xref: /freebsd/sys/kern/vfs_cache.c (revision b5a3a89c50671a1ad29e7c43fe15e7b16feac239)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/seqc.h>
59 #include <sys/sdt.h>
60 #include <sys/smr.h>
61 #include <sys/smp.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/vnode.h>
66 #include <ck_queue.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 #ifdef INVARIANTS
71 #include <machine/_inttypes.h>
72 #endif
73 
74 #include <security/audit/audit.h>
75 #include <security/mac/mac_framework.h>
76 
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #endif
80 
81 #include <vm/uma.h>
82 
83 /*
84  * High level overview of name caching in the VFS layer.
85  *
86  * Originally caching was implemented as part of UFS, later extracted to allow
87  * use by other filesystems. A decision was made to make it optional and
88  * completely detached from the rest of the kernel, which comes with limitations
89  * outlined near the end of this comment block.
90  *
91  * This fundamental choice needs to be revisited. In the meantime, the current
92  * state is described below. Significance of all notable routines is explained
93  * in comments placed above their implementation. Scattered thoroughout the
94  * file are TODO comments indicating shortcomings which can be fixed without
95  * reworking everything (most of the fixes will likely be reusable). Various
96  * details are omitted from this explanation to not clutter the overview, they
97  * have to be checked by reading the code and associated commentary.
98  *
99  * Keep in mind that it's individual path components which are cached, not full
100  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
101  * one for each name.
102  *
103  * I. Data organization
104  *
105  * Entries are described by "struct namecache" objects and stored in a hash
106  * table. See cache_get_hash for more information.
107  *
108  * "struct vnode" contains pointers to source entries (names which can be found
109  * when traversing through said vnode), destination entries (names of that
110  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
111  * the parent vnode.
112  *
113  * The (directory vnode; name) tuple reliably determines the target entry if
114  * it exists.
115  *
116  * Since there are no small locks at this time (all are 32 bytes in size on
117  * LP64), the code works around the problem by introducing lock arrays to
118  * protect hash buckets and vnode lists.
119  *
120  * II. Filesystem integration
121  *
122  * Filesystems participating in name caching do the following:
123  * - set vop_lookup routine to vfs_cache_lookup
124  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
125  * - if they support lockless lookup (see below), vop_fplookup_vexec and
126  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
127  *   mount point
128  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
129  *   applicable
130  * - call cache_enter to add entries depending on the MAKEENTRY flag
131  *
132  * With the above in mind, there are 2 entry points when doing lookups:
133  * - ... -> namei -> cache_fplookup -- this is the default
134  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
135  *   should the above fail
136  *
137  * Example code flow how an entry is added:
138  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
139  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
140  *
141  * III. Performance considerations
142  *
143  * For lockless case forward lookup avoids any writes to shared areas apart
144  * from the terminal path component. In other words non-modifying lookups of
145  * different files don't suffer any scalability problems in the namecache.
146  * Looking up the same file is limited by VFS and goes beyond the scope of this
147  * file.
148  *
149  * At least on amd64 the single-threaded bottleneck for long paths is hashing
150  * (see cache_get_hash). There are cases where the code issues acquire fence
151  * multiple times, they can be combined on architectures which suffer from it.
152  *
153  * For locked case each encountered vnode has to be referenced and locked in
154  * order to be handed out to the caller (normally that's namei). This
155  * introduces significant hit single-threaded and serialization multi-threaded.
156  *
157  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
158  * avoids any writes to shared areas to any components.
159  *
160  * Unrelated insertions are partially serialized on updating the global entry
161  * counter and possibly serialized on colliding bucket or vnode locks.
162  *
163  * IV. Observability
164  *
165  * Note not everything has an explicit dtrace probe nor it should have, thus
166  * some of the one-liners below depend on implementation details.
167  *
168  * Examples:
169  *
170  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
171  * # line number, column 2 is status code (see cache_fpl_status)
172  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
173  *
174  * # Lengths of names added by binary name
175  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
176  *
177  * # Same as above but only those which exceed 64 characters
178  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
179  *
180  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
181  * # path is it
182  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
183  *
184  * V. Limitations and implementation defects
185  *
186  * - since it is possible there is no entry for an open file, tools like
187  *   "procstat" may fail to resolve fd -> vnode -> path to anything
188  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
189  *   shortage) in which case the above problem applies
190  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
191  *   way, resolving a name may return a different path than the one used to
192  *   open it (even if said path is still valid)
193  * - by default entries are not added for newly created files
194  * - adding an entry may need to evict negative entry first, which happens in 2
195  *   distinct places (evicting on lookup, adding in a later VOP) making it
196  *   impossible to simply reuse it
197  * - there is a simple scheme to evict negative entries as the cache is approaching
198  *   its capacity, but it is very unclear if doing so is a good idea to begin with
199  * - vnodes are subject to being recycled even if target inode is left in memory,
200  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
201  *   names get duplicated -- kept by filesystem itself and namecache separately
202  * - struct namecache has a fixed size and comes in 2 variants, often wasting space.
203  *   now hard to replace with malloc due to dependence on SMR.
204  * - lack of better integration with the kernel also turns nullfs into a layered
205  *   filesystem instead of something which can take advantage of caching
206  */
207 
208 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
209     "Name cache");
210 
211 SDT_PROVIDER_DECLARE(vfs);
212 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
213     "struct vnode *");
214 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
215     "struct vnode *");
216 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
217     "char *");
218 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
219     "const char *");
220 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
221     "struct namecache *", "int", "int");
222 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
223 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
224     "char *", "struct vnode *");
225 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
226 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
227     "struct vnode *", "char *");
228 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
229     "struct vnode *");
230 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
231     "struct vnode *", "char *");
232 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
233     "char *");
234 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
235     "struct componentname *");
236 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
237     "struct componentname *");
238 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
239 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
240 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
241 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
242 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
243     "struct vnode *");
244 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
245     "char *");
246 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
247     "char *");
248 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
249 
250 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
251 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
252 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
253 
254 static char __read_frequently cache_fast_lookup_enabled = true;
255 
256 /*
257  * This structure describes the elements in the cache of recent
258  * names looked up by namei.
259  */
260 struct negstate {
261 	u_char neg_flag;
262 	u_char neg_hit;
263 };
264 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
265     "the state must fit in a union with a pointer without growing it");
266 
267 struct	namecache {
268 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
269 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
270 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
271 	struct	vnode *nc_dvp;		/* vnode of parent of name */
272 	union {
273 		struct	vnode *nu_vp;	/* vnode the name refers to */
274 		struct	negstate nu_neg;/* negative entry state */
275 	} n_un;
276 	u_char	nc_flag;		/* flag bits */
277 	u_char	nc_nlen;		/* length of name */
278 	char	nc_name[];		/* segment name + nul */
279 };
280 
281 /*
282  * struct namecache_ts repeats struct namecache layout up to the
283  * nc_nlen member.
284  * struct namecache_ts is used in place of struct namecache when time(s) need
285  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
286  * both a non-dotdot directory name plus dotdot for the directory's
287  * parent.
288  *
289  * See below for alignment requirement.
290  */
291 struct	namecache_ts {
292 	struct	timespec nc_time;	/* timespec provided by fs */
293 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
294 	int	nc_ticks;		/* ticks value when entry was added */
295 	int	nc_pad;
296 	struct namecache nc_nc;
297 };
298 
299 TAILQ_HEAD(cache_freebatch, namecache);
300 
301 /*
302  * At least mips n32 performs 64-bit accesses to timespec as found
303  * in namecache_ts and requires them to be aligned. Since others
304  * may be in the same spot suffer a little bit and enforce the
305  * alignment for everyone. Note this is a nop for 64-bit platforms.
306  */
307 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
308 
309 /*
310  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
311  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
312  * smaller and the value was bumped to retain the total size, but it
313  * was never re-evaluated for suitability. A simple test counting
314  * lengths during package building shows that the value of 45 covers
315  * about 86% of all added entries, reaching 99% at 65.
316  *
317  * Regardless of the above, use of dedicated zones instead of malloc may be
318  * inducing additional waste. This may be hard to address as said zones are
319  * tied to VFS SMR. Even if retaining them, the current split should be
320  * re-evaluated.
321  */
322 #ifdef __LP64__
323 #define	CACHE_PATH_CUTOFF	45
324 #define	CACHE_LARGE_PAD		6
325 #else
326 #define	CACHE_PATH_CUTOFF	41
327 #define	CACHE_LARGE_PAD		2
328 #endif
329 
330 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
331 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
332 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
333 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
334 
335 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
336 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
337 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
338 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
339 
340 #define	nc_vp		n_un.nu_vp
341 #define	nc_neg		n_un.nu_neg
342 
343 /*
344  * Flags in namecache.nc_flag
345  */
346 #define NCF_WHITE	0x01
347 #define NCF_ISDOTDOT	0x02
348 #define	NCF_TS		0x04
349 #define	NCF_DTS		0x08
350 #define	NCF_DVDROP	0x10
351 #define	NCF_NEGATIVE	0x20
352 #define	NCF_INVALID	0x40
353 #define	NCF_WIP		0x80
354 
355 /*
356  * Flags in negstate.neg_flag
357  */
358 #define NEG_HOT		0x01
359 
360 static bool	cache_neg_evict_cond(u_long lnumcache);
361 
362 /*
363  * Mark an entry as invalid.
364  *
365  * This is called before it starts getting deconstructed.
366  */
367 static void
368 cache_ncp_invalidate(struct namecache *ncp)
369 {
370 
371 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
372 	    ("%s: entry %p already invalid", __func__, ncp));
373 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
374 	atomic_thread_fence_rel();
375 }
376 
377 /*
378  * Check whether the entry can be safely used.
379  *
380  * All places which elide locks are supposed to call this after they are
381  * done with reading from an entry.
382  */
383 #define cache_ncp_canuse(ncp)	({					\
384 	struct namecache *_ncp = (ncp);					\
385 	u_char _nc_flag;						\
386 									\
387 	atomic_thread_fence_acq();					\
388 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
389 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
390 })
391 
392 /*
393  * Like the above but also checks NCF_WHITE.
394  */
395 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
396 	struct namecache *_ncp = (ncp);					\
397 	u_char _nc_flag;						\
398 									\
399 	atomic_thread_fence_acq();					\
400 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
401 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
402 })
403 
404 VFS_SMR_DECLARE;
405 
406 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
407     "Name cache parameters");
408 
409 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
410 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
411     "Total namecache capacity");
412 
413 u_int ncsizefactor = 2;
414 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
415     "Size factor for namecache");
416 
417 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
418 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
419     "Ratio of negative namecache entries");
420 
421 /*
422  * Negative entry % of namecache capacity above which automatic eviction is allowed.
423  *
424  * Check cache_neg_evict_cond for details.
425  */
426 static u_int ncnegminpct = 3;
427 
428 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
429 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
430     "Negative entry count above which automatic eviction is allowed");
431 
432 /*
433  * Structures associated with name caching.
434  */
435 #define NCHHASH(hash) \
436 	(&nchashtbl[(hash) & nchash])
437 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
438 static u_long __read_mostly	nchash;			/* size of hash table */
439 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
440     "Size of namecache hash table");
441 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
442 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
443 
444 struct nchstats	nchstats;		/* cache effectiveness statistics */
445 
446 static u_int __exclusive_cache_line neg_cycle;
447 
448 #define ncneghash	3
449 #define	numneglists	(ncneghash + 1)
450 
451 struct neglist {
452 	struct mtx		nl_evict_lock;
453 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
454 	TAILQ_HEAD(, namecache) nl_list;
455 	TAILQ_HEAD(, namecache) nl_hotlist;
456 	u_long			nl_hotnum;
457 } __aligned(CACHE_LINE_SIZE);
458 
459 static struct neglist neglists[numneglists];
460 
461 static inline struct neglist *
462 NCP2NEGLIST(struct namecache *ncp)
463 {
464 
465 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
466 }
467 
468 static inline struct negstate *
469 NCP2NEGSTATE(struct namecache *ncp)
470 {
471 
472 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
473 	return (&ncp->nc_neg);
474 }
475 
476 #define	numbucketlocks (ncbuckethash + 1)
477 static u_int __read_mostly  ncbuckethash;
478 static struct mtx_padalign __read_mostly  *bucketlocks;
479 #define	HASH2BUCKETLOCK(hash) \
480 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
481 
482 #define	numvnodelocks (ncvnodehash + 1)
483 static u_int __read_mostly  ncvnodehash;
484 static struct mtx __read_mostly *vnodelocks;
485 static inline struct mtx *
486 VP2VNODELOCK(struct vnode *vp)
487 {
488 
489 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
490 }
491 
492 static void
493 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
494 {
495 	struct namecache_ts *ncp_ts;
496 
497 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
498 	    (tsp == NULL && ticksp == NULL),
499 	    ("No NCF_TS"));
500 
501 	if (tsp == NULL)
502 		return;
503 
504 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
505 	*tsp = ncp_ts->nc_time;
506 	*ticksp = ncp_ts->nc_ticks;
507 }
508 
509 #ifdef DEBUG_CACHE
510 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
511 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
512     "VFS namecache enabled");
513 #endif
514 
515 /* Export size information to userland */
516 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
517     sizeof(struct namecache), "sizeof(struct namecache)");
518 
519 /*
520  * The new name cache statistics
521  */
522 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
523     "Name cache statistics");
524 
525 #define STATNODE_ULONG(name, varname, descr)					\
526 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
527 #define STATNODE_COUNTER(name, varname, descr)					\
528 	static COUNTER_U64_DEFINE_EARLY(varname);				\
529 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
530 	    descr);
531 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
532 STATNODE_ULONG(count, numcache, "Number of cache entries");
533 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
534 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
535 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
536 STATNODE_COUNTER(dotdothits, dotdothits, "Number of '..' hits");
537 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
538 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
539 STATNODE_COUNTER(poszaps, numposzaps,
540     "Number of cache hits (positive) we do not want to cache");
541 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
542 STATNODE_COUNTER(negzaps, numnegzaps,
543     "Number of cache hits (negative) we do not want to cache");
544 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
545 /* These count for vn_getcwd(), too. */
546 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
547 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
548 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
549     "Number of fullpath search errors (VOP_VPTOCNP failures)");
550 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
551 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
552 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
553 
554 /*
555  * Debug or developer statistics.
556  */
557 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
558     "Name cache debugging");
559 #define DEBUGNODE_ULONG(name, varname, descr)					\
560 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
561 #define DEBUGNODE_COUNTER(name, varname, descr)					\
562 	static COUNTER_U64_DEFINE_EARLY(varname);				\
563 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
564 	    descr);
565 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
566     "Number of successful removals after relocking");
567 static long zap_bucket_fail;
568 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
569 static long zap_bucket_fail2;
570 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
571 static long cache_lock_vnodes_cel_3_failures;
572 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
573     "Number of times 3-way vnode locking failed");
574 
575 static void cache_zap_locked(struct namecache *ncp);
576 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
577     char **retbuf, size_t *buflen, size_t addend);
578 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
579     char **retbuf, size_t *buflen);
580 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
581     char **retbuf, size_t *len, size_t addend);
582 
583 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
584 
585 static inline void
586 cache_assert_vlp_locked(struct mtx *vlp)
587 {
588 
589 	if (vlp != NULL)
590 		mtx_assert(vlp, MA_OWNED);
591 }
592 
593 static inline void
594 cache_assert_vnode_locked(struct vnode *vp)
595 {
596 	struct mtx *vlp;
597 
598 	vlp = VP2VNODELOCK(vp);
599 	cache_assert_vlp_locked(vlp);
600 }
601 
602 /*
603  * Directory vnodes with entries are held for two reasons:
604  * 1. make them less of a target for reclamation in vnlru
605  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
606  *
607  * It will be feasible to stop doing it altogether if all filesystems start
608  * supporting lockless lookup.
609  */
610 static void
611 cache_hold_vnode(struct vnode *vp)
612 {
613 
614 	cache_assert_vnode_locked(vp);
615 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
616 	vhold(vp);
617 	counter_u64_add(numcachehv, 1);
618 }
619 
620 static void
621 cache_drop_vnode(struct vnode *vp)
622 {
623 
624 	/*
625 	 * Called after all locks are dropped, meaning we can't assert
626 	 * on the state of v_cache_src.
627 	 */
628 	vdrop(vp);
629 	counter_u64_add(numcachehv, -1);
630 }
631 
632 /*
633  * UMA zones.
634  */
635 static uma_zone_t __read_mostly cache_zone_small;
636 static uma_zone_t __read_mostly cache_zone_small_ts;
637 static uma_zone_t __read_mostly cache_zone_large;
638 static uma_zone_t __read_mostly cache_zone_large_ts;
639 
640 char *
641 cache_symlink_alloc(size_t size, int flags)
642 {
643 
644 	if (size < CACHE_ZONE_SMALL_SIZE) {
645 		return (uma_zalloc_smr(cache_zone_small, flags));
646 	}
647 	if (size < CACHE_ZONE_LARGE_SIZE) {
648 		return (uma_zalloc_smr(cache_zone_large, flags));
649 	}
650 	counter_u64_add(symlinktoobig, 1);
651 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
652 	return (NULL);
653 }
654 
655 void
656 cache_symlink_free(char *string, size_t size)
657 {
658 
659 	MPASS(string != NULL);
660 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
661 	    ("%s: size %zu too big", __func__, size));
662 
663 	if (size < CACHE_ZONE_SMALL_SIZE) {
664 		uma_zfree_smr(cache_zone_small, string);
665 		return;
666 	}
667 	if (size < CACHE_ZONE_LARGE_SIZE) {
668 		uma_zfree_smr(cache_zone_large, string);
669 		return;
670 	}
671 	__assert_unreachable();
672 }
673 
674 static struct namecache *
675 cache_alloc_uma(int len, bool ts)
676 {
677 	struct namecache_ts *ncp_ts;
678 	struct namecache *ncp;
679 
680 	if (__predict_false(ts)) {
681 		if (len <= CACHE_PATH_CUTOFF)
682 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
683 		else
684 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
685 		ncp = &ncp_ts->nc_nc;
686 	} else {
687 		if (len <= CACHE_PATH_CUTOFF)
688 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
689 		else
690 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
691 	}
692 	return (ncp);
693 }
694 
695 static void
696 cache_free_uma(struct namecache *ncp)
697 {
698 	struct namecache_ts *ncp_ts;
699 
700 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
701 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
702 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
703 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
704 		else
705 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
706 	} else {
707 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
708 			uma_zfree_smr(cache_zone_small, ncp);
709 		else
710 			uma_zfree_smr(cache_zone_large, ncp);
711 	}
712 }
713 
714 static struct namecache *
715 cache_alloc(int len, bool ts)
716 {
717 	u_long lnumcache;
718 
719 	/*
720 	 * Avoid blowout in namecache entries.
721 	 *
722 	 * Bugs:
723 	 * 1. filesystems may end up trying to add an already existing entry
724 	 * (for example this can happen after a cache miss during concurrent
725 	 * lookup), in which case we will call cache_neg_evict despite not
726 	 * adding anything.
727 	 * 2. the routine may fail to free anything and no provisions are made
728 	 * to make it try harder (see the inside for failure modes)
729 	 * 3. it only ever looks at negative entries.
730 	 */
731 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
732 	if (cache_neg_evict_cond(lnumcache)) {
733 		lnumcache = atomic_load_long(&numcache);
734 	}
735 	if (__predict_false(lnumcache >= ncsize)) {
736 		atomic_subtract_long(&numcache, 1);
737 		counter_u64_add(numdrops, 1);
738 		return (NULL);
739 	}
740 	return (cache_alloc_uma(len, ts));
741 }
742 
743 static void
744 cache_free(struct namecache *ncp)
745 {
746 
747 	MPASS(ncp != NULL);
748 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
749 		cache_drop_vnode(ncp->nc_dvp);
750 	}
751 	cache_free_uma(ncp);
752 	atomic_subtract_long(&numcache, 1);
753 }
754 
755 static void
756 cache_free_batch(struct cache_freebatch *batch)
757 {
758 	struct namecache *ncp, *nnp;
759 	int i;
760 
761 	i = 0;
762 	if (TAILQ_EMPTY(batch))
763 		goto out;
764 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
765 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
766 			cache_drop_vnode(ncp->nc_dvp);
767 		}
768 		cache_free_uma(ncp);
769 		i++;
770 	}
771 	atomic_subtract_long(&numcache, i);
772 out:
773 	SDT_PROBE1(vfs, namecache, purge, batch, i);
774 }
775 
776 /*
777  * Hashing.
778  *
779  * The code was made to use FNV in 2001 and this choice needs to be revisited.
780  *
781  * Short summary of the difficulty:
782  * The longest name which can be inserted is NAME_MAX characters in length (or
783  * 255 at the time of writing this comment), while majority of names used in
784  * practice are significantly shorter (mostly below 10). More importantly
785  * majority of lookups performed find names are even shorter than that.
786  *
787  * This poses a problem where hashes which do better than FNV past word size
788  * (or so) tend to come with additional overhead when finalizing the result,
789  * making them noticeably slower for the most commonly used range.
790  *
791  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
792  *
793  * When looking it up the most time consuming part by a large margin (at least
794  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
795  * input would make the slowest part stand out even more.
796  */
797 
798 /*
799  * TODO: With the value stored we can do better than computing the hash based
800  * on the address.
801  */
802 static void
803 cache_prehash(struct vnode *vp)
804 {
805 
806 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
807 }
808 
809 static uint32_t
810 cache_get_hash(char *name, u_char len, struct vnode *dvp)
811 {
812 
813 	return (fnv_32_buf(name, len, dvp->v_nchash));
814 }
815 
816 static uint32_t
817 cache_get_hash_iter_start(struct vnode *dvp)
818 {
819 
820 	return (dvp->v_nchash);
821 }
822 
823 static uint32_t
824 cache_get_hash_iter(char c, uint32_t hash)
825 {
826 
827 	return (fnv_32_buf(&c, 1, hash));
828 }
829 
830 static uint32_t
831 cache_get_hash_iter_finish(uint32_t hash)
832 {
833 
834 	return (hash);
835 }
836 
837 static inline struct nchashhead *
838 NCP2BUCKET(struct namecache *ncp)
839 {
840 	uint32_t hash;
841 
842 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
843 	return (NCHHASH(hash));
844 }
845 
846 static inline struct mtx *
847 NCP2BUCKETLOCK(struct namecache *ncp)
848 {
849 	uint32_t hash;
850 
851 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
852 	return (HASH2BUCKETLOCK(hash));
853 }
854 
855 #ifdef INVARIANTS
856 static void
857 cache_assert_bucket_locked(struct namecache *ncp)
858 {
859 	struct mtx *blp;
860 
861 	blp = NCP2BUCKETLOCK(ncp);
862 	mtx_assert(blp, MA_OWNED);
863 }
864 
865 static void
866 cache_assert_bucket_unlocked(struct namecache *ncp)
867 {
868 	struct mtx *blp;
869 
870 	blp = NCP2BUCKETLOCK(ncp);
871 	mtx_assert(blp, MA_NOTOWNED);
872 }
873 #else
874 #define cache_assert_bucket_locked(x) do { } while (0)
875 #define cache_assert_bucket_unlocked(x) do { } while (0)
876 #endif
877 
878 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
879 static void
880 _cache_sort_vnodes(void **p1, void **p2)
881 {
882 	void *tmp;
883 
884 	MPASS(*p1 != NULL || *p2 != NULL);
885 
886 	if (*p1 > *p2) {
887 		tmp = *p2;
888 		*p2 = *p1;
889 		*p1 = tmp;
890 	}
891 }
892 
893 static void
894 cache_lock_all_buckets(void)
895 {
896 	u_int i;
897 
898 	for (i = 0; i < numbucketlocks; i++)
899 		mtx_lock(&bucketlocks[i]);
900 }
901 
902 static void
903 cache_unlock_all_buckets(void)
904 {
905 	u_int i;
906 
907 	for (i = 0; i < numbucketlocks; i++)
908 		mtx_unlock(&bucketlocks[i]);
909 }
910 
911 static void
912 cache_lock_all_vnodes(void)
913 {
914 	u_int i;
915 
916 	for (i = 0; i < numvnodelocks; i++)
917 		mtx_lock(&vnodelocks[i]);
918 }
919 
920 static void
921 cache_unlock_all_vnodes(void)
922 {
923 	u_int i;
924 
925 	for (i = 0; i < numvnodelocks; i++)
926 		mtx_unlock(&vnodelocks[i]);
927 }
928 
929 static int
930 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
931 {
932 
933 	cache_sort_vnodes(&vlp1, &vlp2);
934 
935 	if (vlp1 != NULL) {
936 		if (!mtx_trylock(vlp1))
937 			return (EAGAIN);
938 	}
939 	if (!mtx_trylock(vlp2)) {
940 		if (vlp1 != NULL)
941 			mtx_unlock(vlp1);
942 		return (EAGAIN);
943 	}
944 
945 	return (0);
946 }
947 
948 static void
949 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
950 {
951 
952 	MPASS(vlp1 != NULL || vlp2 != NULL);
953 	MPASS(vlp1 <= vlp2);
954 
955 	if (vlp1 != NULL)
956 		mtx_lock(vlp1);
957 	if (vlp2 != NULL)
958 		mtx_lock(vlp2);
959 }
960 
961 static void
962 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
963 {
964 
965 	MPASS(vlp1 != NULL || vlp2 != NULL);
966 
967 	if (vlp1 != NULL)
968 		mtx_unlock(vlp1);
969 	if (vlp2 != NULL)
970 		mtx_unlock(vlp2);
971 }
972 
973 static int
974 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
975 {
976 	struct nchstats snap;
977 
978 	if (req->oldptr == NULL)
979 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
980 
981 	snap = nchstats;
982 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
983 	snap.ncs_neghits = counter_u64_fetch(numneghits);
984 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
985 	    counter_u64_fetch(numnegzaps);
986 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
987 	    counter_u64_fetch(nummiss);
988 
989 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
990 }
991 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
992     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
993     "VFS cache effectiveness statistics");
994 
995 static void
996 cache_recalc_neg_min(u_int val)
997 {
998 
999 	neg_min = (ncsize * val) / 100;
1000 }
1001 
1002 static int
1003 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1004 {
1005 	u_int val;
1006 	int error;
1007 
1008 	val = ncnegminpct;
1009 	error = sysctl_handle_int(oidp, &val, 0, req);
1010 	if (error != 0 || req->newptr == NULL)
1011 		return (error);
1012 
1013 	if (val == ncnegminpct)
1014 		return (0);
1015 	if (val < 0 || val > 99)
1016 		return (EINVAL);
1017 	ncnegminpct = val;
1018 	cache_recalc_neg_min(val);
1019 	return (0);
1020 }
1021 
1022 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1023     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1024     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1025 
1026 #ifdef DEBUG_CACHE
1027 /*
1028  * Grab an atomic snapshot of the name cache hash chain lengths
1029  */
1030 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1031     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1032     "hash table stats");
1033 
1034 static int
1035 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1036 {
1037 	struct nchashhead *ncpp;
1038 	struct namecache *ncp;
1039 	int i, error, n_nchash, *cntbuf;
1040 
1041 retry:
1042 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1043 	if (req->oldptr == NULL)
1044 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1045 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1046 	cache_lock_all_buckets();
1047 	if (n_nchash != nchash + 1) {
1048 		cache_unlock_all_buckets();
1049 		free(cntbuf, M_TEMP);
1050 		goto retry;
1051 	}
1052 	/* Scan hash tables counting entries */
1053 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1054 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1055 			cntbuf[i]++;
1056 	cache_unlock_all_buckets();
1057 	for (error = 0, i = 0; i < n_nchash; i++)
1058 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1059 			break;
1060 	free(cntbuf, M_TEMP);
1061 	return (error);
1062 }
1063 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1064     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1065     "nchash chain lengths");
1066 
1067 static int
1068 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1069 {
1070 	int error;
1071 	struct nchashhead *ncpp;
1072 	struct namecache *ncp;
1073 	int n_nchash;
1074 	int count, maxlength, used, pct;
1075 
1076 	if (!req->oldptr)
1077 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1078 
1079 	cache_lock_all_buckets();
1080 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1081 	used = 0;
1082 	maxlength = 0;
1083 
1084 	/* Scan hash tables for applicable entries */
1085 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1086 		count = 0;
1087 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1088 			count++;
1089 		}
1090 		if (count)
1091 			used++;
1092 		if (maxlength < count)
1093 			maxlength = count;
1094 	}
1095 	n_nchash = nchash + 1;
1096 	cache_unlock_all_buckets();
1097 	pct = (used * 100) / (n_nchash / 100);
1098 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1099 	if (error)
1100 		return (error);
1101 	error = SYSCTL_OUT(req, &used, sizeof(used));
1102 	if (error)
1103 		return (error);
1104 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1105 	if (error)
1106 		return (error);
1107 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1108 	if (error)
1109 		return (error);
1110 	return (0);
1111 }
1112 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1113     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1114     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1115 #endif
1116 
1117 /*
1118  * Negative entries management
1119  *
1120  * Various workloads create plenty of negative entries and barely use them
1121  * afterwards. Moreover malicious users can keep performing bogus lookups
1122  * adding even more entries. For example "make tinderbox" as of writing this
1123  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1124  * negative.
1125  *
1126  * As such, a rather aggressive eviction method is needed. The currently
1127  * employed method is a placeholder.
1128  *
1129  * Entries are split over numneglists separate lists, each of which is further
1130  * split into hot and cold entries. Entries get promoted after getting a hit.
1131  * Eviction happens on addition of new entry.
1132  */
1133 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1134     "Name cache negative entry statistics");
1135 
1136 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1137     "Number of negative cache entries");
1138 
1139 static COUNTER_U64_DEFINE_EARLY(neg_created);
1140 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1141     "Number of created negative entries");
1142 
1143 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1144 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1145     "Number of evicted negative entries");
1146 
1147 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1148 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1149     &neg_evict_skipped_empty,
1150     "Number of times evicting failed due to lack of entries");
1151 
1152 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1153 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1154     &neg_evict_skipped_missed,
1155     "Number of times evicting failed due to target entry disappearing");
1156 
1157 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1158 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1159     &neg_evict_skipped_contended,
1160     "Number of times evicting failed due to contention");
1161 
1162 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1163     "Number of cache hits (negative)");
1164 
1165 static int
1166 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1167 {
1168 	int i, out;
1169 
1170 	out = 0;
1171 	for (i = 0; i < numneglists; i++)
1172 		out += neglists[i].nl_hotnum;
1173 
1174 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1175 }
1176 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1177     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1178     "Number of hot negative entries");
1179 
1180 static void
1181 cache_neg_init(struct namecache *ncp)
1182 {
1183 	struct negstate *ns;
1184 
1185 	ncp->nc_flag |= NCF_NEGATIVE;
1186 	ns = NCP2NEGSTATE(ncp);
1187 	ns->neg_flag = 0;
1188 	ns->neg_hit = 0;
1189 	counter_u64_add(neg_created, 1);
1190 }
1191 
1192 #define CACHE_NEG_PROMOTION_THRESH 2
1193 
1194 static bool
1195 cache_neg_hit_prep(struct namecache *ncp)
1196 {
1197 	struct negstate *ns;
1198 	u_char n;
1199 
1200 	ns = NCP2NEGSTATE(ncp);
1201 	n = atomic_load_char(&ns->neg_hit);
1202 	for (;;) {
1203 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1204 			return (false);
1205 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1206 			break;
1207 	}
1208 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1209 }
1210 
1211 /*
1212  * Nothing to do here but it is provided for completeness as some
1213  * cache_neg_hit_prep callers may end up returning without even
1214  * trying to promote.
1215  */
1216 #define cache_neg_hit_abort(ncp)	do { } while (0)
1217 
1218 static void
1219 cache_neg_hit_finish(struct namecache *ncp)
1220 {
1221 
1222 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1223 	counter_u64_add(numneghits, 1);
1224 }
1225 
1226 /*
1227  * Move a negative entry to the hot list.
1228  */
1229 static void
1230 cache_neg_promote_locked(struct namecache *ncp)
1231 {
1232 	struct neglist *nl;
1233 	struct negstate *ns;
1234 
1235 	ns = NCP2NEGSTATE(ncp);
1236 	nl = NCP2NEGLIST(ncp);
1237 	mtx_assert(&nl->nl_lock, MA_OWNED);
1238 	if ((ns->neg_flag & NEG_HOT) == 0) {
1239 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1240 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1241 		nl->nl_hotnum++;
1242 		ns->neg_flag |= NEG_HOT;
1243 	}
1244 }
1245 
1246 /*
1247  * Move a hot negative entry to the cold list.
1248  */
1249 static void
1250 cache_neg_demote_locked(struct namecache *ncp)
1251 {
1252 	struct neglist *nl;
1253 	struct negstate *ns;
1254 
1255 	ns = NCP2NEGSTATE(ncp);
1256 	nl = NCP2NEGLIST(ncp);
1257 	mtx_assert(&nl->nl_lock, MA_OWNED);
1258 	MPASS(ns->neg_flag & NEG_HOT);
1259 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1260 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1261 	nl->nl_hotnum--;
1262 	ns->neg_flag &= ~NEG_HOT;
1263 	atomic_store_char(&ns->neg_hit, 0);
1264 }
1265 
1266 /*
1267  * Move a negative entry to the hot list if it matches the lookup.
1268  *
1269  * We have to take locks, but they may be contended and in the worst
1270  * case we may need to go off CPU. We don't want to spin within the
1271  * smr section and we can't block with it. Exiting the section means
1272  * the found entry could have been evicted. We are going to look it
1273  * up again.
1274  */
1275 static bool
1276 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1277     struct namecache *oncp, uint32_t hash)
1278 {
1279 	struct namecache *ncp;
1280 	struct neglist *nl;
1281 	u_char nc_flag;
1282 
1283 	nl = NCP2NEGLIST(oncp);
1284 
1285 	mtx_lock(&nl->nl_lock);
1286 	/*
1287 	 * For hash iteration.
1288 	 */
1289 	vfs_smr_enter();
1290 
1291 	/*
1292 	 * Avoid all surprises by only succeeding if we got the same entry and
1293 	 * bailing completely otherwise.
1294 	 * XXX There are no provisions to keep the vnode around, meaning we may
1295 	 * end up promoting a negative entry for a *new* vnode and returning
1296 	 * ENOENT on its account. This is the error we want to return anyway
1297 	 * and promotion is harmless.
1298 	 *
1299 	 * In particular at this point there can be a new ncp which matches the
1300 	 * search but hashes to a different neglist.
1301 	 */
1302 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1303 		if (ncp == oncp)
1304 			break;
1305 	}
1306 
1307 	/*
1308 	 * No match to begin with.
1309 	 */
1310 	if (__predict_false(ncp == NULL)) {
1311 		goto out_abort;
1312 	}
1313 
1314 	/*
1315 	 * The newly found entry may be something different...
1316 	 */
1317 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1318 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1319 		goto out_abort;
1320 	}
1321 
1322 	/*
1323 	 * ... and not even negative.
1324 	 */
1325 	nc_flag = atomic_load_char(&ncp->nc_flag);
1326 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1327 		goto out_abort;
1328 	}
1329 
1330 	if (!cache_ncp_canuse(ncp)) {
1331 		goto out_abort;
1332 	}
1333 
1334 	cache_neg_promote_locked(ncp);
1335 	cache_neg_hit_finish(ncp);
1336 	vfs_smr_exit();
1337 	mtx_unlock(&nl->nl_lock);
1338 	return (true);
1339 out_abort:
1340 	vfs_smr_exit();
1341 	mtx_unlock(&nl->nl_lock);
1342 	return (false);
1343 }
1344 
1345 static void
1346 cache_neg_promote(struct namecache *ncp)
1347 {
1348 	struct neglist *nl;
1349 
1350 	nl = NCP2NEGLIST(ncp);
1351 	mtx_lock(&nl->nl_lock);
1352 	cache_neg_promote_locked(ncp);
1353 	mtx_unlock(&nl->nl_lock);
1354 }
1355 
1356 static void
1357 cache_neg_insert(struct namecache *ncp)
1358 {
1359 	struct neglist *nl;
1360 
1361 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1362 	cache_assert_bucket_locked(ncp);
1363 	nl = NCP2NEGLIST(ncp);
1364 	mtx_lock(&nl->nl_lock);
1365 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1366 	mtx_unlock(&nl->nl_lock);
1367 	atomic_add_long(&numneg, 1);
1368 }
1369 
1370 static void
1371 cache_neg_remove(struct namecache *ncp)
1372 {
1373 	struct neglist *nl;
1374 	struct negstate *ns;
1375 
1376 	cache_assert_bucket_locked(ncp);
1377 	nl = NCP2NEGLIST(ncp);
1378 	ns = NCP2NEGSTATE(ncp);
1379 	mtx_lock(&nl->nl_lock);
1380 	if ((ns->neg_flag & NEG_HOT) != 0) {
1381 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1382 		nl->nl_hotnum--;
1383 	} else {
1384 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1385 	}
1386 	mtx_unlock(&nl->nl_lock);
1387 	atomic_subtract_long(&numneg, 1);
1388 }
1389 
1390 static struct neglist *
1391 cache_neg_evict_select_list(void)
1392 {
1393 	struct neglist *nl;
1394 	u_int c;
1395 
1396 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1397 	nl = &neglists[c % numneglists];
1398 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1399 		counter_u64_add(neg_evict_skipped_contended, 1);
1400 		return (NULL);
1401 	}
1402 	return (nl);
1403 }
1404 
1405 static struct namecache *
1406 cache_neg_evict_select_entry(struct neglist *nl)
1407 {
1408 	struct namecache *ncp, *lncp;
1409 	struct negstate *ns, *lns;
1410 	int i;
1411 
1412 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1413 	mtx_assert(&nl->nl_lock, MA_OWNED);
1414 	ncp = TAILQ_FIRST(&nl->nl_list);
1415 	if (ncp == NULL)
1416 		return (NULL);
1417 	lncp = ncp;
1418 	lns = NCP2NEGSTATE(lncp);
1419 	for (i = 1; i < 4; i++) {
1420 		ncp = TAILQ_NEXT(ncp, nc_dst);
1421 		if (ncp == NULL)
1422 			break;
1423 		ns = NCP2NEGSTATE(ncp);
1424 		if (ns->neg_hit < lns->neg_hit) {
1425 			lncp = ncp;
1426 			lns = ns;
1427 		}
1428 	}
1429 	return (lncp);
1430 }
1431 
1432 static bool
1433 cache_neg_evict(void)
1434 {
1435 	struct namecache *ncp, *ncp2;
1436 	struct neglist *nl;
1437 	struct vnode *dvp;
1438 	struct mtx *dvlp;
1439 	struct mtx *blp;
1440 	uint32_t hash;
1441 	u_char nlen;
1442 	bool evicted;
1443 
1444 	nl = cache_neg_evict_select_list();
1445 	if (nl == NULL) {
1446 		return (false);
1447 	}
1448 
1449 	mtx_lock(&nl->nl_lock);
1450 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1451 	if (ncp != NULL) {
1452 		cache_neg_demote_locked(ncp);
1453 	}
1454 	ncp = cache_neg_evict_select_entry(nl);
1455 	if (ncp == NULL) {
1456 		counter_u64_add(neg_evict_skipped_empty, 1);
1457 		mtx_unlock(&nl->nl_lock);
1458 		mtx_unlock(&nl->nl_evict_lock);
1459 		return (false);
1460 	}
1461 	nlen = ncp->nc_nlen;
1462 	dvp = ncp->nc_dvp;
1463 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1464 	dvlp = VP2VNODELOCK(dvp);
1465 	blp = HASH2BUCKETLOCK(hash);
1466 	mtx_unlock(&nl->nl_lock);
1467 	mtx_unlock(&nl->nl_evict_lock);
1468 	mtx_lock(dvlp);
1469 	mtx_lock(blp);
1470 	/*
1471 	 * Note that since all locks were dropped above, the entry may be
1472 	 * gone or reallocated to be something else.
1473 	 */
1474 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1475 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1476 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1477 			break;
1478 	}
1479 	if (ncp2 == NULL) {
1480 		counter_u64_add(neg_evict_skipped_missed, 1);
1481 		ncp = NULL;
1482 		evicted = false;
1483 	} else {
1484 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1485 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1486 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1487 		    ncp->nc_name);
1488 		cache_zap_locked(ncp);
1489 		counter_u64_add(neg_evicted, 1);
1490 		evicted = true;
1491 	}
1492 	mtx_unlock(blp);
1493 	mtx_unlock(dvlp);
1494 	if (ncp != NULL)
1495 		cache_free(ncp);
1496 	return (evicted);
1497 }
1498 
1499 /*
1500  * Maybe evict a negative entry to create more room.
1501  *
1502  * The ncnegfactor parameter limits what fraction of the total count
1503  * can comprise of negative entries. However, if the cache is just
1504  * warming up this leads to excessive evictions.  As such, ncnegminpct
1505  * (recomputed to neg_min) dictates whether the above should be
1506  * applied.
1507  *
1508  * Try evicting if the cache is close to full capacity regardless of
1509  * other considerations.
1510  */
1511 static bool
1512 cache_neg_evict_cond(u_long lnumcache)
1513 {
1514 	u_long lnumneg;
1515 
1516 	if (ncsize - 1000 < lnumcache)
1517 		goto out_evict;
1518 	lnumneg = atomic_load_long(&numneg);
1519 	if (lnumneg < neg_min)
1520 		return (false);
1521 	if (lnumneg * ncnegfactor < lnumcache)
1522 		return (false);
1523 out_evict:
1524 	return (cache_neg_evict());
1525 }
1526 
1527 /*
1528  * cache_zap_locked():
1529  *
1530  *   Removes a namecache entry from cache, whether it contains an actual
1531  *   pointer to a vnode or if it is just a negative cache entry.
1532  */
1533 static void
1534 cache_zap_locked(struct namecache *ncp)
1535 {
1536 	struct nchashhead *ncpp;
1537 	struct vnode *dvp, *vp;
1538 
1539 	dvp = ncp->nc_dvp;
1540 	vp = ncp->nc_vp;
1541 
1542 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1543 		cache_assert_vnode_locked(vp);
1544 	cache_assert_vnode_locked(dvp);
1545 	cache_assert_bucket_locked(ncp);
1546 
1547 	cache_ncp_invalidate(ncp);
1548 
1549 	ncpp = NCP2BUCKET(ncp);
1550 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1551 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1552 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1553 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1554 		if (ncp == vp->v_cache_dd) {
1555 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1556 		}
1557 	} else {
1558 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1559 		cache_neg_remove(ncp);
1560 	}
1561 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1562 		if (ncp == dvp->v_cache_dd) {
1563 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1564 		}
1565 	} else {
1566 		LIST_REMOVE(ncp, nc_src);
1567 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1568 			ncp->nc_flag |= NCF_DVDROP;
1569 		}
1570 	}
1571 }
1572 
1573 static void
1574 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1575 {
1576 	struct mtx *blp;
1577 
1578 	MPASS(ncp->nc_dvp == vp);
1579 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1580 	cache_assert_vnode_locked(vp);
1581 
1582 	blp = NCP2BUCKETLOCK(ncp);
1583 	mtx_lock(blp);
1584 	cache_zap_locked(ncp);
1585 	mtx_unlock(blp);
1586 }
1587 
1588 static bool
1589 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1590     struct mtx **vlpp)
1591 {
1592 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1593 	struct mtx *blp;
1594 
1595 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1596 	cache_assert_vnode_locked(vp);
1597 
1598 	if (ncp->nc_flag & NCF_NEGATIVE) {
1599 		if (*vlpp != NULL) {
1600 			mtx_unlock(*vlpp);
1601 			*vlpp = NULL;
1602 		}
1603 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1604 		return (true);
1605 	}
1606 
1607 	pvlp = VP2VNODELOCK(vp);
1608 	blp = NCP2BUCKETLOCK(ncp);
1609 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1610 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1611 
1612 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1613 		to_unlock = *vlpp;
1614 		*vlpp = NULL;
1615 	} else {
1616 		if (*vlpp != NULL) {
1617 			mtx_unlock(*vlpp);
1618 			*vlpp = NULL;
1619 		}
1620 		cache_sort_vnodes(&vlp1, &vlp2);
1621 		if (vlp1 == pvlp) {
1622 			mtx_lock(vlp2);
1623 			to_unlock = vlp2;
1624 		} else {
1625 			if (!mtx_trylock(vlp1))
1626 				goto out_relock;
1627 			to_unlock = vlp1;
1628 		}
1629 	}
1630 	mtx_lock(blp);
1631 	cache_zap_locked(ncp);
1632 	mtx_unlock(blp);
1633 	if (to_unlock != NULL)
1634 		mtx_unlock(to_unlock);
1635 	return (true);
1636 
1637 out_relock:
1638 	mtx_unlock(vlp2);
1639 	mtx_lock(vlp1);
1640 	mtx_lock(vlp2);
1641 	MPASS(*vlpp == NULL);
1642 	*vlpp = vlp1;
1643 	return (false);
1644 }
1645 
1646 /*
1647  * If trylocking failed we can get here. We know enough to take all needed locks
1648  * in the right order and re-lookup the entry.
1649  */
1650 static int
1651 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1652     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1653     struct mtx *blp)
1654 {
1655 	struct namecache *rncp;
1656 
1657 	cache_assert_bucket_unlocked(ncp);
1658 
1659 	cache_sort_vnodes(&dvlp, &vlp);
1660 	cache_lock_vnodes(dvlp, vlp);
1661 	mtx_lock(blp);
1662 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1663 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1664 		    rncp->nc_nlen == cnp->cn_namelen &&
1665 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1666 			break;
1667 	}
1668 	if (rncp != NULL) {
1669 		cache_zap_locked(rncp);
1670 		mtx_unlock(blp);
1671 		cache_unlock_vnodes(dvlp, vlp);
1672 		counter_u64_add(zap_bucket_relock_success, 1);
1673 		return (0);
1674 	}
1675 
1676 	mtx_unlock(blp);
1677 	cache_unlock_vnodes(dvlp, vlp);
1678 	return (EAGAIN);
1679 }
1680 
1681 static int __noinline
1682 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1683     uint32_t hash, struct mtx *blp)
1684 {
1685 	struct mtx *dvlp, *vlp;
1686 	struct vnode *dvp;
1687 
1688 	cache_assert_bucket_locked(ncp);
1689 
1690 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1691 	vlp = NULL;
1692 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1693 		vlp = VP2VNODELOCK(ncp->nc_vp);
1694 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1695 		cache_zap_locked(ncp);
1696 		mtx_unlock(blp);
1697 		cache_unlock_vnodes(dvlp, vlp);
1698 		return (0);
1699 	}
1700 
1701 	dvp = ncp->nc_dvp;
1702 	mtx_unlock(blp);
1703 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1704 }
1705 
1706 static __noinline int
1707 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1708 {
1709 	struct namecache *ncp;
1710 	struct mtx *blp;
1711 	struct mtx *dvlp, *dvlp2;
1712 	uint32_t hash;
1713 	int error;
1714 
1715 	if (cnp->cn_namelen == 2 &&
1716 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1717 		dvlp = VP2VNODELOCK(dvp);
1718 		dvlp2 = NULL;
1719 		mtx_lock(dvlp);
1720 retry_dotdot:
1721 		ncp = dvp->v_cache_dd;
1722 		if (ncp == NULL) {
1723 			mtx_unlock(dvlp);
1724 			if (dvlp2 != NULL)
1725 				mtx_unlock(dvlp2);
1726 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1727 			return (0);
1728 		}
1729 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1730 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1731 				goto retry_dotdot;
1732 			MPASS(dvp->v_cache_dd == NULL);
1733 			mtx_unlock(dvlp);
1734 			if (dvlp2 != NULL)
1735 				mtx_unlock(dvlp2);
1736 			cache_free(ncp);
1737 		} else {
1738 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1739 			mtx_unlock(dvlp);
1740 			if (dvlp2 != NULL)
1741 				mtx_unlock(dvlp2);
1742 		}
1743 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1744 		return (1);
1745 	}
1746 
1747 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1748 	blp = HASH2BUCKETLOCK(hash);
1749 retry:
1750 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1751 		goto out_no_entry;
1752 
1753 	mtx_lock(blp);
1754 
1755 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1756 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1757 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1758 			break;
1759 	}
1760 
1761 	if (ncp == NULL) {
1762 		mtx_unlock(blp);
1763 		goto out_no_entry;
1764 	}
1765 
1766 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1767 	if (__predict_false(error != 0)) {
1768 		zap_bucket_fail++;
1769 		goto retry;
1770 	}
1771 	counter_u64_add(numposzaps, 1);
1772 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1773 	cache_free(ncp);
1774 	return (1);
1775 out_no_entry:
1776 	counter_u64_add(nummisszap, 1);
1777 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1778 	return (0);
1779 }
1780 
1781 static int __noinline
1782 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1783     struct timespec *tsp, int *ticksp)
1784 {
1785 	int ltype;
1786 
1787 	*vpp = dvp;
1788 	counter_u64_add(dothits, 1);
1789 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1790 	if (tsp != NULL)
1791 		timespecclear(tsp);
1792 	if (ticksp != NULL)
1793 		*ticksp = ticks;
1794 	vrefact(*vpp);
1795 	/*
1796 	 * When we lookup "." we still can be asked to lock it
1797 	 * differently...
1798 	 */
1799 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1800 	if (ltype != VOP_ISLOCKED(*vpp)) {
1801 		if (ltype == LK_EXCLUSIVE) {
1802 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1803 			if (VN_IS_DOOMED((*vpp))) {
1804 				/* forced unmount */
1805 				vrele(*vpp);
1806 				*vpp = NULL;
1807 				return (ENOENT);
1808 			}
1809 		} else
1810 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1811 	}
1812 	return (-1);
1813 }
1814 
1815 static int __noinline
1816 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1817     struct timespec *tsp, int *ticksp)
1818 {
1819 	struct namecache_ts *ncp_ts;
1820 	struct namecache *ncp;
1821 	struct mtx *dvlp;
1822 	enum vgetstate vs;
1823 	int error, ltype;
1824 	bool whiteout;
1825 
1826 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1827 
1828 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1829 		cache_remove_cnp(dvp, cnp);
1830 		return (0);
1831 	}
1832 
1833 	counter_u64_add(dotdothits, 1);
1834 retry:
1835 	dvlp = VP2VNODELOCK(dvp);
1836 	mtx_lock(dvlp);
1837 	ncp = dvp->v_cache_dd;
1838 	if (ncp == NULL) {
1839 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1840 		mtx_unlock(dvlp);
1841 		return (0);
1842 	}
1843 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1844 		if (ncp->nc_flag & NCF_NEGATIVE)
1845 			*vpp = NULL;
1846 		else
1847 			*vpp = ncp->nc_vp;
1848 	} else
1849 		*vpp = ncp->nc_dvp;
1850 	if (*vpp == NULL)
1851 		goto negative_success;
1852 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1853 	cache_out_ts(ncp, tsp, ticksp);
1854 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1855 	    NCF_DTS && tsp != NULL) {
1856 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1857 		*tsp = ncp_ts->nc_dotdottime;
1858 	}
1859 
1860 	MPASS(dvp != *vpp);
1861 	ltype = VOP_ISLOCKED(dvp);
1862 	VOP_UNLOCK(dvp);
1863 	vs = vget_prep(*vpp);
1864 	mtx_unlock(dvlp);
1865 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1866 	vn_lock(dvp, ltype | LK_RETRY);
1867 	if (VN_IS_DOOMED(dvp)) {
1868 		if (error == 0)
1869 			vput(*vpp);
1870 		*vpp = NULL;
1871 		return (ENOENT);
1872 	}
1873 	if (error) {
1874 		*vpp = NULL;
1875 		goto retry;
1876 	}
1877 	return (-1);
1878 negative_success:
1879 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1880 		if (cnp->cn_flags & ISLASTCN) {
1881 			counter_u64_add(numnegzaps, 1);
1882 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1883 			mtx_unlock(dvlp);
1884 			cache_free(ncp);
1885 			return (0);
1886 		}
1887 	}
1888 
1889 	whiteout = (ncp->nc_flag & NCF_WHITE);
1890 	cache_out_ts(ncp, tsp, ticksp);
1891 	if (cache_neg_hit_prep(ncp))
1892 		cache_neg_promote(ncp);
1893 	else
1894 		cache_neg_hit_finish(ncp);
1895 	mtx_unlock(dvlp);
1896 	if (whiteout)
1897 		cnp->cn_flags |= ISWHITEOUT;
1898 	return (ENOENT);
1899 }
1900 
1901 /**
1902  * Lookup a name in the name cache
1903  *
1904  * # Arguments
1905  *
1906  * - dvp:	Parent directory in which to search.
1907  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1908  * - cnp:	Parameters of the name search.  The most interesting bits of
1909  *   		the cn_flags field have the following meanings:
1910  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1911  *   			it up.
1912  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1913  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1914  *   		or negative) lookup, tsp will be filled with any timespec that
1915  *   		was stored when this cache entry was created.  However, it will
1916  *   		be clear for "." entries.
1917  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1918  *   		(positive or negative) lookup, it will contain the ticks value
1919  *   		that was current when the cache entry was created, unless cnp
1920  *   		was ".".
1921  *
1922  * Either both tsp and ticks have to be provided or neither of them.
1923  *
1924  * # Returns
1925  *
1926  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1927  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1928  *		to a forced unmount.  vpp will not be modified.  If the entry
1929  *		is a whiteout, then the ISWHITEOUT flag will be set in
1930  *		cnp->cn_flags.
1931  * - 0:		A cache miss.  vpp will not be modified.
1932  *
1933  * # Locking
1934  *
1935  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1936  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1937  * lock is not recursively acquired.
1938  */
1939 static int __noinline
1940 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1941     struct timespec *tsp, int *ticksp)
1942 {
1943 	struct namecache *ncp;
1944 	struct mtx *blp;
1945 	uint32_t hash;
1946 	enum vgetstate vs;
1947 	int error;
1948 	bool whiteout;
1949 
1950 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1951 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1952 
1953 retry:
1954 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1955 	blp = HASH2BUCKETLOCK(hash);
1956 	mtx_lock(blp);
1957 
1958 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1959 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1960 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1961 			break;
1962 	}
1963 
1964 	if (__predict_false(ncp == NULL)) {
1965 		mtx_unlock(blp);
1966 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
1967 		counter_u64_add(nummiss, 1);
1968 		return (0);
1969 	}
1970 
1971 	if (ncp->nc_flag & NCF_NEGATIVE)
1972 		goto negative_success;
1973 
1974 	counter_u64_add(numposhits, 1);
1975 	*vpp = ncp->nc_vp;
1976 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1977 	cache_out_ts(ncp, tsp, ticksp);
1978 	MPASS(dvp != *vpp);
1979 	vs = vget_prep(*vpp);
1980 	mtx_unlock(blp);
1981 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1982 	if (error) {
1983 		*vpp = NULL;
1984 		goto retry;
1985 	}
1986 	return (-1);
1987 negative_success:
1988 	/*
1989 	 * We don't get here with regular lookup apart from corner cases.
1990 	 */
1991 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
1992 		if (cnp->cn_flags & ISLASTCN) {
1993 			counter_u64_add(numnegzaps, 1);
1994 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1995 			if (__predict_false(error != 0)) {
1996 				zap_bucket_fail2++;
1997 				goto retry;
1998 			}
1999 			cache_free(ncp);
2000 			return (0);
2001 		}
2002 	}
2003 
2004 	whiteout = (ncp->nc_flag & NCF_WHITE);
2005 	cache_out_ts(ncp, tsp, ticksp);
2006 	if (cache_neg_hit_prep(ncp))
2007 		cache_neg_promote(ncp);
2008 	else
2009 		cache_neg_hit_finish(ncp);
2010 	mtx_unlock(blp);
2011 	if (whiteout)
2012 		cnp->cn_flags |= ISWHITEOUT;
2013 	return (ENOENT);
2014 }
2015 
2016 int
2017 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2018     struct timespec *tsp, int *ticksp)
2019 {
2020 	struct namecache *ncp;
2021 	uint32_t hash;
2022 	enum vgetstate vs;
2023 	int error;
2024 	bool whiteout, neg_promote;
2025 	u_short nc_flag;
2026 
2027 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2028 
2029 #ifdef DEBUG_CACHE
2030 	if (__predict_false(!doingcache)) {
2031 		cnp->cn_flags &= ~MAKEENTRY;
2032 		return (0);
2033 	}
2034 #endif
2035 
2036 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2037 		if (cnp->cn_namelen == 1)
2038 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2039 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2040 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2041 	}
2042 
2043 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2044 
2045 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2046 		cache_remove_cnp(dvp, cnp);
2047 		return (0);
2048 	}
2049 
2050 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2051 	vfs_smr_enter();
2052 
2053 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2054 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2055 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2056 			break;
2057 	}
2058 
2059 	if (__predict_false(ncp == NULL)) {
2060 		vfs_smr_exit();
2061 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2062 		counter_u64_add(nummiss, 1);
2063 		return (0);
2064 	}
2065 
2066 	nc_flag = atomic_load_char(&ncp->nc_flag);
2067 	if (nc_flag & NCF_NEGATIVE)
2068 		goto negative_success;
2069 
2070 	counter_u64_add(numposhits, 1);
2071 	*vpp = ncp->nc_vp;
2072 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2073 	cache_out_ts(ncp, tsp, ticksp);
2074 	MPASS(dvp != *vpp);
2075 	if (!cache_ncp_canuse(ncp)) {
2076 		vfs_smr_exit();
2077 		*vpp = NULL;
2078 		goto out_fallback;
2079 	}
2080 	vs = vget_prep_smr(*vpp);
2081 	vfs_smr_exit();
2082 	if (__predict_false(vs == VGET_NONE)) {
2083 		*vpp = NULL;
2084 		goto out_fallback;
2085 	}
2086 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2087 	if (error) {
2088 		*vpp = NULL;
2089 		goto out_fallback;
2090 	}
2091 	return (-1);
2092 negative_success:
2093 	if (cnp->cn_nameiop == CREATE) {
2094 		if (cnp->cn_flags & ISLASTCN) {
2095 			vfs_smr_exit();
2096 			goto out_fallback;
2097 		}
2098 	}
2099 
2100 	cache_out_ts(ncp, tsp, ticksp);
2101 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2102 	neg_promote = cache_neg_hit_prep(ncp);
2103 	if (!cache_ncp_canuse(ncp)) {
2104 		cache_neg_hit_abort(ncp);
2105 		vfs_smr_exit();
2106 		goto out_fallback;
2107 	}
2108 	if (neg_promote) {
2109 		vfs_smr_exit();
2110 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2111 			goto out_fallback;
2112 	} else {
2113 		cache_neg_hit_finish(ncp);
2114 		vfs_smr_exit();
2115 	}
2116 	if (whiteout)
2117 		cnp->cn_flags |= ISWHITEOUT;
2118 	return (ENOENT);
2119 out_fallback:
2120 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2121 }
2122 
2123 struct celockstate {
2124 	struct mtx *vlp[3];
2125 	struct mtx *blp[2];
2126 };
2127 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2128 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2129 
2130 static inline void
2131 cache_celockstate_init(struct celockstate *cel)
2132 {
2133 
2134 	bzero(cel, sizeof(*cel));
2135 }
2136 
2137 static void
2138 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2139     struct vnode *dvp)
2140 {
2141 	struct mtx *vlp1, *vlp2;
2142 
2143 	MPASS(cel->vlp[0] == NULL);
2144 	MPASS(cel->vlp[1] == NULL);
2145 	MPASS(cel->vlp[2] == NULL);
2146 
2147 	MPASS(vp != NULL || dvp != NULL);
2148 
2149 	vlp1 = VP2VNODELOCK(vp);
2150 	vlp2 = VP2VNODELOCK(dvp);
2151 	cache_sort_vnodes(&vlp1, &vlp2);
2152 
2153 	if (vlp1 != NULL) {
2154 		mtx_lock(vlp1);
2155 		cel->vlp[0] = vlp1;
2156 	}
2157 	mtx_lock(vlp2);
2158 	cel->vlp[1] = vlp2;
2159 }
2160 
2161 static void
2162 cache_unlock_vnodes_cel(struct celockstate *cel)
2163 {
2164 
2165 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2166 
2167 	if (cel->vlp[0] != NULL)
2168 		mtx_unlock(cel->vlp[0]);
2169 	if (cel->vlp[1] != NULL)
2170 		mtx_unlock(cel->vlp[1]);
2171 	if (cel->vlp[2] != NULL)
2172 		mtx_unlock(cel->vlp[2]);
2173 }
2174 
2175 static bool
2176 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2177 {
2178 	struct mtx *vlp;
2179 	bool ret;
2180 
2181 	cache_assert_vlp_locked(cel->vlp[0]);
2182 	cache_assert_vlp_locked(cel->vlp[1]);
2183 	MPASS(cel->vlp[2] == NULL);
2184 
2185 	MPASS(vp != NULL);
2186 	vlp = VP2VNODELOCK(vp);
2187 
2188 	ret = true;
2189 	if (vlp >= cel->vlp[1]) {
2190 		mtx_lock(vlp);
2191 	} else {
2192 		if (mtx_trylock(vlp))
2193 			goto out;
2194 		cache_lock_vnodes_cel_3_failures++;
2195 		cache_unlock_vnodes_cel(cel);
2196 		if (vlp < cel->vlp[0]) {
2197 			mtx_lock(vlp);
2198 			mtx_lock(cel->vlp[0]);
2199 			mtx_lock(cel->vlp[1]);
2200 		} else {
2201 			if (cel->vlp[0] != NULL)
2202 				mtx_lock(cel->vlp[0]);
2203 			mtx_lock(vlp);
2204 			mtx_lock(cel->vlp[1]);
2205 		}
2206 		ret = false;
2207 	}
2208 out:
2209 	cel->vlp[2] = vlp;
2210 	return (ret);
2211 }
2212 
2213 static void
2214 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2215     struct mtx *blp2)
2216 {
2217 
2218 	MPASS(cel->blp[0] == NULL);
2219 	MPASS(cel->blp[1] == NULL);
2220 
2221 	cache_sort_vnodes(&blp1, &blp2);
2222 
2223 	if (blp1 != NULL) {
2224 		mtx_lock(blp1);
2225 		cel->blp[0] = blp1;
2226 	}
2227 	mtx_lock(blp2);
2228 	cel->blp[1] = blp2;
2229 }
2230 
2231 static void
2232 cache_unlock_buckets_cel(struct celockstate *cel)
2233 {
2234 
2235 	if (cel->blp[0] != NULL)
2236 		mtx_unlock(cel->blp[0]);
2237 	mtx_unlock(cel->blp[1]);
2238 }
2239 
2240 /*
2241  * Lock part of the cache affected by the insertion.
2242  *
2243  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2244  * However, insertion can result in removal of an old entry. In this
2245  * case we have an additional vnode and bucketlock pair to lock.
2246  *
2247  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2248  * preserving the locking order (smaller address first).
2249  */
2250 static void
2251 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2252     uint32_t hash)
2253 {
2254 	struct namecache *ncp;
2255 	struct mtx *blps[2];
2256 	u_char nc_flag;
2257 
2258 	blps[0] = HASH2BUCKETLOCK(hash);
2259 	for (;;) {
2260 		blps[1] = NULL;
2261 		cache_lock_vnodes_cel(cel, dvp, vp);
2262 		if (vp == NULL || vp->v_type != VDIR)
2263 			break;
2264 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2265 		if (ncp == NULL)
2266 			break;
2267 		nc_flag = atomic_load_char(&ncp->nc_flag);
2268 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2269 			break;
2270 		MPASS(ncp->nc_dvp == vp);
2271 		blps[1] = NCP2BUCKETLOCK(ncp);
2272 		if ((nc_flag & NCF_NEGATIVE) != 0)
2273 			break;
2274 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2275 			break;
2276 		/*
2277 		 * All vnodes got re-locked. Re-validate the state and if
2278 		 * nothing changed we are done. Otherwise restart.
2279 		 */
2280 		if (ncp == vp->v_cache_dd &&
2281 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2282 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2283 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2284 			break;
2285 		cache_unlock_vnodes_cel(cel);
2286 		cel->vlp[0] = NULL;
2287 		cel->vlp[1] = NULL;
2288 		cel->vlp[2] = NULL;
2289 	}
2290 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2291 }
2292 
2293 static void
2294 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2295     uint32_t hash)
2296 {
2297 	struct namecache *ncp;
2298 	struct mtx *blps[2];
2299 	u_char nc_flag;
2300 
2301 	blps[0] = HASH2BUCKETLOCK(hash);
2302 	for (;;) {
2303 		blps[1] = NULL;
2304 		cache_lock_vnodes_cel(cel, dvp, vp);
2305 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2306 		if (ncp == NULL)
2307 			break;
2308 		nc_flag = atomic_load_char(&ncp->nc_flag);
2309 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2310 			break;
2311 		MPASS(ncp->nc_dvp == dvp);
2312 		blps[1] = NCP2BUCKETLOCK(ncp);
2313 		if ((nc_flag & NCF_NEGATIVE) != 0)
2314 			break;
2315 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2316 			break;
2317 		if (ncp == dvp->v_cache_dd &&
2318 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2319 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2320 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2321 			break;
2322 		cache_unlock_vnodes_cel(cel);
2323 		cel->vlp[0] = NULL;
2324 		cel->vlp[1] = NULL;
2325 		cel->vlp[2] = NULL;
2326 	}
2327 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2328 }
2329 
2330 static void
2331 cache_enter_unlock(struct celockstate *cel)
2332 {
2333 
2334 	cache_unlock_buckets_cel(cel);
2335 	cache_unlock_vnodes_cel(cel);
2336 }
2337 
2338 static void __noinline
2339 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2340     struct componentname *cnp)
2341 {
2342 	struct celockstate cel;
2343 	struct namecache *ncp;
2344 	uint32_t hash;
2345 	int len;
2346 
2347 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2348 		return;
2349 	len = cnp->cn_namelen;
2350 	cache_celockstate_init(&cel);
2351 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2352 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2353 	ncp = dvp->v_cache_dd;
2354 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2355 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2356 		cache_zap_locked(ncp);
2357 	} else {
2358 		ncp = NULL;
2359 	}
2360 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2361 	cache_enter_unlock(&cel);
2362 	if (ncp != NULL)
2363 		cache_free(ncp);
2364 }
2365 
2366 /*
2367  * Add an entry to the cache.
2368  */
2369 void
2370 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2371     struct timespec *tsp, struct timespec *dtsp)
2372 {
2373 	struct celockstate cel;
2374 	struct namecache *ncp, *n2, *ndd;
2375 	struct namecache_ts *ncp_ts;
2376 	struct nchashhead *ncpp;
2377 	uint32_t hash;
2378 	int flag;
2379 	int len;
2380 
2381 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2382 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2383 	    NAME_MAX));
2384 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2385 	VNPASS(dvp->v_type != VNON, dvp);
2386 	if (vp != NULL) {
2387 		VNPASS(!VN_IS_DOOMED(vp), vp);
2388 		VNPASS(vp->v_type != VNON, vp);
2389 	}
2390 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2391 		KASSERT(dvp == vp,
2392 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2393 		    dvp, vp));
2394 	} else {
2395 		KASSERT(dvp != vp,
2396 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2397 		    cnp->cn_nameptr, dvp));
2398 	}
2399 
2400 #ifdef DEBUG_CACHE
2401 	if (__predict_false(!doingcache))
2402 		return;
2403 #endif
2404 
2405 	flag = 0;
2406 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2407 		if (cnp->cn_namelen == 1)
2408 			return;
2409 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2410 			cache_enter_dotdot_prep(dvp, vp, cnp);
2411 			flag = NCF_ISDOTDOT;
2412 		}
2413 	}
2414 
2415 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2416 	if (ncp == NULL)
2417 		return;
2418 
2419 	cache_celockstate_init(&cel);
2420 	ndd = NULL;
2421 	ncp_ts = NULL;
2422 
2423 	/*
2424 	 * Calculate the hash key and setup as much of the new
2425 	 * namecache entry as possible before acquiring the lock.
2426 	 */
2427 	ncp->nc_flag = flag | NCF_WIP;
2428 	ncp->nc_vp = vp;
2429 	if (vp == NULL)
2430 		cache_neg_init(ncp);
2431 	ncp->nc_dvp = dvp;
2432 	if (tsp != NULL) {
2433 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2434 		ncp_ts->nc_time = *tsp;
2435 		ncp_ts->nc_ticks = ticks;
2436 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2437 		if (dtsp != NULL) {
2438 			ncp_ts->nc_dotdottime = *dtsp;
2439 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2440 		}
2441 	}
2442 	len = ncp->nc_nlen = cnp->cn_namelen;
2443 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2444 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2445 	ncp->nc_name[len] = '\0';
2446 	cache_enter_lock(&cel, dvp, vp, hash);
2447 
2448 	/*
2449 	 * See if this vnode or negative entry is already in the cache
2450 	 * with this name.  This can happen with concurrent lookups of
2451 	 * the same path name.
2452 	 */
2453 	ncpp = NCHHASH(hash);
2454 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2455 		if (n2->nc_dvp == dvp &&
2456 		    n2->nc_nlen == cnp->cn_namelen &&
2457 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2458 			MPASS(cache_ncp_canuse(n2));
2459 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2460 				KASSERT(vp == NULL,
2461 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2462 				    __func__, NULL, vp, cnp->cn_nameptr));
2463 			else
2464 				KASSERT(n2->nc_vp == vp,
2465 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2466 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2467 			/*
2468 			 * Entries are supposed to be immutable unless in the
2469 			 * process of getting destroyed. Accommodating for
2470 			 * changing timestamps is possible but not worth it.
2471 			 * This should be harmless in terms of correctness, in
2472 			 * the worst case resulting in an earlier expiration.
2473 			 * Alternatively, the found entry can be replaced
2474 			 * altogether.
2475 			 */
2476 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2477 #if 0
2478 			if (tsp != NULL) {
2479 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2480 				    ("no NCF_TS"));
2481 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2482 				n2_ts->nc_time = ncp_ts->nc_time;
2483 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2484 				if (dtsp != NULL) {
2485 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2486 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2487 				}
2488 			}
2489 #endif
2490 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2491 			    vp);
2492 			goto out_unlock_free;
2493 		}
2494 	}
2495 
2496 	if (flag == NCF_ISDOTDOT) {
2497 		/*
2498 		 * See if we are trying to add .. entry, but some other lookup
2499 		 * has populated v_cache_dd pointer already.
2500 		 */
2501 		if (dvp->v_cache_dd != NULL)
2502 			goto out_unlock_free;
2503 		KASSERT(vp == NULL || vp->v_type == VDIR,
2504 		    ("wrong vnode type %p", vp));
2505 		atomic_thread_fence_rel();
2506 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2507 	}
2508 
2509 	if (vp != NULL) {
2510 		if (flag != NCF_ISDOTDOT) {
2511 			/*
2512 			 * For this case, the cache entry maps both the
2513 			 * directory name in it and the name ".." for the
2514 			 * directory's parent.
2515 			 */
2516 			if ((ndd = vp->v_cache_dd) != NULL) {
2517 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2518 					cache_zap_locked(ndd);
2519 				else
2520 					ndd = NULL;
2521 			}
2522 			atomic_thread_fence_rel();
2523 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2524 		} else if (vp->v_type != VDIR) {
2525 			if (vp->v_cache_dd != NULL) {
2526 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2527 			}
2528 		}
2529 	}
2530 
2531 	if (flag != NCF_ISDOTDOT) {
2532 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2533 			cache_hold_vnode(dvp);
2534 		}
2535 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2536 	}
2537 
2538 	/*
2539 	 * If the entry is "negative", we place it into the
2540 	 * "negative" cache queue, otherwise, we place it into the
2541 	 * destination vnode's cache entries queue.
2542 	 */
2543 	if (vp != NULL) {
2544 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2545 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2546 		    vp);
2547 	} else {
2548 		if (cnp->cn_flags & ISWHITEOUT)
2549 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2550 		cache_neg_insert(ncp);
2551 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2552 		    ncp->nc_name);
2553 	}
2554 
2555 	/*
2556 	 * Insert the new namecache entry into the appropriate chain
2557 	 * within the cache entries table.
2558 	 */
2559 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2560 
2561 	atomic_thread_fence_rel();
2562 	/*
2563 	 * Mark the entry as fully constructed.
2564 	 * It is immutable past this point until its removal.
2565 	 */
2566 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2567 
2568 	cache_enter_unlock(&cel);
2569 	if (ndd != NULL)
2570 		cache_free(ndd);
2571 	return;
2572 out_unlock_free:
2573 	cache_enter_unlock(&cel);
2574 	cache_free(ncp);
2575 	return;
2576 }
2577 
2578 /*
2579  * A variant of the above accepting flags.
2580  *
2581  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2582  *
2583  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2584  * happens to match and it is doing it in an inefficient manner. It was added
2585  * to accommodate NFS which runs into a case where the target for a given name
2586  * may change from under it. Note this does nothing to solve the following
2587  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2588  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2589  */
2590 void
2591 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2592     struct timespec *tsp, struct timespec *dtsp, int flags)
2593 {
2594 
2595 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2596 
2597 	if (flags & VFS_CACHE_DROPOLD)
2598 		cache_remove_cnp(dvp, cnp);
2599 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2600 }
2601 
2602 static u_int
2603 cache_roundup_2(u_int val)
2604 {
2605 	u_int res;
2606 
2607 	for (res = 1; res <= val; res <<= 1)
2608 		continue;
2609 
2610 	return (res);
2611 }
2612 
2613 static struct nchashhead *
2614 nchinittbl(u_long elements, u_long *hashmask)
2615 {
2616 	struct nchashhead *hashtbl;
2617 	u_long hashsize, i;
2618 
2619 	hashsize = cache_roundup_2(elements) / 2;
2620 
2621 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2622 	for (i = 0; i < hashsize; i++)
2623 		CK_SLIST_INIT(&hashtbl[i]);
2624 	*hashmask = hashsize - 1;
2625 	return (hashtbl);
2626 }
2627 
2628 static void
2629 ncfreetbl(struct nchashhead *hashtbl)
2630 {
2631 
2632 	free(hashtbl, M_VFSCACHE);
2633 }
2634 
2635 /*
2636  * Name cache initialization, from vfs_init() when we are booting
2637  */
2638 static void
2639 nchinit(void *dummy __unused)
2640 {
2641 	u_int i;
2642 
2643 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2644 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2645 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2646 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2647 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2648 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2649 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2650 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2651 
2652 	VFS_SMR_ZONE_SET(cache_zone_small);
2653 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2654 	VFS_SMR_ZONE_SET(cache_zone_large);
2655 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2656 
2657 	ncsize = desiredvnodes * ncsizefactor;
2658 	cache_recalc_neg_min(ncnegminpct);
2659 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2660 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2661 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2662 		ncbuckethash = 7;
2663 	if (ncbuckethash > nchash)
2664 		ncbuckethash = nchash;
2665 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2666 	    M_WAITOK | M_ZERO);
2667 	for (i = 0; i < numbucketlocks; i++)
2668 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2669 	ncvnodehash = ncbuckethash;
2670 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2671 	    M_WAITOK | M_ZERO);
2672 	for (i = 0; i < numvnodelocks; i++)
2673 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2674 
2675 	for (i = 0; i < numneglists; i++) {
2676 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2677 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2678 		TAILQ_INIT(&neglists[i].nl_list);
2679 		TAILQ_INIT(&neglists[i].nl_hotlist);
2680 	}
2681 }
2682 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2683 
2684 void
2685 cache_vnode_init(struct vnode *vp)
2686 {
2687 
2688 	LIST_INIT(&vp->v_cache_src);
2689 	TAILQ_INIT(&vp->v_cache_dst);
2690 	vp->v_cache_dd = NULL;
2691 	cache_prehash(vp);
2692 }
2693 
2694 /*
2695  * Induce transient cache misses for lockless operation in cache_lookup() by
2696  * using a temporary hash table.
2697  *
2698  * This will force a fs lookup.
2699  *
2700  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2701  * to observe all CPUs not performing the lookup.
2702  */
2703 static void
2704 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2705 {
2706 
2707 	MPASS(temphash < nchash);
2708 	/*
2709 	 * Change the size. The new size is smaller and can safely be used
2710 	 * against the existing table. All lookups which now hash wrong will
2711 	 * result in a cache miss, which all callers are supposed to know how
2712 	 * to handle.
2713 	 */
2714 	atomic_store_long(&nchash, temphash);
2715 	atomic_thread_fence_rel();
2716 	vfs_smr_synchronize();
2717 	/*
2718 	 * At this point everyone sees the updated hash value, but they still
2719 	 * see the old table.
2720 	 */
2721 	atomic_store_ptr(&nchashtbl, temptbl);
2722 	atomic_thread_fence_rel();
2723 	vfs_smr_synchronize();
2724 	/*
2725 	 * At this point everyone sees the updated table pointer and size pair.
2726 	 */
2727 }
2728 
2729 /*
2730  * Set the new hash table.
2731  *
2732  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2733  * lockless operation in cache_lookup().
2734  */
2735 static void
2736 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2737 {
2738 
2739 	MPASS(nchash < new_hash);
2740 	/*
2741 	 * Change the pointer first. This wont result in out of bounds access
2742 	 * since the temporary table is guaranteed to be smaller.
2743 	 */
2744 	atomic_store_ptr(&nchashtbl, new_tbl);
2745 	atomic_thread_fence_rel();
2746 	vfs_smr_synchronize();
2747 	/*
2748 	 * At this point everyone sees the updated pointer value, but they
2749 	 * still see the old size.
2750 	 */
2751 	atomic_store_long(&nchash, new_hash);
2752 	atomic_thread_fence_rel();
2753 	vfs_smr_synchronize();
2754 	/*
2755 	 * At this point everyone sees the updated table pointer and size pair.
2756 	 */
2757 }
2758 
2759 void
2760 cache_changesize(u_long newmaxvnodes)
2761 {
2762 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2763 	u_long new_nchash, old_nchash, temphash;
2764 	struct namecache *ncp;
2765 	uint32_t hash;
2766 	u_long newncsize;
2767 	int i;
2768 
2769 	newncsize = newmaxvnodes * ncsizefactor;
2770 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2771 	if (newmaxvnodes < numbucketlocks)
2772 		newmaxvnodes = numbucketlocks;
2773 
2774 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2775 	/* If same hash table size, nothing to do */
2776 	if (nchash == new_nchash) {
2777 		ncfreetbl(new_nchashtbl);
2778 		return;
2779 	}
2780 
2781 	temptbl = nchinittbl(1, &temphash);
2782 
2783 	/*
2784 	 * Move everything from the old hash table to the new table.
2785 	 * None of the namecache entries in the table can be removed
2786 	 * because to do so, they have to be removed from the hash table.
2787 	 */
2788 	cache_lock_all_vnodes();
2789 	cache_lock_all_buckets();
2790 	old_nchashtbl = nchashtbl;
2791 	old_nchash = nchash;
2792 	cache_changesize_set_temp(temptbl, temphash);
2793 	for (i = 0; i <= old_nchash; i++) {
2794 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2795 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2796 			    ncp->nc_dvp);
2797 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2798 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2799 		}
2800 	}
2801 	ncsize = newncsize;
2802 	cache_recalc_neg_min(ncnegminpct);
2803 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2804 	cache_unlock_all_buckets();
2805 	cache_unlock_all_vnodes();
2806 	ncfreetbl(old_nchashtbl);
2807 	ncfreetbl(temptbl);
2808 }
2809 
2810 /*
2811  * Remove all entries from and to a particular vnode.
2812  */
2813 static void
2814 cache_purge_impl(struct vnode *vp)
2815 {
2816 	struct cache_freebatch batch;
2817 	struct namecache *ncp;
2818 	struct mtx *vlp, *vlp2;
2819 
2820 	TAILQ_INIT(&batch);
2821 	vlp = VP2VNODELOCK(vp);
2822 	vlp2 = NULL;
2823 	mtx_lock(vlp);
2824 retry:
2825 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2826 		ncp = LIST_FIRST(&vp->v_cache_src);
2827 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2828 			goto retry;
2829 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2830 	}
2831 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2832 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2833 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2834 			goto retry;
2835 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2836 	}
2837 	ncp = vp->v_cache_dd;
2838 	if (ncp != NULL) {
2839 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2840 		   ("lost dotdot link"));
2841 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2842 			goto retry;
2843 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2844 	}
2845 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2846 	mtx_unlock(vlp);
2847 	if (vlp2 != NULL)
2848 		mtx_unlock(vlp2);
2849 	cache_free_batch(&batch);
2850 }
2851 
2852 /*
2853  * Opportunistic check to see if there is anything to do.
2854  */
2855 static bool
2856 cache_has_entries(struct vnode *vp)
2857 {
2858 
2859 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2860 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2861 		return (false);
2862 	return (true);
2863 }
2864 
2865 void
2866 cache_purge(struct vnode *vp)
2867 {
2868 
2869 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2870 	if (!cache_has_entries(vp))
2871 		return;
2872 	cache_purge_impl(vp);
2873 }
2874 
2875 /*
2876  * Only to be used by vgone.
2877  */
2878 void
2879 cache_purge_vgone(struct vnode *vp)
2880 {
2881 	struct mtx *vlp;
2882 
2883 	VNPASS(VN_IS_DOOMED(vp), vp);
2884 	if (cache_has_entries(vp)) {
2885 		cache_purge_impl(vp);
2886 		return;
2887 	}
2888 
2889 	/*
2890 	 * Serialize against a potential thread doing cache_purge.
2891 	 */
2892 	vlp = VP2VNODELOCK(vp);
2893 	mtx_wait_unlocked(vlp);
2894 	if (cache_has_entries(vp)) {
2895 		cache_purge_impl(vp);
2896 		return;
2897 	}
2898 	return;
2899 }
2900 
2901 /*
2902  * Remove all negative entries for a particular directory vnode.
2903  */
2904 void
2905 cache_purge_negative(struct vnode *vp)
2906 {
2907 	struct cache_freebatch batch;
2908 	struct namecache *ncp, *nnp;
2909 	struct mtx *vlp;
2910 
2911 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2912 	if (LIST_EMPTY(&vp->v_cache_src))
2913 		return;
2914 	TAILQ_INIT(&batch);
2915 	vlp = VP2VNODELOCK(vp);
2916 	mtx_lock(vlp);
2917 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2918 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2919 			continue;
2920 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2921 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2922 	}
2923 	mtx_unlock(vlp);
2924 	cache_free_batch(&batch);
2925 }
2926 
2927 /*
2928  * Entry points for modifying VOP operations.
2929  */
2930 void
2931 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2932     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2933 {
2934 
2935 	ASSERT_VOP_IN_SEQC(fdvp);
2936 	ASSERT_VOP_IN_SEQC(fvp);
2937 	ASSERT_VOP_IN_SEQC(tdvp);
2938 	if (tvp != NULL)
2939 		ASSERT_VOP_IN_SEQC(tvp);
2940 
2941 	cache_purge(fvp);
2942 	if (tvp != NULL) {
2943 		cache_purge(tvp);
2944 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2945 		    ("%s: lingering negative entry", __func__));
2946 	} else {
2947 		cache_remove_cnp(tdvp, tcnp);
2948 	}
2949 
2950 	/*
2951 	 * TODO
2952 	 *
2953 	 * Historically renaming was always purging all revelang entries,
2954 	 * but that's quite wasteful. In particular turns out that in many cases
2955 	 * the target file is immediately accessed after rename, inducing a cache
2956 	 * miss.
2957 	 *
2958 	 * Recode this to reduce relocking and reuse the existing entry (if any)
2959 	 * instead of just removing it above and allocating a new one here.
2960 	 */
2961 	cache_enter(tdvp, fvp, tcnp);
2962 }
2963 
2964 void
2965 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2966 {
2967 
2968 	ASSERT_VOP_IN_SEQC(dvp);
2969 	ASSERT_VOP_IN_SEQC(vp);
2970 	cache_purge(vp);
2971 }
2972 
2973 #ifdef INVARIANTS
2974 /*
2975  * Validate that if an entry exists it matches.
2976  */
2977 void
2978 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2979 {
2980 	struct namecache *ncp;
2981 	struct mtx *blp;
2982 	uint32_t hash;
2983 
2984 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2985 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
2986 		return;
2987 	blp = HASH2BUCKETLOCK(hash);
2988 	mtx_lock(blp);
2989 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2990 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2991 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
2992 			if (ncp->nc_vp != vp)
2993 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
2994 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
2995 		}
2996 	}
2997 	mtx_unlock(blp);
2998 }
2999 
3000 void
3001 cache_assert_no_entries(struct vnode *vp)
3002 {
3003 
3004 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3005 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3006 	VNPASS(vp->v_cache_dd == NULL, vp);
3007 }
3008 #endif
3009 
3010 /*
3011  * Flush all entries referencing a particular filesystem.
3012  */
3013 void
3014 cache_purgevfs(struct mount *mp)
3015 {
3016 	struct vnode *vp, *mvp;
3017 	size_t visited __sdt_used, purged __sdt_used;
3018 
3019 	visited = purged = 0;
3020 	/*
3021 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3022 	 * support filtering and avoid the interlock to begin with.
3023 	 */
3024 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3025 		visited++;
3026 		if (!cache_has_entries(vp)) {
3027 			VI_UNLOCK(vp);
3028 			continue;
3029 		}
3030 		vholdl(vp);
3031 		VI_UNLOCK(vp);
3032 		cache_purge(vp);
3033 		purged++;
3034 		vdrop(vp);
3035 	}
3036 
3037 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3038 }
3039 
3040 /*
3041  * Perform canonical checks and cache lookup and pass on to filesystem
3042  * through the vop_cachedlookup only if needed.
3043  */
3044 
3045 int
3046 vfs_cache_lookup(struct vop_lookup_args *ap)
3047 {
3048 	struct vnode *dvp;
3049 	int error;
3050 	struct vnode **vpp = ap->a_vpp;
3051 	struct componentname *cnp = ap->a_cnp;
3052 	int flags = cnp->cn_flags;
3053 
3054 	*vpp = NULL;
3055 	dvp = ap->a_dvp;
3056 
3057 	if (dvp->v_type != VDIR)
3058 		return (ENOTDIR);
3059 
3060 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3061 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3062 		return (EROFS);
3063 
3064 	error = vn_dir_check_exec(dvp, cnp);
3065 	if (error != 0)
3066 		return (error);
3067 
3068 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3069 	if (error == 0)
3070 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3071 	if (error == -1)
3072 		return (0);
3073 	return (error);
3074 }
3075 
3076 /* Implementation of the getcwd syscall. */
3077 int
3078 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3079 {
3080 	char *buf, *retbuf;
3081 	size_t buflen;
3082 	int error;
3083 
3084 	buflen = uap->buflen;
3085 	if (__predict_false(buflen < 2))
3086 		return (EINVAL);
3087 	if (buflen > MAXPATHLEN)
3088 		buflen = MAXPATHLEN;
3089 
3090 	buf = uma_zalloc(namei_zone, M_WAITOK);
3091 	error = vn_getcwd(buf, &retbuf, &buflen);
3092 	if (error == 0)
3093 		error = copyout(retbuf, uap->buf, buflen);
3094 	uma_zfree(namei_zone, buf);
3095 	return (error);
3096 }
3097 
3098 int
3099 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3100 {
3101 	struct pwd *pwd;
3102 	int error;
3103 
3104 	vfs_smr_enter();
3105 	pwd = pwd_get_smr();
3106 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3107 	    buflen, 0);
3108 	VFS_SMR_ASSERT_NOT_ENTERED();
3109 	if (error < 0) {
3110 		pwd = pwd_hold(curthread);
3111 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3112 		    retbuf, buflen);
3113 		pwd_drop(pwd);
3114 	}
3115 
3116 #ifdef KTRACE
3117 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3118 		ktrnamei(*retbuf);
3119 #endif
3120 	return (error);
3121 }
3122 
3123 /*
3124  * Canonicalize a path by walking it forward and back.
3125  *
3126  * BUGS:
3127  * - Nothing guarantees the integrity of the entire chain. Consider the case
3128  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3129  *   "foo" into "quux" during the backwards walk. The result will be
3130  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3131  *   walk in userspace. Moreover, the path we return is inaccessible if the
3132  *   calling thread lacks permission to traverse "quux".
3133  */
3134 static int
3135 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3136     size_t size, int flags, enum uio_seg pathseg)
3137 {
3138 	struct nameidata nd;
3139 	char *retbuf, *freebuf;
3140 	int error;
3141 
3142 	if (flags != 0)
3143 		return (EINVAL);
3144 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3145 	    pathseg, path, fd, &cap_fstat_rights);
3146 	if ((error = namei(&nd)) != 0)
3147 		return (error);
3148 
3149 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3150 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3151 		/*
3152 		 * This happens if vp is a file mount. The call to
3153 		 * vn_fullpath_hardlink can panic if path resolution can't be
3154 		 * handled without the directory.
3155 		 *
3156 		 * To resolve this, we find the vnode which was mounted on -
3157 		 * this should have a unique global path since we disallow
3158 		 * mounting on linked files.
3159 		 */
3160 		struct vnode *covered_vp;
3161 		error = vn_lock(nd.ni_vp, LK_SHARED);
3162 		if (error != 0)
3163 			goto out;
3164 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3165 		vref(covered_vp);
3166 		VOP_UNLOCK(nd.ni_vp);
3167 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3168 		vrele(covered_vp);
3169 	} else {
3170 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3171 		    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3172 	}
3173 	if (error == 0) {
3174 		error = copyout(retbuf, buf, size);
3175 		free(freebuf, M_TEMP);
3176 	}
3177 out:
3178 	vrele(nd.ni_vp);
3179 	vrele(nd.ni_dvp);
3180 	NDFREE_PNBUF(&nd);
3181 	return (error);
3182 }
3183 
3184 int
3185 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3186 {
3187 
3188 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3189 	    uap->flags, UIO_USERSPACE));
3190 }
3191 
3192 /*
3193  * Retrieve the full filesystem path that correspond to a vnode from the name
3194  * cache (if available)
3195  */
3196 int
3197 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3198 {
3199 	struct pwd *pwd;
3200 	char *buf;
3201 	size_t buflen;
3202 	int error;
3203 
3204 	if (__predict_false(vp == NULL))
3205 		return (EINVAL);
3206 
3207 	buflen = MAXPATHLEN;
3208 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3209 	vfs_smr_enter();
3210 	pwd = pwd_get_smr();
3211 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3212 	VFS_SMR_ASSERT_NOT_ENTERED();
3213 	if (error < 0) {
3214 		pwd = pwd_hold(curthread);
3215 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3216 		pwd_drop(pwd);
3217 	}
3218 	if (error == 0)
3219 		*freebuf = buf;
3220 	else
3221 		free(buf, M_TEMP);
3222 	return (error);
3223 }
3224 
3225 /*
3226  * This function is similar to vn_fullpath, but it attempts to lookup the
3227  * pathname relative to the global root mount point.  This is required for the
3228  * auditing sub-system, as audited pathnames must be absolute, relative to the
3229  * global root mount point.
3230  */
3231 int
3232 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3233 {
3234 	char *buf;
3235 	size_t buflen;
3236 	int error;
3237 
3238 	if (__predict_false(vp == NULL))
3239 		return (EINVAL);
3240 	buflen = MAXPATHLEN;
3241 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3242 	vfs_smr_enter();
3243 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3244 	VFS_SMR_ASSERT_NOT_ENTERED();
3245 	if (error < 0) {
3246 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3247 	}
3248 	if (error == 0)
3249 		*freebuf = buf;
3250 	else
3251 		free(buf, M_TEMP);
3252 	return (error);
3253 }
3254 
3255 static struct namecache *
3256 vn_dd_from_dst(struct vnode *vp)
3257 {
3258 	struct namecache *ncp;
3259 
3260 	cache_assert_vnode_locked(vp);
3261 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3262 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3263 			return (ncp);
3264 	}
3265 	return (NULL);
3266 }
3267 
3268 int
3269 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3270 {
3271 	struct vnode *dvp;
3272 	struct namecache *ncp;
3273 	struct mtx *vlp;
3274 	int error;
3275 
3276 	vlp = VP2VNODELOCK(*vp);
3277 	mtx_lock(vlp);
3278 	ncp = (*vp)->v_cache_dd;
3279 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3280 		KASSERT(ncp == vn_dd_from_dst(*vp),
3281 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3282 		    ncp, vn_dd_from_dst(*vp)));
3283 	} else {
3284 		ncp = vn_dd_from_dst(*vp);
3285 	}
3286 	if (ncp != NULL) {
3287 		if (*buflen < ncp->nc_nlen) {
3288 			mtx_unlock(vlp);
3289 			vrele(*vp);
3290 			counter_u64_add(numfullpathfail4, 1);
3291 			error = ENOMEM;
3292 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3293 			    vp, NULL);
3294 			return (error);
3295 		}
3296 		*buflen -= ncp->nc_nlen;
3297 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3298 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3299 		    ncp->nc_name, vp);
3300 		dvp = *vp;
3301 		*vp = ncp->nc_dvp;
3302 		vref(*vp);
3303 		mtx_unlock(vlp);
3304 		vrele(dvp);
3305 		return (0);
3306 	}
3307 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3308 
3309 	mtx_unlock(vlp);
3310 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3311 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3312 	vput(*vp);
3313 	if (error) {
3314 		counter_u64_add(numfullpathfail2, 1);
3315 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3316 		return (error);
3317 	}
3318 
3319 	*vp = dvp;
3320 	if (VN_IS_DOOMED(dvp)) {
3321 		/* forced unmount */
3322 		vrele(dvp);
3323 		error = ENOENT;
3324 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3325 		return (error);
3326 	}
3327 	/*
3328 	 * *vp has its use count incremented still.
3329 	 */
3330 
3331 	return (0);
3332 }
3333 
3334 /*
3335  * Resolve a directory to a pathname.
3336  *
3337  * The name of the directory can always be found in the namecache or fetched
3338  * from the filesystem. There is also guaranteed to be only one parent, meaning
3339  * we can just follow vnodes up until we find the root.
3340  *
3341  * The vnode must be referenced.
3342  */
3343 static int
3344 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3345     size_t *len, size_t addend)
3346 {
3347 #ifdef KDTRACE_HOOKS
3348 	struct vnode *startvp = vp;
3349 #endif
3350 	struct vnode *vp1;
3351 	size_t buflen;
3352 	int error;
3353 	bool slash_prefixed;
3354 
3355 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3356 	VNPASS(vp->v_usecount > 0, vp);
3357 
3358 	buflen = *len;
3359 
3360 	slash_prefixed = true;
3361 	if (addend == 0) {
3362 		MPASS(*len >= 2);
3363 		buflen--;
3364 		buf[buflen] = '\0';
3365 		slash_prefixed = false;
3366 	}
3367 
3368 	error = 0;
3369 
3370 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3371 	counter_u64_add(numfullpathcalls, 1);
3372 	while (vp != rdir && vp != rootvnode) {
3373 		/*
3374 		 * The vp vnode must be already fully constructed,
3375 		 * since it is either found in namecache or obtained
3376 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3377 		 * without obtaining the vnode lock.
3378 		 */
3379 		if ((vp->v_vflag & VV_ROOT) != 0) {
3380 			vn_lock(vp, LK_RETRY | LK_SHARED);
3381 
3382 			/*
3383 			 * With the vnode locked, check for races with
3384 			 * unmount, forced or not.  Note that we
3385 			 * already verified that vp is not equal to
3386 			 * the root vnode, which means that
3387 			 * mnt_vnodecovered can be NULL only for the
3388 			 * case of unmount.
3389 			 */
3390 			if (VN_IS_DOOMED(vp) ||
3391 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3392 			    vp1->v_mountedhere != vp->v_mount) {
3393 				vput(vp);
3394 				error = ENOENT;
3395 				SDT_PROBE3(vfs, namecache, fullpath, return,
3396 				    error, vp, NULL);
3397 				break;
3398 			}
3399 
3400 			vref(vp1);
3401 			vput(vp);
3402 			vp = vp1;
3403 			continue;
3404 		}
3405 		if (vp->v_type != VDIR) {
3406 			vrele(vp);
3407 			counter_u64_add(numfullpathfail1, 1);
3408 			error = ENOTDIR;
3409 			SDT_PROBE3(vfs, namecache, fullpath, return,
3410 			    error, vp, NULL);
3411 			break;
3412 		}
3413 		error = vn_vptocnp(&vp, buf, &buflen);
3414 		if (error)
3415 			break;
3416 		if (buflen == 0) {
3417 			vrele(vp);
3418 			error = ENOMEM;
3419 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3420 			    startvp, NULL);
3421 			break;
3422 		}
3423 		buf[--buflen] = '/';
3424 		slash_prefixed = true;
3425 	}
3426 	if (error)
3427 		return (error);
3428 	if (!slash_prefixed) {
3429 		if (buflen == 0) {
3430 			vrele(vp);
3431 			counter_u64_add(numfullpathfail4, 1);
3432 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3433 			    startvp, NULL);
3434 			return (ENOMEM);
3435 		}
3436 		buf[--buflen] = '/';
3437 	}
3438 	counter_u64_add(numfullpathfound, 1);
3439 	vrele(vp);
3440 
3441 	*retbuf = buf + buflen;
3442 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3443 	*len -= buflen;
3444 	*len += addend;
3445 	return (0);
3446 }
3447 
3448 /*
3449  * Resolve an arbitrary vnode to a pathname.
3450  *
3451  * Note 2 caveats:
3452  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3453  *   resolve to a different path than the one used to find it
3454  * - namecache is not mandatory, meaning names are not guaranteed to be added
3455  *   (in which case resolving fails)
3456  */
3457 static void __inline
3458 cache_rev_failed_impl(int *reason, int line)
3459 {
3460 
3461 	*reason = line;
3462 }
3463 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3464 
3465 static int
3466 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3467     char **retbuf, size_t *buflen, size_t addend)
3468 {
3469 #ifdef KDTRACE_HOOKS
3470 	struct vnode *startvp = vp;
3471 #endif
3472 	struct vnode *tvp;
3473 	struct mount *mp;
3474 	struct namecache *ncp;
3475 	size_t orig_buflen;
3476 	int reason;
3477 	int error;
3478 #ifdef KDTRACE_HOOKS
3479 	int i;
3480 #endif
3481 	seqc_t vp_seqc, tvp_seqc;
3482 	u_char nc_flag;
3483 
3484 	VFS_SMR_ASSERT_ENTERED();
3485 
3486 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3487 		vfs_smr_exit();
3488 		return (-1);
3489 	}
3490 
3491 	orig_buflen = *buflen;
3492 
3493 	if (addend == 0) {
3494 		MPASS(*buflen >= 2);
3495 		*buflen -= 1;
3496 		buf[*buflen] = '\0';
3497 	}
3498 
3499 	if (vp == rdir || vp == rootvnode) {
3500 		if (addend == 0) {
3501 			*buflen -= 1;
3502 			buf[*buflen] = '/';
3503 		}
3504 		goto out_ok;
3505 	}
3506 
3507 #ifdef KDTRACE_HOOKS
3508 	i = 0;
3509 #endif
3510 	error = -1;
3511 	ncp = NULL; /* for sdt probe down below */
3512 	vp_seqc = vn_seqc_read_any(vp);
3513 	if (seqc_in_modify(vp_seqc)) {
3514 		cache_rev_failed(&reason);
3515 		goto out_abort;
3516 	}
3517 
3518 	for (;;) {
3519 #ifdef KDTRACE_HOOKS
3520 		i++;
3521 #endif
3522 		if ((vp->v_vflag & VV_ROOT) != 0) {
3523 			mp = atomic_load_ptr(&vp->v_mount);
3524 			if (mp == NULL) {
3525 				cache_rev_failed(&reason);
3526 				goto out_abort;
3527 			}
3528 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3529 			tvp_seqc = vn_seqc_read_any(tvp);
3530 			if (seqc_in_modify(tvp_seqc)) {
3531 				cache_rev_failed(&reason);
3532 				goto out_abort;
3533 			}
3534 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3535 				cache_rev_failed(&reason);
3536 				goto out_abort;
3537 			}
3538 			vp = tvp;
3539 			vp_seqc = tvp_seqc;
3540 			continue;
3541 		}
3542 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3543 		if (ncp == NULL) {
3544 			cache_rev_failed(&reason);
3545 			goto out_abort;
3546 		}
3547 		nc_flag = atomic_load_char(&ncp->nc_flag);
3548 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3549 			cache_rev_failed(&reason);
3550 			goto out_abort;
3551 		}
3552 		if (ncp->nc_nlen >= *buflen) {
3553 			cache_rev_failed(&reason);
3554 			error = ENOMEM;
3555 			goto out_abort;
3556 		}
3557 		*buflen -= ncp->nc_nlen;
3558 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3559 		*buflen -= 1;
3560 		buf[*buflen] = '/';
3561 		tvp = ncp->nc_dvp;
3562 		tvp_seqc = vn_seqc_read_any(tvp);
3563 		if (seqc_in_modify(tvp_seqc)) {
3564 			cache_rev_failed(&reason);
3565 			goto out_abort;
3566 		}
3567 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3568 			cache_rev_failed(&reason);
3569 			goto out_abort;
3570 		}
3571 		/*
3572 		 * Acquire fence provided by vn_seqc_read_any above.
3573 		 */
3574 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3575 			cache_rev_failed(&reason);
3576 			goto out_abort;
3577 		}
3578 		if (!cache_ncp_canuse(ncp)) {
3579 			cache_rev_failed(&reason);
3580 			goto out_abort;
3581 		}
3582 		vp = tvp;
3583 		vp_seqc = tvp_seqc;
3584 		if (vp == rdir || vp == rootvnode)
3585 			break;
3586 	}
3587 out_ok:
3588 	vfs_smr_exit();
3589 	*retbuf = buf + *buflen;
3590 	*buflen = orig_buflen - *buflen + addend;
3591 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3592 	return (0);
3593 
3594 out_abort:
3595 	*buflen = orig_buflen;
3596 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3597 	vfs_smr_exit();
3598 	return (error);
3599 }
3600 
3601 static int
3602 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3603     size_t *buflen)
3604 {
3605 	size_t orig_buflen, addend;
3606 	int error;
3607 
3608 	if (*buflen < 2)
3609 		return (EINVAL);
3610 
3611 	orig_buflen = *buflen;
3612 
3613 	vref(vp);
3614 	addend = 0;
3615 	if (vp->v_type != VDIR) {
3616 		*buflen -= 1;
3617 		buf[*buflen] = '\0';
3618 		error = vn_vptocnp(&vp, buf, buflen);
3619 		if (error)
3620 			return (error);
3621 		if (*buflen == 0) {
3622 			vrele(vp);
3623 			return (ENOMEM);
3624 		}
3625 		*buflen -= 1;
3626 		buf[*buflen] = '/';
3627 		addend = orig_buflen - *buflen;
3628 	}
3629 
3630 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3631 }
3632 
3633 /*
3634  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3635  *
3636  * Since the namecache does not track hardlinks, the caller is expected to
3637  * first look up the target vnode with WANTPARENT flag passed to namei to get
3638  * dvp and vp.
3639  *
3640  * Then we have 2 cases:
3641  * - if the found vnode is a directory, the path can be constructed just by
3642  *   following names up the chain
3643  * - otherwise we populate the buffer with the saved name and start resolving
3644  *   from the parent
3645  */
3646 int
3647 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3648     const char *hrdl_name, size_t hrdl_name_length,
3649     char **retbuf, char **freebuf, size_t *buflen)
3650 {
3651 	char *buf, *tmpbuf;
3652 	struct pwd *pwd;
3653 	size_t addend;
3654 	int error;
3655 	__enum_uint8(vtype) type;
3656 
3657 	if (*buflen < 2)
3658 		return (EINVAL);
3659 	if (*buflen > MAXPATHLEN)
3660 		*buflen = MAXPATHLEN;
3661 
3662 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3663 
3664 	addend = 0;
3665 
3666 	/*
3667 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3668 	 *
3669 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3670 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3671 	 * If the type is VDIR (like in this very case) we can skip looking
3672 	 * at ni_dvp in the first place. However, since vnodes get passed here
3673 	 * unlocked the target may transition to doomed state (type == VBAD)
3674 	 * before we get to evaluate the condition. If this happens, we will
3675 	 * populate part of the buffer and descend to vn_fullpath_dir with
3676 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3677 	 */
3678 	type = atomic_load_8(&vp->v_type);
3679 	if (type == VBAD) {
3680 		error = ENOENT;
3681 		goto out_bad;
3682 	}
3683 	if (type != VDIR) {
3684 		addend = hrdl_name_length + 2;
3685 		if (*buflen < addend) {
3686 			error = ENOMEM;
3687 			goto out_bad;
3688 		}
3689 		*buflen -= addend;
3690 		tmpbuf = buf + *buflen;
3691 		tmpbuf[0] = '/';
3692 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3693 		tmpbuf[addend - 1] = '\0';
3694 		vp = dvp;
3695 	}
3696 
3697 	vfs_smr_enter();
3698 	pwd = pwd_get_smr();
3699 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3700 	    addend);
3701 	VFS_SMR_ASSERT_NOT_ENTERED();
3702 	if (error < 0) {
3703 		pwd = pwd_hold(curthread);
3704 		vref(vp);
3705 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3706 		    addend);
3707 		pwd_drop(pwd);
3708 	}
3709 	if (error != 0)
3710 		goto out_bad;
3711 
3712 	*freebuf = buf;
3713 
3714 	return (0);
3715 out_bad:
3716 	free(buf, M_TEMP);
3717 	return (error);
3718 }
3719 
3720 struct vnode *
3721 vn_dir_dd_ino(struct vnode *vp)
3722 {
3723 	struct namecache *ncp;
3724 	struct vnode *ddvp;
3725 	struct mtx *vlp;
3726 	enum vgetstate vs;
3727 
3728 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3729 	vlp = VP2VNODELOCK(vp);
3730 	mtx_lock(vlp);
3731 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3732 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3733 			continue;
3734 		ddvp = ncp->nc_dvp;
3735 		vs = vget_prep(ddvp);
3736 		mtx_unlock(vlp);
3737 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3738 			return (NULL);
3739 		return (ddvp);
3740 	}
3741 	mtx_unlock(vlp);
3742 	return (NULL);
3743 }
3744 
3745 int
3746 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3747 {
3748 	struct namecache *ncp;
3749 	struct mtx *vlp;
3750 	int l;
3751 
3752 	vlp = VP2VNODELOCK(vp);
3753 	mtx_lock(vlp);
3754 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3755 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3756 			break;
3757 	if (ncp == NULL) {
3758 		mtx_unlock(vlp);
3759 		return (ENOENT);
3760 	}
3761 	l = min(ncp->nc_nlen, buflen - 1);
3762 	memcpy(buf, ncp->nc_name, l);
3763 	mtx_unlock(vlp);
3764 	buf[l] = '\0';
3765 	return (0);
3766 }
3767 
3768 /*
3769  * This function updates path string to vnode's full global path
3770  * and checks the size of the new path string against the pathlen argument.
3771  *
3772  * Requires a locked, referenced vnode.
3773  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3774  *
3775  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3776  * because it falls back to the ".." lookup if the namecache lookup fails.
3777  */
3778 int
3779 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3780     u_int pathlen)
3781 {
3782 	struct nameidata nd;
3783 	struct vnode *vp1;
3784 	char *rpath, *fbuf;
3785 	int error;
3786 
3787 	ASSERT_VOP_ELOCKED(vp, __func__);
3788 
3789 	/* Construct global filesystem path from vp. */
3790 	VOP_UNLOCK(vp);
3791 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3792 
3793 	if (error != 0) {
3794 		vrele(vp);
3795 		return (error);
3796 	}
3797 
3798 	if (strlen(rpath) >= pathlen) {
3799 		vrele(vp);
3800 		error = ENAMETOOLONG;
3801 		goto out;
3802 	}
3803 
3804 	/*
3805 	 * Re-lookup the vnode by path to detect a possible rename.
3806 	 * As a side effect, the vnode is relocked.
3807 	 * If vnode was renamed, return ENOENT.
3808 	 */
3809 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3810 	error = namei(&nd);
3811 	if (error != 0) {
3812 		vrele(vp);
3813 		goto out;
3814 	}
3815 	NDFREE_PNBUF(&nd);
3816 	vp1 = nd.ni_vp;
3817 	vrele(vp);
3818 	if (vp1 == vp)
3819 		strcpy(path, rpath);
3820 	else {
3821 		vput(vp1);
3822 		error = ENOENT;
3823 	}
3824 
3825 out:
3826 	free(fbuf, M_TEMP);
3827 	return (error);
3828 }
3829 
3830 /*
3831  * This is similar to vn_path_to_global_path but allows for regular
3832  * files which may not be present in the cache.
3833  *
3834  * Requires a locked, referenced vnode.
3835  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3836  */
3837 int
3838 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3839     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3840     size_t leaf_length)
3841 {
3842 	struct nameidata nd;
3843 	struct vnode *vp1;
3844 	char *rpath, *fbuf;
3845 	size_t len;
3846 	int error;
3847 
3848 	ASSERT_VOP_ELOCKED(vp, __func__);
3849 
3850 	/*
3851 	 * Construct global filesystem path from dvp, vp and leaf
3852 	 * name.
3853 	 */
3854 	VOP_UNLOCK(vp);
3855 	len = pathlen;
3856 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3857 	    &rpath, &fbuf, &len);
3858 
3859 	if (error != 0) {
3860 		vrele(vp);
3861 		return (error);
3862 	}
3863 
3864 	if (strlen(rpath) >= pathlen) {
3865 		vrele(vp);
3866 		error = ENAMETOOLONG;
3867 		goto out;
3868 	}
3869 
3870 	/*
3871 	 * Re-lookup the vnode by path to detect a possible rename.
3872 	 * As a side effect, the vnode is relocked.
3873 	 * If vnode was renamed, return ENOENT.
3874 	 */
3875 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3876 	error = namei(&nd);
3877 	if (error != 0) {
3878 		vrele(vp);
3879 		goto out;
3880 	}
3881 	NDFREE_PNBUF(&nd);
3882 	vp1 = nd.ni_vp;
3883 	vrele(vp);
3884 	if (vp1 == vp)
3885 		strcpy(path, rpath);
3886 	else {
3887 		vput(vp1);
3888 		error = ENOENT;
3889 	}
3890 
3891 out:
3892 	free(fbuf, M_TEMP);
3893 	return (error);
3894 }
3895 
3896 #ifdef DDB
3897 static void
3898 db_print_vpath(struct vnode *vp)
3899 {
3900 
3901 	while (vp != NULL) {
3902 		db_printf("%p: ", vp);
3903 		if (vp == rootvnode) {
3904 			db_printf("/");
3905 			vp = NULL;
3906 		} else {
3907 			if (vp->v_vflag & VV_ROOT) {
3908 				db_printf("<mount point>");
3909 				vp = vp->v_mount->mnt_vnodecovered;
3910 			} else {
3911 				struct namecache *ncp;
3912 				char *ncn;
3913 				int i;
3914 
3915 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3916 				if (ncp != NULL) {
3917 					ncn = ncp->nc_name;
3918 					for (i = 0; i < ncp->nc_nlen; i++)
3919 						db_printf("%c", *ncn++);
3920 					vp = ncp->nc_dvp;
3921 				} else {
3922 					vp = NULL;
3923 				}
3924 			}
3925 		}
3926 		db_printf("\n");
3927 	}
3928 
3929 	return;
3930 }
3931 
3932 DB_SHOW_COMMAND(vpath, db_show_vpath)
3933 {
3934 	struct vnode *vp;
3935 
3936 	if (!have_addr) {
3937 		db_printf("usage: show vpath <struct vnode *>\n");
3938 		return;
3939 	}
3940 
3941 	vp = (struct vnode *)addr;
3942 	db_print_vpath(vp);
3943 }
3944 
3945 #endif
3946 
3947 static int cache_fast_lookup = 1;
3948 
3949 #define CACHE_FPL_FAILED	-2020
3950 
3951 static int
3952 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
3953 {
3954 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
3955 	panic("no proper vop_fplookup_vexec");
3956 }
3957 
3958 static int
3959 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
3960 {
3961 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
3962 	panic("no proper vop_fplookup_symlink");
3963 }
3964 
3965 void
3966 cache_vop_vector_register(struct vop_vector *v)
3967 {
3968 	size_t ops;
3969 
3970 	ops = 0;
3971 	if (v->vop_fplookup_vexec != NULL) {
3972 		ops++;
3973 	}
3974 	if (v->vop_fplookup_symlink != NULL) {
3975 		ops++;
3976 	}
3977 
3978 	if (ops == 2) {
3979 		return;
3980 	}
3981 
3982 	if (ops == 0) {
3983 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
3984 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
3985 		return;
3986 	}
3987 
3988 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
3989 	    "need to be provided",  __func__, v);
3990 	if (v->vop_fplookup_vexec == NULL) {
3991 		printf("%s: missing vop_fplookup_vexec\n", __func__);
3992 	}
3993 	if (v->vop_fplookup_symlink == NULL) {
3994 		printf("%s: missing vop_fplookup_symlink\n", __func__);
3995 	}
3996 	panic("bad vop vector %p", v);
3997 }
3998 
3999 #ifdef INVARIANTS
4000 void
4001 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4002 {
4003 	if (mp == NULL)
4004 		return;
4005 
4006 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4007 		return;
4008 
4009 	if (vops->vop_fplookup_vexec == NULL ||
4010 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4011 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4012 		    vops, mp->mnt_vfc->vfc_name);
4013 
4014 	if (vops->vop_fplookup_symlink == NULL ||
4015 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4016 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4017 		    vops, mp->mnt_vfc->vfc_name);
4018 }
4019 #endif
4020 
4021 void
4022 cache_fast_lookup_enabled_recalc(void)
4023 {
4024 	int lookup_flag;
4025 	int mac_on;
4026 
4027 #ifdef MAC
4028 	mac_on = mac_vnode_check_lookup_enabled();
4029 	mac_on |= mac_vnode_check_readlink_enabled();
4030 #else
4031 	mac_on = 0;
4032 #endif
4033 
4034 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4035 	if (lookup_flag && !mac_on) {
4036 		atomic_store_char(&cache_fast_lookup_enabled, true);
4037 	} else {
4038 		atomic_store_char(&cache_fast_lookup_enabled, false);
4039 	}
4040 }
4041 
4042 static int
4043 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4044 {
4045 	int error, old;
4046 
4047 	old = atomic_load_int(&cache_fast_lookup);
4048 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4049 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4050 		cache_fast_lookup_enabled_recalc();
4051 	return (error);
4052 }
4053 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4054     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4055 
4056 /*
4057  * Components of nameidata (or objects it can point to) which may
4058  * need restoring in case fast path lookup fails.
4059  */
4060 struct nameidata_outer {
4061 	size_t ni_pathlen;
4062 	int cn_flags;
4063 };
4064 
4065 struct nameidata_saved {
4066 #ifdef INVARIANTS
4067 	char *cn_nameptr;
4068 	size_t ni_pathlen;
4069 #endif
4070 };
4071 
4072 #ifdef INVARIANTS
4073 struct cache_fpl_debug {
4074 	size_t ni_pathlen;
4075 };
4076 #endif
4077 
4078 struct cache_fpl {
4079 	struct nameidata *ndp;
4080 	struct componentname *cnp;
4081 	char *nulchar;
4082 	struct vnode *dvp;
4083 	struct vnode *tvp;
4084 	seqc_t dvp_seqc;
4085 	seqc_t tvp_seqc;
4086 	uint32_t hash;
4087 	struct nameidata_saved snd;
4088 	struct nameidata_outer snd_outer;
4089 	int line;
4090 	enum cache_fpl_status status:8;
4091 	bool in_smr;
4092 	bool fsearch;
4093 	struct pwd **pwd;
4094 #ifdef INVARIANTS
4095 	struct cache_fpl_debug debug;
4096 #endif
4097 };
4098 
4099 static bool cache_fplookup_mp_supported(struct mount *mp);
4100 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4101 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4102 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4103 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4104 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4105 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4106 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4107 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4108 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4109 
4110 static void
4111 cache_fpl_cleanup_cnp(struct componentname *cnp)
4112 {
4113 
4114 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4115 	cnp->cn_pnbuf = NULL;
4116 	cnp->cn_nameptr = NULL;
4117 }
4118 
4119 static struct vnode *
4120 cache_fpl_handle_root(struct cache_fpl *fpl)
4121 {
4122 	struct nameidata *ndp;
4123 	struct componentname *cnp;
4124 
4125 	ndp = fpl->ndp;
4126 	cnp = fpl->cnp;
4127 
4128 	MPASS(*(cnp->cn_nameptr) == '/');
4129 	cnp->cn_nameptr++;
4130 	cache_fpl_pathlen_dec(fpl);
4131 
4132 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4133 		do {
4134 			cnp->cn_nameptr++;
4135 			cache_fpl_pathlen_dec(fpl);
4136 		} while (*(cnp->cn_nameptr) == '/');
4137 	}
4138 
4139 	return (ndp->ni_rootdir);
4140 }
4141 
4142 static void
4143 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4144 {
4145 
4146 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4147 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4148 }
4149 
4150 static void
4151 cache_fpl_checkpoint(struct cache_fpl *fpl)
4152 {
4153 
4154 #ifdef INVARIANTS
4155 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4156 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4157 #endif
4158 }
4159 
4160 static void
4161 cache_fpl_restore_partial(struct cache_fpl *fpl)
4162 {
4163 
4164 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4165 #ifdef INVARIANTS
4166 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4167 #endif
4168 }
4169 
4170 static void
4171 cache_fpl_restore_abort(struct cache_fpl *fpl)
4172 {
4173 
4174 	cache_fpl_restore_partial(fpl);
4175 	/*
4176 	 * It is 0 on entry by API contract.
4177 	 */
4178 	fpl->ndp->ni_resflags = 0;
4179 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4180 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4181 }
4182 
4183 #ifdef INVARIANTS
4184 #define cache_fpl_smr_assert_entered(fpl) ({			\
4185 	struct cache_fpl *_fpl = (fpl);				\
4186 	MPASS(_fpl->in_smr == true);				\
4187 	VFS_SMR_ASSERT_ENTERED();				\
4188 })
4189 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4190 	struct cache_fpl *_fpl = (fpl);				\
4191 	MPASS(_fpl->in_smr == false);				\
4192 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4193 })
4194 static void
4195 cache_fpl_assert_status(struct cache_fpl *fpl)
4196 {
4197 
4198 	switch (fpl->status) {
4199 	case CACHE_FPL_STATUS_UNSET:
4200 		__assert_unreachable();
4201 		break;
4202 	case CACHE_FPL_STATUS_DESTROYED:
4203 	case CACHE_FPL_STATUS_ABORTED:
4204 	case CACHE_FPL_STATUS_PARTIAL:
4205 	case CACHE_FPL_STATUS_HANDLED:
4206 		break;
4207 	}
4208 }
4209 #else
4210 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4211 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4212 #define cache_fpl_assert_status(fpl) do { } while (0)
4213 #endif
4214 
4215 #define cache_fpl_smr_enter_initial(fpl) ({			\
4216 	struct cache_fpl *_fpl = (fpl);				\
4217 	vfs_smr_enter();					\
4218 	_fpl->in_smr = true;					\
4219 })
4220 
4221 #define cache_fpl_smr_enter(fpl) ({				\
4222 	struct cache_fpl *_fpl = (fpl);				\
4223 	MPASS(_fpl->in_smr == false);				\
4224 	vfs_smr_enter();					\
4225 	_fpl->in_smr = true;					\
4226 })
4227 
4228 #define cache_fpl_smr_exit(fpl) ({				\
4229 	struct cache_fpl *_fpl = (fpl);				\
4230 	MPASS(_fpl->in_smr == true);				\
4231 	vfs_smr_exit();						\
4232 	_fpl->in_smr = false;					\
4233 })
4234 
4235 static int
4236 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4237 {
4238 
4239 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4240 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4241 		    ("%s: converting to abort from %d at %d, set at %d\n",
4242 		    __func__, fpl->status, line, fpl->line));
4243 	}
4244 	cache_fpl_smr_assert_not_entered(fpl);
4245 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4246 	fpl->line = line;
4247 	return (CACHE_FPL_FAILED);
4248 }
4249 
4250 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4251 
4252 static int __noinline
4253 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4254 {
4255 	struct nameidata *ndp;
4256 	struct componentname *cnp;
4257 
4258 	ndp = fpl->ndp;
4259 	cnp = fpl->cnp;
4260 
4261 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4262 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4263 		    ("%s: converting to abort from %d at %d, set at %d\n",
4264 		    __func__, fpl->status, line, fpl->line));
4265 	}
4266 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4267 	fpl->line = line;
4268 	if (fpl->in_smr)
4269 		cache_fpl_smr_exit(fpl);
4270 	cache_fpl_restore_abort(fpl);
4271 	/*
4272 	 * Resolving symlinks overwrites data passed by the caller.
4273 	 * Let namei know.
4274 	 */
4275 	if (ndp->ni_loopcnt > 0) {
4276 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4277 		cache_fpl_cleanup_cnp(cnp);
4278 	}
4279 	return (CACHE_FPL_FAILED);
4280 }
4281 
4282 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4283 
4284 static int __noinline
4285 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4286 {
4287 
4288 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4289 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4290 	    __func__, line, fpl->status, fpl->line));
4291 	cache_fpl_smr_assert_entered(fpl);
4292 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4293 	fpl->line = line;
4294 	return (cache_fplookup_partial_setup(fpl));
4295 }
4296 
4297 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4298 
4299 static int
4300 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4301 {
4302 
4303 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4304 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4305 	    __func__, line, fpl->status, fpl->line));
4306 	cache_fpl_smr_assert_not_entered(fpl);
4307 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4308 	fpl->line = line;
4309 	return (0);
4310 }
4311 
4312 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4313 
4314 static int
4315 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4316 {
4317 
4318 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4319 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4320 	    __func__, line, fpl->status, fpl->line));
4321 	MPASS(error != 0);
4322 	MPASS(error != CACHE_FPL_FAILED);
4323 	cache_fpl_smr_assert_not_entered(fpl);
4324 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4325 	fpl->line = line;
4326 	fpl->dvp = NULL;
4327 	fpl->tvp = NULL;
4328 	return (error);
4329 }
4330 
4331 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4332 
4333 static bool
4334 cache_fpl_terminated(struct cache_fpl *fpl)
4335 {
4336 
4337 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4338 }
4339 
4340 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4341 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4342 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4343 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4344 	 OPENWRITE | WANTIOCTLCAPS)
4345 
4346 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4347 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4348 
4349 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4350     "supported and internal flags overlap");
4351 
4352 static bool
4353 cache_fpl_islastcn(struct nameidata *ndp)
4354 {
4355 
4356 	return (*ndp->ni_next == 0);
4357 }
4358 
4359 static bool
4360 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4361 {
4362 
4363 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4364 	return (*(fpl->nulchar - 1) == '/');
4365 }
4366 
4367 static bool
4368 cache_fpl_isdotdot(struct componentname *cnp)
4369 {
4370 
4371 	if (cnp->cn_namelen == 2 &&
4372 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4373 		return (true);
4374 	return (false);
4375 }
4376 
4377 static bool
4378 cache_can_fplookup(struct cache_fpl *fpl)
4379 {
4380 	struct nameidata *ndp;
4381 	struct componentname *cnp;
4382 	struct thread *td;
4383 
4384 	ndp = fpl->ndp;
4385 	cnp = fpl->cnp;
4386 	td = curthread;
4387 
4388 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4389 		cache_fpl_aborted_early(fpl);
4390 		return (false);
4391 	}
4392 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4393 		cache_fpl_aborted_early(fpl);
4394 		return (false);
4395 	}
4396 	if (IN_CAPABILITY_MODE(td)) {
4397 		cache_fpl_aborted_early(fpl);
4398 		return (false);
4399 	}
4400 	if (AUDITING_TD(td)) {
4401 		cache_fpl_aborted_early(fpl);
4402 		return (false);
4403 	}
4404 	if (ndp->ni_startdir != NULL) {
4405 		cache_fpl_aborted_early(fpl);
4406 		return (false);
4407 	}
4408 	return (true);
4409 }
4410 
4411 static int __noinline
4412 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4413 {
4414 	struct nameidata *ndp;
4415 	struct componentname *cnp;
4416 	int error;
4417 	bool fsearch;
4418 
4419 	ndp = fpl->ndp;
4420 	cnp = fpl->cnp;
4421 
4422 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
4423 	if (__predict_false(error != 0)) {
4424 		return (cache_fpl_aborted(fpl));
4425 	}
4426 	fpl->fsearch = fsearch;
4427 	if ((*vpp)->v_type != VDIR) {
4428 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4429 			cache_fpl_smr_exit(fpl);
4430 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4431 		}
4432 	}
4433 	return (0);
4434 }
4435 
4436 static int __noinline
4437 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4438     uint32_t hash)
4439 {
4440 	struct componentname *cnp;
4441 	struct vnode *dvp;
4442 
4443 	cnp = fpl->cnp;
4444 	dvp = fpl->dvp;
4445 
4446 	cache_fpl_smr_exit(fpl);
4447 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4448 		return (cache_fpl_handled_error(fpl, ENOENT));
4449 	else
4450 		return (cache_fpl_aborted(fpl));
4451 }
4452 
4453 /*
4454  * The target vnode is not supported, prepare for the slow path to take over.
4455  */
4456 static int __noinline
4457 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4458 {
4459 	struct nameidata *ndp;
4460 	struct componentname *cnp;
4461 	enum vgetstate dvs;
4462 	struct vnode *dvp;
4463 	struct pwd *pwd;
4464 	seqc_t dvp_seqc;
4465 
4466 	ndp = fpl->ndp;
4467 	cnp = fpl->cnp;
4468 	pwd = *(fpl->pwd);
4469 	dvp = fpl->dvp;
4470 	dvp_seqc = fpl->dvp_seqc;
4471 
4472 	if (!pwd_hold_smr(pwd)) {
4473 		return (cache_fpl_aborted(fpl));
4474 	}
4475 
4476 	/*
4477 	 * Note that seqc is checked before the vnode is locked, so by
4478 	 * the time regular lookup gets to it it may have moved.
4479 	 *
4480 	 * Ultimately this does not affect correctness, any lookup errors
4481 	 * are userspace racing with itself. It is guaranteed that any
4482 	 * path which ultimately gets found could also have been found
4483 	 * by regular lookup going all the way in absence of concurrent
4484 	 * modifications.
4485 	 */
4486 	dvs = vget_prep_smr(dvp);
4487 	cache_fpl_smr_exit(fpl);
4488 	if (__predict_false(dvs == VGET_NONE)) {
4489 		pwd_drop(pwd);
4490 		return (cache_fpl_aborted(fpl));
4491 	}
4492 
4493 	vget_finish_ref(dvp, dvs);
4494 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4495 		vrele(dvp);
4496 		pwd_drop(pwd);
4497 		return (cache_fpl_aborted(fpl));
4498 	}
4499 
4500 	cache_fpl_restore_partial(fpl);
4501 #ifdef INVARIANTS
4502 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4503 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4504 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4505 	}
4506 #endif
4507 
4508 	ndp->ni_startdir = dvp;
4509 	cnp->cn_flags |= MAKEENTRY;
4510 	if (cache_fpl_islastcn(ndp))
4511 		cnp->cn_flags |= ISLASTCN;
4512 	if (cache_fpl_isdotdot(cnp))
4513 		cnp->cn_flags |= ISDOTDOT;
4514 
4515 	/*
4516 	 * Skip potential extra slashes parsing did not take care of.
4517 	 * cache_fplookup_skip_slashes explains the mechanism.
4518 	 */
4519 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4520 		do {
4521 			cnp->cn_nameptr++;
4522 			cache_fpl_pathlen_dec(fpl);
4523 		} while (*(cnp->cn_nameptr) == '/');
4524 	}
4525 
4526 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4527 #ifdef INVARIANTS
4528 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4529 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4530 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4531 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4532 	}
4533 #endif
4534 	return (0);
4535 }
4536 
4537 static int
4538 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4539 {
4540 	struct componentname *cnp;
4541 	struct vnode *tvp;
4542 	seqc_t tvp_seqc;
4543 	int error, lkflags;
4544 
4545 	cnp = fpl->cnp;
4546 	tvp = fpl->tvp;
4547 	tvp_seqc = fpl->tvp_seqc;
4548 
4549 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4550 		lkflags = LK_SHARED;
4551 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4552 			lkflags = LK_EXCLUSIVE;
4553 		error = vget_finish(tvp, lkflags, tvs);
4554 		if (__predict_false(error != 0)) {
4555 			return (cache_fpl_aborted(fpl));
4556 		}
4557 	} else {
4558 		vget_finish_ref(tvp, tvs);
4559 	}
4560 
4561 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4562 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4563 			vput(tvp);
4564 		else
4565 			vrele(tvp);
4566 		return (cache_fpl_aborted(fpl));
4567 	}
4568 
4569 	return (cache_fpl_handled(fpl));
4570 }
4571 
4572 /*
4573  * They want to possibly modify the state of the namecache.
4574  */
4575 static int __noinline
4576 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4577 {
4578 	struct nameidata *ndp __diagused;
4579 	struct componentname *cnp;
4580 	enum vgetstate dvs;
4581 	struct vnode *dvp, *tvp;
4582 	struct mount *mp;
4583 	seqc_t dvp_seqc;
4584 	int error;
4585 	bool docache;
4586 
4587 	ndp = fpl->ndp;
4588 	cnp = fpl->cnp;
4589 	dvp = fpl->dvp;
4590 	dvp_seqc = fpl->dvp_seqc;
4591 
4592 	MPASS(*(cnp->cn_nameptr) != '/');
4593 	MPASS(cache_fpl_islastcn(ndp));
4594 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4595 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4596 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4597 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4598 	    cnp->cn_nameiop == RENAME);
4599 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4600 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4601 
4602 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4603 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4604 		docache = false;
4605 
4606 	/*
4607 	 * Regular lookup nulifies the slash, which we don't do here.
4608 	 * Don't take chances with filesystem routines seeing it for
4609 	 * the last entry.
4610 	 */
4611 	if (cache_fpl_istrailingslash(fpl)) {
4612 		return (cache_fpl_partial(fpl));
4613 	}
4614 
4615 	mp = atomic_load_ptr(&dvp->v_mount);
4616 	if (__predict_false(mp == NULL)) {
4617 		return (cache_fpl_aborted(fpl));
4618 	}
4619 
4620 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4621 		cache_fpl_smr_exit(fpl);
4622 		/*
4623 		 * Original code keeps not checking for CREATE which
4624 		 * might be a bug. For now let the old lookup decide.
4625 		 */
4626 		if (cnp->cn_nameiop == CREATE) {
4627 			return (cache_fpl_aborted(fpl));
4628 		}
4629 		return (cache_fpl_handled_error(fpl, EROFS));
4630 	}
4631 
4632 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4633 		cache_fpl_smr_exit(fpl);
4634 		return (cache_fpl_handled_error(fpl, EEXIST));
4635 	}
4636 
4637 	/*
4638 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4639 	 * reasoning.
4640 	 *
4641 	 * XXX At least UFS requires its lookup routine to be called for
4642 	 * the last path component, which leads to some level of complication
4643 	 * and inefficiency:
4644 	 * - the target routine always locks the target vnode, but our caller
4645 	 *   may not need it locked
4646 	 * - some of the VOP machinery asserts that the parent is locked, which
4647 	 *   once more may be not required
4648 	 *
4649 	 * TODO: add a flag for filesystems which don't need this.
4650 	 */
4651 	dvs = vget_prep_smr(dvp);
4652 	cache_fpl_smr_exit(fpl);
4653 	if (__predict_false(dvs == VGET_NONE)) {
4654 		return (cache_fpl_aborted(fpl));
4655 	}
4656 
4657 	vget_finish_ref(dvp, dvs);
4658 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4659 		vrele(dvp);
4660 		return (cache_fpl_aborted(fpl));
4661 	}
4662 
4663 	error = vn_lock(dvp, LK_EXCLUSIVE);
4664 	if (__predict_false(error != 0)) {
4665 		vrele(dvp);
4666 		return (cache_fpl_aborted(fpl));
4667 	}
4668 
4669 	tvp = NULL;
4670 	cnp->cn_flags |= ISLASTCN;
4671 	if (docache)
4672 		cnp->cn_flags |= MAKEENTRY;
4673 	if (cache_fpl_isdotdot(cnp))
4674 		cnp->cn_flags |= ISDOTDOT;
4675 	cnp->cn_lkflags = LK_EXCLUSIVE;
4676 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4677 	switch (error) {
4678 	case EJUSTRETURN:
4679 	case 0:
4680 		break;
4681 	case ENOTDIR:
4682 	case ENOENT:
4683 		vput(dvp);
4684 		return (cache_fpl_handled_error(fpl, error));
4685 	default:
4686 		vput(dvp);
4687 		return (cache_fpl_aborted(fpl));
4688 	}
4689 
4690 	fpl->tvp = tvp;
4691 
4692 	if (tvp == NULL) {
4693 		MPASS(error == EJUSTRETURN);
4694 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4695 			VOP_UNLOCK(dvp);
4696 		}
4697 		return (cache_fpl_handled(fpl));
4698 	}
4699 
4700 	/*
4701 	 * There are very hairy corner cases concerning various flag combinations
4702 	 * and locking state. In particular here we only hold one lock instead of
4703 	 * two.
4704 	 *
4705 	 * Skip the complexity as it is of no significance for normal workloads.
4706 	 */
4707 	if (__predict_false(tvp == dvp)) {
4708 		vput(dvp);
4709 		vrele(tvp);
4710 		return (cache_fpl_aborted(fpl));
4711 	}
4712 
4713 	/*
4714 	 * If they want the symlink itself we are fine, but if they want to
4715 	 * follow it regular lookup has to be engaged.
4716 	 */
4717 	if (tvp->v_type == VLNK) {
4718 		if ((cnp->cn_flags & FOLLOW) != 0) {
4719 			vput(dvp);
4720 			vput(tvp);
4721 			return (cache_fpl_aborted(fpl));
4722 		}
4723 	}
4724 
4725 	/*
4726 	 * Since we expect this to be the terminal vnode it should almost never
4727 	 * be a mount point.
4728 	 */
4729 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4730 		vput(dvp);
4731 		vput(tvp);
4732 		return (cache_fpl_aborted(fpl));
4733 	}
4734 
4735 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4736 		vput(dvp);
4737 		vput(tvp);
4738 		return (cache_fpl_handled_error(fpl, EEXIST));
4739 	}
4740 
4741 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4742 		VOP_UNLOCK(tvp);
4743 	}
4744 
4745 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4746 		VOP_UNLOCK(dvp);
4747 	}
4748 
4749 	return (cache_fpl_handled(fpl));
4750 }
4751 
4752 static int __noinline
4753 cache_fplookup_modifying(struct cache_fpl *fpl)
4754 {
4755 	struct nameidata *ndp;
4756 
4757 	ndp = fpl->ndp;
4758 
4759 	if (!cache_fpl_islastcn(ndp)) {
4760 		return (cache_fpl_partial(fpl));
4761 	}
4762 	return (cache_fplookup_final_modifying(fpl));
4763 }
4764 
4765 static int __noinline
4766 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4767 {
4768 	struct componentname *cnp;
4769 	enum vgetstate dvs, tvs;
4770 	struct vnode *dvp, *tvp;
4771 	seqc_t dvp_seqc;
4772 	int error;
4773 
4774 	cnp = fpl->cnp;
4775 	dvp = fpl->dvp;
4776 	dvp_seqc = fpl->dvp_seqc;
4777 	tvp = fpl->tvp;
4778 
4779 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4780 
4781 	/*
4782 	 * This is less efficient than it can be for simplicity.
4783 	 */
4784 	dvs = vget_prep_smr(dvp);
4785 	if (__predict_false(dvs == VGET_NONE)) {
4786 		return (cache_fpl_aborted(fpl));
4787 	}
4788 	tvs = vget_prep_smr(tvp);
4789 	if (__predict_false(tvs == VGET_NONE)) {
4790 		cache_fpl_smr_exit(fpl);
4791 		vget_abort(dvp, dvs);
4792 		return (cache_fpl_aborted(fpl));
4793 	}
4794 
4795 	cache_fpl_smr_exit(fpl);
4796 
4797 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4798 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4799 		if (__predict_false(error != 0)) {
4800 			vget_abort(tvp, tvs);
4801 			return (cache_fpl_aborted(fpl));
4802 		}
4803 	} else {
4804 		vget_finish_ref(dvp, dvs);
4805 	}
4806 
4807 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4808 		vget_abort(tvp, tvs);
4809 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4810 			vput(dvp);
4811 		else
4812 			vrele(dvp);
4813 		return (cache_fpl_aborted(fpl));
4814 	}
4815 
4816 	error = cache_fplookup_final_child(fpl, tvs);
4817 	if (__predict_false(error != 0)) {
4818 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4819 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4820 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4821 			vput(dvp);
4822 		else
4823 			vrele(dvp);
4824 		return (error);
4825 	}
4826 
4827 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4828 	return (0);
4829 }
4830 
4831 static int
4832 cache_fplookup_final(struct cache_fpl *fpl)
4833 {
4834 	struct componentname *cnp;
4835 	enum vgetstate tvs;
4836 	struct vnode *dvp, *tvp;
4837 	seqc_t dvp_seqc;
4838 
4839 	cnp = fpl->cnp;
4840 	dvp = fpl->dvp;
4841 	dvp_seqc = fpl->dvp_seqc;
4842 	tvp = fpl->tvp;
4843 
4844 	MPASS(*(cnp->cn_nameptr) != '/');
4845 
4846 	if (cnp->cn_nameiop != LOOKUP) {
4847 		return (cache_fplookup_final_modifying(fpl));
4848 	}
4849 
4850 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4851 		return (cache_fplookup_final_withparent(fpl));
4852 
4853 	tvs = vget_prep_smr(tvp);
4854 	if (__predict_false(tvs == VGET_NONE)) {
4855 		return (cache_fpl_partial(fpl));
4856 	}
4857 
4858 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4859 		cache_fpl_smr_exit(fpl);
4860 		vget_abort(tvp, tvs);
4861 		return (cache_fpl_aborted(fpl));
4862 	}
4863 
4864 	cache_fpl_smr_exit(fpl);
4865 	return (cache_fplookup_final_child(fpl, tvs));
4866 }
4867 
4868 /*
4869  * Comment from locked lookup:
4870  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4871  * directory, e.g. like "/." or ".".
4872  */
4873 static int __noinline
4874 cache_fplookup_degenerate(struct cache_fpl *fpl)
4875 {
4876 	struct componentname *cnp;
4877 	struct vnode *dvp;
4878 	enum vgetstate dvs;
4879 	int error, lkflags;
4880 #ifdef INVARIANTS
4881 	char *cp;
4882 #endif
4883 
4884 	fpl->tvp = fpl->dvp;
4885 	fpl->tvp_seqc = fpl->dvp_seqc;
4886 
4887 	cnp = fpl->cnp;
4888 	dvp = fpl->dvp;
4889 
4890 #ifdef INVARIANTS
4891 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4892 		KASSERT(*cp == '/',
4893 		    ("%s: encountered non-slash; string [%s]\n", __func__,
4894 		    cnp->cn_pnbuf));
4895 	}
4896 #endif
4897 
4898 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4899 		cache_fpl_smr_exit(fpl);
4900 		return (cache_fpl_handled_error(fpl, EISDIR));
4901 	}
4902 
4903 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4904 		return (cache_fplookup_final_withparent(fpl));
4905 	}
4906 
4907 	dvs = vget_prep_smr(dvp);
4908 	cache_fpl_smr_exit(fpl);
4909 	if (__predict_false(dvs == VGET_NONE)) {
4910 		return (cache_fpl_aborted(fpl));
4911 	}
4912 
4913 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4914 		lkflags = LK_SHARED;
4915 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4916 			lkflags = LK_EXCLUSIVE;
4917 		error = vget_finish(dvp, lkflags, dvs);
4918 		if (__predict_false(error != 0)) {
4919 			return (cache_fpl_aborted(fpl));
4920 		}
4921 	} else {
4922 		vget_finish_ref(dvp, dvs);
4923 	}
4924 	return (cache_fpl_handled(fpl));
4925 }
4926 
4927 static int __noinline
4928 cache_fplookup_emptypath(struct cache_fpl *fpl)
4929 {
4930 	struct nameidata *ndp;
4931 	struct componentname *cnp;
4932 	enum vgetstate tvs;
4933 	struct vnode *tvp;
4934 	int error, lkflags;
4935 
4936 	fpl->tvp = fpl->dvp;
4937 	fpl->tvp_seqc = fpl->dvp_seqc;
4938 
4939 	ndp = fpl->ndp;
4940 	cnp = fpl->cnp;
4941 	tvp = fpl->tvp;
4942 
4943 	MPASS(*cnp->cn_pnbuf == '\0');
4944 
4945 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
4946 		cache_fpl_smr_exit(fpl);
4947 		return (cache_fpl_handled_error(fpl, ENOENT));
4948 	}
4949 
4950 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
4951 
4952 	tvs = vget_prep_smr(tvp);
4953 	cache_fpl_smr_exit(fpl);
4954 	if (__predict_false(tvs == VGET_NONE)) {
4955 		return (cache_fpl_aborted(fpl));
4956 	}
4957 
4958 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4959 		lkflags = LK_SHARED;
4960 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4961 			lkflags = LK_EXCLUSIVE;
4962 		error = vget_finish(tvp, lkflags, tvs);
4963 		if (__predict_false(error != 0)) {
4964 			return (cache_fpl_aborted(fpl));
4965 		}
4966 	} else {
4967 		vget_finish_ref(tvp, tvs);
4968 	}
4969 
4970 	ndp->ni_resflags |= NIRES_EMPTYPATH;
4971 	return (cache_fpl_handled(fpl));
4972 }
4973 
4974 static int __noinline
4975 cache_fplookup_noentry(struct cache_fpl *fpl)
4976 {
4977 	struct nameidata *ndp;
4978 	struct componentname *cnp;
4979 	enum vgetstate dvs;
4980 	struct vnode *dvp, *tvp;
4981 	seqc_t dvp_seqc;
4982 	int error;
4983 
4984 	ndp = fpl->ndp;
4985 	cnp = fpl->cnp;
4986 	dvp = fpl->dvp;
4987 	dvp_seqc = fpl->dvp_seqc;
4988 
4989 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4990 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4991 	if (cnp->cn_nameiop == LOOKUP)
4992 		MPASS((cnp->cn_flags & NOCACHE) == 0);
4993 	MPASS(!cache_fpl_isdotdot(cnp));
4994 
4995 	/*
4996 	 * Hack: delayed name len checking.
4997 	 */
4998 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4999 		cache_fpl_smr_exit(fpl);
5000 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5001 	}
5002 
5003 	if (cnp->cn_nameptr[0] == '/') {
5004 		return (cache_fplookup_skip_slashes(fpl));
5005 	}
5006 
5007 	if (cnp->cn_pnbuf[0] == '\0') {
5008 		return (cache_fplookup_emptypath(fpl));
5009 	}
5010 
5011 	if (cnp->cn_nameptr[0] == '\0') {
5012 		if (fpl->tvp == NULL) {
5013 			return (cache_fplookup_degenerate(fpl));
5014 		}
5015 		return (cache_fplookup_trailingslash(fpl));
5016 	}
5017 
5018 	if (cnp->cn_nameiop != LOOKUP) {
5019 		fpl->tvp = NULL;
5020 		return (cache_fplookup_modifying(fpl));
5021 	}
5022 
5023 	/*
5024 	 * Only try to fill in the component if it is the last one,
5025 	 * otherwise not only there may be several to handle but the
5026 	 * walk may be complicated.
5027 	 */
5028 	if (!cache_fpl_islastcn(ndp)) {
5029 		return (cache_fpl_partial(fpl));
5030 	}
5031 
5032 	/*
5033 	 * Regular lookup nulifies the slash, which we don't do here.
5034 	 * Don't take chances with filesystem routines seeing it for
5035 	 * the last entry.
5036 	 */
5037 	if (cache_fpl_istrailingslash(fpl)) {
5038 		return (cache_fpl_partial(fpl));
5039 	}
5040 
5041 	/*
5042 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5043 	 * reasoning.
5044 	 */
5045 	dvs = vget_prep_smr(dvp);
5046 	cache_fpl_smr_exit(fpl);
5047 	if (__predict_false(dvs == VGET_NONE)) {
5048 		return (cache_fpl_aborted(fpl));
5049 	}
5050 
5051 	vget_finish_ref(dvp, dvs);
5052 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5053 		vrele(dvp);
5054 		return (cache_fpl_aborted(fpl));
5055 	}
5056 
5057 	error = vn_lock(dvp, LK_SHARED);
5058 	if (__predict_false(error != 0)) {
5059 		vrele(dvp);
5060 		return (cache_fpl_aborted(fpl));
5061 	}
5062 
5063 	tvp = NULL;
5064 	/*
5065 	 * TODO: provide variants which don't require locking either vnode.
5066 	 */
5067 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5068 	cnp->cn_lkflags = LK_SHARED;
5069 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5070 		cnp->cn_lkflags = LK_EXCLUSIVE;
5071 	}
5072 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5073 	switch (error) {
5074 	case EJUSTRETURN:
5075 	case 0:
5076 		break;
5077 	case ENOTDIR:
5078 	case ENOENT:
5079 		vput(dvp);
5080 		return (cache_fpl_handled_error(fpl, error));
5081 	default:
5082 		vput(dvp);
5083 		return (cache_fpl_aborted(fpl));
5084 	}
5085 
5086 	fpl->tvp = tvp;
5087 
5088 	if (tvp == NULL) {
5089 		MPASS(error == EJUSTRETURN);
5090 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5091 			vput(dvp);
5092 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5093 			VOP_UNLOCK(dvp);
5094 		}
5095 		return (cache_fpl_handled(fpl));
5096 	}
5097 
5098 	if (tvp->v_type == VLNK) {
5099 		if ((cnp->cn_flags & FOLLOW) != 0) {
5100 			vput(dvp);
5101 			vput(tvp);
5102 			return (cache_fpl_aborted(fpl));
5103 		}
5104 	}
5105 
5106 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5107 		vput(dvp);
5108 		vput(tvp);
5109 		return (cache_fpl_aborted(fpl));
5110 	}
5111 
5112 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5113 		VOP_UNLOCK(tvp);
5114 	}
5115 
5116 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5117 		vput(dvp);
5118 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5119 		VOP_UNLOCK(dvp);
5120 	}
5121 	return (cache_fpl_handled(fpl));
5122 }
5123 
5124 static int __noinline
5125 cache_fplookup_dot(struct cache_fpl *fpl)
5126 {
5127 	int error;
5128 
5129 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5130 
5131 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5132 		cache_fpl_smr_exit(fpl);
5133 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5134 	}
5135 
5136 	/*
5137 	 * Just re-assign the value. seqc will be checked later for the first
5138 	 * non-dot path component in line and/or before deciding to return the
5139 	 * vnode.
5140 	 */
5141 	fpl->tvp = fpl->dvp;
5142 	fpl->tvp_seqc = fpl->dvp_seqc;
5143 
5144 	counter_u64_add(dothits, 1);
5145 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5146 
5147 	error = 0;
5148 	if (cache_fplookup_is_mp(fpl)) {
5149 		error = cache_fplookup_cross_mount(fpl);
5150 	}
5151 	return (error);
5152 }
5153 
5154 static int __noinline
5155 cache_fplookup_dotdot(struct cache_fpl *fpl)
5156 {
5157 	struct nameidata *ndp;
5158 	struct componentname *cnp;
5159 	struct namecache *ncp;
5160 	struct vnode *dvp;
5161 	struct prison *pr;
5162 	u_char nc_flag;
5163 
5164 	ndp = fpl->ndp;
5165 	cnp = fpl->cnp;
5166 	dvp = fpl->dvp;
5167 
5168 	MPASS(cache_fpl_isdotdot(cnp));
5169 
5170 	/*
5171 	 * XXX this is racy the same way regular lookup is
5172 	 */
5173 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5174 	    pr = pr->pr_parent)
5175 		if (dvp == pr->pr_root)
5176 			break;
5177 
5178 	if (dvp == ndp->ni_rootdir ||
5179 	    dvp == ndp->ni_topdir ||
5180 	    dvp == rootvnode ||
5181 	    pr != NULL) {
5182 		fpl->tvp = dvp;
5183 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5184 		if (seqc_in_modify(fpl->tvp_seqc)) {
5185 			return (cache_fpl_aborted(fpl));
5186 		}
5187 		return (0);
5188 	}
5189 
5190 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5191 		/*
5192 		 * TODO
5193 		 * The opposite of climb mount is needed here.
5194 		 */
5195 		return (cache_fpl_partial(fpl));
5196 	}
5197 
5198 	if (__predict_false(dvp->v_type != VDIR)) {
5199 		cache_fpl_smr_exit(fpl);
5200 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5201 	}
5202 
5203 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5204 	if (ncp == NULL) {
5205 		return (cache_fpl_aborted(fpl));
5206 	}
5207 
5208 	nc_flag = atomic_load_char(&ncp->nc_flag);
5209 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5210 		if ((nc_flag & NCF_NEGATIVE) != 0)
5211 			return (cache_fpl_aborted(fpl));
5212 		fpl->tvp = ncp->nc_vp;
5213 	} else {
5214 		fpl->tvp = ncp->nc_dvp;
5215 	}
5216 
5217 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5218 	if (seqc_in_modify(fpl->tvp_seqc)) {
5219 		return (cache_fpl_partial(fpl));
5220 	}
5221 
5222 	/*
5223 	 * Acquire fence provided by vn_seqc_read_any above.
5224 	 */
5225 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5226 		return (cache_fpl_aborted(fpl));
5227 	}
5228 
5229 	if (!cache_ncp_canuse(ncp)) {
5230 		return (cache_fpl_aborted(fpl));
5231 	}
5232 
5233 	counter_u64_add(dotdothits, 1);
5234 	return (0);
5235 }
5236 
5237 static int __noinline
5238 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5239 {
5240 	u_char nc_flag __diagused;
5241 	bool neg_promote;
5242 
5243 #ifdef INVARIANTS
5244 	nc_flag = atomic_load_char(&ncp->nc_flag);
5245 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5246 #endif
5247 	/*
5248 	 * If they want to create an entry we need to replace this one.
5249 	 */
5250 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5251 		fpl->tvp = NULL;
5252 		return (cache_fplookup_modifying(fpl));
5253 	}
5254 	neg_promote = cache_neg_hit_prep(ncp);
5255 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5256 		cache_neg_hit_abort(ncp);
5257 		return (cache_fpl_partial(fpl));
5258 	}
5259 	if (neg_promote) {
5260 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5261 	}
5262 	cache_neg_hit_finish(ncp);
5263 	cache_fpl_smr_exit(fpl);
5264 	return (cache_fpl_handled_error(fpl, ENOENT));
5265 }
5266 
5267 /*
5268  * Resolve a symlink. Called by filesystem-specific routines.
5269  *
5270  * Code flow is:
5271  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5272  */
5273 int
5274 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5275 {
5276 	struct nameidata *ndp;
5277 	struct componentname *cnp;
5278 	size_t adjust;
5279 
5280 	ndp = fpl->ndp;
5281 	cnp = fpl->cnp;
5282 
5283 	if (__predict_false(len == 0)) {
5284 		return (ENOENT);
5285 	}
5286 
5287 	if (__predict_false(len > MAXPATHLEN - 2)) {
5288 		if (cache_fpl_istrailingslash(fpl)) {
5289 			return (EAGAIN);
5290 		}
5291 	}
5292 
5293 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5294 #ifdef INVARIANTS
5295 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5296 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5297 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5298 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5299 	}
5300 #endif
5301 
5302 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5303 		return (ENAMETOOLONG);
5304 	}
5305 
5306 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5307 		return (ELOOP);
5308 	}
5309 
5310 	adjust = len;
5311 	if (ndp->ni_pathlen > 1) {
5312 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5313 	} else {
5314 		if (cache_fpl_istrailingslash(fpl)) {
5315 			adjust = len + 1;
5316 			cnp->cn_pnbuf[len] = '/';
5317 			cnp->cn_pnbuf[len + 1] = '\0';
5318 		} else {
5319 			cnp->cn_pnbuf[len] = '\0';
5320 		}
5321 	}
5322 	bcopy(string, cnp->cn_pnbuf, len);
5323 
5324 	ndp->ni_pathlen += adjust;
5325 	cache_fpl_pathlen_add(fpl, adjust);
5326 	cnp->cn_nameptr = cnp->cn_pnbuf;
5327 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5328 	fpl->tvp = NULL;
5329 	return (0);
5330 }
5331 
5332 static int __noinline
5333 cache_fplookup_symlink(struct cache_fpl *fpl)
5334 {
5335 	struct mount *mp;
5336 	struct nameidata *ndp;
5337 	struct componentname *cnp;
5338 	struct vnode *dvp, *tvp;
5339 	int error;
5340 
5341 	ndp = fpl->ndp;
5342 	cnp = fpl->cnp;
5343 	dvp = fpl->dvp;
5344 	tvp = fpl->tvp;
5345 
5346 	if (cache_fpl_islastcn(ndp)) {
5347 		if ((cnp->cn_flags & FOLLOW) == 0) {
5348 			return (cache_fplookup_final(fpl));
5349 		}
5350 	}
5351 
5352 	mp = atomic_load_ptr(&dvp->v_mount);
5353 	if (__predict_false(mp == NULL)) {
5354 		return (cache_fpl_aborted(fpl));
5355 	}
5356 
5357 	/*
5358 	 * Note this check races against setting the flag just like regular
5359 	 * lookup.
5360 	 */
5361 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5362 		cache_fpl_smr_exit(fpl);
5363 		return (cache_fpl_handled_error(fpl, EACCES));
5364 	}
5365 
5366 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5367 	if (__predict_false(error != 0)) {
5368 		switch (error) {
5369 		case EAGAIN:
5370 			return (cache_fpl_partial(fpl));
5371 		case ENOENT:
5372 		case ENAMETOOLONG:
5373 		case ELOOP:
5374 			cache_fpl_smr_exit(fpl);
5375 			return (cache_fpl_handled_error(fpl, error));
5376 		default:
5377 			return (cache_fpl_aborted(fpl));
5378 		}
5379 	}
5380 
5381 	if (*(cnp->cn_nameptr) == '/') {
5382 		fpl->dvp = cache_fpl_handle_root(fpl);
5383 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5384 		if (seqc_in_modify(fpl->dvp_seqc)) {
5385 			return (cache_fpl_aborted(fpl));
5386 		}
5387 		/*
5388 		 * The main loop assumes that ->dvp points to a vnode belonging
5389 		 * to a filesystem which can do lockless lookup, but the absolute
5390 		 * symlink can be wandering off to one which does not.
5391 		 */
5392 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5393 		if (__predict_false(mp == NULL)) {
5394 			return (cache_fpl_aborted(fpl));
5395 		}
5396 		if (!cache_fplookup_mp_supported(mp)) {
5397 			cache_fpl_checkpoint(fpl);
5398 			return (cache_fpl_partial(fpl));
5399 		}
5400 	}
5401 	return (0);
5402 }
5403 
5404 static int
5405 cache_fplookup_next(struct cache_fpl *fpl)
5406 {
5407 	struct componentname *cnp;
5408 	struct namecache *ncp;
5409 	struct vnode *dvp, *tvp;
5410 	u_char nc_flag;
5411 	uint32_t hash;
5412 	int error;
5413 
5414 	cnp = fpl->cnp;
5415 	dvp = fpl->dvp;
5416 	hash = fpl->hash;
5417 
5418 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5419 		if (cnp->cn_namelen == 1) {
5420 			return (cache_fplookup_dot(fpl));
5421 		}
5422 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5423 			return (cache_fplookup_dotdot(fpl));
5424 		}
5425 	}
5426 
5427 	MPASS(!cache_fpl_isdotdot(cnp));
5428 
5429 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5430 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5431 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5432 			break;
5433 	}
5434 
5435 	if (__predict_false(ncp == NULL)) {
5436 		return (cache_fplookup_noentry(fpl));
5437 	}
5438 
5439 	tvp = atomic_load_ptr(&ncp->nc_vp);
5440 	nc_flag = atomic_load_char(&ncp->nc_flag);
5441 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5442 		return (cache_fplookup_neg(fpl, ncp, hash));
5443 	}
5444 
5445 	if (!cache_ncp_canuse(ncp)) {
5446 		return (cache_fpl_partial(fpl));
5447 	}
5448 
5449 	fpl->tvp = tvp;
5450 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5451 	if (seqc_in_modify(fpl->tvp_seqc)) {
5452 		return (cache_fpl_partial(fpl));
5453 	}
5454 
5455 	counter_u64_add(numposhits, 1);
5456 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5457 
5458 	error = 0;
5459 	if (cache_fplookup_is_mp(fpl)) {
5460 		error = cache_fplookup_cross_mount(fpl);
5461 	}
5462 	return (error);
5463 }
5464 
5465 static bool
5466 cache_fplookup_mp_supported(struct mount *mp)
5467 {
5468 
5469 	MPASS(mp != NULL);
5470 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5471 		return (false);
5472 	return (true);
5473 }
5474 
5475 /*
5476  * Walk up the mount stack (if any).
5477  *
5478  * Correctness is provided in the following ways:
5479  * - all vnodes are protected from freeing with SMR
5480  * - struct mount objects are type stable making them always safe to access
5481  * - stability of the particular mount is provided by busying it
5482  * - relationship between the vnode which is mounted on and the mount is
5483  *   verified with the vnode sequence counter after busying
5484  * - association between root vnode of the mount and the mount is protected
5485  *   by busy
5486  *
5487  * From that point on we can read the sequence counter of the root vnode
5488  * and get the next mount on the stack (if any) using the same protection.
5489  *
5490  * By the end of successful walk we are guaranteed the reached state was
5491  * indeed present at least at some point which matches the regular lookup.
5492  */
5493 static int __noinline
5494 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5495 {
5496 	struct mount *mp, *prev_mp;
5497 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5498 	struct vnode *vp;
5499 	seqc_t vp_seqc;
5500 
5501 	vp = fpl->tvp;
5502 	vp_seqc = fpl->tvp_seqc;
5503 
5504 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5505 	mp = atomic_load_ptr(&vp->v_mountedhere);
5506 	if (__predict_false(mp == NULL)) {
5507 		return (0);
5508 	}
5509 
5510 	prev_mp = NULL;
5511 	for (;;) {
5512 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5513 			if (prev_mp != NULL)
5514 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5515 			return (cache_fpl_partial(fpl));
5516 		}
5517 		if (prev_mp != NULL)
5518 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5519 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5520 			vfs_op_thread_exit_crit(mp, mpcpu);
5521 			return (cache_fpl_partial(fpl));
5522 		}
5523 		if (!cache_fplookup_mp_supported(mp)) {
5524 			vfs_op_thread_exit_crit(mp, mpcpu);
5525 			return (cache_fpl_partial(fpl));
5526 		}
5527 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5528 		if (vp == NULL) {
5529 			vfs_op_thread_exit_crit(mp, mpcpu);
5530 			return (cache_fpl_partial(fpl));
5531 		}
5532 		vp_seqc = vn_seqc_read_any(vp);
5533 		if (seqc_in_modify(vp_seqc)) {
5534 			vfs_op_thread_exit_crit(mp, mpcpu);
5535 			return (cache_fpl_partial(fpl));
5536 		}
5537 		prev_mp = mp;
5538 		prev_mpcpu = mpcpu;
5539 		mp = atomic_load_ptr(&vp->v_mountedhere);
5540 		if (mp == NULL)
5541 			break;
5542 	}
5543 
5544 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5545 	fpl->tvp = vp;
5546 	fpl->tvp_seqc = vp_seqc;
5547 	return (0);
5548 }
5549 
5550 static int __noinline
5551 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5552 {
5553 	struct mount *mp;
5554 	struct mount_pcpu *mpcpu;
5555 	struct vnode *vp;
5556 	seqc_t vp_seqc;
5557 
5558 	vp = fpl->tvp;
5559 	vp_seqc = fpl->tvp_seqc;
5560 
5561 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5562 	mp = atomic_load_ptr(&vp->v_mountedhere);
5563 	if (__predict_false(mp == NULL)) {
5564 		return (0);
5565 	}
5566 
5567 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5568 		return (cache_fpl_partial(fpl));
5569 	}
5570 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5571 		vfs_op_thread_exit_crit(mp, mpcpu);
5572 		return (cache_fpl_partial(fpl));
5573 	}
5574 	if (!cache_fplookup_mp_supported(mp)) {
5575 		vfs_op_thread_exit_crit(mp, mpcpu);
5576 		return (cache_fpl_partial(fpl));
5577 	}
5578 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5579 	if (__predict_false(vp == NULL)) {
5580 		vfs_op_thread_exit_crit(mp, mpcpu);
5581 		return (cache_fpl_partial(fpl));
5582 	}
5583 	vp_seqc = vn_seqc_read_any(vp);
5584 	vfs_op_thread_exit_crit(mp, mpcpu);
5585 	if (seqc_in_modify(vp_seqc)) {
5586 		return (cache_fpl_partial(fpl));
5587 	}
5588 	mp = atomic_load_ptr(&vp->v_mountedhere);
5589 	if (__predict_false(mp != NULL)) {
5590 		/*
5591 		 * There are possibly more mount points on top.
5592 		 * Normally this does not happen so for simplicity just start
5593 		 * over.
5594 		 */
5595 		return (cache_fplookup_climb_mount(fpl));
5596 	}
5597 
5598 	fpl->tvp = vp;
5599 	fpl->tvp_seqc = vp_seqc;
5600 	return (0);
5601 }
5602 
5603 /*
5604  * Check if a vnode is mounted on.
5605  */
5606 static bool
5607 cache_fplookup_is_mp(struct cache_fpl *fpl)
5608 {
5609 	struct vnode *vp;
5610 
5611 	vp = fpl->tvp;
5612 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5613 }
5614 
5615 /*
5616  * Parse the path.
5617  *
5618  * The code was originally copy-pasted from regular lookup and despite
5619  * clean ups leaves performance on the table. Any modifications here
5620  * must take into account that in case off fallback the resulting
5621  * nameidata state has to be compatible with the original.
5622  */
5623 
5624 /*
5625  * Debug ni_pathlen tracking.
5626  */
5627 #ifdef INVARIANTS
5628 static void
5629 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5630 {
5631 
5632 	fpl->debug.ni_pathlen += n;
5633 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5634 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5635 }
5636 
5637 static void
5638 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5639 {
5640 
5641 	fpl->debug.ni_pathlen -= n;
5642 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5643 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5644 }
5645 
5646 static void
5647 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5648 {
5649 
5650 	cache_fpl_pathlen_add(fpl, 1);
5651 }
5652 
5653 static void
5654 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5655 {
5656 
5657 	cache_fpl_pathlen_sub(fpl, 1);
5658 }
5659 #else
5660 static void
5661 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5662 {
5663 }
5664 
5665 static void
5666 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5667 {
5668 }
5669 
5670 static void
5671 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5672 {
5673 }
5674 
5675 static void
5676 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5677 {
5678 }
5679 #endif
5680 
5681 static void
5682 cache_fplookup_parse(struct cache_fpl *fpl)
5683 {
5684 	struct nameidata *ndp;
5685 	struct componentname *cnp;
5686 	struct vnode *dvp;
5687 	char *cp;
5688 	uint32_t hash;
5689 
5690 	ndp = fpl->ndp;
5691 	cnp = fpl->cnp;
5692 	dvp = fpl->dvp;
5693 
5694 	/*
5695 	 * Find the end of this path component, it is either / or nul.
5696 	 *
5697 	 * Store / as a temporary sentinel so that we only have one character
5698 	 * to test for. Pathnames tend to be short so this should not be
5699 	 * resulting in cache misses.
5700 	 *
5701 	 * TODO: fix this to be word-sized.
5702 	 */
5703 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5704 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5705 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5706 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5707 	    fpl->nulchar, cnp->cn_pnbuf));
5708 	KASSERT(*fpl->nulchar == '\0',
5709 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5710 	    cnp->cn_pnbuf));
5711 	hash = cache_get_hash_iter_start(dvp);
5712 	*fpl->nulchar = '/';
5713 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5714 		KASSERT(*cp != '\0',
5715 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5716 		    cnp->cn_nameptr));
5717 		hash = cache_get_hash_iter(*cp, hash);
5718 		continue;
5719 	}
5720 	*fpl->nulchar = '\0';
5721 	fpl->hash = cache_get_hash_iter_finish(hash);
5722 
5723 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5724 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5725 
5726 #ifdef INVARIANTS
5727 	/*
5728 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5729 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5730 	 */
5731 	if (cnp->cn_namelen <= NAME_MAX) {
5732 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5733 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5734 			    cnp->cn_nameptr, cnp->cn_namelen);
5735 		}
5736 	}
5737 #endif
5738 
5739 	/*
5740 	 * Hack: we have to check if the found path component's length exceeds
5741 	 * NAME_MAX. However, the condition is very rarely true and check can
5742 	 * be elided in the common case -- if an entry was found in the cache,
5743 	 * then it could not have been too long to begin with.
5744 	 */
5745 	ndp->ni_next = cp;
5746 }
5747 
5748 static void
5749 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5750 {
5751 	struct nameidata *ndp;
5752 	struct componentname *cnp;
5753 
5754 	ndp = fpl->ndp;
5755 	cnp = fpl->cnp;
5756 
5757 	cnp->cn_nameptr = ndp->ni_next;
5758 	KASSERT(*(cnp->cn_nameptr) == '/',
5759 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5760 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5761 	cnp->cn_nameptr++;
5762 	cache_fpl_pathlen_dec(fpl);
5763 }
5764 
5765 /*
5766  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5767  *
5768  * Lockless lookup tries to elide checking for spurious slashes and should they
5769  * be present is guaranteed to fail to find an entry. In this case the caller
5770  * must check if the name starts with a slash and call this routine.  It is
5771  * going to fast forward across the spurious slashes and set the state up for
5772  * retry.
5773  */
5774 static int __noinline
5775 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5776 {
5777 	struct nameidata *ndp;
5778 	struct componentname *cnp;
5779 
5780 	ndp = fpl->ndp;
5781 	cnp = fpl->cnp;
5782 
5783 	MPASS(*(cnp->cn_nameptr) == '/');
5784 	do {
5785 		cnp->cn_nameptr++;
5786 		cache_fpl_pathlen_dec(fpl);
5787 	} while (*(cnp->cn_nameptr) == '/');
5788 
5789 	/*
5790 	 * Go back to one slash so that cache_fplookup_parse_advance has
5791 	 * something to skip.
5792 	 */
5793 	cnp->cn_nameptr--;
5794 	cache_fpl_pathlen_inc(fpl);
5795 
5796 	/*
5797 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5798 	 */
5799 	ndp->ni_next = cnp->cn_nameptr;
5800 
5801 	/*
5802 	 * See cache_fplookup_dot.
5803 	 */
5804 	fpl->tvp = fpl->dvp;
5805 	fpl->tvp_seqc = fpl->dvp_seqc;
5806 
5807 	return (0);
5808 }
5809 
5810 /*
5811  * Handle trailing slashes (e.g., "foo/").
5812  *
5813  * If a trailing slash is found the terminal vnode must be a directory.
5814  * Regular lookup shortens the path by nulifying the first trailing slash and
5815  * sets the TRAILINGSLASH flag to denote this took place. There are several
5816  * checks on it performed later.
5817  *
5818  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5819  * manner relying on an invariant that a non-directory vnode will get a miss.
5820  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5821  *
5822  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5823  * and denotes this is the last path component, which avoids looping back.
5824  *
5825  * Only plain lookups are supported for now to restrict corner cases to handle.
5826  */
5827 static int __noinline
5828 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5829 {
5830 #ifdef INVARIANTS
5831 	size_t ni_pathlen;
5832 #endif
5833 	struct nameidata *ndp;
5834 	struct componentname *cnp;
5835 	struct namecache *ncp;
5836 	struct vnode *tvp;
5837 	char *cn_nameptr_orig, *cn_nameptr_slash;
5838 	seqc_t tvp_seqc;
5839 	u_char nc_flag;
5840 
5841 	ndp = fpl->ndp;
5842 	cnp = fpl->cnp;
5843 	tvp = fpl->tvp;
5844 	tvp_seqc = fpl->tvp_seqc;
5845 
5846 	MPASS(fpl->dvp == fpl->tvp);
5847 	KASSERT(cache_fpl_istrailingslash(fpl),
5848 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5849 	    cnp->cn_pnbuf));
5850 	KASSERT(cnp->cn_nameptr[0] == '\0',
5851 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5852 	    cnp->cn_pnbuf));
5853 	KASSERT(cnp->cn_namelen == 0,
5854 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5855 	    cnp->cn_pnbuf));
5856 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5857 
5858 	if (cnp->cn_nameiop != LOOKUP) {
5859 		return (cache_fpl_aborted(fpl));
5860 	}
5861 
5862 	if (__predict_false(tvp->v_type != VDIR)) {
5863 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5864 			return (cache_fpl_aborted(fpl));
5865 		}
5866 		cache_fpl_smr_exit(fpl);
5867 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5868 	}
5869 
5870 	/*
5871 	 * Denote the last component.
5872 	 */
5873 	ndp->ni_next = &cnp->cn_nameptr[0];
5874 	MPASS(cache_fpl_islastcn(ndp));
5875 
5876 	/*
5877 	 * Unwind trailing slashes.
5878 	 */
5879 	cn_nameptr_orig = cnp->cn_nameptr;
5880 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5881 		cnp->cn_nameptr--;
5882 		if (cnp->cn_nameptr[0] != '/') {
5883 			break;
5884 		}
5885 	}
5886 
5887 	/*
5888 	 * Unwind to the beginning of the path component.
5889 	 *
5890 	 * Note the path may or may not have started with a slash.
5891 	 */
5892 	cn_nameptr_slash = cnp->cn_nameptr;
5893 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5894 		cnp->cn_nameptr--;
5895 		if (cnp->cn_nameptr[0] == '/') {
5896 			break;
5897 		}
5898 	}
5899 	if (cnp->cn_nameptr[0] == '/') {
5900 		cnp->cn_nameptr++;
5901 	}
5902 
5903 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5904 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5905 	cache_fpl_checkpoint(fpl);
5906 
5907 #ifdef INVARIANTS
5908 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
5909 	if (ni_pathlen != fpl->debug.ni_pathlen) {
5910 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5911 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5912 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5913 	}
5914 #endif
5915 
5916 	/*
5917 	 * If this was a "./" lookup the parent directory is already correct.
5918 	 */
5919 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
5920 		return (0);
5921 	}
5922 
5923 	/*
5924 	 * Otherwise we need to look it up.
5925 	 */
5926 	tvp = fpl->tvp;
5927 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
5928 	if (__predict_false(ncp == NULL)) {
5929 		return (cache_fpl_aborted(fpl));
5930 	}
5931 	nc_flag = atomic_load_char(&ncp->nc_flag);
5932 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5933 		return (cache_fpl_aborted(fpl));
5934 	}
5935 	fpl->dvp = ncp->nc_dvp;
5936 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5937 	if (seqc_in_modify(fpl->dvp_seqc)) {
5938 		return (cache_fpl_aborted(fpl));
5939 	}
5940 	return (0);
5941 }
5942 
5943 /*
5944  * See the API contract for VOP_FPLOOKUP_VEXEC.
5945  */
5946 static int __noinline
5947 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
5948 {
5949 	struct componentname *cnp;
5950 	struct vnode *dvp;
5951 	seqc_t dvp_seqc;
5952 
5953 	cnp = fpl->cnp;
5954 	dvp = fpl->dvp;
5955 	dvp_seqc = fpl->dvp_seqc;
5956 
5957 	/*
5958 	 * Hack: delayed empty path checking.
5959 	 */
5960 	if (cnp->cn_pnbuf[0] == '\0') {
5961 		return (cache_fplookup_emptypath(fpl));
5962 	}
5963 
5964 	/*
5965 	 * TODO: Due to ignoring trailing slashes lookup will perform a
5966 	 * permission check on the last dir when it should not be doing it.  It
5967 	 * may fail, but said failure should be ignored. It is possible to fix
5968 	 * it up fully without resorting to regular lookup, but for now just
5969 	 * abort.
5970 	 */
5971 	if (cache_fpl_istrailingslash(fpl)) {
5972 		return (cache_fpl_aborted(fpl));
5973 	}
5974 
5975 	/*
5976 	 * Hack: delayed degenerate path checking.
5977 	 */
5978 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
5979 		return (cache_fplookup_degenerate(fpl));
5980 	}
5981 
5982 	/*
5983 	 * Hack: delayed name len checking.
5984 	 */
5985 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5986 		cache_fpl_smr_exit(fpl);
5987 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5988 	}
5989 
5990 	/*
5991 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
5992 	 * In such a case we need to return ENOTDIR, but we may happen to get
5993 	 * here with a different error.
5994 	 */
5995 	if (dvp->v_type != VDIR) {
5996 		error = ENOTDIR;
5997 	}
5998 
5999 	/*
6000 	 * Hack: handle O_SEARCH.
6001 	 *
6002 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6003 	 * <quote>
6004 	 * If the access mode of the open file description associated with the
6005 	 * file descriptor is not O_SEARCH, the function shall check whether
6006 	 * directory searches are permitted using the current permissions of
6007 	 * the directory underlying the file descriptor. If the access mode is
6008 	 * O_SEARCH, the function shall not perform the check.
6009 	 * </quote>
6010 	 *
6011 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6012 	 * component to decide whether to do the permission check. However,
6013 	 * since most lookups never have the flag (and when they do it is only
6014 	 * present for the first path component), lockless lookup only acts on
6015 	 * it if there is a permission problem. Here the flag is represented
6016 	 * with a boolean so that we don't have to clear it on the way out.
6017 	 *
6018 	 * For simplicity this always aborts.
6019 	 * TODO: check if this is the first lookup and ignore the permission
6020 	 * problem. Note the flag has to survive fallback (if it happens to be
6021 	 * performed).
6022 	 */
6023 	if (fpl->fsearch) {
6024 		return (cache_fpl_aborted(fpl));
6025 	}
6026 
6027 	switch (error) {
6028 	case EAGAIN:
6029 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6030 			error = cache_fpl_aborted(fpl);
6031 		} else {
6032 			cache_fpl_partial(fpl);
6033 		}
6034 		break;
6035 	default:
6036 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6037 			error = cache_fpl_aborted(fpl);
6038 		} else {
6039 			cache_fpl_smr_exit(fpl);
6040 			cache_fpl_handled_error(fpl, error);
6041 		}
6042 		break;
6043 	}
6044 	return (error);
6045 }
6046 
6047 static int
6048 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6049 {
6050 	struct nameidata *ndp;
6051 	struct componentname *cnp;
6052 	struct mount *mp;
6053 	int error;
6054 
6055 	ndp = fpl->ndp;
6056 	cnp = fpl->cnp;
6057 
6058 	cache_fpl_checkpoint(fpl);
6059 
6060 	/*
6061 	 * The vnode at hand is almost always stable, skip checking for it.
6062 	 * Worst case this postpones the check towards the end of the iteration
6063 	 * of the main loop.
6064 	 */
6065 	fpl->dvp = dvp;
6066 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6067 
6068 	mp = atomic_load_ptr(&dvp->v_mount);
6069 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6070 		return (cache_fpl_aborted(fpl));
6071 	}
6072 
6073 	MPASS(fpl->tvp == NULL);
6074 
6075 	for (;;) {
6076 		cache_fplookup_parse(fpl);
6077 
6078 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6079 		if (__predict_false(error != 0)) {
6080 			error = cache_fplookup_failed_vexec(fpl, error);
6081 			break;
6082 		}
6083 
6084 		error = cache_fplookup_next(fpl);
6085 		if (__predict_false(cache_fpl_terminated(fpl))) {
6086 			break;
6087 		}
6088 
6089 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6090 
6091 		if (fpl->tvp->v_type == VLNK) {
6092 			error = cache_fplookup_symlink(fpl);
6093 			if (cache_fpl_terminated(fpl)) {
6094 				break;
6095 			}
6096 		} else {
6097 			if (cache_fpl_islastcn(ndp)) {
6098 				error = cache_fplookup_final(fpl);
6099 				break;
6100 			}
6101 
6102 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6103 				error = cache_fpl_aborted(fpl);
6104 				break;
6105 			}
6106 
6107 			fpl->dvp = fpl->tvp;
6108 			fpl->dvp_seqc = fpl->tvp_seqc;
6109 			cache_fplookup_parse_advance(fpl);
6110 		}
6111 
6112 		cache_fpl_checkpoint(fpl);
6113 	}
6114 
6115 	return (error);
6116 }
6117 
6118 /*
6119  * Fast path lookup protected with SMR and sequence counters.
6120  *
6121  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6122  *
6123  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6124  * outlined below.
6125  *
6126  * Traditional vnode lookup conceptually looks like this:
6127  *
6128  * vn_lock(current);
6129  * for (;;) {
6130  *	next = find();
6131  *	vn_lock(next);
6132  *	vn_unlock(current);
6133  *	current = next;
6134  *	if (last)
6135  *	    break;
6136  * }
6137  * return (current);
6138  *
6139  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6140  * any modifications thanks to holding respective locks.
6141  *
6142  * The same guarantee can be provided with a combination of safe memory
6143  * reclamation and sequence counters instead. If all operations which affect
6144  * the relationship between the current vnode and the one we are looking for
6145  * also modify the counter, we can verify whether all the conditions held as
6146  * we made the jump. This includes things like permissions, mount points etc.
6147  * Counter modification is provided by enclosing relevant places in
6148  * vn_seqc_write_begin()/end() calls.
6149  *
6150  * Thus this translates to:
6151  *
6152  * vfs_smr_enter();
6153  * dvp_seqc = seqc_read_any(dvp);
6154  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6155  *     abort();
6156  * for (;;) {
6157  * 	tvp = find();
6158  * 	tvp_seqc = seqc_read_any(tvp);
6159  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6160  * 	    abort();
6161  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6162  * 	    abort();
6163  * 	dvp = tvp; // we know nothing of importance has changed
6164  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6165  * 	if (last)
6166  * 	    break;
6167  * }
6168  * vget(); // secure the vnode
6169  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6170  * 	    abort();
6171  * // at this point we know nothing has changed for any parent<->child pair
6172  * // as they were crossed during the lookup, meaning we matched the guarantee
6173  * // of the locked variant
6174  * return (tvp);
6175  *
6176  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6177  * - they are called while within vfs_smr protection which they must never exit
6178  * - EAGAIN can be returned to denote checking could not be performed, it is
6179  *   always valid to return it
6180  * - if the sequence counter has not changed the result must be valid
6181  * - if the sequence counter has changed both false positives and false negatives
6182  *   are permitted (since the result will be rejected later)
6183  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6184  *
6185  * Caveats to watch out for:
6186  * - vnodes are passed unlocked and unreferenced with nothing stopping
6187  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6188  *   to use atomic_load_ptr to fetch it.
6189  * - the aforementioned object can also get freed, meaning absent other means it
6190  *   should be protected with vfs_smr
6191  * - either safely checking permissions as they are modified or guaranteeing
6192  *   their stability is left to the routine
6193  */
6194 int
6195 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6196     struct pwd **pwdp)
6197 {
6198 	struct cache_fpl fpl;
6199 	struct pwd *pwd;
6200 	struct vnode *dvp;
6201 	struct componentname *cnp;
6202 	int error;
6203 
6204 	fpl.status = CACHE_FPL_STATUS_UNSET;
6205 	fpl.in_smr = false;
6206 	fpl.ndp = ndp;
6207 	fpl.cnp = cnp = &ndp->ni_cnd;
6208 	MPASS(ndp->ni_lcf == 0);
6209 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6210 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6211 	    cnp->cn_flags));
6212 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6213 	MPASS(ndp->ni_resflags == 0);
6214 
6215 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6216 		*status = fpl.status;
6217 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6218 		return (EOPNOTSUPP);
6219 	}
6220 
6221 	cache_fpl_checkpoint_outer(&fpl);
6222 
6223 	cache_fpl_smr_enter_initial(&fpl);
6224 #ifdef INVARIANTS
6225 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6226 #endif
6227 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6228 	fpl.fsearch = false;
6229 	fpl.tvp = NULL; /* for degenerate path handling */
6230 	fpl.pwd = pwdp;
6231 	pwd = pwd_get_smr();
6232 	*(fpl.pwd) = pwd;
6233 	namei_setup_rootdir(ndp, cnp, pwd);
6234 	ndp->ni_topdir = pwd->pwd_jdir;
6235 
6236 	if (cnp->cn_pnbuf[0] == '/') {
6237 		dvp = cache_fpl_handle_root(&fpl);
6238 		ndp->ni_resflags = NIRES_ABS;
6239 	} else {
6240 		if (ndp->ni_dirfd == AT_FDCWD) {
6241 			dvp = pwd->pwd_cdir;
6242 		} else {
6243 			error = cache_fplookup_dirfd(&fpl, &dvp);
6244 			if (__predict_false(error != 0)) {
6245 				goto out;
6246 			}
6247 		}
6248 	}
6249 
6250 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6251 	error = cache_fplookup_impl(dvp, &fpl);
6252 out:
6253 	cache_fpl_smr_assert_not_entered(&fpl);
6254 	cache_fpl_assert_status(&fpl);
6255 	*status = fpl.status;
6256 	if (SDT_PROBES_ENABLED()) {
6257 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6258 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6259 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6260 			    ndp);
6261 	}
6262 
6263 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6264 		MPASS(error != CACHE_FPL_FAILED);
6265 		if (error != 0) {
6266 			cache_fpl_cleanup_cnp(fpl.cnp);
6267 			MPASS(fpl.dvp == NULL);
6268 			MPASS(fpl.tvp == NULL);
6269 		}
6270 		ndp->ni_dvp = fpl.dvp;
6271 		ndp->ni_vp = fpl.tvp;
6272 	}
6273 	return (error);
6274 }
6275