1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Poul-Henning Kamp of the FreeBSD Project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ddb.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/capsicum.h> 46 #include <sys/counter.h> 47 #include <sys/filedesc.h> 48 #include <sys/fnv_hash.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/fcntl.h> 54 #include <sys/jail.h> 55 #include <sys/mount.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/seqc.h> 59 #include <sys/sdt.h> 60 #include <sys/smr.h> 61 #include <sys/smp.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/vnode.h> 66 #include <ck_queue.h> 67 #ifdef KTRACE 68 #include <sys/ktrace.h> 69 #endif 70 #ifdef INVARIANTS 71 #include <machine/_inttypes.h> 72 #endif 73 74 #include <sys/capsicum.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #include <vm/uma.h> 84 85 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 86 "Name cache"); 87 88 SDT_PROVIDER_DECLARE(vfs); 89 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", 90 "struct vnode *"); 91 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *", 92 "struct vnode *"); 93 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", 94 "char *"); 95 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *", 96 "const char *"); 97 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", 98 "struct namecache *", "int", "int"); 99 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *"); 100 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *", 101 "char *", "struct vnode *"); 102 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *"); 103 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int", 104 "struct vnode *", "char *"); 105 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *", 106 "struct vnode *"); 107 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative, 108 "struct vnode *", "char *"); 109 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *", 110 "char *"); 111 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *", 112 "struct componentname *"); 113 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *", 114 "struct componentname *"); 115 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *"); 116 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int"); 117 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *"); 118 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *"); 119 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *", 120 "struct vnode *"); 121 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *", 122 "char *"); 123 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *", 124 "char *"); 125 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t"); 126 127 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool"); 128 SDT_PROBE_DECLARE(vfs, namei, lookup, entry); 129 SDT_PROBE_DECLARE(vfs, namei, lookup, return); 130 131 /* 132 * This structure describes the elements in the cache of recent 133 * names looked up by namei. 134 */ 135 struct negstate { 136 u_char neg_flag; 137 u_char neg_hit; 138 }; 139 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *), 140 "the state must fit in a union with a pointer without growing it"); 141 142 struct namecache { 143 LIST_ENTRY(namecache) nc_src; /* source vnode list */ 144 TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */ 145 CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */ 146 struct vnode *nc_dvp; /* vnode of parent of name */ 147 union { 148 struct vnode *nu_vp; /* vnode the name refers to */ 149 struct negstate nu_neg;/* negative entry state */ 150 } n_un; 151 u_char nc_flag; /* flag bits */ 152 u_char nc_nlen; /* length of name */ 153 char nc_name[0]; /* segment name + nul */ 154 }; 155 156 /* 157 * struct namecache_ts repeats struct namecache layout up to the 158 * nc_nlen member. 159 * struct namecache_ts is used in place of struct namecache when time(s) need 160 * to be stored. The nc_dotdottime field is used when a cache entry is mapping 161 * both a non-dotdot directory name plus dotdot for the directory's 162 * parent. 163 * 164 * See below for alignment requirement. 165 */ 166 struct namecache_ts { 167 struct timespec nc_time; /* timespec provided by fs */ 168 struct timespec nc_dotdottime; /* dotdot timespec provided by fs */ 169 int nc_ticks; /* ticks value when entry was added */ 170 int nc_pad; 171 struct namecache nc_nc; 172 }; 173 174 TAILQ_HEAD(cache_freebatch, namecache); 175 176 /* 177 * At least mips n32 performs 64-bit accesses to timespec as found 178 * in namecache_ts and requires them to be aligned. Since others 179 * may be in the same spot suffer a little bit and enforce the 180 * alignment for everyone. Note this is a nop for 64-bit platforms. 181 */ 182 #define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t) 183 184 /* 185 * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the 186 * 4.4 BSD codebase. Later on struct namecache was tweaked to become 187 * smaller and the value was bumped to retain the total size, but it 188 * was never re-evaluated for suitability. A simple test counting 189 * lengths during package building shows that the value of 45 covers 190 * about 86% of all added entries, reaching 99% at 65. 191 * 192 * Regardless of the above, use of dedicated zones instead of malloc may be 193 * inducing additional waste. This may be hard to address as said zones are 194 * tied to VFS SMR. Even if retaining them, the current split should be 195 * re-evaluated. 196 */ 197 #ifdef __LP64__ 198 #define CACHE_PATH_CUTOFF 45 199 #define CACHE_LARGE_PAD 6 200 #else 201 #define CACHE_PATH_CUTOFF 41 202 #define CACHE_LARGE_PAD 2 203 #endif 204 205 #define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1) 206 #define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE) 207 #define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD) 208 #define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE) 209 210 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 211 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 212 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 213 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 214 215 #define nc_vp n_un.nu_vp 216 #define nc_neg n_un.nu_neg 217 218 /* 219 * Flags in namecache.nc_flag 220 */ 221 #define NCF_WHITE 0x01 222 #define NCF_ISDOTDOT 0x02 223 #define NCF_TS 0x04 224 #define NCF_DTS 0x08 225 #define NCF_DVDROP 0x10 226 #define NCF_NEGATIVE 0x20 227 #define NCF_INVALID 0x40 228 #define NCF_WIP 0x80 229 230 /* 231 * Flags in negstate.neg_flag 232 */ 233 #define NEG_HOT 0x01 234 235 static bool cache_neg_evict_cond(u_long lnumcache); 236 237 /* 238 * Mark an entry as invalid. 239 * 240 * This is called before it starts getting deconstructed. 241 */ 242 static void 243 cache_ncp_invalidate(struct namecache *ncp) 244 { 245 246 KASSERT((ncp->nc_flag & NCF_INVALID) == 0, 247 ("%s: entry %p already invalid", __func__, ncp)); 248 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID); 249 atomic_thread_fence_rel(); 250 } 251 252 /* 253 * Check whether the entry can be safely used. 254 * 255 * All places which elide locks are supposed to call this after they are 256 * done with reading from an entry. 257 */ 258 #define cache_ncp_canuse(ncp) ({ \ 259 struct namecache *_ncp = (ncp); \ 260 u_char _nc_flag; \ 261 \ 262 atomic_thread_fence_acq(); \ 263 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 264 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \ 265 }) 266 267 /* 268 * Like the above but also checks NCF_WHITE. 269 */ 270 #define cache_fpl_neg_ncp_canuse(ncp) ({ \ 271 struct namecache *_ncp = (ncp); \ 272 u_char _nc_flag; \ 273 \ 274 atomic_thread_fence_acq(); \ 275 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 276 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \ 277 }) 278 279 /* 280 * Name caching works as follows: 281 * 282 * Names found by directory scans are retained in a cache 283 * for future reference. It is managed LRU, so frequently 284 * used names will hang around. Cache is indexed by hash value 285 * obtained from (dvp, name) where dvp refers to the directory 286 * containing name. 287 * 288 * If it is a "negative" entry, (i.e. for a name that is known NOT to 289 * exist) the vnode pointer will be NULL. 290 * 291 * Upon reaching the last segment of a path, if the reference 292 * is for DELETE, or NOCACHE is set (rewrite), and the 293 * name is located in the cache, it will be dropped. 294 * 295 * These locks are used (in the order in which they can be taken): 296 * NAME TYPE ROLE 297 * vnodelock mtx vnode lists and v_cache_dd field protection 298 * bucketlock mtx for access to given set of hash buckets 299 * neglist mtx negative entry LRU management 300 * 301 * It is legal to take multiple vnodelock and bucketlock locks. The locking 302 * order is lower address first. Both are recursive. 303 * 304 * "." lookups are lockless. 305 * 306 * ".." and vnode -> name lookups require vnodelock. 307 * 308 * name -> vnode lookup requires the relevant bucketlock to be held for reading. 309 * 310 * Insertions and removals of entries require involved vnodes and bucketlocks 311 * to be locked to provide safe operation against other threads modifying the 312 * cache. 313 * 314 * Some lookups result in removal of the found entry (e.g. getting rid of a 315 * negative entry with the intent to create a positive one), which poses a 316 * problem when multiple threads reach the state. Similarly, two different 317 * threads can purge two different vnodes and try to remove the same name. 318 * 319 * If the already held vnode lock is lower than the second required lock, we 320 * can just take the other lock. However, in the opposite case, this could 321 * deadlock. As such, this is resolved by trylocking and if that fails unlocking 322 * the first node, locking everything in order and revalidating the state. 323 */ 324 325 VFS_SMR_DECLARE; 326 327 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 328 "Name cache parameters"); 329 330 static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */ 331 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, 332 "Total namecache capacity"); 333 334 u_int ncsizefactor = 2; 335 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0, 336 "Size factor for namecache"); 337 338 static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */ 339 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, 340 "Ratio of negative namecache entries"); 341 342 /* 343 * Negative entry % of namecache capacity above which automatic eviction is allowed. 344 * 345 * Check cache_neg_evict_cond for details. 346 */ 347 static u_int ncnegminpct = 3; 348 349 static u_int __read_mostly neg_min; /* the above recomputed against ncsize */ 350 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0, 351 "Negative entry count above which automatic eviction is allowed"); 352 353 /* 354 * Structures associated with name caching. 355 */ 356 #define NCHHASH(hash) \ 357 (&nchashtbl[(hash) & nchash]) 358 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */ 359 static u_long __read_mostly nchash; /* size of hash table */ 360 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, 361 "Size of namecache hash table"); 362 static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */ 363 static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */ 364 365 struct nchstats nchstats; /* cache effectiveness statistics */ 366 367 static bool __read_frequently cache_fast_revlookup = true; 368 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW, 369 &cache_fast_revlookup, 0, ""); 370 371 static bool __read_mostly cache_rename_add = true; 372 SYSCTL_BOOL(_vfs, OID_AUTO, cache_rename_add, CTLFLAG_RW, 373 &cache_rename_add, 0, ""); 374 375 static u_int __exclusive_cache_line neg_cycle; 376 377 #define ncneghash 3 378 #define numneglists (ncneghash + 1) 379 380 struct neglist { 381 struct mtx nl_evict_lock; 382 struct mtx nl_lock __aligned(CACHE_LINE_SIZE); 383 TAILQ_HEAD(, namecache) nl_list; 384 TAILQ_HEAD(, namecache) nl_hotlist; 385 u_long nl_hotnum; 386 } __aligned(CACHE_LINE_SIZE); 387 388 static struct neglist neglists[numneglists]; 389 390 static inline struct neglist * 391 NCP2NEGLIST(struct namecache *ncp) 392 { 393 394 return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]); 395 } 396 397 static inline struct negstate * 398 NCP2NEGSTATE(struct namecache *ncp) 399 { 400 401 MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE); 402 return (&ncp->nc_neg); 403 } 404 405 #define numbucketlocks (ncbuckethash + 1) 406 static u_int __read_mostly ncbuckethash; 407 static struct mtx_padalign __read_mostly *bucketlocks; 408 #define HASH2BUCKETLOCK(hash) \ 409 ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)])) 410 411 #define numvnodelocks (ncvnodehash + 1) 412 static u_int __read_mostly ncvnodehash; 413 static struct mtx __read_mostly *vnodelocks; 414 static inline struct mtx * 415 VP2VNODELOCK(struct vnode *vp) 416 { 417 418 return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]); 419 } 420 421 static void 422 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp) 423 { 424 struct namecache_ts *ncp_ts; 425 426 KASSERT((ncp->nc_flag & NCF_TS) != 0 || 427 (tsp == NULL && ticksp == NULL), 428 ("No NCF_TS")); 429 430 if (tsp == NULL) 431 return; 432 433 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 434 *tsp = ncp_ts->nc_time; 435 *ticksp = ncp_ts->nc_ticks; 436 } 437 438 #ifdef DEBUG_CACHE 439 static int __read_mostly doingcache = 1; /* 1 => enable the cache */ 440 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, 441 "VFS namecache enabled"); 442 #endif 443 444 /* Export size information to userland */ 445 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, 446 sizeof(struct namecache), "sizeof(struct namecache)"); 447 448 /* 449 * The new name cache statistics 450 */ 451 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 452 "Name cache statistics"); 453 454 #define STATNODE_ULONG(name, varname, descr) \ 455 SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 456 #define STATNODE_COUNTER(name, varname, descr) \ 457 static COUNTER_U64_DEFINE_EARLY(varname); \ 458 SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \ 459 descr); 460 STATNODE_ULONG(neg, numneg, "Number of negative cache entries"); 461 STATNODE_ULONG(count, numcache, "Number of cache entries"); 462 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held"); 463 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit"); 464 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits"); 465 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits"); 466 STATNODE_COUNTER(miss, nummiss, "Number of cache misses"); 467 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache"); 468 STATNODE_COUNTER(posszaps, numposzaps, 469 "Number of cache hits (positive) we do not want to cache"); 470 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)"); 471 STATNODE_COUNTER(negzaps, numnegzaps, 472 "Number of cache hits (negative) we do not want to cache"); 473 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)"); 474 /* These count for vn_getcwd(), too. */ 475 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls"); 476 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)"); 477 STATNODE_COUNTER(fullpathfail2, numfullpathfail2, 478 "Number of fullpath search errors (VOP_VPTOCNP failures)"); 479 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)"); 480 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls"); 481 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache"); 482 483 /* 484 * Debug or developer statistics. 485 */ 486 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 487 "Name cache debugging"); 488 #define DEBUGNODE_ULONG(name, varname, descr) \ 489 SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 490 #define DEBUGNODE_COUNTER(name, varname, descr) \ 491 static COUNTER_U64_DEFINE_EARLY(varname); \ 492 SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \ 493 descr); 494 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success, 495 "Number of successful removals after relocking"); 496 static long zap_bucket_fail; 497 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, ""); 498 static long zap_bucket_fail2; 499 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, ""); 500 static long cache_lock_vnodes_cel_3_failures; 501 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures, 502 "Number of times 3-way vnode locking failed"); 503 504 static void cache_zap_locked(struct namecache *ncp); 505 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, 506 char **freebuf, size_t *buflen); 507 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 508 char **retbuf, size_t *buflen, size_t addend); 509 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, 510 char **retbuf, size_t *buflen); 511 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, 512 char **retbuf, size_t *len, size_t addend); 513 514 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 515 516 static inline void 517 cache_assert_vlp_locked(struct mtx *vlp) 518 { 519 520 if (vlp != NULL) 521 mtx_assert(vlp, MA_OWNED); 522 } 523 524 static inline void 525 cache_assert_vnode_locked(struct vnode *vp) 526 { 527 struct mtx *vlp; 528 529 vlp = VP2VNODELOCK(vp); 530 cache_assert_vlp_locked(vlp); 531 } 532 533 /* 534 * Directory vnodes with entries are held for two reasons: 535 * 1. make them less of a target for reclamation in vnlru 536 * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided 537 * 538 * It will be feasible to stop doing it altogether if all filesystems start 539 * supporting lockless lookup. 540 */ 541 static void 542 cache_hold_vnode(struct vnode *vp) 543 { 544 545 cache_assert_vnode_locked(vp); 546 VNPASS(LIST_EMPTY(&vp->v_cache_src), vp); 547 vhold(vp); 548 counter_u64_add(numcachehv, 1); 549 } 550 551 static void 552 cache_drop_vnode(struct vnode *vp) 553 { 554 555 /* 556 * Called after all locks are dropped, meaning we can't assert 557 * on the state of v_cache_src. 558 */ 559 vdrop(vp); 560 counter_u64_add(numcachehv, -1); 561 } 562 563 /* 564 * UMA zones. 565 */ 566 static uma_zone_t __read_mostly cache_zone_small; 567 static uma_zone_t __read_mostly cache_zone_small_ts; 568 static uma_zone_t __read_mostly cache_zone_large; 569 static uma_zone_t __read_mostly cache_zone_large_ts; 570 571 char * 572 cache_symlink_alloc(size_t size, int flags) 573 { 574 575 if (size < CACHE_ZONE_SMALL_SIZE) { 576 return (uma_zalloc_smr(cache_zone_small, flags)); 577 } 578 if (size < CACHE_ZONE_LARGE_SIZE) { 579 return (uma_zalloc_smr(cache_zone_large, flags)); 580 } 581 counter_u64_add(symlinktoobig, 1); 582 SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size); 583 return (NULL); 584 } 585 586 void 587 cache_symlink_free(char *string, size_t size) 588 { 589 590 MPASS(string != NULL); 591 KASSERT(size < CACHE_ZONE_LARGE_SIZE, 592 ("%s: size %zu too big", __func__, size)); 593 594 if (size < CACHE_ZONE_SMALL_SIZE) { 595 uma_zfree_smr(cache_zone_small, string); 596 return; 597 } 598 if (size < CACHE_ZONE_LARGE_SIZE) { 599 uma_zfree_smr(cache_zone_large, string); 600 return; 601 } 602 __assert_unreachable(); 603 } 604 605 static struct namecache * 606 cache_alloc_uma(int len, bool ts) 607 { 608 struct namecache_ts *ncp_ts; 609 struct namecache *ncp; 610 611 if (__predict_false(ts)) { 612 if (len <= CACHE_PATH_CUTOFF) 613 ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK); 614 else 615 ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK); 616 ncp = &ncp_ts->nc_nc; 617 } else { 618 if (len <= CACHE_PATH_CUTOFF) 619 ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK); 620 else 621 ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK); 622 } 623 return (ncp); 624 } 625 626 static void 627 cache_free_uma(struct namecache *ncp) 628 { 629 struct namecache_ts *ncp_ts; 630 631 if (__predict_false(ncp->nc_flag & NCF_TS)) { 632 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 633 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 634 uma_zfree_smr(cache_zone_small_ts, ncp_ts); 635 else 636 uma_zfree_smr(cache_zone_large_ts, ncp_ts); 637 } else { 638 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 639 uma_zfree_smr(cache_zone_small, ncp); 640 else 641 uma_zfree_smr(cache_zone_large, ncp); 642 } 643 } 644 645 static struct namecache * 646 cache_alloc(int len, bool ts) 647 { 648 u_long lnumcache; 649 650 /* 651 * Avoid blowout in namecache entries. 652 * 653 * Bugs: 654 * 1. filesystems may end up trying to add an already existing entry 655 * (for example this can happen after a cache miss during concurrent 656 * lookup), in which case we will call cache_neg_evict despite not 657 * adding anything. 658 * 2. the routine may fail to free anything and no provisions are made 659 * to make it try harder (see the inside for failure modes) 660 * 3. it only ever looks at negative entries. 661 */ 662 lnumcache = atomic_fetchadd_long(&numcache, 1) + 1; 663 if (cache_neg_evict_cond(lnumcache)) { 664 lnumcache = atomic_load_long(&numcache); 665 } 666 if (__predict_false(lnumcache >= ncsize)) { 667 atomic_subtract_long(&numcache, 1); 668 counter_u64_add(numdrops, 1); 669 return (NULL); 670 } 671 return (cache_alloc_uma(len, ts)); 672 } 673 674 static void 675 cache_free(struct namecache *ncp) 676 { 677 678 MPASS(ncp != NULL); 679 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 680 cache_drop_vnode(ncp->nc_dvp); 681 } 682 cache_free_uma(ncp); 683 atomic_subtract_long(&numcache, 1); 684 } 685 686 static void 687 cache_free_batch(struct cache_freebatch *batch) 688 { 689 struct namecache *ncp, *nnp; 690 int i; 691 692 i = 0; 693 if (TAILQ_EMPTY(batch)) 694 goto out; 695 TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) { 696 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 697 cache_drop_vnode(ncp->nc_dvp); 698 } 699 cache_free_uma(ncp); 700 i++; 701 } 702 atomic_subtract_long(&numcache, i); 703 out: 704 SDT_PROBE1(vfs, namecache, purge, batch, i); 705 } 706 707 /* 708 * TODO: With the value stored we can do better than computing the hash based 709 * on the address. The choice of FNV should also be revisited. 710 */ 711 static void 712 cache_prehash(struct vnode *vp) 713 { 714 715 vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT); 716 } 717 718 static uint32_t 719 cache_get_hash(char *name, u_char len, struct vnode *dvp) 720 { 721 722 return (fnv_32_buf(name, len, dvp->v_nchash)); 723 } 724 725 static inline struct nchashhead * 726 NCP2BUCKET(struct namecache *ncp) 727 { 728 uint32_t hash; 729 730 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 731 return (NCHHASH(hash)); 732 } 733 734 static inline struct mtx * 735 NCP2BUCKETLOCK(struct namecache *ncp) 736 { 737 uint32_t hash; 738 739 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 740 return (HASH2BUCKETLOCK(hash)); 741 } 742 743 #ifdef INVARIANTS 744 static void 745 cache_assert_bucket_locked(struct namecache *ncp) 746 { 747 struct mtx *blp; 748 749 blp = NCP2BUCKETLOCK(ncp); 750 mtx_assert(blp, MA_OWNED); 751 } 752 753 static void 754 cache_assert_bucket_unlocked(struct namecache *ncp) 755 { 756 struct mtx *blp; 757 758 blp = NCP2BUCKETLOCK(ncp); 759 mtx_assert(blp, MA_NOTOWNED); 760 } 761 #else 762 #define cache_assert_bucket_locked(x) do { } while (0) 763 #define cache_assert_bucket_unlocked(x) do { } while (0) 764 #endif 765 766 #define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y)) 767 static void 768 _cache_sort_vnodes(void **p1, void **p2) 769 { 770 void *tmp; 771 772 MPASS(*p1 != NULL || *p2 != NULL); 773 774 if (*p1 > *p2) { 775 tmp = *p2; 776 *p2 = *p1; 777 *p1 = tmp; 778 } 779 } 780 781 static void 782 cache_lock_all_buckets(void) 783 { 784 u_int i; 785 786 for (i = 0; i < numbucketlocks; i++) 787 mtx_lock(&bucketlocks[i]); 788 } 789 790 static void 791 cache_unlock_all_buckets(void) 792 { 793 u_int i; 794 795 for (i = 0; i < numbucketlocks; i++) 796 mtx_unlock(&bucketlocks[i]); 797 } 798 799 static void 800 cache_lock_all_vnodes(void) 801 { 802 u_int i; 803 804 for (i = 0; i < numvnodelocks; i++) 805 mtx_lock(&vnodelocks[i]); 806 } 807 808 static void 809 cache_unlock_all_vnodes(void) 810 { 811 u_int i; 812 813 for (i = 0; i < numvnodelocks; i++) 814 mtx_unlock(&vnodelocks[i]); 815 } 816 817 static int 818 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 819 { 820 821 cache_sort_vnodes(&vlp1, &vlp2); 822 823 if (vlp1 != NULL) { 824 if (!mtx_trylock(vlp1)) 825 return (EAGAIN); 826 } 827 if (!mtx_trylock(vlp2)) { 828 if (vlp1 != NULL) 829 mtx_unlock(vlp1); 830 return (EAGAIN); 831 } 832 833 return (0); 834 } 835 836 static void 837 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 838 { 839 840 MPASS(vlp1 != NULL || vlp2 != NULL); 841 MPASS(vlp1 <= vlp2); 842 843 if (vlp1 != NULL) 844 mtx_lock(vlp1); 845 if (vlp2 != NULL) 846 mtx_lock(vlp2); 847 } 848 849 static void 850 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 851 { 852 853 MPASS(vlp1 != NULL || vlp2 != NULL); 854 855 if (vlp1 != NULL) 856 mtx_unlock(vlp1); 857 if (vlp2 != NULL) 858 mtx_unlock(vlp2); 859 } 860 861 static int 862 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 863 { 864 struct nchstats snap; 865 866 if (req->oldptr == NULL) 867 return (SYSCTL_OUT(req, 0, sizeof(snap))); 868 869 snap = nchstats; 870 snap.ncs_goodhits = counter_u64_fetch(numposhits); 871 snap.ncs_neghits = counter_u64_fetch(numneghits); 872 snap.ncs_badhits = counter_u64_fetch(numposzaps) + 873 counter_u64_fetch(numnegzaps); 874 snap.ncs_miss = counter_u64_fetch(nummisszap) + 875 counter_u64_fetch(nummiss); 876 877 return (SYSCTL_OUT(req, &snap, sizeof(snap))); 878 } 879 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD | 880 CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", 881 "VFS cache effectiveness statistics"); 882 883 static void 884 cache_recalc_neg_min(u_int val) 885 { 886 887 neg_min = (ncsize * val) / 100; 888 } 889 890 static int 891 sysctl_negminpct(SYSCTL_HANDLER_ARGS) 892 { 893 u_int val; 894 int error; 895 896 val = ncnegminpct; 897 error = sysctl_handle_int(oidp, &val, 0, req); 898 if (error != 0 || req->newptr == NULL) 899 return (error); 900 901 if (val == ncnegminpct) 902 return (0); 903 if (val < 0 || val > 99) 904 return (EINVAL); 905 ncnegminpct = val; 906 cache_recalc_neg_min(val); 907 return (0); 908 } 909 910 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct, 911 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct, 912 "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed"); 913 914 #ifdef DIAGNOSTIC 915 /* 916 * Grab an atomic snapshot of the name cache hash chain lengths 917 */ 918 static SYSCTL_NODE(_debug, OID_AUTO, hashstat, 919 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 920 "hash table stats"); 921 922 static int 923 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS) 924 { 925 struct nchashhead *ncpp; 926 struct namecache *ncp; 927 int i, error, n_nchash, *cntbuf; 928 929 retry: 930 n_nchash = nchash + 1; /* nchash is max index, not count */ 931 if (req->oldptr == NULL) 932 return SYSCTL_OUT(req, 0, n_nchash * sizeof(int)); 933 cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK); 934 cache_lock_all_buckets(); 935 if (n_nchash != nchash + 1) { 936 cache_unlock_all_buckets(); 937 free(cntbuf, M_TEMP); 938 goto retry; 939 } 940 /* Scan hash tables counting entries */ 941 for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++) 942 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) 943 cntbuf[i]++; 944 cache_unlock_all_buckets(); 945 for (error = 0, i = 0; i < n_nchash; i++) 946 if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0) 947 break; 948 free(cntbuf, M_TEMP); 949 return (error); 950 } 951 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD| 952 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int", 953 "nchash chain lengths"); 954 955 static int 956 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS) 957 { 958 int error; 959 struct nchashhead *ncpp; 960 struct namecache *ncp; 961 int n_nchash; 962 int count, maxlength, used, pct; 963 964 if (!req->oldptr) 965 return SYSCTL_OUT(req, 0, 4 * sizeof(int)); 966 967 cache_lock_all_buckets(); 968 n_nchash = nchash + 1; /* nchash is max index, not count */ 969 used = 0; 970 maxlength = 0; 971 972 /* Scan hash tables for applicable entries */ 973 for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) { 974 count = 0; 975 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) { 976 count++; 977 } 978 if (count) 979 used++; 980 if (maxlength < count) 981 maxlength = count; 982 } 983 n_nchash = nchash + 1; 984 cache_unlock_all_buckets(); 985 pct = (used * 100) / (n_nchash / 100); 986 error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash)); 987 if (error) 988 return (error); 989 error = SYSCTL_OUT(req, &used, sizeof(used)); 990 if (error) 991 return (error); 992 error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength)); 993 if (error) 994 return (error); 995 error = SYSCTL_OUT(req, &pct, sizeof(pct)); 996 if (error) 997 return (error); 998 return (0); 999 } 1000 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD| 1001 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I", 1002 "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)"); 1003 #endif 1004 1005 /* 1006 * Negative entries management 1007 * 1008 * Various workloads create plenty of negative entries and barely use them 1009 * afterwards. Moreover malicious users can keep performing bogus lookups 1010 * adding even more entries. For example "make tinderbox" as of writing this 1011 * comment ends up with 2.6M namecache entries in total, 1.2M of which are 1012 * negative. 1013 * 1014 * As such, a rather aggressive eviction method is needed. The currently 1015 * employed method is a placeholder. 1016 * 1017 * Entries are split over numneglists separate lists, each of which is further 1018 * split into hot and cold entries. Entries get promoted after getting a hit. 1019 * Eviction happens on addition of new entry. 1020 */ 1021 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1022 "Name cache negative entry statistics"); 1023 1024 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0, 1025 "Number of negative cache entries"); 1026 1027 static COUNTER_U64_DEFINE_EARLY(neg_created); 1028 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, 1029 "Number of created negative entries"); 1030 1031 static COUNTER_U64_DEFINE_EARLY(neg_evicted); 1032 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted, 1033 "Number of evicted negative entries"); 1034 1035 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty); 1036 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD, 1037 &neg_evict_skipped_empty, 1038 "Number of times evicting failed due to lack of entries"); 1039 1040 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed); 1041 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD, 1042 &neg_evict_skipped_missed, 1043 "Number of times evicting failed due to target entry disappearing"); 1044 1045 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended); 1046 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD, 1047 &neg_evict_skipped_contended, 1048 "Number of times evicting failed due to contention"); 1049 1050 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits, 1051 "Number of cache hits (negative)"); 1052 1053 static int 1054 sysctl_neg_hot(SYSCTL_HANDLER_ARGS) 1055 { 1056 int i, out; 1057 1058 out = 0; 1059 for (i = 0; i < numneglists; i++) 1060 out += neglists[i].nl_hotnum; 1061 1062 return (SYSCTL_OUT(req, &out, sizeof(out))); 1063 } 1064 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD | 1065 CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I", 1066 "Number of hot negative entries"); 1067 1068 static void 1069 cache_neg_init(struct namecache *ncp) 1070 { 1071 struct negstate *ns; 1072 1073 ncp->nc_flag |= NCF_NEGATIVE; 1074 ns = NCP2NEGSTATE(ncp); 1075 ns->neg_flag = 0; 1076 ns->neg_hit = 0; 1077 counter_u64_add(neg_created, 1); 1078 } 1079 1080 #define CACHE_NEG_PROMOTION_THRESH 2 1081 1082 static bool 1083 cache_neg_hit_prep(struct namecache *ncp) 1084 { 1085 struct negstate *ns; 1086 u_char n; 1087 1088 ns = NCP2NEGSTATE(ncp); 1089 n = atomic_load_char(&ns->neg_hit); 1090 for (;;) { 1091 if (n >= CACHE_NEG_PROMOTION_THRESH) 1092 return (false); 1093 if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1)) 1094 break; 1095 } 1096 return (n + 1 == CACHE_NEG_PROMOTION_THRESH); 1097 } 1098 1099 /* 1100 * Nothing to do here but it is provided for completeness as some 1101 * cache_neg_hit_prep callers may end up returning without even 1102 * trying to promote. 1103 */ 1104 #define cache_neg_hit_abort(ncp) do { } while (0) 1105 1106 static void 1107 cache_neg_hit_finish(struct namecache *ncp) 1108 { 1109 1110 SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name); 1111 counter_u64_add(numneghits, 1); 1112 } 1113 1114 /* 1115 * Move a negative entry to the hot list. 1116 */ 1117 static void 1118 cache_neg_promote_locked(struct namecache *ncp) 1119 { 1120 struct neglist *nl; 1121 struct negstate *ns; 1122 1123 ns = NCP2NEGSTATE(ncp); 1124 nl = NCP2NEGLIST(ncp); 1125 mtx_assert(&nl->nl_lock, MA_OWNED); 1126 if ((ns->neg_flag & NEG_HOT) == 0) { 1127 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1128 TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst); 1129 nl->nl_hotnum++; 1130 ns->neg_flag |= NEG_HOT; 1131 } 1132 } 1133 1134 /* 1135 * Move a hot negative entry to the cold list. 1136 */ 1137 static void 1138 cache_neg_demote_locked(struct namecache *ncp) 1139 { 1140 struct neglist *nl; 1141 struct negstate *ns; 1142 1143 ns = NCP2NEGSTATE(ncp); 1144 nl = NCP2NEGLIST(ncp); 1145 mtx_assert(&nl->nl_lock, MA_OWNED); 1146 MPASS(ns->neg_flag & NEG_HOT); 1147 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1148 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1149 nl->nl_hotnum--; 1150 ns->neg_flag &= ~NEG_HOT; 1151 atomic_store_char(&ns->neg_hit, 0); 1152 } 1153 1154 /* 1155 * Move a negative entry to the hot list if it matches the lookup. 1156 * 1157 * We have to take locks, but they may be contended and in the worst 1158 * case we may need to go off CPU. We don't want to spin within the 1159 * smr section and we can't block with it. Exiting the section means 1160 * the found entry could have been evicted. We are going to look it 1161 * up again. 1162 */ 1163 static bool 1164 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, 1165 struct namecache *oncp, uint32_t hash) 1166 { 1167 struct namecache *ncp; 1168 struct neglist *nl; 1169 u_char nc_flag; 1170 1171 nl = NCP2NEGLIST(oncp); 1172 1173 mtx_lock(&nl->nl_lock); 1174 /* 1175 * For hash iteration. 1176 */ 1177 vfs_smr_enter(); 1178 1179 /* 1180 * Avoid all surprises by only succeeding if we got the same entry and 1181 * bailing completely otherwise. 1182 * XXX There are no provisions to keep the vnode around, meaning we may 1183 * end up promoting a negative entry for a *new* vnode and returning 1184 * ENOENT on its account. This is the error we want to return anyway 1185 * and promotion is harmless. 1186 * 1187 * In particular at this point there can be a new ncp which matches the 1188 * search but hashes to a different neglist. 1189 */ 1190 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1191 if (ncp == oncp) 1192 break; 1193 } 1194 1195 /* 1196 * No match to begin with. 1197 */ 1198 if (__predict_false(ncp == NULL)) { 1199 goto out_abort; 1200 } 1201 1202 /* 1203 * The newly found entry may be something different... 1204 */ 1205 if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1206 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) { 1207 goto out_abort; 1208 } 1209 1210 /* 1211 * ... and not even negative. 1212 */ 1213 nc_flag = atomic_load_char(&ncp->nc_flag); 1214 if ((nc_flag & NCF_NEGATIVE) == 0) { 1215 goto out_abort; 1216 } 1217 1218 if (!cache_ncp_canuse(ncp)) { 1219 goto out_abort; 1220 } 1221 1222 cache_neg_promote_locked(ncp); 1223 cache_neg_hit_finish(ncp); 1224 vfs_smr_exit(); 1225 mtx_unlock(&nl->nl_lock); 1226 return (true); 1227 out_abort: 1228 vfs_smr_exit(); 1229 mtx_unlock(&nl->nl_lock); 1230 return (false); 1231 } 1232 1233 static void 1234 cache_neg_promote(struct namecache *ncp) 1235 { 1236 struct neglist *nl; 1237 1238 nl = NCP2NEGLIST(ncp); 1239 mtx_lock(&nl->nl_lock); 1240 cache_neg_promote_locked(ncp); 1241 mtx_unlock(&nl->nl_lock); 1242 } 1243 1244 static void 1245 cache_neg_insert(struct namecache *ncp) 1246 { 1247 struct neglist *nl; 1248 1249 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1250 cache_assert_bucket_locked(ncp); 1251 nl = NCP2NEGLIST(ncp); 1252 mtx_lock(&nl->nl_lock); 1253 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1254 mtx_unlock(&nl->nl_lock); 1255 atomic_add_long(&numneg, 1); 1256 } 1257 1258 static void 1259 cache_neg_remove(struct namecache *ncp) 1260 { 1261 struct neglist *nl; 1262 struct negstate *ns; 1263 1264 cache_assert_bucket_locked(ncp); 1265 nl = NCP2NEGLIST(ncp); 1266 ns = NCP2NEGSTATE(ncp); 1267 mtx_lock(&nl->nl_lock); 1268 if ((ns->neg_flag & NEG_HOT) != 0) { 1269 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1270 nl->nl_hotnum--; 1271 } else { 1272 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1273 } 1274 mtx_unlock(&nl->nl_lock); 1275 atomic_subtract_long(&numneg, 1); 1276 } 1277 1278 static struct neglist * 1279 cache_neg_evict_select_list(void) 1280 { 1281 struct neglist *nl; 1282 u_int c; 1283 1284 c = atomic_fetchadd_int(&neg_cycle, 1) + 1; 1285 nl = &neglists[c % numneglists]; 1286 if (!mtx_trylock(&nl->nl_evict_lock)) { 1287 counter_u64_add(neg_evict_skipped_contended, 1); 1288 return (NULL); 1289 } 1290 return (nl); 1291 } 1292 1293 static struct namecache * 1294 cache_neg_evict_select_entry(struct neglist *nl) 1295 { 1296 struct namecache *ncp, *lncp; 1297 struct negstate *ns, *lns; 1298 int i; 1299 1300 mtx_assert(&nl->nl_evict_lock, MA_OWNED); 1301 mtx_assert(&nl->nl_lock, MA_OWNED); 1302 ncp = TAILQ_FIRST(&nl->nl_list); 1303 if (ncp == NULL) 1304 return (NULL); 1305 lncp = ncp; 1306 lns = NCP2NEGSTATE(lncp); 1307 for (i = 1; i < 4; i++) { 1308 ncp = TAILQ_NEXT(ncp, nc_dst); 1309 if (ncp == NULL) 1310 break; 1311 ns = NCP2NEGSTATE(ncp); 1312 if (ns->neg_hit < lns->neg_hit) { 1313 lncp = ncp; 1314 lns = ns; 1315 } 1316 } 1317 return (lncp); 1318 } 1319 1320 static bool 1321 cache_neg_evict(void) 1322 { 1323 struct namecache *ncp, *ncp2; 1324 struct neglist *nl; 1325 struct vnode *dvp; 1326 struct mtx *dvlp; 1327 struct mtx *blp; 1328 uint32_t hash; 1329 u_char nlen; 1330 bool evicted; 1331 1332 nl = cache_neg_evict_select_list(); 1333 if (nl == NULL) { 1334 return (false); 1335 } 1336 1337 mtx_lock(&nl->nl_lock); 1338 ncp = TAILQ_FIRST(&nl->nl_hotlist); 1339 if (ncp != NULL) { 1340 cache_neg_demote_locked(ncp); 1341 } 1342 ncp = cache_neg_evict_select_entry(nl); 1343 if (ncp == NULL) { 1344 counter_u64_add(neg_evict_skipped_empty, 1); 1345 mtx_unlock(&nl->nl_lock); 1346 mtx_unlock(&nl->nl_evict_lock); 1347 return (false); 1348 } 1349 nlen = ncp->nc_nlen; 1350 dvp = ncp->nc_dvp; 1351 hash = cache_get_hash(ncp->nc_name, nlen, dvp); 1352 dvlp = VP2VNODELOCK(dvp); 1353 blp = HASH2BUCKETLOCK(hash); 1354 mtx_unlock(&nl->nl_lock); 1355 mtx_unlock(&nl->nl_evict_lock); 1356 mtx_lock(dvlp); 1357 mtx_lock(blp); 1358 /* 1359 * Note that since all locks were dropped above, the entry may be 1360 * gone or reallocated to be something else. 1361 */ 1362 CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) { 1363 if (ncp2 == ncp && ncp2->nc_dvp == dvp && 1364 ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0) 1365 break; 1366 } 1367 if (ncp2 == NULL) { 1368 counter_u64_add(neg_evict_skipped_missed, 1); 1369 ncp = NULL; 1370 evicted = false; 1371 } else { 1372 MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp)); 1373 MPASS(blp == NCP2BUCKETLOCK(ncp)); 1374 SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp, 1375 ncp->nc_name); 1376 cache_zap_locked(ncp); 1377 counter_u64_add(neg_evicted, 1); 1378 evicted = true; 1379 } 1380 mtx_unlock(blp); 1381 mtx_unlock(dvlp); 1382 if (ncp != NULL) 1383 cache_free(ncp); 1384 return (evicted); 1385 } 1386 1387 /* 1388 * Maybe evict a negative entry to create more room. 1389 * 1390 * The ncnegfactor parameter limits what fraction of the total count 1391 * can comprise of negative entries. However, if the cache is just 1392 * warming up this leads to excessive evictions. As such, ncnegminpct 1393 * (recomputed to neg_min) dictates whether the above should be 1394 * applied. 1395 * 1396 * Try evicting if the cache is close to full capacity regardless of 1397 * other considerations. 1398 */ 1399 static bool 1400 cache_neg_evict_cond(u_long lnumcache) 1401 { 1402 u_long lnumneg; 1403 1404 if (ncsize - 1000 < lnumcache) 1405 goto out_evict; 1406 lnumneg = atomic_load_long(&numneg); 1407 if (lnumneg < neg_min) 1408 return (false); 1409 if (lnumneg * ncnegfactor < lnumcache) 1410 return (false); 1411 out_evict: 1412 return (cache_neg_evict()); 1413 } 1414 1415 /* 1416 * cache_zap_locked(): 1417 * 1418 * Removes a namecache entry from cache, whether it contains an actual 1419 * pointer to a vnode or if it is just a negative cache entry. 1420 */ 1421 static void 1422 cache_zap_locked(struct namecache *ncp) 1423 { 1424 struct nchashhead *ncpp; 1425 struct vnode *dvp, *vp; 1426 1427 dvp = ncp->nc_dvp; 1428 vp = ncp->nc_vp; 1429 1430 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1431 cache_assert_vnode_locked(vp); 1432 cache_assert_vnode_locked(dvp); 1433 cache_assert_bucket_locked(ncp); 1434 1435 cache_ncp_invalidate(ncp); 1436 1437 ncpp = NCP2BUCKET(ncp); 1438 CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash); 1439 if (!(ncp->nc_flag & NCF_NEGATIVE)) { 1440 SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp); 1441 TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst); 1442 if (ncp == vp->v_cache_dd) { 1443 atomic_store_ptr(&vp->v_cache_dd, NULL); 1444 } 1445 } else { 1446 SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name); 1447 cache_neg_remove(ncp); 1448 } 1449 if (ncp->nc_flag & NCF_ISDOTDOT) { 1450 if (ncp == dvp->v_cache_dd) { 1451 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1452 } 1453 } else { 1454 LIST_REMOVE(ncp, nc_src); 1455 if (LIST_EMPTY(&dvp->v_cache_src)) { 1456 ncp->nc_flag |= NCF_DVDROP; 1457 } 1458 } 1459 } 1460 1461 static void 1462 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp) 1463 { 1464 struct mtx *blp; 1465 1466 MPASS(ncp->nc_dvp == vp); 1467 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1468 cache_assert_vnode_locked(vp); 1469 1470 blp = NCP2BUCKETLOCK(ncp); 1471 mtx_lock(blp); 1472 cache_zap_locked(ncp); 1473 mtx_unlock(blp); 1474 } 1475 1476 static bool 1477 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, 1478 struct mtx **vlpp) 1479 { 1480 struct mtx *pvlp, *vlp1, *vlp2, *to_unlock; 1481 struct mtx *blp; 1482 1483 MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp); 1484 cache_assert_vnode_locked(vp); 1485 1486 if (ncp->nc_flag & NCF_NEGATIVE) { 1487 if (*vlpp != NULL) { 1488 mtx_unlock(*vlpp); 1489 *vlpp = NULL; 1490 } 1491 cache_zap_negative_locked_vnode_kl(ncp, vp); 1492 return (true); 1493 } 1494 1495 pvlp = VP2VNODELOCK(vp); 1496 blp = NCP2BUCKETLOCK(ncp); 1497 vlp1 = VP2VNODELOCK(ncp->nc_dvp); 1498 vlp2 = VP2VNODELOCK(ncp->nc_vp); 1499 1500 if (*vlpp == vlp1 || *vlpp == vlp2) { 1501 to_unlock = *vlpp; 1502 *vlpp = NULL; 1503 } else { 1504 if (*vlpp != NULL) { 1505 mtx_unlock(*vlpp); 1506 *vlpp = NULL; 1507 } 1508 cache_sort_vnodes(&vlp1, &vlp2); 1509 if (vlp1 == pvlp) { 1510 mtx_lock(vlp2); 1511 to_unlock = vlp2; 1512 } else { 1513 if (!mtx_trylock(vlp1)) 1514 goto out_relock; 1515 to_unlock = vlp1; 1516 } 1517 } 1518 mtx_lock(blp); 1519 cache_zap_locked(ncp); 1520 mtx_unlock(blp); 1521 if (to_unlock != NULL) 1522 mtx_unlock(to_unlock); 1523 return (true); 1524 1525 out_relock: 1526 mtx_unlock(vlp2); 1527 mtx_lock(vlp1); 1528 mtx_lock(vlp2); 1529 MPASS(*vlpp == NULL); 1530 *vlpp = vlp1; 1531 return (false); 1532 } 1533 1534 /* 1535 * If trylocking failed we can get here. We know enough to take all needed locks 1536 * in the right order and re-lookup the entry. 1537 */ 1538 static int 1539 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, 1540 struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, 1541 struct mtx *blp) 1542 { 1543 struct namecache *rncp; 1544 1545 cache_assert_bucket_unlocked(ncp); 1546 1547 cache_sort_vnodes(&dvlp, &vlp); 1548 cache_lock_vnodes(dvlp, vlp); 1549 mtx_lock(blp); 1550 CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) { 1551 if (rncp == ncp && rncp->nc_dvp == dvp && 1552 rncp->nc_nlen == cnp->cn_namelen && 1553 !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen)) 1554 break; 1555 } 1556 if (rncp != NULL) { 1557 cache_zap_locked(rncp); 1558 mtx_unlock(blp); 1559 cache_unlock_vnodes(dvlp, vlp); 1560 counter_u64_add(zap_bucket_relock_success, 1); 1561 return (0); 1562 } 1563 1564 mtx_unlock(blp); 1565 cache_unlock_vnodes(dvlp, vlp); 1566 return (EAGAIN); 1567 } 1568 1569 static int __noinline 1570 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, 1571 uint32_t hash, struct mtx *blp) 1572 { 1573 struct mtx *dvlp, *vlp; 1574 struct vnode *dvp; 1575 1576 cache_assert_bucket_locked(ncp); 1577 1578 dvlp = VP2VNODELOCK(ncp->nc_dvp); 1579 vlp = NULL; 1580 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1581 vlp = VP2VNODELOCK(ncp->nc_vp); 1582 if (cache_trylock_vnodes(dvlp, vlp) == 0) { 1583 cache_zap_locked(ncp); 1584 mtx_unlock(blp); 1585 cache_unlock_vnodes(dvlp, vlp); 1586 return (0); 1587 } 1588 1589 dvp = ncp->nc_dvp; 1590 mtx_unlock(blp); 1591 return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp)); 1592 } 1593 1594 static __noinline int 1595 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp) 1596 { 1597 struct namecache *ncp; 1598 struct mtx *blp; 1599 struct mtx *dvlp, *dvlp2; 1600 uint32_t hash; 1601 int error; 1602 1603 if (cnp->cn_namelen == 2 && 1604 cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') { 1605 dvlp = VP2VNODELOCK(dvp); 1606 dvlp2 = NULL; 1607 mtx_lock(dvlp); 1608 retry_dotdot: 1609 ncp = dvp->v_cache_dd; 1610 if (ncp == NULL) { 1611 mtx_unlock(dvlp); 1612 if (dvlp2 != NULL) 1613 mtx_unlock(dvlp2); 1614 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1615 return (0); 1616 } 1617 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1618 if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2)) 1619 goto retry_dotdot; 1620 MPASS(dvp->v_cache_dd == NULL); 1621 mtx_unlock(dvlp); 1622 if (dvlp2 != NULL) 1623 mtx_unlock(dvlp2); 1624 cache_free(ncp); 1625 } else { 1626 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1627 mtx_unlock(dvlp); 1628 if (dvlp2 != NULL) 1629 mtx_unlock(dvlp2); 1630 } 1631 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1632 return (1); 1633 } 1634 1635 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1636 blp = HASH2BUCKETLOCK(hash); 1637 retry: 1638 if (CK_SLIST_EMPTY(NCHHASH(hash))) 1639 goto out_no_entry; 1640 1641 mtx_lock(blp); 1642 1643 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1644 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1645 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1646 break; 1647 } 1648 1649 if (ncp == NULL) { 1650 mtx_unlock(blp); 1651 goto out_no_entry; 1652 } 1653 1654 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1655 if (__predict_false(error != 0)) { 1656 zap_bucket_fail++; 1657 goto retry; 1658 } 1659 counter_u64_add(numposzaps, 1); 1660 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1661 cache_free(ncp); 1662 return (1); 1663 out_no_entry: 1664 counter_u64_add(nummisszap, 1); 1665 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1666 return (0); 1667 } 1668 1669 static int __noinline 1670 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1671 struct timespec *tsp, int *ticksp) 1672 { 1673 int ltype; 1674 1675 *vpp = dvp; 1676 counter_u64_add(dothits, 1); 1677 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp); 1678 if (tsp != NULL) 1679 timespecclear(tsp); 1680 if (ticksp != NULL) 1681 *ticksp = ticks; 1682 vrefact(*vpp); 1683 /* 1684 * When we lookup "." we still can be asked to lock it 1685 * differently... 1686 */ 1687 ltype = cnp->cn_lkflags & LK_TYPE_MASK; 1688 if (ltype != VOP_ISLOCKED(*vpp)) { 1689 if (ltype == LK_EXCLUSIVE) { 1690 vn_lock(*vpp, LK_UPGRADE | LK_RETRY); 1691 if (VN_IS_DOOMED((*vpp))) { 1692 /* forced unmount */ 1693 vrele(*vpp); 1694 *vpp = NULL; 1695 return (ENOENT); 1696 } 1697 } else 1698 vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY); 1699 } 1700 return (-1); 1701 } 1702 1703 static int __noinline 1704 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1705 struct timespec *tsp, int *ticksp) 1706 { 1707 struct namecache_ts *ncp_ts; 1708 struct namecache *ncp; 1709 struct mtx *dvlp; 1710 enum vgetstate vs; 1711 int error, ltype; 1712 bool whiteout; 1713 1714 MPASS((cnp->cn_flags & ISDOTDOT) != 0); 1715 1716 if ((cnp->cn_flags & MAKEENTRY) == 0) { 1717 cache_remove_cnp(dvp, cnp); 1718 return (0); 1719 } 1720 1721 counter_u64_add(dotdothits, 1); 1722 retry: 1723 dvlp = VP2VNODELOCK(dvp); 1724 mtx_lock(dvlp); 1725 ncp = dvp->v_cache_dd; 1726 if (ncp == NULL) { 1727 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, "..", NULL); 1728 mtx_unlock(dvlp); 1729 return (0); 1730 } 1731 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1732 if (ncp->nc_flag & NCF_NEGATIVE) 1733 *vpp = NULL; 1734 else 1735 *vpp = ncp->nc_vp; 1736 } else 1737 *vpp = ncp->nc_dvp; 1738 if (*vpp == NULL) 1739 goto negative_success; 1740 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp); 1741 cache_out_ts(ncp, tsp, ticksp); 1742 if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) == 1743 NCF_DTS && tsp != NULL) { 1744 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 1745 *tsp = ncp_ts->nc_dotdottime; 1746 } 1747 1748 MPASS(dvp != *vpp); 1749 ltype = VOP_ISLOCKED(dvp); 1750 VOP_UNLOCK(dvp); 1751 vs = vget_prep(*vpp); 1752 mtx_unlock(dvlp); 1753 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1754 vn_lock(dvp, ltype | LK_RETRY); 1755 if (VN_IS_DOOMED(dvp)) { 1756 if (error == 0) 1757 vput(*vpp); 1758 *vpp = NULL; 1759 return (ENOENT); 1760 } 1761 if (error) { 1762 *vpp = NULL; 1763 goto retry; 1764 } 1765 return (-1); 1766 negative_success: 1767 if (__predict_false(cnp->cn_nameiop == CREATE)) { 1768 if (cnp->cn_flags & ISLASTCN) { 1769 counter_u64_add(numnegzaps, 1); 1770 cache_zap_negative_locked_vnode_kl(ncp, dvp); 1771 mtx_unlock(dvlp); 1772 cache_free(ncp); 1773 return (0); 1774 } 1775 } 1776 1777 whiteout = (ncp->nc_flag & NCF_WHITE); 1778 cache_out_ts(ncp, tsp, ticksp); 1779 if (cache_neg_hit_prep(ncp)) 1780 cache_neg_promote(ncp); 1781 else 1782 cache_neg_hit_finish(ncp); 1783 mtx_unlock(dvlp); 1784 if (whiteout) 1785 cnp->cn_flags |= ISWHITEOUT; 1786 return (ENOENT); 1787 } 1788 1789 /** 1790 * Lookup a name in the name cache 1791 * 1792 * # Arguments 1793 * 1794 * - dvp: Parent directory in which to search. 1795 * - vpp: Return argument. Will contain desired vnode on cache hit. 1796 * - cnp: Parameters of the name search. The most interesting bits of 1797 * the cn_flags field have the following meanings: 1798 * - MAKEENTRY: If clear, free an entry from the cache rather than look 1799 * it up. 1800 * - ISDOTDOT: Must be set if and only if cn_nameptr == ".." 1801 * - tsp: Return storage for cache timestamp. On a successful (positive 1802 * or negative) lookup, tsp will be filled with any timespec that 1803 * was stored when this cache entry was created. However, it will 1804 * be clear for "." entries. 1805 * - ticks: Return storage for alternate cache timestamp. On a successful 1806 * (positive or negative) lookup, it will contain the ticks value 1807 * that was current when the cache entry was created, unless cnp 1808 * was ".". 1809 * 1810 * Either both tsp and ticks have to be provided or neither of them. 1811 * 1812 * # Returns 1813 * 1814 * - -1: A positive cache hit. vpp will contain the desired vnode. 1815 * - ENOENT: A negative cache hit, or dvp was recycled out from under us due 1816 * to a forced unmount. vpp will not be modified. If the entry 1817 * is a whiteout, then the ISWHITEOUT flag will be set in 1818 * cnp->cn_flags. 1819 * - 0: A cache miss. vpp will not be modified. 1820 * 1821 * # Locking 1822 * 1823 * On a cache hit, vpp will be returned locked and ref'd. If we're looking up 1824 * .., dvp is unlocked. If we're looking up . an extra ref is taken, but the 1825 * lock is not recursively acquired. 1826 */ 1827 static int __noinline 1828 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1829 struct timespec *tsp, int *ticksp) 1830 { 1831 struct namecache *ncp; 1832 struct mtx *blp; 1833 uint32_t hash; 1834 enum vgetstate vs; 1835 int error; 1836 bool whiteout; 1837 1838 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1839 MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0); 1840 1841 retry: 1842 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1843 blp = HASH2BUCKETLOCK(hash); 1844 mtx_lock(blp); 1845 1846 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1847 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1848 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1849 break; 1850 } 1851 1852 if (__predict_false(ncp == NULL)) { 1853 mtx_unlock(blp); 1854 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr, 1855 NULL); 1856 counter_u64_add(nummiss, 1); 1857 return (0); 1858 } 1859 1860 if (ncp->nc_flag & NCF_NEGATIVE) 1861 goto negative_success; 1862 1863 counter_u64_add(numposhits, 1); 1864 *vpp = ncp->nc_vp; 1865 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1866 cache_out_ts(ncp, tsp, ticksp); 1867 MPASS(dvp != *vpp); 1868 vs = vget_prep(*vpp); 1869 mtx_unlock(blp); 1870 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1871 if (error) { 1872 *vpp = NULL; 1873 goto retry; 1874 } 1875 return (-1); 1876 negative_success: 1877 /* 1878 * We don't get here with regular lookup apart from corner cases. 1879 */ 1880 if (__predict_true(cnp->cn_nameiop == CREATE)) { 1881 if (cnp->cn_flags & ISLASTCN) { 1882 counter_u64_add(numnegzaps, 1); 1883 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1884 if (__predict_false(error != 0)) { 1885 zap_bucket_fail2++; 1886 goto retry; 1887 } 1888 cache_free(ncp); 1889 return (0); 1890 } 1891 } 1892 1893 whiteout = (ncp->nc_flag & NCF_WHITE); 1894 cache_out_ts(ncp, tsp, ticksp); 1895 if (cache_neg_hit_prep(ncp)) 1896 cache_neg_promote(ncp); 1897 else 1898 cache_neg_hit_finish(ncp); 1899 mtx_unlock(blp); 1900 if (whiteout) 1901 cnp->cn_flags |= ISWHITEOUT; 1902 return (ENOENT); 1903 } 1904 1905 int 1906 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1907 struct timespec *tsp, int *ticksp) 1908 { 1909 struct namecache *ncp; 1910 uint32_t hash; 1911 enum vgetstate vs; 1912 int error; 1913 bool whiteout, neg_promote; 1914 u_short nc_flag; 1915 1916 MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL)); 1917 1918 #ifdef DEBUG_CACHE 1919 if (__predict_false(!doingcache)) { 1920 cnp->cn_flags &= ~MAKEENTRY; 1921 return (0); 1922 } 1923 #endif 1924 1925 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 1926 if (cnp->cn_namelen == 1) 1927 return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp)); 1928 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') 1929 return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp)); 1930 } 1931 1932 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1933 1934 if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) { 1935 cache_remove_cnp(dvp, cnp); 1936 return (0); 1937 } 1938 1939 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1940 vfs_smr_enter(); 1941 1942 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1943 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1944 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1945 break; 1946 } 1947 1948 if (__predict_false(ncp == NULL)) { 1949 vfs_smr_exit(); 1950 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr, 1951 NULL); 1952 counter_u64_add(nummiss, 1); 1953 return (0); 1954 } 1955 1956 nc_flag = atomic_load_char(&ncp->nc_flag); 1957 if (nc_flag & NCF_NEGATIVE) 1958 goto negative_success; 1959 1960 counter_u64_add(numposhits, 1); 1961 *vpp = ncp->nc_vp; 1962 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1963 cache_out_ts(ncp, tsp, ticksp); 1964 MPASS(dvp != *vpp); 1965 if (!cache_ncp_canuse(ncp)) { 1966 vfs_smr_exit(); 1967 *vpp = NULL; 1968 goto out_fallback; 1969 } 1970 vs = vget_prep_smr(*vpp); 1971 vfs_smr_exit(); 1972 if (__predict_false(vs == VGET_NONE)) { 1973 *vpp = NULL; 1974 goto out_fallback; 1975 } 1976 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1977 if (error) { 1978 *vpp = NULL; 1979 goto out_fallback; 1980 } 1981 return (-1); 1982 negative_success: 1983 if (cnp->cn_nameiop == CREATE) { 1984 if (cnp->cn_flags & ISLASTCN) { 1985 vfs_smr_exit(); 1986 goto out_fallback; 1987 } 1988 } 1989 1990 cache_out_ts(ncp, tsp, ticksp); 1991 whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE); 1992 neg_promote = cache_neg_hit_prep(ncp); 1993 if (!cache_ncp_canuse(ncp)) { 1994 cache_neg_hit_abort(ncp); 1995 vfs_smr_exit(); 1996 goto out_fallback; 1997 } 1998 if (neg_promote) { 1999 vfs_smr_exit(); 2000 if (!cache_neg_promote_cond(dvp, cnp, ncp, hash)) 2001 goto out_fallback; 2002 } else { 2003 cache_neg_hit_finish(ncp); 2004 vfs_smr_exit(); 2005 } 2006 if (whiteout) 2007 cnp->cn_flags |= ISWHITEOUT; 2008 return (ENOENT); 2009 out_fallback: 2010 return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp)); 2011 } 2012 2013 struct celockstate { 2014 struct mtx *vlp[3]; 2015 struct mtx *blp[2]; 2016 }; 2017 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3)); 2018 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2)); 2019 2020 static inline void 2021 cache_celockstate_init(struct celockstate *cel) 2022 { 2023 2024 bzero(cel, sizeof(*cel)); 2025 } 2026 2027 static void 2028 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, 2029 struct vnode *dvp) 2030 { 2031 struct mtx *vlp1, *vlp2; 2032 2033 MPASS(cel->vlp[0] == NULL); 2034 MPASS(cel->vlp[1] == NULL); 2035 MPASS(cel->vlp[2] == NULL); 2036 2037 MPASS(vp != NULL || dvp != NULL); 2038 2039 vlp1 = VP2VNODELOCK(vp); 2040 vlp2 = VP2VNODELOCK(dvp); 2041 cache_sort_vnodes(&vlp1, &vlp2); 2042 2043 if (vlp1 != NULL) { 2044 mtx_lock(vlp1); 2045 cel->vlp[0] = vlp1; 2046 } 2047 mtx_lock(vlp2); 2048 cel->vlp[1] = vlp2; 2049 } 2050 2051 static void 2052 cache_unlock_vnodes_cel(struct celockstate *cel) 2053 { 2054 2055 MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL); 2056 2057 if (cel->vlp[0] != NULL) 2058 mtx_unlock(cel->vlp[0]); 2059 if (cel->vlp[1] != NULL) 2060 mtx_unlock(cel->vlp[1]); 2061 if (cel->vlp[2] != NULL) 2062 mtx_unlock(cel->vlp[2]); 2063 } 2064 2065 static bool 2066 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp) 2067 { 2068 struct mtx *vlp; 2069 bool ret; 2070 2071 cache_assert_vlp_locked(cel->vlp[0]); 2072 cache_assert_vlp_locked(cel->vlp[1]); 2073 MPASS(cel->vlp[2] == NULL); 2074 2075 MPASS(vp != NULL); 2076 vlp = VP2VNODELOCK(vp); 2077 2078 ret = true; 2079 if (vlp >= cel->vlp[1]) { 2080 mtx_lock(vlp); 2081 } else { 2082 if (mtx_trylock(vlp)) 2083 goto out; 2084 cache_lock_vnodes_cel_3_failures++; 2085 cache_unlock_vnodes_cel(cel); 2086 if (vlp < cel->vlp[0]) { 2087 mtx_lock(vlp); 2088 mtx_lock(cel->vlp[0]); 2089 mtx_lock(cel->vlp[1]); 2090 } else { 2091 if (cel->vlp[0] != NULL) 2092 mtx_lock(cel->vlp[0]); 2093 mtx_lock(vlp); 2094 mtx_lock(cel->vlp[1]); 2095 } 2096 ret = false; 2097 } 2098 out: 2099 cel->vlp[2] = vlp; 2100 return (ret); 2101 } 2102 2103 static void 2104 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, 2105 struct mtx *blp2) 2106 { 2107 2108 MPASS(cel->blp[0] == NULL); 2109 MPASS(cel->blp[1] == NULL); 2110 2111 cache_sort_vnodes(&blp1, &blp2); 2112 2113 if (blp1 != NULL) { 2114 mtx_lock(blp1); 2115 cel->blp[0] = blp1; 2116 } 2117 mtx_lock(blp2); 2118 cel->blp[1] = blp2; 2119 } 2120 2121 static void 2122 cache_unlock_buckets_cel(struct celockstate *cel) 2123 { 2124 2125 if (cel->blp[0] != NULL) 2126 mtx_unlock(cel->blp[0]); 2127 mtx_unlock(cel->blp[1]); 2128 } 2129 2130 /* 2131 * Lock part of the cache affected by the insertion. 2132 * 2133 * This means vnodelocks for dvp, vp and the relevant bucketlock. 2134 * However, insertion can result in removal of an old entry. In this 2135 * case we have an additional vnode and bucketlock pair to lock. 2136 * 2137 * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while 2138 * preserving the locking order (smaller address first). 2139 */ 2140 static void 2141 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2142 uint32_t hash) 2143 { 2144 struct namecache *ncp; 2145 struct mtx *blps[2]; 2146 u_char nc_flag; 2147 2148 blps[0] = HASH2BUCKETLOCK(hash); 2149 for (;;) { 2150 blps[1] = NULL; 2151 cache_lock_vnodes_cel(cel, dvp, vp); 2152 if (vp == NULL || vp->v_type != VDIR) 2153 break; 2154 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 2155 if (ncp == NULL) 2156 break; 2157 nc_flag = atomic_load_char(&ncp->nc_flag); 2158 if ((nc_flag & NCF_ISDOTDOT) == 0) 2159 break; 2160 MPASS(ncp->nc_dvp == vp); 2161 blps[1] = NCP2BUCKETLOCK(ncp); 2162 if ((nc_flag & NCF_NEGATIVE) != 0) 2163 break; 2164 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2165 break; 2166 /* 2167 * All vnodes got re-locked. Re-validate the state and if 2168 * nothing changed we are done. Otherwise restart. 2169 */ 2170 if (ncp == vp->v_cache_dd && 2171 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2172 blps[1] == NCP2BUCKETLOCK(ncp) && 2173 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2174 break; 2175 cache_unlock_vnodes_cel(cel); 2176 cel->vlp[0] = NULL; 2177 cel->vlp[1] = NULL; 2178 cel->vlp[2] = NULL; 2179 } 2180 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2181 } 2182 2183 static void 2184 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2185 uint32_t hash) 2186 { 2187 struct namecache *ncp; 2188 struct mtx *blps[2]; 2189 u_char nc_flag; 2190 2191 blps[0] = HASH2BUCKETLOCK(hash); 2192 for (;;) { 2193 blps[1] = NULL; 2194 cache_lock_vnodes_cel(cel, dvp, vp); 2195 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 2196 if (ncp == NULL) 2197 break; 2198 nc_flag = atomic_load_char(&ncp->nc_flag); 2199 if ((nc_flag & NCF_ISDOTDOT) == 0) 2200 break; 2201 MPASS(ncp->nc_dvp == dvp); 2202 blps[1] = NCP2BUCKETLOCK(ncp); 2203 if ((nc_flag & NCF_NEGATIVE) != 0) 2204 break; 2205 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2206 break; 2207 if (ncp == dvp->v_cache_dd && 2208 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2209 blps[1] == NCP2BUCKETLOCK(ncp) && 2210 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2211 break; 2212 cache_unlock_vnodes_cel(cel); 2213 cel->vlp[0] = NULL; 2214 cel->vlp[1] = NULL; 2215 cel->vlp[2] = NULL; 2216 } 2217 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2218 } 2219 2220 static void 2221 cache_enter_unlock(struct celockstate *cel) 2222 { 2223 2224 cache_unlock_buckets_cel(cel); 2225 cache_unlock_vnodes_cel(cel); 2226 } 2227 2228 static void __noinline 2229 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, 2230 struct componentname *cnp) 2231 { 2232 struct celockstate cel; 2233 struct namecache *ncp; 2234 uint32_t hash; 2235 int len; 2236 2237 if (atomic_load_ptr(&dvp->v_cache_dd) == NULL) 2238 return; 2239 len = cnp->cn_namelen; 2240 cache_celockstate_init(&cel); 2241 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2242 cache_enter_lock_dd(&cel, dvp, vp, hash); 2243 ncp = dvp->v_cache_dd; 2244 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) { 2245 KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent")); 2246 cache_zap_locked(ncp); 2247 } else { 2248 ncp = NULL; 2249 } 2250 atomic_store_ptr(&dvp->v_cache_dd, NULL); 2251 cache_enter_unlock(&cel); 2252 if (ncp != NULL) 2253 cache_free(ncp); 2254 } 2255 2256 /* 2257 * Add an entry to the cache. 2258 */ 2259 void 2260 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2261 struct timespec *tsp, struct timespec *dtsp) 2262 { 2263 struct celockstate cel; 2264 struct namecache *ncp, *n2, *ndd; 2265 struct namecache_ts *ncp_ts; 2266 struct nchashhead *ncpp; 2267 uint32_t hash; 2268 int flag; 2269 int len; 2270 2271 KASSERT(cnp->cn_namelen <= NAME_MAX, 2272 ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen, 2273 NAME_MAX)); 2274 VNPASS(dvp != vp, dvp); 2275 VNPASS(!VN_IS_DOOMED(dvp), dvp); 2276 VNPASS(dvp->v_type != VNON, dvp); 2277 if (vp != NULL) { 2278 VNPASS(!VN_IS_DOOMED(vp), vp); 2279 VNPASS(vp->v_type != VNON, vp); 2280 } 2281 2282 #ifdef DEBUG_CACHE 2283 if (__predict_false(!doingcache)) 2284 return; 2285 #endif 2286 2287 flag = 0; 2288 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2289 if (cnp->cn_namelen == 1) 2290 return; 2291 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 2292 cache_enter_dotdot_prep(dvp, vp, cnp); 2293 flag = NCF_ISDOTDOT; 2294 } 2295 } 2296 2297 ncp = cache_alloc(cnp->cn_namelen, tsp != NULL); 2298 if (ncp == NULL) 2299 return; 2300 2301 cache_celockstate_init(&cel); 2302 ndd = NULL; 2303 ncp_ts = NULL; 2304 2305 /* 2306 * Calculate the hash key and setup as much of the new 2307 * namecache entry as possible before acquiring the lock. 2308 */ 2309 ncp->nc_flag = flag | NCF_WIP; 2310 ncp->nc_vp = vp; 2311 if (vp == NULL) 2312 cache_neg_init(ncp); 2313 ncp->nc_dvp = dvp; 2314 if (tsp != NULL) { 2315 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 2316 ncp_ts->nc_time = *tsp; 2317 ncp_ts->nc_ticks = ticks; 2318 ncp_ts->nc_nc.nc_flag |= NCF_TS; 2319 if (dtsp != NULL) { 2320 ncp_ts->nc_dotdottime = *dtsp; 2321 ncp_ts->nc_nc.nc_flag |= NCF_DTS; 2322 } 2323 } 2324 len = ncp->nc_nlen = cnp->cn_namelen; 2325 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2326 memcpy(ncp->nc_name, cnp->cn_nameptr, len); 2327 ncp->nc_name[len] = '\0'; 2328 cache_enter_lock(&cel, dvp, vp, hash); 2329 2330 /* 2331 * See if this vnode or negative entry is already in the cache 2332 * with this name. This can happen with concurrent lookups of 2333 * the same path name. 2334 */ 2335 ncpp = NCHHASH(hash); 2336 CK_SLIST_FOREACH(n2, ncpp, nc_hash) { 2337 if (n2->nc_dvp == dvp && 2338 n2->nc_nlen == cnp->cn_namelen && 2339 !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) { 2340 MPASS(cache_ncp_canuse(n2)); 2341 if ((n2->nc_flag & NCF_NEGATIVE) != 0) 2342 KASSERT(vp == NULL, 2343 ("%s: found entry pointing to a different vnode (%p != %p)", 2344 __func__, NULL, vp)); 2345 else 2346 KASSERT(n2->nc_vp == vp, 2347 ("%s: found entry pointing to a different vnode (%p != %p)", 2348 __func__, n2->nc_vp, vp)); 2349 /* 2350 * Entries are supposed to be immutable unless in the 2351 * process of getting destroyed. Accommodating for 2352 * changing timestamps is possible but not worth it. 2353 * This should be harmless in terms of correctness, in 2354 * the worst case resulting in an earlier expiration. 2355 * Alternatively, the found entry can be replaced 2356 * altogether. 2357 */ 2358 MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS))); 2359 #if 0 2360 if (tsp != NULL) { 2361 KASSERT((n2->nc_flag & NCF_TS) != 0, 2362 ("no NCF_TS")); 2363 n2_ts = __containerof(n2, struct namecache_ts, nc_nc); 2364 n2_ts->nc_time = ncp_ts->nc_time; 2365 n2_ts->nc_ticks = ncp_ts->nc_ticks; 2366 if (dtsp != NULL) { 2367 n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime; 2368 n2_ts->nc_nc.nc_flag |= NCF_DTS; 2369 } 2370 } 2371 #endif 2372 SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name, 2373 vp); 2374 goto out_unlock_free; 2375 } 2376 } 2377 2378 if (flag == NCF_ISDOTDOT) { 2379 /* 2380 * See if we are trying to add .. entry, but some other lookup 2381 * has populated v_cache_dd pointer already. 2382 */ 2383 if (dvp->v_cache_dd != NULL) 2384 goto out_unlock_free; 2385 KASSERT(vp == NULL || vp->v_type == VDIR, 2386 ("wrong vnode type %p", vp)); 2387 atomic_thread_fence_rel(); 2388 atomic_store_ptr(&dvp->v_cache_dd, ncp); 2389 } 2390 2391 if (vp != NULL) { 2392 if (flag != NCF_ISDOTDOT) { 2393 /* 2394 * For this case, the cache entry maps both the 2395 * directory name in it and the name ".." for the 2396 * directory's parent. 2397 */ 2398 if ((ndd = vp->v_cache_dd) != NULL) { 2399 if ((ndd->nc_flag & NCF_ISDOTDOT) != 0) 2400 cache_zap_locked(ndd); 2401 else 2402 ndd = NULL; 2403 } 2404 atomic_thread_fence_rel(); 2405 atomic_store_ptr(&vp->v_cache_dd, ncp); 2406 } else if (vp->v_type != VDIR) { 2407 if (vp->v_cache_dd != NULL) { 2408 atomic_store_ptr(&vp->v_cache_dd, NULL); 2409 } 2410 } 2411 } 2412 2413 if (flag != NCF_ISDOTDOT) { 2414 if (LIST_EMPTY(&dvp->v_cache_src)) { 2415 cache_hold_vnode(dvp); 2416 } 2417 LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src); 2418 } 2419 2420 /* 2421 * If the entry is "negative", we place it into the 2422 * "negative" cache queue, otherwise, we place it into the 2423 * destination vnode's cache entries queue. 2424 */ 2425 if (vp != NULL) { 2426 TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst); 2427 SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name, 2428 vp); 2429 } else { 2430 if (cnp->cn_flags & ISWHITEOUT) 2431 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE); 2432 cache_neg_insert(ncp); 2433 SDT_PROBE2(vfs, namecache, enter_negative, done, dvp, 2434 ncp->nc_name); 2435 } 2436 2437 /* 2438 * Insert the new namecache entry into the appropriate chain 2439 * within the cache entries table. 2440 */ 2441 CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash); 2442 2443 atomic_thread_fence_rel(); 2444 /* 2445 * Mark the entry as fully constructed. 2446 * It is immutable past this point until its removal. 2447 */ 2448 atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP); 2449 2450 cache_enter_unlock(&cel); 2451 if (ndd != NULL) 2452 cache_free(ndd); 2453 return; 2454 out_unlock_free: 2455 cache_enter_unlock(&cel); 2456 cache_free(ncp); 2457 return; 2458 } 2459 2460 static u_int 2461 cache_roundup_2(u_int val) 2462 { 2463 u_int res; 2464 2465 for (res = 1; res <= val; res <<= 1) 2466 continue; 2467 2468 return (res); 2469 } 2470 2471 static struct nchashhead * 2472 nchinittbl(u_long elements, u_long *hashmask) 2473 { 2474 struct nchashhead *hashtbl; 2475 u_long hashsize, i; 2476 2477 hashsize = cache_roundup_2(elements) / 2; 2478 2479 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK); 2480 for (i = 0; i < hashsize; i++) 2481 CK_SLIST_INIT(&hashtbl[i]); 2482 *hashmask = hashsize - 1; 2483 return (hashtbl); 2484 } 2485 2486 static void 2487 ncfreetbl(struct nchashhead *hashtbl) 2488 { 2489 2490 free(hashtbl, M_VFSCACHE); 2491 } 2492 2493 /* 2494 * Name cache initialization, from vfs_init() when we are booting 2495 */ 2496 static void 2497 nchinit(void *dummy __unused) 2498 { 2499 u_int i; 2500 2501 cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE, 2502 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2503 cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE, 2504 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2505 cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE, 2506 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2507 cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE, 2508 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2509 2510 VFS_SMR_ZONE_SET(cache_zone_small); 2511 VFS_SMR_ZONE_SET(cache_zone_small_ts); 2512 VFS_SMR_ZONE_SET(cache_zone_large); 2513 VFS_SMR_ZONE_SET(cache_zone_large_ts); 2514 2515 ncsize = desiredvnodes * ncsizefactor; 2516 cache_recalc_neg_min(ncnegminpct); 2517 nchashtbl = nchinittbl(desiredvnodes * 2, &nchash); 2518 ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1; 2519 if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */ 2520 ncbuckethash = 7; 2521 if (ncbuckethash > nchash) 2522 ncbuckethash = nchash; 2523 bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE, 2524 M_WAITOK | M_ZERO); 2525 for (i = 0; i < numbucketlocks; i++) 2526 mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE); 2527 ncvnodehash = ncbuckethash; 2528 vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE, 2529 M_WAITOK | M_ZERO); 2530 for (i = 0; i < numvnodelocks; i++) 2531 mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE); 2532 2533 for (i = 0; i < numneglists; i++) { 2534 mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF); 2535 mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF); 2536 TAILQ_INIT(&neglists[i].nl_list); 2537 TAILQ_INIT(&neglists[i].nl_hotlist); 2538 } 2539 } 2540 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL); 2541 2542 void 2543 cache_vnode_init(struct vnode *vp) 2544 { 2545 2546 LIST_INIT(&vp->v_cache_src); 2547 TAILQ_INIT(&vp->v_cache_dst); 2548 vp->v_cache_dd = NULL; 2549 cache_prehash(vp); 2550 } 2551 2552 void 2553 cache_changesize(u_long newmaxvnodes) 2554 { 2555 struct nchashhead *new_nchashtbl, *old_nchashtbl; 2556 u_long new_nchash, old_nchash; 2557 struct namecache *ncp; 2558 uint32_t hash; 2559 u_long newncsize; 2560 int i; 2561 2562 newncsize = newmaxvnodes * ncsizefactor; 2563 newmaxvnodes = cache_roundup_2(newmaxvnodes * 2); 2564 if (newmaxvnodes < numbucketlocks) 2565 newmaxvnodes = numbucketlocks; 2566 2567 new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash); 2568 /* If same hash table size, nothing to do */ 2569 if (nchash == new_nchash) { 2570 ncfreetbl(new_nchashtbl); 2571 return; 2572 } 2573 /* 2574 * Move everything from the old hash table to the new table. 2575 * None of the namecache entries in the table can be removed 2576 * because to do so, they have to be removed from the hash table. 2577 */ 2578 cache_lock_all_vnodes(); 2579 cache_lock_all_buckets(); 2580 old_nchashtbl = nchashtbl; 2581 old_nchash = nchash; 2582 nchashtbl = new_nchashtbl; 2583 nchash = new_nchash; 2584 for (i = 0; i <= old_nchash; i++) { 2585 while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) { 2586 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, 2587 ncp->nc_dvp); 2588 CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash); 2589 CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash); 2590 } 2591 } 2592 ncsize = newncsize; 2593 cache_recalc_neg_min(ncnegminpct); 2594 cache_unlock_all_buckets(); 2595 cache_unlock_all_vnodes(); 2596 ncfreetbl(old_nchashtbl); 2597 } 2598 2599 /* 2600 * Remove all entries from and to a particular vnode. 2601 */ 2602 static void 2603 cache_purge_impl(struct vnode *vp) 2604 { 2605 struct cache_freebatch batch; 2606 struct namecache *ncp; 2607 struct mtx *vlp, *vlp2; 2608 2609 TAILQ_INIT(&batch); 2610 vlp = VP2VNODELOCK(vp); 2611 vlp2 = NULL; 2612 mtx_lock(vlp); 2613 retry: 2614 while (!LIST_EMPTY(&vp->v_cache_src)) { 2615 ncp = LIST_FIRST(&vp->v_cache_src); 2616 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2617 goto retry; 2618 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2619 } 2620 while (!TAILQ_EMPTY(&vp->v_cache_dst)) { 2621 ncp = TAILQ_FIRST(&vp->v_cache_dst); 2622 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2623 goto retry; 2624 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2625 } 2626 ncp = vp->v_cache_dd; 2627 if (ncp != NULL) { 2628 KASSERT(ncp->nc_flag & NCF_ISDOTDOT, 2629 ("lost dotdot link")); 2630 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2631 goto retry; 2632 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2633 } 2634 KASSERT(vp->v_cache_dd == NULL, ("incomplete purge")); 2635 mtx_unlock(vlp); 2636 if (vlp2 != NULL) 2637 mtx_unlock(vlp2); 2638 cache_free_batch(&batch); 2639 } 2640 2641 /* 2642 * Opportunistic check to see if there is anything to do. 2643 */ 2644 static bool 2645 cache_has_entries(struct vnode *vp) 2646 { 2647 2648 if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) && 2649 atomic_load_ptr(&vp->v_cache_dd) == NULL) 2650 return (false); 2651 return (true); 2652 } 2653 2654 void 2655 cache_purge(struct vnode *vp) 2656 { 2657 2658 SDT_PROBE1(vfs, namecache, purge, done, vp); 2659 if (!cache_has_entries(vp)) 2660 return; 2661 cache_purge_impl(vp); 2662 } 2663 2664 /* 2665 * Only to be used by vgone. 2666 */ 2667 void 2668 cache_purge_vgone(struct vnode *vp) 2669 { 2670 struct mtx *vlp; 2671 2672 VNPASS(VN_IS_DOOMED(vp), vp); 2673 if (cache_has_entries(vp)) { 2674 cache_purge_impl(vp); 2675 return; 2676 } 2677 2678 /* 2679 * Serialize against a potential thread doing cache_purge. 2680 */ 2681 vlp = VP2VNODELOCK(vp); 2682 mtx_wait_unlocked(vlp); 2683 if (cache_has_entries(vp)) { 2684 cache_purge_impl(vp); 2685 return; 2686 } 2687 return; 2688 } 2689 2690 /* 2691 * Remove all negative entries for a particular directory vnode. 2692 */ 2693 void 2694 cache_purge_negative(struct vnode *vp) 2695 { 2696 struct cache_freebatch batch; 2697 struct namecache *ncp, *nnp; 2698 struct mtx *vlp; 2699 2700 SDT_PROBE1(vfs, namecache, purge_negative, done, vp); 2701 if (LIST_EMPTY(&vp->v_cache_src)) 2702 return; 2703 TAILQ_INIT(&batch); 2704 vlp = VP2VNODELOCK(vp); 2705 mtx_lock(vlp); 2706 LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) { 2707 if (!(ncp->nc_flag & NCF_NEGATIVE)) 2708 continue; 2709 cache_zap_negative_locked_vnode_kl(ncp, vp); 2710 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2711 } 2712 mtx_unlock(vlp); 2713 cache_free_batch(&batch); 2714 } 2715 2716 /* 2717 * Entry points for modifying VOP operations. 2718 */ 2719 void 2720 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, 2721 struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) 2722 { 2723 2724 ASSERT_VOP_IN_SEQC(fdvp); 2725 ASSERT_VOP_IN_SEQC(fvp); 2726 ASSERT_VOP_IN_SEQC(tdvp); 2727 if (tvp != NULL) 2728 ASSERT_VOP_IN_SEQC(tvp); 2729 2730 cache_purge(fvp); 2731 if (tvp != NULL) { 2732 cache_purge(tvp); 2733 KASSERT(!cache_remove_cnp(tdvp, tcnp), 2734 ("%s: lingering negative entry", __func__)); 2735 } else { 2736 cache_remove_cnp(tdvp, tcnp); 2737 } 2738 2739 /* 2740 * TODO 2741 * 2742 * Historically renaming was always purging all revelang entries, 2743 * but that's quite wasteful. In particular turns out that in many cases 2744 * the target file is immediately accessed after rename, inducing a cache 2745 * miss. 2746 * 2747 * Recode this to reduce relocking and reuse the existing entry (if any) 2748 * instead of just removing it above and allocating a new one here. 2749 */ 2750 if (cache_rename_add) { 2751 cache_enter(tdvp, fvp, tcnp); 2752 } 2753 } 2754 2755 void 2756 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) 2757 { 2758 2759 ASSERT_VOP_IN_SEQC(dvp); 2760 ASSERT_VOP_IN_SEQC(vp); 2761 cache_purge(vp); 2762 } 2763 2764 #ifdef INVARIANTS 2765 /* 2766 * Validate that if an entry exists it matches. 2767 */ 2768 void 2769 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2770 { 2771 struct namecache *ncp; 2772 struct mtx *blp; 2773 uint32_t hash; 2774 2775 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2776 if (CK_SLIST_EMPTY(NCHHASH(hash))) 2777 return; 2778 blp = HASH2BUCKETLOCK(hash); 2779 mtx_lock(blp); 2780 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2781 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2782 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) { 2783 if (ncp->nc_vp != vp) 2784 panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p vp %p\n", 2785 __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp, 2786 ncp->nc_vp); 2787 } 2788 } 2789 mtx_unlock(blp); 2790 } 2791 #endif 2792 2793 /* 2794 * Flush all entries referencing a particular filesystem. 2795 */ 2796 void 2797 cache_purgevfs(struct mount *mp) 2798 { 2799 struct vnode *vp, *mvp; 2800 2801 SDT_PROBE1(vfs, namecache, purgevfs, done, mp); 2802 /* 2803 * Somewhat wasteful iteration over all vnodes. Would be better to 2804 * support filtering and avoid the interlock to begin with. 2805 */ 2806 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 2807 if (!cache_has_entries(vp)) { 2808 VI_UNLOCK(vp); 2809 continue; 2810 } 2811 vholdl(vp); 2812 VI_UNLOCK(vp); 2813 cache_purge(vp); 2814 vdrop(vp); 2815 } 2816 } 2817 2818 /* 2819 * Perform canonical checks and cache lookup and pass on to filesystem 2820 * through the vop_cachedlookup only if needed. 2821 */ 2822 2823 int 2824 vfs_cache_lookup(struct vop_lookup_args *ap) 2825 { 2826 struct vnode *dvp; 2827 int error; 2828 struct vnode **vpp = ap->a_vpp; 2829 struct componentname *cnp = ap->a_cnp; 2830 int flags = cnp->cn_flags; 2831 2832 *vpp = NULL; 2833 dvp = ap->a_dvp; 2834 2835 if (dvp->v_type != VDIR) 2836 return (ENOTDIR); 2837 2838 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 2839 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 2840 return (EROFS); 2841 2842 error = vn_dir_check_exec(dvp, cnp); 2843 if (error != 0) 2844 return (error); 2845 2846 error = cache_lookup(dvp, vpp, cnp, NULL, NULL); 2847 if (error == 0) 2848 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp)); 2849 if (error == -1) 2850 return (0); 2851 return (error); 2852 } 2853 2854 /* Implementation of the getcwd syscall. */ 2855 int 2856 sys___getcwd(struct thread *td, struct __getcwd_args *uap) 2857 { 2858 char *buf, *retbuf; 2859 size_t buflen; 2860 int error; 2861 2862 buflen = uap->buflen; 2863 if (__predict_false(buflen < 2)) 2864 return (EINVAL); 2865 if (buflen > MAXPATHLEN) 2866 buflen = MAXPATHLEN; 2867 2868 buf = uma_zalloc(namei_zone, M_WAITOK); 2869 error = vn_getcwd(buf, &retbuf, &buflen); 2870 if (error == 0) 2871 error = copyout(retbuf, uap->buf, buflen); 2872 uma_zfree(namei_zone, buf); 2873 return (error); 2874 } 2875 2876 int 2877 vn_getcwd(char *buf, char **retbuf, size_t *buflen) 2878 { 2879 struct pwd *pwd; 2880 int error; 2881 2882 vfs_smr_enter(); 2883 pwd = pwd_get_smr(); 2884 error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, 2885 buflen, 0); 2886 VFS_SMR_ASSERT_NOT_ENTERED(); 2887 if (error < 0) { 2888 pwd = pwd_hold(curthread); 2889 error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf, 2890 retbuf, buflen); 2891 pwd_drop(pwd); 2892 } 2893 2894 #ifdef KTRACE 2895 if (KTRPOINT(curthread, KTR_NAMEI) && error == 0) 2896 ktrnamei(*retbuf); 2897 #endif 2898 return (error); 2899 } 2900 2901 static int 2902 kern___realpathat(struct thread *td, int fd, const char *path, char *buf, 2903 size_t size, int flags, enum uio_seg pathseg) 2904 { 2905 struct nameidata nd; 2906 char *retbuf, *freebuf; 2907 int error; 2908 2909 if (flags != 0) 2910 return (EINVAL); 2911 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1, 2912 pathseg, path, fd, &cap_fstat_rights, td); 2913 if ((error = namei(&nd)) != 0) 2914 return (error); 2915 error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size); 2916 if (error == 0) { 2917 error = copyout(retbuf, buf, size); 2918 free(freebuf, M_TEMP); 2919 } 2920 NDFREE(&nd, 0); 2921 return (error); 2922 } 2923 2924 int 2925 sys___realpathat(struct thread *td, struct __realpathat_args *uap) 2926 { 2927 2928 return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size, 2929 uap->flags, UIO_USERSPACE)); 2930 } 2931 2932 /* 2933 * Retrieve the full filesystem path that correspond to a vnode from the name 2934 * cache (if available) 2935 */ 2936 int 2937 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf) 2938 { 2939 struct pwd *pwd; 2940 char *buf; 2941 size_t buflen; 2942 int error; 2943 2944 if (__predict_false(vp == NULL)) 2945 return (EINVAL); 2946 2947 buflen = MAXPATHLEN; 2948 buf = malloc(buflen, M_TEMP, M_WAITOK); 2949 vfs_smr_enter(); 2950 pwd = pwd_get_smr(); 2951 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0); 2952 VFS_SMR_ASSERT_NOT_ENTERED(); 2953 if (error < 0) { 2954 pwd = pwd_hold(curthread); 2955 error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen); 2956 pwd_drop(pwd); 2957 } 2958 if (error == 0) 2959 *freebuf = buf; 2960 else 2961 free(buf, M_TEMP); 2962 return (error); 2963 } 2964 2965 /* 2966 * This function is similar to vn_fullpath, but it attempts to lookup the 2967 * pathname relative to the global root mount point. This is required for the 2968 * auditing sub-system, as audited pathnames must be absolute, relative to the 2969 * global root mount point. 2970 */ 2971 int 2972 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf) 2973 { 2974 char *buf; 2975 size_t buflen; 2976 int error; 2977 2978 if (__predict_false(vp == NULL)) 2979 return (EINVAL); 2980 buflen = MAXPATHLEN; 2981 buf = malloc(buflen, M_TEMP, M_WAITOK); 2982 vfs_smr_enter(); 2983 error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0); 2984 VFS_SMR_ASSERT_NOT_ENTERED(); 2985 if (error < 0) { 2986 error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen); 2987 } 2988 if (error == 0) 2989 *freebuf = buf; 2990 else 2991 free(buf, M_TEMP); 2992 return (error); 2993 } 2994 2995 static struct namecache * 2996 vn_dd_from_dst(struct vnode *vp) 2997 { 2998 struct namecache *ncp; 2999 3000 cache_assert_vnode_locked(vp); 3001 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) { 3002 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3003 return (ncp); 3004 } 3005 return (NULL); 3006 } 3007 3008 int 3009 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen) 3010 { 3011 struct vnode *dvp; 3012 struct namecache *ncp; 3013 struct mtx *vlp; 3014 int error; 3015 3016 vlp = VP2VNODELOCK(*vp); 3017 mtx_lock(vlp); 3018 ncp = (*vp)->v_cache_dd; 3019 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) { 3020 KASSERT(ncp == vn_dd_from_dst(*vp), 3021 ("%s: mismatch for dd entry (%p != %p)", __func__, 3022 ncp, vn_dd_from_dst(*vp))); 3023 } else { 3024 ncp = vn_dd_from_dst(*vp); 3025 } 3026 if (ncp != NULL) { 3027 if (*buflen < ncp->nc_nlen) { 3028 mtx_unlock(vlp); 3029 vrele(*vp); 3030 counter_u64_add(numfullpathfail4, 1); 3031 error = ENOMEM; 3032 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3033 vp, NULL); 3034 return (error); 3035 } 3036 *buflen -= ncp->nc_nlen; 3037 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3038 SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp, 3039 ncp->nc_name, vp); 3040 dvp = *vp; 3041 *vp = ncp->nc_dvp; 3042 vref(*vp); 3043 mtx_unlock(vlp); 3044 vrele(dvp); 3045 return (0); 3046 } 3047 SDT_PROBE1(vfs, namecache, fullpath, miss, vp); 3048 3049 mtx_unlock(vlp); 3050 vn_lock(*vp, LK_SHARED | LK_RETRY); 3051 error = VOP_VPTOCNP(*vp, &dvp, buf, buflen); 3052 vput(*vp); 3053 if (error) { 3054 counter_u64_add(numfullpathfail2, 1); 3055 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3056 return (error); 3057 } 3058 3059 *vp = dvp; 3060 if (VN_IS_DOOMED(dvp)) { 3061 /* forced unmount */ 3062 vrele(dvp); 3063 error = ENOENT; 3064 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3065 return (error); 3066 } 3067 /* 3068 * *vp has its use count incremented still. 3069 */ 3070 3071 return (0); 3072 } 3073 3074 /* 3075 * Resolve a directory to a pathname. 3076 * 3077 * The name of the directory can always be found in the namecache or fetched 3078 * from the filesystem. There is also guaranteed to be only one parent, meaning 3079 * we can just follow vnodes up until we find the root. 3080 * 3081 * The vnode must be referenced. 3082 */ 3083 static int 3084 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3085 size_t *len, size_t addend) 3086 { 3087 #ifdef KDTRACE_HOOKS 3088 struct vnode *startvp = vp; 3089 #endif 3090 struct vnode *vp1; 3091 size_t buflen; 3092 int error; 3093 bool slash_prefixed; 3094 3095 VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp); 3096 VNPASS(vp->v_usecount > 0, vp); 3097 3098 buflen = *len; 3099 3100 slash_prefixed = true; 3101 if (addend == 0) { 3102 MPASS(*len >= 2); 3103 buflen--; 3104 buf[buflen] = '\0'; 3105 slash_prefixed = false; 3106 } 3107 3108 error = 0; 3109 3110 SDT_PROBE1(vfs, namecache, fullpath, entry, vp); 3111 counter_u64_add(numfullpathcalls, 1); 3112 while (vp != rdir && vp != rootvnode) { 3113 /* 3114 * The vp vnode must be already fully constructed, 3115 * since it is either found in namecache or obtained 3116 * from VOP_VPTOCNP(). We may test for VV_ROOT safely 3117 * without obtaining the vnode lock. 3118 */ 3119 if ((vp->v_vflag & VV_ROOT) != 0) { 3120 vn_lock(vp, LK_RETRY | LK_SHARED); 3121 3122 /* 3123 * With the vnode locked, check for races with 3124 * unmount, forced or not. Note that we 3125 * already verified that vp is not equal to 3126 * the root vnode, which means that 3127 * mnt_vnodecovered can be NULL only for the 3128 * case of unmount. 3129 */ 3130 if (VN_IS_DOOMED(vp) || 3131 (vp1 = vp->v_mount->mnt_vnodecovered) == NULL || 3132 vp1->v_mountedhere != vp->v_mount) { 3133 vput(vp); 3134 error = ENOENT; 3135 SDT_PROBE3(vfs, namecache, fullpath, return, 3136 error, vp, NULL); 3137 break; 3138 } 3139 3140 vref(vp1); 3141 vput(vp); 3142 vp = vp1; 3143 continue; 3144 } 3145 if (vp->v_type != VDIR) { 3146 vrele(vp); 3147 counter_u64_add(numfullpathfail1, 1); 3148 error = ENOTDIR; 3149 SDT_PROBE3(vfs, namecache, fullpath, return, 3150 error, vp, NULL); 3151 break; 3152 } 3153 error = vn_vptocnp(&vp, buf, &buflen); 3154 if (error) 3155 break; 3156 if (buflen == 0) { 3157 vrele(vp); 3158 error = ENOMEM; 3159 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3160 startvp, NULL); 3161 break; 3162 } 3163 buf[--buflen] = '/'; 3164 slash_prefixed = true; 3165 } 3166 if (error) 3167 return (error); 3168 if (!slash_prefixed) { 3169 if (buflen == 0) { 3170 vrele(vp); 3171 counter_u64_add(numfullpathfail4, 1); 3172 SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM, 3173 startvp, NULL); 3174 return (ENOMEM); 3175 } 3176 buf[--buflen] = '/'; 3177 } 3178 counter_u64_add(numfullpathfound, 1); 3179 vrele(vp); 3180 3181 *retbuf = buf + buflen; 3182 SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf); 3183 *len -= buflen; 3184 *len += addend; 3185 return (0); 3186 } 3187 3188 /* 3189 * Resolve an arbitrary vnode to a pathname. 3190 * 3191 * Note 2 caveats: 3192 * - hardlinks are not tracked, thus if the vnode is not a directory this can 3193 * resolve to a different path than the one used to find it 3194 * - namecache is not mandatory, meaning names are not guaranteed to be added 3195 * (in which case resolving fails) 3196 */ 3197 static void __inline 3198 cache_rev_failed_impl(int *reason, int line) 3199 { 3200 3201 *reason = line; 3202 } 3203 #define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__) 3204 3205 static int 3206 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 3207 char **retbuf, size_t *buflen, size_t addend) 3208 { 3209 #ifdef KDTRACE_HOOKS 3210 struct vnode *startvp = vp; 3211 #endif 3212 struct vnode *tvp; 3213 struct mount *mp; 3214 struct namecache *ncp; 3215 size_t orig_buflen; 3216 int reason; 3217 int error; 3218 #ifdef KDTRACE_HOOKS 3219 int i; 3220 #endif 3221 seqc_t vp_seqc, tvp_seqc; 3222 u_char nc_flag; 3223 3224 VFS_SMR_ASSERT_ENTERED(); 3225 3226 if (!cache_fast_revlookup) { 3227 vfs_smr_exit(); 3228 return (-1); 3229 } 3230 3231 orig_buflen = *buflen; 3232 3233 if (addend == 0) { 3234 MPASS(*buflen >= 2); 3235 *buflen -= 1; 3236 buf[*buflen] = '\0'; 3237 } 3238 3239 if (vp == rdir || vp == rootvnode) { 3240 if (addend == 0) { 3241 *buflen -= 1; 3242 buf[*buflen] = '/'; 3243 } 3244 goto out_ok; 3245 } 3246 3247 #ifdef KDTRACE_HOOKS 3248 i = 0; 3249 #endif 3250 error = -1; 3251 ncp = NULL; /* for sdt probe down below */ 3252 vp_seqc = vn_seqc_read_any(vp); 3253 if (seqc_in_modify(vp_seqc)) { 3254 cache_rev_failed(&reason); 3255 goto out_abort; 3256 } 3257 3258 for (;;) { 3259 #ifdef KDTRACE_HOOKS 3260 i++; 3261 #endif 3262 if ((vp->v_vflag & VV_ROOT) != 0) { 3263 mp = atomic_load_ptr(&vp->v_mount); 3264 if (mp == NULL) { 3265 cache_rev_failed(&reason); 3266 goto out_abort; 3267 } 3268 tvp = atomic_load_ptr(&mp->mnt_vnodecovered); 3269 tvp_seqc = vn_seqc_read_any(tvp); 3270 if (seqc_in_modify(tvp_seqc)) { 3271 cache_rev_failed(&reason); 3272 goto out_abort; 3273 } 3274 if (!vn_seqc_consistent(vp, vp_seqc)) { 3275 cache_rev_failed(&reason); 3276 goto out_abort; 3277 } 3278 vp = tvp; 3279 vp_seqc = tvp_seqc; 3280 continue; 3281 } 3282 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 3283 if (ncp == NULL) { 3284 cache_rev_failed(&reason); 3285 goto out_abort; 3286 } 3287 nc_flag = atomic_load_char(&ncp->nc_flag); 3288 if ((nc_flag & NCF_ISDOTDOT) != 0) { 3289 cache_rev_failed(&reason); 3290 goto out_abort; 3291 } 3292 if (ncp->nc_nlen >= *buflen) { 3293 cache_rev_failed(&reason); 3294 error = ENOMEM; 3295 goto out_abort; 3296 } 3297 *buflen -= ncp->nc_nlen; 3298 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3299 *buflen -= 1; 3300 buf[*buflen] = '/'; 3301 tvp = ncp->nc_dvp; 3302 tvp_seqc = vn_seqc_read_any(tvp); 3303 if (seqc_in_modify(tvp_seqc)) { 3304 cache_rev_failed(&reason); 3305 goto out_abort; 3306 } 3307 if (!vn_seqc_consistent(vp, vp_seqc)) { 3308 cache_rev_failed(&reason); 3309 goto out_abort; 3310 } 3311 /* 3312 * Acquire fence provided by vn_seqc_read_any above. 3313 */ 3314 if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) { 3315 cache_rev_failed(&reason); 3316 goto out_abort; 3317 } 3318 if (!cache_ncp_canuse(ncp)) { 3319 cache_rev_failed(&reason); 3320 goto out_abort; 3321 } 3322 vp = tvp; 3323 vp_seqc = tvp_seqc; 3324 if (vp == rdir || vp == rootvnode) 3325 break; 3326 } 3327 out_ok: 3328 vfs_smr_exit(); 3329 *retbuf = buf + *buflen; 3330 *buflen = orig_buflen - *buflen + addend; 3331 SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf); 3332 return (0); 3333 3334 out_abort: 3335 *buflen = orig_buflen; 3336 SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i); 3337 vfs_smr_exit(); 3338 return (error); 3339 } 3340 3341 static int 3342 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3343 size_t *buflen) 3344 { 3345 size_t orig_buflen, addend; 3346 int error; 3347 3348 if (*buflen < 2) 3349 return (EINVAL); 3350 3351 orig_buflen = *buflen; 3352 3353 vref(vp); 3354 addend = 0; 3355 if (vp->v_type != VDIR) { 3356 *buflen -= 1; 3357 buf[*buflen] = '\0'; 3358 error = vn_vptocnp(&vp, buf, buflen); 3359 if (error) 3360 return (error); 3361 if (*buflen == 0) { 3362 vrele(vp); 3363 return (ENOMEM); 3364 } 3365 *buflen -= 1; 3366 buf[*buflen] = '/'; 3367 addend = orig_buflen - *buflen; 3368 } 3369 3370 return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend)); 3371 } 3372 3373 /* 3374 * Resolve an arbitrary vnode to a pathname (taking care of hardlinks). 3375 * 3376 * Since the namecache does not track hardlinks, the caller is expected to first 3377 * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei. 3378 * 3379 * Then we have 2 cases: 3380 * - if the found vnode is a directory, the path can be constructed just by 3381 * following names up the chain 3382 * - otherwise we populate the buffer with the saved name and start resolving 3383 * from the parent 3384 */ 3385 static int 3386 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf, 3387 size_t *buflen) 3388 { 3389 char *buf, *tmpbuf; 3390 struct pwd *pwd; 3391 struct componentname *cnp; 3392 struct vnode *vp; 3393 size_t addend; 3394 int error; 3395 enum vtype type; 3396 3397 if (*buflen < 2) 3398 return (EINVAL); 3399 if (*buflen > MAXPATHLEN) 3400 *buflen = MAXPATHLEN; 3401 3402 buf = malloc(*buflen, M_TEMP, M_WAITOK); 3403 3404 addend = 0; 3405 vp = ndp->ni_vp; 3406 /* 3407 * Check for VBAD to work around the vp_crossmp bug in lookup(). 3408 * 3409 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be 3410 * set to mount point's root vnode while ni_dvp will be vp_crossmp. 3411 * If the type is VDIR (like in this very case) we can skip looking 3412 * at ni_dvp in the first place. However, since vnodes get passed here 3413 * unlocked the target may transition to doomed state (type == VBAD) 3414 * before we get to evaluate the condition. If this happens, we will 3415 * populate part of the buffer and descend to vn_fullpath_dir with 3416 * vp == vp_crossmp. Prevent the problem by checking for VBAD. 3417 * 3418 * This should be atomic_load(&vp->v_type) but it is illegal to take 3419 * an address of a bit field, even if said field is sized to char. 3420 * Work around the problem by reading the value into a full-sized enum 3421 * and then re-reading it with atomic_load which will still prevent 3422 * the compiler from re-reading down the road. 3423 */ 3424 type = vp->v_type; 3425 type = atomic_load_int(&type); 3426 if (type == VBAD) { 3427 error = ENOENT; 3428 goto out_bad; 3429 } 3430 if (type != VDIR) { 3431 cnp = &ndp->ni_cnd; 3432 addend = cnp->cn_namelen + 2; 3433 if (*buflen < addend) { 3434 error = ENOMEM; 3435 goto out_bad; 3436 } 3437 *buflen -= addend; 3438 tmpbuf = buf + *buflen; 3439 tmpbuf[0] = '/'; 3440 memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen); 3441 tmpbuf[addend - 1] = '\0'; 3442 vp = ndp->ni_dvp; 3443 } 3444 3445 vfs_smr_enter(); 3446 pwd = pwd_get_smr(); 3447 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3448 addend); 3449 VFS_SMR_ASSERT_NOT_ENTERED(); 3450 if (error < 0) { 3451 pwd = pwd_hold(curthread); 3452 vref(vp); 3453 error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3454 addend); 3455 pwd_drop(pwd); 3456 if (error != 0) 3457 goto out_bad; 3458 } 3459 3460 *freebuf = buf; 3461 3462 return (0); 3463 out_bad: 3464 free(buf, M_TEMP); 3465 return (error); 3466 } 3467 3468 struct vnode * 3469 vn_dir_dd_ino(struct vnode *vp) 3470 { 3471 struct namecache *ncp; 3472 struct vnode *ddvp; 3473 struct mtx *vlp; 3474 enum vgetstate vs; 3475 3476 ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino"); 3477 vlp = VP2VNODELOCK(vp); 3478 mtx_lock(vlp); 3479 TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) { 3480 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) 3481 continue; 3482 ddvp = ncp->nc_dvp; 3483 vs = vget_prep(ddvp); 3484 mtx_unlock(vlp); 3485 if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs)) 3486 return (NULL); 3487 return (ddvp); 3488 } 3489 mtx_unlock(vlp); 3490 return (NULL); 3491 } 3492 3493 int 3494 vn_commname(struct vnode *vp, char *buf, u_int buflen) 3495 { 3496 struct namecache *ncp; 3497 struct mtx *vlp; 3498 int l; 3499 3500 vlp = VP2VNODELOCK(vp); 3501 mtx_lock(vlp); 3502 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) 3503 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3504 break; 3505 if (ncp == NULL) { 3506 mtx_unlock(vlp); 3507 return (ENOENT); 3508 } 3509 l = min(ncp->nc_nlen, buflen - 1); 3510 memcpy(buf, ncp->nc_name, l); 3511 mtx_unlock(vlp); 3512 buf[l] = '\0'; 3513 return (0); 3514 } 3515 3516 /* 3517 * This function updates path string to vnode's full global path 3518 * and checks the size of the new path string against the pathlen argument. 3519 * 3520 * Requires a locked, referenced vnode. 3521 * Vnode is re-locked on success or ENODEV, otherwise unlocked. 3522 * 3523 * If vp is a directory, the call to vn_fullpath_global() always succeeds 3524 * because it falls back to the ".." lookup if the namecache lookup fails. 3525 */ 3526 int 3527 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, 3528 u_int pathlen) 3529 { 3530 struct nameidata nd; 3531 struct vnode *vp1; 3532 char *rpath, *fbuf; 3533 int error; 3534 3535 ASSERT_VOP_ELOCKED(vp, __func__); 3536 3537 /* Construct global filesystem path from vp. */ 3538 VOP_UNLOCK(vp); 3539 error = vn_fullpath_global(vp, &rpath, &fbuf); 3540 3541 if (error != 0) { 3542 vrele(vp); 3543 return (error); 3544 } 3545 3546 if (strlen(rpath) >= pathlen) { 3547 vrele(vp); 3548 error = ENAMETOOLONG; 3549 goto out; 3550 } 3551 3552 /* 3553 * Re-lookup the vnode by path to detect a possible rename. 3554 * As a side effect, the vnode is relocked. 3555 * If vnode was renamed, return ENOENT. 3556 */ 3557 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 3558 UIO_SYSSPACE, path, td); 3559 error = namei(&nd); 3560 if (error != 0) { 3561 vrele(vp); 3562 goto out; 3563 } 3564 NDFREE(&nd, NDF_ONLY_PNBUF); 3565 vp1 = nd.ni_vp; 3566 vrele(vp); 3567 if (vp1 == vp) 3568 strcpy(path, rpath); 3569 else { 3570 vput(vp1); 3571 error = ENOENT; 3572 } 3573 3574 out: 3575 free(fbuf, M_TEMP); 3576 return (error); 3577 } 3578 3579 #ifdef DDB 3580 static void 3581 db_print_vpath(struct vnode *vp) 3582 { 3583 3584 while (vp != NULL) { 3585 db_printf("%p: ", vp); 3586 if (vp == rootvnode) { 3587 db_printf("/"); 3588 vp = NULL; 3589 } else { 3590 if (vp->v_vflag & VV_ROOT) { 3591 db_printf("<mount point>"); 3592 vp = vp->v_mount->mnt_vnodecovered; 3593 } else { 3594 struct namecache *ncp; 3595 char *ncn; 3596 int i; 3597 3598 ncp = TAILQ_FIRST(&vp->v_cache_dst); 3599 if (ncp != NULL) { 3600 ncn = ncp->nc_name; 3601 for (i = 0; i < ncp->nc_nlen; i++) 3602 db_printf("%c", *ncn++); 3603 vp = ncp->nc_dvp; 3604 } else { 3605 vp = NULL; 3606 } 3607 } 3608 } 3609 db_printf("\n"); 3610 } 3611 3612 return; 3613 } 3614 3615 DB_SHOW_COMMAND(vpath, db_show_vpath) 3616 { 3617 struct vnode *vp; 3618 3619 if (!have_addr) { 3620 db_printf("usage: show vpath <struct vnode *>\n"); 3621 return; 3622 } 3623 3624 vp = (struct vnode *)addr; 3625 db_print_vpath(vp); 3626 } 3627 3628 #endif 3629 3630 static int cache_fast_lookup = 1; 3631 static char __read_frequently cache_fast_lookup_enabled = true; 3632 3633 #define CACHE_FPL_FAILED -2020 3634 3635 void 3636 cache_fast_lookup_enabled_recalc(void) 3637 { 3638 int lookup_flag; 3639 int mac_on; 3640 3641 #ifdef MAC 3642 mac_on = mac_vnode_check_lookup_enabled(); 3643 mac_on |= mac_vnode_check_readlink_enabled(); 3644 #else 3645 mac_on = 0; 3646 #endif 3647 3648 lookup_flag = atomic_load_int(&cache_fast_lookup); 3649 if (lookup_flag && !mac_on) { 3650 atomic_store_char(&cache_fast_lookup_enabled, true); 3651 } else { 3652 atomic_store_char(&cache_fast_lookup_enabled, false); 3653 } 3654 } 3655 3656 static int 3657 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS) 3658 { 3659 int error, old; 3660 3661 old = atomic_load_int(&cache_fast_lookup); 3662 error = sysctl_handle_int(oidp, arg1, arg2, req); 3663 if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup)) 3664 cache_fast_lookup_enabled_recalc(); 3665 return (error); 3666 } 3667 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, 3668 &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", ""); 3669 3670 /* 3671 * Components of nameidata (or objects it can point to) which may 3672 * need restoring in case fast path lookup fails. 3673 */ 3674 struct nameidata_outer { 3675 size_t ni_pathlen; 3676 int cn_flags; 3677 }; 3678 3679 struct nameidata_saved { 3680 #ifdef INVARIANTS 3681 char *cn_nameptr; 3682 size_t ni_pathlen; 3683 #endif 3684 }; 3685 3686 #ifdef INVARIANTS 3687 struct cache_fpl_debug { 3688 size_t ni_pathlen; 3689 }; 3690 #endif 3691 3692 struct cache_fpl { 3693 struct nameidata *ndp; 3694 struct componentname *cnp; 3695 char *nulchar; 3696 struct pwd **pwd; 3697 struct vnode *dvp; 3698 struct vnode *tvp; 3699 seqc_t dvp_seqc; 3700 seqc_t tvp_seqc; 3701 struct nameidata_saved snd; 3702 struct nameidata_outer snd_outer; 3703 int line; 3704 enum cache_fpl_status status:8; 3705 bool in_smr; 3706 bool fsearch; 3707 bool savename; 3708 #ifdef INVARIANTS 3709 struct cache_fpl_debug debug; 3710 #endif 3711 }; 3712 3713 static bool cache_fplookup_is_mp(struct cache_fpl *fpl); 3714 static int cache_fplookup_cross_mount(struct cache_fpl *fpl); 3715 static int cache_fplookup_partial_setup(struct cache_fpl *fpl); 3716 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl); 3717 static int cache_fplookup_preparse(struct cache_fpl *fpl); 3718 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl); 3719 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl); 3720 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n); 3721 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n); 3722 3723 static void 3724 cache_fpl_cleanup_cnp(struct componentname *cnp) 3725 { 3726 3727 uma_zfree(namei_zone, cnp->cn_pnbuf); 3728 #ifdef DIAGNOSTIC 3729 cnp->cn_pnbuf = NULL; 3730 cnp->cn_nameptr = NULL; 3731 #endif 3732 } 3733 3734 static struct vnode * 3735 cache_fpl_handle_root(struct cache_fpl *fpl) 3736 { 3737 struct nameidata *ndp; 3738 struct componentname *cnp; 3739 3740 ndp = fpl->ndp; 3741 cnp = fpl->cnp; 3742 3743 MPASS(*(cnp->cn_nameptr) == '/'); 3744 cnp->cn_nameptr++; 3745 cache_fpl_pathlen_dec(fpl); 3746 3747 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 3748 do { 3749 cnp->cn_nameptr++; 3750 cache_fpl_pathlen_dec(fpl); 3751 } while (*(cnp->cn_nameptr) == '/'); 3752 } 3753 3754 return (ndp->ni_rootdir); 3755 } 3756 3757 static void 3758 cache_fpl_checkpoint_outer(struct cache_fpl *fpl) 3759 { 3760 3761 fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen; 3762 fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags; 3763 } 3764 3765 static void 3766 cache_fpl_checkpoint(struct cache_fpl *fpl) 3767 { 3768 3769 #ifdef INVARIANTS 3770 fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr; 3771 fpl->snd.ni_pathlen = fpl->debug.ni_pathlen; 3772 #endif 3773 } 3774 3775 static void 3776 cache_fpl_restore_partial(struct cache_fpl *fpl) 3777 { 3778 3779 fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags; 3780 #ifdef INVARIANTS 3781 fpl->debug.ni_pathlen = fpl->snd.ni_pathlen; 3782 #endif 3783 } 3784 3785 static void 3786 cache_fpl_restore_abort(struct cache_fpl *fpl) 3787 { 3788 3789 cache_fpl_restore_partial(fpl); 3790 /* 3791 * It is 0 on entry by API contract. 3792 */ 3793 fpl->ndp->ni_resflags = 0; 3794 fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf; 3795 fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen; 3796 } 3797 3798 #ifdef INVARIANTS 3799 #define cache_fpl_smr_assert_entered(fpl) ({ \ 3800 struct cache_fpl *_fpl = (fpl); \ 3801 MPASS(_fpl->in_smr == true); \ 3802 VFS_SMR_ASSERT_ENTERED(); \ 3803 }) 3804 #define cache_fpl_smr_assert_not_entered(fpl) ({ \ 3805 struct cache_fpl *_fpl = (fpl); \ 3806 MPASS(_fpl->in_smr == false); \ 3807 VFS_SMR_ASSERT_NOT_ENTERED(); \ 3808 }) 3809 static void 3810 cache_fpl_assert_status(struct cache_fpl *fpl) 3811 { 3812 3813 switch (fpl->status) { 3814 case CACHE_FPL_STATUS_UNSET: 3815 __assert_unreachable(); 3816 break; 3817 case CACHE_FPL_STATUS_DESTROYED: 3818 case CACHE_FPL_STATUS_ABORTED: 3819 case CACHE_FPL_STATUS_PARTIAL: 3820 case CACHE_FPL_STATUS_HANDLED: 3821 break; 3822 } 3823 } 3824 #else 3825 #define cache_fpl_smr_assert_entered(fpl) do { } while (0) 3826 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0) 3827 #define cache_fpl_assert_status(fpl) do { } while (0) 3828 #endif 3829 3830 #define cache_fpl_smr_enter_initial(fpl) ({ \ 3831 struct cache_fpl *_fpl = (fpl); \ 3832 vfs_smr_enter(); \ 3833 _fpl->in_smr = true; \ 3834 }) 3835 3836 #define cache_fpl_smr_enter(fpl) ({ \ 3837 struct cache_fpl *_fpl = (fpl); \ 3838 MPASS(_fpl->in_smr == false); \ 3839 vfs_smr_enter(); \ 3840 _fpl->in_smr = true; \ 3841 }) 3842 3843 #define cache_fpl_smr_exit(fpl) ({ \ 3844 struct cache_fpl *_fpl = (fpl); \ 3845 MPASS(_fpl->in_smr == true); \ 3846 vfs_smr_exit(); \ 3847 _fpl->in_smr = false; \ 3848 }) 3849 3850 static int 3851 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line) 3852 { 3853 3854 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 3855 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 3856 ("%s: converting to abort from %d at %d, set at %d\n", 3857 __func__, fpl->status, line, fpl->line)); 3858 } 3859 cache_fpl_smr_assert_not_entered(fpl); 3860 fpl->status = CACHE_FPL_STATUS_ABORTED; 3861 fpl->line = line; 3862 return (CACHE_FPL_FAILED); 3863 } 3864 3865 #define cache_fpl_aborted_early(x) cache_fpl_aborted_early_impl((x), __LINE__) 3866 3867 static int __noinline 3868 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line) 3869 { 3870 struct nameidata *ndp; 3871 struct componentname *cnp; 3872 3873 ndp = fpl->ndp; 3874 cnp = fpl->cnp; 3875 3876 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 3877 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 3878 ("%s: converting to abort from %d at %d, set at %d\n", 3879 __func__, fpl->status, line, fpl->line)); 3880 } 3881 fpl->status = CACHE_FPL_STATUS_ABORTED; 3882 fpl->line = line; 3883 if (fpl->in_smr) 3884 cache_fpl_smr_exit(fpl); 3885 cache_fpl_restore_abort(fpl); 3886 /* 3887 * Resolving symlinks overwrites data passed by the caller. 3888 * Let namei know. 3889 */ 3890 if (ndp->ni_loopcnt > 0) { 3891 fpl->status = CACHE_FPL_STATUS_DESTROYED; 3892 cache_fpl_cleanup_cnp(cnp); 3893 } 3894 return (CACHE_FPL_FAILED); 3895 } 3896 3897 #define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__) 3898 3899 static int __noinline 3900 cache_fpl_partial_impl(struct cache_fpl *fpl, int line) 3901 { 3902 3903 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 3904 ("%s: setting to partial at %d, but already set to %d at %d\n", 3905 __func__, line, fpl->status, fpl->line)); 3906 cache_fpl_smr_assert_entered(fpl); 3907 fpl->status = CACHE_FPL_STATUS_PARTIAL; 3908 fpl->line = line; 3909 return (cache_fplookup_partial_setup(fpl)); 3910 } 3911 3912 #define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__) 3913 3914 static int 3915 cache_fpl_handled_impl(struct cache_fpl *fpl, int line) 3916 { 3917 3918 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 3919 ("%s: setting to handled at %d, but already set to %d at %d\n", 3920 __func__, line, fpl->status, fpl->line)); 3921 cache_fpl_smr_assert_not_entered(fpl); 3922 fpl->status = CACHE_FPL_STATUS_HANDLED; 3923 fpl->line = line; 3924 return (0); 3925 } 3926 3927 #define cache_fpl_handled(x) cache_fpl_handled_impl((x), __LINE__) 3928 3929 static int 3930 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line) 3931 { 3932 3933 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 3934 ("%s: setting to handled at %d, but already set to %d at %d\n", 3935 __func__, line, fpl->status, fpl->line)); 3936 MPASS(error != 0); 3937 MPASS(error != CACHE_FPL_FAILED); 3938 cache_fpl_smr_assert_not_entered(fpl); 3939 fpl->status = CACHE_FPL_STATUS_HANDLED; 3940 fpl->line = line; 3941 fpl->dvp = NULL; 3942 fpl->tvp = NULL; 3943 fpl->savename = false; 3944 return (error); 3945 } 3946 3947 #define cache_fpl_handled_error(x, e) cache_fpl_handled_error_impl((x), (e), __LINE__) 3948 3949 static bool 3950 cache_fpl_terminated(struct cache_fpl *fpl) 3951 { 3952 3953 return (fpl->status != CACHE_FPL_STATUS_UNSET); 3954 } 3955 3956 #define CACHE_FPL_SUPPORTED_CN_FLAGS \ 3957 (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \ 3958 FAILIFEXISTS | FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | \ 3959 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK) 3960 3961 #define CACHE_FPL_INTERNAL_CN_FLAGS \ 3962 (ISDOTDOT | MAKEENTRY | ISLASTCN) 3963 3964 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 3965 "supported and internal flags overlap"); 3966 3967 static bool 3968 cache_fpl_islastcn(struct nameidata *ndp) 3969 { 3970 3971 return (*ndp->ni_next == 0); 3972 } 3973 3974 static bool 3975 cache_fpl_isdotdot(struct componentname *cnp) 3976 { 3977 3978 if (cnp->cn_namelen == 2 && 3979 cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') 3980 return (true); 3981 return (false); 3982 } 3983 3984 static bool 3985 cache_can_fplookup(struct cache_fpl *fpl) 3986 { 3987 struct nameidata *ndp; 3988 struct componentname *cnp; 3989 struct thread *td; 3990 3991 ndp = fpl->ndp; 3992 cnp = fpl->cnp; 3993 td = cnp->cn_thread; 3994 3995 if (!atomic_load_char(&cache_fast_lookup_enabled)) { 3996 cache_fpl_aborted_early(fpl); 3997 return (false); 3998 } 3999 if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) { 4000 cache_fpl_aborted_early(fpl); 4001 return (false); 4002 } 4003 if (IN_CAPABILITY_MODE(td)) { 4004 cache_fpl_aborted_early(fpl); 4005 return (false); 4006 } 4007 if (AUDITING_TD(td)) { 4008 cache_fpl_aborted_early(fpl); 4009 return (false); 4010 } 4011 if (ndp->ni_startdir != NULL) { 4012 cache_fpl_aborted_early(fpl); 4013 return (false); 4014 } 4015 return (true); 4016 } 4017 4018 static int 4019 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp) 4020 { 4021 struct nameidata *ndp; 4022 int error; 4023 bool fsearch; 4024 4025 ndp = fpl->ndp; 4026 error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch); 4027 if (__predict_false(error != 0)) { 4028 return (cache_fpl_aborted(fpl)); 4029 } 4030 fpl->fsearch = fsearch; 4031 return (0); 4032 } 4033 4034 static int __noinline 4035 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, 4036 uint32_t hash) 4037 { 4038 struct componentname *cnp; 4039 struct vnode *dvp; 4040 4041 cnp = fpl->cnp; 4042 dvp = fpl->dvp; 4043 4044 cache_fpl_smr_exit(fpl); 4045 if (cache_neg_promote_cond(dvp, cnp, oncp, hash)) 4046 return (cache_fpl_handled_error(fpl, ENOENT)); 4047 else 4048 return (cache_fpl_aborted(fpl)); 4049 } 4050 4051 /* 4052 * The target vnode is not supported, prepare for the slow path to take over. 4053 */ 4054 static int __noinline 4055 cache_fplookup_partial_setup(struct cache_fpl *fpl) 4056 { 4057 struct nameidata *ndp; 4058 struct componentname *cnp; 4059 enum vgetstate dvs; 4060 struct vnode *dvp; 4061 struct pwd *pwd; 4062 seqc_t dvp_seqc; 4063 4064 ndp = fpl->ndp; 4065 cnp = fpl->cnp; 4066 pwd = *(fpl->pwd); 4067 dvp = fpl->dvp; 4068 dvp_seqc = fpl->dvp_seqc; 4069 4070 if (!pwd_hold_smr(pwd)) { 4071 return (cache_fpl_aborted(fpl)); 4072 } 4073 4074 /* 4075 * Note that seqc is checked before the vnode is locked, so by 4076 * the time regular lookup gets to it it may have moved. 4077 * 4078 * Ultimately this does not affect correctness, any lookup errors 4079 * are userspace racing with itself. It is guaranteed that any 4080 * path which ultimately gets found could also have been found 4081 * by regular lookup going all the way in absence of concurrent 4082 * modifications. 4083 */ 4084 dvs = vget_prep_smr(dvp); 4085 cache_fpl_smr_exit(fpl); 4086 if (__predict_false(dvs == VGET_NONE)) { 4087 pwd_drop(pwd); 4088 return (cache_fpl_aborted(fpl)); 4089 } 4090 4091 vget_finish_ref(dvp, dvs); 4092 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4093 vrele(dvp); 4094 pwd_drop(pwd); 4095 return (cache_fpl_aborted(fpl)); 4096 } 4097 4098 cache_fpl_restore_partial(fpl); 4099 #ifdef INVARIANTS 4100 if (cnp->cn_nameptr != fpl->snd.cn_nameptr) { 4101 panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__, 4102 cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf); 4103 } 4104 #endif 4105 4106 ndp->ni_startdir = dvp; 4107 cnp->cn_flags |= MAKEENTRY; 4108 if (cache_fpl_islastcn(ndp)) 4109 cnp->cn_flags |= ISLASTCN; 4110 if (cache_fpl_isdotdot(cnp)) 4111 cnp->cn_flags |= ISDOTDOT; 4112 4113 /* 4114 * Skip potential extra slashes parsing did not take care of. 4115 * cache_fplookup_skip_slashes explains the mechanism. 4116 */ 4117 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 4118 do { 4119 cnp->cn_nameptr++; 4120 cache_fpl_pathlen_dec(fpl); 4121 } while (*(cnp->cn_nameptr) == '/'); 4122 } 4123 4124 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; 4125 #ifdef INVARIANTS 4126 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 4127 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 4128 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 4129 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 4130 } 4131 #endif 4132 return (0); 4133 } 4134 4135 static int 4136 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs) 4137 { 4138 struct componentname *cnp; 4139 struct vnode *tvp; 4140 seqc_t tvp_seqc; 4141 int error, lkflags; 4142 4143 cnp = fpl->cnp; 4144 tvp = fpl->tvp; 4145 tvp_seqc = fpl->tvp_seqc; 4146 4147 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4148 lkflags = LK_SHARED; 4149 if ((cnp->cn_flags & LOCKSHARED) == 0) 4150 lkflags = LK_EXCLUSIVE; 4151 error = vget_finish(tvp, lkflags, tvs); 4152 if (__predict_false(error != 0)) { 4153 return (cache_fpl_aborted(fpl)); 4154 } 4155 } else { 4156 vget_finish_ref(tvp, tvs); 4157 } 4158 4159 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 4160 if ((cnp->cn_flags & LOCKLEAF) != 0) 4161 vput(tvp); 4162 else 4163 vrele(tvp); 4164 return (cache_fpl_aborted(fpl)); 4165 } 4166 4167 return (cache_fpl_handled(fpl)); 4168 } 4169 4170 /* 4171 * They want to possibly modify the state of the namecache. 4172 */ 4173 static int __noinline 4174 cache_fplookup_final_modifying(struct cache_fpl *fpl) 4175 { 4176 struct nameidata *ndp; 4177 struct componentname *cnp; 4178 enum vgetstate dvs; 4179 struct vnode *dvp, *tvp; 4180 struct mount *mp; 4181 seqc_t dvp_seqc; 4182 int error; 4183 bool docache; 4184 4185 ndp = fpl->ndp; 4186 cnp = fpl->cnp; 4187 dvp = fpl->dvp; 4188 dvp_seqc = fpl->dvp_seqc; 4189 4190 MPASS(*(cnp->cn_nameptr) != '/'); 4191 MPASS(cache_fpl_islastcn(ndp)); 4192 if ((cnp->cn_flags & LOCKPARENT) == 0) 4193 MPASS((cnp->cn_flags & WANTPARENT) != 0); 4194 MPASS((cnp->cn_flags & TRAILINGSLASH) == 0); 4195 MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE || 4196 cnp->cn_nameiop == RENAME); 4197 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4198 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4199 4200 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4201 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 4202 docache = false; 4203 4204 mp = atomic_load_ptr(&dvp->v_mount); 4205 if (__predict_false(mp == NULL)) { 4206 return (cache_fpl_aborted(fpl)); 4207 } 4208 4209 if (__predict_false(mp->mnt_flag & MNT_RDONLY)) { 4210 cache_fpl_smr_exit(fpl); 4211 /* 4212 * Original code keeps not checking for CREATE which 4213 * might be a bug. For now let the old lookup decide. 4214 */ 4215 if (cnp->cn_nameiop == CREATE) { 4216 return (cache_fpl_aborted(fpl)); 4217 } 4218 return (cache_fpl_handled_error(fpl, EROFS)); 4219 } 4220 4221 if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) { 4222 cache_fpl_smr_exit(fpl); 4223 return (cache_fpl_handled_error(fpl, EEXIST)); 4224 } 4225 4226 /* 4227 * Secure access to dvp; check cache_fplookup_partial_setup for 4228 * reasoning. 4229 * 4230 * XXX At least UFS requires its lookup routine to be called for 4231 * the last path component, which leads to some level of complication 4232 * and inefficiency: 4233 * - the target routine always locks the target vnode, but our caller 4234 * may not need it locked 4235 * - some of the VOP machinery asserts that the parent is locked, which 4236 * once more may be not required 4237 * 4238 * TODO: add a flag for filesystems which don't need this. 4239 */ 4240 dvs = vget_prep_smr(dvp); 4241 cache_fpl_smr_exit(fpl); 4242 if (__predict_false(dvs == VGET_NONE)) { 4243 return (cache_fpl_aborted(fpl)); 4244 } 4245 4246 vget_finish_ref(dvp, dvs); 4247 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4248 vrele(dvp); 4249 return (cache_fpl_aborted(fpl)); 4250 } 4251 4252 error = vn_lock(dvp, LK_EXCLUSIVE); 4253 if (__predict_false(error != 0)) { 4254 vrele(dvp); 4255 return (cache_fpl_aborted(fpl)); 4256 } 4257 4258 tvp = NULL; 4259 cnp->cn_flags |= ISLASTCN; 4260 if (docache) 4261 cnp->cn_flags |= MAKEENTRY; 4262 if (cache_fpl_isdotdot(cnp)) 4263 cnp->cn_flags |= ISDOTDOT; 4264 cnp->cn_lkflags = LK_EXCLUSIVE; 4265 error = VOP_LOOKUP(dvp, &tvp, cnp); 4266 switch (error) { 4267 case EJUSTRETURN: 4268 case 0: 4269 break; 4270 case ENOTDIR: 4271 case ENOENT: 4272 vput(dvp); 4273 return (cache_fpl_handled_error(fpl, error)); 4274 default: 4275 vput(dvp); 4276 return (cache_fpl_aborted(fpl)); 4277 } 4278 4279 fpl->tvp = tvp; 4280 fpl->savename = (cnp->cn_flags & SAVENAME) != 0; 4281 4282 if (tvp == NULL) { 4283 if ((cnp->cn_flags & SAVESTART) != 0) { 4284 ndp->ni_startdir = dvp; 4285 vrefact(ndp->ni_startdir); 4286 cnp->cn_flags |= SAVENAME; 4287 fpl->savename = true; 4288 } 4289 MPASS(error == EJUSTRETURN); 4290 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4291 VOP_UNLOCK(dvp); 4292 } 4293 return (cache_fpl_handled(fpl)); 4294 } 4295 4296 /* 4297 * There are very hairy corner cases concerning various flag combinations 4298 * and locking state. In particular here we only hold one lock instead of 4299 * two. 4300 * 4301 * Skip the complexity as it is of no significance for normal workloads. 4302 */ 4303 if (__predict_false(tvp == dvp)) { 4304 vput(dvp); 4305 vrele(tvp); 4306 return (cache_fpl_aborted(fpl)); 4307 } 4308 4309 /* 4310 * Check if the target is either a symlink or a mount point. 4311 * Since we expect this to be the terminal vnode it should 4312 * almost never be true. 4313 */ 4314 if (__predict_false(tvp->v_type == VLNK || cache_fplookup_is_mp(fpl))) { 4315 vput(dvp); 4316 vput(tvp); 4317 return (cache_fpl_aborted(fpl)); 4318 } 4319 4320 if ((cnp->cn_flags & FAILIFEXISTS) != 0) { 4321 vput(dvp); 4322 vput(tvp); 4323 return (cache_fpl_handled_error(fpl, EEXIST)); 4324 } 4325 4326 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4327 VOP_UNLOCK(tvp); 4328 } 4329 4330 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4331 VOP_UNLOCK(dvp); 4332 } 4333 4334 if ((cnp->cn_flags & SAVESTART) != 0) { 4335 ndp->ni_startdir = dvp; 4336 vrefact(ndp->ni_startdir); 4337 cnp->cn_flags |= SAVENAME; 4338 fpl->savename = true; 4339 } 4340 4341 return (cache_fpl_handled(fpl)); 4342 } 4343 4344 static int __noinline 4345 cache_fplookup_modifying(struct cache_fpl *fpl) 4346 { 4347 struct nameidata *ndp; 4348 4349 ndp = fpl->ndp; 4350 4351 if (!cache_fpl_islastcn(ndp)) { 4352 return (cache_fpl_partial(fpl)); 4353 } 4354 return (cache_fplookup_final_modifying(fpl)); 4355 } 4356 4357 static int __noinline 4358 cache_fplookup_final_withparent(struct cache_fpl *fpl) 4359 { 4360 struct componentname *cnp; 4361 enum vgetstate dvs, tvs; 4362 struct vnode *dvp, *tvp; 4363 seqc_t dvp_seqc; 4364 int error; 4365 4366 cnp = fpl->cnp; 4367 dvp = fpl->dvp; 4368 dvp_seqc = fpl->dvp_seqc; 4369 tvp = fpl->tvp; 4370 4371 MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0); 4372 4373 /* 4374 * This is less efficient than it can be for simplicity. 4375 */ 4376 dvs = vget_prep_smr(dvp); 4377 if (__predict_false(dvs == VGET_NONE)) { 4378 return (cache_fpl_aborted(fpl)); 4379 } 4380 tvs = vget_prep_smr(tvp); 4381 if (__predict_false(tvs == VGET_NONE)) { 4382 cache_fpl_smr_exit(fpl); 4383 vget_abort(dvp, dvs); 4384 return (cache_fpl_aborted(fpl)); 4385 } 4386 4387 cache_fpl_smr_exit(fpl); 4388 4389 if ((cnp->cn_flags & LOCKPARENT) != 0) { 4390 error = vget_finish(dvp, LK_EXCLUSIVE, dvs); 4391 if (__predict_false(error != 0)) { 4392 vget_abort(tvp, tvs); 4393 return (cache_fpl_aborted(fpl)); 4394 } 4395 } else { 4396 vget_finish_ref(dvp, dvs); 4397 } 4398 4399 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4400 vget_abort(tvp, tvs); 4401 if ((cnp->cn_flags & LOCKPARENT) != 0) 4402 vput(dvp); 4403 else 4404 vrele(dvp); 4405 return (cache_fpl_aborted(fpl)); 4406 } 4407 4408 error = cache_fplookup_final_child(fpl, tvs); 4409 if (__predict_false(error != 0)) { 4410 MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED); 4411 if ((cnp->cn_flags & LOCKPARENT) != 0) 4412 vput(dvp); 4413 else 4414 vrele(dvp); 4415 return (error); 4416 } 4417 4418 MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED); 4419 return (0); 4420 } 4421 4422 static int 4423 cache_fplookup_final(struct cache_fpl *fpl) 4424 { 4425 struct componentname *cnp; 4426 enum vgetstate tvs; 4427 struct vnode *dvp, *tvp; 4428 seqc_t dvp_seqc; 4429 4430 cnp = fpl->cnp; 4431 dvp = fpl->dvp; 4432 dvp_seqc = fpl->dvp_seqc; 4433 tvp = fpl->tvp; 4434 4435 MPASS(*(cnp->cn_nameptr) != '/'); 4436 4437 if (cnp->cn_nameiop != LOOKUP) { 4438 return (cache_fplookup_final_modifying(fpl)); 4439 } 4440 4441 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) 4442 return (cache_fplookup_final_withparent(fpl)); 4443 4444 tvs = vget_prep_smr(tvp); 4445 if (__predict_false(tvs == VGET_NONE)) { 4446 return (cache_fpl_partial(fpl)); 4447 } 4448 4449 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4450 cache_fpl_smr_exit(fpl); 4451 vget_abort(tvp, tvs); 4452 return (cache_fpl_aborted(fpl)); 4453 } 4454 4455 cache_fpl_smr_exit(fpl); 4456 return (cache_fplookup_final_child(fpl, tvs)); 4457 } 4458 4459 /* 4460 * Comment from locked lookup: 4461 * Check for degenerate name (e.g. / or "") which is a way of talking about a 4462 * directory, e.g. like "/." or ".". 4463 */ 4464 static int __noinline 4465 cache_fplookup_degenerate(struct cache_fpl *fpl) 4466 { 4467 struct componentname *cnp; 4468 struct vnode *dvp; 4469 enum vgetstate dvs; 4470 int error, lkflags; 4471 4472 fpl->tvp = fpl->dvp; 4473 fpl->tvp_seqc = fpl->dvp_seqc; 4474 4475 cnp = fpl->cnp; 4476 dvp = fpl->dvp; 4477 4478 if (__predict_false(cnp->cn_nameiop != LOOKUP)) { 4479 cache_fpl_smr_exit(fpl); 4480 return (cache_fpl_handled_error(fpl, EISDIR)); 4481 } 4482 4483 MPASS((cnp->cn_flags & SAVESTART) == 0); 4484 4485 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) { 4486 return (cache_fplookup_final_withparent(fpl)); 4487 } 4488 4489 dvs = vget_prep_smr(dvp); 4490 cache_fpl_smr_exit(fpl); 4491 if (__predict_false(dvs == VGET_NONE)) { 4492 return (cache_fpl_aborted(fpl)); 4493 } 4494 4495 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4496 lkflags = LK_SHARED; 4497 if ((cnp->cn_flags & LOCKSHARED) == 0) 4498 lkflags = LK_EXCLUSIVE; 4499 error = vget_finish(dvp, lkflags, dvs); 4500 if (__predict_false(error != 0)) { 4501 return (cache_fpl_aborted(fpl)); 4502 } 4503 } else { 4504 vget_finish_ref(dvp, dvs); 4505 } 4506 return (cache_fpl_handled(fpl)); 4507 } 4508 4509 static int __noinline 4510 cache_fplookup_noentry(struct cache_fpl *fpl) 4511 { 4512 struct nameidata *ndp; 4513 struct componentname *cnp; 4514 enum vgetstate dvs; 4515 struct vnode *dvp, *tvp; 4516 seqc_t dvp_seqc; 4517 int error; 4518 bool docache; 4519 4520 ndp = fpl->ndp; 4521 cnp = fpl->cnp; 4522 dvp = fpl->dvp; 4523 dvp_seqc = fpl->dvp_seqc; 4524 4525 MPASS(*(cnp->cn_nameptr) != '/'); 4526 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4527 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4528 MPASS(!cache_fpl_isdotdot(cnp)); 4529 4530 /* 4531 * Hack: delayed name len checking. 4532 */ 4533 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 4534 cache_fpl_smr_exit(fpl); 4535 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 4536 } 4537 4538 if (cnp->cn_nameiop != LOOKUP) { 4539 fpl->tvp = NULL; 4540 return (cache_fplookup_modifying(fpl)); 4541 } 4542 4543 MPASS((cnp->cn_flags & SAVESTART) == 0); 4544 4545 /* 4546 * Only try to fill in the component if it is the last one, 4547 * otherwise not only there may be several to handle but the 4548 * walk may be complicated. 4549 */ 4550 if (!cache_fpl_islastcn(ndp)) { 4551 return (cache_fpl_partial(fpl)); 4552 } 4553 4554 /* 4555 * Secure access to dvp; check cache_fplookup_partial_setup for 4556 * reasoning. 4557 */ 4558 dvs = vget_prep_smr(dvp); 4559 cache_fpl_smr_exit(fpl); 4560 if (__predict_false(dvs == VGET_NONE)) { 4561 return (cache_fpl_aborted(fpl)); 4562 } 4563 4564 vget_finish_ref(dvp, dvs); 4565 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4566 vrele(dvp); 4567 return (cache_fpl_aborted(fpl)); 4568 } 4569 4570 error = vn_lock(dvp, LK_SHARED); 4571 if (__predict_false(error != 0)) { 4572 vrele(dvp); 4573 return (cache_fpl_aborted(fpl)); 4574 } 4575 4576 tvp = NULL; 4577 /* 4578 * TODO: provide variants which don't require locking either vnode. 4579 */ 4580 cnp->cn_flags |= ISLASTCN; 4581 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4582 if (docache) 4583 cnp->cn_flags |= MAKEENTRY; 4584 cnp->cn_lkflags = LK_SHARED; 4585 if ((cnp->cn_flags & LOCKSHARED) == 0) { 4586 cnp->cn_lkflags = LK_EXCLUSIVE; 4587 } 4588 error = VOP_LOOKUP(dvp, &tvp, cnp); 4589 switch (error) { 4590 case EJUSTRETURN: 4591 case 0: 4592 break; 4593 case ENOTDIR: 4594 case ENOENT: 4595 vput(dvp); 4596 return (cache_fpl_handled_error(fpl, error)); 4597 default: 4598 vput(dvp); 4599 return (cache_fpl_aborted(fpl)); 4600 } 4601 4602 fpl->tvp = tvp; 4603 if (!fpl->savename) { 4604 MPASS((cnp->cn_flags & SAVENAME) == 0); 4605 } 4606 4607 if (tvp == NULL) { 4608 MPASS(error == EJUSTRETURN); 4609 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4610 vput(dvp); 4611 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4612 VOP_UNLOCK(dvp); 4613 } 4614 return (cache_fpl_handled(fpl)); 4615 } 4616 4617 if (__predict_false(tvp->v_type == VLNK || cache_fplookup_is_mp(fpl))) { 4618 vput(dvp); 4619 vput(tvp); 4620 return (cache_fpl_aborted(fpl)); 4621 } 4622 4623 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4624 VOP_UNLOCK(tvp); 4625 } 4626 4627 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4628 vput(dvp); 4629 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4630 VOP_UNLOCK(dvp); 4631 } 4632 return (cache_fpl_handled(fpl)); 4633 } 4634 4635 static int __noinline 4636 cache_fplookup_dot(struct cache_fpl *fpl) 4637 { 4638 int error; 4639 4640 MPASS(!seqc_in_modify(fpl->dvp_seqc)); 4641 /* 4642 * Just re-assign the value. seqc will be checked later for the first 4643 * non-dot path component in line and/or before deciding to return the 4644 * vnode. 4645 */ 4646 fpl->tvp = fpl->dvp; 4647 fpl->tvp_seqc = fpl->dvp_seqc; 4648 4649 counter_u64_add(dothits, 1); 4650 SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp); 4651 4652 error = 0; 4653 if (cache_fplookup_is_mp(fpl)) { 4654 error = cache_fplookup_cross_mount(fpl); 4655 } 4656 return (error); 4657 } 4658 4659 static int __noinline 4660 cache_fplookup_dotdot(struct cache_fpl *fpl) 4661 { 4662 struct nameidata *ndp; 4663 struct componentname *cnp; 4664 struct namecache *ncp; 4665 struct vnode *dvp; 4666 struct prison *pr; 4667 u_char nc_flag; 4668 4669 ndp = fpl->ndp; 4670 cnp = fpl->cnp; 4671 dvp = fpl->dvp; 4672 4673 MPASS(cache_fpl_isdotdot(cnp)); 4674 4675 /* 4676 * XXX this is racy the same way regular lookup is 4677 */ 4678 for (pr = cnp->cn_cred->cr_prison; pr != NULL; 4679 pr = pr->pr_parent) 4680 if (dvp == pr->pr_root) 4681 break; 4682 4683 if (dvp == ndp->ni_rootdir || 4684 dvp == ndp->ni_topdir || 4685 dvp == rootvnode || 4686 pr != NULL) { 4687 fpl->tvp = dvp; 4688 fpl->tvp_seqc = vn_seqc_read_any(dvp); 4689 if (seqc_in_modify(fpl->tvp_seqc)) { 4690 return (cache_fpl_aborted(fpl)); 4691 } 4692 return (0); 4693 } 4694 4695 if ((dvp->v_vflag & VV_ROOT) != 0) { 4696 /* 4697 * TODO 4698 * The opposite of climb mount is needed here. 4699 */ 4700 return (cache_fpl_partial(fpl)); 4701 } 4702 4703 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 4704 if (ncp == NULL) { 4705 return (cache_fpl_aborted(fpl)); 4706 } 4707 4708 nc_flag = atomic_load_char(&ncp->nc_flag); 4709 if ((nc_flag & NCF_ISDOTDOT) != 0) { 4710 if ((nc_flag & NCF_NEGATIVE) != 0) 4711 return (cache_fpl_aborted(fpl)); 4712 fpl->tvp = ncp->nc_vp; 4713 } else { 4714 fpl->tvp = ncp->nc_dvp; 4715 } 4716 4717 fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp); 4718 if (seqc_in_modify(fpl->tvp_seqc)) { 4719 return (cache_fpl_partial(fpl)); 4720 } 4721 4722 /* 4723 * Acquire fence provided by vn_seqc_read_any above. 4724 */ 4725 if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) { 4726 return (cache_fpl_aborted(fpl)); 4727 } 4728 4729 if (!cache_ncp_canuse(ncp)) { 4730 return (cache_fpl_aborted(fpl)); 4731 } 4732 4733 counter_u64_add(dotdothits, 1); 4734 return (0); 4735 } 4736 4737 static int __noinline 4738 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash) 4739 { 4740 u_char nc_flag; 4741 bool neg_promote; 4742 4743 nc_flag = atomic_load_char(&ncp->nc_flag); 4744 MPASS((nc_flag & NCF_NEGATIVE) != 0); 4745 /* 4746 * If they want to create an entry we need to replace this one. 4747 */ 4748 if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) { 4749 fpl->tvp = NULL; 4750 return (cache_fplookup_modifying(fpl)); 4751 } 4752 neg_promote = cache_neg_hit_prep(ncp); 4753 if (!cache_fpl_neg_ncp_canuse(ncp)) { 4754 cache_neg_hit_abort(ncp); 4755 return (cache_fpl_partial(fpl)); 4756 } 4757 if (neg_promote) { 4758 return (cache_fplookup_negative_promote(fpl, ncp, hash)); 4759 } 4760 cache_neg_hit_finish(ncp); 4761 cache_fpl_smr_exit(fpl); 4762 return (cache_fpl_handled_error(fpl, ENOENT)); 4763 } 4764 4765 /* 4766 * Resolve a symlink. Called by filesystem-specific routines. 4767 * 4768 * Code flow is: 4769 * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve 4770 */ 4771 int 4772 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len) 4773 { 4774 struct nameidata *ndp; 4775 struct componentname *cnp; 4776 4777 ndp = fpl->ndp; 4778 cnp = fpl->cnp; 4779 4780 if (__predict_false(len == 0)) { 4781 return (ENOENT); 4782 } 4783 4784 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1; 4785 #ifdef INVARIANTS 4786 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 4787 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 4788 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 4789 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 4790 } 4791 #endif 4792 4793 if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) { 4794 return (ENAMETOOLONG); 4795 } 4796 4797 if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) { 4798 return (ELOOP); 4799 } 4800 4801 if (ndp->ni_pathlen > 1) { 4802 bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen); 4803 } else { 4804 cnp->cn_pnbuf[len] = '\0'; 4805 } 4806 bcopy(string, cnp->cn_pnbuf, len); 4807 4808 ndp->ni_pathlen += len; 4809 cache_fpl_pathlen_add(fpl, len); 4810 cnp->cn_nameptr = cnp->cn_pnbuf; 4811 fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 4812 4813 return (0); 4814 } 4815 4816 static int __noinline 4817 cache_fplookup_symlink(struct cache_fpl *fpl) 4818 { 4819 struct mount *mp; 4820 struct nameidata *ndp; 4821 struct componentname *cnp; 4822 struct vnode *dvp, *tvp; 4823 int error; 4824 4825 ndp = fpl->ndp; 4826 cnp = fpl->cnp; 4827 dvp = fpl->dvp; 4828 tvp = fpl->tvp; 4829 4830 if (cache_fpl_islastcn(ndp)) { 4831 if ((cnp->cn_flags & FOLLOW) == 0) { 4832 return (cache_fplookup_final(fpl)); 4833 } 4834 } 4835 4836 mp = atomic_load_ptr(&dvp->v_mount); 4837 if (__predict_false(mp == NULL)) { 4838 return (cache_fpl_aborted(fpl)); 4839 } 4840 4841 /* 4842 * Note this check races against setting the flag just like regular 4843 * lookup. 4844 */ 4845 if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) { 4846 cache_fpl_smr_exit(fpl); 4847 return (cache_fpl_handled_error(fpl, EACCES)); 4848 } 4849 4850 error = VOP_FPLOOKUP_SYMLINK(tvp, fpl); 4851 if (__predict_false(error != 0)) { 4852 switch (error) { 4853 case EAGAIN: 4854 return (cache_fpl_partial(fpl)); 4855 case ENOENT: 4856 case ENAMETOOLONG: 4857 case ELOOP: 4858 cache_fpl_smr_exit(fpl); 4859 return (cache_fpl_handled_error(fpl, error)); 4860 default: 4861 return (cache_fpl_aborted(fpl)); 4862 } 4863 } 4864 4865 if (*(cnp->cn_nameptr) == '/') { 4866 fpl->dvp = cache_fpl_handle_root(fpl); 4867 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 4868 if (seqc_in_modify(fpl->dvp_seqc)) { 4869 return (cache_fpl_aborted(fpl)); 4870 } 4871 } 4872 4873 return (cache_fplookup_preparse(fpl)); 4874 } 4875 4876 static int 4877 cache_fplookup_next(struct cache_fpl *fpl) 4878 { 4879 struct componentname *cnp; 4880 struct namecache *ncp; 4881 struct vnode *dvp, *tvp; 4882 u_char nc_flag; 4883 uint32_t hash; 4884 int error; 4885 4886 cnp = fpl->cnp; 4887 dvp = fpl->dvp; 4888 4889 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 4890 if (cnp->cn_namelen == 1) { 4891 return (cache_fplookup_dot(fpl)); 4892 } 4893 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 4894 return (cache_fplookup_dotdot(fpl)); 4895 } 4896 } 4897 4898 MPASS(!cache_fpl_isdotdot(cnp)); 4899 4900 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 4901 4902 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 4903 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 4904 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 4905 break; 4906 } 4907 4908 if (__predict_false(ncp == NULL)) { 4909 if (cnp->cn_nameptr[0] == '/') { 4910 return (cache_fplookup_skip_slashes(fpl)); 4911 } 4912 return (cache_fplookup_noentry(fpl)); 4913 } 4914 4915 tvp = atomic_load_ptr(&ncp->nc_vp); 4916 nc_flag = atomic_load_char(&ncp->nc_flag); 4917 if ((nc_flag & NCF_NEGATIVE) != 0) { 4918 return (cache_fplookup_neg(fpl, ncp, hash)); 4919 } 4920 4921 if (!cache_ncp_canuse(ncp)) { 4922 return (cache_fpl_partial(fpl)); 4923 } 4924 4925 fpl->tvp = tvp; 4926 fpl->tvp_seqc = vn_seqc_read_any(tvp); 4927 if (seqc_in_modify(fpl->tvp_seqc)) { 4928 return (cache_fpl_partial(fpl)); 4929 } 4930 4931 counter_u64_add(numposhits, 1); 4932 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp); 4933 4934 error = 0; 4935 if (cache_fplookup_is_mp(fpl)) { 4936 error = cache_fplookup_cross_mount(fpl); 4937 } 4938 return (error); 4939 } 4940 4941 static bool 4942 cache_fplookup_mp_supported(struct mount *mp) 4943 { 4944 4945 MPASS(mp != NULL); 4946 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0) 4947 return (false); 4948 return (true); 4949 } 4950 4951 /* 4952 * Walk up the mount stack (if any). 4953 * 4954 * Correctness is provided in the following ways: 4955 * - all vnodes are protected from freeing with SMR 4956 * - struct mount objects are type stable making them always safe to access 4957 * - stability of the particular mount is provided by busying it 4958 * - relationship between the vnode which is mounted on and the mount is 4959 * verified with the vnode sequence counter after busying 4960 * - association between root vnode of the mount and the mount is protected 4961 * by busy 4962 * 4963 * From that point on we can read the sequence counter of the root vnode 4964 * and get the next mount on the stack (if any) using the same protection. 4965 * 4966 * By the end of successful walk we are guaranteed the reached state was 4967 * indeed present at least at some point which matches the regular lookup. 4968 */ 4969 static int __noinline 4970 cache_fplookup_climb_mount(struct cache_fpl *fpl) 4971 { 4972 struct mount *mp, *prev_mp; 4973 struct mount_pcpu *mpcpu, *prev_mpcpu; 4974 struct vnode *vp; 4975 seqc_t vp_seqc; 4976 4977 vp = fpl->tvp; 4978 vp_seqc = fpl->tvp_seqc; 4979 4980 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 4981 mp = atomic_load_ptr(&vp->v_mountedhere); 4982 if (__predict_false(mp == NULL)) { 4983 return (0); 4984 } 4985 4986 prev_mp = NULL; 4987 for (;;) { 4988 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 4989 if (prev_mp != NULL) 4990 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4991 return (cache_fpl_partial(fpl)); 4992 } 4993 if (prev_mp != NULL) 4994 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4995 if (!vn_seqc_consistent(vp, vp_seqc)) { 4996 vfs_op_thread_exit_crit(mp, mpcpu); 4997 return (cache_fpl_partial(fpl)); 4998 } 4999 if (!cache_fplookup_mp_supported(mp)) { 5000 vfs_op_thread_exit_crit(mp, mpcpu); 5001 return (cache_fpl_partial(fpl)); 5002 } 5003 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5004 if (vp == NULL) { 5005 vfs_op_thread_exit_crit(mp, mpcpu); 5006 return (cache_fpl_partial(fpl)); 5007 } 5008 vp_seqc = vn_seqc_read_any(vp); 5009 if (seqc_in_modify(vp_seqc)) { 5010 vfs_op_thread_exit_crit(mp, mpcpu); 5011 return (cache_fpl_partial(fpl)); 5012 } 5013 prev_mp = mp; 5014 prev_mpcpu = mpcpu; 5015 mp = atomic_load_ptr(&vp->v_mountedhere); 5016 if (mp == NULL) 5017 break; 5018 } 5019 5020 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5021 fpl->tvp = vp; 5022 fpl->tvp_seqc = vp_seqc; 5023 return (0); 5024 } 5025 5026 static int __noinline 5027 cache_fplookup_cross_mount(struct cache_fpl *fpl) 5028 { 5029 struct mount *mp; 5030 struct mount_pcpu *mpcpu; 5031 struct vnode *vp; 5032 seqc_t vp_seqc; 5033 5034 vp = fpl->tvp; 5035 vp_seqc = fpl->tvp_seqc; 5036 5037 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 5038 mp = atomic_load_ptr(&vp->v_mountedhere); 5039 if (__predict_false(mp == NULL)) { 5040 return (0); 5041 } 5042 5043 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 5044 return (cache_fpl_partial(fpl)); 5045 } 5046 if (!vn_seqc_consistent(vp, vp_seqc)) { 5047 vfs_op_thread_exit_crit(mp, mpcpu); 5048 return (cache_fpl_partial(fpl)); 5049 } 5050 if (!cache_fplookup_mp_supported(mp)) { 5051 vfs_op_thread_exit_crit(mp, mpcpu); 5052 return (cache_fpl_partial(fpl)); 5053 } 5054 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5055 if (__predict_false(vp == NULL)) { 5056 vfs_op_thread_exit_crit(mp, mpcpu); 5057 return (cache_fpl_partial(fpl)); 5058 } 5059 vp_seqc = vn_seqc_read_any(vp); 5060 vfs_op_thread_exit_crit(mp, mpcpu); 5061 if (seqc_in_modify(vp_seqc)) { 5062 return (cache_fpl_partial(fpl)); 5063 } 5064 mp = atomic_load_ptr(&vp->v_mountedhere); 5065 if (__predict_false(mp != NULL)) { 5066 /* 5067 * There are possibly more mount points on top. 5068 * Normally this does not happen so for simplicity just start 5069 * over. 5070 */ 5071 return (cache_fplookup_climb_mount(fpl)); 5072 } 5073 5074 fpl->tvp = vp; 5075 fpl->tvp_seqc = vp_seqc; 5076 return (0); 5077 } 5078 5079 /* 5080 * Check if a vnode is mounted on. 5081 */ 5082 static bool 5083 cache_fplookup_is_mp(struct cache_fpl *fpl) 5084 { 5085 struct vnode *vp; 5086 5087 vp = fpl->tvp; 5088 return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0); 5089 } 5090 5091 /* 5092 * Parse the path. 5093 * 5094 * The code was originally copy-pasted from regular lookup and despite 5095 * clean ups leaves performance on the table. Any modifications here 5096 * must take into account that in case off fallback the resulting 5097 * nameidata state has to be compatible with the original. 5098 */ 5099 5100 /* 5101 * Debug ni_pathlen tracking. 5102 */ 5103 #ifdef INVARIANTS 5104 static void 5105 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5106 { 5107 5108 fpl->debug.ni_pathlen += n; 5109 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5110 ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5111 } 5112 5113 static void 5114 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5115 { 5116 5117 fpl->debug.ni_pathlen -= n; 5118 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5119 ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5120 } 5121 5122 static void 5123 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5124 { 5125 5126 cache_fpl_pathlen_add(fpl, 1); 5127 } 5128 5129 static void 5130 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5131 { 5132 5133 cache_fpl_pathlen_sub(fpl, 1); 5134 } 5135 #else 5136 static void 5137 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5138 { 5139 } 5140 5141 static void 5142 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5143 { 5144 } 5145 5146 static void 5147 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5148 { 5149 } 5150 5151 static void 5152 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5153 { 5154 } 5155 #endif 5156 5157 static int __always_inline 5158 cache_fplookup_preparse(struct cache_fpl *fpl) 5159 { 5160 struct componentname *cnp; 5161 5162 cnp = fpl->cnp; 5163 5164 if (__predict_false(cnp->cn_nameptr[0] == '\0')) { 5165 return (cache_fplookup_degenerate(fpl)); 5166 } 5167 5168 /* 5169 * By this point the shortest possible pathname is one character + nul 5170 * terminator, hence 2. 5171 */ 5172 KASSERT(fpl->debug.ni_pathlen >= 2, ("%s: pathlen %zu\n", __func__, 5173 fpl->debug.ni_pathlen)); 5174 KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 2] == fpl->nulchar - 1, 5175 ("%s: mismatch on string (%p != %p) [%s]\n", __func__, 5176 &cnp->cn_nameptr[fpl->debug.ni_pathlen - 2], fpl->nulchar - 1, 5177 cnp->cn_pnbuf)); 5178 if (__predict_false(*(fpl->nulchar - 1) == '/')) { 5179 /* 5180 * TODO 5181 * Regular lookup performs the following: 5182 * *ndp->ni_next = '\0'; 5183 * cnp->cn_flags |= TRAILINGSLASH; 5184 * 5185 * Which is problematic since it modifies data read 5186 * from userspace. Then if fast path lookup was to 5187 * abort we would have to either restore it or convey 5188 * the flag. Since this is a corner case just ignore 5189 * it for simplicity. 5190 */ 5191 return (cache_fpl_aborted(fpl)); 5192 } 5193 return (0); 5194 } 5195 5196 static void 5197 cache_fplookup_parse(struct cache_fpl *fpl) 5198 { 5199 struct nameidata *ndp; 5200 struct componentname *cnp; 5201 char *cp; 5202 5203 ndp = fpl->ndp; 5204 cnp = fpl->cnp; 5205 5206 /* 5207 * Find the end of this path component, it is either / or nul. 5208 * 5209 * Store / as a temporary sentinel so that we only have one character 5210 * to test for. Pathnames tend to be short so this should not be 5211 * resulting in cache misses. 5212 */ 5213 KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar, 5214 ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n", 5215 __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1], 5216 fpl->nulchar, cnp->cn_pnbuf)); 5217 KASSERT(*fpl->nulchar == '\0', 5218 ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar, 5219 cnp->cn_pnbuf)); 5220 *fpl->nulchar = '/'; 5221 for (cp = cnp->cn_nameptr; *cp != '/'; cp++) { 5222 KASSERT(*cp != '\0', 5223 ("%s: encountered unexpected nul; string [%s]\n", __func__, 5224 cnp->cn_nameptr)); 5225 continue; 5226 } 5227 *fpl->nulchar = '\0'; 5228 5229 cnp->cn_namelen = cp - cnp->cn_nameptr; 5230 cache_fpl_pathlen_sub(fpl, cnp->cn_namelen); 5231 /* 5232 * Hack: we have to check if the found path component's length exceeds 5233 * NAME_MAX. However, the condition is very rarely true and check can 5234 * be elided in the common case -- if an entry was found in the cache, 5235 * then it could not have been too long to begin with. 5236 */ 5237 ndp->ni_next = cp; 5238 5239 #ifdef INVARIANTS 5240 /* 5241 * Code below is only here to assure compatibility with regular lookup. 5242 * It covers handling of trailing slashes and names like "/", both of 5243 * which of can be taken care of upfront which lockless lookup does 5244 * in cache_fplookup_preparse. Regular lookup performs these for each 5245 * path component. 5246 */ 5247 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) { 5248 cp++; 5249 if (*cp == '\0') { 5250 panic("%s: ran into TRAILINGSLASH handling from [%s]\n", 5251 __func__, cnp->cn_pnbuf); 5252 } 5253 } 5254 5255 if (cnp->cn_nameptr[0] == '\0') { 5256 panic("%s: ran into degenerate name from [%s]\n", __func__, cnp->cn_pnbuf); 5257 } 5258 #endif 5259 } 5260 5261 static void 5262 cache_fplookup_parse_advance(struct cache_fpl *fpl) 5263 { 5264 struct nameidata *ndp; 5265 struct componentname *cnp; 5266 5267 ndp = fpl->ndp; 5268 cnp = fpl->cnp; 5269 5270 cnp->cn_nameptr = ndp->ni_next; 5271 KASSERT(*(cnp->cn_nameptr) == '/', 5272 ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__, 5273 cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf)); 5274 cnp->cn_nameptr++; 5275 cache_fpl_pathlen_dec(fpl); 5276 } 5277 5278 /* 5279 * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry. 5280 * 5281 * Lockless lookup tries to elide checking for spurious slashes and should they 5282 * be present is guaranteed to fail to find an entry. In this case the caller 5283 * must check if the name starts with a slash and call this routine. It is 5284 * going to fast forward across the spurious slashes and set the state up for 5285 * retry. 5286 */ 5287 static int __noinline 5288 cache_fplookup_skip_slashes(struct cache_fpl *fpl) 5289 { 5290 struct nameidata *ndp; 5291 struct componentname *cnp; 5292 5293 ndp = fpl->ndp; 5294 cnp = fpl->cnp; 5295 5296 MPASS(*(cnp->cn_nameptr) == '/'); 5297 do { 5298 cnp->cn_nameptr++; 5299 cache_fpl_pathlen_dec(fpl); 5300 } while (*(cnp->cn_nameptr) == '/'); 5301 5302 /* 5303 * Go back to one slash so that cache_fplookup_parse_advance has 5304 * something to skip. 5305 */ 5306 cnp->cn_nameptr--; 5307 cache_fpl_pathlen_inc(fpl); 5308 5309 /* 5310 * cache_fplookup_parse_advance starts from ndp->ni_next 5311 */ 5312 ndp->ni_next = cnp->cn_nameptr; 5313 5314 /* 5315 * See cache_fplookup_dot. 5316 */ 5317 fpl->tvp = fpl->dvp; 5318 fpl->tvp_seqc = fpl->dvp_seqc; 5319 5320 return (0); 5321 } 5322 5323 /* 5324 * See the API contract for VOP_FPLOOKUP_VEXEC. 5325 */ 5326 static int __noinline 5327 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error) 5328 { 5329 struct componentname *cnp; 5330 struct vnode *dvp; 5331 seqc_t dvp_seqc; 5332 5333 cnp = fpl->cnp; 5334 dvp = fpl->dvp; 5335 dvp_seqc = fpl->dvp_seqc; 5336 5337 /* 5338 * Hack: delayed name len checking. 5339 */ 5340 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 5341 cache_fpl_smr_exit(fpl); 5342 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 5343 } 5344 5345 /* 5346 * Hack: they may be looking up foo/bar, where foo is not a directory. 5347 * In such a case we need to return ENOTDIR, but we may happen to get 5348 * here with a different error. 5349 */ 5350 if (dvp->v_type != VDIR) { 5351 error = ENOTDIR; 5352 } 5353 5354 /* 5355 * Hack: handle O_SEARCH. 5356 * 5357 * Open Group Base Specifications Issue 7, 2018 edition states: 5358 * <quote> 5359 * If the access mode of the open file description associated with the 5360 * file descriptor is not O_SEARCH, the function shall check whether 5361 * directory searches are permitted using the current permissions of 5362 * the directory underlying the file descriptor. If the access mode is 5363 * O_SEARCH, the function shall not perform the check. 5364 * </quote> 5365 * 5366 * Regular lookup tests for the NOEXECCHECK flag for every path 5367 * component to decide whether to do the permission check. However, 5368 * since most lookups never have the flag (and when they do it is only 5369 * present for the first path component), lockless lookup only acts on 5370 * it if there is a permission problem. Here the flag is represented 5371 * with a boolean so that we don't have to clear it on the way out. 5372 * 5373 * For simplicity this always aborts. 5374 * TODO: check if this is the first lookup and ignore the permission 5375 * problem. Note the flag has to survive fallback (if it happens to be 5376 * performed). 5377 */ 5378 if (fpl->fsearch) { 5379 return (cache_fpl_aborted(fpl)); 5380 } 5381 5382 switch (error) { 5383 case EAGAIN: 5384 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5385 error = cache_fpl_aborted(fpl); 5386 } else { 5387 cache_fpl_partial(fpl); 5388 } 5389 break; 5390 default: 5391 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5392 error = cache_fpl_aborted(fpl); 5393 } else { 5394 cache_fpl_smr_exit(fpl); 5395 cache_fpl_handled_error(fpl, error); 5396 } 5397 break; 5398 } 5399 return (error); 5400 } 5401 5402 static int 5403 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl) 5404 { 5405 struct nameidata *ndp; 5406 struct componentname *cnp; 5407 struct mount *mp; 5408 int error; 5409 5410 ndp = fpl->ndp; 5411 cnp = fpl->cnp; 5412 5413 cache_fpl_checkpoint(fpl); 5414 5415 /* 5416 * The vnode at hand is almost always stable, skip checking for it. 5417 * Worst case this postpones the check towards the end of the iteration 5418 * of the main loop. 5419 */ 5420 fpl->dvp = dvp; 5421 fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp); 5422 5423 mp = atomic_load_ptr(&dvp->v_mount); 5424 if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) { 5425 return (cache_fpl_aborted(fpl)); 5426 } 5427 5428 error = cache_fplookup_preparse(fpl); 5429 if (__predict_false(cache_fpl_terminated(fpl))) { 5430 return (error); 5431 } 5432 5433 for (;;) { 5434 cache_fplookup_parse(fpl); 5435 5436 error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred); 5437 if (__predict_false(error != 0)) { 5438 error = cache_fplookup_failed_vexec(fpl, error); 5439 break; 5440 } 5441 5442 error = cache_fplookup_next(fpl); 5443 if (__predict_false(cache_fpl_terminated(fpl))) { 5444 break; 5445 } 5446 5447 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); 5448 5449 if (fpl->tvp->v_type == VLNK) { 5450 error = cache_fplookup_symlink(fpl); 5451 if (cache_fpl_terminated(fpl)) { 5452 break; 5453 } 5454 } else { 5455 if (cache_fpl_islastcn(ndp)) { 5456 error = cache_fplookup_final(fpl); 5457 break; 5458 } 5459 5460 if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) { 5461 error = cache_fpl_aborted(fpl); 5462 break; 5463 } 5464 5465 fpl->dvp = fpl->tvp; 5466 fpl->dvp_seqc = fpl->tvp_seqc; 5467 cache_fplookup_parse_advance(fpl); 5468 } 5469 5470 cache_fpl_checkpoint(fpl); 5471 } 5472 5473 return (error); 5474 } 5475 5476 /* 5477 * Fast path lookup protected with SMR and sequence counters. 5478 * 5479 * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one. 5480 * 5481 * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria 5482 * outlined below. 5483 * 5484 * Traditional vnode lookup conceptually looks like this: 5485 * 5486 * vn_lock(current); 5487 * for (;;) { 5488 * next = find(); 5489 * vn_lock(next); 5490 * vn_unlock(current); 5491 * current = next; 5492 * if (last) 5493 * break; 5494 * } 5495 * return (current); 5496 * 5497 * Each jump to the next vnode is safe memory-wise and atomic with respect to 5498 * any modifications thanks to holding respective locks. 5499 * 5500 * The same guarantee can be provided with a combination of safe memory 5501 * reclamation and sequence counters instead. If all operations which affect 5502 * the relationship between the current vnode and the one we are looking for 5503 * also modify the counter, we can verify whether all the conditions held as 5504 * we made the jump. This includes things like permissions, mount points etc. 5505 * Counter modification is provided by enclosing relevant places in 5506 * vn_seqc_write_begin()/end() calls. 5507 * 5508 * Thus this translates to: 5509 * 5510 * vfs_smr_enter(); 5511 * dvp_seqc = seqc_read_any(dvp); 5512 * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode 5513 * abort(); 5514 * for (;;) { 5515 * tvp = find(); 5516 * tvp_seqc = seqc_read_any(tvp); 5517 * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode 5518 * abort(); 5519 * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode 5520 * abort(); 5521 * dvp = tvp; // we know nothing of importance has changed 5522 * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration 5523 * if (last) 5524 * break; 5525 * } 5526 * vget(); // secure the vnode 5527 * if (!seqc_consistent(tvp, tvp_seqc) // final check 5528 * abort(); 5529 * // at this point we know nothing has changed for any parent<->child pair 5530 * // as they were crossed during the lookup, meaning we matched the guarantee 5531 * // of the locked variant 5532 * return (tvp); 5533 * 5534 * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows: 5535 * - they are called while within vfs_smr protection which they must never exit 5536 * - EAGAIN can be returned to denote checking could not be performed, it is 5537 * always valid to return it 5538 * - if the sequence counter has not changed the result must be valid 5539 * - if the sequence counter has changed both false positives and false negatives 5540 * are permitted (since the result will be rejected later) 5541 * - for simple cases of unix permission checks vaccess_vexec_smr can be used 5542 * 5543 * Caveats to watch out for: 5544 * - vnodes are passed unlocked and unreferenced with nothing stopping 5545 * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised 5546 * to use atomic_load_ptr to fetch it. 5547 * - the aforementioned object can also get freed, meaning absent other means it 5548 * should be protected with vfs_smr 5549 * - either safely checking permissions as they are modified or guaranteeing 5550 * their stability is left to the routine 5551 */ 5552 int 5553 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, 5554 struct pwd **pwdp) 5555 { 5556 struct cache_fpl fpl; 5557 struct pwd *pwd; 5558 struct vnode *dvp; 5559 struct componentname *cnp; 5560 int error; 5561 5562 fpl.status = CACHE_FPL_STATUS_UNSET; 5563 fpl.in_smr = false; 5564 fpl.ndp = ndp; 5565 fpl.cnp = cnp = &ndp->ni_cnd; 5566 MPASS(ndp->ni_lcf == 0); 5567 MPASS(curthread == cnp->cn_thread); 5568 KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 5569 ("%s: internal flags found in cn_flags %" PRIx64, __func__, 5570 cnp->cn_flags)); 5571 if ((cnp->cn_flags & SAVESTART) != 0) { 5572 MPASS(cnp->cn_nameiop != LOOKUP); 5573 } 5574 MPASS(cnp->cn_nameptr == cnp->cn_pnbuf); 5575 5576 if (__predict_false(!cache_can_fplookup(&fpl))) { 5577 *status = fpl.status; 5578 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 5579 return (EOPNOTSUPP); 5580 } 5581 5582 cache_fpl_checkpoint_outer(&fpl); 5583 5584 cache_fpl_smr_enter_initial(&fpl); 5585 #ifdef INVARIANTS 5586 fpl.debug.ni_pathlen = ndp->ni_pathlen; 5587 #endif 5588 fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 5589 fpl.fsearch = false; 5590 fpl.savename = (cnp->cn_flags & SAVENAME) != 0; 5591 fpl.pwd = pwdp; 5592 pwd = pwd_get_smr(); 5593 *(fpl.pwd) = pwd; 5594 ndp->ni_rootdir = pwd->pwd_rdir; 5595 ndp->ni_topdir = pwd->pwd_jdir; 5596 5597 if (cnp->cn_pnbuf[0] == '/') { 5598 dvp = cache_fpl_handle_root(&fpl); 5599 MPASS(ndp->ni_resflags == 0); 5600 ndp->ni_resflags = NIRES_ABS; 5601 } else { 5602 if (ndp->ni_dirfd == AT_FDCWD) { 5603 dvp = pwd->pwd_cdir; 5604 } else { 5605 error = cache_fplookup_dirfd(&fpl, &dvp); 5606 if (__predict_false(error != 0)) { 5607 goto out; 5608 } 5609 } 5610 } 5611 5612 SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true); 5613 error = cache_fplookup_impl(dvp, &fpl); 5614 out: 5615 cache_fpl_smr_assert_not_entered(&fpl); 5616 cache_fpl_assert_status(&fpl); 5617 *status = fpl.status; 5618 if (SDT_PROBES_ENABLED()) { 5619 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 5620 if (fpl.status == CACHE_FPL_STATUS_HANDLED) 5621 SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true, 5622 ndp); 5623 } 5624 5625 if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) { 5626 MPASS(error != CACHE_FPL_FAILED); 5627 if (error != 0) { 5628 MPASS(fpl.dvp == NULL); 5629 MPASS(fpl.tvp == NULL); 5630 MPASS(fpl.savename == false); 5631 } 5632 ndp->ni_dvp = fpl.dvp; 5633 ndp->ni_vp = fpl.tvp; 5634 if (fpl.savename) { 5635 cnp->cn_flags |= HASBUF; 5636 } else { 5637 cache_fpl_cleanup_cnp(cnp); 5638 } 5639 } 5640 return (error); 5641 } 5642