 struct nameidata *ndp; 4946 struct componentname *cnp; 4947 struct namecache *ncp; 4948 struct vnode *dvp; 4949 struct prison *pr; 4950 u_char nc_flag; 4951 4952 ndp = fpl->ndp; 4953 cnp = fpl->cnp; 4954 dvp = fpl->dvp; 4955 4956 MPASS(cache_fpl_isdotdot(cnp)); 4957 4958 /* 4959 * XXX this is racy the same way regular lookup is 4960 */ 4961 for (pr = cnp->cn_cred->cr_prison; pr != NULL; 4962 pr = pr->pr_parent) 4963 if (dvp == pr->pr_root) 4964 break; 4965 4966 if (dvp == ndp->ni_rootdir || 4967 dvp == ndp->ni_topdir || 4968 dvp == rootvnode || 4969 pr != NULL) { 4970 fpl->tvp = dvp; 4971 fpl->tvp_seqc = vn_seqc_read_any(dvp); 4972 if (seqc_in_modify(fpl->tvp_seqc)) { 4973 return (cache_fpl_aborted(fpl)); 4974 } 4975 return (0); 4976 } 4977 4978 if ((dvp->v_vflag & VV_ROOT) != 0) { 4979 /* 4980 * TODO 4981 * The opposite of climb mount is needed here. 4982 */ 4983 return (cache_fpl_partial(fpl)); 4984 } 4985 4986 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 4987 if (ncp == NULL) { 4988 return (cache_fpl_aborted(fpl)); 4989 } 4990 4991 nc_flag = atomic_load_char(&ncp->nc_flag); 4992 if ((nc_flag & NCF_ISDOTDOT) != 0) { 4993 if ((nc_flag & NCF_NEGATIVE) != 0) 4994 return (cache_fpl_aborted(fpl)); 4995 fpl->tvp = ncp->nc_vp; 4996 } else { 4997 fpl->tvp = ncp->nc_dvp; 4998 } 4999 5000 fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp); 5001 if (seqc_in_modify(fpl->tvp_seqc)) { 5002 return (cache_fpl_partial(fpl)); 5003 } 5004 5005 /* 5006 * Acquire fence provided by vn_seqc_read_any above. 5007 */ 5008 if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) { 5009 return (cache_fpl_aborted(fpl)); 5010 } 5011 5012 if (!cache_ncp_canuse(ncp)) { 5013 return (cache_fpl_aborted(fpl)); 5014 } 5015 5016 counter_u64_add(dotdothits, 1); 5017 return (0); 5018 } 5019 5020 static int __noinline 5021 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash) 5022 { 5023 u_char nc_flag; 5024 bool neg_promote; 5025 5026 nc_flag = atomic_load_char(&ncp->nc_flag); 5027 MPASS((nc_flag & NCF_NEGATIVE) != 0); 5028 /* 5029 * If they want to create an entry we need to replace this one. 5030 */ 5031 if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) { 5032 fpl->tvp = NULL; 5033 return (cache_fplookup_modifying(fpl)); 5034 } 5035 neg_promote = cache_neg_hit_prep(ncp); 5036 if (!cache_fpl_neg_ncp_canuse(ncp)) { 5037 cache_neg_hit_abort(ncp); 5038 return (cache_fpl_partial(fpl)); 5039 } 5040 if (neg_promote) { 5041 return (cache_fplookup_negative_promote(fpl, ncp, hash)); 5042 } 5043 cache_neg_hit_finish(ncp); 5044 cache_fpl_smr_exit(fpl); 5045 return (cache_fpl_handled_error(fpl, ENOENT)); 5046 } 5047 5048 /* 5049 * Resolve a symlink. Called by filesystem-specific routines. 5050 * 5051 * Code flow is: 5052 * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve 5053 */ 5054 int 5055 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len) 5056 { 5057 struct nameidata *ndp; 5058 struct componentname *cnp; 5059 size_t adjust; 5060 5061 ndp = fpl->ndp; 5062 cnp = fpl->cnp; 5063 5064 if (__predict_false(len == 0)) { 5065 return (ENOENT); 5066 } 5067 5068 if (__predict_false(len > MAXPATHLEN - 2)) { 5069 if (cache_fpl_istrailingslash(fpl)) { 5070 return (EAGAIN); 5071 } 5072 } 5073 5074 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1; 5075 #ifdef INVARIANTS 5076 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 5077 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 5078 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 5079 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 5080 } 5081 #endif 5082 5083 if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) { 5084 return (ENAMETOOLONG); 5085 } 5086 5087 if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) { 5088 return (ELOOP); 5089 } 5090 5091 adjust = len; 5092 if (ndp->ni_pathlen > 1) { 5093 bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen); 5094 } else { 5095 if (cache_fpl_istrailingslash(fpl)) { 5096 adjust = len + 1; 5097 cnp->cn_pnbuf[len] = '/'; 5098 cnp->cn_pnbuf[len + 1] = '\0'; 5099 } else { 5100 cnp->cn_pnbuf[len] = '\0'; 5101 } 5102 } 5103 bcopy(string, cnp->cn_pnbuf, len); 5104 5105 ndp->ni_pathlen += adjust; 5106 cache_fpl_pathlen_add(fpl, adjust); 5107 cnp->cn_nameptr = cnp->cn_pnbuf; 5108 fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 5109 fpl->tvp = NULL; 5110 return (0); 5111 } 5112 5113 static int __noinline 5114 cache_fplookup_symlink(struct cache_fpl *fpl) 5115 { 5116 struct mount *mp; 5117 struct nameidata *ndp; 5118 struct componentname *cnp; 5119 struct vnode *dvp, *tvp; 5120 int error; 5121 5122 ndp = fpl->ndp; 5123 cnp = fpl->cnp; 5124 dvp = fpl->dvp; 5125 tvp = fpl->tvp; 5126 5127 if (cache_fpl_islastcn(ndp)) { 5128 if ((cnp->cn_flags & FOLLOW) == 0) { 5129 return (cache_fplookup_final(fpl)); 5130 } 5131 } 5132 5133 mp = atomic_load_ptr(&dvp->v_mount); 5134 if (__predict_false(mp == NULL)) { 5135 return (cache_fpl_aborted(fpl)); 5136 } 5137 5138 /* 5139 * Note this check races against setting the flag just like regular 5140 * lookup. 5141 */ 5142 if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) { 5143 cache_fpl_smr_exit(fpl); 5144 return (cache_fpl_handled_error(fpl, EACCES)); 5145 } 5146 5147 error = VOP_FPLOOKUP_SYMLINK(tvp, fpl); 5148 if (__predict_false(error != 0)) { 5149 switch (error) { 5150 case EAGAIN: 5151 return (cache_fpl_partial(fpl)); 5152 case ENOENT: 5153 case ENAMETOOLONG: 5154 case ELOOP: 5155 cache_fpl_smr_exit(fpl); 5156 return (cache_fpl_handled_error(fpl, error)); 5157 default: 5158 return (cache_fpl_aborted(fpl)); 5159 } 5160 } 5161 5162 if (*(cnp->cn_nameptr) == '/') { 5163 fpl->dvp = cache_fpl_handle_root(fpl); 5164 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 5165 if (seqc_in_modify(fpl->dvp_seqc)) { 5166 return (cache_fpl_aborted(fpl)); 5167 } 5168 /* 5169 * The main loop assumes that ->dvp points to a vnode belonging 5170 * to a filesystem which can do lockless lookup, but the absolute 5171 * symlink can be wandering off to one which does not. 5172 */ 5173 mp = atomic_load_ptr(&fpl->dvp->v_mount); 5174 if (__predict_false(mp == NULL)) { 5175 return (cache_fpl_aborted(fpl)); 5176 } 5177 if (!cache_fplookup_mp_supported(mp)) { 5178 cache_fpl_checkpoint(fpl); 5179 return (cache_fpl_partial(fpl)); 5180 } 5181 } 5182 return (0); 5183 } 5184 5185 static int 5186 cache_fplookup_next(struct cache_fpl *fpl) 5187 { 5188 struct componentname *cnp; 5189 struct namecache *ncp; 5190 struct vnode *dvp, *tvp; 5191 u_char nc_flag; 5192 uint32_t hash; 5193 int error; 5194 5195 cnp = fpl->cnp; 5196 dvp = fpl->dvp; 5197 hash = fpl->hash; 5198 5199 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 5200 if (cnp->cn_namelen == 1) { 5201 return (cache_fplookup_dot(fpl)); 5202 } 5203 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 5204 return (cache_fplookup_dotdot(fpl)); 5205 } 5206 } 5207 5208 MPASS(!cache_fpl_isdotdot(cnp)); 5209 5210 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 5211 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 5212 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 5213 break; 5214 } 5215 5216 if (__predict_false(ncp == NULL)) { 5217 return (cache_fplookup_noentry(fpl)); 5218 } 5219 5220 tvp = atomic_load_ptr(&ncp->nc_vp); 5221 nc_flag = atomic_load_char(&ncp->nc_flag); 5222 if ((nc_flag & NCF_NEGATIVE) != 0) { 5223 return (cache_fplookup_neg(fpl, ncp, hash)); 5224 } 5225 5226 if (!cache_ncp_canuse(ncp)) { 5227 return (cache_fpl_partial(fpl)); 5228 } 5229 5230 fpl->tvp = tvp; 5231 fpl->tvp_seqc = vn_seqc_read_any(tvp); 5232 if (seqc_in_modify(fpl->tvp_seqc)) { 5233 return (cache_fpl_partial(fpl)); 5234 } 5235 5236 counter_u64_add(numposhits, 1); 5237 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp); 5238 5239 error = 0; 5240 if (cache_fplookup_is_mp(fpl)) { 5241 error = cache_fplookup_cross_mount(fpl); 5242 } 5243 return (error); 5244 } 5245 5246 static bool 5247 cache_fplookup_mp_supported(struct mount *mp) 5248 { 5249 5250 MPASS(mp != NULL); 5251 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0) 5252 return (false); 5253 return (true); 5254 } 5255 5256 /* 5257 * Walk up the mount stack (if any). 5258 * 5259 * Correctness is provided in the following ways: 5260 * - all vnodes are protected from freeing with SMR 5261 * - struct mount objects are type stable making them always safe to access 5262 * - stability of the particular mount is provided by busying it 5263 * - relationship between the vnode which is mounted on and the mount is 5264 * verified with the vnode sequence counter after busying 5265 * - association between root vnode of the mount and the mount is protected 5266 * by busy 5267 * 5268 * From that point on we can read the sequence counter of the root vnode 5269 * and get the next mount on the stack (if any) using the same protection. 5270 * 5271 * By the end of successful walk we are guaranteed the reached state was 5272 * indeed present at least at some point which matches the regular lookup. 5273 */ 5274 static int __noinline 5275 cache_fplookup_climb_mount(struct cache_fpl *fpl) 5276 { 5277 struct mount *mp, *prev_mp; 5278 struct mount_pcpu *mpcpu, *prev_mpcpu; 5279 struct vnode *vp; 5280 seqc_t vp_seqc; 5281 5282 vp = fpl->tvp; 5283 vp_seqc = fpl->tvp_seqc; 5284 5285 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 5286 mp = atomic_load_ptr(&vp->v_mountedhere); 5287 if (__predict_false(mp == NULL)) { 5288 return (0); 5289 } 5290 5291 prev_mp = NULL; 5292 for (;;) { 5293 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 5294 if (prev_mp != NULL) 5295 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5296 return (cache_fpl_partial(fpl)); 5297 } 5298 if (prev_mp != NULL) 5299 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5300 if (!vn_seqc_consistent(vp, vp_seqc)) { 5301 vfs_op_thread_exit_crit(mp, mpcpu); 5302 return (cache_fpl_partial(fpl)); 5303 } 5304 if (!cache_fplookup_mp_supported(mp)) { 5305 vfs_op_thread_exit_crit(mp, mpcpu); 5306 return (cache_fpl_partial(fpl)); 5307 } 5308 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5309 if (vp == NULL) { 5310 vfs_op_thread_exit_crit(mp, mpcpu); 5311 return (cache_fpl_partial(fpl)); 5312 } 5313 vp_seqc = vn_seqc_read_any(vp); 5314 if (seqc_in_modify(vp_seqc)) { 5315 vfs_op_thread_exit_crit(mp, mpcpu); 5316 return (cache_fpl_partial(fpl)); 5317 } 5318 prev_mp = mp; 5319 prev_mpcpu = mpcpu; 5320 mp = atomic_load_ptr(&vp->v_mountedhere); 5321 if (mp == NULL) 5322 break; 5323 } 5324 5325 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5326 fpl->tvp = vp; 5327 fpl->tvp_seqc = vp_seqc; 5328 return (0); 5329 } 5330 5331 static int __noinline 5332 cache_fplookup_cross_mount(struct cache_fpl *fpl) 5333 { 5334 struct mount *mp; 5335 struct mount_pcpu *mpcpu; 5336 struct vnode *vp; 5337 seqc_t vp_seqc; 5338 5339 vp = fpl->tvp; 5340 vp_seqc = fpl->tvp_seqc; 5341 5342 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 5343 mp = atomic_load_ptr(&vp->v_mountedhere); 5344 if (__predict_false(mp == NULL)) { 5345 return (0); 5346 } 5347 5348 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 5349 return (cache_fpl_partial(fpl)); 5350 } 5351 if (!vn_seqc_consistent(vp, vp_seqc)) { 5352 vfs_op_thread_exit_crit(mp, mpcpu); 5353 return (cache_fpl_partial(fpl)); 5354 } 5355 if (!cache_fplookup_mp_supported(mp)) { 5356 vfs_op_thread_exit_crit(mp, mpcpu); 5357 return (cache_fpl_partial(fpl)); 5358 } 5359 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5360 if (__predict_false(vp == NULL)) { 5361 vfs_op_thread_exit_crit(mp, mpcpu); 5362 return (cache_fpl_partial(fpl)); 5363 } 5364 vp_seqc = vn_seqc_read_any(vp); 5365 vfs_op_thread_exit_crit(mp, mpcpu); 5366 if (seqc_in_modify(vp_seqc)) { 5367 return (cache_fpl_partial(fpl)); 5368 } 5369 mp = atomic_load_ptr(&vp->v_mountedhere); 5370 if (__predict_false(mp != NULL)) { 5371 /* 5372 * There are possibly more mount points on top. 5373 * Normally this does not happen so for simplicity just start 5374 * over. 5375 */ 5376 return (cache_fplookup_climb_mount(fpl)); 5377 } 5378 5379 fpl->tvp = vp; 5380 fpl->tvp_seqc = vp_seqc; 5381 return (0); 5382 } 5383 5384 /* 5385 * Check if a vnode is mounted on. 5386 */ 5387 static bool 5388 cache_fplookup_is_mp(struct cache_fpl *fpl) 5389 { 5390 struct vnode *vp; 5391 5392 vp = fpl->tvp; 5393 return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0); 5394 } 5395 5396 /* 5397 * Parse the path. 5398 * 5399 * The code was originally copy-pasted from regular lookup and despite 5400 * clean ups leaves performance on the table. Any modifications here 5401 * must take into account that in case off fallback the resulting 5402 * nameidata state has to be compatible with the original. 5403 */ 5404 5405 /* 5406 * Debug ni_pathlen tracking. 5407 */ 5408 #ifdef INVARIANTS 5409 static void 5410 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5411 { 5412 5413 fpl->debug.ni_pathlen += n; 5414 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5415 ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5416 } 5417 5418 static void 5419 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5420 { 5421 5422 fpl->debug.ni_pathlen -= n; 5423 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5424 ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5425 } 5426 5427 static void 5428 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5429 { 5430 5431 cache_fpl_pathlen_add(fpl, 1); 5432 } 5433 5434 static void 5435 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5436 { 5437 5438 cache_fpl_pathlen_sub(fpl, 1); 5439 } 5440 #else 5441 static void 5442 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5443 { 5444 } 5445 5446 static void 5447 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5448 { 5449 } 5450 5451 static void 5452 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5453 { 5454 } 5455 5456 static void 5457 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5458 { 5459 } 5460 #endif 5461 5462 static void 5463 cache_fplookup_parse(struct cache_fpl *fpl) 5464 { 5465 struct nameidata *ndp; 5466 struct componentname *cnp; 5467 struct vnode *dvp; 5468 char *cp; 5469 uint32_t hash; 5470 5471 ndp = fpl->ndp; 5472 cnp = fpl->cnp; 5473 dvp = fpl->dvp; 5474 5475 /* 5476 * Find the end of this path component, it is either / or nul. 5477 * 5478 * Store / as a temporary sentinel so that we only have one character 5479 * to test for. Pathnames tend to be short so this should not be 5480 * resulting in cache misses. 5481 * 5482 * TODO: fix this to be word-sized. 5483 */ 5484 KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar, 5485 ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n", 5486 __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1], 5487 fpl->nulchar, cnp->cn_pnbuf)); 5488 KASSERT(*fpl->nulchar == '\0', 5489 ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar, 5490 cnp->cn_pnbuf)); 5491 hash = cache_get_hash_iter_start(dvp); 5492 *fpl->nulchar = '/'; 5493 for (cp = cnp->cn_nameptr; *cp != '/'; cp++) { 5494 KASSERT(*cp != '\0', 5495 ("%s: encountered unexpected nul; string [%s]\n", __func__, 5496 cnp->cn_nameptr)); 5497 hash = cache_get_hash_iter(*cp, hash); 5498 continue; 5499 } 5500 *fpl->nulchar = '\0'; 5501 fpl->hash = cache_get_hash_iter_finish(hash); 5502 5503 cnp->cn_namelen = cp - cnp->cn_nameptr; 5504 cache_fpl_pathlen_sub(fpl, cnp->cn_namelen); 5505 5506 #ifdef INVARIANTS 5507 /* 5508 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since 5509 * we are going to fail this lookup with ENAMETOOLONG (see below). 5510 */ 5511 if (cnp->cn_namelen <= NAME_MAX) { 5512 if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) { 5513 panic("%s: mismatched hash for [%s] len %ld", __func__, 5514 cnp->cn_nameptr, cnp->cn_namelen); 5515 } 5516 } 5517 #endif 5518 5519 /* 5520 * Hack: we have to check if the found path component's length exceeds 5521 * NAME_MAX. However, the condition is very rarely true and check can 5522 * be elided in the common case -- if an entry was found in the cache, 5523 * then it could not have been too long to begin with. 5524 */ 5525 ndp->ni_next = cp; 5526 } 5527 5528 static void 5529 cache_fplookup_parse_advance(struct cache_fpl *fpl) 5530 { 5531 struct nameidata *ndp; 5532 struct componentname *cnp; 5533 5534 ndp = fpl->ndp; 5535 cnp = fpl->cnp; 5536 5537 cnp->cn_nameptr = ndp->ni_next; 5538 KASSERT(*(cnp->cn_nameptr) == '/', 5539 ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__, 5540 cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf)); 5541 cnp->cn_nameptr++; 5542 cache_fpl_pathlen_dec(fpl); 5543 } 5544 5545 /* 5546 * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry. 5547 * 5548 * Lockless lookup tries to elide checking for spurious slashes and should they 5549 * be present is guaranteed to fail to find an entry. In this case the caller 5550 * must check if the name starts with a slash and call this routine. It is 5551 * going to fast forward across the spurious slashes and set the state up for 5552 * retry. 5553 */ 5554 static int __noinline 5555 cache_fplookup_skip_slashes(struct cache_fpl *fpl) 5556 { 5557 struct nameidata *ndp; 5558 struct componentname *cnp; 5559 5560 ndp = fpl->ndp; 5561 cnp = fpl->cnp; 5562 5563 MPASS(*(cnp->cn_nameptr) == '/'); 5564 do { 5565 cnp->cn_nameptr++; 5566 cache_fpl_pathlen_dec(fpl); 5567 } while (*(cnp->cn_nameptr) == '/'); 5568 5569 /* 5570 * Go back to one slash so that cache_fplookup_parse_advance has 5571 * something to skip. 5572 */ 5573 cnp->cn_nameptr--; 5574 cache_fpl_pathlen_inc(fpl); 5575 5576 /* 5577 * cache_fplookup_parse_advance starts from ndp->ni_next 5578 */ 5579 ndp->ni_next = cnp->cn_nameptr; 5580 5581 /* 5582 * See cache_fplookup_dot. 5583 */ 5584 fpl->tvp = fpl->dvp; 5585 fpl->tvp_seqc = fpl->dvp_seqc; 5586 5587 return (0); 5588 } 5589 5590 /* 5591 * Handle trailing slashes (e.g., "foo/"). 5592 * 5593 * If a trailing slash is found the terminal vnode must be a directory. 5594 * Regular lookup shortens the path by nulifying the first trailing slash and 5595 * sets the TRAILINGSLASH flag to denote this took place. There are several 5596 * checks on it performed later. 5597 * 5598 * Similarly to spurious slashes, lockless lookup handles this in a speculative 5599 * manner relying on an invariant that a non-directory vnode will get a miss. 5600 * In this case cn_nameptr[0] == '\0' and cn_namelen == 0. 5601 * 5602 * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/" 5603 * and denotes this is the last path component, which avoids looping back. 5604 * 5605 * Only plain lookups are supported for now to restrict corner cases to handle. 5606 */ 5607 static int __noinline 5608 cache_fplookup_trailingslash(struct cache_fpl *fpl) 5609 { 5610 #ifdef INVARIANTS 5611 size_t ni_pathlen; 5612 #endif 5613 struct nameidata *ndp; 5614 struct componentname *cnp; 5615 struct namecache *ncp; 5616 struct vnode *tvp; 5617 char *cn_nameptr_orig, *cn_nameptr_slash; 5618 seqc_t tvp_seqc; 5619 u_char nc_flag; 5620 5621 ndp = fpl->ndp; 5622 cnp = fpl->cnp; 5623 tvp = fpl->tvp; 5624 tvp_seqc = fpl->tvp_seqc; 5625 5626 MPASS(fpl->dvp == fpl->tvp); 5627 KASSERT(cache_fpl_istrailingslash(fpl), 5628 ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1, 5629 cnp->cn_pnbuf)); 5630 KASSERT(cnp->cn_nameptr[0] == '\0', 5631 ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0], 5632 cnp->cn_pnbuf)); 5633 KASSERT(cnp->cn_namelen == 0, 5634 ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen, 5635 cnp->cn_pnbuf)); 5636 MPASS(cnp->cn_nameptr > cnp->cn_pnbuf); 5637 5638 if (cnp->cn_nameiop != LOOKUP) { 5639 return (cache_fpl_aborted(fpl)); 5640 } 5641 5642 if (__predict_false(tvp->v_type != VDIR)) { 5643 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 5644 return (cache_fpl_aborted(fpl)); 5645 } 5646 cache_fpl_smr_exit(fpl); 5647 return (cache_fpl_handled_error(fpl, ENOTDIR)); 5648 } 5649 5650 /* 5651 * Denote the last component. 5652 */ 5653 ndp->ni_next = &cnp->cn_nameptr[0]; 5654 MPASS(cache_fpl_islastcn(ndp)); 5655 5656 /* 5657 * Unwind trailing slashes. 5658 */ 5659 cn_nameptr_orig = cnp->cn_nameptr; 5660 while (cnp->cn_nameptr >= cnp->cn_pnbuf) { 5661 cnp->cn_nameptr--; 5662 if (cnp->cn_nameptr[0] != '/') { 5663 break; 5664 } 5665 } 5666 5667 /* 5668 * Unwind to the beginning of the path component. 5669 * 5670 * Note the path may or may not have started with a slash. 5671 */ 5672 cn_nameptr_slash = cnp->cn_nameptr; 5673 while (cnp->cn_nameptr > cnp->cn_pnbuf) { 5674 cnp->cn_nameptr--; 5675 if (cnp->cn_nameptr[0] == '/') { 5676 break; 5677 } 5678 } 5679 if (cnp->cn_nameptr[0] == '/') { 5680 cnp->cn_nameptr++; 5681 } 5682 5683 cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1; 5684 cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr); 5685 cache_fpl_checkpoint(fpl); 5686 5687 #ifdef INVARIANTS 5688 ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; 5689 if (ni_pathlen != fpl->debug.ni_pathlen) { 5690 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 5691 __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 5692 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 5693 } 5694 #endif 5695 5696 /* 5697 * If this was a "./" lookup the parent directory is already correct. 5698 */ 5699 if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) { 5700 return (0); 5701 } 5702 5703 /* 5704 * Otherwise we need to look it up. 5705 */ 5706 tvp = fpl->tvp; 5707 ncp = atomic_load_consume_ptr(&tvp->v_cache_dd); 5708 if (__predict_false(ncp == NULL)) { 5709 return (cache_fpl_aborted(fpl)); 5710 } 5711 nc_flag = atomic_load_char(&ncp->nc_flag); 5712 if ((nc_flag & NCF_ISDOTDOT) != 0) { 5713 return (cache_fpl_aborted(fpl)); 5714 } 5715 fpl->dvp = ncp->nc_dvp; 5716 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 5717 if (seqc_in_modify(fpl->dvp_seqc)) { 5718 return (cache_fpl_aborted(fpl)); 5719 } 5720 return (0); 5721 } 5722 5723 /* 5724 * See the API contract for VOP_FPLOOKUP_VEXEC. 5725 */ 5726 static int __noinline 5727 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error) 5728 { 5729 struct componentname *cnp; 5730 struct vnode *dvp; 5731 seqc_t dvp_seqc; 5732 5733 cnp = fpl->cnp; 5734 dvp = fpl->dvp; 5735 dvp_seqc = fpl->dvp_seqc; 5736 5737 /* 5738 * TODO: Due to ignoring trailing slashes lookup will perform a 5739 * permission check on the last dir when it should not be doing it. It 5740 * may fail, but said failure should be ignored. It is possible to fix 5741 * it up fully without resorting to regular lookup, but for now just 5742 * abort. 5743 */ 5744 if (cache_fpl_istrailingslash(fpl)) { 5745 return (cache_fpl_aborted(fpl)); 5746 } 5747 5748 /* 5749 * Hack: delayed degenerate path checking. 5750 */ 5751 if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) { 5752 return (cache_fplookup_degenerate(fpl)); 5753 } 5754 5755 /* 5756 * Hack: delayed name len checking. 5757 */ 5758 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 5759 cache_fpl_smr_exit(fpl); 5760 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 5761 } 5762 5763 /* 5764 * Hack: they may be looking up foo/bar, where foo is not a directory. 5765 * In such a case we need to return ENOTDIR, but we may happen to get 5766 * here with a different error. 5767 */ 5768 if (dvp->v_type != VDIR) { 5769 error = ENOTDIR; 5770 } 5771 5772 /* 5773 * Hack: handle O_SEARCH. 5774 * 5775 * Open Group Base Specifications Issue 7, 2018 edition states: 5776 * <quote> 5777 * If the access mode of the open file description associated with the 5778 * file descriptor is not O_SEARCH, the function shall check whether 5779 * directory searches are permitted using the current permissions of 5780 * the directory underlying the file descriptor. If the access mode is 5781 * O_SEARCH, the function shall not perform the check. 5782 * </quote> 5783 * 5784 * Regular lookup tests for the NOEXECCHECK flag for every path 5785 * component to decide whether to do the permission check. However, 5786 * since most lookups never have the flag (and when they do it is only 5787 * present for the first path component), lockless lookup only acts on 5788 * it if there is a permission problem. Here the flag is represented 5789 * with a boolean so that we don't have to clear it on the way out. 5790 * 5791 * For simplicity this always aborts. 5792 * TODO: check if this is the first lookup and ignore the permission 5793 * problem. Note the flag has to survive fallback (if it happens to be 5794 * performed). 5795 */ 5796 if (fpl->fsearch) { 5797 return (cache_fpl_aborted(fpl)); 5798 } 5799 5800 switch (error) { 5801 case EAGAIN: 5802 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5803 error = cache_fpl_aborted(fpl); 5804 } else { 5805 cache_fpl_partial(fpl); 5806 } 5807 break; 5808 default: 5809 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5810 error = cache_fpl_aborted(fpl); 5811 } else { 5812 cache_fpl_smr_exit(fpl); 5813 cache_fpl_handled_error(fpl, error); 5814 } 5815 break; 5816 } 5817 return (error); 5818 } 5819 5820 static int 5821 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl) 5822 { 5823 struct nameidata *ndp; 5824 struct componentname *cnp; 5825 struct mount *mp; 5826 int error; 5827 5828 ndp = fpl->ndp; 5829 cnp = fpl->cnp; 5830 5831 cache_fpl_checkpoint(fpl); 5832 5833 /* 5834 * The vnode at hand is almost always stable, skip checking for it. 5835 * Worst case this postpones the check towards the end of the iteration 5836 * of the main loop. 5837 */ 5838 fpl->dvp = dvp; 5839 fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp); 5840 5841 mp = atomic_load_ptr(&dvp->v_mount); 5842 if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) { 5843 return (cache_fpl_aborted(fpl)); 5844 } 5845 5846 MPASS(fpl->tvp == NULL); 5847 5848 for (;;) { 5849 cache_fplookup_parse(fpl); 5850 5851 error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred); 5852 if (__predict_false(error != 0)) { 5853 error = cache_fplookup_failed_vexec(fpl, error); 5854 break; 5855 } 5856 5857 error = cache_fplookup_next(fpl); 5858 if (__predict_false(cache_fpl_terminated(fpl))) { 5859 break; 5860 } 5861 5862 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); 5863 5864 if (fpl->tvp->v_type == VLNK) { 5865 error = cache_fplookup_symlink(fpl); 5866 if (cache_fpl_terminated(fpl)) { 5867 break; 5868 } 5869 } else { 5870 if (cache_fpl_islastcn(ndp)) { 5871 error = cache_fplookup_final(fpl); 5872 break; 5873 } 5874 5875 if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) { 5876 error = cache_fpl_aborted(fpl); 5877 break; 5878 } 5879 5880 fpl->dvp = fpl->tvp; 5881 fpl->dvp_seqc = fpl->tvp_seqc; 5882 cache_fplookup_parse_advance(fpl); 5883 } 5884 5885 cache_fpl_checkpoint(fpl); 5886 } 5887 5888 return (error); 5889 } 5890 5891 /* 5892 * Fast path lookup protected with SMR and sequence counters. 5893 * 5894 * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one. 5895 * 5896 * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria 5897 * outlined below. 5898 * 5899 * Traditional vnode lookup conceptually looks like this: 5900 * 5901 * vn_lock(current); 5902 * for (;;) { 5903 * next = find(); 5904 * vn_lock(next); 5905 * vn_unlock(current); 5906 * current = next; 5907 * if (last) 5908 * break; 5909 * } 5910 * return (current); 5911 * 5912 * Each jump to the next vnode is safe memory-wise and atomic with respect to 5913 * any modifications thanks to holding respective locks. 5914 * 5915 * The same guarantee can be provided with a combination of safe memory 5916 * reclamation and sequence counters instead. If all operations which affect 5917 * the relationship between the current vnode and the one we are looking for 5918 * also modify the counter, we can verify whether all the conditions held as 5919 * we made the jump. This includes things like permissions, mount points etc. 5920 * Counter modification is provided by enclosing relevant places in 5921 * vn_seqc_write_begin()/end() calls. 5922 * 5923 * Thus this translates to: 5924 * 5925 * vfs_smr_enter(); 5926 * dvp_seqc = seqc_read_any(dvp); 5927 * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode 5928 * abort(); 5929 * for (;;) { 5930 * tvp = find(); 5931 * tvp_seqc = seqc_read_any(tvp); 5932 * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode 5933 * abort(); 5934 * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode 5935 * abort(); 5936 * dvp = tvp; // we know nothing of importance has changed 5937 * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration 5938 * if (last) 5939 * break; 5940 * } 5941 * vget(); // secure the vnode 5942 * if (!seqc_consistent(tvp, tvp_seqc) // final check 5943 * abort(); 5944 * // at this point we know nothing has changed for any parent<->child pair 5945 * // as they were crossed during the lookup, meaning we matched the guarantee 5946 * // of the locked variant 5947 * return (tvp); 5948 * 5949 * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows: 5950 * - they are called while within vfs_smr protection which they must never exit 5951 * - EAGAIN can be returned to denote checking could not be performed, it is 5952 * always valid to return it 5953 * - if the sequence counter has not changed the result must be valid 5954 * - if the sequence counter has changed both false positives and false negatives 5955 * are permitted (since the result will be rejected later) 5956 * - for simple cases of unix permission checks vaccess_vexec_smr can be used 5957 * 5958 * Caveats to watch out for: 5959 * - vnodes are passed unlocked and unreferenced with nothing stopping 5960 * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised 5961 * to use atomic_load_ptr to fetch it. 5962 * - the aforementioned object can also get freed, meaning absent other means it 5963 * should be protected with vfs_smr 5964 * - either safely checking permissions as they are modified or guaranteeing 5965 * their stability is left to the routine 5966 */ 5967 int 5968 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, 5969 struct pwd **pwdp) 5970 { 5971 struct cache_fpl fpl; 5972 struct pwd *pwd; 5973 struct vnode *dvp; 5974 struct componentname *cnp; 5975 int error; 5976 5977 fpl.status = CACHE_FPL_STATUS_UNSET; 5978 fpl.in_smr = false; 5979 fpl.ndp = ndp; 5980 fpl.cnp = cnp = &ndp->ni_cnd; 5981 MPASS(ndp->ni_lcf == 0); 5982 MPASS(curthread == cnp->cn_thread); 5983 KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 5984 ("%s: internal flags found in cn_flags %" PRIx64, __func__, 5985 cnp->cn_flags)); 5986 if ((cnp->cn_flags & SAVESTART) != 0) { 5987 MPASS(cnp->cn_nameiop != LOOKUP); 5988 } 5989 MPASS(cnp->cn_nameptr == cnp->cn_pnbuf); 5990 5991 if (__predict_false(!cache_can_fplookup(&fpl))) { 5992 *status = fpl.status; 5993 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 5994 return (EOPNOTSUPP); 5995 } 5996 5997 cache_fpl_checkpoint_outer(&fpl); 5998 5999 cache_fpl_smr_enter_initial(&fpl); 6000 #ifdef INVARIANTS 6001 fpl.debug.ni_pathlen = ndp->ni_pathlen; 6002 #endif 6003 fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 6004 fpl.fsearch = false; 6005 fpl.savename = (cnp->cn_flags & SAVENAME) != 0; 6006 fpl.tvp = NULL; /* for degenerate path handling */ 6007 fpl.pwd = pwdp; 6008 pwd = pwd_get_smr(); 6009 *(fpl.pwd) = pwd; 6010 ndp->ni_rootdir = pwd->pwd_rdir; 6011 ndp->ni_topdir = pwd->pwd_jdir; 6012 6013 if (cnp->cn_pnbuf[0] == '/') { 6014 dvp = cache_fpl_handle_root(&fpl); 6015 MPASS(ndp->ni_resflags == 0); 6016 ndp->ni_resflags = NIRES_ABS; 6017 } else { 6018 if (ndp->ni_dirfd == AT_FDCWD) { 6019 dvp = pwd->pwd_cdir; 6020 } else { 6021 error = cache_fplookup_dirfd(&fpl, &dvp); 6022 if (__predict_false(error != 0)) { 6023 goto out; 6024 } 6025 } 6026 } 6027 6028 SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true); 6029 error = cache_fplookup_impl(dvp, &fpl); 6030 out: 6031 cache_fpl_smr_assert_not_entered(&fpl); 6032 cache_fpl_assert_status(&fpl); 6033 *status = fpl.status; 6034 if (SDT_PROBES_ENABLED()) { 6035 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 6036 if (fpl.status == CACHE_FPL_STATUS_HANDLED) 6037 SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true, 6038 ndp); 6039 } 6040 6041 if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) { 6042 MPASS(error != CACHE_FPL_FAILED); 6043 if (error != 0) { 6044 MPASS(fpl.dvp == NULL); 6045 MPASS(fpl.tvp == NULL); 6046 MPASS(fpl.savename == false); 6047 } 6048 ndp->ni_dvp = fpl.dvp; 6049 ndp->ni_vp = fpl.tvp; 6050 if (fpl.savename) { 6051 cnp->cn_flags |= HASBUF; 6052 } else { 6053 cache_fpl_cleanup_cnp(cnp); 6054 } 6055 } 6056 return (error); 6057 } 6058