xref: /freebsd/sys/kern/vfs_cache.c (revision a4bcd20486f8c20cc875b39bc75aa0d5a047373f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/seqc.h>
59 #include <sys/sdt.h>
60 #include <sys/smr.h>
61 #include <sys/smp.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/vnode.h>
66 #include <ck_queue.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 
71 #include <sys/capsicum.h>
72 
73 #include <security/audit/audit.h>
74 #include <security/mac/mac_framework.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/uma.h>
81 
82 SDT_PROVIDER_DECLARE(vfs);
83 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
84     "struct vnode *");
85 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
86     "char *");
87 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
88     "const char *");
89 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
90     "struct namecache *", "int", "int");
91 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
92 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
93     "char *", "struct vnode *");
94 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
95 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
96     "struct vnode *", "char *");
97 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
98     "struct vnode *");
99 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
100     "struct vnode *", "char *");
101 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
102     "char *");
103 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
104     "struct componentname *");
105 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
106     "struct componentname *");
107 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *");
108 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
109 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
110 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
111     "struct vnode *");
112 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
113     "char *");
114 SDT_PROBE_DEFINE2(vfs, namecache, shrink_negative, done, "struct vnode *",
115     "char *");
116 
117 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
118 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
119 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
120 
121 /*
122  * This structure describes the elements in the cache of recent
123  * names looked up by namei.
124  */
125 struct negstate {
126 	u_char neg_flag;
127 };
128 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
129     "the state must fit in a union with a pointer without growing it");
130 
131 struct	namecache {
132 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
133 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
134 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
135 	struct	vnode *nc_dvp;		/* vnode of parent of name */
136 	union {
137 		struct	vnode *nu_vp;	/* vnode the name refers to */
138 		struct	negstate nu_neg;/* negative entry state */
139 	} n_un;
140 	u_char	nc_flag;		/* flag bits */
141 	u_char	nc_nlen;		/* length of name */
142 	char	nc_name[0];		/* segment name + nul */
143 };
144 
145 /*
146  * struct namecache_ts repeats struct namecache layout up to the
147  * nc_nlen member.
148  * struct namecache_ts is used in place of struct namecache when time(s) need
149  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
150  * both a non-dotdot directory name plus dotdot for the directory's
151  * parent.
152  *
153  * See below for alignment requirement.
154  */
155 struct	namecache_ts {
156 	struct	timespec nc_time;	/* timespec provided by fs */
157 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
158 	int	nc_ticks;		/* ticks value when entry was added */
159 	struct namecache nc_nc;
160 };
161 
162 /*
163  * At least mips n32 performs 64-bit accesses to timespec as found
164  * in namecache_ts and requires them to be aligned. Since others
165  * may be in the same spot suffer a little bit and enforce the
166  * alignment for everyone. Note this is a nop for 64-bit platforms.
167  */
168 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
169 #define	CACHE_PATH_CUTOFF	39
170 
171 #define CACHE_ZONE_SMALL_SIZE		(sizeof(struct namecache) + CACHE_PATH_CUTOFF + 1)
172 #define CACHE_ZONE_SMALL_TS_SIZE	(sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1)
173 #define CACHE_ZONE_LARGE_SIZE		(sizeof(struct namecache) + NAME_MAX + 1)
174 #define CACHE_ZONE_LARGE_TS_SIZE	(sizeof(struct namecache_ts) + NAME_MAX + 1)
175 
176 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
177 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
178 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
179 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
180 
181 #define	nc_vp		n_un.nu_vp
182 #define	nc_neg		n_un.nu_neg
183 
184 /*
185  * Flags in namecache.nc_flag
186  */
187 #define NCF_WHITE	0x01
188 #define NCF_ISDOTDOT	0x02
189 #define	NCF_TS		0x04
190 #define	NCF_DTS		0x08
191 #define	NCF_DVDROP	0x10
192 #define	NCF_NEGATIVE	0x20
193 #define	NCF_INVALID	0x40
194 #define	NCF_WIP		0x80
195 
196 /*
197  * Flags in negstate.neg_flag
198  */
199 #define NEG_HOT		0x01
200 
201 /*
202  * Mark an entry as invalid.
203  *
204  * This is called before it starts getting deconstructed.
205  */
206 static void
207 cache_ncp_invalidate(struct namecache *ncp)
208 {
209 
210 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
211 	    ("%s: entry %p already invalid", __func__, ncp));
212 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
213 	atomic_thread_fence_rel();
214 }
215 
216 /*
217  * Check whether the entry can be safely used.
218  *
219  * All places which elide locks are supposed to call this after they are
220  * done with reading from an entry.
221  */
222 static bool
223 cache_ncp_canuse(struct namecache *ncp)
224 {
225 
226 	atomic_thread_fence_acq();
227 	return ((atomic_load_char(&ncp->nc_flag) & (NCF_INVALID | NCF_WIP)) == 0);
228 }
229 
230 /*
231  * Name caching works as follows:
232  *
233  * Names found by directory scans are retained in a cache
234  * for future reference.  It is managed LRU, so frequently
235  * used names will hang around.  Cache is indexed by hash value
236  * obtained from (dvp, name) where dvp refers to the directory
237  * containing name.
238  *
239  * If it is a "negative" entry, (i.e. for a name that is known NOT to
240  * exist) the vnode pointer will be NULL.
241  *
242  * Upon reaching the last segment of a path, if the reference
243  * is for DELETE, or NOCACHE is set (rewrite), and the
244  * name is located in the cache, it will be dropped.
245  *
246  * These locks are used (in the order in which they can be taken):
247  * NAME		TYPE	ROLE
248  * vnodelock	mtx	vnode lists and v_cache_dd field protection
249  * bucketlock	mtx	for access to given set of hash buckets
250  * neglist	mtx	negative entry LRU management
251  *
252  * Additionally, ncneg_shrink_lock mtx is used to have at most one thread
253  * shrinking the LRU list.
254  *
255  * It is legal to take multiple vnodelock and bucketlock locks. The locking
256  * order is lower address first. Both are recursive.
257  *
258  * "." lookups are lockless.
259  *
260  * ".." and vnode -> name lookups require vnodelock.
261  *
262  * name -> vnode lookup requires the relevant bucketlock to be held for reading.
263  *
264  * Insertions and removals of entries require involved vnodes and bucketlocks
265  * to be locked to provide safe operation against other threads modifying the
266  * cache.
267  *
268  * Some lookups result in removal of the found entry (e.g. getting rid of a
269  * negative entry with the intent to create a positive one), which poses a
270  * problem when multiple threads reach the state. Similarly, two different
271  * threads can purge two different vnodes and try to remove the same name.
272  *
273  * If the already held vnode lock is lower than the second required lock, we
274  * can just take the other lock. However, in the opposite case, this could
275  * deadlock. As such, this is resolved by trylocking and if that fails unlocking
276  * the first node, locking everything in order and revalidating the state.
277  */
278 
279 VFS_SMR_DECLARE;
280 
281 /*
282  * Structures associated with name caching.
283  */
284 #define NCHHASH(hash) \
285 	(&nchashtbl[(hash) & nchash])
286 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
287 static u_long __read_mostly	nchash;			/* size of hash table */
288 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
289     "Size of namecache hash table");
290 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
291 SYSCTL_ULONG(_vfs, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
292     "Ratio of negative namecache entries");
293 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
294 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
295 u_int ncsizefactor = 2;
296 SYSCTL_UINT(_vfs, OID_AUTO, ncsizefactor, CTLFLAG_RW, &ncsizefactor, 0,
297     "Size factor for namecache");
298 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
299 
300 struct nchstats	nchstats;		/* cache effectiveness statistics */
301 
302 static bool __read_frequently cache_fast_revlookup = true;
303 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW,
304     &cache_fast_revlookup, 0, "");
305 
306 static struct mtx __exclusive_cache_line	ncneg_shrink_lock;
307 
308 struct neglist {
309 	struct mtx		nl_lock;
310 	TAILQ_HEAD(, namecache) nl_list;
311 } __aligned(CACHE_LINE_SIZE);
312 
313 static struct neglist __read_mostly	*neglists;
314 static struct neglist ncneg_hot;
315 static u_long numhotneg;
316 
317 #define ncneghash	3
318 #define	numneglists	(ncneghash + 1)
319 static inline struct neglist *
320 NCP2NEGLIST(struct namecache *ncp)
321 {
322 
323 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
324 }
325 
326 static inline struct negstate *
327 NCP2NEGSTATE(struct namecache *ncp)
328 {
329 
330 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
331 	return (&ncp->nc_neg);
332 }
333 
334 #define	numbucketlocks (ncbuckethash + 1)
335 static u_int __read_mostly  ncbuckethash;
336 static struct mtx_padalign __read_mostly  *bucketlocks;
337 #define	HASH2BUCKETLOCK(hash) \
338 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
339 
340 #define	numvnodelocks (ncvnodehash + 1)
341 static u_int __read_mostly  ncvnodehash;
342 static struct mtx __read_mostly *vnodelocks;
343 static inline struct mtx *
344 VP2VNODELOCK(struct vnode *vp)
345 {
346 
347 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
348 }
349 
350 /*
351  * UMA zones for the VFS cache.
352  *
353  * The small cache is used for entries with short names, which are the
354  * most common.  The large cache is used for entries which are too big to
355  * fit in the small cache.
356  */
357 static uma_zone_t __read_mostly cache_zone_small;
358 static uma_zone_t __read_mostly cache_zone_small_ts;
359 static uma_zone_t __read_mostly cache_zone_large;
360 static uma_zone_t __read_mostly cache_zone_large_ts;
361 
362 static struct namecache *
363 cache_alloc(int len, int ts)
364 {
365 	struct namecache_ts *ncp_ts;
366 	struct namecache *ncp;
367 
368 	if (__predict_false(ts)) {
369 		if (len <= CACHE_PATH_CUTOFF)
370 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
371 		else
372 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
373 		ncp = &ncp_ts->nc_nc;
374 	} else {
375 		if (len <= CACHE_PATH_CUTOFF)
376 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
377 		else
378 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
379 	}
380 	return (ncp);
381 }
382 
383 static void
384 cache_free(struct namecache *ncp)
385 {
386 	struct namecache_ts *ncp_ts;
387 
388 	MPASS(ncp != NULL);
389 	if ((ncp->nc_flag & NCF_DVDROP) != 0)
390 		vdrop(ncp->nc_dvp);
391 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
392 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
393 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
394 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
395 		else
396 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
397 	} else {
398 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
399 			uma_zfree_smr(cache_zone_small, ncp);
400 		else
401 			uma_zfree_smr(cache_zone_large, ncp);
402 	}
403 }
404 
405 static void
406 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
407 {
408 	struct namecache_ts *ncp_ts;
409 
410 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
411 	    (tsp == NULL && ticksp == NULL),
412 	    ("No NCF_TS"));
413 
414 	if (tsp == NULL)
415 		return;
416 
417 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
418 	*tsp = ncp_ts->nc_time;
419 	*ticksp = ncp_ts->nc_ticks;
420 }
421 
422 #ifdef DEBUG_CACHE
423 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
424 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
425     "VFS namecache enabled");
426 #endif
427 
428 /* Export size information to userland */
429 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
430     sizeof(struct namecache), "sizeof(struct namecache)");
431 
432 /*
433  * The new name cache statistics
434  */
435 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
436     "Name cache statistics");
437 #define STATNODE_ULONG(name, descr)					\
438 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, descr);
439 #define STATNODE_COUNTER(name, descr)					\
440 	static COUNTER_U64_DEFINE_EARLY(name);				\
441 	SYSCTL_COUNTER_U64(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, \
442 	    descr);
443 STATNODE_ULONG(numneg, "Number of negative cache entries");
444 STATNODE_ULONG(numcache, "Number of cache entries");
445 STATNODE_COUNTER(numcachehv, "Number of namecache entries with vnodes held");
446 STATNODE_COUNTER(numdrops, "Number of dropped entries due to reaching the limit");
447 STATNODE_COUNTER(dothits, "Number of '.' hits");
448 STATNODE_COUNTER(dotdothits, "Number of '..' hits");
449 STATNODE_COUNTER(nummiss, "Number of cache misses");
450 STATNODE_COUNTER(nummisszap, "Number of cache misses we do not want to cache");
451 STATNODE_COUNTER(numposzaps,
452     "Number of cache hits (positive) we do not want to cache");
453 STATNODE_COUNTER(numposhits, "Number of cache hits (positive)");
454 STATNODE_COUNTER(numnegzaps,
455     "Number of cache hits (negative) we do not want to cache");
456 STATNODE_COUNTER(numneghits, "Number of cache hits (negative)");
457 /* These count for vn_getcwd(), too. */
458 STATNODE_COUNTER(numfullpathcalls, "Number of fullpath search calls");
459 STATNODE_COUNTER(numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
460 STATNODE_COUNTER(numfullpathfail2,
461     "Number of fullpath search errors (VOP_VPTOCNP failures)");
462 STATNODE_COUNTER(numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
463 STATNODE_COUNTER(numfullpathfound, "Number of successful fullpath calls");
464 STATNODE_COUNTER(zap_and_exit_bucket_relock_success,
465     "Number of successful removals after relocking");
466 static long zap_and_exit_bucket_fail; STATNODE_ULONG(zap_and_exit_bucket_fail,
467     "Number of times zap_and_exit failed to lock");
468 static long zap_and_exit_bucket_fail2; STATNODE_ULONG(zap_and_exit_bucket_fail2,
469     "Number of times zap_and_exit failed to lock");
470 static long cache_lock_vnodes_cel_3_failures;
471 STATNODE_ULONG(cache_lock_vnodes_cel_3_failures,
472     "Number of times 3-way vnode locking failed");
473 STATNODE_ULONG(numhotneg, "Number of hot negative entries");
474 STATNODE_COUNTER(numneg_evicted,
475     "Number of negative entries evicted when adding a new entry");
476 STATNODE_COUNTER(shrinking_skipped,
477     "Number of times shrinking was already in progress");
478 
479 static void cache_zap_locked(struct namecache *ncp);
480 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf,
481     char **freebuf, size_t *buflen);
482 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
483     char **retbuf, size_t *buflen, bool slash_prefixed, size_t addend);
484 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
485     char **retbuf, size_t *buflen);
486 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
487     char **retbuf, size_t *len, bool slash_prefixed, size_t addend);
488 
489 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
490 
491 static inline void
492 cache_assert_vlp_locked(struct mtx *vlp)
493 {
494 
495 	if (vlp != NULL)
496 		mtx_assert(vlp, MA_OWNED);
497 }
498 
499 static inline void
500 cache_assert_vnode_locked(struct vnode *vp)
501 {
502 	struct mtx *vlp;
503 
504 	vlp = VP2VNODELOCK(vp);
505 	cache_assert_vlp_locked(vlp);
506 }
507 
508 /*
509  * TODO: With the value stored we can do better than computing the hash based
510  * on the address. The choice of FNV should also be revisited.
511  */
512 static void
513 cache_prehash(struct vnode *vp)
514 {
515 
516 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
517 }
518 
519 static uint32_t
520 cache_get_hash(char *name, u_char len, struct vnode *dvp)
521 {
522 
523 	return (fnv_32_buf(name, len, dvp->v_nchash));
524 }
525 
526 static inline struct nchashhead *
527 NCP2BUCKET(struct namecache *ncp)
528 {
529 	uint32_t hash;
530 
531 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
532 	return (NCHHASH(hash));
533 }
534 
535 static inline struct mtx *
536 NCP2BUCKETLOCK(struct namecache *ncp)
537 {
538 	uint32_t hash;
539 
540 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
541 	return (HASH2BUCKETLOCK(hash));
542 }
543 
544 #ifdef INVARIANTS
545 static void
546 cache_assert_bucket_locked(struct namecache *ncp)
547 {
548 	struct mtx *blp;
549 
550 	blp = NCP2BUCKETLOCK(ncp);
551 	mtx_assert(blp, MA_OWNED);
552 }
553 
554 static void
555 cache_assert_bucket_unlocked(struct namecache *ncp)
556 {
557 	struct mtx *blp;
558 
559 	blp = NCP2BUCKETLOCK(ncp);
560 	mtx_assert(blp, MA_NOTOWNED);
561 }
562 #else
563 #define cache_assert_bucket_locked(x) do { } while (0)
564 #define cache_assert_bucket_unlocked(x) do { } while (0)
565 #endif
566 
567 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
568 static void
569 _cache_sort_vnodes(void **p1, void **p2)
570 {
571 	void *tmp;
572 
573 	MPASS(*p1 != NULL || *p2 != NULL);
574 
575 	if (*p1 > *p2) {
576 		tmp = *p2;
577 		*p2 = *p1;
578 		*p1 = tmp;
579 	}
580 }
581 
582 static void
583 cache_lock_all_buckets(void)
584 {
585 	u_int i;
586 
587 	for (i = 0; i < numbucketlocks; i++)
588 		mtx_lock(&bucketlocks[i]);
589 }
590 
591 static void
592 cache_unlock_all_buckets(void)
593 {
594 	u_int i;
595 
596 	for (i = 0; i < numbucketlocks; i++)
597 		mtx_unlock(&bucketlocks[i]);
598 }
599 
600 static void
601 cache_lock_all_vnodes(void)
602 {
603 	u_int i;
604 
605 	for (i = 0; i < numvnodelocks; i++)
606 		mtx_lock(&vnodelocks[i]);
607 }
608 
609 static void
610 cache_unlock_all_vnodes(void)
611 {
612 	u_int i;
613 
614 	for (i = 0; i < numvnodelocks; i++)
615 		mtx_unlock(&vnodelocks[i]);
616 }
617 
618 static int
619 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
620 {
621 
622 	cache_sort_vnodes(&vlp1, &vlp2);
623 
624 	if (vlp1 != NULL) {
625 		if (!mtx_trylock(vlp1))
626 			return (EAGAIN);
627 	}
628 	if (!mtx_trylock(vlp2)) {
629 		if (vlp1 != NULL)
630 			mtx_unlock(vlp1);
631 		return (EAGAIN);
632 	}
633 
634 	return (0);
635 }
636 
637 static void
638 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
639 {
640 
641 	MPASS(vlp1 != NULL || vlp2 != NULL);
642 	MPASS(vlp1 <= vlp2);
643 
644 	if (vlp1 != NULL)
645 		mtx_lock(vlp1);
646 	if (vlp2 != NULL)
647 		mtx_lock(vlp2);
648 }
649 
650 static void
651 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
652 {
653 
654 	MPASS(vlp1 != NULL || vlp2 != NULL);
655 
656 	if (vlp1 != NULL)
657 		mtx_unlock(vlp1);
658 	if (vlp2 != NULL)
659 		mtx_unlock(vlp2);
660 }
661 
662 static int
663 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
664 {
665 	struct nchstats snap;
666 
667 	if (req->oldptr == NULL)
668 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
669 
670 	snap = nchstats;
671 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
672 	snap.ncs_neghits = counter_u64_fetch(numneghits);
673 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
674 	    counter_u64_fetch(numnegzaps);
675 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
676 	    counter_u64_fetch(nummiss);
677 
678 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
679 }
680 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
681     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
682     "VFS cache effectiveness statistics");
683 
684 #ifdef DIAGNOSTIC
685 /*
686  * Grab an atomic snapshot of the name cache hash chain lengths
687  */
688 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
689     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
690     "hash table stats");
691 
692 static int
693 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
694 {
695 	struct nchashhead *ncpp;
696 	struct namecache *ncp;
697 	int i, error, n_nchash, *cntbuf;
698 
699 retry:
700 	n_nchash = nchash + 1;	/* nchash is max index, not count */
701 	if (req->oldptr == NULL)
702 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
703 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
704 	cache_lock_all_buckets();
705 	if (n_nchash != nchash + 1) {
706 		cache_unlock_all_buckets();
707 		free(cntbuf, M_TEMP);
708 		goto retry;
709 	}
710 	/* Scan hash tables counting entries */
711 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
712 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
713 			cntbuf[i]++;
714 	cache_unlock_all_buckets();
715 	for (error = 0, i = 0; i < n_nchash; i++)
716 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
717 			break;
718 	free(cntbuf, M_TEMP);
719 	return (error);
720 }
721 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
722     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
723     "nchash chain lengths");
724 
725 static int
726 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
727 {
728 	int error;
729 	struct nchashhead *ncpp;
730 	struct namecache *ncp;
731 	int n_nchash;
732 	int count, maxlength, used, pct;
733 
734 	if (!req->oldptr)
735 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
736 
737 	cache_lock_all_buckets();
738 	n_nchash = nchash + 1;	/* nchash is max index, not count */
739 	used = 0;
740 	maxlength = 0;
741 
742 	/* Scan hash tables for applicable entries */
743 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
744 		count = 0;
745 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
746 			count++;
747 		}
748 		if (count)
749 			used++;
750 		if (maxlength < count)
751 			maxlength = count;
752 	}
753 	n_nchash = nchash + 1;
754 	cache_unlock_all_buckets();
755 	pct = (used * 100) / (n_nchash / 100);
756 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
757 	if (error)
758 		return (error);
759 	error = SYSCTL_OUT(req, &used, sizeof(used));
760 	if (error)
761 		return (error);
762 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
763 	if (error)
764 		return (error);
765 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
766 	if (error)
767 		return (error);
768 	return (0);
769 }
770 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
771     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
772     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
773 #endif
774 
775 /*
776  * Negative entries management
777  *
778  * A variation of LRU scheme is used. New entries are hashed into one of
779  * numneglists cold lists. Entries get promoted to the hot list on first hit.
780  *
781  * The shrinker will demote hot list head and evict from the cold list in a
782  * round-robin manner.
783  */
784 static void
785 cache_negative_init(struct namecache *ncp)
786 {
787 	struct negstate *negstate;
788 
789 	ncp->nc_flag |= NCF_NEGATIVE;
790 	negstate = NCP2NEGSTATE(ncp);
791 	negstate->neg_flag = 0;
792 }
793 
794 static void
795 cache_negative_hit(struct namecache *ncp)
796 {
797 	struct neglist *neglist;
798 	struct negstate *negstate;
799 
800 	negstate = NCP2NEGSTATE(ncp);
801 	if ((negstate->neg_flag & NEG_HOT) != 0)
802 		return;
803 	neglist = NCP2NEGLIST(ncp);
804 	mtx_lock(&ncneg_hot.nl_lock);
805 	mtx_lock(&neglist->nl_lock);
806 	if ((negstate->neg_flag & NEG_HOT) == 0) {
807 		numhotneg++;
808 		TAILQ_REMOVE(&neglist->nl_list, ncp, nc_dst);
809 		TAILQ_INSERT_TAIL(&ncneg_hot.nl_list, ncp, nc_dst);
810 		negstate->neg_flag |= NEG_HOT;
811 	}
812 	mtx_unlock(&neglist->nl_lock);
813 	mtx_unlock(&ncneg_hot.nl_lock);
814 }
815 
816 static void
817 cache_negative_insert(struct namecache *ncp)
818 {
819 	struct neglist *neglist;
820 
821 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
822 	cache_assert_bucket_locked(ncp);
823 	neglist = NCP2NEGLIST(ncp);
824 	mtx_lock(&neglist->nl_lock);
825 	TAILQ_INSERT_TAIL(&neglist->nl_list, ncp, nc_dst);
826 	mtx_unlock(&neglist->nl_lock);
827 	atomic_add_long(&numneg, 1);
828 }
829 
830 static void
831 cache_negative_remove(struct namecache *ncp)
832 {
833 	struct neglist *neglist;
834 	struct negstate *negstate;
835 	bool hot_locked = false;
836 	bool list_locked = false;
837 
838 	cache_assert_bucket_locked(ncp);
839 	neglist = NCP2NEGLIST(ncp);
840 	negstate = NCP2NEGSTATE(ncp);
841 	if ((negstate->neg_flag & NEG_HOT) != 0) {
842 		hot_locked = true;
843 		mtx_lock(&ncneg_hot.nl_lock);
844 		if ((negstate->neg_flag & NEG_HOT) == 0) {
845 			list_locked = true;
846 			mtx_lock(&neglist->nl_lock);
847 		}
848 	} else {
849 		list_locked = true;
850 		mtx_lock(&neglist->nl_lock);
851 		/*
852 		 * We may be racing against promotion in lockless lookup.
853 		 */
854 		if ((negstate->neg_flag & NEG_HOT) != 0) {
855 			mtx_unlock(&neglist->nl_lock);
856 			hot_locked = true;
857 			mtx_lock(&ncneg_hot.nl_lock);
858 			mtx_lock(&neglist->nl_lock);
859 		}
860 	}
861 	if ((negstate->neg_flag & NEG_HOT) != 0) {
862 		mtx_assert(&ncneg_hot.nl_lock, MA_OWNED);
863 		TAILQ_REMOVE(&ncneg_hot.nl_list, ncp, nc_dst);
864 		numhotneg--;
865 	} else {
866 		mtx_assert(&neglist->nl_lock, MA_OWNED);
867 		TAILQ_REMOVE(&neglist->nl_list, ncp, nc_dst);
868 	}
869 	if (list_locked)
870 		mtx_unlock(&neglist->nl_lock);
871 	if (hot_locked)
872 		mtx_unlock(&ncneg_hot.nl_lock);
873 	atomic_subtract_long(&numneg, 1);
874 }
875 
876 static void
877 cache_negative_shrink_select(struct namecache **ncpp,
878     struct neglist **neglistpp)
879 {
880 	struct neglist *neglist;
881 	struct namecache *ncp;
882 	static u_int cycle;
883 	u_int i;
884 
885 	*ncpp = ncp = NULL;
886 
887 	for (i = 0; i < numneglists; i++) {
888 		neglist = &neglists[(cycle + i) % numneglists];
889 		if (TAILQ_FIRST(&neglist->nl_list) == NULL)
890 			continue;
891 		mtx_lock(&neglist->nl_lock);
892 		ncp = TAILQ_FIRST(&neglist->nl_list);
893 		if (ncp != NULL)
894 			break;
895 		mtx_unlock(&neglist->nl_lock);
896 	}
897 
898 	*neglistpp = neglist;
899 	*ncpp = ncp;
900 	cycle++;
901 }
902 
903 static void
904 cache_negative_zap_one(void)
905 {
906 	struct namecache *ncp, *ncp2;
907 	struct neglist *neglist;
908 	struct negstate *negstate;
909 	struct mtx *dvlp;
910 	struct mtx *blp;
911 
912 	if (mtx_owner(&ncneg_shrink_lock) != NULL ||
913 	    !mtx_trylock(&ncneg_shrink_lock)) {
914 		counter_u64_add(shrinking_skipped, 1);
915 		return;
916 	}
917 
918 	mtx_lock(&ncneg_hot.nl_lock);
919 	ncp = TAILQ_FIRST(&ncneg_hot.nl_list);
920 	if (ncp != NULL) {
921 		neglist = NCP2NEGLIST(ncp);
922 		negstate = NCP2NEGSTATE(ncp);
923 		mtx_lock(&neglist->nl_lock);
924 		MPASS((negstate->neg_flag & NEG_HOT) != 0);
925 		TAILQ_REMOVE(&ncneg_hot.nl_list, ncp, nc_dst);
926 		TAILQ_INSERT_TAIL(&neglist->nl_list, ncp, nc_dst);
927 		negstate->neg_flag &= ~NEG_HOT;
928 		numhotneg--;
929 		mtx_unlock(&neglist->nl_lock);
930 	}
931 	mtx_unlock(&ncneg_hot.nl_lock);
932 
933 	cache_negative_shrink_select(&ncp, &neglist);
934 
935 	mtx_unlock(&ncneg_shrink_lock);
936 	if (ncp == NULL)
937 		return;
938 
939 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
940 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
941 	blp = NCP2BUCKETLOCK(ncp);
942 	mtx_unlock(&neglist->nl_lock);
943 	mtx_lock(dvlp);
944 	mtx_lock(blp);
945 	/*
946 	 * Enter SMR to safely check the negative list.
947 	 * Even if the found pointer matches, the entry may now be reallocated
948 	 * and used by a different vnode.
949 	 */
950 	vfs_smr_enter();
951 	ncp2 = TAILQ_FIRST(&neglist->nl_list);
952 	if (ncp != ncp2 || dvlp != VP2VNODELOCK(ncp2->nc_dvp) ||
953 	    blp != NCP2BUCKETLOCK(ncp2)) {
954 		vfs_smr_exit();
955 		ncp = NULL;
956 	} else {
957 		vfs_smr_exit();
958 		SDT_PROBE2(vfs, namecache, shrink_negative, done, ncp->nc_dvp,
959 		    ncp->nc_name);
960 		cache_zap_locked(ncp);
961 		counter_u64_add(numneg_evicted, 1);
962 	}
963 	mtx_unlock(blp);
964 	mtx_unlock(dvlp);
965 	if (ncp != NULL)
966 		cache_free(ncp);
967 }
968 
969 /*
970  * cache_zap_locked():
971  *
972  *   Removes a namecache entry from cache, whether it contains an actual
973  *   pointer to a vnode or if it is just a negative cache entry.
974  */
975 static void
976 cache_zap_locked(struct namecache *ncp)
977 {
978 	struct nchashhead *ncpp;
979 
980 	if (!(ncp->nc_flag & NCF_NEGATIVE))
981 		cache_assert_vnode_locked(ncp->nc_vp);
982 	cache_assert_vnode_locked(ncp->nc_dvp);
983 	cache_assert_bucket_locked(ncp);
984 
985 	cache_ncp_invalidate(ncp);
986 
987 	ncpp = NCP2BUCKET(ncp);
988 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
989 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
990 		SDT_PROBE3(vfs, namecache, zap, done, ncp->nc_dvp,
991 		    ncp->nc_name, ncp->nc_vp);
992 		TAILQ_REMOVE(&ncp->nc_vp->v_cache_dst, ncp, nc_dst);
993 		if (ncp == ncp->nc_vp->v_cache_dd) {
994 			vn_seqc_write_begin_unheld(ncp->nc_vp);
995 			ncp->nc_vp->v_cache_dd = NULL;
996 			vn_seqc_write_end(ncp->nc_vp);
997 		}
998 	} else {
999 		SDT_PROBE2(vfs, namecache, zap_negative, done, ncp->nc_dvp,
1000 		    ncp->nc_name);
1001 		cache_negative_remove(ncp);
1002 	}
1003 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1004 		if (ncp == ncp->nc_dvp->v_cache_dd) {
1005 			vn_seqc_write_begin_unheld(ncp->nc_dvp);
1006 			ncp->nc_dvp->v_cache_dd = NULL;
1007 			vn_seqc_write_end(ncp->nc_dvp);
1008 		}
1009 	} else {
1010 		LIST_REMOVE(ncp, nc_src);
1011 		if (LIST_EMPTY(&ncp->nc_dvp->v_cache_src)) {
1012 			ncp->nc_flag |= NCF_DVDROP;
1013 			counter_u64_add(numcachehv, -1);
1014 		}
1015 	}
1016 	atomic_subtract_long(&numcache, 1);
1017 }
1018 
1019 static void
1020 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1021 {
1022 	struct mtx *blp;
1023 
1024 	MPASS(ncp->nc_dvp == vp);
1025 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1026 	cache_assert_vnode_locked(vp);
1027 
1028 	blp = NCP2BUCKETLOCK(ncp);
1029 	mtx_lock(blp);
1030 	cache_zap_locked(ncp);
1031 	mtx_unlock(blp);
1032 }
1033 
1034 static bool
1035 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1036     struct mtx **vlpp)
1037 {
1038 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1039 	struct mtx *blp;
1040 
1041 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1042 	cache_assert_vnode_locked(vp);
1043 
1044 	if (ncp->nc_flag & NCF_NEGATIVE) {
1045 		if (*vlpp != NULL) {
1046 			mtx_unlock(*vlpp);
1047 			*vlpp = NULL;
1048 		}
1049 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1050 		return (true);
1051 	}
1052 
1053 	pvlp = VP2VNODELOCK(vp);
1054 	blp = NCP2BUCKETLOCK(ncp);
1055 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1056 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1057 
1058 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1059 		to_unlock = *vlpp;
1060 		*vlpp = NULL;
1061 	} else {
1062 		if (*vlpp != NULL) {
1063 			mtx_unlock(*vlpp);
1064 			*vlpp = NULL;
1065 		}
1066 		cache_sort_vnodes(&vlp1, &vlp2);
1067 		if (vlp1 == pvlp) {
1068 			mtx_lock(vlp2);
1069 			to_unlock = vlp2;
1070 		} else {
1071 			if (!mtx_trylock(vlp1))
1072 				goto out_relock;
1073 			to_unlock = vlp1;
1074 		}
1075 	}
1076 	mtx_lock(blp);
1077 	cache_zap_locked(ncp);
1078 	mtx_unlock(blp);
1079 	if (to_unlock != NULL)
1080 		mtx_unlock(to_unlock);
1081 	return (true);
1082 
1083 out_relock:
1084 	mtx_unlock(vlp2);
1085 	mtx_lock(vlp1);
1086 	mtx_lock(vlp2);
1087 	MPASS(*vlpp == NULL);
1088 	*vlpp = vlp1;
1089 	return (false);
1090 }
1091 
1092 /*
1093  * If trylocking failed we can get here. We know enough to take all needed locks
1094  * in the right order and re-lookup the entry.
1095  */
1096 static int
1097 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1098     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1099     struct mtx *blp)
1100 {
1101 	struct namecache *rncp;
1102 
1103 	cache_assert_bucket_unlocked(ncp);
1104 
1105 	cache_sort_vnodes(&dvlp, &vlp);
1106 	cache_lock_vnodes(dvlp, vlp);
1107 	mtx_lock(blp);
1108 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1109 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1110 		    rncp->nc_nlen == cnp->cn_namelen &&
1111 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1112 			break;
1113 	}
1114 	if (rncp != NULL) {
1115 		cache_zap_locked(rncp);
1116 		mtx_unlock(blp);
1117 		cache_unlock_vnodes(dvlp, vlp);
1118 		counter_u64_add(zap_and_exit_bucket_relock_success, 1);
1119 		return (0);
1120 	}
1121 
1122 	mtx_unlock(blp);
1123 	cache_unlock_vnodes(dvlp, vlp);
1124 	return (EAGAIN);
1125 }
1126 
1127 static int __noinline
1128 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1129     uint32_t hash, struct mtx *blp)
1130 {
1131 	struct mtx *dvlp, *vlp;
1132 	struct vnode *dvp;
1133 
1134 	cache_assert_bucket_locked(ncp);
1135 
1136 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1137 	vlp = NULL;
1138 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1139 		vlp = VP2VNODELOCK(ncp->nc_vp);
1140 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1141 		cache_zap_locked(ncp);
1142 		mtx_unlock(blp);
1143 		cache_unlock_vnodes(dvlp, vlp);
1144 		return (0);
1145 	}
1146 
1147 	dvp = ncp->nc_dvp;
1148 	mtx_unlock(blp);
1149 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1150 }
1151 
1152 static __noinline int
1153 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1154 {
1155 	struct namecache *ncp;
1156 	struct mtx *blp;
1157 	struct mtx *dvlp, *dvlp2;
1158 	uint32_t hash;
1159 	int error;
1160 
1161 	if (cnp->cn_namelen == 2 &&
1162 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1163 		dvlp = VP2VNODELOCK(dvp);
1164 		dvlp2 = NULL;
1165 		mtx_lock(dvlp);
1166 retry_dotdot:
1167 		ncp = dvp->v_cache_dd;
1168 		if (ncp == NULL) {
1169 			mtx_unlock(dvlp);
1170 			if (dvlp2 != NULL)
1171 				mtx_unlock(dvlp2);
1172 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1173 			return (0);
1174 		}
1175 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1176 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1177 				goto retry_dotdot;
1178 			MPASS(dvp->v_cache_dd == NULL);
1179 			mtx_unlock(dvlp);
1180 			if (dvlp2 != NULL)
1181 				mtx_unlock(dvlp2);
1182 			cache_free(ncp);
1183 		} else {
1184 			vn_seqc_write_begin(dvp);
1185 			dvp->v_cache_dd = NULL;
1186 			vn_seqc_write_end(dvp);
1187 			mtx_unlock(dvlp);
1188 			if (dvlp2 != NULL)
1189 				mtx_unlock(dvlp2);
1190 		}
1191 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1192 		return (1);
1193 	}
1194 
1195 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1196 	blp = HASH2BUCKETLOCK(hash);
1197 retry:
1198 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1199 		goto out_no_entry;
1200 
1201 	mtx_lock(blp);
1202 
1203 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1204 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1205 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1206 			break;
1207 	}
1208 
1209 	if (ncp == NULL) {
1210 		mtx_unlock(blp);
1211 		goto out_no_entry;
1212 	}
1213 
1214 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1215 	if (__predict_false(error != 0)) {
1216 		zap_and_exit_bucket_fail++;
1217 		goto retry;
1218 	}
1219 	counter_u64_add(numposzaps, 1);
1220 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1221 	cache_free(ncp);
1222 	return (1);
1223 out_no_entry:
1224 	counter_u64_add(nummisszap, 1);
1225 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1226 	return (0);
1227 }
1228 
1229 static int __noinline
1230 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1231     struct timespec *tsp, int *ticksp)
1232 {
1233 	int ltype;
1234 
1235 	*vpp = dvp;
1236 	counter_u64_add(dothits, 1);
1237 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1238 	if (tsp != NULL)
1239 		timespecclear(tsp);
1240 	if (ticksp != NULL)
1241 		*ticksp = ticks;
1242 	vrefact(*vpp);
1243 	/*
1244 	 * When we lookup "." we still can be asked to lock it
1245 	 * differently...
1246 	 */
1247 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1248 	if (ltype != VOP_ISLOCKED(*vpp)) {
1249 		if (ltype == LK_EXCLUSIVE) {
1250 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1251 			if (VN_IS_DOOMED((*vpp))) {
1252 				/* forced unmount */
1253 				vrele(*vpp);
1254 				*vpp = NULL;
1255 				return (ENOENT);
1256 			}
1257 		} else
1258 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1259 	}
1260 	return (-1);
1261 }
1262 
1263 static int __noinline
1264 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1265     struct timespec *tsp, int *ticksp)
1266 {
1267 	struct namecache_ts *ncp_ts;
1268 	struct namecache *ncp;
1269 	struct mtx *dvlp;
1270 	enum vgetstate vs;
1271 	int error, ltype;
1272 	bool whiteout;
1273 
1274 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1275 
1276 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1277 		cache_remove_cnp(dvp, cnp);
1278 		return (0);
1279 	}
1280 
1281 	counter_u64_add(dotdothits, 1);
1282 retry:
1283 	dvlp = VP2VNODELOCK(dvp);
1284 	mtx_lock(dvlp);
1285 	ncp = dvp->v_cache_dd;
1286 	if (ncp == NULL) {
1287 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, "..", NULL);
1288 		mtx_unlock(dvlp);
1289 		return (0);
1290 	}
1291 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1292 		if (ncp->nc_flag & NCF_NEGATIVE)
1293 			*vpp = NULL;
1294 		else
1295 			*vpp = ncp->nc_vp;
1296 	} else
1297 		*vpp = ncp->nc_dvp;
1298 	if (*vpp == NULL)
1299 		goto negative_success;
1300 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1301 	cache_out_ts(ncp, tsp, ticksp);
1302 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1303 	    NCF_DTS && tsp != NULL) {
1304 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1305 		*tsp = ncp_ts->nc_dotdottime;
1306 	}
1307 
1308 	MPASS(dvp != *vpp);
1309 	ltype = VOP_ISLOCKED(dvp);
1310 	VOP_UNLOCK(dvp);
1311 	vs = vget_prep(*vpp);
1312 	mtx_unlock(dvlp);
1313 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1314 	vn_lock(dvp, ltype | LK_RETRY);
1315 	if (VN_IS_DOOMED(dvp)) {
1316 		if (error == 0)
1317 			vput(*vpp);
1318 		*vpp = NULL;
1319 		return (ENOENT);
1320 	}
1321 	if (error) {
1322 		*vpp = NULL;
1323 		goto retry;
1324 	}
1325 	return (-1);
1326 negative_success:
1327 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1328 		if (cnp->cn_flags & ISLASTCN) {
1329 			counter_u64_add(numnegzaps, 1);
1330 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1331 			mtx_unlock(dvlp);
1332 			cache_free(ncp);
1333 			return (0);
1334 		}
1335 	}
1336 
1337 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp, ncp->nc_name);
1338 	cache_out_ts(ncp, tsp, ticksp);
1339 	counter_u64_add(numneghits, 1);
1340 	whiteout = (ncp->nc_flag & NCF_WHITE);
1341 	cache_negative_hit(ncp);
1342 	mtx_unlock(dvlp);
1343 	if (whiteout)
1344 		cnp->cn_flags |= ISWHITEOUT;
1345 	return (ENOENT);
1346 }
1347 
1348 /**
1349  * Lookup a name in the name cache
1350  *
1351  * # Arguments
1352  *
1353  * - dvp:	Parent directory in which to search.
1354  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1355  * - cnp:	Parameters of the name search.  The most interesting bits of
1356  *   		the cn_flags field have the following meanings:
1357  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1358  *   			it up.
1359  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1360  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1361  *   		or negative) lookup, tsp will be filled with any timespec that
1362  *   		was stored when this cache entry was created.  However, it will
1363  *   		be clear for "." entries.
1364  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1365  *   		(positive or negative) lookup, it will contain the ticks value
1366  *   		that was current when the cache entry was created, unless cnp
1367  *   		was ".".
1368  *
1369  * Either both tsp and ticks have to be provided or neither of them.
1370  *
1371  * # Returns
1372  *
1373  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1374  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1375  *		to a forced unmount.  vpp will not be modified.  If the entry
1376  *		is a whiteout, then the ISWHITEOUT flag will be set in
1377  *		cnp->cn_flags.
1378  * - 0:		A cache miss.  vpp will not be modified.
1379  *
1380  * # Locking
1381  *
1382  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1383  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1384  * lock is not recursively acquired.
1385  */
1386 static int __noinline
1387 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1388     struct timespec *tsp, int *ticksp)
1389 {
1390 	struct namecache *ncp;
1391 	struct mtx *blp;
1392 	uint32_t hash;
1393 	enum vgetstate vs;
1394 	int error;
1395 	bool whiteout;
1396 
1397 	MPASS((cnp->cn_flags & (MAKEENTRY | ISDOTDOT)) == MAKEENTRY);
1398 
1399 retry:
1400 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1401 	blp = HASH2BUCKETLOCK(hash);
1402 	mtx_lock(blp);
1403 
1404 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1405 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1406 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1407 			break;
1408 	}
1409 
1410 	if (__predict_false(ncp == NULL)) {
1411 		mtx_unlock(blp);
1412 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1413 		    NULL);
1414 		counter_u64_add(nummiss, 1);
1415 		return (0);
1416 	}
1417 
1418 	if (ncp->nc_flag & NCF_NEGATIVE)
1419 		goto negative_success;
1420 
1421 	counter_u64_add(numposhits, 1);
1422 	*vpp = ncp->nc_vp;
1423 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1424 	cache_out_ts(ncp, tsp, ticksp);
1425 	MPASS(dvp != *vpp);
1426 	vs = vget_prep(*vpp);
1427 	mtx_unlock(blp);
1428 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1429 	if (error) {
1430 		*vpp = NULL;
1431 		goto retry;
1432 	}
1433 	return (-1);
1434 negative_success:
1435 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1436 		if (cnp->cn_flags & ISLASTCN) {
1437 			counter_u64_add(numnegzaps, 1);
1438 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1439 			if (__predict_false(error != 0)) {
1440 				zap_and_exit_bucket_fail2++;
1441 				goto retry;
1442 			}
1443 			cache_free(ncp);
1444 			return (0);
1445 		}
1446 	}
1447 
1448 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp, ncp->nc_name);
1449 	cache_out_ts(ncp, tsp, ticksp);
1450 	counter_u64_add(numneghits, 1);
1451 	whiteout = (ncp->nc_flag & NCF_WHITE);
1452 	cache_negative_hit(ncp);
1453 	mtx_unlock(blp);
1454 	if (whiteout)
1455 		cnp->cn_flags |= ISWHITEOUT;
1456 	return (ENOENT);
1457 }
1458 
1459 int
1460 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1461     struct timespec *tsp, int *ticksp)
1462 {
1463 	struct namecache *ncp;
1464 	struct negstate *negstate;
1465 	uint32_t hash;
1466 	enum vgetstate vs;
1467 	int error;
1468 	bool whiteout;
1469 	u_short nc_flag;
1470 
1471 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
1472 
1473 #ifdef DEBUG_CACHE
1474 	if (__predict_false(!doingcache)) {
1475 		cnp->cn_flags &= ~MAKEENTRY;
1476 		return (0);
1477 	}
1478 #endif
1479 
1480 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
1481 		if (cnp->cn_namelen == 1)
1482 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
1483 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
1484 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
1485 	}
1486 
1487 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1488 
1489 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1490 		cache_remove_cnp(dvp, cnp);
1491 		return (0);
1492 	}
1493 
1494 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1495 	vfs_smr_enter();
1496 
1497 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1498 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1499 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1500 			break;
1501 	}
1502 
1503 	if (__predict_false(ncp == NULL)) {
1504 		vfs_smr_exit();
1505 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1506 		    NULL);
1507 		counter_u64_add(nummiss, 1);
1508 		return (0);
1509 	}
1510 
1511 	nc_flag = atomic_load_char(&ncp->nc_flag);
1512 	if (nc_flag & NCF_NEGATIVE)
1513 		goto negative_success;
1514 
1515 	counter_u64_add(numposhits, 1);
1516 	*vpp = ncp->nc_vp;
1517 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1518 	cache_out_ts(ncp, tsp, ticksp);
1519 	MPASS(dvp != *vpp);
1520 	if (!cache_ncp_canuse(ncp)) {
1521 		vfs_smr_exit();
1522 		*vpp = NULL;
1523 		goto out_fallback;
1524 	}
1525 	vs = vget_prep_smr(*vpp);
1526 	vfs_smr_exit();
1527 	if (__predict_false(vs == VGET_NONE)) {
1528 		*vpp = NULL;
1529 		goto out_fallback;
1530 	}
1531 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1532 	if (error) {
1533 		*vpp = NULL;
1534 		goto out_fallback;
1535 	}
1536 	return (-1);
1537 negative_success:
1538 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1539 		if (cnp->cn_flags & ISLASTCN) {
1540 			vfs_smr_exit();
1541 			goto out_fallback;
1542 		}
1543 	}
1544 
1545 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp, ncp->nc_name);
1546 	cache_out_ts(ncp, tsp, ticksp);
1547 	counter_u64_add(numneghits, 1);
1548 	whiteout = (ncp->nc_flag & NCF_WHITE);
1549 	/*
1550 	 * TODO: We need to take locks to promote an entry. Code doing it
1551 	 * in SMR lookup can be modified to be shared.
1552 	 */
1553 	negstate = NCP2NEGSTATE(ncp);
1554 	if ((negstate->neg_flag & NEG_HOT) == 0 ||
1555 	    !cache_ncp_canuse(ncp)) {
1556 		vfs_smr_exit();
1557 		goto out_fallback;
1558 	}
1559 	vfs_smr_exit();
1560 	if (whiteout)
1561 		cnp->cn_flags |= ISWHITEOUT;
1562 	return (ENOENT);
1563 out_fallback:
1564 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
1565 }
1566 
1567 struct celockstate {
1568 	struct mtx *vlp[3];
1569 	struct mtx *blp[2];
1570 };
1571 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
1572 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
1573 
1574 static inline void
1575 cache_celockstate_init(struct celockstate *cel)
1576 {
1577 
1578 	bzero(cel, sizeof(*cel));
1579 }
1580 
1581 static void
1582 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
1583     struct vnode *dvp)
1584 {
1585 	struct mtx *vlp1, *vlp2;
1586 
1587 	MPASS(cel->vlp[0] == NULL);
1588 	MPASS(cel->vlp[1] == NULL);
1589 	MPASS(cel->vlp[2] == NULL);
1590 
1591 	MPASS(vp != NULL || dvp != NULL);
1592 
1593 	vlp1 = VP2VNODELOCK(vp);
1594 	vlp2 = VP2VNODELOCK(dvp);
1595 	cache_sort_vnodes(&vlp1, &vlp2);
1596 
1597 	if (vlp1 != NULL) {
1598 		mtx_lock(vlp1);
1599 		cel->vlp[0] = vlp1;
1600 	}
1601 	mtx_lock(vlp2);
1602 	cel->vlp[1] = vlp2;
1603 }
1604 
1605 static void
1606 cache_unlock_vnodes_cel(struct celockstate *cel)
1607 {
1608 
1609 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
1610 
1611 	if (cel->vlp[0] != NULL)
1612 		mtx_unlock(cel->vlp[0]);
1613 	if (cel->vlp[1] != NULL)
1614 		mtx_unlock(cel->vlp[1]);
1615 	if (cel->vlp[2] != NULL)
1616 		mtx_unlock(cel->vlp[2]);
1617 }
1618 
1619 static bool
1620 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
1621 {
1622 	struct mtx *vlp;
1623 	bool ret;
1624 
1625 	cache_assert_vlp_locked(cel->vlp[0]);
1626 	cache_assert_vlp_locked(cel->vlp[1]);
1627 	MPASS(cel->vlp[2] == NULL);
1628 
1629 	MPASS(vp != NULL);
1630 	vlp = VP2VNODELOCK(vp);
1631 
1632 	ret = true;
1633 	if (vlp >= cel->vlp[1]) {
1634 		mtx_lock(vlp);
1635 	} else {
1636 		if (mtx_trylock(vlp))
1637 			goto out;
1638 		cache_lock_vnodes_cel_3_failures++;
1639 		cache_unlock_vnodes_cel(cel);
1640 		if (vlp < cel->vlp[0]) {
1641 			mtx_lock(vlp);
1642 			mtx_lock(cel->vlp[0]);
1643 			mtx_lock(cel->vlp[1]);
1644 		} else {
1645 			if (cel->vlp[0] != NULL)
1646 				mtx_lock(cel->vlp[0]);
1647 			mtx_lock(vlp);
1648 			mtx_lock(cel->vlp[1]);
1649 		}
1650 		ret = false;
1651 	}
1652 out:
1653 	cel->vlp[2] = vlp;
1654 	return (ret);
1655 }
1656 
1657 static void
1658 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
1659     struct mtx *blp2)
1660 {
1661 
1662 	MPASS(cel->blp[0] == NULL);
1663 	MPASS(cel->blp[1] == NULL);
1664 
1665 	cache_sort_vnodes(&blp1, &blp2);
1666 
1667 	if (blp1 != NULL) {
1668 		mtx_lock(blp1);
1669 		cel->blp[0] = blp1;
1670 	}
1671 	mtx_lock(blp2);
1672 	cel->blp[1] = blp2;
1673 }
1674 
1675 static void
1676 cache_unlock_buckets_cel(struct celockstate *cel)
1677 {
1678 
1679 	if (cel->blp[0] != NULL)
1680 		mtx_unlock(cel->blp[0]);
1681 	mtx_unlock(cel->blp[1]);
1682 }
1683 
1684 /*
1685  * Lock part of the cache affected by the insertion.
1686  *
1687  * This means vnodelocks for dvp, vp and the relevant bucketlock.
1688  * However, insertion can result in removal of an old entry. In this
1689  * case we have an additional vnode and bucketlock pair to lock.
1690  *
1691  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
1692  * preserving the locking order (smaller address first).
1693  */
1694 static void
1695 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
1696     uint32_t hash)
1697 {
1698 	struct namecache *ncp;
1699 	struct mtx *blps[2];
1700 
1701 	blps[0] = HASH2BUCKETLOCK(hash);
1702 	for (;;) {
1703 		blps[1] = NULL;
1704 		cache_lock_vnodes_cel(cel, dvp, vp);
1705 		if (vp == NULL || vp->v_type != VDIR)
1706 			break;
1707 		ncp = vp->v_cache_dd;
1708 		if (ncp == NULL)
1709 			break;
1710 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
1711 			break;
1712 		MPASS(ncp->nc_dvp == vp);
1713 		blps[1] = NCP2BUCKETLOCK(ncp);
1714 		if (ncp->nc_flag & NCF_NEGATIVE)
1715 			break;
1716 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
1717 			break;
1718 		/*
1719 		 * All vnodes got re-locked. Re-validate the state and if
1720 		 * nothing changed we are done. Otherwise restart.
1721 		 */
1722 		if (ncp == vp->v_cache_dd &&
1723 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
1724 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
1725 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
1726 			break;
1727 		cache_unlock_vnodes_cel(cel);
1728 		cel->vlp[0] = NULL;
1729 		cel->vlp[1] = NULL;
1730 		cel->vlp[2] = NULL;
1731 	}
1732 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
1733 }
1734 
1735 static void
1736 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
1737     uint32_t hash)
1738 {
1739 	struct namecache *ncp;
1740 	struct mtx *blps[2];
1741 
1742 	blps[0] = HASH2BUCKETLOCK(hash);
1743 	for (;;) {
1744 		blps[1] = NULL;
1745 		cache_lock_vnodes_cel(cel, dvp, vp);
1746 		ncp = dvp->v_cache_dd;
1747 		if (ncp == NULL)
1748 			break;
1749 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
1750 			break;
1751 		MPASS(ncp->nc_dvp == dvp);
1752 		blps[1] = NCP2BUCKETLOCK(ncp);
1753 		if (ncp->nc_flag & NCF_NEGATIVE)
1754 			break;
1755 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
1756 			break;
1757 		if (ncp == dvp->v_cache_dd &&
1758 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
1759 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
1760 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
1761 			break;
1762 		cache_unlock_vnodes_cel(cel);
1763 		cel->vlp[0] = NULL;
1764 		cel->vlp[1] = NULL;
1765 		cel->vlp[2] = NULL;
1766 	}
1767 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
1768 }
1769 
1770 static void
1771 cache_enter_unlock(struct celockstate *cel)
1772 {
1773 
1774 	cache_unlock_buckets_cel(cel);
1775 	cache_unlock_vnodes_cel(cel);
1776 }
1777 
1778 static void __noinline
1779 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
1780     struct componentname *cnp)
1781 {
1782 	struct celockstate cel;
1783 	struct namecache *ncp;
1784 	uint32_t hash;
1785 	int len;
1786 
1787 	if (dvp->v_cache_dd == NULL)
1788 		return;
1789 	len = cnp->cn_namelen;
1790 	cache_celockstate_init(&cel);
1791 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
1792 	cache_enter_lock_dd(&cel, dvp, vp, hash);
1793 	vn_seqc_write_begin(dvp);
1794 	ncp = dvp->v_cache_dd;
1795 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
1796 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
1797 		cache_zap_locked(ncp);
1798 	} else {
1799 		ncp = NULL;
1800 	}
1801 	dvp->v_cache_dd = NULL;
1802 	vn_seqc_write_end(dvp);
1803 	cache_enter_unlock(&cel);
1804 	if (ncp != NULL)
1805 		cache_free(ncp);
1806 }
1807 
1808 /*
1809  * Add an entry to the cache.
1810  */
1811 void
1812 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
1813     struct timespec *tsp, struct timespec *dtsp)
1814 {
1815 	struct celockstate cel;
1816 	struct namecache *ncp, *n2, *ndd;
1817 	struct namecache_ts *ncp_ts;
1818 	struct nchashhead *ncpp;
1819 	uint32_t hash;
1820 	int flag;
1821 	int len;
1822 	u_long lnumcache;
1823 
1824 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
1825 	VNPASS(dvp->v_type != VNON, dvp);
1826 	if (vp != NULL) {
1827 		VNPASS(!VN_IS_DOOMED(vp), vp);
1828 		VNPASS(vp->v_type != VNON, vp);
1829 	}
1830 
1831 #ifdef DEBUG_CACHE
1832 	if (__predict_false(!doingcache))
1833 		return;
1834 #endif
1835 
1836 	flag = 0;
1837 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
1838 		if (cnp->cn_namelen == 1)
1839 			return;
1840 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
1841 			cache_enter_dotdot_prep(dvp, vp, cnp);
1842 			flag = NCF_ISDOTDOT;
1843 		}
1844 	}
1845 
1846 	/*
1847 	 * Avoid blowout in namecache entries.
1848 	 */
1849 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
1850 	if (__predict_false(lnumcache >= ncsize)) {
1851 		atomic_subtract_long(&numcache, 1);
1852 		counter_u64_add(numdrops, 1);
1853 		return;
1854 	}
1855 
1856 	cache_celockstate_init(&cel);
1857 	ndd = NULL;
1858 	ncp_ts = NULL;
1859 
1860 	/*
1861 	 * Calculate the hash key and setup as much of the new
1862 	 * namecache entry as possible before acquiring the lock.
1863 	 */
1864 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
1865 	ncp->nc_flag = flag | NCF_WIP;
1866 	ncp->nc_vp = vp;
1867 	if (vp == NULL)
1868 		cache_negative_init(ncp);
1869 	ncp->nc_dvp = dvp;
1870 	if (tsp != NULL) {
1871 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1872 		ncp_ts->nc_time = *tsp;
1873 		ncp_ts->nc_ticks = ticks;
1874 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
1875 		if (dtsp != NULL) {
1876 			ncp_ts->nc_dotdottime = *dtsp;
1877 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
1878 		}
1879 	}
1880 	len = ncp->nc_nlen = cnp->cn_namelen;
1881 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
1882 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
1883 	ncp->nc_name[len] = '\0';
1884 	cache_enter_lock(&cel, dvp, vp, hash);
1885 
1886 	/*
1887 	 * See if this vnode or negative entry is already in the cache
1888 	 * with this name.  This can happen with concurrent lookups of
1889 	 * the same path name.
1890 	 */
1891 	ncpp = NCHHASH(hash);
1892 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
1893 		if (n2->nc_dvp == dvp &&
1894 		    n2->nc_nlen == cnp->cn_namelen &&
1895 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
1896 			MPASS(cache_ncp_canuse(n2));
1897 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
1898 				KASSERT(vp == NULL,
1899 				    ("%s: found entry pointing to a different vnode (%p != %p)",
1900 				    __func__, NULL, vp));
1901 			else
1902 				KASSERT(n2->nc_vp == vp,
1903 				    ("%s: found entry pointing to a different vnode (%p != %p)",
1904 				    __func__, n2->nc_vp, vp));
1905 			/*
1906 			 * Entries are supposed to be immutable unless in the
1907 			 * process of getting destroyed. Accommodating for
1908 			 * changing timestamps is possible but not worth it.
1909 			 * This should be harmless in terms of correctness, in
1910 			 * the worst case resulting in an earlier expiration.
1911 			 * Alternatively, the found entry can be replaced
1912 			 * altogether.
1913 			 */
1914 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
1915 #if 0
1916 			if (tsp != NULL) {
1917 				KASSERT((n2->nc_flag & NCF_TS) != 0,
1918 				    ("no NCF_TS"));
1919 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
1920 				n2_ts->nc_time = ncp_ts->nc_time;
1921 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
1922 				if (dtsp != NULL) {
1923 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
1924 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
1925 				}
1926 			}
1927 #endif
1928 			goto out_unlock_free;
1929 		}
1930 	}
1931 
1932 	if (flag == NCF_ISDOTDOT) {
1933 		/*
1934 		 * See if we are trying to add .. entry, but some other lookup
1935 		 * has populated v_cache_dd pointer already.
1936 		 */
1937 		if (dvp->v_cache_dd != NULL)
1938 			goto out_unlock_free;
1939 		KASSERT(vp == NULL || vp->v_type == VDIR,
1940 		    ("wrong vnode type %p", vp));
1941 		vn_seqc_write_begin(dvp);
1942 		dvp->v_cache_dd = ncp;
1943 		vn_seqc_write_end(dvp);
1944 	}
1945 
1946 	if (vp != NULL) {
1947 		if (flag != NCF_ISDOTDOT) {
1948 			/*
1949 			 * For this case, the cache entry maps both the
1950 			 * directory name in it and the name ".." for the
1951 			 * directory's parent.
1952 			 */
1953 			vn_seqc_write_begin(vp);
1954 			if ((ndd = vp->v_cache_dd) != NULL) {
1955 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
1956 					cache_zap_locked(ndd);
1957 				else
1958 					ndd = NULL;
1959 			}
1960 			vp->v_cache_dd = ncp;
1961 			vn_seqc_write_end(vp);
1962 		} else if (vp->v_type != VDIR) {
1963 			if (vp->v_cache_dd != NULL) {
1964 				vn_seqc_write_begin(vp);
1965 				vp->v_cache_dd = NULL;
1966 				vn_seqc_write_end(vp);
1967 			}
1968 		}
1969 	}
1970 
1971 	if (flag != NCF_ISDOTDOT) {
1972 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1973 			vhold(dvp);
1974 			counter_u64_add(numcachehv, 1);
1975 		}
1976 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
1977 	}
1978 
1979 	/*
1980 	 * If the entry is "negative", we place it into the
1981 	 * "negative" cache queue, otherwise, we place it into the
1982 	 * destination vnode's cache entries queue.
1983 	 */
1984 	if (vp != NULL) {
1985 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
1986 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
1987 		    vp);
1988 	} else {
1989 		if (cnp->cn_flags & ISWHITEOUT)
1990 			ncp->nc_flag |= NCF_WHITE;
1991 		cache_negative_insert(ncp);
1992 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
1993 		    ncp->nc_name);
1994 	}
1995 
1996 	/*
1997 	 * Insert the new namecache entry into the appropriate chain
1998 	 * within the cache entries table.
1999 	 */
2000 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2001 
2002 	atomic_thread_fence_rel();
2003 	/*
2004 	 * Mark the entry as fully constructed.
2005 	 * It is immutable past this point until its removal.
2006 	 */
2007 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2008 
2009 	cache_enter_unlock(&cel);
2010 	if (numneg * ncnegfactor > lnumcache)
2011 		cache_negative_zap_one();
2012 	if (ndd != NULL)
2013 		cache_free(ndd);
2014 	return;
2015 out_unlock_free:
2016 	cache_enter_unlock(&cel);
2017 	atomic_subtract_long(&numcache, 1);
2018 	cache_free(ncp);
2019 	return;
2020 }
2021 
2022 static u_int
2023 cache_roundup_2(u_int val)
2024 {
2025 	u_int res;
2026 
2027 	for (res = 1; res <= val; res <<= 1)
2028 		continue;
2029 
2030 	return (res);
2031 }
2032 
2033 static struct nchashhead *
2034 nchinittbl(u_long elements, u_long *hashmask)
2035 {
2036 	struct nchashhead *hashtbl;
2037 	u_long hashsize, i;
2038 
2039 	hashsize = cache_roundup_2(elements) / 2;
2040 
2041 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2042 	for (i = 0; i < hashsize; i++)
2043 		CK_SLIST_INIT(&hashtbl[i]);
2044 	*hashmask = hashsize - 1;
2045 	return (hashtbl);
2046 }
2047 
2048 static void
2049 ncfreetbl(struct nchashhead *hashtbl)
2050 {
2051 
2052 	free(hashtbl, M_VFSCACHE);
2053 }
2054 
2055 /*
2056  * Name cache initialization, from vfs_init() when we are booting
2057  */
2058 static void
2059 nchinit(void *dummy __unused)
2060 {
2061 	u_int i;
2062 
2063 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2064 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2065 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2066 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2067 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2068 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2069 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2070 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2071 
2072 	VFS_SMR_ZONE_SET(cache_zone_small);
2073 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2074 	VFS_SMR_ZONE_SET(cache_zone_large);
2075 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2076 
2077 	ncsize = desiredvnodes * ncsizefactor;
2078 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2079 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2080 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2081 		ncbuckethash = 7;
2082 	if (ncbuckethash > nchash)
2083 		ncbuckethash = nchash;
2084 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2085 	    M_WAITOK | M_ZERO);
2086 	for (i = 0; i < numbucketlocks; i++)
2087 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2088 	ncvnodehash = ncbuckethash;
2089 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2090 	    M_WAITOK | M_ZERO);
2091 	for (i = 0; i < numvnodelocks; i++)
2092 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2093 
2094 	neglists = malloc(sizeof(*neglists) * numneglists, M_VFSCACHE,
2095 	    M_WAITOK | M_ZERO);
2096 	for (i = 0; i < numneglists; i++) {
2097 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2098 		TAILQ_INIT(&neglists[i].nl_list);
2099 	}
2100 	mtx_init(&ncneg_hot.nl_lock, "ncneglh", NULL, MTX_DEF);
2101 	TAILQ_INIT(&ncneg_hot.nl_list);
2102 
2103 	mtx_init(&ncneg_shrink_lock, "ncnegs", NULL, MTX_DEF);
2104 }
2105 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2106 
2107 void
2108 cache_vnode_init(struct vnode *vp)
2109 {
2110 
2111 	LIST_INIT(&vp->v_cache_src);
2112 	TAILQ_INIT(&vp->v_cache_dst);
2113 	vp->v_cache_dd = NULL;
2114 	cache_prehash(vp);
2115 }
2116 
2117 void
2118 cache_changesize(u_long newmaxvnodes)
2119 {
2120 	struct nchashhead *new_nchashtbl, *old_nchashtbl;
2121 	u_long new_nchash, old_nchash;
2122 	struct namecache *ncp;
2123 	uint32_t hash;
2124 	u_long newncsize;
2125 	int i;
2126 
2127 	newncsize = newmaxvnodes * ncsizefactor;
2128 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2129 	if (newmaxvnodes < numbucketlocks)
2130 		newmaxvnodes = numbucketlocks;
2131 
2132 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2133 	/* If same hash table size, nothing to do */
2134 	if (nchash == new_nchash) {
2135 		ncfreetbl(new_nchashtbl);
2136 		return;
2137 	}
2138 	/*
2139 	 * Move everything from the old hash table to the new table.
2140 	 * None of the namecache entries in the table can be removed
2141 	 * because to do so, they have to be removed from the hash table.
2142 	 */
2143 	cache_lock_all_vnodes();
2144 	cache_lock_all_buckets();
2145 	old_nchashtbl = nchashtbl;
2146 	old_nchash = nchash;
2147 	nchashtbl = new_nchashtbl;
2148 	nchash = new_nchash;
2149 	for (i = 0; i <= old_nchash; i++) {
2150 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2151 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2152 			    ncp->nc_dvp);
2153 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2154 			CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2155 		}
2156 	}
2157 	ncsize = newncsize;
2158 	cache_unlock_all_buckets();
2159 	cache_unlock_all_vnodes();
2160 	ncfreetbl(old_nchashtbl);
2161 }
2162 
2163 /*
2164  * Invalidate all entries from and to a particular vnode.
2165  */
2166 static void
2167 cache_purge_impl(struct vnode *vp)
2168 {
2169 	TAILQ_HEAD(, namecache) ncps;
2170 	struct namecache *ncp, *nnp;
2171 	struct mtx *vlp, *vlp2;
2172 
2173 	TAILQ_INIT(&ncps);
2174 	vlp = VP2VNODELOCK(vp);
2175 	vlp2 = NULL;
2176 	mtx_lock(vlp);
2177 retry:
2178 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2179 		ncp = LIST_FIRST(&vp->v_cache_src);
2180 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2181 			goto retry;
2182 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2183 	}
2184 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2185 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2186 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2187 			goto retry;
2188 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2189 	}
2190 	ncp = vp->v_cache_dd;
2191 	if (ncp != NULL) {
2192 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2193 		   ("lost dotdot link"));
2194 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2195 			goto retry;
2196 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2197 	}
2198 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2199 	mtx_unlock(vlp);
2200 	if (vlp2 != NULL)
2201 		mtx_unlock(vlp2);
2202 	TAILQ_FOREACH_SAFE(ncp, &ncps, nc_dst, nnp) {
2203 		cache_free(ncp);
2204 	}
2205 }
2206 
2207 /*
2208  * Opportunistic check to see if there is anything to do.
2209  */
2210 static bool
2211 cache_has_entries(struct vnode *vp)
2212 {
2213 
2214 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2215 	    vp->v_cache_dd == NULL)
2216 		return (false);
2217 	return (true);
2218 }
2219 
2220 void
2221 cache_purge(struct vnode *vp)
2222 {
2223 
2224 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2225 	if (!cache_has_entries(vp))
2226 		return;
2227 	cache_purge_impl(vp);
2228 }
2229 
2230 /*
2231  * Only to be used by vgone.
2232  */
2233 void
2234 cache_purge_vgone(struct vnode *vp)
2235 {
2236 	struct mtx *vlp;
2237 
2238 	VNPASS(VN_IS_DOOMED(vp), vp);
2239 	if (cache_has_entries(vp)) {
2240 		cache_purge_impl(vp);
2241 		return;
2242 	}
2243 
2244 	/*
2245 	 * Serialize against a potential thread doing cache_purge.
2246 	 */
2247 	vlp = VP2VNODELOCK(vp);
2248 	mtx_wait_unlocked(vlp);
2249 	if (cache_has_entries(vp)) {
2250 		cache_purge_impl(vp);
2251 		return;
2252 	}
2253 	return;
2254 }
2255 
2256 /*
2257  * Invalidate all negative entries for a particular directory vnode.
2258  */
2259 void
2260 cache_purge_negative(struct vnode *vp)
2261 {
2262 	TAILQ_HEAD(, namecache) ncps;
2263 	struct namecache *ncp, *nnp;
2264 	struct mtx *vlp;
2265 
2266 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2267 	if (LIST_EMPTY(&vp->v_cache_src))
2268 		return;
2269 	TAILQ_INIT(&ncps);
2270 	vlp = VP2VNODELOCK(vp);
2271 	mtx_lock(vlp);
2272 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2273 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2274 			continue;
2275 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2276 		TAILQ_INSERT_TAIL(&ncps, ncp, nc_dst);
2277 	}
2278 	mtx_unlock(vlp);
2279 	TAILQ_FOREACH_SAFE(ncp, &ncps, nc_dst, nnp) {
2280 		cache_free(ncp);
2281 	}
2282 }
2283 
2284 void
2285 cache_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2286     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2287 {
2288 
2289 	ASSERT_VOP_IN_SEQC(fdvp);
2290 	ASSERT_VOP_IN_SEQC(fvp);
2291 	ASSERT_VOP_IN_SEQC(tdvp);
2292 	if (tvp != NULL)
2293 		ASSERT_VOP_IN_SEQC(tvp);
2294 
2295 	cache_purge(fvp);
2296 	if (tvp != NULL) {
2297 		cache_purge(tvp);
2298 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2299 		    ("%s: lingering negative entry", __func__));
2300 	} else {
2301 		cache_remove_cnp(tdvp, tcnp);
2302 	}
2303 }
2304 
2305 /*
2306  * Flush all entries referencing a particular filesystem.
2307  */
2308 void
2309 cache_purgevfs(struct mount *mp)
2310 {
2311 	struct vnode *vp, *mvp;
2312 
2313 	SDT_PROBE1(vfs, namecache, purgevfs, done, mp);
2314 	/*
2315 	 * Somewhat wasteful iteration over all vnodes. Would be better to
2316 	 * support filtering and avoid the interlock to begin with.
2317 	 */
2318 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2319 		if (!cache_has_entries(vp)) {
2320 			VI_UNLOCK(vp);
2321 			continue;
2322 		}
2323 		vholdl(vp);
2324 		VI_UNLOCK(vp);
2325 		cache_purge(vp);
2326 		vdrop(vp);
2327 	}
2328 }
2329 
2330 /*
2331  * Perform canonical checks and cache lookup and pass on to filesystem
2332  * through the vop_cachedlookup only if needed.
2333  */
2334 
2335 int
2336 vfs_cache_lookup(struct vop_lookup_args *ap)
2337 {
2338 	struct vnode *dvp;
2339 	int error;
2340 	struct vnode **vpp = ap->a_vpp;
2341 	struct componentname *cnp = ap->a_cnp;
2342 	int flags = cnp->cn_flags;
2343 
2344 	*vpp = NULL;
2345 	dvp = ap->a_dvp;
2346 
2347 	if (dvp->v_type != VDIR)
2348 		return (ENOTDIR);
2349 
2350 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
2351 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
2352 		return (EROFS);
2353 
2354 	error = vn_dir_check_exec(dvp, cnp);
2355 	if (error != 0)
2356 		return (error);
2357 
2358 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
2359 	if (error == 0)
2360 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
2361 	if (error == -1)
2362 		return (0);
2363 	return (error);
2364 }
2365 
2366 /* Implementation of the getcwd syscall. */
2367 int
2368 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
2369 {
2370 	char *buf, *retbuf;
2371 	size_t buflen;
2372 	int error;
2373 
2374 	buflen = uap->buflen;
2375 	if (__predict_false(buflen < 2))
2376 		return (EINVAL);
2377 	if (buflen > MAXPATHLEN)
2378 		buflen = MAXPATHLEN;
2379 
2380 	buf = uma_zalloc(namei_zone, M_WAITOK);
2381 	error = vn_getcwd(buf, &retbuf, &buflen);
2382 	if (error == 0)
2383 		error = copyout(retbuf, uap->buf, buflen);
2384 	uma_zfree(namei_zone, buf);
2385 	return (error);
2386 }
2387 
2388 int
2389 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
2390 {
2391 	struct pwd *pwd;
2392 	int error;
2393 
2394 	vfs_smr_enter();
2395 	pwd = pwd_get_smr();
2396 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
2397 	    buflen, false, 0);
2398 	VFS_SMR_ASSERT_NOT_ENTERED();
2399 	if (error < 0) {
2400 		pwd = pwd_hold(curthread);
2401 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
2402 		    retbuf, buflen);
2403 		pwd_drop(pwd);
2404 	}
2405 
2406 #ifdef KTRACE
2407 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
2408 		ktrnamei(*retbuf);
2409 #endif
2410 	return (error);
2411 }
2412 
2413 static int
2414 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
2415     size_t size, int flags, enum uio_seg pathseg)
2416 {
2417 	struct nameidata nd;
2418 	char *retbuf, *freebuf;
2419 	int error;
2420 
2421 	if (flags != 0)
2422 		return (EINVAL);
2423 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1,
2424 	    pathseg, path, fd, &cap_fstat_rights, td);
2425 	if ((error = namei(&nd)) != 0)
2426 		return (error);
2427 	error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size);
2428 	if (error == 0) {
2429 		error = copyout(retbuf, buf, size);
2430 		free(freebuf, M_TEMP);
2431 	}
2432 	NDFREE(&nd, 0);
2433 	return (error);
2434 }
2435 
2436 int
2437 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
2438 {
2439 
2440 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
2441 	    uap->flags, UIO_USERSPACE));
2442 }
2443 
2444 /*
2445  * Retrieve the full filesystem path that correspond to a vnode from the name
2446  * cache (if available)
2447  */
2448 int
2449 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
2450 {
2451 	struct pwd *pwd;
2452 	char *buf;
2453 	size_t buflen;
2454 	int error;
2455 
2456 	if (__predict_false(vp == NULL))
2457 		return (EINVAL);
2458 
2459 	buflen = MAXPATHLEN;
2460 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2461 	vfs_smr_enter();
2462 	pwd = pwd_get_smr();
2463 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, false, 0);
2464 	VFS_SMR_ASSERT_NOT_ENTERED();
2465 	if (error < 0) {
2466 		pwd = pwd_hold(curthread);
2467 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
2468 		pwd_drop(pwd);
2469 	}
2470 	if (error == 0)
2471 		*freebuf = buf;
2472 	else
2473 		free(buf, M_TEMP);
2474 	return (error);
2475 }
2476 
2477 /*
2478  * This function is similar to vn_fullpath, but it attempts to lookup the
2479  * pathname relative to the global root mount point.  This is required for the
2480  * auditing sub-system, as audited pathnames must be absolute, relative to the
2481  * global root mount point.
2482  */
2483 int
2484 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
2485 {
2486 	char *buf;
2487 	size_t buflen;
2488 	int error;
2489 
2490 	if (__predict_false(vp == NULL))
2491 		return (EINVAL);
2492 	buflen = MAXPATHLEN;
2493 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2494 	vfs_smr_enter();
2495 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, false, 0);
2496 	VFS_SMR_ASSERT_NOT_ENTERED();
2497 	if (error < 0) {
2498 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
2499 	}
2500 	if (error == 0)
2501 		*freebuf = buf;
2502 	else
2503 		free(buf, M_TEMP);
2504 	return (error);
2505 }
2506 
2507 static struct namecache *
2508 vn_dd_from_dst(struct vnode *vp)
2509 {
2510 	struct namecache *ncp;
2511 
2512 	cache_assert_vnode_locked(vp);
2513 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
2514 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2515 			return (ncp);
2516 	}
2517 	return (NULL);
2518 }
2519 
2520 int
2521 vn_vptocnp(struct vnode **vp, struct ucred *cred, char *buf, size_t *buflen)
2522 {
2523 	struct vnode *dvp;
2524 	struct namecache *ncp;
2525 	struct mtx *vlp;
2526 	int error;
2527 
2528 	vlp = VP2VNODELOCK(*vp);
2529 	mtx_lock(vlp);
2530 	ncp = (*vp)->v_cache_dd;
2531 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
2532 		KASSERT(ncp == vn_dd_from_dst(*vp),
2533 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
2534 		    ncp, vn_dd_from_dst(*vp)));
2535 	} else {
2536 		ncp = vn_dd_from_dst(*vp);
2537 	}
2538 	if (ncp != NULL) {
2539 		if (*buflen < ncp->nc_nlen) {
2540 			mtx_unlock(vlp);
2541 			vrele(*vp);
2542 			counter_u64_add(numfullpathfail4, 1);
2543 			error = ENOMEM;
2544 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
2545 			    vp, NULL);
2546 			return (error);
2547 		}
2548 		*buflen -= ncp->nc_nlen;
2549 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
2550 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
2551 		    ncp->nc_name, vp);
2552 		dvp = *vp;
2553 		*vp = ncp->nc_dvp;
2554 		vref(*vp);
2555 		mtx_unlock(vlp);
2556 		vrele(dvp);
2557 		return (0);
2558 	}
2559 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
2560 
2561 	mtx_unlock(vlp);
2562 	vn_lock(*vp, LK_SHARED | LK_RETRY);
2563 	error = VOP_VPTOCNP(*vp, &dvp, cred, buf, buflen);
2564 	vput(*vp);
2565 	if (error) {
2566 		counter_u64_add(numfullpathfail2, 1);
2567 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
2568 		return (error);
2569 	}
2570 
2571 	*vp = dvp;
2572 	if (VN_IS_DOOMED(dvp)) {
2573 		/* forced unmount */
2574 		vrele(dvp);
2575 		error = ENOENT;
2576 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
2577 		return (error);
2578 	}
2579 	/*
2580 	 * *vp has its use count incremented still.
2581 	 */
2582 
2583 	return (0);
2584 }
2585 
2586 /*
2587  * Resolve a directory to a pathname.
2588  *
2589  * The name of the directory can always be found in the namecache or fetched
2590  * from the filesystem. There is also guaranteed to be only one parent, meaning
2591  * we can just follow vnodes up until we find the root.
2592  *
2593  * The vnode must be referenced.
2594  */
2595 static int
2596 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
2597     size_t *len, bool slash_prefixed, size_t addend)
2598 {
2599 #ifdef KDTRACE_HOOKS
2600 	struct vnode *startvp = vp;
2601 #endif
2602 	struct vnode *vp1;
2603 	size_t buflen;
2604 	int error;
2605 
2606 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
2607 	VNPASS(vp->v_usecount > 0, vp);
2608 
2609 	buflen = *len;
2610 
2611 	if (!slash_prefixed) {
2612 		MPASS(*len >= 2);
2613 		buflen--;
2614 		buf[buflen] = '\0';
2615 	}
2616 
2617 	error = 0;
2618 
2619 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
2620 	counter_u64_add(numfullpathcalls, 1);
2621 	while (vp != rdir && vp != rootvnode) {
2622 		/*
2623 		 * The vp vnode must be already fully constructed,
2624 		 * since it is either found in namecache or obtained
2625 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
2626 		 * without obtaining the vnode lock.
2627 		 */
2628 		if ((vp->v_vflag & VV_ROOT) != 0) {
2629 			vn_lock(vp, LK_RETRY | LK_SHARED);
2630 
2631 			/*
2632 			 * With the vnode locked, check for races with
2633 			 * unmount, forced or not.  Note that we
2634 			 * already verified that vp is not equal to
2635 			 * the root vnode, which means that
2636 			 * mnt_vnodecovered can be NULL only for the
2637 			 * case of unmount.
2638 			 */
2639 			if (VN_IS_DOOMED(vp) ||
2640 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
2641 			    vp1->v_mountedhere != vp->v_mount) {
2642 				vput(vp);
2643 				error = ENOENT;
2644 				SDT_PROBE3(vfs, namecache, fullpath, return,
2645 				    error, vp, NULL);
2646 				break;
2647 			}
2648 
2649 			vref(vp1);
2650 			vput(vp);
2651 			vp = vp1;
2652 			continue;
2653 		}
2654 		if (vp->v_type != VDIR) {
2655 			vrele(vp);
2656 			counter_u64_add(numfullpathfail1, 1);
2657 			error = ENOTDIR;
2658 			SDT_PROBE3(vfs, namecache, fullpath, return,
2659 			    error, vp, NULL);
2660 			break;
2661 		}
2662 		error = vn_vptocnp(&vp, curthread->td_ucred, buf, &buflen);
2663 		if (error)
2664 			break;
2665 		if (buflen == 0) {
2666 			vrele(vp);
2667 			error = ENOMEM;
2668 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
2669 			    startvp, NULL);
2670 			break;
2671 		}
2672 		buf[--buflen] = '/';
2673 		slash_prefixed = true;
2674 	}
2675 	if (error)
2676 		return (error);
2677 	if (!slash_prefixed) {
2678 		if (buflen == 0) {
2679 			vrele(vp);
2680 			counter_u64_add(numfullpathfail4, 1);
2681 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
2682 			    startvp, NULL);
2683 			return (ENOMEM);
2684 		}
2685 		buf[--buflen] = '/';
2686 	}
2687 	counter_u64_add(numfullpathfound, 1);
2688 	vrele(vp);
2689 
2690 	*retbuf = buf + buflen;
2691 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
2692 	*len -= buflen;
2693 	*len += addend;
2694 	return (0);
2695 }
2696 
2697 /*
2698  * Resolve an arbitrary vnode to a pathname.
2699  *
2700  * Note 2 caveats:
2701  * - hardlinks are not tracked, thus if the vnode is not a directory this can
2702  *   resolve to a different path than the one used to find it
2703  * - namecache is not mandatory, meaning names are not guaranteed to be added
2704  *   (in which case resolving fails)
2705  */
2706 static void __inline
2707 cache_rev_failed_impl(int *reason, int line)
2708 {
2709 
2710 	*reason = line;
2711 }
2712 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
2713 
2714 static int
2715 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
2716     char **retbuf, size_t *buflen, bool slash_prefixed, size_t addend)
2717 {
2718 #ifdef KDTRACE_HOOKS
2719 	struct vnode *startvp = vp;
2720 #endif
2721 	struct vnode *tvp;
2722 	struct mount *mp;
2723 	struct namecache *ncp;
2724 	size_t orig_buflen;
2725 	int reason;
2726 	int error;
2727 #ifdef KDTRACE_HOOKS
2728 	int i;
2729 #endif
2730 	seqc_t vp_seqc, tvp_seqc;
2731 	u_char nc_flag;
2732 
2733 	VFS_SMR_ASSERT_ENTERED();
2734 
2735 	if (!cache_fast_revlookup) {
2736 		vfs_smr_exit();
2737 		return (-1);
2738 	}
2739 
2740 	orig_buflen = *buflen;
2741 
2742 	if (!slash_prefixed) {
2743 		MPASS(*buflen >= 2);
2744 		*buflen -= 1;
2745 		buf[*buflen] = '\0';
2746 	}
2747 
2748 	if (vp == rdir || vp == rootvnode) {
2749 		if (!slash_prefixed) {
2750 			*buflen -= 1;
2751 			buf[*buflen] = '/';
2752 		}
2753 		goto out_ok;
2754 	}
2755 
2756 #ifdef KDTRACE_HOOKS
2757 	i = 0;
2758 #endif
2759 	error = -1;
2760 	ncp = NULL; /* for sdt probe down below */
2761 	vp_seqc = vn_seqc_read_any(vp);
2762 	if (seqc_in_modify(vp_seqc)) {
2763 		cache_rev_failed(&reason);
2764 		goto out_abort;
2765 	}
2766 
2767 	for (;;) {
2768 #ifdef KDTRACE_HOOKS
2769 		i++;
2770 #endif
2771 		if ((vp->v_vflag & VV_ROOT) != 0) {
2772 			mp = atomic_load_ptr(&vp->v_mount);
2773 			if (mp == NULL) {
2774 				cache_rev_failed(&reason);
2775 				goto out_abort;
2776 			}
2777 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
2778 			tvp_seqc = vn_seqc_read_any(tvp);
2779 			if (seqc_in_modify(tvp_seqc)) {
2780 				cache_rev_failed(&reason);
2781 				goto out_abort;
2782 			}
2783 			if (!vn_seqc_consistent(vp, vp_seqc)) {
2784 				cache_rev_failed(&reason);
2785 				goto out_abort;
2786 			}
2787 			vp = tvp;
2788 			vp_seqc = tvp_seqc;
2789 			continue;
2790 		}
2791 		ncp = atomic_load_ptr(&vp->v_cache_dd);
2792 		if (ncp == NULL) {
2793 			cache_rev_failed(&reason);
2794 			goto out_abort;
2795 		}
2796 		nc_flag = atomic_load_char(&ncp->nc_flag);
2797 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
2798 			cache_rev_failed(&reason);
2799 			goto out_abort;
2800 		}
2801 		if (!cache_ncp_canuse(ncp)) {
2802 			cache_rev_failed(&reason);
2803 			goto out_abort;
2804 		}
2805 		if (ncp->nc_nlen >= *buflen) {
2806 			cache_rev_failed(&reason);
2807 			error = ENOMEM;
2808 			goto out_abort;
2809 		}
2810 		*buflen -= ncp->nc_nlen;
2811 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
2812 		*buflen -= 1;
2813 		buf[*buflen] = '/';
2814 		tvp = ncp->nc_dvp;
2815 		tvp_seqc = vn_seqc_read_any(tvp);
2816 		if (seqc_in_modify(tvp_seqc)) {
2817 			cache_rev_failed(&reason);
2818 			goto out_abort;
2819 		}
2820 		if (!vn_seqc_consistent(vp, vp_seqc)) {
2821 			cache_rev_failed(&reason);
2822 			goto out_abort;
2823 		}
2824 		vp = tvp;
2825 		vp_seqc = tvp_seqc;
2826 		if (vp == rdir || vp == rootvnode)
2827 			break;
2828 	}
2829 out_ok:
2830 	vfs_smr_exit();
2831 	*retbuf = buf + *buflen;
2832 	*buflen = orig_buflen - *buflen + addend;
2833 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
2834 	return (0);
2835 
2836 out_abort:
2837 	*buflen = orig_buflen;
2838 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
2839 	vfs_smr_exit();
2840 	return (error);
2841 }
2842 
2843 static int
2844 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
2845     size_t *buflen)
2846 {
2847 	size_t orig_buflen;
2848 	bool slash_prefixed;
2849 	int error;
2850 
2851 	if (*buflen < 2)
2852 		return (EINVAL);
2853 
2854 	orig_buflen = *buflen;
2855 
2856 	vref(vp);
2857 	slash_prefixed = false;
2858 	if (vp->v_type != VDIR) {
2859 		*buflen -= 1;
2860 		buf[*buflen] = '\0';
2861 		error = vn_vptocnp(&vp, curthread->td_ucred, buf, buflen);
2862 		if (error)
2863 			return (error);
2864 		if (*buflen == 0) {
2865 			vrele(vp);
2866 			return (ENOMEM);
2867 		}
2868 		*buflen -= 1;
2869 		buf[*buflen] = '/';
2870 		slash_prefixed = true;
2871 	}
2872 
2873 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, slash_prefixed,
2874 	    orig_buflen - *buflen));
2875 }
2876 
2877 /*
2878  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
2879  *
2880  * Since the namecache does not track handlings, the caller is expected to first
2881  * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei.
2882  *
2883  * Then we have 2 cases:
2884  * - if the found vnode is a directory, the path can be constructed just by
2885  *   fullowing names up the chain
2886  * - otherwise we populate the buffer with the saved name and start resolving
2887  *   from the parent
2888  */
2889 static int
2890 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf,
2891     size_t *buflen)
2892 {
2893 	char *buf, *tmpbuf;
2894 	struct pwd *pwd;
2895 	struct componentname *cnp;
2896 	struct vnode *vp;
2897 	size_t addend;
2898 	int error;
2899 	bool slash_prefixed;
2900 	enum vtype type;
2901 
2902 	if (*buflen < 2)
2903 		return (EINVAL);
2904 	if (*buflen > MAXPATHLEN)
2905 		*buflen = MAXPATHLEN;
2906 
2907 	slash_prefixed = false;
2908 
2909 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
2910 
2911 	addend = 0;
2912 	vp = ndp->ni_vp;
2913 	/*
2914 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
2915 	 *
2916 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
2917 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
2918 	 * If the type is VDIR (like in this very case) we can skip looking
2919 	 * at ni_dvp in the first place. However, since vnodes get passed here
2920 	 * unlocked the target may transition to doomed state (type == VBAD)
2921 	 * before we get to evaluate the condition. If this happens, we will
2922 	 * populate part of the buffer and descend to vn_fullpath_dir with
2923 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
2924 	 *
2925 	 * This should be atomic_load(&vp->v_type) but it is ilegal to take
2926 	 * an address of a bit field, even if said field is sized to char.
2927 	 * Work around the problem by reading the value into a full-sized enum
2928 	 * and then re-reading it with atomic_load which will still prevent
2929 	 * the compiler from re-reading down the road.
2930 	 */
2931 	type = vp->v_type;
2932 	type = atomic_load_int(&type);
2933 	if (type == VBAD) {
2934 		error = ENOENT;
2935 		goto out_bad;
2936 	}
2937 	if (type != VDIR) {
2938 		cnp = &ndp->ni_cnd;
2939 		addend = cnp->cn_namelen + 2;
2940 		if (*buflen < addend) {
2941 			error = ENOMEM;
2942 			goto out_bad;
2943 		}
2944 		*buflen -= addend;
2945 		tmpbuf = buf + *buflen;
2946 		tmpbuf[0] = '/';
2947 		memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen);
2948 		tmpbuf[addend - 1] = '\0';
2949 		slash_prefixed = true;
2950 		vp = ndp->ni_dvp;
2951 	}
2952 
2953 	vfs_smr_enter();
2954 	pwd = pwd_get_smr();
2955 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
2956 	    slash_prefixed, addend);
2957 	VFS_SMR_ASSERT_NOT_ENTERED();
2958 	if (error < 0) {
2959 		pwd = pwd_hold(curthread);
2960 		vref(vp);
2961 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
2962 		    slash_prefixed, addend);
2963 		pwd_drop(pwd);
2964 		if (error != 0)
2965 			goto out_bad;
2966 	}
2967 
2968 	*freebuf = buf;
2969 
2970 	return (0);
2971 out_bad:
2972 	free(buf, M_TEMP);
2973 	return (error);
2974 }
2975 
2976 struct vnode *
2977 vn_dir_dd_ino(struct vnode *vp)
2978 {
2979 	struct namecache *ncp;
2980 	struct vnode *ddvp;
2981 	struct mtx *vlp;
2982 	enum vgetstate vs;
2983 
2984 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
2985 	vlp = VP2VNODELOCK(vp);
2986 	mtx_lock(vlp);
2987 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
2988 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
2989 			continue;
2990 		ddvp = ncp->nc_dvp;
2991 		vs = vget_prep(ddvp);
2992 		mtx_unlock(vlp);
2993 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
2994 			return (NULL);
2995 		return (ddvp);
2996 	}
2997 	mtx_unlock(vlp);
2998 	return (NULL);
2999 }
3000 
3001 int
3002 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3003 {
3004 	struct namecache *ncp;
3005 	struct mtx *vlp;
3006 	int l;
3007 
3008 	vlp = VP2VNODELOCK(vp);
3009 	mtx_lock(vlp);
3010 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3011 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3012 			break;
3013 	if (ncp == NULL) {
3014 		mtx_unlock(vlp);
3015 		return (ENOENT);
3016 	}
3017 	l = min(ncp->nc_nlen, buflen - 1);
3018 	memcpy(buf, ncp->nc_name, l);
3019 	mtx_unlock(vlp);
3020 	buf[l] = '\0';
3021 	return (0);
3022 }
3023 
3024 /*
3025  * This function updates path string to vnode's full global path
3026  * and checks the size of the new path string against the pathlen argument.
3027  *
3028  * Requires a locked, referenced vnode.
3029  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3030  *
3031  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3032  * because it falls back to the ".." lookup if the namecache lookup fails.
3033  */
3034 int
3035 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3036     u_int pathlen)
3037 {
3038 	struct nameidata nd;
3039 	struct vnode *vp1;
3040 	char *rpath, *fbuf;
3041 	int error;
3042 
3043 	ASSERT_VOP_ELOCKED(vp, __func__);
3044 
3045 	/* Construct global filesystem path from vp. */
3046 	VOP_UNLOCK(vp);
3047 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3048 
3049 	if (error != 0) {
3050 		vrele(vp);
3051 		return (error);
3052 	}
3053 
3054 	if (strlen(rpath) >= pathlen) {
3055 		vrele(vp);
3056 		error = ENAMETOOLONG;
3057 		goto out;
3058 	}
3059 
3060 	/*
3061 	 * Re-lookup the vnode by path to detect a possible rename.
3062 	 * As a side effect, the vnode is relocked.
3063 	 * If vnode was renamed, return ENOENT.
3064 	 */
3065 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
3066 	    UIO_SYSSPACE, path, td);
3067 	error = namei(&nd);
3068 	if (error != 0) {
3069 		vrele(vp);
3070 		goto out;
3071 	}
3072 	NDFREE(&nd, NDF_ONLY_PNBUF);
3073 	vp1 = nd.ni_vp;
3074 	vrele(vp);
3075 	if (vp1 == vp)
3076 		strcpy(path, rpath);
3077 	else {
3078 		vput(vp1);
3079 		error = ENOENT;
3080 	}
3081 
3082 out:
3083 	free(fbuf, M_TEMP);
3084 	return (error);
3085 }
3086 
3087 #ifdef DDB
3088 static void
3089 db_print_vpath(struct vnode *vp)
3090 {
3091 
3092 	while (vp != NULL) {
3093 		db_printf("%p: ", vp);
3094 		if (vp == rootvnode) {
3095 			db_printf("/");
3096 			vp = NULL;
3097 		} else {
3098 			if (vp->v_vflag & VV_ROOT) {
3099 				db_printf("<mount point>");
3100 				vp = vp->v_mount->mnt_vnodecovered;
3101 			} else {
3102 				struct namecache *ncp;
3103 				char *ncn;
3104 				int i;
3105 
3106 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3107 				if (ncp != NULL) {
3108 					ncn = ncp->nc_name;
3109 					for (i = 0; i < ncp->nc_nlen; i++)
3110 						db_printf("%c", *ncn++);
3111 					vp = ncp->nc_dvp;
3112 				} else {
3113 					vp = NULL;
3114 				}
3115 			}
3116 		}
3117 		db_printf("\n");
3118 	}
3119 
3120 	return;
3121 }
3122 
3123 DB_SHOW_COMMAND(vpath, db_show_vpath)
3124 {
3125 	struct vnode *vp;
3126 
3127 	if (!have_addr) {
3128 		db_printf("usage: show vpath <struct vnode *>\n");
3129 		return;
3130 	}
3131 
3132 	vp = (struct vnode *)addr;
3133 	db_print_vpath(vp);
3134 }
3135 
3136 #endif
3137 
3138 static bool __read_frequently cache_fast_lookup = true;
3139 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_lookup, CTLFLAG_RW,
3140     &cache_fast_lookup, 0, "");
3141 
3142 #define CACHE_FPL_FAILED	-2020
3143 
3144 static void
3145 cache_fpl_cleanup_cnp(struct componentname *cnp)
3146 {
3147 
3148 	uma_zfree(namei_zone, cnp->cn_pnbuf);
3149 #ifdef DIAGNOSTIC
3150 	cnp->cn_pnbuf = NULL;
3151 	cnp->cn_nameptr = NULL;
3152 #endif
3153 }
3154 
3155 static void
3156 cache_fpl_handle_root(struct nameidata *ndp, struct vnode **dpp)
3157 {
3158 	struct componentname *cnp;
3159 
3160 	cnp = &ndp->ni_cnd;
3161 	while (*(cnp->cn_nameptr) == '/') {
3162 		cnp->cn_nameptr++;
3163 		ndp->ni_pathlen--;
3164 	}
3165 
3166 	*dpp = ndp->ni_rootdir;
3167 }
3168 
3169 /*
3170  * Components of nameidata (or objects it can point to) which may
3171  * need restoring in case fast path lookup fails.
3172  */
3173 struct nameidata_saved {
3174 	long cn_namelen;
3175 	char *cn_nameptr;
3176 	size_t ni_pathlen;
3177 	int cn_flags;
3178 };
3179 
3180 struct cache_fpl {
3181 	struct nameidata *ndp;
3182 	struct componentname *cnp;
3183 	struct pwd *pwd;
3184 	struct vnode *dvp;
3185 	struct vnode *tvp;
3186 	seqc_t dvp_seqc;
3187 	seqc_t tvp_seqc;
3188 	struct nameidata_saved snd;
3189 	int line;
3190 	enum cache_fpl_status status:8;
3191 	bool in_smr;
3192 	bool fsearch;
3193 };
3194 
3195 static void
3196 cache_fpl_checkpoint(struct cache_fpl *fpl, struct nameidata_saved *snd)
3197 {
3198 
3199 	snd->cn_flags = fpl->ndp->ni_cnd.cn_flags;
3200 	snd->cn_namelen = fpl->ndp->ni_cnd.cn_namelen;
3201 	snd->cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
3202 	snd->ni_pathlen = fpl->ndp->ni_pathlen;
3203 }
3204 
3205 static void
3206 cache_fpl_restore(struct cache_fpl *fpl, struct nameidata_saved *snd)
3207 {
3208 
3209 	fpl->ndp->ni_cnd.cn_flags = snd->cn_flags;
3210 	fpl->ndp->ni_cnd.cn_namelen = snd->cn_namelen;
3211 	fpl->ndp->ni_cnd.cn_nameptr = snd->cn_nameptr;
3212 	fpl->ndp->ni_pathlen = snd->ni_pathlen;
3213 }
3214 
3215 #ifdef INVARIANTS
3216 #define cache_fpl_smr_assert_entered(fpl) ({			\
3217 	struct cache_fpl *_fpl = (fpl);				\
3218 	MPASS(_fpl->in_smr == true);				\
3219 	VFS_SMR_ASSERT_ENTERED();				\
3220 })
3221 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
3222 	struct cache_fpl *_fpl = (fpl);				\
3223 	MPASS(_fpl->in_smr == false);				\
3224 	VFS_SMR_ASSERT_NOT_ENTERED();				\
3225 })
3226 #else
3227 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
3228 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
3229 #endif
3230 
3231 #define cache_fpl_smr_enter_initial(fpl) ({			\
3232 	struct cache_fpl *_fpl = (fpl);				\
3233 	vfs_smr_enter();					\
3234 	_fpl->in_smr = true;					\
3235 })
3236 
3237 #define cache_fpl_smr_enter(fpl) ({				\
3238 	struct cache_fpl *_fpl = (fpl);				\
3239 	MPASS(_fpl->in_smr == false);				\
3240 	vfs_smr_enter();					\
3241 	_fpl->in_smr = true;					\
3242 })
3243 
3244 #define cache_fpl_smr_exit(fpl) ({				\
3245 	struct cache_fpl *_fpl = (fpl);				\
3246 	MPASS(_fpl->in_smr == true);				\
3247 	vfs_smr_exit();						\
3248 	_fpl->in_smr = false;					\
3249 })
3250 
3251 static int
3252 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
3253 {
3254 
3255 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
3256 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
3257 		    ("%s: converting to abort from %d at %d, set at %d\n",
3258 		    __func__, fpl->status, line, fpl->line));
3259 	}
3260 	fpl->status = CACHE_FPL_STATUS_ABORTED;
3261 	fpl->line = line;
3262 	return (CACHE_FPL_FAILED);
3263 }
3264 
3265 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
3266 
3267 static int
3268 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
3269 {
3270 
3271 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3272 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
3273 	    __func__, line, fpl->status, fpl->line));
3274 	cache_fpl_smr_assert_entered(fpl);
3275 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
3276 	fpl->line = line;
3277 	return (CACHE_FPL_FAILED);
3278 }
3279 
3280 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
3281 
3282 static int
3283 cache_fpl_handled_impl(struct cache_fpl *fpl, int error, int line)
3284 {
3285 
3286 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3287 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
3288 	    __func__, line, fpl->status, fpl->line));
3289 	cache_fpl_smr_assert_not_entered(fpl);
3290 	MPASS(error != CACHE_FPL_FAILED);
3291 	fpl->status = CACHE_FPL_STATUS_HANDLED;
3292 	fpl->line = line;
3293 	return (error);
3294 }
3295 
3296 #define cache_fpl_handled(x, e)	cache_fpl_handled_impl((x), (e), __LINE__)
3297 
3298 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
3299 	(LOCKLEAF | LOCKPARENT | WANTPARENT | NOCACHE | FOLLOW | LOCKSHARED | SAVENAME | \
3300 	 SAVESTART | WILLBEDIR | ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK)
3301 
3302 #define CACHE_FPL_INTERNAL_CN_FLAGS \
3303 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
3304 
3305 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
3306     "supported and internal flags overlap");
3307 
3308 static bool
3309 cache_fpl_islastcn(struct nameidata *ndp)
3310 {
3311 
3312 	return (*ndp->ni_next == 0);
3313 }
3314 
3315 static bool
3316 cache_fpl_isdotdot(struct componentname *cnp)
3317 {
3318 
3319 	if (cnp->cn_namelen == 2 &&
3320 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
3321 		return (true);
3322 	return (false);
3323 }
3324 
3325 static bool
3326 cache_can_fplookup(struct cache_fpl *fpl)
3327 {
3328 	struct nameidata *ndp;
3329 	struct componentname *cnp;
3330 	struct thread *td;
3331 
3332 	ndp = fpl->ndp;
3333 	cnp = fpl->cnp;
3334 	td = cnp->cn_thread;
3335 
3336 	if (!cache_fast_lookup) {
3337 		cache_fpl_aborted(fpl);
3338 		return (false);
3339 	}
3340 #ifdef MAC
3341 	if (mac_vnode_check_lookup_enabled()) {
3342 		cache_fpl_aborted(fpl);
3343 		return (false);
3344 	}
3345 #endif
3346 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
3347 		cache_fpl_aborted(fpl);
3348 		return (false);
3349 	}
3350 	if (IN_CAPABILITY_MODE(td)) {
3351 		cache_fpl_aborted(fpl);
3352 		return (false);
3353 	}
3354 	if (AUDITING_TD(td)) {
3355 		cache_fpl_aborted(fpl);
3356 		return (false);
3357 	}
3358 	if (ndp->ni_startdir != NULL) {
3359 		cache_fpl_aborted(fpl);
3360 		return (false);
3361 	}
3362 	return (true);
3363 }
3364 
3365 static int
3366 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
3367 {
3368 	struct nameidata *ndp;
3369 	int error;
3370 	bool fsearch;
3371 
3372 	ndp = fpl->ndp;
3373 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
3374 	if (__predict_false(error != 0)) {
3375 		cache_fpl_smr_exit(fpl);
3376 		return (cache_fpl_aborted(fpl));
3377 	}
3378 	fpl->fsearch = fsearch;
3379 	return (0);
3380 }
3381 
3382 static bool
3383 cache_fplookup_vnode_supported(struct vnode *vp)
3384 {
3385 
3386 	return (vp->v_type != VLNK);
3387 }
3388 
3389 /*
3390  * Move a negative entry to the hot list.
3391  *
3392  * We have to take locks, but they may be contended and in the worst
3393  * case we may need to go off CPU. We don't want to spin within the
3394  * smr section and we can't block with it. Instead we are going to
3395  * look up the entry again.
3396  */
3397 static int __noinline
3398 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
3399     uint32_t hash)
3400 {
3401 	struct componentname *cnp;
3402 	struct namecache *ncp;
3403 	struct neglist *neglist;
3404 	struct negstate *negstate;
3405 	struct vnode *dvp;
3406 	u_char nc_flag;
3407 
3408 	cnp = fpl->cnp;
3409 	dvp = fpl->dvp;
3410 
3411 	if (!vhold_smr(dvp))
3412 		return (cache_fpl_aborted(fpl));
3413 
3414 	neglist = NCP2NEGLIST(oncp);
3415 	cache_fpl_smr_exit(fpl);
3416 
3417 	mtx_lock(&ncneg_hot.nl_lock);
3418 	mtx_lock(&neglist->nl_lock);
3419 	/*
3420 	 * For hash iteration.
3421 	 */
3422 	cache_fpl_smr_enter(fpl);
3423 
3424 	/*
3425 	 * Avoid all surprises by only succeeding if we got the same entry and
3426 	 * bailing completely otherwise.
3427 	 *
3428 	 * In particular at this point there can be a new ncp which matches the
3429 	 * search but hashes to a different neglist.
3430 	 */
3431 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3432 		if (ncp == oncp)
3433 			break;
3434 	}
3435 
3436 	/*
3437 	 * No match to begin with.
3438 	 */
3439 	if (__predict_false(ncp == NULL)) {
3440 		goto out_abort;
3441 	}
3442 
3443 	/*
3444 	 * The newly found entry may be something different...
3445 	 */
3446 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3447 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
3448 		goto out_abort;
3449 	}
3450 
3451 	/*
3452 	 * ... and not even negative.
3453 	 */
3454 	nc_flag = atomic_load_char(&ncp->nc_flag);
3455 	if ((nc_flag & NCF_NEGATIVE) == 0) {
3456 		goto out_abort;
3457 	}
3458 
3459 	if (__predict_false(!cache_ncp_canuse(ncp))) {
3460 		goto out_abort;
3461 	}
3462 
3463 	negstate = NCP2NEGSTATE(ncp);
3464 	if ((negstate->neg_flag & NEG_HOT) == 0) {
3465 		numhotneg++;
3466 		TAILQ_REMOVE(&neglist->nl_list, ncp, nc_dst);
3467 		TAILQ_INSERT_TAIL(&ncneg_hot.nl_list, ncp, nc_dst);
3468 		negstate->neg_flag |= NEG_HOT;
3469 	}
3470 
3471 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp, ncp->nc_name);
3472 	counter_u64_add(numneghits, 1);
3473 	cache_fpl_smr_exit(fpl);
3474 	mtx_unlock(&neglist->nl_lock);
3475 	mtx_unlock(&ncneg_hot.nl_lock);
3476 	vdrop(dvp);
3477 	return (cache_fpl_handled(fpl, ENOENT));
3478 out_abort:
3479 	cache_fpl_smr_exit(fpl);
3480 	mtx_unlock(&neglist->nl_lock);
3481 	mtx_unlock(&ncneg_hot.nl_lock);
3482 	vdrop(dvp);
3483 	return (cache_fpl_aborted(fpl));
3484 }
3485 
3486 /*
3487  * The target vnode is not supported, prepare for the slow path to take over.
3488  */
3489 static int __noinline
3490 cache_fplookup_partial_setup(struct cache_fpl *fpl)
3491 {
3492 	struct nameidata *ndp;
3493 	struct componentname *cnp;
3494 	enum vgetstate dvs;
3495 	struct vnode *dvp;
3496 	struct pwd *pwd;
3497 	seqc_t dvp_seqc;
3498 
3499 	ndp = fpl->ndp;
3500 	cnp = fpl->cnp;
3501 	pwd = fpl->pwd;
3502 	dvp = fpl->dvp;
3503 	dvp_seqc = fpl->dvp_seqc;
3504 
3505 	if (!pwd_hold_smr(pwd)) {
3506 		cache_fpl_smr_exit(fpl);
3507 		return (cache_fpl_aborted(fpl));
3508 	}
3509 
3510 	dvs = vget_prep_smr(dvp);
3511 	cache_fpl_smr_exit(fpl);
3512 	if (__predict_false(dvs == VGET_NONE)) {
3513 		pwd_drop(pwd);
3514 		return (cache_fpl_aborted(fpl));
3515 	}
3516 
3517 	vget_finish_ref(dvp, dvs);
3518 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3519 		vrele(dvp);
3520 		pwd_drop(pwd);
3521 		return (cache_fpl_aborted(fpl));
3522 	}
3523 
3524 	cache_fpl_restore(fpl, &fpl->snd);
3525 
3526 	ndp->ni_startdir = dvp;
3527 	cnp->cn_flags |= MAKEENTRY;
3528 	if (cache_fpl_islastcn(ndp))
3529 		cnp->cn_flags |= ISLASTCN;
3530 	if (cache_fpl_isdotdot(cnp))
3531 		cnp->cn_flags |= ISDOTDOT;
3532 
3533 	return (0);
3534 }
3535 
3536 static int
3537 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
3538 {
3539 	struct componentname *cnp;
3540 	struct vnode *tvp;
3541 	seqc_t tvp_seqc;
3542 	int error, lkflags;
3543 
3544 	cnp = fpl->cnp;
3545 	tvp = fpl->tvp;
3546 	tvp_seqc = fpl->tvp_seqc;
3547 
3548 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
3549 		lkflags = LK_SHARED;
3550 		if ((cnp->cn_flags & LOCKSHARED) == 0)
3551 			lkflags = LK_EXCLUSIVE;
3552 		error = vget_finish(tvp, lkflags, tvs);
3553 		if (__predict_false(error != 0)) {
3554 			return (cache_fpl_aborted(fpl));
3555 		}
3556 	} else {
3557 		vget_finish_ref(tvp, tvs);
3558 	}
3559 
3560 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
3561 		if ((cnp->cn_flags & LOCKLEAF) != 0)
3562 			vput(tvp);
3563 		else
3564 			vrele(tvp);
3565 		return (cache_fpl_aborted(fpl));
3566 	}
3567 
3568 	return (cache_fpl_handled(fpl, 0));
3569 }
3570 
3571 /*
3572  * They want to possibly modify the state of the namecache.
3573  *
3574  * Don't try to match the API contract, just leave.
3575  * TODO: this leaves scalability on the table
3576  */
3577 static int
3578 cache_fplookup_final_modifying(struct cache_fpl *fpl)
3579 {
3580 	struct componentname *cnp;
3581 
3582 	cnp = fpl->cnp;
3583 	MPASS(cnp->cn_nameiop != LOOKUP);
3584 	return (cache_fpl_partial(fpl));
3585 }
3586 
3587 static int __noinline
3588 cache_fplookup_final_withparent(struct cache_fpl *fpl)
3589 {
3590 	struct componentname *cnp;
3591 	enum vgetstate dvs, tvs;
3592 	struct vnode *dvp, *tvp;
3593 	seqc_t dvp_seqc;
3594 	int error;
3595 
3596 	cnp = fpl->cnp;
3597 	dvp = fpl->dvp;
3598 	dvp_seqc = fpl->dvp_seqc;
3599 	tvp = fpl->tvp;
3600 
3601 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
3602 
3603 	/*
3604 	 * This is less efficient than it can be for simplicity.
3605 	 */
3606 	dvs = vget_prep_smr(dvp);
3607 	if (__predict_false(dvs == VGET_NONE)) {
3608 		return (cache_fpl_aborted(fpl));
3609 	}
3610 	tvs = vget_prep_smr(tvp);
3611 	if (__predict_false(tvs == VGET_NONE)) {
3612 		cache_fpl_smr_exit(fpl);
3613 		vget_abort(dvp, dvs);
3614 		return (cache_fpl_aborted(fpl));
3615 	}
3616 
3617 	cache_fpl_smr_exit(fpl);
3618 
3619 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
3620 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
3621 		if (__predict_false(error != 0)) {
3622 			vget_abort(tvp, tvs);
3623 			return (cache_fpl_aborted(fpl));
3624 		}
3625 	} else {
3626 		vget_finish_ref(dvp, dvs);
3627 	}
3628 
3629 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3630 		vget_abort(tvp, tvs);
3631 		if ((cnp->cn_flags & LOCKPARENT) != 0)
3632 			vput(dvp);
3633 		else
3634 			vrele(dvp);
3635 		return (cache_fpl_aborted(fpl));
3636 	}
3637 
3638 	error = cache_fplookup_final_child(fpl, tvs);
3639 	if (__predict_false(error != 0)) {
3640 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED);
3641 		if ((cnp->cn_flags & LOCKPARENT) != 0)
3642 			vput(dvp);
3643 		else
3644 			vrele(dvp);
3645 		return (error);
3646 	}
3647 
3648 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
3649 	return (0);
3650 }
3651 
3652 static int
3653 cache_fplookup_final(struct cache_fpl *fpl)
3654 {
3655 	struct componentname *cnp;
3656 	enum vgetstate tvs;
3657 	struct vnode *dvp, *tvp;
3658 	seqc_t dvp_seqc;
3659 
3660 	cnp = fpl->cnp;
3661 	dvp = fpl->dvp;
3662 	dvp_seqc = fpl->dvp_seqc;
3663 	tvp = fpl->tvp;
3664 
3665 	VNPASS(cache_fplookup_vnode_supported(dvp), dvp);
3666 
3667 	if (cnp->cn_nameiop != LOOKUP) {
3668 		return (cache_fplookup_final_modifying(fpl));
3669 	}
3670 
3671 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
3672 		return (cache_fplookup_final_withparent(fpl));
3673 
3674 	tvs = vget_prep_smr(tvp);
3675 	if (__predict_false(tvs == VGET_NONE)) {
3676 		return (cache_fpl_partial(fpl));
3677 	}
3678 
3679 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3680 		cache_fpl_smr_exit(fpl);
3681 		vget_abort(tvp, tvs);
3682 		return (cache_fpl_aborted(fpl));
3683 	}
3684 
3685 	cache_fpl_smr_exit(fpl);
3686 	return (cache_fplookup_final_child(fpl, tvs));
3687 }
3688 
3689 static int __noinline
3690 cache_fplookup_dot(struct cache_fpl *fpl)
3691 {
3692 	struct vnode *dvp;
3693 
3694 	dvp = fpl->dvp;
3695 
3696 	fpl->tvp = dvp;
3697 	fpl->tvp_seqc = vn_seqc_read_any(dvp);
3698 	if (seqc_in_modify(fpl->tvp_seqc)) {
3699 		return (cache_fpl_aborted(fpl));
3700 	}
3701 
3702 	counter_u64_add(dothits, 1);
3703 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", dvp);
3704 
3705 	return (0);
3706 }
3707 
3708 static int __noinline
3709 cache_fplookup_dotdot(struct cache_fpl *fpl)
3710 {
3711 	struct nameidata *ndp;
3712 	struct componentname *cnp;
3713 	struct namecache *ncp;
3714 	struct vnode *dvp;
3715 	struct prison *pr;
3716 	u_char nc_flag;
3717 
3718 	ndp = fpl->ndp;
3719 	cnp = fpl->cnp;
3720 	dvp = fpl->dvp;
3721 
3722 	/*
3723 	 * XXX this is racy the same way regular lookup is
3724 	 */
3725 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
3726 	    pr = pr->pr_parent)
3727 		if (dvp == pr->pr_root)
3728 			break;
3729 
3730 	if (dvp == ndp->ni_rootdir ||
3731 	    dvp == ndp->ni_topdir ||
3732 	    dvp == rootvnode ||
3733 	    pr != NULL) {
3734 		fpl->tvp = dvp;
3735 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
3736 		if (seqc_in_modify(fpl->tvp_seqc)) {
3737 			return (cache_fpl_aborted(fpl));
3738 		}
3739 		return (0);
3740 	}
3741 
3742 	if ((dvp->v_vflag & VV_ROOT) != 0) {
3743 		/*
3744 		 * TODO
3745 		 * The opposite of climb mount is needed here.
3746 		 */
3747 		return (cache_fpl_aborted(fpl));
3748 	}
3749 
3750 	ncp = atomic_load_ptr(&dvp->v_cache_dd);
3751 	if (ncp == NULL) {
3752 		return (cache_fpl_aborted(fpl));
3753 	}
3754 
3755 	nc_flag = atomic_load_char(&ncp->nc_flag);
3756 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
3757 		if ((nc_flag & NCF_NEGATIVE) != 0)
3758 			return (cache_fpl_aborted(fpl));
3759 		fpl->tvp = ncp->nc_vp;
3760 	} else {
3761 		fpl->tvp = ncp->nc_dvp;
3762 	}
3763 
3764 	if (__predict_false(!cache_ncp_canuse(ncp))) {
3765 		return (cache_fpl_aborted(fpl));
3766 	}
3767 
3768 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
3769 	if (seqc_in_modify(fpl->tvp_seqc)) {
3770 		return (cache_fpl_partial(fpl));
3771 	}
3772 
3773 	counter_u64_add(dotdothits, 1);
3774 	return (0);
3775 }
3776 
3777 static int
3778 cache_fplookup_next(struct cache_fpl *fpl)
3779 {
3780 	struct componentname *cnp;
3781 	struct namecache *ncp;
3782 	struct negstate *negstate;
3783 	struct vnode *dvp, *tvp;
3784 	u_char nc_flag;
3785 	uint32_t hash;
3786 	bool neg_hot;
3787 
3788 	cnp = fpl->cnp;
3789 	dvp = fpl->dvp;
3790 
3791 	if (__predict_false(cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')) {
3792 		return (cache_fplookup_dot(fpl));
3793 	}
3794 
3795 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3796 
3797 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3798 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3799 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
3800 			break;
3801 	}
3802 
3803 	/*
3804 	 * If there is no entry we have to punt to the slow path to perform
3805 	 * actual lookup. Should there be nothing with this name a negative
3806 	 * entry will be created.
3807 	 */
3808 	if (__predict_false(ncp == NULL)) {
3809 		return (cache_fpl_partial(fpl));
3810 	}
3811 
3812 	tvp = atomic_load_ptr(&ncp->nc_vp);
3813 	nc_flag = atomic_load_char(&ncp->nc_flag);
3814 	if ((nc_flag & NCF_NEGATIVE) != 0) {
3815 		/*
3816 		 * If they want to create an entry we need to replace this one.
3817 		 */
3818 		if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
3819 			return (cache_fpl_partial(fpl));
3820 		}
3821 		negstate = NCP2NEGSTATE(ncp);
3822 		neg_hot = ((negstate->neg_flag & NEG_HOT) != 0);
3823 		if (__predict_false(!cache_ncp_canuse(ncp))) {
3824 			return (cache_fpl_partial(fpl));
3825 		}
3826 		if (__predict_false((nc_flag & NCF_WHITE) != 0)) {
3827 			return (cache_fpl_partial(fpl));
3828 		}
3829 		if (!neg_hot) {
3830 			return (cache_fplookup_negative_promote(fpl, ncp, hash));
3831 		}
3832 		SDT_PROBE2(vfs, namecache, lookup, hit__negative, dvp,
3833 		    ncp->nc_name);
3834 		counter_u64_add(numneghits, 1);
3835 		cache_fpl_smr_exit(fpl);
3836 		return (cache_fpl_handled(fpl, ENOENT));
3837 	}
3838 
3839 	if (__predict_false(!cache_ncp_canuse(ncp))) {
3840 		return (cache_fpl_partial(fpl));
3841 	}
3842 
3843 	fpl->tvp = tvp;
3844 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
3845 	if (seqc_in_modify(fpl->tvp_seqc)) {
3846 		return (cache_fpl_partial(fpl));
3847 	}
3848 
3849 	if (!cache_fplookup_vnode_supported(tvp)) {
3850 		return (cache_fpl_partial(fpl));
3851 	}
3852 
3853 	counter_u64_add(numposhits, 1);
3854 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
3855 	return (0);
3856 }
3857 
3858 static bool
3859 cache_fplookup_mp_supported(struct mount *mp)
3860 {
3861 
3862 	if (mp == NULL)
3863 		return (false);
3864 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
3865 		return (false);
3866 	return (true);
3867 }
3868 
3869 /*
3870  * Walk up the mount stack (if any).
3871  *
3872  * Correctness is provided in the following ways:
3873  * - all vnodes are protected from freeing with SMR
3874  * - struct mount objects are type stable making them always safe to access
3875  * - stability of the particular mount is provided by busying it
3876  * - relationship between the vnode which is mounted on and the mount is
3877  *   verified with the vnode sequence counter after busying
3878  * - association between root vnode of the mount and the mount is protected
3879  *   by busy
3880  *
3881  * From that point on we can read the sequence counter of the root vnode
3882  * and get the next mount on the stack (if any) using the same protection.
3883  *
3884  * By the end of successful walk we are guaranteed the reached state was
3885  * indeed present at least at some point which matches the regular lookup.
3886  */
3887 static int __noinline
3888 cache_fplookup_climb_mount(struct cache_fpl *fpl)
3889 {
3890 	struct mount *mp, *prev_mp;
3891 	struct vnode *vp;
3892 	seqc_t vp_seqc;
3893 
3894 	vp = fpl->tvp;
3895 	vp_seqc = fpl->tvp_seqc;
3896 
3897 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
3898 	mp = atomic_load_ptr(&vp->v_mountedhere);
3899 	if (mp == NULL)
3900 		return (0);
3901 
3902 	prev_mp = NULL;
3903 	for (;;) {
3904 		if (!vfs_op_thread_enter_crit(mp)) {
3905 			if (prev_mp != NULL)
3906 				vfs_op_thread_exit_crit(prev_mp);
3907 			return (cache_fpl_partial(fpl));
3908 		}
3909 		if (prev_mp != NULL)
3910 			vfs_op_thread_exit_crit(prev_mp);
3911 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3912 			vfs_op_thread_exit_crit(mp);
3913 			return (cache_fpl_partial(fpl));
3914 		}
3915 		if (!cache_fplookup_mp_supported(mp)) {
3916 			vfs_op_thread_exit_crit(mp);
3917 			return (cache_fpl_partial(fpl));
3918 		}
3919 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
3920 		if (vp == NULL || VN_IS_DOOMED(vp)) {
3921 			vfs_op_thread_exit_crit(mp);
3922 			return (cache_fpl_partial(fpl));
3923 		}
3924 		vp_seqc = vn_seqc_read_any(vp);
3925 		if (seqc_in_modify(vp_seqc)) {
3926 			vfs_op_thread_exit_crit(mp);
3927 			return (cache_fpl_partial(fpl));
3928 		}
3929 		prev_mp = mp;
3930 		mp = atomic_load_ptr(&vp->v_mountedhere);
3931 		if (mp == NULL)
3932 			break;
3933 	}
3934 
3935 	vfs_op_thread_exit_crit(prev_mp);
3936 	fpl->tvp = vp;
3937 	fpl->tvp_seqc = vp_seqc;
3938 	return (0);
3939 }
3940 
3941 static bool
3942 cache_fplookup_need_climb_mount(struct cache_fpl *fpl)
3943 {
3944 	struct mount *mp;
3945 	struct vnode *vp;
3946 
3947 	vp = fpl->tvp;
3948 
3949 	/*
3950 	 * Hack: while this is a union, the pointer tends to be NULL so save on
3951 	 * a branch.
3952 	 */
3953 	mp = atomic_load_ptr(&vp->v_mountedhere);
3954 	if (mp == NULL)
3955 		return (false);
3956 	if (vp->v_type == VDIR)
3957 		return (true);
3958 	return (false);
3959 }
3960 
3961 /*
3962  * Parse the path.
3963  *
3964  * The code was originally copy-pasted from regular lookup and despite
3965  * clean ups leaves performance on the table. Any modifications here
3966  * must take into account that in case off fallback the resulting
3967  * nameidata state has to be compatible with the original.
3968  */
3969 static int
3970 cache_fplookup_parse(struct cache_fpl *fpl)
3971 {
3972 	struct nameidata *ndp;
3973 	struct componentname *cnp;
3974 	char *cp;
3975 
3976 	ndp = fpl->ndp;
3977 	cnp = fpl->cnp;
3978 
3979 	/*
3980 	 * Search a new directory.
3981 	 *
3982 	 * The last component of the filename is left accessible via
3983 	 * cnp->cn_nameptr for callers that need the name. Callers needing
3984 	 * the name set the SAVENAME flag. When done, they assume
3985 	 * responsibility for freeing the pathname buffer.
3986 	 */
3987 	for (cp = cnp->cn_nameptr; *cp != 0 && *cp != '/'; cp++)
3988 		continue;
3989 	cnp->cn_namelen = cp - cnp->cn_nameptr;
3990 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
3991 		cache_fpl_smr_exit(fpl);
3992 		return (cache_fpl_handled(fpl, ENAMETOOLONG));
3993 	}
3994 	ndp->ni_pathlen -= cnp->cn_namelen;
3995 	KASSERT(ndp->ni_pathlen <= PATH_MAX,
3996 	    ("%s: ni_pathlen underflow to %zd\n", __func__, ndp->ni_pathlen));
3997 	ndp->ni_next = cp;
3998 
3999 	/*
4000 	 * Replace multiple slashes by a single slash and trailing slashes
4001 	 * by a null.  This must be done before VOP_LOOKUP() because some
4002 	 * fs's don't know about trailing slashes.  Remember if there were
4003 	 * trailing slashes to handle symlinks, existing non-directories
4004 	 * and non-existing files that won't be directories specially later.
4005 	 */
4006 	while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
4007 		cp++;
4008 		ndp->ni_pathlen--;
4009 		if (*cp == '\0') {
4010 			/*
4011 			 * TODO
4012 			 * Regular lookup performs the following:
4013 			 * *ndp->ni_next = '\0';
4014 			 * cnp->cn_flags |= TRAILINGSLASH;
4015 			 *
4016 			 * Which is problematic since it modifies data read
4017 			 * from userspace. Then if fast path lookup was to
4018 			 * abort we would have to either restore it or convey
4019 			 * the flag. Since this is a corner case just ignore
4020 			 * it for simplicity.
4021 			 */
4022 			return (cache_fpl_partial(fpl));
4023 		}
4024 	}
4025 	ndp->ni_next = cp;
4026 
4027 	/*
4028 	 * Check for degenerate name (e.g. / or "")
4029 	 * which is a way of talking about a directory,
4030 	 * e.g. like "/." or ".".
4031 	 *
4032 	 * TODO
4033 	 * Another corner case handled by the regular lookup
4034 	 */
4035 	if (__predict_false(cnp->cn_nameptr[0] == '\0')) {
4036 		return (cache_fpl_partial(fpl));
4037 	}
4038 	return (0);
4039 }
4040 
4041 static void
4042 cache_fplookup_parse_advance(struct cache_fpl *fpl)
4043 {
4044 	struct nameidata *ndp;
4045 	struct componentname *cnp;
4046 
4047 	ndp = fpl->ndp;
4048 	cnp = fpl->cnp;
4049 
4050 	cnp->cn_nameptr = ndp->ni_next;
4051 	while (*cnp->cn_nameptr == '/') {
4052 		cnp->cn_nameptr++;
4053 		ndp->ni_pathlen--;
4054 	}
4055 }
4056 
4057 /*
4058  * See the API contract for VOP_FPLOOKUP_VEXEC.
4059  */
4060 static int __noinline
4061 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
4062 {
4063 	struct componentname *cnp;
4064 	struct vnode *dvp;
4065 	seqc_t dvp_seqc;
4066 
4067 	cnp = fpl->cnp;
4068 	dvp = fpl->dvp;
4069 	dvp_seqc = fpl->dvp_seqc;
4070 
4071 	/*
4072 	 * Hack: they may be looking up foo/bar, where foo is a
4073 	 * regular file. In such a case we need to turn ENOTDIR,
4074 	 * but we may happen to get here with a different error.
4075 	 */
4076 	if (dvp->v_type != VDIR) {
4077 		/*
4078 		 * The check here is predominantly to catch
4079 		 * EOPNOTSUPP from dead_vnodeops. If the vnode
4080 		 * gets doomed past this point it is going to
4081 		 * fail seqc verification.
4082 		 */
4083 		if (VN_IS_DOOMED(dvp)) {
4084 			return (cache_fpl_aborted(fpl));
4085 		}
4086 		error = ENOTDIR;
4087 	}
4088 
4089 	/*
4090 	 * Hack: handle O_SEARCH.
4091 	 *
4092 	 * Open Group Base Specifications Issue 7, 2018 edition states:
4093 	 * If the access mode of the open file description associated with the
4094 	 * file descriptor is not O_SEARCH, the function shall check whether
4095 	 * directory searches are permitted using the current permissions of
4096 	 * the directory underlying the file descriptor. If the access mode is
4097 	 * O_SEARCH, the function shall not perform the check.
4098 	 *
4099 	 * Regular lookup tests for the NOEXECCHECK flag for every path
4100 	 * component to decide whether to do the permission check. However,
4101 	 * since most lookups never have the flag (and when they do it is only
4102 	 * present for the first path component), lockless lookup only acts on
4103 	 * it if there is a permission problem. Here the flag is represented
4104 	 * with a boolean so that we don't have to clear it on the way out.
4105 	 *
4106 	 * For simplicity this always aborts.
4107 	 * TODO: check if this is the first lookup and ignore the permission
4108 	 * problem. Note the flag has to survive fallback (if it happens to be
4109 	 * performed).
4110 	 */
4111 	if (fpl->fsearch) {
4112 		return (cache_fpl_aborted(fpl));
4113 	}
4114 
4115 	switch (error) {
4116 	case EAGAIN:
4117 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4118 			error = cache_fpl_aborted(fpl);
4119 		} else {
4120 			cache_fpl_partial(fpl);
4121 		}
4122 		break;
4123 	default:
4124 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4125 			error = cache_fpl_aborted(fpl);
4126 		} else {
4127 			cache_fpl_smr_exit(fpl);
4128 			cache_fpl_handled(fpl, error);
4129 		}
4130 		break;
4131 	}
4132 	return (error);
4133 }
4134 
4135 static int
4136 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
4137 {
4138 	struct nameidata *ndp;
4139 	struct componentname *cnp;
4140 	struct mount *mp;
4141 	int error;
4142 
4143 	error = CACHE_FPL_FAILED;
4144 	ndp = fpl->ndp;
4145 	cnp = fpl->cnp;
4146 
4147 	cache_fpl_checkpoint(fpl, &fpl->snd);
4148 
4149 	fpl->dvp = dvp;
4150 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
4151 	if (seqc_in_modify(fpl->dvp_seqc)) {
4152 		cache_fpl_aborted(fpl);
4153 		goto out;
4154 	}
4155 	mp = atomic_load_ptr(&fpl->dvp->v_mount);
4156 	if (!cache_fplookup_mp_supported(mp)) {
4157 		cache_fpl_aborted(fpl);
4158 		goto out;
4159 	}
4160 
4161 	VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
4162 
4163 	for (;;) {
4164 		error = cache_fplookup_parse(fpl);
4165 		if (__predict_false(error != 0)) {
4166 			break;
4167 		}
4168 
4169 		VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
4170 
4171 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
4172 		if (__predict_false(error != 0)) {
4173 			error = cache_fplookup_failed_vexec(fpl, error);
4174 			break;
4175 		}
4176 
4177 		if (__predict_false(cache_fpl_isdotdot(cnp))) {
4178 			error = cache_fplookup_dotdot(fpl);
4179 			if (__predict_false(error != 0)) {
4180 				break;
4181 			}
4182 		} else {
4183 			error = cache_fplookup_next(fpl);
4184 			if (__predict_false(error != 0)) {
4185 				break;
4186 			}
4187 
4188 			VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
4189 
4190 			if (cache_fplookup_need_climb_mount(fpl)) {
4191 				error = cache_fplookup_climb_mount(fpl);
4192 				if (__predict_false(error != 0)) {
4193 					break;
4194 				}
4195 			}
4196 		}
4197 
4198 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
4199 
4200 		if (cache_fpl_islastcn(ndp)) {
4201 			error = cache_fplookup_final(fpl);
4202 			break;
4203 		}
4204 
4205 		if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
4206 			error = cache_fpl_aborted(fpl);
4207 			break;
4208 		}
4209 
4210 		fpl->dvp = fpl->tvp;
4211 		fpl->dvp_seqc = fpl->tvp_seqc;
4212 
4213 		cache_fplookup_parse_advance(fpl);
4214 		cache_fpl_checkpoint(fpl, &fpl->snd);
4215 	}
4216 out:
4217 	switch (fpl->status) {
4218 	case CACHE_FPL_STATUS_UNSET:
4219 		__assert_unreachable();
4220 		break;
4221 	case CACHE_FPL_STATUS_PARTIAL:
4222 		cache_fpl_smr_assert_entered(fpl);
4223 		return (cache_fplookup_partial_setup(fpl));
4224 	case CACHE_FPL_STATUS_ABORTED:
4225 		if (fpl->in_smr)
4226 			cache_fpl_smr_exit(fpl);
4227 		return (CACHE_FPL_FAILED);
4228 	case CACHE_FPL_STATUS_HANDLED:
4229 		MPASS(error != CACHE_FPL_FAILED);
4230 		cache_fpl_smr_assert_not_entered(fpl);
4231 		if (__predict_false(error != 0)) {
4232 			ndp->ni_dvp = NULL;
4233 			ndp->ni_vp = NULL;
4234 			cache_fpl_cleanup_cnp(cnp);
4235 			return (error);
4236 		}
4237 		ndp->ni_dvp = fpl->dvp;
4238 		ndp->ni_vp = fpl->tvp;
4239 		if (cnp->cn_flags & SAVENAME)
4240 			cnp->cn_flags |= HASBUF;
4241 		else
4242 			cache_fpl_cleanup_cnp(cnp);
4243 		return (error);
4244 	}
4245 }
4246 
4247 /*
4248  * Fast path lookup protected with SMR and sequence counters.
4249  *
4250  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
4251  *
4252  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
4253  * outlined below.
4254  *
4255  * Traditional vnode lookup conceptually looks like this:
4256  *
4257  * vn_lock(current);
4258  * for (;;) {
4259  *	next = find();
4260  *	vn_lock(next);
4261  *	vn_unlock(current);
4262  *	current = next;
4263  *	if (last)
4264  *	    break;
4265  * }
4266  * return (current);
4267  *
4268  * Each jump to the next vnode is safe memory-wise and atomic with respect to
4269  * any modifications thanks to holding respective locks.
4270  *
4271  * The same guarantee can be provided with a combination of safe memory
4272  * reclamation and sequence counters instead. If all operations which affect
4273  * the relationship between the current vnode and the one we are looking for
4274  * also modify the counter, we can verify whether all the conditions held as
4275  * we made the jump. This includes things like permissions, mount points etc.
4276  * Counter modification is provided by enclosing relevant places in
4277  * vn_seqc_write_begin()/end() calls.
4278  *
4279  * Thus this translates to:
4280  *
4281  * vfs_smr_enter();
4282  * dvp_seqc = seqc_read_any(dvp);
4283  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
4284  *     abort();
4285  * for (;;) {
4286  * 	tvp = find();
4287  * 	tvp_seqc = seqc_read_any(tvp);
4288  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
4289  * 	    abort();
4290  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
4291  * 	    abort();
4292  * 	dvp = tvp; // we know nothing of importance has changed
4293  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
4294  * 	if (last)
4295  * 	    break;
4296  * }
4297  * vget(); // secure the vnode
4298  * if (!seqc_consistent(tvp, tvp_seqc) // final check
4299  * 	    abort();
4300  * // at this point we know nothing has changed for any parent<->child pair
4301  * // as they were crossed during the lookup, meaning we matched the guarantee
4302  * // of the locked variant
4303  * return (tvp);
4304  *
4305  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
4306  * - they are called while within vfs_smr protection which they must never exit
4307  * - EAGAIN can be returned to denote checking could not be performed, it is
4308  *   always valid to return it
4309  * - if the sequence counter has not changed the result must be valid
4310  * - if the sequence counter has changed both false positives and false negatives
4311  *   are permitted (since the result will be rejected later)
4312  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
4313  *
4314  * Caveats to watch out for:
4315  * - vnodes are passed unlocked and unreferenced with nothing stopping
4316  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
4317  *   to use atomic_load_ptr to fetch it.
4318  * - the aforementioned object can also get freed, meaning absent other means it
4319  *   should be protected with vfs_smr
4320  * - either safely checking permissions as they are modified or guaranteeing
4321  *   their stability is left to the routine
4322  */
4323 int
4324 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
4325     struct pwd **pwdp)
4326 {
4327 	struct cache_fpl fpl;
4328 	struct pwd *pwd;
4329 	struct vnode *dvp;
4330 	struct componentname *cnp;
4331 	struct nameidata_saved orig;
4332 	int error;
4333 
4334 	MPASS(ndp->ni_lcf == 0);
4335 
4336 	fpl.status = CACHE_FPL_STATUS_UNSET;
4337 	fpl.ndp = ndp;
4338 	fpl.cnp = &ndp->ni_cnd;
4339 	MPASS(curthread == fpl.cnp->cn_thread);
4340 
4341 	if ((fpl.cnp->cn_flags & SAVESTART) != 0)
4342 		MPASS(fpl.cnp->cn_nameiop != LOOKUP);
4343 
4344 	if (!cache_can_fplookup(&fpl)) {
4345 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
4346 		*status = fpl.status;
4347 		return (EOPNOTSUPP);
4348 	}
4349 
4350 	cache_fpl_checkpoint(&fpl, &orig);
4351 
4352 	cache_fpl_smr_enter_initial(&fpl);
4353 	fpl.fsearch = false;
4354 	pwd = pwd_get_smr();
4355 	fpl.pwd = pwd;
4356 	ndp->ni_rootdir = pwd->pwd_rdir;
4357 	ndp->ni_topdir = pwd->pwd_jdir;
4358 
4359 	cnp = fpl.cnp;
4360 	cnp->cn_nameptr = cnp->cn_pnbuf;
4361 	if (cnp->cn_pnbuf[0] == '/') {
4362 		cache_fpl_handle_root(ndp, &dvp);
4363 	} else {
4364 		if (ndp->ni_dirfd == AT_FDCWD) {
4365 			dvp = pwd->pwd_cdir;
4366 		} else {
4367 			error = cache_fplookup_dirfd(&fpl, &dvp);
4368 			if (__predict_false(error != 0)) {
4369 				goto out;
4370 			}
4371 		}
4372 	}
4373 
4374 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
4375 
4376 	error = cache_fplookup_impl(dvp, &fpl);
4377 out:
4378 	cache_fpl_smr_assert_not_entered(&fpl);
4379 	SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
4380 
4381 	*status = fpl.status;
4382 	switch (fpl.status) {
4383 	case CACHE_FPL_STATUS_UNSET:
4384 		__assert_unreachable();
4385 		break;
4386 	case CACHE_FPL_STATUS_HANDLED:
4387 		SDT_PROBE3(vfs, namei, lookup, return, error,
4388 		    (error == 0 ? ndp->ni_vp : NULL), true);
4389 		break;
4390 	case CACHE_FPL_STATUS_PARTIAL:
4391 		*pwdp = fpl.pwd;
4392 		/*
4393 		 * Status restored by cache_fplookup_partial_setup.
4394 		 */
4395 		break;
4396 	case CACHE_FPL_STATUS_ABORTED:
4397 		cache_fpl_restore(&fpl, &orig);
4398 		break;
4399 	}
4400 	return (error);
4401 }
4402