xref: /freebsd/sys/kern/vfs_cache.c (revision 72c59f1728c12fbdcd316c172708d8f3a60299be)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/seqc.h>
59 #include <sys/sdt.h>
60 #include <sys/smr.h>
61 #include <sys/smp.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/vnode.h>
66 #include <ck_queue.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 #ifdef INVARIANTS
71 #include <machine/_inttypes.h>
72 #endif
73 
74 #include <sys/capsicum.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #ifdef DDB
80 #include <ddb/ddb.h>
81 #endif
82 
83 #include <vm/uma.h>
84 
85 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
86     "Name cache");
87 
88 SDT_PROVIDER_DECLARE(vfs);
89 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
90     "struct vnode *");
91 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
92     "struct vnode *");
93 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
94     "char *");
95 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
96     "const char *");
97 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
98     "struct namecache *", "int", "int");
99 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
100 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
101     "char *", "struct vnode *");
102 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
103 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
104     "struct vnode *", "char *");
105 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
106     "struct vnode *");
107 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
108     "struct vnode *", "char *");
109 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
110     "char *");
111 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
112     "struct componentname *");
113 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
114     "struct componentname *");
115 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *");
116 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
117 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
118 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
119 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
120     "struct vnode *");
121 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
122     "char *");
123 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
124     "char *");
125 
126 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
127 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
128 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
129 
130 /*
131  * This structure describes the elements in the cache of recent
132  * names looked up by namei.
133  */
134 struct negstate {
135 	u_char neg_flag;
136 	u_char neg_hit;
137 };
138 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
139     "the state must fit in a union with a pointer without growing it");
140 
141 struct	namecache {
142 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
143 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
144 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
145 	struct	vnode *nc_dvp;		/* vnode of parent of name */
146 	union {
147 		struct	vnode *nu_vp;	/* vnode the name refers to */
148 		struct	negstate nu_neg;/* negative entry state */
149 	} n_un;
150 	u_char	nc_flag;		/* flag bits */
151 	u_char	nc_nlen;		/* length of name */
152 	char	nc_name[0];		/* segment name + nul */
153 };
154 
155 /*
156  * struct namecache_ts repeats struct namecache layout up to the
157  * nc_nlen member.
158  * struct namecache_ts is used in place of struct namecache when time(s) need
159  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
160  * both a non-dotdot directory name plus dotdot for the directory's
161  * parent.
162  *
163  * See below for alignment requirement.
164  */
165 struct	namecache_ts {
166 	struct	timespec nc_time;	/* timespec provided by fs */
167 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
168 	int	nc_ticks;		/* ticks value when entry was added */
169 	int	nc_pad;
170 	struct namecache nc_nc;
171 };
172 
173 TAILQ_HEAD(cache_freebatch, namecache);
174 
175 /*
176  * At least mips n32 performs 64-bit accesses to timespec as found
177  * in namecache_ts and requires them to be aligned. Since others
178  * may be in the same spot suffer a little bit and enforce the
179  * alignment for everyone. Note this is a nop for 64-bit platforms.
180  */
181 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
182 
183 /*
184  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
185  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
186  * smaller and the value was bumped to retain the total size, but it
187  * was never re-evaluated for suitability. A simple test counting
188  * lengths during package building shows that the value of 45 covers
189  * about 86% of all added entries, reaching 99% at 65.
190  *
191  * Regardless of the above, use of dedicated zones instead of malloc may be
192  * inducing additional waste. This may be hard to address as said zones are
193  * tied to VFS SMR. Even if retaining them, the current split should be
194  * re-evaluated.
195  */
196 #ifdef __LP64__
197 #define	CACHE_PATH_CUTOFF	45
198 #define	CACHE_LARGE_PAD		6
199 #else
200 #define	CACHE_PATH_CUTOFF	41
201 #define	CACHE_LARGE_PAD		2
202 #endif
203 
204 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
205 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
206 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
207 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
208 
209 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
210 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
211 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
212 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
213 
214 #define	nc_vp		n_un.nu_vp
215 #define	nc_neg		n_un.nu_neg
216 
217 /*
218  * Flags in namecache.nc_flag
219  */
220 #define NCF_WHITE	0x01
221 #define NCF_ISDOTDOT	0x02
222 #define	NCF_TS		0x04
223 #define	NCF_DTS		0x08
224 #define	NCF_DVDROP	0x10
225 #define	NCF_NEGATIVE	0x20
226 #define	NCF_INVALID	0x40
227 #define	NCF_WIP		0x80
228 
229 /*
230  * Flags in negstate.neg_flag
231  */
232 #define NEG_HOT		0x01
233 
234 static bool	cache_neg_evict_cond(u_long lnumcache);
235 
236 /*
237  * Mark an entry as invalid.
238  *
239  * This is called before it starts getting deconstructed.
240  */
241 static void
242 cache_ncp_invalidate(struct namecache *ncp)
243 {
244 
245 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
246 	    ("%s: entry %p already invalid", __func__, ncp));
247 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
248 	atomic_thread_fence_rel();
249 }
250 
251 /*
252  * Check whether the entry can be safely used.
253  *
254  * All places which elide locks are supposed to call this after they are
255  * done with reading from an entry.
256  */
257 #define cache_ncp_canuse(ncp)	({					\
258 	struct namecache *_ncp = (ncp);					\
259 	u_char _nc_flag;						\
260 									\
261 	atomic_thread_fence_acq();					\
262 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
263 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
264 })
265 
266 /*
267  * Like the above but also checks NCF_WHITE.
268  */
269 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
270 	struct namecache *_ncp = (ncp);					\
271 	u_char _nc_flag;						\
272 									\
273 	atomic_thread_fence_acq();					\
274 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
275 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
276 })
277 
278 /*
279  * Name caching works as follows:
280  *
281  * Names found by directory scans are retained in a cache
282  * for future reference.  It is managed LRU, so frequently
283  * used names will hang around.  Cache is indexed by hash value
284  * obtained from (dvp, name) where dvp refers to the directory
285  * containing name.
286  *
287  * If it is a "negative" entry, (i.e. for a name that is known NOT to
288  * exist) the vnode pointer will be NULL.
289  *
290  * Upon reaching the last segment of a path, if the reference
291  * is for DELETE, or NOCACHE is set (rewrite), and the
292  * name is located in the cache, it will be dropped.
293  *
294  * These locks are used (in the order in which they can be taken):
295  * NAME		TYPE	ROLE
296  * vnodelock	mtx	vnode lists and v_cache_dd field protection
297  * bucketlock	mtx	for access to given set of hash buckets
298  * neglist	mtx	negative entry LRU management
299  *
300  * It is legal to take multiple vnodelock and bucketlock locks. The locking
301  * order is lower address first. Both are recursive.
302  *
303  * "." lookups are lockless.
304  *
305  * ".." and vnode -> name lookups require vnodelock.
306  *
307  * name -> vnode lookup requires the relevant bucketlock to be held for reading.
308  *
309  * Insertions and removals of entries require involved vnodes and bucketlocks
310  * to be locked to provide safe operation against other threads modifying the
311  * cache.
312  *
313  * Some lookups result in removal of the found entry (e.g. getting rid of a
314  * negative entry with the intent to create a positive one), which poses a
315  * problem when multiple threads reach the state. Similarly, two different
316  * threads can purge two different vnodes and try to remove the same name.
317  *
318  * If the already held vnode lock is lower than the second required lock, we
319  * can just take the other lock. However, in the opposite case, this could
320  * deadlock. As such, this is resolved by trylocking and if that fails unlocking
321  * the first node, locking everything in order and revalidating the state.
322  */
323 
324 VFS_SMR_DECLARE;
325 
326 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
327     "Name cache parameters");
328 
329 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
330 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
331     "Total namecache capacity");
332 
333 u_int ncsizefactor = 2;
334 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
335     "Size factor for namecache");
336 
337 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
338 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
339     "Ratio of negative namecache entries");
340 
341 /*
342  * Negative entry % of namecache capacity above which automatic eviction is allowed.
343  *
344  * Check cache_neg_evict_cond for details.
345  */
346 static u_int ncnegminpct = 3;
347 
348 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
349 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
350     "Negative entry count above which automatic eviction is allowed");
351 
352 /*
353  * Structures associated with name caching.
354  */
355 #define NCHHASH(hash) \
356 	(&nchashtbl[(hash) & nchash])
357 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
358 static u_long __read_mostly	nchash;			/* size of hash table */
359 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
360     "Size of namecache hash table");
361 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
362 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
363 
364 struct nchstats	nchstats;		/* cache effectiveness statistics */
365 
366 static bool __read_frequently cache_fast_revlookup = true;
367 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW,
368     &cache_fast_revlookup, 0, "");
369 
370 static u_int __exclusive_cache_line neg_cycle;
371 
372 #define ncneghash	3
373 #define	numneglists	(ncneghash + 1)
374 
375 struct neglist {
376 	struct mtx		nl_evict_lock;
377 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
378 	TAILQ_HEAD(, namecache) nl_list;
379 	TAILQ_HEAD(, namecache) nl_hotlist;
380 	u_long			nl_hotnum;
381 } __aligned(CACHE_LINE_SIZE);
382 
383 static struct neglist neglists[numneglists];
384 
385 static inline struct neglist *
386 NCP2NEGLIST(struct namecache *ncp)
387 {
388 
389 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
390 }
391 
392 static inline struct negstate *
393 NCP2NEGSTATE(struct namecache *ncp)
394 {
395 
396 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
397 	return (&ncp->nc_neg);
398 }
399 
400 #define	numbucketlocks (ncbuckethash + 1)
401 static u_int __read_mostly  ncbuckethash;
402 static struct mtx_padalign __read_mostly  *bucketlocks;
403 #define	HASH2BUCKETLOCK(hash) \
404 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
405 
406 #define	numvnodelocks (ncvnodehash + 1)
407 static u_int __read_mostly  ncvnodehash;
408 static struct mtx __read_mostly *vnodelocks;
409 static inline struct mtx *
410 VP2VNODELOCK(struct vnode *vp)
411 {
412 
413 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
414 }
415 
416 static void
417 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
418 {
419 	struct namecache_ts *ncp_ts;
420 
421 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
422 	    (tsp == NULL && ticksp == NULL),
423 	    ("No NCF_TS"));
424 
425 	if (tsp == NULL)
426 		return;
427 
428 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
429 	*tsp = ncp_ts->nc_time;
430 	*ticksp = ncp_ts->nc_ticks;
431 }
432 
433 #ifdef DEBUG_CACHE
434 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
435 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
436     "VFS namecache enabled");
437 #endif
438 
439 /* Export size information to userland */
440 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
441     sizeof(struct namecache), "sizeof(struct namecache)");
442 
443 /*
444  * The new name cache statistics
445  */
446 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
447     "Name cache statistics");
448 
449 #define STATNODE_ULONG(name, varname, descr)					\
450 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
451 #define STATNODE_COUNTER(name, varname, descr)					\
452 	static COUNTER_U64_DEFINE_EARLY(varname);				\
453 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
454 	    descr);
455 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
456 STATNODE_ULONG(count, numcache, "Number of cache entries");
457 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
458 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
459 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
460 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits");
461 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
462 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
463 STATNODE_COUNTER(posszaps, numposzaps,
464     "Number of cache hits (positive) we do not want to cache");
465 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
466 STATNODE_COUNTER(negzaps, numnegzaps,
467     "Number of cache hits (negative) we do not want to cache");
468 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
469 /* These count for vn_getcwd(), too. */
470 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
471 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
472 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
473     "Number of fullpath search errors (VOP_VPTOCNP failures)");
474 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
475 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
476 
477 /*
478  * Debug or developer statistics.
479  */
480 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
481     "Name cache debugging");
482 #define DEBUGNODE_ULONG(name, varname, descr)					\
483 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
484 #define DEBUGNODE_COUNTER(name, varname, descr)					\
485 	static COUNTER_U64_DEFINE_EARLY(varname);				\
486 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
487 	    descr);
488 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
489     "Number of successful removals after relocking");
490 static long zap_bucket_fail;
491 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
492 static long zap_bucket_fail2;
493 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
494 static long cache_lock_vnodes_cel_3_failures;
495 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
496     "Number of times 3-way vnode locking failed");
497 
498 static void cache_zap_locked(struct namecache *ncp);
499 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf,
500     char **freebuf, size_t *buflen);
501 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
502     char **retbuf, size_t *buflen, size_t addend);
503 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
504     char **retbuf, size_t *buflen);
505 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
506     char **retbuf, size_t *len, size_t addend);
507 
508 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
509 
510 static inline void
511 cache_assert_vlp_locked(struct mtx *vlp)
512 {
513 
514 	if (vlp != NULL)
515 		mtx_assert(vlp, MA_OWNED);
516 }
517 
518 static inline void
519 cache_assert_vnode_locked(struct vnode *vp)
520 {
521 	struct mtx *vlp;
522 
523 	vlp = VP2VNODELOCK(vp);
524 	cache_assert_vlp_locked(vlp);
525 }
526 
527 /*
528  * Directory vnodes with entries are held for two reasons:
529  * 1. make them less of a target for reclamation in vnlru
530  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
531  *
532  * It will be feasible to stop doing it altogether if all filesystems start
533  * supporting lockless lookup.
534  */
535 static void
536 cache_hold_vnode(struct vnode *vp)
537 {
538 
539 	cache_assert_vnode_locked(vp);
540 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
541 	vhold(vp);
542 	counter_u64_add(numcachehv, 1);
543 }
544 
545 static void
546 cache_drop_vnode(struct vnode *vp)
547 {
548 
549 	/*
550 	 * Called after all locks are dropped, meaning we can't assert
551 	 * on the state of v_cache_src.
552 	 */
553 	vdrop(vp);
554 	counter_u64_add(numcachehv, -1);
555 }
556 
557 /*
558  * UMA zones.
559  */
560 static uma_zone_t __read_mostly cache_zone_small;
561 static uma_zone_t __read_mostly cache_zone_small_ts;
562 static uma_zone_t __read_mostly cache_zone_large;
563 static uma_zone_t __read_mostly cache_zone_large_ts;
564 
565 static struct namecache *
566 cache_alloc_uma(int len, bool ts)
567 {
568 	struct namecache_ts *ncp_ts;
569 	struct namecache *ncp;
570 
571 	if (__predict_false(ts)) {
572 		if (len <= CACHE_PATH_CUTOFF)
573 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
574 		else
575 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
576 		ncp = &ncp_ts->nc_nc;
577 	} else {
578 		if (len <= CACHE_PATH_CUTOFF)
579 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
580 		else
581 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
582 	}
583 	return (ncp);
584 }
585 
586 static void
587 cache_free_uma(struct namecache *ncp)
588 {
589 	struct namecache_ts *ncp_ts;
590 
591 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
592 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
593 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
594 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
595 		else
596 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
597 	} else {
598 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
599 			uma_zfree_smr(cache_zone_small, ncp);
600 		else
601 			uma_zfree_smr(cache_zone_large, ncp);
602 	}
603 }
604 
605 static struct namecache *
606 cache_alloc(int len, bool ts)
607 {
608 	u_long lnumcache;
609 
610 	/*
611 	 * Avoid blowout in namecache entries.
612 	 *
613 	 * Bugs:
614 	 * 1. filesystems may end up trying to add an already existing entry
615 	 * (for example this can happen after a cache miss during concurrent
616 	 * lookup), in which case we will call cache_neg_evict despite not
617 	 * adding anything.
618 	 * 2. the routine may fail to free anything and no provisions are made
619 	 * to make it try harder (see the inside for failure modes)
620 	 * 3. it only ever looks at negative entries.
621 	 */
622 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
623 	if (cache_neg_evict_cond(lnumcache)) {
624 		lnumcache = atomic_load_long(&numcache);
625 	}
626 	if (__predict_false(lnumcache >= ncsize)) {
627 		atomic_subtract_long(&numcache, 1);
628 		counter_u64_add(numdrops, 1);
629 		return (NULL);
630 	}
631 	return (cache_alloc_uma(len, ts));
632 }
633 
634 static void
635 cache_free(struct namecache *ncp)
636 {
637 
638 	MPASS(ncp != NULL);
639 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
640 		cache_drop_vnode(ncp->nc_dvp);
641 	}
642 	cache_free_uma(ncp);
643 	atomic_subtract_long(&numcache, 1);
644 }
645 
646 static void
647 cache_free_batch(struct cache_freebatch *batch)
648 {
649 	struct namecache *ncp, *nnp;
650 	int i;
651 
652 	i = 0;
653 	if (TAILQ_EMPTY(batch))
654 		goto out;
655 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
656 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
657 			cache_drop_vnode(ncp->nc_dvp);
658 		}
659 		cache_free_uma(ncp);
660 		i++;
661 	}
662 	atomic_subtract_long(&numcache, i);
663 out:
664 	SDT_PROBE1(vfs, namecache, purge, batch, i);
665 }
666 
667 /*
668  * TODO: With the value stored we can do better than computing the hash based
669  * on the address. The choice of FNV should also be revisited.
670  */
671 static void
672 cache_prehash(struct vnode *vp)
673 {
674 
675 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
676 }
677 
678 static uint32_t
679 cache_get_hash(char *name, u_char len, struct vnode *dvp)
680 {
681 
682 	return (fnv_32_buf(name, len, dvp->v_nchash));
683 }
684 
685 static inline struct nchashhead *
686 NCP2BUCKET(struct namecache *ncp)
687 {
688 	uint32_t hash;
689 
690 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
691 	return (NCHHASH(hash));
692 }
693 
694 static inline struct mtx *
695 NCP2BUCKETLOCK(struct namecache *ncp)
696 {
697 	uint32_t hash;
698 
699 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
700 	return (HASH2BUCKETLOCK(hash));
701 }
702 
703 #ifdef INVARIANTS
704 static void
705 cache_assert_bucket_locked(struct namecache *ncp)
706 {
707 	struct mtx *blp;
708 
709 	blp = NCP2BUCKETLOCK(ncp);
710 	mtx_assert(blp, MA_OWNED);
711 }
712 
713 static void
714 cache_assert_bucket_unlocked(struct namecache *ncp)
715 {
716 	struct mtx *blp;
717 
718 	blp = NCP2BUCKETLOCK(ncp);
719 	mtx_assert(blp, MA_NOTOWNED);
720 }
721 #else
722 #define cache_assert_bucket_locked(x) do { } while (0)
723 #define cache_assert_bucket_unlocked(x) do { } while (0)
724 #endif
725 
726 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
727 static void
728 _cache_sort_vnodes(void **p1, void **p2)
729 {
730 	void *tmp;
731 
732 	MPASS(*p1 != NULL || *p2 != NULL);
733 
734 	if (*p1 > *p2) {
735 		tmp = *p2;
736 		*p2 = *p1;
737 		*p1 = tmp;
738 	}
739 }
740 
741 static void
742 cache_lock_all_buckets(void)
743 {
744 	u_int i;
745 
746 	for (i = 0; i < numbucketlocks; i++)
747 		mtx_lock(&bucketlocks[i]);
748 }
749 
750 static void
751 cache_unlock_all_buckets(void)
752 {
753 	u_int i;
754 
755 	for (i = 0; i < numbucketlocks; i++)
756 		mtx_unlock(&bucketlocks[i]);
757 }
758 
759 static void
760 cache_lock_all_vnodes(void)
761 {
762 	u_int i;
763 
764 	for (i = 0; i < numvnodelocks; i++)
765 		mtx_lock(&vnodelocks[i]);
766 }
767 
768 static void
769 cache_unlock_all_vnodes(void)
770 {
771 	u_int i;
772 
773 	for (i = 0; i < numvnodelocks; i++)
774 		mtx_unlock(&vnodelocks[i]);
775 }
776 
777 static int
778 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
779 {
780 
781 	cache_sort_vnodes(&vlp1, &vlp2);
782 
783 	if (vlp1 != NULL) {
784 		if (!mtx_trylock(vlp1))
785 			return (EAGAIN);
786 	}
787 	if (!mtx_trylock(vlp2)) {
788 		if (vlp1 != NULL)
789 			mtx_unlock(vlp1);
790 		return (EAGAIN);
791 	}
792 
793 	return (0);
794 }
795 
796 static void
797 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
798 {
799 
800 	MPASS(vlp1 != NULL || vlp2 != NULL);
801 	MPASS(vlp1 <= vlp2);
802 
803 	if (vlp1 != NULL)
804 		mtx_lock(vlp1);
805 	if (vlp2 != NULL)
806 		mtx_lock(vlp2);
807 }
808 
809 static void
810 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
811 {
812 
813 	MPASS(vlp1 != NULL || vlp2 != NULL);
814 
815 	if (vlp1 != NULL)
816 		mtx_unlock(vlp1);
817 	if (vlp2 != NULL)
818 		mtx_unlock(vlp2);
819 }
820 
821 static int
822 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
823 {
824 	struct nchstats snap;
825 
826 	if (req->oldptr == NULL)
827 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
828 
829 	snap = nchstats;
830 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
831 	snap.ncs_neghits = counter_u64_fetch(numneghits);
832 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
833 	    counter_u64_fetch(numnegzaps);
834 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
835 	    counter_u64_fetch(nummiss);
836 
837 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
838 }
839 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
840     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
841     "VFS cache effectiveness statistics");
842 
843 static void
844 cache_recalc_neg_min(u_int val)
845 {
846 
847 	neg_min = (ncsize * val) / 100;
848 }
849 
850 static int
851 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
852 {
853 	u_int val;
854 	int error;
855 
856 	val = ncnegminpct;
857 	error = sysctl_handle_int(oidp, &val, 0, req);
858 	if (error != 0 || req->newptr == NULL)
859 		return (error);
860 
861 	if (val == ncnegminpct)
862 		return (0);
863 	if (val < 0 || val > 99)
864 		return (EINVAL);
865 	ncnegminpct = val;
866 	cache_recalc_neg_min(val);
867 	return (0);
868 }
869 
870 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
871     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
872     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
873 
874 #ifdef DIAGNOSTIC
875 /*
876  * Grab an atomic snapshot of the name cache hash chain lengths
877  */
878 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
879     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
880     "hash table stats");
881 
882 static int
883 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
884 {
885 	struct nchashhead *ncpp;
886 	struct namecache *ncp;
887 	int i, error, n_nchash, *cntbuf;
888 
889 retry:
890 	n_nchash = nchash + 1;	/* nchash is max index, not count */
891 	if (req->oldptr == NULL)
892 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
893 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
894 	cache_lock_all_buckets();
895 	if (n_nchash != nchash + 1) {
896 		cache_unlock_all_buckets();
897 		free(cntbuf, M_TEMP);
898 		goto retry;
899 	}
900 	/* Scan hash tables counting entries */
901 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
902 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
903 			cntbuf[i]++;
904 	cache_unlock_all_buckets();
905 	for (error = 0, i = 0; i < n_nchash; i++)
906 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
907 			break;
908 	free(cntbuf, M_TEMP);
909 	return (error);
910 }
911 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
912     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
913     "nchash chain lengths");
914 
915 static int
916 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
917 {
918 	int error;
919 	struct nchashhead *ncpp;
920 	struct namecache *ncp;
921 	int n_nchash;
922 	int count, maxlength, used, pct;
923 
924 	if (!req->oldptr)
925 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
926 
927 	cache_lock_all_buckets();
928 	n_nchash = nchash + 1;	/* nchash is max index, not count */
929 	used = 0;
930 	maxlength = 0;
931 
932 	/* Scan hash tables for applicable entries */
933 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
934 		count = 0;
935 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
936 			count++;
937 		}
938 		if (count)
939 			used++;
940 		if (maxlength < count)
941 			maxlength = count;
942 	}
943 	n_nchash = nchash + 1;
944 	cache_unlock_all_buckets();
945 	pct = (used * 100) / (n_nchash / 100);
946 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
947 	if (error)
948 		return (error);
949 	error = SYSCTL_OUT(req, &used, sizeof(used));
950 	if (error)
951 		return (error);
952 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
953 	if (error)
954 		return (error);
955 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
956 	if (error)
957 		return (error);
958 	return (0);
959 }
960 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
961     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
962     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
963 #endif
964 
965 /*
966  * Negative entries management
967  *
968  * Various workloads create plenty of negative entries and barely use them
969  * afterwards. Moreover malicious users can keep performing bogus lookups
970  * adding even more entries. For example "make tinderbox" as of writing this
971  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
972  * negative.
973  *
974  * As such, a rather aggressive eviction method is needed. The currently
975  * employed method is a placeholder.
976  *
977  * Entries are split over numneglists separate lists, each of which is further
978  * split into hot and cold entries. Entries get promoted after getting a hit.
979  * Eviction happens on addition of new entry.
980  */
981 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
982     "Name cache negative entry statistics");
983 
984 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
985     "Number of negative cache entries");
986 
987 static COUNTER_U64_DEFINE_EARLY(neg_created);
988 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
989     "Number of created negative entries");
990 
991 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
992 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
993     "Number of evicted negative entries");
994 
995 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
996 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
997     &neg_evict_skipped_empty,
998     "Number of times evicting failed due to lack of entries");
999 
1000 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1001 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1002     &neg_evict_skipped_missed,
1003     "Number of times evicting failed due to target entry disappearing");
1004 
1005 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1006 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1007     &neg_evict_skipped_contended,
1008     "Number of times evicting failed due to contention");
1009 
1010 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1011     "Number of cache hits (negative)");
1012 
1013 static int
1014 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1015 {
1016 	int i, out;
1017 
1018 	out = 0;
1019 	for (i = 0; i < numneglists; i++)
1020 		out += neglists[i].nl_hotnum;
1021 
1022 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1023 }
1024 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1025     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1026     "Number of hot negative entries");
1027 
1028 static void
1029 cache_neg_init(struct namecache *ncp)
1030 {
1031 	struct negstate *ns;
1032 
1033 	ncp->nc_flag |= NCF_NEGATIVE;
1034 	ns = NCP2NEGSTATE(ncp);
1035 	ns->neg_flag = 0;
1036 	ns->neg_hit = 0;
1037 	counter_u64_add(neg_created, 1);
1038 }
1039 
1040 #define CACHE_NEG_PROMOTION_THRESH 2
1041 
1042 static bool
1043 cache_neg_hit_prep(struct namecache *ncp)
1044 {
1045 	struct negstate *ns;
1046 	u_char n;
1047 
1048 	ns = NCP2NEGSTATE(ncp);
1049 	n = atomic_load_char(&ns->neg_hit);
1050 	for (;;) {
1051 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1052 			return (false);
1053 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1054 			break;
1055 	}
1056 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1057 }
1058 
1059 /*
1060  * Nothing to do here but it is provided for completeness as some
1061  * cache_neg_hit_prep callers may end up returning without even
1062  * trying to promote.
1063  */
1064 #define cache_neg_hit_abort(ncp)	do { } while (0)
1065 
1066 static void
1067 cache_neg_hit_finish(struct namecache *ncp)
1068 {
1069 
1070 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1071 	counter_u64_add(numneghits, 1);
1072 }
1073 
1074 /*
1075  * Move a negative entry to the hot list.
1076  */
1077 static void
1078 cache_neg_promote_locked(struct namecache *ncp)
1079 {
1080 	struct neglist *nl;
1081 	struct negstate *ns;
1082 
1083 	ns = NCP2NEGSTATE(ncp);
1084 	nl = NCP2NEGLIST(ncp);
1085 	mtx_assert(&nl->nl_lock, MA_OWNED);
1086 	if ((ns->neg_flag & NEG_HOT) == 0) {
1087 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1088 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1089 		nl->nl_hotnum++;
1090 		ns->neg_flag |= NEG_HOT;
1091 	}
1092 }
1093 
1094 /*
1095  * Move a hot negative entry to the cold list.
1096  */
1097 static void
1098 cache_neg_demote_locked(struct namecache *ncp)
1099 {
1100 	struct neglist *nl;
1101 	struct negstate *ns;
1102 
1103 	ns = NCP2NEGSTATE(ncp);
1104 	nl = NCP2NEGLIST(ncp);
1105 	mtx_assert(&nl->nl_lock, MA_OWNED);
1106 	MPASS(ns->neg_flag & NEG_HOT);
1107 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1108 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1109 	nl->nl_hotnum--;
1110 	ns->neg_flag &= ~NEG_HOT;
1111 	atomic_store_char(&ns->neg_hit, 0);
1112 }
1113 
1114 /*
1115  * Move a negative entry to the hot list if it matches the lookup.
1116  *
1117  * We have to take locks, but they may be contended and in the worst
1118  * case we may need to go off CPU. We don't want to spin within the
1119  * smr section and we can't block with it. Exiting the section means
1120  * the found entry could have been evicted. We are going to look it
1121  * up again.
1122  */
1123 static bool
1124 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1125     struct namecache *oncp, uint32_t hash)
1126 {
1127 	struct namecache *ncp;
1128 	struct neglist *nl;
1129 	u_char nc_flag;
1130 
1131 	nl = NCP2NEGLIST(oncp);
1132 
1133 	mtx_lock(&nl->nl_lock);
1134 	/*
1135 	 * For hash iteration.
1136 	 */
1137 	vfs_smr_enter();
1138 
1139 	/*
1140 	 * Avoid all surprises by only succeeding if we got the same entry and
1141 	 * bailing completely otherwise.
1142 	 * XXX There are no provisions to keep the vnode around, meaning we may
1143 	 * end up promoting a negative entry for a *new* vnode and returning
1144 	 * ENOENT on its account. This is the error we want to return anyway
1145 	 * and promotion is harmless.
1146 	 *
1147 	 * In particular at this point there can be a new ncp which matches the
1148 	 * search but hashes to a different neglist.
1149 	 */
1150 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1151 		if (ncp == oncp)
1152 			break;
1153 	}
1154 
1155 	/*
1156 	 * No match to begin with.
1157 	 */
1158 	if (__predict_false(ncp == NULL)) {
1159 		goto out_abort;
1160 	}
1161 
1162 	/*
1163 	 * The newly found entry may be something different...
1164 	 */
1165 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1166 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1167 		goto out_abort;
1168 	}
1169 
1170 	/*
1171 	 * ... and not even negative.
1172 	 */
1173 	nc_flag = atomic_load_char(&ncp->nc_flag);
1174 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1175 		goto out_abort;
1176 	}
1177 
1178 	if (!cache_ncp_canuse(ncp)) {
1179 		goto out_abort;
1180 	}
1181 
1182 	cache_neg_promote_locked(ncp);
1183 	cache_neg_hit_finish(ncp);
1184 	vfs_smr_exit();
1185 	mtx_unlock(&nl->nl_lock);
1186 	return (true);
1187 out_abort:
1188 	vfs_smr_exit();
1189 	mtx_unlock(&nl->nl_lock);
1190 	return (false);
1191 }
1192 
1193 static void
1194 cache_neg_promote(struct namecache *ncp)
1195 {
1196 	struct neglist *nl;
1197 
1198 	nl = NCP2NEGLIST(ncp);
1199 	mtx_lock(&nl->nl_lock);
1200 	cache_neg_promote_locked(ncp);
1201 	mtx_unlock(&nl->nl_lock);
1202 }
1203 
1204 static void
1205 cache_neg_insert(struct namecache *ncp)
1206 {
1207 	struct neglist *nl;
1208 
1209 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1210 	cache_assert_bucket_locked(ncp);
1211 	nl = NCP2NEGLIST(ncp);
1212 	mtx_lock(&nl->nl_lock);
1213 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1214 	mtx_unlock(&nl->nl_lock);
1215 	atomic_add_long(&numneg, 1);
1216 }
1217 
1218 static void
1219 cache_neg_remove(struct namecache *ncp)
1220 {
1221 	struct neglist *nl;
1222 	struct negstate *ns;
1223 
1224 	cache_assert_bucket_locked(ncp);
1225 	nl = NCP2NEGLIST(ncp);
1226 	ns = NCP2NEGSTATE(ncp);
1227 	mtx_lock(&nl->nl_lock);
1228 	if ((ns->neg_flag & NEG_HOT) != 0) {
1229 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1230 		nl->nl_hotnum--;
1231 	} else {
1232 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1233 	}
1234 	mtx_unlock(&nl->nl_lock);
1235 	atomic_subtract_long(&numneg, 1);
1236 }
1237 
1238 static struct neglist *
1239 cache_neg_evict_select_list(void)
1240 {
1241 	struct neglist *nl;
1242 	u_int c;
1243 
1244 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1245 	nl = &neglists[c % numneglists];
1246 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1247 		counter_u64_add(neg_evict_skipped_contended, 1);
1248 		return (NULL);
1249 	}
1250 	return (nl);
1251 }
1252 
1253 static struct namecache *
1254 cache_neg_evict_select_entry(struct neglist *nl)
1255 {
1256 	struct namecache *ncp, *lncp;
1257 	struct negstate *ns, *lns;
1258 	int i;
1259 
1260 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1261 	mtx_assert(&nl->nl_lock, MA_OWNED);
1262 	ncp = TAILQ_FIRST(&nl->nl_list);
1263 	if (ncp == NULL)
1264 		return (NULL);
1265 	lncp = ncp;
1266 	lns = NCP2NEGSTATE(lncp);
1267 	for (i = 1; i < 4; i++) {
1268 		ncp = TAILQ_NEXT(ncp, nc_dst);
1269 		if (ncp == NULL)
1270 			break;
1271 		ns = NCP2NEGSTATE(ncp);
1272 		if (ns->neg_hit < lns->neg_hit) {
1273 			lncp = ncp;
1274 			lns = ns;
1275 		}
1276 	}
1277 	return (lncp);
1278 }
1279 
1280 static bool
1281 cache_neg_evict(void)
1282 {
1283 	struct namecache *ncp, *ncp2;
1284 	struct neglist *nl;
1285 	struct vnode *dvp;
1286 	struct mtx *dvlp;
1287 	struct mtx *blp;
1288 	uint32_t hash;
1289 	u_char nlen;
1290 	bool evicted;
1291 
1292 	nl = cache_neg_evict_select_list();
1293 	if (nl == NULL) {
1294 		return (false);
1295 	}
1296 
1297 	mtx_lock(&nl->nl_lock);
1298 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1299 	if (ncp != NULL) {
1300 		cache_neg_demote_locked(ncp);
1301 	}
1302 	ncp = cache_neg_evict_select_entry(nl);
1303 	if (ncp == NULL) {
1304 		counter_u64_add(neg_evict_skipped_empty, 1);
1305 		mtx_unlock(&nl->nl_lock);
1306 		mtx_unlock(&nl->nl_evict_lock);
1307 		return (false);
1308 	}
1309 	nlen = ncp->nc_nlen;
1310 	dvp = ncp->nc_dvp;
1311 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1312 	dvlp = VP2VNODELOCK(dvp);
1313 	blp = HASH2BUCKETLOCK(hash);
1314 	mtx_unlock(&nl->nl_lock);
1315 	mtx_unlock(&nl->nl_evict_lock);
1316 	mtx_lock(dvlp);
1317 	mtx_lock(blp);
1318 	/*
1319 	 * Note that since all locks were dropped above, the entry may be
1320 	 * gone or reallocated to be something else.
1321 	 */
1322 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1323 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1324 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1325 			break;
1326 	}
1327 	if (ncp2 == NULL) {
1328 		counter_u64_add(neg_evict_skipped_missed, 1);
1329 		ncp = NULL;
1330 		evicted = false;
1331 	} else {
1332 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1333 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1334 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1335 		    ncp->nc_name);
1336 		cache_zap_locked(ncp);
1337 		counter_u64_add(neg_evicted, 1);
1338 		evicted = true;
1339 	}
1340 	mtx_unlock(blp);
1341 	mtx_unlock(dvlp);
1342 	if (ncp != NULL)
1343 		cache_free(ncp);
1344 	return (evicted);
1345 }
1346 
1347 /*
1348  * Maybe evict a negative entry to create more room.
1349  *
1350  * The ncnegfactor parameter limits what fraction of the total count
1351  * can comprise of negative entries. However, if the cache is just
1352  * warming up this leads to excessive evictions.  As such, ncnegminpct
1353  * (recomputed to neg_min) dictates whether the above should be
1354  * applied.
1355  *
1356  * Try evicting if the cache is close to full capacity regardless of
1357  * other considerations.
1358  */
1359 static bool
1360 cache_neg_evict_cond(u_long lnumcache)
1361 {
1362 	u_long lnumneg;
1363 
1364 	if (ncsize - 1000 < lnumcache)
1365 		goto out_evict;
1366 	lnumneg = atomic_load_long(&numneg);
1367 	if (lnumneg < neg_min)
1368 		return (false);
1369 	if (lnumneg * ncnegfactor < lnumcache)
1370 		return (false);
1371 out_evict:
1372 	return (cache_neg_evict());
1373 }
1374 
1375 /*
1376  * cache_zap_locked():
1377  *
1378  *   Removes a namecache entry from cache, whether it contains an actual
1379  *   pointer to a vnode or if it is just a negative cache entry.
1380  */
1381 static void
1382 cache_zap_locked(struct namecache *ncp)
1383 {
1384 	struct nchashhead *ncpp;
1385 
1386 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1387 		cache_assert_vnode_locked(ncp->nc_vp);
1388 	cache_assert_vnode_locked(ncp->nc_dvp);
1389 	cache_assert_bucket_locked(ncp);
1390 
1391 	cache_ncp_invalidate(ncp);
1392 
1393 	ncpp = NCP2BUCKET(ncp);
1394 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1395 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1396 		SDT_PROBE3(vfs, namecache, zap, done, ncp->nc_dvp,
1397 		    ncp->nc_name, ncp->nc_vp);
1398 		TAILQ_REMOVE(&ncp->nc_vp->v_cache_dst, ncp, nc_dst);
1399 		if (ncp == ncp->nc_vp->v_cache_dd) {
1400 			vn_seqc_write_begin_unheld(ncp->nc_vp);
1401 			ncp->nc_vp->v_cache_dd = NULL;
1402 			vn_seqc_write_end(ncp->nc_vp);
1403 		}
1404 	} else {
1405 		SDT_PROBE2(vfs, namecache, zap_negative, done, ncp->nc_dvp,
1406 		    ncp->nc_name);
1407 		cache_neg_remove(ncp);
1408 	}
1409 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1410 		if (ncp == ncp->nc_dvp->v_cache_dd) {
1411 			vn_seqc_write_begin_unheld(ncp->nc_dvp);
1412 			ncp->nc_dvp->v_cache_dd = NULL;
1413 			vn_seqc_write_end(ncp->nc_dvp);
1414 		}
1415 	} else {
1416 		LIST_REMOVE(ncp, nc_src);
1417 		if (LIST_EMPTY(&ncp->nc_dvp->v_cache_src)) {
1418 			ncp->nc_flag |= NCF_DVDROP;
1419 		}
1420 	}
1421 }
1422 
1423 static void
1424 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1425 {
1426 	struct mtx *blp;
1427 
1428 	MPASS(ncp->nc_dvp == vp);
1429 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1430 	cache_assert_vnode_locked(vp);
1431 
1432 	blp = NCP2BUCKETLOCK(ncp);
1433 	mtx_lock(blp);
1434 	cache_zap_locked(ncp);
1435 	mtx_unlock(blp);
1436 }
1437 
1438 static bool
1439 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1440     struct mtx **vlpp)
1441 {
1442 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1443 	struct mtx *blp;
1444 
1445 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1446 	cache_assert_vnode_locked(vp);
1447 
1448 	if (ncp->nc_flag & NCF_NEGATIVE) {
1449 		if (*vlpp != NULL) {
1450 			mtx_unlock(*vlpp);
1451 			*vlpp = NULL;
1452 		}
1453 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1454 		return (true);
1455 	}
1456 
1457 	pvlp = VP2VNODELOCK(vp);
1458 	blp = NCP2BUCKETLOCK(ncp);
1459 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1460 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1461 
1462 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1463 		to_unlock = *vlpp;
1464 		*vlpp = NULL;
1465 	} else {
1466 		if (*vlpp != NULL) {
1467 			mtx_unlock(*vlpp);
1468 			*vlpp = NULL;
1469 		}
1470 		cache_sort_vnodes(&vlp1, &vlp2);
1471 		if (vlp1 == pvlp) {
1472 			mtx_lock(vlp2);
1473 			to_unlock = vlp2;
1474 		} else {
1475 			if (!mtx_trylock(vlp1))
1476 				goto out_relock;
1477 			to_unlock = vlp1;
1478 		}
1479 	}
1480 	mtx_lock(blp);
1481 	cache_zap_locked(ncp);
1482 	mtx_unlock(blp);
1483 	if (to_unlock != NULL)
1484 		mtx_unlock(to_unlock);
1485 	return (true);
1486 
1487 out_relock:
1488 	mtx_unlock(vlp2);
1489 	mtx_lock(vlp1);
1490 	mtx_lock(vlp2);
1491 	MPASS(*vlpp == NULL);
1492 	*vlpp = vlp1;
1493 	return (false);
1494 }
1495 
1496 /*
1497  * If trylocking failed we can get here. We know enough to take all needed locks
1498  * in the right order and re-lookup the entry.
1499  */
1500 static int
1501 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1502     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1503     struct mtx *blp)
1504 {
1505 	struct namecache *rncp;
1506 
1507 	cache_assert_bucket_unlocked(ncp);
1508 
1509 	cache_sort_vnodes(&dvlp, &vlp);
1510 	cache_lock_vnodes(dvlp, vlp);
1511 	mtx_lock(blp);
1512 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1513 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1514 		    rncp->nc_nlen == cnp->cn_namelen &&
1515 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1516 			break;
1517 	}
1518 	if (rncp != NULL) {
1519 		cache_zap_locked(rncp);
1520 		mtx_unlock(blp);
1521 		cache_unlock_vnodes(dvlp, vlp);
1522 		counter_u64_add(zap_bucket_relock_success, 1);
1523 		return (0);
1524 	}
1525 
1526 	mtx_unlock(blp);
1527 	cache_unlock_vnodes(dvlp, vlp);
1528 	return (EAGAIN);
1529 }
1530 
1531 static int __noinline
1532 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1533     uint32_t hash, struct mtx *blp)
1534 {
1535 	struct mtx *dvlp, *vlp;
1536 	struct vnode *dvp;
1537 
1538 	cache_assert_bucket_locked(ncp);
1539 
1540 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1541 	vlp = NULL;
1542 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1543 		vlp = VP2VNODELOCK(ncp->nc_vp);
1544 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1545 		cache_zap_locked(ncp);
1546 		mtx_unlock(blp);
1547 		cache_unlock_vnodes(dvlp, vlp);
1548 		return (0);
1549 	}
1550 
1551 	dvp = ncp->nc_dvp;
1552 	mtx_unlock(blp);
1553 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1554 }
1555 
1556 static __noinline int
1557 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1558 {
1559 	struct namecache *ncp;
1560 	struct mtx *blp;
1561 	struct mtx *dvlp, *dvlp2;
1562 	uint32_t hash;
1563 	int error;
1564 
1565 	if (cnp->cn_namelen == 2 &&
1566 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1567 		dvlp = VP2VNODELOCK(dvp);
1568 		dvlp2 = NULL;
1569 		mtx_lock(dvlp);
1570 retry_dotdot:
1571 		ncp = dvp->v_cache_dd;
1572 		if (ncp == NULL) {
1573 			mtx_unlock(dvlp);
1574 			if (dvlp2 != NULL)
1575 				mtx_unlock(dvlp2);
1576 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1577 			return (0);
1578 		}
1579 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1580 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1581 				goto retry_dotdot;
1582 			MPASS(dvp->v_cache_dd == NULL);
1583 			mtx_unlock(dvlp);
1584 			if (dvlp2 != NULL)
1585 				mtx_unlock(dvlp2);
1586 			cache_free(ncp);
1587 		} else {
1588 			vn_seqc_write_begin(dvp);
1589 			dvp->v_cache_dd = NULL;
1590 			vn_seqc_write_end(dvp);
1591 			mtx_unlock(dvlp);
1592 			if (dvlp2 != NULL)
1593 				mtx_unlock(dvlp2);
1594 		}
1595 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1596 		return (1);
1597 	}
1598 
1599 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1600 	blp = HASH2BUCKETLOCK(hash);
1601 retry:
1602 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1603 		goto out_no_entry;
1604 
1605 	mtx_lock(blp);
1606 
1607 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1608 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1609 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1610 			break;
1611 	}
1612 
1613 	if (ncp == NULL) {
1614 		mtx_unlock(blp);
1615 		goto out_no_entry;
1616 	}
1617 
1618 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1619 	if (__predict_false(error != 0)) {
1620 		zap_bucket_fail++;
1621 		goto retry;
1622 	}
1623 	counter_u64_add(numposzaps, 1);
1624 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1625 	cache_free(ncp);
1626 	return (1);
1627 out_no_entry:
1628 	counter_u64_add(nummisszap, 1);
1629 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1630 	return (0);
1631 }
1632 
1633 static int __noinline
1634 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1635     struct timespec *tsp, int *ticksp)
1636 {
1637 	int ltype;
1638 
1639 	*vpp = dvp;
1640 	counter_u64_add(dothits, 1);
1641 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1642 	if (tsp != NULL)
1643 		timespecclear(tsp);
1644 	if (ticksp != NULL)
1645 		*ticksp = ticks;
1646 	vrefact(*vpp);
1647 	/*
1648 	 * When we lookup "." we still can be asked to lock it
1649 	 * differently...
1650 	 */
1651 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1652 	if (ltype != VOP_ISLOCKED(*vpp)) {
1653 		if (ltype == LK_EXCLUSIVE) {
1654 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1655 			if (VN_IS_DOOMED((*vpp))) {
1656 				/* forced unmount */
1657 				vrele(*vpp);
1658 				*vpp = NULL;
1659 				return (ENOENT);
1660 			}
1661 		} else
1662 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1663 	}
1664 	return (-1);
1665 }
1666 
1667 static int __noinline
1668 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1669     struct timespec *tsp, int *ticksp)
1670 {
1671 	struct namecache_ts *ncp_ts;
1672 	struct namecache *ncp;
1673 	struct mtx *dvlp;
1674 	enum vgetstate vs;
1675 	int error, ltype;
1676 	bool whiteout;
1677 
1678 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1679 
1680 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1681 		cache_remove_cnp(dvp, cnp);
1682 		return (0);
1683 	}
1684 
1685 	counter_u64_add(dotdothits, 1);
1686 retry:
1687 	dvlp = VP2VNODELOCK(dvp);
1688 	mtx_lock(dvlp);
1689 	ncp = dvp->v_cache_dd;
1690 	if (ncp == NULL) {
1691 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, "..", NULL);
1692 		mtx_unlock(dvlp);
1693 		return (0);
1694 	}
1695 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1696 		if (ncp->nc_flag & NCF_NEGATIVE)
1697 			*vpp = NULL;
1698 		else
1699 			*vpp = ncp->nc_vp;
1700 	} else
1701 		*vpp = ncp->nc_dvp;
1702 	if (*vpp == NULL)
1703 		goto negative_success;
1704 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1705 	cache_out_ts(ncp, tsp, ticksp);
1706 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1707 	    NCF_DTS && tsp != NULL) {
1708 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1709 		*tsp = ncp_ts->nc_dotdottime;
1710 	}
1711 
1712 	MPASS(dvp != *vpp);
1713 	ltype = VOP_ISLOCKED(dvp);
1714 	VOP_UNLOCK(dvp);
1715 	vs = vget_prep(*vpp);
1716 	mtx_unlock(dvlp);
1717 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1718 	vn_lock(dvp, ltype | LK_RETRY);
1719 	if (VN_IS_DOOMED(dvp)) {
1720 		if (error == 0)
1721 			vput(*vpp);
1722 		*vpp = NULL;
1723 		return (ENOENT);
1724 	}
1725 	if (error) {
1726 		*vpp = NULL;
1727 		goto retry;
1728 	}
1729 	return (-1);
1730 negative_success:
1731 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1732 		if (cnp->cn_flags & ISLASTCN) {
1733 			counter_u64_add(numnegzaps, 1);
1734 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1735 			mtx_unlock(dvlp);
1736 			cache_free(ncp);
1737 			return (0);
1738 		}
1739 	}
1740 
1741 	whiteout = (ncp->nc_flag & NCF_WHITE);
1742 	cache_out_ts(ncp, tsp, ticksp);
1743 	if (cache_neg_hit_prep(ncp))
1744 		cache_neg_promote(ncp);
1745 	else
1746 		cache_neg_hit_finish(ncp);
1747 	mtx_unlock(dvlp);
1748 	if (whiteout)
1749 		cnp->cn_flags |= ISWHITEOUT;
1750 	return (ENOENT);
1751 }
1752 
1753 /**
1754  * Lookup a name in the name cache
1755  *
1756  * # Arguments
1757  *
1758  * - dvp:	Parent directory in which to search.
1759  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1760  * - cnp:	Parameters of the name search.  The most interesting bits of
1761  *   		the cn_flags field have the following meanings:
1762  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1763  *   			it up.
1764  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1765  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1766  *   		or negative) lookup, tsp will be filled with any timespec that
1767  *   		was stored when this cache entry was created.  However, it will
1768  *   		be clear for "." entries.
1769  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1770  *   		(positive or negative) lookup, it will contain the ticks value
1771  *   		that was current when the cache entry was created, unless cnp
1772  *   		was ".".
1773  *
1774  * Either both tsp and ticks have to be provided or neither of them.
1775  *
1776  * # Returns
1777  *
1778  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1779  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1780  *		to a forced unmount.  vpp will not be modified.  If the entry
1781  *		is a whiteout, then the ISWHITEOUT flag will be set in
1782  *		cnp->cn_flags.
1783  * - 0:		A cache miss.  vpp will not be modified.
1784  *
1785  * # Locking
1786  *
1787  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1788  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1789  * lock is not recursively acquired.
1790  */
1791 static int __noinline
1792 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1793     struct timespec *tsp, int *ticksp)
1794 {
1795 	struct namecache *ncp;
1796 	struct mtx *blp;
1797 	uint32_t hash;
1798 	enum vgetstate vs;
1799 	int error;
1800 	bool whiteout;
1801 
1802 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1803 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1804 
1805 retry:
1806 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1807 	blp = HASH2BUCKETLOCK(hash);
1808 	mtx_lock(blp);
1809 
1810 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1811 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1812 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1813 			break;
1814 	}
1815 
1816 	if (__predict_false(ncp == NULL)) {
1817 		mtx_unlock(blp);
1818 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1819 		    NULL);
1820 		counter_u64_add(nummiss, 1);
1821 		return (0);
1822 	}
1823 
1824 	if (ncp->nc_flag & NCF_NEGATIVE)
1825 		goto negative_success;
1826 
1827 	counter_u64_add(numposhits, 1);
1828 	*vpp = ncp->nc_vp;
1829 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1830 	cache_out_ts(ncp, tsp, ticksp);
1831 	MPASS(dvp != *vpp);
1832 	vs = vget_prep(*vpp);
1833 	mtx_unlock(blp);
1834 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1835 	if (error) {
1836 		*vpp = NULL;
1837 		goto retry;
1838 	}
1839 	return (-1);
1840 negative_success:
1841 	/*
1842 	 * We don't get here with regular lookup apart from corner cases.
1843 	 */
1844 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
1845 		if (cnp->cn_flags & ISLASTCN) {
1846 			counter_u64_add(numnegzaps, 1);
1847 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1848 			if (__predict_false(error != 0)) {
1849 				zap_bucket_fail2++;
1850 				goto retry;
1851 			}
1852 			cache_free(ncp);
1853 			return (0);
1854 		}
1855 	}
1856 
1857 	whiteout = (ncp->nc_flag & NCF_WHITE);
1858 	cache_out_ts(ncp, tsp, ticksp);
1859 	if (cache_neg_hit_prep(ncp))
1860 		cache_neg_promote(ncp);
1861 	else
1862 		cache_neg_hit_finish(ncp);
1863 	mtx_unlock(blp);
1864 	if (whiteout)
1865 		cnp->cn_flags |= ISWHITEOUT;
1866 	return (ENOENT);
1867 }
1868 
1869 int
1870 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1871     struct timespec *tsp, int *ticksp)
1872 {
1873 	struct namecache *ncp;
1874 	uint32_t hash;
1875 	enum vgetstate vs;
1876 	int error;
1877 	bool whiteout, neg_promote;
1878 	u_short nc_flag;
1879 
1880 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
1881 
1882 #ifdef DEBUG_CACHE
1883 	if (__predict_false(!doingcache)) {
1884 		cnp->cn_flags &= ~MAKEENTRY;
1885 		return (0);
1886 	}
1887 #endif
1888 
1889 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
1890 		if (cnp->cn_namelen == 1)
1891 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
1892 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
1893 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
1894 	}
1895 
1896 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1897 
1898 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
1899 		cache_remove_cnp(dvp, cnp);
1900 		return (0);
1901 	}
1902 
1903 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1904 	vfs_smr_enter();
1905 
1906 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1907 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1908 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1909 			break;
1910 	}
1911 
1912 	if (__predict_false(ncp == NULL)) {
1913 		vfs_smr_exit();
1914 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1915 		    NULL);
1916 		counter_u64_add(nummiss, 1);
1917 		return (0);
1918 	}
1919 
1920 	nc_flag = atomic_load_char(&ncp->nc_flag);
1921 	if (nc_flag & NCF_NEGATIVE)
1922 		goto negative_success;
1923 
1924 	counter_u64_add(numposhits, 1);
1925 	*vpp = ncp->nc_vp;
1926 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1927 	cache_out_ts(ncp, tsp, ticksp);
1928 	MPASS(dvp != *vpp);
1929 	if (!cache_ncp_canuse(ncp)) {
1930 		vfs_smr_exit();
1931 		*vpp = NULL;
1932 		goto out_fallback;
1933 	}
1934 	vs = vget_prep_smr(*vpp);
1935 	vfs_smr_exit();
1936 	if (__predict_false(vs == VGET_NONE)) {
1937 		*vpp = NULL;
1938 		goto out_fallback;
1939 	}
1940 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1941 	if (error) {
1942 		*vpp = NULL;
1943 		goto out_fallback;
1944 	}
1945 	return (-1);
1946 negative_success:
1947 	if (cnp->cn_nameiop == CREATE) {
1948 		if (cnp->cn_flags & ISLASTCN) {
1949 			vfs_smr_exit();
1950 			goto out_fallback;
1951 		}
1952 	}
1953 
1954 	cache_out_ts(ncp, tsp, ticksp);
1955 	whiteout = (ncp->nc_flag & NCF_WHITE);
1956 	neg_promote = cache_neg_hit_prep(ncp);
1957 	if (!cache_ncp_canuse(ncp)) {
1958 		cache_neg_hit_abort(ncp);
1959 		vfs_smr_exit();
1960 		goto out_fallback;
1961 	}
1962 	if (neg_promote) {
1963 		vfs_smr_exit();
1964 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
1965 			goto out_fallback;
1966 	} else {
1967 		cache_neg_hit_finish(ncp);
1968 		vfs_smr_exit();
1969 	}
1970 	if (whiteout)
1971 		cnp->cn_flags |= ISWHITEOUT;
1972 	return (ENOENT);
1973 out_fallback:
1974 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
1975 }
1976 
1977 struct celockstate {
1978 	struct mtx *vlp[3];
1979 	struct mtx *blp[2];
1980 };
1981 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
1982 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
1983 
1984 static inline void
1985 cache_celockstate_init(struct celockstate *cel)
1986 {
1987 
1988 	bzero(cel, sizeof(*cel));
1989 }
1990 
1991 static void
1992 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
1993     struct vnode *dvp)
1994 {
1995 	struct mtx *vlp1, *vlp2;
1996 
1997 	MPASS(cel->vlp[0] == NULL);
1998 	MPASS(cel->vlp[1] == NULL);
1999 	MPASS(cel->vlp[2] == NULL);
2000 
2001 	MPASS(vp != NULL || dvp != NULL);
2002 
2003 	vlp1 = VP2VNODELOCK(vp);
2004 	vlp2 = VP2VNODELOCK(dvp);
2005 	cache_sort_vnodes(&vlp1, &vlp2);
2006 
2007 	if (vlp1 != NULL) {
2008 		mtx_lock(vlp1);
2009 		cel->vlp[0] = vlp1;
2010 	}
2011 	mtx_lock(vlp2);
2012 	cel->vlp[1] = vlp2;
2013 }
2014 
2015 static void
2016 cache_unlock_vnodes_cel(struct celockstate *cel)
2017 {
2018 
2019 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2020 
2021 	if (cel->vlp[0] != NULL)
2022 		mtx_unlock(cel->vlp[0]);
2023 	if (cel->vlp[1] != NULL)
2024 		mtx_unlock(cel->vlp[1]);
2025 	if (cel->vlp[2] != NULL)
2026 		mtx_unlock(cel->vlp[2]);
2027 }
2028 
2029 static bool
2030 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2031 {
2032 	struct mtx *vlp;
2033 	bool ret;
2034 
2035 	cache_assert_vlp_locked(cel->vlp[0]);
2036 	cache_assert_vlp_locked(cel->vlp[1]);
2037 	MPASS(cel->vlp[2] == NULL);
2038 
2039 	MPASS(vp != NULL);
2040 	vlp = VP2VNODELOCK(vp);
2041 
2042 	ret = true;
2043 	if (vlp >= cel->vlp[1]) {
2044 		mtx_lock(vlp);
2045 	} else {
2046 		if (mtx_trylock(vlp))
2047 			goto out;
2048 		cache_lock_vnodes_cel_3_failures++;
2049 		cache_unlock_vnodes_cel(cel);
2050 		if (vlp < cel->vlp[0]) {
2051 			mtx_lock(vlp);
2052 			mtx_lock(cel->vlp[0]);
2053 			mtx_lock(cel->vlp[1]);
2054 		} else {
2055 			if (cel->vlp[0] != NULL)
2056 				mtx_lock(cel->vlp[0]);
2057 			mtx_lock(vlp);
2058 			mtx_lock(cel->vlp[1]);
2059 		}
2060 		ret = false;
2061 	}
2062 out:
2063 	cel->vlp[2] = vlp;
2064 	return (ret);
2065 }
2066 
2067 static void
2068 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2069     struct mtx *blp2)
2070 {
2071 
2072 	MPASS(cel->blp[0] == NULL);
2073 	MPASS(cel->blp[1] == NULL);
2074 
2075 	cache_sort_vnodes(&blp1, &blp2);
2076 
2077 	if (blp1 != NULL) {
2078 		mtx_lock(blp1);
2079 		cel->blp[0] = blp1;
2080 	}
2081 	mtx_lock(blp2);
2082 	cel->blp[1] = blp2;
2083 }
2084 
2085 static void
2086 cache_unlock_buckets_cel(struct celockstate *cel)
2087 {
2088 
2089 	if (cel->blp[0] != NULL)
2090 		mtx_unlock(cel->blp[0]);
2091 	mtx_unlock(cel->blp[1]);
2092 }
2093 
2094 /*
2095  * Lock part of the cache affected by the insertion.
2096  *
2097  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2098  * However, insertion can result in removal of an old entry. In this
2099  * case we have an additional vnode and bucketlock pair to lock.
2100  *
2101  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2102  * preserving the locking order (smaller address first).
2103  */
2104 static void
2105 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2106     uint32_t hash)
2107 {
2108 	struct namecache *ncp;
2109 	struct mtx *blps[2];
2110 
2111 	blps[0] = HASH2BUCKETLOCK(hash);
2112 	for (;;) {
2113 		blps[1] = NULL;
2114 		cache_lock_vnodes_cel(cel, dvp, vp);
2115 		if (vp == NULL || vp->v_type != VDIR)
2116 			break;
2117 		ncp = vp->v_cache_dd;
2118 		if (ncp == NULL)
2119 			break;
2120 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2121 			break;
2122 		MPASS(ncp->nc_dvp == vp);
2123 		blps[1] = NCP2BUCKETLOCK(ncp);
2124 		if (ncp->nc_flag & NCF_NEGATIVE)
2125 			break;
2126 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2127 			break;
2128 		/*
2129 		 * All vnodes got re-locked. Re-validate the state and if
2130 		 * nothing changed we are done. Otherwise restart.
2131 		 */
2132 		if (ncp == vp->v_cache_dd &&
2133 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2134 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2135 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2136 			break;
2137 		cache_unlock_vnodes_cel(cel);
2138 		cel->vlp[0] = NULL;
2139 		cel->vlp[1] = NULL;
2140 		cel->vlp[2] = NULL;
2141 	}
2142 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2143 }
2144 
2145 static void
2146 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2147     uint32_t hash)
2148 {
2149 	struct namecache *ncp;
2150 	struct mtx *blps[2];
2151 
2152 	blps[0] = HASH2BUCKETLOCK(hash);
2153 	for (;;) {
2154 		blps[1] = NULL;
2155 		cache_lock_vnodes_cel(cel, dvp, vp);
2156 		ncp = dvp->v_cache_dd;
2157 		if (ncp == NULL)
2158 			break;
2159 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2160 			break;
2161 		MPASS(ncp->nc_dvp == dvp);
2162 		blps[1] = NCP2BUCKETLOCK(ncp);
2163 		if (ncp->nc_flag & NCF_NEGATIVE)
2164 			break;
2165 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2166 			break;
2167 		if (ncp == dvp->v_cache_dd &&
2168 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2169 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2170 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2171 			break;
2172 		cache_unlock_vnodes_cel(cel);
2173 		cel->vlp[0] = NULL;
2174 		cel->vlp[1] = NULL;
2175 		cel->vlp[2] = NULL;
2176 	}
2177 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2178 }
2179 
2180 static void
2181 cache_enter_unlock(struct celockstate *cel)
2182 {
2183 
2184 	cache_unlock_buckets_cel(cel);
2185 	cache_unlock_vnodes_cel(cel);
2186 }
2187 
2188 static void __noinline
2189 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2190     struct componentname *cnp)
2191 {
2192 	struct celockstate cel;
2193 	struct namecache *ncp;
2194 	uint32_t hash;
2195 	int len;
2196 
2197 	if (dvp->v_cache_dd == NULL)
2198 		return;
2199 	len = cnp->cn_namelen;
2200 	cache_celockstate_init(&cel);
2201 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2202 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2203 	vn_seqc_write_begin(dvp);
2204 	ncp = dvp->v_cache_dd;
2205 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2206 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2207 		cache_zap_locked(ncp);
2208 	} else {
2209 		ncp = NULL;
2210 	}
2211 	dvp->v_cache_dd = NULL;
2212 	vn_seqc_write_end(dvp);
2213 	cache_enter_unlock(&cel);
2214 	if (ncp != NULL)
2215 		cache_free(ncp);
2216 }
2217 
2218 /*
2219  * Add an entry to the cache.
2220  */
2221 void
2222 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2223     struct timespec *tsp, struct timespec *dtsp)
2224 {
2225 	struct celockstate cel;
2226 	struct namecache *ncp, *n2, *ndd;
2227 	struct namecache_ts *ncp_ts;
2228 	struct nchashhead *ncpp;
2229 	uint32_t hash;
2230 	int flag;
2231 	int len;
2232 
2233 	VNPASS(dvp != vp, dvp);
2234 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2235 	VNPASS(dvp->v_type != VNON, dvp);
2236 	if (vp != NULL) {
2237 		VNPASS(!VN_IS_DOOMED(vp), vp);
2238 		VNPASS(vp->v_type != VNON, vp);
2239 	}
2240 
2241 #ifdef DEBUG_CACHE
2242 	if (__predict_false(!doingcache))
2243 		return;
2244 #endif
2245 
2246 	flag = 0;
2247 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2248 		if (cnp->cn_namelen == 1)
2249 			return;
2250 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2251 			cache_enter_dotdot_prep(dvp, vp, cnp);
2252 			flag = NCF_ISDOTDOT;
2253 		}
2254 	}
2255 
2256 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2257 	if (ncp == NULL)
2258 		return;
2259 
2260 	cache_celockstate_init(&cel);
2261 	ndd = NULL;
2262 	ncp_ts = NULL;
2263 
2264 	/*
2265 	 * Calculate the hash key and setup as much of the new
2266 	 * namecache entry as possible before acquiring the lock.
2267 	 */
2268 	ncp->nc_flag = flag | NCF_WIP;
2269 	ncp->nc_vp = vp;
2270 	if (vp == NULL)
2271 		cache_neg_init(ncp);
2272 	ncp->nc_dvp = dvp;
2273 	if (tsp != NULL) {
2274 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2275 		ncp_ts->nc_time = *tsp;
2276 		ncp_ts->nc_ticks = ticks;
2277 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2278 		if (dtsp != NULL) {
2279 			ncp_ts->nc_dotdottime = *dtsp;
2280 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2281 		}
2282 	}
2283 	len = ncp->nc_nlen = cnp->cn_namelen;
2284 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2285 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2286 	ncp->nc_name[len] = '\0';
2287 	cache_enter_lock(&cel, dvp, vp, hash);
2288 
2289 	/*
2290 	 * See if this vnode or negative entry is already in the cache
2291 	 * with this name.  This can happen with concurrent lookups of
2292 	 * the same path name.
2293 	 */
2294 	ncpp = NCHHASH(hash);
2295 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2296 		if (n2->nc_dvp == dvp &&
2297 		    n2->nc_nlen == cnp->cn_namelen &&
2298 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2299 			MPASS(cache_ncp_canuse(n2));
2300 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2301 				KASSERT(vp == NULL,
2302 				    ("%s: found entry pointing to a different vnode (%p != %p)",
2303 				    __func__, NULL, vp));
2304 			else
2305 				KASSERT(n2->nc_vp == vp,
2306 				    ("%s: found entry pointing to a different vnode (%p != %p)",
2307 				    __func__, n2->nc_vp, vp));
2308 			/*
2309 			 * Entries are supposed to be immutable unless in the
2310 			 * process of getting destroyed. Accommodating for
2311 			 * changing timestamps is possible but not worth it.
2312 			 * This should be harmless in terms of correctness, in
2313 			 * the worst case resulting in an earlier expiration.
2314 			 * Alternatively, the found entry can be replaced
2315 			 * altogether.
2316 			 */
2317 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2318 #if 0
2319 			if (tsp != NULL) {
2320 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2321 				    ("no NCF_TS"));
2322 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2323 				n2_ts->nc_time = ncp_ts->nc_time;
2324 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2325 				if (dtsp != NULL) {
2326 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2327 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2328 				}
2329 			}
2330 #endif
2331 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2332 			    vp);
2333 			goto out_unlock_free;
2334 		}
2335 	}
2336 
2337 	if (flag == NCF_ISDOTDOT) {
2338 		/*
2339 		 * See if we are trying to add .. entry, but some other lookup
2340 		 * has populated v_cache_dd pointer already.
2341 		 */
2342 		if (dvp->v_cache_dd != NULL)
2343 			goto out_unlock_free;
2344 		KASSERT(vp == NULL || vp->v_type == VDIR,
2345 		    ("wrong vnode type %p", vp));
2346 		vn_seqc_write_begin(dvp);
2347 		dvp->v_cache_dd = ncp;
2348 		vn_seqc_write_end(dvp);
2349 	}
2350 
2351 	if (vp != NULL) {
2352 		if (flag != NCF_ISDOTDOT) {
2353 			/*
2354 			 * For this case, the cache entry maps both the
2355 			 * directory name in it and the name ".." for the
2356 			 * directory's parent.
2357 			 */
2358 			vn_seqc_write_begin(vp);
2359 			if ((ndd = vp->v_cache_dd) != NULL) {
2360 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2361 					cache_zap_locked(ndd);
2362 				else
2363 					ndd = NULL;
2364 			}
2365 			vp->v_cache_dd = ncp;
2366 			vn_seqc_write_end(vp);
2367 		} else if (vp->v_type != VDIR) {
2368 			if (vp->v_cache_dd != NULL) {
2369 				vn_seqc_write_begin(vp);
2370 				vp->v_cache_dd = NULL;
2371 				vn_seqc_write_end(vp);
2372 			}
2373 		}
2374 	}
2375 
2376 	if (flag != NCF_ISDOTDOT) {
2377 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2378 			cache_hold_vnode(dvp);
2379 		}
2380 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2381 	}
2382 
2383 	/*
2384 	 * If the entry is "negative", we place it into the
2385 	 * "negative" cache queue, otherwise, we place it into the
2386 	 * destination vnode's cache entries queue.
2387 	 */
2388 	if (vp != NULL) {
2389 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2390 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2391 		    vp);
2392 	} else {
2393 		if (cnp->cn_flags & ISWHITEOUT)
2394 			ncp->nc_flag |= NCF_WHITE;
2395 		cache_neg_insert(ncp);
2396 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2397 		    ncp->nc_name);
2398 	}
2399 
2400 	/*
2401 	 * Insert the new namecache entry into the appropriate chain
2402 	 * within the cache entries table.
2403 	 */
2404 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2405 
2406 	atomic_thread_fence_rel();
2407 	/*
2408 	 * Mark the entry as fully constructed.
2409 	 * It is immutable past this point until its removal.
2410 	 */
2411 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2412 
2413 	cache_enter_unlock(&cel);
2414 	if (ndd != NULL)
2415 		cache_free(ndd);
2416 	return;
2417 out_unlock_free:
2418 	cache_enter_unlock(&cel);
2419 	cache_free(ncp);
2420 	return;
2421 }
2422 
2423 static u_int
2424 cache_roundup_2(u_int val)
2425 {
2426 	u_int res;
2427 
2428 	for (res = 1; res <= val; res <<= 1)
2429 		continue;
2430 
2431 	return (res);
2432 }
2433 
2434 static struct nchashhead *
2435 nchinittbl(u_long elements, u_long *hashmask)
2436 {
2437 	struct nchashhead *hashtbl;
2438 	u_long hashsize, i;
2439 
2440 	hashsize = cache_roundup_2(elements) / 2;
2441 
2442 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2443 	for (i = 0; i < hashsize; i++)
2444 		CK_SLIST_INIT(&hashtbl[i]);
2445 	*hashmask = hashsize - 1;
2446 	return (hashtbl);
2447 }
2448 
2449 static void
2450 ncfreetbl(struct nchashhead *hashtbl)
2451 {
2452 
2453 	free(hashtbl, M_VFSCACHE);
2454 }
2455 
2456 /*
2457  * Name cache initialization, from vfs_init() when we are booting
2458  */
2459 static void
2460 nchinit(void *dummy __unused)
2461 {
2462 	u_int i;
2463 
2464 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2465 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2466 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2467 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2468 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2469 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2470 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2471 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2472 
2473 	VFS_SMR_ZONE_SET(cache_zone_small);
2474 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2475 	VFS_SMR_ZONE_SET(cache_zone_large);
2476 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2477 
2478 	ncsize = desiredvnodes * ncsizefactor;
2479 	cache_recalc_neg_min(ncnegminpct);
2480 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2481 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2482 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2483 		ncbuckethash = 7;
2484 	if (ncbuckethash > nchash)
2485 		ncbuckethash = nchash;
2486 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2487 	    M_WAITOK | M_ZERO);
2488 	for (i = 0; i < numbucketlocks; i++)
2489 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2490 	ncvnodehash = ncbuckethash;
2491 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2492 	    M_WAITOK | M_ZERO);
2493 	for (i = 0; i < numvnodelocks; i++)
2494 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2495 
2496 	for (i = 0; i < numneglists; i++) {
2497 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2498 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2499 		TAILQ_INIT(&neglists[i].nl_list);
2500 		TAILQ_INIT(&neglists[i].nl_hotlist);
2501 	}
2502 }
2503 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2504 
2505 void
2506 cache_vnode_init(struct vnode *vp)
2507 {
2508 
2509 	LIST_INIT(&vp->v_cache_src);
2510 	TAILQ_INIT(&vp->v_cache_dst);
2511 	vp->v_cache_dd = NULL;
2512 	cache_prehash(vp);
2513 }
2514 
2515 void
2516 cache_changesize(u_long newmaxvnodes)
2517 {
2518 	struct nchashhead *new_nchashtbl, *old_nchashtbl;
2519 	u_long new_nchash, old_nchash;
2520 	struct namecache *ncp;
2521 	uint32_t hash;
2522 	u_long newncsize;
2523 	int i;
2524 
2525 	newncsize = newmaxvnodes * ncsizefactor;
2526 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2527 	if (newmaxvnodes < numbucketlocks)
2528 		newmaxvnodes = numbucketlocks;
2529 
2530 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2531 	/* If same hash table size, nothing to do */
2532 	if (nchash == new_nchash) {
2533 		ncfreetbl(new_nchashtbl);
2534 		return;
2535 	}
2536 	/*
2537 	 * Move everything from the old hash table to the new table.
2538 	 * None of the namecache entries in the table can be removed
2539 	 * because to do so, they have to be removed from the hash table.
2540 	 */
2541 	cache_lock_all_vnodes();
2542 	cache_lock_all_buckets();
2543 	old_nchashtbl = nchashtbl;
2544 	old_nchash = nchash;
2545 	nchashtbl = new_nchashtbl;
2546 	nchash = new_nchash;
2547 	for (i = 0; i <= old_nchash; i++) {
2548 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2549 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2550 			    ncp->nc_dvp);
2551 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2552 			CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2553 		}
2554 	}
2555 	ncsize = newncsize;
2556 	cache_recalc_neg_min(ncnegminpct);
2557 	cache_unlock_all_buckets();
2558 	cache_unlock_all_vnodes();
2559 	ncfreetbl(old_nchashtbl);
2560 }
2561 
2562 /*
2563  * Invalidate all entries from and to a particular vnode.
2564  */
2565 static void
2566 cache_purge_impl(struct vnode *vp)
2567 {
2568 	struct cache_freebatch batch;
2569 	struct namecache *ncp;
2570 	struct mtx *vlp, *vlp2;
2571 
2572 	TAILQ_INIT(&batch);
2573 	vlp = VP2VNODELOCK(vp);
2574 	vlp2 = NULL;
2575 	mtx_lock(vlp);
2576 retry:
2577 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2578 		ncp = LIST_FIRST(&vp->v_cache_src);
2579 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2580 			goto retry;
2581 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2582 	}
2583 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2584 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2585 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2586 			goto retry;
2587 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2588 	}
2589 	ncp = vp->v_cache_dd;
2590 	if (ncp != NULL) {
2591 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2592 		   ("lost dotdot link"));
2593 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2594 			goto retry;
2595 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2596 	}
2597 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2598 	mtx_unlock(vlp);
2599 	if (vlp2 != NULL)
2600 		mtx_unlock(vlp2);
2601 	cache_free_batch(&batch);
2602 }
2603 
2604 /*
2605  * Opportunistic check to see if there is anything to do.
2606  */
2607 static bool
2608 cache_has_entries(struct vnode *vp)
2609 {
2610 
2611 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2612 	    vp->v_cache_dd == NULL)
2613 		return (false);
2614 	return (true);
2615 }
2616 
2617 void
2618 cache_purge(struct vnode *vp)
2619 {
2620 
2621 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2622 	if (!cache_has_entries(vp))
2623 		return;
2624 	cache_purge_impl(vp);
2625 }
2626 
2627 /*
2628  * Only to be used by vgone.
2629  */
2630 void
2631 cache_purge_vgone(struct vnode *vp)
2632 {
2633 	struct mtx *vlp;
2634 
2635 	VNPASS(VN_IS_DOOMED(vp), vp);
2636 	if (cache_has_entries(vp)) {
2637 		cache_purge_impl(vp);
2638 		return;
2639 	}
2640 
2641 	/*
2642 	 * Serialize against a potential thread doing cache_purge.
2643 	 */
2644 	vlp = VP2VNODELOCK(vp);
2645 	mtx_wait_unlocked(vlp);
2646 	if (cache_has_entries(vp)) {
2647 		cache_purge_impl(vp);
2648 		return;
2649 	}
2650 	return;
2651 }
2652 
2653 /*
2654  * Invalidate all negative entries for a particular directory vnode.
2655  */
2656 void
2657 cache_purge_negative(struct vnode *vp)
2658 {
2659 	struct cache_freebatch batch;
2660 	struct namecache *ncp, *nnp;
2661 	struct mtx *vlp;
2662 
2663 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2664 	if (LIST_EMPTY(&vp->v_cache_src))
2665 		return;
2666 	TAILQ_INIT(&batch);
2667 	vlp = VP2VNODELOCK(vp);
2668 	mtx_lock(vlp);
2669 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2670 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2671 			continue;
2672 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2673 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2674 	}
2675 	mtx_unlock(vlp);
2676 	cache_free_batch(&batch);
2677 }
2678 
2679 /*
2680  * Entry points for modifying VOP operations.
2681  */
2682 void
2683 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2684     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2685 {
2686 
2687 	ASSERT_VOP_IN_SEQC(fdvp);
2688 	ASSERT_VOP_IN_SEQC(fvp);
2689 	ASSERT_VOP_IN_SEQC(tdvp);
2690 	if (tvp != NULL)
2691 		ASSERT_VOP_IN_SEQC(tvp);
2692 
2693 	cache_purge(fvp);
2694 	if (tvp != NULL) {
2695 		cache_purge(tvp);
2696 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2697 		    ("%s: lingering negative entry", __func__));
2698 	} else {
2699 		cache_remove_cnp(tdvp, tcnp);
2700 	}
2701 }
2702 
2703 void
2704 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2705 {
2706 
2707 	ASSERT_VOP_IN_SEQC(dvp);
2708 	ASSERT_VOP_IN_SEQC(vp);
2709 	cache_purge(vp);
2710 }
2711 
2712 #ifdef INVARIANTS
2713 /*
2714  * Validate that if an entry exists it matches.
2715  */
2716 void
2717 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2718 {
2719 	struct namecache *ncp;
2720 	struct mtx *blp;
2721 	uint32_t hash;
2722 
2723 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2724 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
2725 		return;
2726 	blp = HASH2BUCKETLOCK(hash);
2727 	mtx_lock(blp);
2728 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2729 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2730 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
2731 			if (ncp->nc_vp != vp)
2732 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p vp %p\n",
2733 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp,
2734 				    ncp->nc_vp);
2735 		}
2736 	}
2737 	mtx_unlock(blp);
2738 }
2739 #endif
2740 
2741 /*
2742  * Flush all entries referencing a particular filesystem.
2743  */
2744 void
2745 cache_purgevfs(struct mount *mp)
2746 {
2747 	struct vnode *vp, *mvp;
2748 
2749 	SDT_PROBE1(vfs, namecache, purgevfs, done, mp);
2750 	/*
2751 	 * Somewhat wasteful iteration over all vnodes. Would be better to
2752 	 * support filtering and avoid the interlock to begin with.
2753 	 */
2754 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2755 		if (!cache_has_entries(vp)) {
2756 			VI_UNLOCK(vp);
2757 			continue;
2758 		}
2759 		vholdl(vp);
2760 		VI_UNLOCK(vp);
2761 		cache_purge(vp);
2762 		vdrop(vp);
2763 	}
2764 }
2765 
2766 /*
2767  * Perform canonical checks and cache lookup and pass on to filesystem
2768  * through the vop_cachedlookup only if needed.
2769  */
2770 
2771 int
2772 vfs_cache_lookup(struct vop_lookup_args *ap)
2773 {
2774 	struct vnode *dvp;
2775 	int error;
2776 	struct vnode **vpp = ap->a_vpp;
2777 	struct componentname *cnp = ap->a_cnp;
2778 	int flags = cnp->cn_flags;
2779 
2780 	*vpp = NULL;
2781 	dvp = ap->a_dvp;
2782 
2783 	if (dvp->v_type != VDIR)
2784 		return (ENOTDIR);
2785 
2786 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
2787 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
2788 		return (EROFS);
2789 
2790 	error = vn_dir_check_exec(dvp, cnp);
2791 	if (error != 0)
2792 		return (error);
2793 
2794 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
2795 	if (error == 0)
2796 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
2797 	if (error == -1)
2798 		return (0);
2799 	return (error);
2800 }
2801 
2802 /* Implementation of the getcwd syscall. */
2803 int
2804 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
2805 {
2806 	char *buf, *retbuf;
2807 	size_t buflen;
2808 	int error;
2809 
2810 	buflen = uap->buflen;
2811 	if (__predict_false(buflen < 2))
2812 		return (EINVAL);
2813 	if (buflen > MAXPATHLEN)
2814 		buflen = MAXPATHLEN;
2815 
2816 	buf = uma_zalloc(namei_zone, M_WAITOK);
2817 	error = vn_getcwd(buf, &retbuf, &buflen);
2818 	if (error == 0)
2819 		error = copyout(retbuf, uap->buf, buflen);
2820 	uma_zfree(namei_zone, buf);
2821 	return (error);
2822 }
2823 
2824 int
2825 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
2826 {
2827 	struct pwd *pwd;
2828 	int error;
2829 
2830 	vfs_smr_enter();
2831 	pwd = pwd_get_smr();
2832 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
2833 	    buflen, 0);
2834 	VFS_SMR_ASSERT_NOT_ENTERED();
2835 	if (error < 0) {
2836 		pwd = pwd_hold(curthread);
2837 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
2838 		    retbuf, buflen);
2839 		pwd_drop(pwd);
2840 	}
2841 
2842 #ifdef KTRACE
2843 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
2844 		ktrnamei(*retbuf);
2845 #endif
2846 	return (error);
2847 }
2848 
2849 static int
2850 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
2851     size_t size, int flags, enum uio_seg pathseg)
2852 {
2853 	struct nameidata nd;
2854 	char *retbuf, *freebuf;
2855 	int error;
2856 
2857 	if (flags != 0)
2858 		return (EINVAL);
2859 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1,
2860 	    pathseg, path, fd, &cap_fstat_rights, td);
2861 	if ((error = namei(&nd)) != 0)
2862 		return (error);
2863 	error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size);
2864 	if (error == 0) {
2865 		error = copyout(retbuf, buf, size);
2866 		free(freebuf, M_TEMP);
2867 	}
2868 	NDFREE(&nd, 0);
2869 	return (error);
2870 }
2871 
2872 int
2873 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
2874 {
2875 
2876 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
2877 	    uap->flags, UIO_USERSPACE));
2878 }
2879 
2880 /*
2881  * Retrieve the full filesystem path that correspond to a vnode from the name
2882  * cache (if available)
2883  */
2884 int
2885 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
2886 {
2887 	struct pwd *pwd;
2888 	char *buf;
2889 	size_t buflen;
2890 	int error;
2891 
2892 	if (__predict_false(vp == NULL))
2893 		return (EINVAL);
2894 
2895 	buflen = MAXPATHLEN;
2896 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2897 	vfs_smr_enter();
2898 	pwd = pwd_get_smr();
2899 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
2900 	VFS_SMR_ASSERT_NOT_ENTERED();
2901 	if (error < 0) {
2902 		pwd = pwd_hold(curthread);
2903 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
2904 		pwd_drop(pwd);
2905 	}
2906 	if (error == 0)
2907 		*freebuf = buf;
2908 	else
2909 		free(buf, M_TEMP);
2910 	return (error);
2911 }
2912 
2913 /*
2914  * This function is similar to vn_fullpath, but it attempts to lookup the
2915  * pathname relative to the global root mount point.  This is required for the
2916  * auditing sub-system, as audited pathnames must be absolute, relative to the
2917  * global root mount point.
2918  */
2919 int
2920 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
2921 {
2922 	char *buf;
2923 	size_t buflen;
2924 	int error;
2925 
2926 	if (__predict_false(vp == NULL))
2927 		return (EINVAL);
2928 	buflen = MAXPATHLEN;
2929 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2930 	vfs_smr_enter();
2931 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
2932 	VFS_SMR_ASSERT_NOT_ENTERED();
2933 	if (error < 0) {
2934 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
2935 	}
2936 	if (error == 0)
2937 		*freebuf = buf;
2938 	else
2939 		free(buf, M_TEMP);
2940 	return (error);
2941 }
2942 
2943 static struct namecache *
2944 vn_dd_from_dst(struct vnode *vp)
2945 {
2946 	struct namecache *ncp;
2947 
2948 	cache_assert_vnode_locked(vp);
2949 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
2950 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2951 			return (ncp);
2952 	}
2953 	return (NULL);
2954 }
2955 
2956 int
2957 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
2958 {
2959 	struct vnode *dvp;
2960 	struct namecache *ncp;
2961 	struct mtx *vlp;
2962 	int error;
2963 
2964 	vlp = VP2VNODELOCK(*vp);
2965 	mtx_lock(vlp);
2966 	ncp = (*vp)->v_cache_dd;
2967 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
2968 		KASSERT(ncp == vn_dd_from_dst(*vp),
2969 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
2970 		    ncp, vn_dd_from_dst(*vp)));
2971 	} else {
2972 		ncp = vn_dd_from_dst(*vp);
2973 	}
2974 	if (ncp != NULL) {
2975 		if (*buflen < ncp->nc_nlen) {
2976 			mtx_unlock(vlp);
2977 			vrele(*vp);
2978 			counter_u64_add(numfullpathfail4, 1);
2979 			error = ENOMEM;
2980 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
2981 			    vp, NULL);
2982 			return (error);
2983 		}
2984 		*buflen -= ncp->nc_nlen;
2985 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
2986 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
2987 		    ncp->nc_name, vp);
2988 		dvp = *vp;
2989 		*vp = ncp->nc_dvp;
2990 		vref(*vp);
2991 		mtx_unlock(vlp);
2992 		vrele(dvp);
2993 		return (0);
2994 	}
2995 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
2996 
2997 	mtx_unlock(vlp);
2998 	vn_lock(*vp, LK_SHARED | LK_RETRY);
2999 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3000 	vput(*vp);
3001 	if (error) {
3002 		counter_u64_add(numfullpathfail2, 1);
3003 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3004 		return (error);
3005 	}
3006 
3007 	*vp = dvp;
3008 	if (VN_IS_DOOMED(dvp)) {
3009 		/* forced unmount */
3010 		vrele(dvp);
3011 		error = ENOENT;
3012 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3013 		return (error);
3014 	}
3015 	/*
3016 	 * *vp has its use count incremented still.
3017 	 */
3018 
3019 	return (0);
3020 }
3021 
3022 /*
3023  * Resolve a directory to a pathname.
3024  *
3025  * The name of the directory can always be found in the namecache or fetched
3026  * from the filesystem. There is also guaranteed to be only one parent, meaning
3027  * we can just follow vnodes up until we find the root.
3028  *
3029  * The vnode must be referenced.
3030  */
3031 static int
3032 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3033     size_t *len, size_t addend)
3034 {
3035 #ifdef KDTRACE_HOOKS
3036 	struct vnode *startvp = vp;
3037 #endif
3038 	struct vnode *vp1;
3039 	size_t buflen;
3040 	int error;
3041 	bool slash_prefixed;
3042 
3043 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3044 	VNPASS(vp->v_usecount > 0, vp);
3045 
3046 	buflen = *len;
3047 
3048 	slash_prefixed = true;
3049 	if (addend == 0) {
3050 		MPASS(*len >= 2);
3051 		buflen--;
3052 		buf[buflen] = '\0';
3053 		slash_prefixed = false;
3054 	}
3055 
3056 	error = 0;
3057 
3058 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3059 	counter_u64_add(numfullpathcalls, 1);
3060 	while (vp != rdir && vp != rootvnode) {
3061 		/*
3062 		 * The vp vnode must be already fully constructed,
3063 		 * since it is either found in namecache or obtained
3064 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3065 		 * without obtaining the vnode lock.
3066 		 */
3067 		if ((vp->v_vflag & VV_ROOT) != 0) {
3068 			vn_lock(vp, LK_RETRY | LK_SHARED);
3069 
3070 			/*
3071 			 * With the vnode locked, check for races with
3072 			 * unmount, forced or not.  Note that we
3073 			 * already verified that vp is not equal to
3074 			 * the root vnode, which means that
3075 			 * mnt_vnodecovered can be NULL only for the
3076 			 * case of unmount.
3077 			 */
3078 			if (VN_IS_DOOMED(vp) ||
3079 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3080 			    vp1->v_mountedhere != vp->v_mount) {
3081 				vput(vp);
3082 				error = ENOENT;
3083 				SDT_PROBE3(vfs, namecache, fullpath, return,
3084 				    error, vp, NULL);
3085 				break;
3086 			}
3087 
3088 			vref(vp1);
3089 			vput(vp);
3090 			vp = vp1;
3091 			continue;
3092 		}
3093 		if (vp->v_type != VDIR) {
3094 			vrele(vp);
3095 			counter_u64_add(numfullpathfail1, 1);
3096 			error = ENOTDIR;
3097 			SDT_PROBE3(vfs, namecache, fullpath, return,
3098 			    error, vp, NULL);
3099 			break;
3100 		}
3101 		error = vn_vptocnp(&vp, buf, &buflen);
3102 		if (error)
3103 			break;
3104 		if (buflen == 0) {
3105 			vrele(vp);
3106 			error = ENOMEM;
3107 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3108 			    startvp, NULL);
3109 			break;
3110 		}
3111 		buf[--buflen] = '/';
3112 		slash_prefixed = true;
3113 	}
3114 	if (error)
3115 		return (error);
3116 	if (!slash_prefixed) {
3117 		if (buflen == 0) {
3118 			vrele(vp);
3119 			counter_u64_add(numfullpathfail4, 1);
3120 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3121 			    startvp, NULL);
3122 			return (ENOMEM);
3123 		}
3124 		buf[--buflen] = '/';
3125 	}
3126 	counter_u64_add(numfullpathfound, 1);
3127 	vrele(vp);
3128 
3129 	*retbuf = buf + buflen;
3130 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3131 	*len -= buflen;
3132 	*len += addend;
3133 	return (0);
3134 }
3135 
3136 /*
3137  * Resolve an arbitrary vnode to a pathname.
3138  *
3139  * Note 2 caveats:
3140  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3141  *   resolve to a different path than the one used to find it
3142  * - namecache is not mandatory, meaning names are not guaranteed to be added
3143  *   (in which case resolving fails)
3144  */
3145 static void __inline
3146 cache_rev_failed_impl(int *reason, int line)
3147 {
3148 
3149 	*reason = line;
3150 }
3151 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3152 
3153 static int
3154 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3155     char **retbuf, size_t *buflen, size_t addend)
3156 {
3157 #ifdef KDTRACE_HOOKS
3158 	struct vnode *startvp = vp;
3159 #endif
3160 	struct vnode *tvp;
3161 	struct mount *mp;
3162 	struct namecache *ncp;
3163 	size_t orig_buflen;
3164 	int reason;
3165 	int error;
3166 #ifdef KDTRACE_HOOKS
3167 	int i;
3168 #endif
3169 	seqc_t vp_seqc, tvp_seqc;
3170 	u_char nc_flag;
3171 
3172 	VFS_SMR_ASSERT_ENTERED();
3173 
3174 	if (!cache_fast_revlookup) {
3175 		vfs_smr_exit();
3176 		return (-1);
3177 	}
3178 
3179 	orig_buflen = *buflen;
3180 
3181 	if (addend == 0) {
3182 		MPASS(*buflen >= 2);
3183 		*buflen -= 1;
3184 		buf[*buflen] = '\0';
3185 	}
3186 
3187 	if (vp == rdir || vp == rootvnode) {
3188 		if (addend == 0) {
3189 			*buflen -= 1;
3190 			buf[*buflen] = '/';
3191 		}
3192 		goto out_ok;
3193 	}
3194 
3195 #ifdef KDTRACE_HOOKS
3196 	i = 0;
3197 #endif
3198 	error = -1;
3199 	ncp = NULL; /* for sdt probe down below */
3200 	vp_seqc = vn_seqc_read_any(vp);
3201 	if (seqc_in_modify(vp_seqc)) {
3202 		cache_rev_failed(&reason);
3203 		goto out_abort;
3204 	}
3205 
3206 	for (;;) {
3207 #ifdef KDTRACE_HOOKS
3208 		i++;
3209 #endif
3210 		if ((vp->v_vflag & VV_ROOT) != 0) {
3211 			mp = atomic_load_ptr(&vp->v_mount);
3212 			if (mp == NULL) {
3213 				cache_rev_failed(&reason);
3214 				goto out_abort;
3215 			}
3216 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3217 			tvp_seqc = vn_seqc_read_any(tvp);
3218 			if (seqc_in_modify(tvp_seqc)) {
3219 				cache_rev_failed(&reason);
3220 				goto out_abort;
3221 			}
3222 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3223 				cache_rev_failed(&reason);
3224 				goto out_abort;
3225 			}
3226 			vp = tvp;
3227 			vp_seqc = tvp_seqc;
3228 			continue;
3229 		}
3230 		ncp = atomic_load_ptr(&vp->v_cache_dd);
3231 		if (ncp == NULL) {
3232 			cache_rev_failed(&reason);
3233 			goto out_abort;
3234 		}
3235 		nc_flag = atomic_load_char(&ncp->nc_flag);
3236 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3237 			cache_rev_failed(&reason);
3238 			goto out_abort;
3239 		}
3240 		if (!cache_ncp_canuse(ncp)) {
3241 			cache_rev_failed(&reason);
3242 			goto out_abort;
3243 		}
3244 		if (ncp->nc_nlen >= *buflen) {
3245 			cache_rev_failed(&reason);
3246 			error = ENOMEM;
3247 			goto out_abort;
3248 		}
3249 		*buflen -= ncp->nc_nlen;
3250 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3251 		*buflen -= 1;
3252 		buf[*buflen] = '/';
3253 		tvp = ncp->nc_dvp;
3254 		tvp_seqc = vn_seqc_read_any(tvp);
3255 		if (seqc_in_modify(tvp_seqc)) {
3256 			cache_rev_failed(&reason);
3257 			goto out_abort;
3258 		}
3259 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3260 			cache_rev_failed(&reason);
3261 			goto out_abort;
3262 		}
3263 		vp = tvp;
3264 		vp_seqc = tvp_seqc;
3265 		if (vp == rdir || vp == rootvnode)
3266 			break;
3267 	}
3268 out_ok:
3269 	vfs_smr_exit();
3270 	*retbuf = buf + *buflen;
3271 	*buflen = orig_buflen - *buflen + addend;
3272 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3273 	return (0);
3274 
3275 out_abort:
3276 	*buflen = orig_buflen;
3277 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3278 	vfs_smr_exit();
3279 	return (error);
3280 }
3281 
3282 static int
3283 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3284     size_t *buflen)
3285 {
3286 	size_t orig_buflen, addend;
3287 	int error;
3288 
3289 	if (*buflen < 2)
3290 		return (EINVAL);
3291 
3292 	orig_buflen = *buflen;
3293 
3294 	vref(vp);
3295 	addend = 0;
3296 	if (vp->v_type != VDIR) {
3297 		*buflen -= 1;
3298 		buf[*buflen] = '\0';
3299 		error = vn_vptocnp(&vp, buf, buflen);
3300 		if (error)
3301 			return (error);
3302 		if (*buflen == 0) {
3303 			vrele(vp);
3304 			return (ENOMEM);
3305 		}
3306 		*buflen -= 1;
3307 		buf[*buflen] = '/';
3308 		addend = orig_buflen - *buflen;
3309 	}
3310 
3311 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3312 }
3313 
3314 /*
3315  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3316  *
3317  * Since the namecache does not track hardlinks, the caller is expected to first
3318  * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei.
3319  *
3320  * Then we have 2 cases:
3321  * - if the found vnode is a directory, the path can be constructed just by
3322  *   following names up the chain
3323  * - otherwise we populate the buffer with the saved name and start resolving
3324  *   from the parent
3325  */
3326 static int
3327 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf,
3328     size_t *buflen)
3329 {
3330 	char *buf, *tmpbuf;
3331 	struct pwd *pwd;
3332 	struct componentname *cnp;
3333 	struct vnode *vp;
3334 	size_t addend;
3335 	int error;
3336 	enum vtype type;
3337 
3338 	if (*buflen < 2)
3339 		return (EINVAL);
3340 	if (*buflen > MAXPATHLEN)
3341 		*buflen = MAXPATHLEN;
3342 
3343 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3344 
3345 	addend = 0;
3346 	vp = ndp->ni_vp;
3347 	/*
3348 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3349 	 *
3350 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3351 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3352 	 * If the type is VDIR (like in this very case) we can skip looking
3353 	 * at ni_dvp in the first place. However, since vnodes get passed here
3354 	 * unlocked the target may transition to doomed state (type == VBAD)
3355 	 * before we get to evaluate the condition. If this happens, we will
3356 	 * populate part of the buffer and descend to vn_fullpath_dir with
3357 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3358 	 *
3359 	 * This should be atomic_load(&vp->v_type) but it is illegal to take
3360 	 * an address of a bit field, even if said field is sized to char.
3361 	 * Work around the problem by reading the value into a full-sized enum
3362 	 * and then re-reading it with atomic_load which will still prevent
3363 	 * the compiler from re-reading down the road.
3364 	 */
3365 	type = vp->v_type;
3366 	type = atomic_load_int(&type);
3367 	if (type == VBAD) {
3368 		error = ENOENT;
3369 		goto out_bad;
3370 	}
3371 	if (type != VDIR) {
3372 		cnp = &ndp->ni_cnd;
3373 		addend = cnp->cn_namelen + 2;
3374 		if (*buflen < addend) {
3375 			error = ENOMEM;
3376 			goto out_bad;
3377 		}
3378 		*buflen -= addend;
3379 		tmpbuf = buf + *buflen;
3380 		tmpbuf[0] = '/';
3381 		memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen);
3382 		tmpbuf[addend - 1] = '\0';
3383 		vp = ndp->ni_dvp;
3384 	}
3385 
3386 	vfs_smr_enter();
3387 	pwd = pwd_get_smr();
3388 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3389 	    addend);
3390 	VFS_SMR_ASSERT_NOT_ENTERED();
3391 	if (error < 0) {
3392 		pwd = pwd_hold(curthread);
3393 		vref(vp);
3394 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3395 		    addend);
3396 		pwd_drop(pwd);
3397 		if (error != 0)
3398 			goto out_bad;
3399 	}
3400 
3401 	*freebuf = buf;
3402 
3403 	return (0);
3404 out_bad:
3405 	free(buf, M_TEMP);
3406 	return (error);
3407 }
3408 
3409 struct vnode *
3410 vn_dir_dd_ino(struct vnode *vp)
3411 {
3412 	struct namecache *ncp;
3413 	struct vnode *ddvp;
3414 	struct mtx *vlp;
3415 	enum vgetstate vs;
3416 
3417 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3418 	vlp = VP2VNODELOCK(vp);
3419 	mtx_lock(vlp);
3420 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3421 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3422 			continue;
3423 		ddvp = ncp->nc_dvp;
3424 		vs = vget_prep(ddvp);
3425 		mtx_unlock(vlp);
3426 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3427 			return (NULL);
3428 		return (ddvp);
3429 	}
3430 	mtx_unlock(vlp);
3431 	return (NULL);
3432 }
3433 
3434 int
3435 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3436 {
3437 	struct namecache *ncp;
3438 	struct mtx *vlp;
3439 	int l;
3440 
3441 	vlp = VP2VNODELOCK(vp);
3442 	mtx_lock(vlp);
3443 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3444 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3445 			break;
3446 	if (ncp == NULL) {
3447 		mtx_unlock(vlp);
3448 		return (ENOENT);
3449 	}
3450 	l = min(ncp->nc_nlen, buflen - 1);
3451 	memcpy(buf, ncp->nc_name, l);
3452 	mtx_unlock(vlp);
3453 	buf[l] = '\0';
3454 	return (0);
3455 }
3456 
3457 /*
3458  * This function updates path string to vnode's full global path
3459  * and checks the size of the new path string against the pathlen argument.
3460  *
3461  * Requires a locked, referenced vnode.
3462  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3463  *
3464  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3465  * because it falls back to the ".." lookup if the namecache lookup fails.
3466  */
3467 int
3468 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3469     u_int pathlen)
3470 {
3471 	struct nameidata nd;
3472 	struct vnode *vp1;
3473 	char *rpath, *fbuf;
3474 	int error;
3475 
3476 	ASSERT_VOP_ELOCKED(vp, __func__);
3477 
3478 	/* Construct global filesystem path from vp. */
3479 	VOP_UNLOCK(vp);
3480 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3481 
3482 	if (error != 0) {
3483 		vrele(vp);
3484 		return (error);
3485 	}
3486 
3487 	if (strlen(rpath) >= pathlen) {
3488 		vrele(vp);
3489 		error = ENAMETOOLONG;
3490 		goto out;
3491 	}
3492 
3493 	/*
3494 	 * Re-lookup the vnode by path to detect a possible rename.
3495 	 * As a side effect, the vnode is relocked.
3496 	 * If vnode was renamed, return ENOENT.
3497 	 */
3498 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
3499 	    UIO_SYSSPACE, path, td);
3500 	error = namei(&nd);
3501 	if (error != 0) {
3502 		vrele(vp);
3503 		goto out;
3504 	}
3505 	NDFREE(&nd, NDF_ONLY_PNBUF);
3506 	vp1 = nd.ni_vp;
3507 	vrele(vp);
3508 	if (vp1 == vp)
3509 		strcpy(path, rpath);
3510 	else {
3511 		vput(vp1);
3512 		error = ENOENT;
3513 	}
3514 
3515 out:
3516 	free(fbuf, M_TEMP);
3517 	return (error);
3518 }
3519 
3520 #ifdef DDB
3521 static void
3522 db_print_vpath(struct vnode *vp)
3523 {
3524 
3525 	while (vp != NULL) {
3526 		db_printf("%p: ", vp);
3527 		if (vp == rootvnode) {
3528 			db_printf("/");
3529 			vp = NULL;
3530 		} else {
3531 			if (vp->v_vflag & VV_ROOT) {
3532 				db_printf("<mount point>");
3533 				vp = vp->v_mount->mnt_vnodecovered;
3534 			} else {
3535 				struct namecache *ncp;
3536 				char *ncn;
3537 				int i;
3538 
3539 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3540 				if (ncp != NULL) {
3541 					ncn = ncp->nc_name;
3542 					for (i = 0; i < ncp->nc_nlen; i++)
3543 						db_printf("%c", *ncn++);
3544 					vp = ncp->nc_dvp;
3545 				} else {
3546 					vp = NULL;
3547 				}
3548 			}
3549 		}
3550 		db_printf("\n");
3551 	}
3552 
3553 	return;
3554 }
3555 
3556 DB_SHOW_COMMAND(vpath, db_show_vpath)
3557 {
3558 	struct vnode *vp;
3559 
3560 	if (!have_addr) {
3561 		db_printf("usage: show vpath <struct vnode *>\n");
3562 		return;
3563 	}
3564 
3565 	vp = (struct vnode *)addr;
3566 	db_print_vpath(vp);
3567 }
3568 
3569 #endif
3570 
3571 static bool __read_frequently cache_fast_lookup = true;
3572 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_lookup, CTLFLAG_RW,
3573     &cache_fast_lookup, 0, "");
3574 
3575 #define CACHE_FPL_FAILED	-2020
3576 
3577 /*
3578  * Components of nameidata (or objects it can point to) which may
3579  * need restoring in case fast path lookup fails.
3580  */
3581 struct nameidata_saved {
3582 	long cn_namelen;
3583 	char *cn_nameptr;
3584 	size_t ni_pathlen;
3585 	int cn_flags;
3586 };
3587 
3588 struct cache_fpl {
3589 	struct nameidata *ndp;
3590 	struct componentname *cnp;
3591 	struct pwd *pwd;
3592 	struct vnode *dvp;
3593 	struct vnode *tvp;
3594 	seqc_t dvp_seqc;
3595 	seqc_t tvp_seqc;
3596 	struct nameidata_saved snd;
3597 	int line;
3598 	enum cache_fpl_status status:8;
3599 	bool in_smr;
3600 	bool fsearch;
3601 };
3602 
3603 static void
3604 cache_fpl_cleanup_cnp(struct componentname *cnp)
3605 {
3606 
3607 	uma_zfree(namei_zone, cnp->cn_pnbuf);
3608 #ifdef DIAGNOSTIC
3609 	cnp->cn_pnbuf = NULL;
3610 	cnp->cn_nameptr = NULL;
3611 #endif
3612 }
3613 
3614 static struct vnode *
3615 cache_fpl_handle_root(struct cache_fpl *fpl)
3616 {
3617 	struct nameidata *ndp;
3618 	struct componentname *cnp;
3619 
3620 	ndp = fpl->ndp;
3621 	cnp = fpl->cnp;
3622 
3623 	while (*(cnp->cn_nameptr) == '/') {
3624 		cnp->cn_nameptr++;
3625 		ndp->ni_pathlen--;
3626 	}
3627 
3628 	return (ndp->ni_rootdir);
3629 }
3630 
3631 static void
3632 cache_fpl_checkpoint(struct cache_fpl *fpl, struct nameidata_saved *snd)
3633 {
3634 
3635 	snd->cn_flags = fpl->ndp->ni_cnd.cn_flags;
3636 	snd->cn_namelen = fpl->ndp->ni_cnd.cn_namelen;
3637 	snd->cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
3638 	snd->ni_pathlen = fpl->ndp->ni_pathlen;
3639 }
3640 
3641 static void
3642 cache_fpl_restore_partial(struct cache_fpl *fpl, struct nameidata_saved *snd)
3643 {
3644 
3645 	fpl->ndp->ni_cnd.cn_flags = snd->cn_flags;
3646 	fpl->ndp->ni_cnd.cn_namelen = snd->cn_namelen;
3647 	fpl->ndp->ni_cnd.cn_nameptr = snd->cn_nameptr;
3648 	fpl->ndp->ni_pathlen = snd->ni_pathlen;
3649 }
3650 
3651 static void
3652 cache_fpl_restore_abort(struct cache_fpl *fpl, struct nameidata_saved *snd)
3653 {
3654 
3655 	cache_fpl_restore_partial(fpl, snd);
3656 	/*
3657 	 * It is 0 on entry by API contract.
3658 	 */
3659 	fpl->ndp->ni_resflags = 0;
3660 }
3661 
3662 #ifdef INVARIANTS
3663 #define cache_fpl_smr_assert_entered(fpl) ({			\
3664 	struct cache_fpl *_fpl = (fpl);				\
3665 	MPASS(_fpl->in_smr == true);				\
3666 	VFS_SMR_ASSERT_ENTERED();				\
3667 })
3668 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
3669 	struct cache_fpl *_fpl = (fpl);				\
3670 	MPASS(_fpl->in_smr == false);				\
3671 	VFS_SMR_ASSERT_NOT_ENTERED();				\
3672 })
3673 #else
3674 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
3675 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
3676 #endif
3677 
3678 #define cache_fpl_smr_enter_initial(fpl) ({			\
3679 	struct cache_fpl *_fpl = (fpl);				\
3680 	vfs_smr_enter();					\
3681 	_fpl->in_smr = true;					\
3682 })
3683 
3684 #define cache_fpl_smr_enter(fpl) ({				\
3685 	struct cache_fpl *_fpl = (fpl);				\
3686 	MPASS(_fpl->in_smr == false);				\
3687 	vfs_smr_enter();					\
3688 	_fpl->in_smr = true;					\
3689 })
3690 
3691 #define cache_fpl_smr_exit(fpl) ({				\
3692 	struct cache_fpl *_fpl = (fpl);				\
3693 	MPASS(_fpl->in_smr == true);				\
3694 	vfs_smr_exit();						\
3695 	_fpl->in_smr = false;					\
3696 })
3697 
3698 static int
3699 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
3700 {
3701 
3702 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
3703 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
3704 		    ("%s: converting to abort from %d at %d, set at %d\n",
3705 		    __func__, fpl->status, line, fpl->line));
3706 	}
3707 	fpl->status = CACHE_FPL_STATUS_ABORTED;
3708 	fpl->line = line;
3709 	return (CACHE_FPL_FAILED);
3710 }
3711 
3712 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
3713 
3714 static int
3715 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
3716 {
3717 
3718 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3719 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
3720 	    __func__, line, fpl->status, fpl->line));
3721 	cache_fpl_smr_assert_entered(fpl);
3722 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
3723 	fpl->line = line;
3724 	return (CACHE_FPL_FAILED);
3725 }
3726 
3727 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
3728 
3729 static int
3730 cache_fpl_handled_impl(struct cache_fpl *fpl, int error, int line)
3731 {
3732 
3733 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3734 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
3735 	    __func__, line, fpl->status, fpl->line));
3736 	cache_fpl_smr_assert_not_entered(fpl);
3737 	MPASS(error != CACHE_FPL_FAILED);
3738 	fpl->status = CACHE_FPL_STATUS_HANDLED;
3739 	fpl->line = line;
3740 	return (error);
3741 }
3742 
3743 #define cache_fpl_handled(x, e)	cache_fpl_handled_impl((x), (e), __LINE__)
3744 
3745 static bool
3746 cache_fpl_terminated(struct cache_fpl *fpl)
3747 {
3748 
3749 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
3750 }
3751 
3752 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
3753 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
3754 	 FAILIFEXISTS | FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | \
3755 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK)
3756 
3757 #define CACHE_FPL_INTERNAL_CN_FLAGS \
3758 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
3759 
3760 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
3761     "supported and internal flags overlap");
3762 
3763 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
3764 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
3765 
3766 static bool
3767 cache_fpl_islastcn(struct nameidata *ndp)
3768 {
3769 
3770 	return (*ndp->ni_next == 0);
3771 }
3772 
3773 static bool
3774 cache_fpl_isdotdot(struct componentname *cnp)
3775 {
3776 
3777 	if (cnp->cn_namelen == 2 &&
3778 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
3779 		return (true);
3780 	return (false);
3781 }
3782 
3783 static bool
3784 cache_can_fplookup(struct cache_fpl *fpl)
3785 {
3786 	struct nameidata *ndp;
3787 	struct componentname *cnp;
3788 	struct thread *td;
3789 
3790 	ndp = fpl->ndp;
3791 	cnp = fpl->cnp;
3792 	td = cnp->cn_thread;
3793 
3794 	if (!cache_fast_lookup) {
3795 		cache_fpl_aborted(fpl);
3796 		return (false);
3797 	}
3798 #ifdef MAC
3799 	if (mac_vnode_check_lookup_enabled()) {
3800 		cache_fpl_aborted(fpl);
3801 		return (false);
3802 	}
3803 #endif
3804 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
3805 		cache_fpl_aborted(fpl);
3806 		return (false);
3807 	}
3808 	if (IN_CAPABILITY_MODE(td)) {
3809 		cache_fpl_aborted(fpl);
3810 		return (false);
3811 	}
3812 	if (AUDITING_TD(td)) {
3813 		cache_fpl_aborted(fpl);
3814 		return (false);
3815 	}
3816 	if (ndp->ni_startdir != NULL) {
3817 		cache_fpl_aborted(fpl);
3818 		return (false);
3819 	}
3820 	return (true);
3821 }
3822 
3823 static int
3824 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
3825 {
3826 	struct nameidata *ndp;
3827 	int error;
3828 	bool fsearch;
3829 
3830 	ndp = fpl->ndp;
3831 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
3832 	if (__predict_false(error != 0)) {
3833 		cache_fpl_smr_exit(fpl);
3834 		return (cache_fpl_aborted(fpl));
3835 	}
3836 	fpl->fsearch = fsearch;
3837 	return (0);
3838 }
3839 
3840 static bool
3841 cache_fplookup_vnode_supported(struct vnode *vp)
3842 {
3843 
3844 	return (vp->v_type != VLNK);
3845 }
3846 
3847 static int __noinline
3848 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
3849     uint32_t hash)
3850 {
3851 	struct componentname *cnp;
3852 	struct vnode *dvp;
3853 
3854 	cnp = fpl->cnp;
3855 	dvp = fpl->dvp;
3856 
3857 	cache_fpl_smr_exit(fpl);
3858 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
3859 		return (cache_fpl_handled(fpl, ENOENT));
3860 	else
3861 		return (cache_fpl_aborted(fpl));
3862 }
3863 
3864 /*
3865  * The target vnode is not supported, prepare for the slow path to take over.
3866  */
3867 static int __noinline
3868 cache_fplookup_partial_setup(struct cache_fpl *fpl)
3869 {
3870 	struct nameidata *ndp;
3871 	struct componentname *cnp;
3872 	enum vgetstate dvs;
3873 	struct vnode *dvp;
3874 	struct pwd *pwd;
3875 	seqc_t dvp_seqc;
3876 
3877 	ndp = fpl->ndp;
3878 	cnp = fpl->cnp;
3879 	pwd = fpl->pwd;
3880 	dvp = fpl->dvp;
3881 	dvp_seqc = fpl->dvp_seqc;
3882 
3883 	if (!pwd_hold_smr(pwd)) {
3884 		cache_fpl_smr_exit(fpl);
3885 		return (cache_fpl_aborted(fpl));
3886 	}
3887 
3888 	/*
3889 	 * Note that seqc is checked before the vnode is locked, so by
3890 	 * the time regular lookup gets to it it may have moved.
3891 	 *
3892 	 * Ultimately this does not affect correctness, any lookup errors
3893 	 * are userspace racing with itself. It is guaranteed that any
3894 	 * path which ultimatley gets found could also have been found
3895 	 * by regular lookup going all the way in absence of concurrent
3896 	 * modifications.
3897 	 */
3898 	dvs = vget_prep_smr(dvp);
3899 	cache_fpl_smr_exit(fpl);
3900 	if (__predict_false(dvs == VGET_NONE)) {
3901 		pwd_drop(pwd);
3902 		return (cache_fpl_aborted(fpl));
3903 	}
3904 
3905 	vget_finish_ref(dvp, dvs);
3906 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3907 		vrele(dvp);
3908 		pwd_drop(pwd);
3909 		return (cache_fpl_aborted(fpl));
3910 	}
3911 
3912 	cache_fpl_restore_partial(fpl, &fpl->snd);
3913 
3914 	ndp->ni_startdir = dvp;
3915 	cnp->cn_flags |= MAKEENTRY;
3916 	if (cache_fpl_islastcn(ndp))
3917 		cnp->cn_flags |= ISLASTCN;
3918 	if (cache_fpl_isdotdot(cnp))
3919 		cnp->cn_flags |= ISDOTDOT;
3920 
3921 	return (0);
3922 }
3923 
3924 static int
3925 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
3926 {
3927 	struct componentname *cnp;
3928 	struct vnode *tvp;
3929 	seqc_t tvp_seqc;
3930 	int error, lkflags;
3931 
3932 	cnp = fpl->cnp;
3933 	tvp = fpl->tvp;
3934 	tvp_seqc = fpl->tvp_seqc;
3935 
3936 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
3937 		lkflags = LK_SHARED;
3938 		if ((cnp->cn_flags & LOCKSHARED) == 0)
3939 			lkflags = LK_EXCLUSIVE;
3940 		error = vget_finish(tvp, lkflags, tvs);
3941 		if (__predict_false(error != 0)) {
3942 			return (cache_fpl_aborted(fpl));
3943 		}
3944 	} else {
3945 		vget_finish_ref(tvp, tvs);
3946 	}
3947 
3948 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
3949 		if ((cnp->cn_flags & LOCKLEAF) != 0)
3950 			vput(tvp);
3951 		else
3952 			vrele(tvp);
3953 		return (cache_fpl_aborted(fpl));
3954 	}
3955 
3956 	return (cache_fpl_handled(fpl, 0));
3957 }
3958 
3959 /*
3960  * They want to possibly modify the state of the namecache.
3961  */
3962 static int __noinline
3963 cache_fplookup_final_modifying(struct cache_fpl *fpl)
3964 {
3965 	struct nameidata *ndp;
3966 	struct componentname *cnp;
3967 	enum vgetstate dvs;
3968 	struct vnode *dvp, *tvp;
3969 	struct mount *mp;
3970 	seqc_t dvp_seqc;
3971 	int error;
3972 	bool docache;
3973 
3974 	ndp = fpl->ndp;
3975 	cnp = fpl->cnp;
3976 	dvp = fpl->dvp;
3977 	dvp_seqc = fpl->dvp_seqc;
3978 
3979 	MPASS(cache_fpl_islastcn(ndp));
3980 	if ((cnp->cn_flags & LOCKPARENT) == 0)
3981 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
3982 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
3983 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
3984 	    cnp->cn_nameiop == RENAME);
3985 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
3986 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
3987 
3988 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
3989 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
3990 		docache = false;
3991 
3992 	mp = atomic_load_ptr(&dvp->v_mount);
3993 	if (__predict_false(mp == NULL)) {
3994 		return (cache_fpl_aborted(fpl));
3995 	}
3996 
3997 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
3998 		cache_fpl_smr_exit(fpl);
3999 		/*
4000 		 * Original code keeps not checking for CREATE which
4001 		 * might be a bug. For now let the old lookup decide.
4002 		 */
4003 		if (cnp->cn_nameiop == CREATE) {
4004 			return (cache_fpl_aborted(fpl));
4005 		}
4006 		return (cache_fpl_handled(fpl, EROFS));
4007 	}
4008 
4009 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4010 		cache_fpl_smr_exit(fpl);
4011 		return (cache_fpl_handled(fpl, EEXIST));
4012 	}
4013 
4014 	/*
4015 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4016 	 * reasoning.
4017 	 *
4018 	 * XXX At least UFS requires its lookup routine to be called for
4019 	 * the last path component, which leads to some level of complicaton
4020 	 * and inefficiency:
4021 	 * - the target routine always locks the target vnode, but our caller
4022 	 *   may not need it locked
4023 	 * - some of the VOP machinery asserts that the parent is locked, which
4024 	 *   once more may be not required
4025 	 *
4026 	 * TODO: add a flag for filesystems which don't need this.
4027 	 */
4028 	dvs = vget_prep_smr(dvp);
4029 	cache_fpl_smr_exit(fpl);
4030 	if (__predict_false(dvs == VGET_NONE)) {
4031 		return (cache_fpl_aborted(fpl));
4032 	}
4033 
4034 	vget_finish_ref(dvp, dvs);
4035 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4036 		vrele(dvp);
4037 		return (cache_fpl_aborted(fpl));
4038 	}
4039 
4040 	error = vn_lock(dvp, LK_EXCLUSIVE);
4041 	if (__predict_false(error != 0)) {
4042 		vrele(dvp);
4043 		return (cache_fpl_aborted(fpl));
4044 	}
4045 
4046 	tvp = NULL;
4047 	cnp->cn_flags |= ISLASTCN;
4048 	if (docache)
4049 		cnp->cn_flags |= MAKEENTRY;
4050 	if (cache_fpl_isdotdot(cnp))
4051 		cnp->cn_flags |= ISDOTDOT;
4052 	cnp->cn_lkflags = LK_EXCLUSIVE;
4053 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4054 	switch (error) {
4055 	case EJUSTRETURN:
4056 	case 0:
4057 		break;
4058 	case ENOTDIR:
4059 	case ENOENT:
4060 		vput(dvp);
4061 		return (cache_fpl_handled(fpl, error));
4062 	default:
4063 		vput(dvp);
4064 		return (cache_fpl_aborted(fpl));
4065 	}
4066 
4067 	fpl->tvp = tvp;
4068 
4069 	if (tvp == NULL) {
4070 		if ((cnp->cn_flags & SAVESTART) != 0) {
4071 			ndp->ni_startdir = dvp;
4072 			vrefact(ndp->ni_startdir);
4073 			cnp->cn_flags |= SAVENAME;
4074 		}
4075 		MPASS(error == EJUSTRETURN);
4076 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4077 			VOP_UNLOCK(dvp);
4078 		}
4079 		return (cache_fpl_handled(fpl, 0));
4080 	}
4081 
4082 	/*
4083 	 * There are very hairy corner cases concerning various flag combinations
4084 	 * and locking state. In particular here we only hold one lock instead of
4085 	 * two.
4086 	 *
4087 	 * Skip the complexity as it is of no significance for normal workloads.
4088 	 */
4089 	if (__predict_false(tvp == dvp)) {
4090 		vput(dvp);
4091 		vrele(tvp);
4092 		return (cache_fpl_aborted(fpl));
4093 	}
4094 
4095 	/*
4096 	 * Check if the target is either a symlink or a mount point.
4097 	 * Since we expect this to be the terminal vnode it should
4098 	 * almost never be true.
4099 	 */
4100 	if (__predict_false(!cache_fplookup_vnode_supported(tvp) ||
4101 	    cache_fplookup_is_mp(fpl))) {
4102 		vput(dvp);
4103 		vput(tvp);
4104 		return (cache_fpl_aborted(fpl));
4105 	}
4106 
4107 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4108 		vput(dvp);
4109 		vput(tvp);
4110 		return (cache_fpl_handled(fpl, EEXIST));
4111 	}
4112 
4113 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4114 		VOP_UNLOCK(tvp);
4115 	}
4116 
4117 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4118 		VOP_UNLOCK(dvp);
4119 	}
4120 
4121 	if ((cnp->cn_flags & SAVESTART) != 0) {
4122 		ndp->ni_startdir = dvp;
4123 		vrefact(ndp->ni_startdir);
4124 		cnp->cn_flags |= SAVENAME;
4125 	}
4126 
4127 	return (cache_fpl_handled(fpl, 0));
4128 }
4129 
4130 static int __noinline
4131 cache_fplookup_modifying(struct cache_fpl *fpl)
4132 {
4133 	struct nameidata *ndp;
4134 
4135 	ndp = fpl->ndp;
4136 
4137 	if (!cache_fpl_islastcn(ndp)) {
4138 		return (cache_fpl_partial(fpl));
4139 	}
4140 	return  (cache_fplookup_final_modifying(fpl));
4141 }
4142 
4143 static int __noinline
4144 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4145 {
4146 	struct componentname *cnp;
4147 	enum vgetstate dvs, tvs;
4148 	struct vnode *dvp, *tvp;
4149 	seqc_t dvp_seqc;
4150 	int error;
4151 
4152 	cnp = fpl->cnp;
4153 	dvp = fpl->dvp;
4154 	dvp_seqc = fpl->dvp_seqc;
4155 	tvp = fpl->tvp;
4156 
4157 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4158 
4159 	/*
4160 	 * This is less efficient than it can be for simplicity.
4161 	 */
4162 	dvs = vget_prep_smr(dvp);
4163 	if (__predict_false(dvs == VGET_NONE)) {
4164 		return (cache_fpl_aborted(fpl));
4165 	}
4166 	tvs = vget_prep_smr(tvp);
4167 	if (__predict_false(tvs == VGET_NONE)) {
4168 		cache_fpl_smr_exit(fpl);
4169 		vget_abort(dvp, dvs);
4170 		return (cache_fpl_aborted(fpl));
4171 	}
4172 
4173 	cache_fpl_smr_exit(fpl);
4174 
4175 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4176 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4177 		if (__predict_false(error != 0)) {
4178 			vget_abort(tvp, tvs);
4179 			return (cache_fpl_aborted(fpl));
4180 		}
4181 	} else {
4182 		vget_finish_ref(dvp, dvs);
4183 	}
4184 
4185 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4186 		vget_abort(tvp, tvs);
4187 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4188 			vput(dvp);
4189 		else
4190 			vrele(dvp);
4191 		return (cache_fpl_aborted(fpl));
4192 	}
4193 
4194 	error = cache_fplookup_final_child(fpl, tvs);
4195 	if (__predict_false(error != 0)) {
4196 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED);
4197 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4198 			vput(dvp);
4199 		else
4200 			vrele(dvp);
4201 		return (error);
4202 	}
4203 
4204 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4205 	return (0);
4206 }
4207 
4208 static int
4209 cache_fplookup_final(struct cache_fpl *fpl)
4210 {
4211 	struct componentname *cnp;
4212 	enum vgetstate tvs;
4213 	struct vnode *dvp, *tvp;
4214 	seqc_t dvp_seqc;
4215 
4216 	cnp = fpl->cnp;
4217 	dvp = fpl->dvp;
4218 	dvp_seqc = fpl->dvp_seqc;
4219 	tvp = fpl->tvp;
4220 
4221 	if (cnp->cn_nameiop != LOOKUP) {
4222 		return (cache_fplookup_final_modifying(fpl));
4223 	}
4224 
4225 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4226 		return (cache_fplookup_final_withparent(fpl));
4227 
4228 	tvs = vget_prep_smr(tvp);
4229 	if (__predict_false(tvs == VGET_NONE)) {
4230 		return (cache_fpl_partial(fpl));
4231 	}
4232 
4233 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4234 		cache_fpl_smr_exit(fpl);
4235 		vget_abort(tvp, tvs);
4236 		return (cache_fpl_aborted(fpl));
4237 	}
4238 
4239 	cache_fpl_smr_exit(fpl);
4240 	return (cache_fplookup_final_child(fpl, tvs));
4241 }
4242 
4243 /*
4244  * Comment from locked lookup:
4245  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4246  * directory, e.g. like "/." or ".".
4247  */
4248 static int __noinline
4249 cache_fplookup_degenerate(struct cache_fpl *fpl)
4250 {
4251 	struct componentname *cnp;
4252 	struct vnode *dvp;
4253 	enum vgetstate dvs;
4254 	int error, lkflags;
4255 
4256 	fpl->tvp = fpl->dvp;
4257 	fpl->tvp_seqc = fpl->dvp_seqc;
4258 
4259 	cnp = fpl->cnp;
4260 	dvp = fpl->dvp;
4261 
4262 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4263 		cache_fpl_smr_exit(fpl);
4264 		return (cache_fpl_handled(fpl, EISDIR));
4265 	}
4266 
4267 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4268 
4269 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4270 		return (cache_fplookup_final_withparent(fpl));
4271 	}
4272 
4273 	dvs = vget_prep_smr(dvp);
4274 	cache_fpl_smr_exit(fpl);
4275 	if (__predict_false(dvs == VGET_NONE)) {
4276 		return (cache_fpl_aborted(fpl));
4277 	}
4278 
4279 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4280 		lkflags = LK_SHARED;
4281 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4282 			lkflags = LK_EXCLUSIVE;
4283 		error = vget_finish(dvp, lkflags, dvs);
4284 		if (__predict_false(error != 0)) {
4285 			return (cache_fpl_aborted(fpl));
4286 		}
4287 	} else {
4288 		vget_finish_ref(dvp, dvs);
4289 	}
4290 	return (cache_fpl_handled(fpl, 0));
4291 }
4292 
4293 static int __noinline
4294 cache_fplookup_noentry(struct cache_fpl *fpl)
4295 {
4296 	struct nameidata *ndp;
4297 	struct componentname *cnp;
4298 	enum vgetstate dvs;
4299 	struct vnode *dvp, *tvp;
4300 	seqc_t dvp_seqc;
4301 	int error;
4302 	bool docache;
4303 
4304 	ndp = fpl->ndp;
4305 	cnp = fpl->cnp;
4306 	dvp = fpl->dvp;
4307 	dvp_seqc = fpl->dvp_seqc;
4308 
4309 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4310 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4311 	MPASS(!cache_fpl_isdotdot(cnp));
4312 
4313 	if (cnp->cn_nameiop != LOOKUP) {
4314 		fpl->tvp = NULL;
4315 		return (cache_fplookup_modifying(fpl));
4316 	}
4317 
4318 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4319 
4320 	/*
4321 	 * Only try to fill in the component if it is the last one,
4322 	 * otherwise not only there may be several to handle but the
4323 	 * walk may be complicated.
4324 	 */
4325 	if (!cache_fpl_islastcn(ndp)) {
4326 		return (cache_fpl_partial(fpl));
4327 	}
4328 
4329 	/*
4330 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4331 	 * reasoning.
4332 	 */
4333 	dvs = vget_prep_smr(dvp);
4334 	cache_fpl_smr_exit(fpl);
4335 	if (__predict_false(dvs == VGET_NONE)) {
4336 		return (cache_fpl_aborted(fpl));
4337 	}
4338 
4339 	vget_finish_ref(dvp, dvs);
4340 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4341 		vrele(dvp);
4342 		return (cache_fpl_aborted(fpl));
4343 	}
4344 
4345 	error = vn_lock(dvp, LK_SHARED);
4346 	if (__predict_false(error != 0)) {
4347 		vrele(dvp);
4348 		return (cache_fpl_aborted(fpl));
4349 	}
4350 
4351 	tvp = NULL;
4352 	/*
4353 	 * TODO: provide variants which don't require locking either vnode.
4354 	 */
4355 	cnp->cn_flags |= ISLASTCN;
4356 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4357 	if (docache)
4358 		cnp->cn_flags |= MAKEENTRY;
4359 	cnp->cn_lkflags = LK_SHARED;
4360 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
4361 		cnp->cn_lkflags = LK_EXCLUSIVE;
4362 	}
4363 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4364 	switch (error) {
4365 	case EJUSTRETURN:
4366 	case 0:
4367 		break;
4368 	case ENOTDIR:
4369 	case ENOENT:
4370 		vput(dvp);
4371 		return (cache_fpl_handled(fpl, error));
4372 	default:
4373 		vput(dvp);
4374 		return (cache_fpl_aborted(fpl));
4375 	}
4376 
4377 	fpl->tvp = tvp;
4378 
4379 	if (tvp == NULL) {
4380 		MPASS(error == EJUSTRETURN);
4381 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4382 			vput(dvp);
4383 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4384 			VOP_UNLOCK(dvp);
4385 		}
4386 		return (cache_fpl_handled(fpl, 0));
4387 	}
4388 
4389 	if (__predict_false(!cache_fplookup_vnode_supported(tvp) ||
4390 	    cache_fplookup_is_mp(fpl))) {
4391 		vput(dvp);
4392 		vput(tvp);
4393 		return (cache_fpl_aborted(fpl));
4394 	}
4395 
4396 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4397 		VOP_UNLOCK(tvp);
4398 	}
4399 
4400 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4401 		vput(dvp);
4402 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4403 		VOP_UNLOCK(dvp);
4404 	}
4405 	return (cache_fpl_handled(fpl, 0));
4406 }
4407 
4408 static int __noinline
4409 cache_fplookup_dot(struct cache_fpl *fpl)
4410 {
4411 	int error;
4412 
4413 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
4414 	/*
4415 	 * Just re-assign the value. seqc will be checked later for the first
4416 	 * non-dot path component in line and/or before deciding to return the
4417 	 * vnode.
4418 	 */
4419 	fpl->tvp = fpl->dvp;
4420 	fpl->tvp_seqc = fpl->dvp_seqc;
4421 	if (cache_fplookup_is_mp(fpl)) {
4422 		error = cache_fplookup_cross_mount(fpl);
4423 		if (__predict_false(error != 0)) {
4424 			return (error);
4425 		}
4426 	}
4427 
4428 	counter_u64_add(dothits, 1);
4429 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
4430 	return (0);
4431 }
4432 
4433 static int __noinline
4434 cache_fplookup_dotdot(struct cache_fpl *fpl)
4435 {
4436 	struct nameidata *ndp;
4437 	struct componentname *cnp;
4438 	struct namecache *ncp;
4439 	struct vnode *dvp;
4440 	struct prison *pr;
4441 	u_char nc_flag;
4442 
4443 	ndp = fpl->ndp;
4444 	cnp = fpl->cnp;
4445 	dvp = fpl->dvp;
4446 
4447 	MPASS(cache_fpl_isdotdot(cnp));
4448 
4449 	/*
4450 	 * XXX this is racy the same way regular lookup is
4451 	 */
4452 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
4453 	    pr = pr->pr_parent)
4454 		if (dvp == pr->pr_root)
4455 			break;
4456 
4457 	if (dvp == ndp->ni_rootdir ||
4458 	    dvp == ndp->ni_topdir ||
4459 	    dvp == rootvnode ||
4460 	    pr != NULL) {
4461 		fpl->tvp = dvp;
4462 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
4463 		if (seqc_in_modify(fpl->tvp_seqc)) {
4464 			return (cache_fpl_aborted(fpl));
4465 		}
4466 		return (0);
4467 	}
4468 
4469 	if ((dvp->v_vflag & VV_ROOT) != 0) {
4470 		/*
4471 		 * TODO
4472 		 * The opposite of climb mount is needed here.
4473 		 */
4474 		return (cache_fpl_aborted(fpl));
4475 	}
4476 
4477 	ncp = atomic_load_ptr(&dvp->v_cache_dd);
4478 	if (ncp == NULL) {
4479 		return (cache_fpl_aborted(fpl));
4480 	}
4481 
4482 	nc_flag = atomic_load_char(&ncp->nc_flag);
4483 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
4484 		if ((nc_flag & NCF_NEGATIVE) != 0)
4485 			return (cache_fpl_aborted(fpl));
4486 		fpl->tvp = ncp->nc_vp;
4487 	} else {
4488 		fpl->tvp = ncp->nc_dvp;
4489 	}
4490 
4491 	if (!cache_ncp_canuse(ncp)) {
4492 		return (cache_fpl_aborted(fpl));
4493 	}
4494 
4495 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
4496 	if (seqc_in_modify(fpl->tvp_seqc)) {
4497 		return (cache_fpl_partial(fpl));
4498 	}
4499 
4500 	counter_u64_add(dotdothits, 1);
4501 	return (0);
4502 }
4503 
4504 static int __noinline
4505 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
4506 {
4507 	u_char nc_flag;
4508 	bool neg_promote;
4509 
4510 	nc_flag = atomic_load_char(&ncp->nc_flag);
4511 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
4512 	/*
4513 	 * If they want to create an entry we need to replace this one.
4514 	 */
4515 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
4516 		fpl->tvp = NULL;
4517 		return (cache_fplookup_modifying(fpl));
4518 	}
4519 	neg_promote = cache_neg_hit_prep(ncp);
4520 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
4521 		cache_neg_hit_abort(ncp);
4522 		return (cache_fpl_partial(fpl));
4523 	}
4524 	if (neg_promote) {
4525 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
4526 	}
4527 	cache_neg_hit_finish(ncp);
4528 	cache_fpl_smr_exit(fpl);
4529 	return (cache_fpl_handled(fpl, ENOENT));
4530 }
4531 
4532 static int
4533 cache_fplookup_next(struct cache_fpl *fpl)
4534 {
4535 	struct componentname *cnp;
4536 	struct namecache *ncp;
4537 	struct vnode *dvp, *tvp;
4538 	u_char nc_flag;
4539 	uint32_t hash;
4540 	int error;
4541 
4542 	cnp = fpl->cnp;
4543 	dvp = fpl->dvp;
4544 
4545 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
4546 		if (cnp->cn_namelen == 1) {
4547 			return (cache_fplookup_dot(fpl));
4548 		}
4549 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
4550 			return (cache_fplookup_dotdot(fpl));
4551 		}
4552 	}
4553 
4554 	MPASS(!cache_fpl_isdotdot(cnp));
4555 
4556 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
4557 
4558 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
4559 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
4560 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
4561 			break;
4562 	}
4563 
4564 	if (__predict_false(ncp == NULL)) {
4565 		return (cache_fplookup_noentry(fpl));
4566 	}
4567 
4568 	tvp = atomic_load_ptr(&ncp->nc_vp);
4569 	nc_flag = atomic_load_char(&ncp->nc_flag);
4570 	if ((nc_flag & NCF_NEGATIVE) != 0) {
4571 		return (cache_fplookup_neg(fpl, ncp, hash));
4572 	}
4573 
4574 	if (!cache_ncp_canuse(ncp)) {
4575 		return (cache_fpl_partial(fpl));
4576 	}
4577 
4578 	fpl->tvp = tvp;
4579 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
4580 	if (seqc_in_modify(fpl->tvp_seqc)) {
4581 		return (cache_fpl_partial(fpl));
4582 	}
4583 
4584 	if (!cache_fplookup_vnode_supported(tvp)) {
4585 		return (cache_fpl_partial(fpl));
4586 	}
4587 
4588 	if (cache_fplookup_is_mp(fpl)) {
4589 		error = cache_fplookup_cross_mount(fpl);
4590 		if (__predict_false(error != 0)) {
4591 			return (error);
4592 		}
4593 	}
4594 
4595 	counter_u64_add(numposhits, 1);
4596 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
4597 	return (0);
4598 }
4599 
4600 static bool
4601 cache_fplookup_mp_supported(struct mount *mp)
4602 {
4603 
4604 	MPASS(mp != NULL);
4605 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4606 		return (false);
4607 	return (true);
4608 }
4609 
4610 /*
4611  * Walk up the mount stack (if any).
4612  *
4613  * Correctness is provided in the following ways:
4614  * - all vnodes are protected from freeing with SMR
4615  * - struct mount objects are type stable making them always safe to access
4616  * - stability of the particular mount is provided by busying it
4617  * - relationship between the vnode which is mounted on and the mount is
4618  *   verified with the vnode sequence counter after busying
4619  * - association between root vnode of the mount and the mount is protected
4620  *   by busy
4621  *
4622  * From that point on we can read the sequence counter of the root vnode
4623  * and get the next mount on the stack (if any) using the same protection.
4624  *
4625  * By the end of successful walk we are guaranteed the reached state was
4626  * indeed present at least at some point which matches the regular lookup.
4627  */
4628 static int __noinline
4629 cache_fplookup_climb_mount(struct cache_fpl *fpl)
4630 {
4631 	struct mount *mp, *prev_mp;
4632 	struct mount_pcpu *mpcpu, *prev_mpcpu;
4633 	struct vnode *vp;
4634 	seqc_t vp_seqc;
4635 
4636 	vp = fpl->tvp;
4637 	vp_seqc = fpl->tvp_seqc;
4638 
4639 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
4640 	mp = atomic_load_ptr(&vp->v_mountedhere);
4641 	if (__predict_false(mp == NULL)) {
4642 		return (0);
4643 	}
4644 
4645 	prev_mp = NULL;
4646 	for (;;) {
4647 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
4648 			if (prev_mp != NULL)
4649 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4650 			return (cache_fpl_partial(fpl));
4651 		}
4652 		if (prev_mp != NULL)
4653 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4654 		if (!vn_seqc_consistent(vp, vp_seqc)) {
4655 			vfs_op_thread_exit_crit(mp, mpcpu);
4656 			return (cache_fpl_partial(fpl));
4657 		}
4658 		if (!cache_fplookup_mp_supported(mp)) {
4659 			vfs_op_thread_exit_crit(mp, mpcpu);
4660 			return (cache_fpl_partial(fpl));
4661 		}
4662 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
4663 		if (vp == NULL || VN_IS_DOOMED(vp)) {
4664 			vfs_op_thread_exit_crit(mp, mpcpu);
4665 			return (cache_fpl_partial(fpl));
4666 		}
4667 		vp_seqc = vn_seqc_read_any(vp);
4668 		if (seqc_in_modify(vp_seqc)) {
4669 			vfs_op_thread_exit_crit(mp, mpcpu);
4670 			return (cache_fpl_partial(fpl));
4671 		}
4672 		prev_mp = mp;
4673 		prev_mpcpu = mpcpu;
4674 		mp = atomic_load_ptr(&vp->v_mountedhere);
4675 		if (mp == NULL)
4676 			break;
4677 	}
4678 
4679 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4680 	fpl->tvp = vp;
4681 	fpl->tvp_seqc = vp_seqc;
4682 	return (0);
4683 }
4684 
4685 static int __noinline
4686 cache_fplookup_cross_mount(struct cache_fpl *fpl)
4687 {
4688 	struct mount *mp;
4689 	struct mount_pcpu *mpcpu;
4690 	struct vnode *vp;
4691 	seqc_t vp_seqc;
4692 
4693 	vp = fpl->tvp;
4694 	vp_seqc = fpl->tvp_seqc;
4695 
4696 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
4697 	mp = atomic_load_ptr(&vp->v_mountedhere);
4698 	if (__predict_false(mp == NULL)) {
4699 		return (0);
4700 	}
4701 
4702 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
4703 		return (cache_fpl_partial(fpl));
4704 	}
4705 	if (!vn_seqc_consistent(vp, vp_seqc)) {
4706 		vfs_op_thread_exit_crit(mp, mpcpu);
4707 		return (cache_fpl_partial(fpl));
4708 	}
4709 	if (!cache_fplookup_mp_supported(mp)) {
4710 		vfs_op_thread_exit_crit(mp, mpcpu);
4711 		return (cache_fpl_partial(fpl));
4712 	}
4713 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
4714 	if (__predict_false(vp == NULL || VN_IS_DOOMED(vp))) {
4715 		vfs_op_thread_exit_crit(mp, mpcpu);
4716 		return (cache_fpl_partial(fpl));
4717 	}
4718 	vp_seqc = vn_seqc_read_any(vp);
4719 	vfs_op_thread_exit_crit(mp, mpcpu);
4720 	if (seqc_in_modify(vp_seqc)) {
4721 		return (cache_fpl_partial(fpl));
4722 	}
4723 	mp = atomic_load_ptr(&vp->v_mountedhere);
4724 	if (__predict_false(mp != NULL)) {
4725 		/*
4726 		 * There are possibly more mount points on top.
4727 		 * Normally this does not happen so for simplicity just start
4728 		 * over.
4729 		 */
4730 		return (cache_fplookup_climb_mount(fpl));
4731 	}
4732 
4733 	fpl->tvp = vp;
4734 	fpl->tvp_seqc = vp_seqc;
4735 	return (0);
4736 }
4737 
4738 /*
4739  * Check if a vnode is mounted on.
4740  */
4741 static bool
4742 cache_fplookup_is_mp(struct cache_fpl *fpl)
4743 {
4744 	struct mount *mp;
4745 	struct vnode *vp;
4746 
4747 	vp = fpl->tvp;
4748 
4749 	/*
4750 	 * Hack: while this is a union, the pointer tends to be NULL so save on
4751 	 * a branch.
4752 	 */
4753 	mp = atomic_load_ptr(&vp->v_mountedhere);
4754 	if (mp == NULL)
4755 		return (false);
4756 	if (vp->v_type == VDIR)
4757 		return (true);
4758 	return (false);
4759 }
4760 
4761 /*
4762  * Parse the path.
4763  *
4764  * The code was originally copy-pasted from regular lookup and despite
4765  * clean ups leaves performance on the table. Any modifications here
4766  * must take into account that in case off fallback the resulting
4767  * nameidata state has to be compatible with the original.
4768  */
4769 static int
4770 cache_fplookup_preparse(struct cache_fpl *fpl)
4771 {
4772 	struct nameidata *ndp;
4773 	struct componentname *cnp;
4774 
4775 	ndp = fpl->ndp;
4776 	cnp = fpl->cnp;
4777 
4778 	if (__predict_false(cnp->cn_nameptr[0] == '\0')) {
4779 		return (cache_fplookup_degenerate(fpl));
4780 	}
4781 
4782 	/*
4783 	 * By this point the shortest possible pathname is one character + nul
4784 	 * terminator, hence 2.
4785 	 */
4786 	KASSERT(ndp->ni_pathlen >= 2, ("%s: ni_pathlen %zu\n", __func__,
4787 	    ndp->ni_pathlen));
4788 
4789 	if (__predict_false(cnp->cn_nameptr[ndp->ni_pathlen - 2] == '/')) {
4790 		/*
4791 		 * TODO
4792 		 * Regular lookup performs the following:
4793 		 * *ndp->ni_next = '\0';
4794 		 * cnp->cn_flags |= TRAILINGSLASH;
4795 		 *
4796 		 * Which is problematic since it modifies data read
4797 		 * from userspace. Then if fast path lookup was to
4798 		 * abort we would have to either restore it or convey
4799 		 * the flag. Since this is a corner case just ignore
4800 		 * it for simplicity.
4801 		 */
4802 		return (cache_fpl_aborted(fpl));
4803 	}
4804 	return (0);
4805 }
4806 
4807 static int
4808 cache_fplookup_parse(struct cache_fpl *fpl)
4809 {
4810 	struct nameidata *ndp;
4811 	struct componentname *cnp;
4812 	char *cp;
4813 
4814 	ndp = fpl->ndp;
4815 	cnp = fpl->cnp;
4816 
4817 	/*
4818 	 * Find the end of this path component, it is either / or nul.
4819 	 *
4820 	 * Store / as a temporary sentinel so that we only have one character
4821 	 * to test for. Pathnames tend to be short so this should not be
4822 	 * resulting in cache misses.
4823 	 */
4824 	KASSERT(cnp->cn_nameptr[ndp->ni_pathlen - 1] == '\0',
4825 	    ("%s: expected nul at %p + %zu; string [%s]\n", __func__,
4826 	    cnp->cn_nameptr, ndp->ni_pathlen - 1, cnp->cn_nameptr));
4827 	cnp->cn_nameptr[ndp->ni_pathlen - 1] = '/';
4828 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
4829 		KASSERT(*cp != '\0',
4830 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
4831 		    cnp->cn_nameptr));
4832 		continue;
4833 	}
4834 	cnp->cn_nameptr[ndp->ni_pathlen - 1] = '\0';
4835 
4836 	cnp->cn_namelen = cp - cnp->cn_nameptr;
4837 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4838 		cache_fpl_smr_exit(fpl);
4839 		return (cache_fpl_handled(fpl, ENAMETOOLONG));
4840 	}
4841 	ndp->ni_pathlen -= cnp->cn_namelen;
4842 	KASSERT(ndp->ni_pathlen <= PATH_MAX,
4843 	    ("%s: ni_pathlen underflow to %zd\n", __func__, ndp->ni_pathlen));
4844 	ndp->ni_next = cp;
4845 
4846 #ifdef INVARIANTS
4847 	/*
4848 	 * Code below is only here to assure compatibility with regular lookup.
4849 	 * It covers handling of trailing slashles and names like "/", both of
4850 	 * which of can be taken care of upfront which lockless lookup does
4851 	 * in cache_fplookup_preparse. Regular lookup performs these for each
4852 	 * path component.
4853 	 */
4854 	while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
4855 		cp++;
4856 		if (*cp == '\0') {
4857 			panic("%s: ran into TRAILINGSLASH handling from [%s]\n",
4858 			    __func__, cnp->cn_pnbuf);
4859 		}
4860 	}
4861 
4862 	if (cnp->cn_nameptr[0] == '\0') {
4863 		panic("%s: ran into degenerate name from [%s]\n", __func__, cnp->cn_pnbuf);
4864 	}
4865 #endif
4866 	return (0);
4867 }
4868 
4869 static void
4870 cache_fplookup_parse_advance(struct cache_fpl *fpl)
4871 {
4872 	struct nameidata *ndp;
4873 	struct componentname *cnp;
4874 
4875 	ndp = fpl->ndp;
4876 	cnp = fpl->cnp;
4877 
4878 	cnp->cn_nameptr = ndp->ni_next;
4879 	while (*cnp->cn_nameptr == '/') {
4880 		cnp->cn_nameptr++;
4881 		ndp->ni_pathlen--;
4882 	}
4883 }
4884 
4885 /*
4886  * See the API contract for VOP_FPLOOKUP_VEXEC.
4887  */
4888 static int __noinline
4889 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
4890 {
4891 	struct vnode *dvp;
4892 	seqc_t dvp_seqc;
4893 
4894 	dvp = fpl->dvp;
4895 	dvp_seqc = fpl->dvp_seqc;
4896 
4897 	/*
4898 	 * Hack: they may be looking up foo/bar, where foo is a
4899 	 * regular file. In such a case we need to turn ENOTDIR,
4900 	 * but we may happen to get here with a different error.
4901 	 */
4902 	if (dvp->v_type != VDIR) {
4903 		/*
4904 		 * The check here is predominantly to catch
4905 		 * EOPNOTSUPP from dead_vnodeops. If the vnode
4906 		 * gets doomed past this point it is going to
4907 		 * fail seqc verification.
4908 		 */
4909 		if (VN_IS_DOOMED(dvp)) {
4910 			return (cache_fpl_aborted(fpl));
4911 		}
4912 		error = ENOTDIR;
4913 	}
4914 
4915 	/*
4916 	 * Hack: handle O_SEARCH.
4917 	 *
4918 	 * Open Group Base Specifications Issue 7, 2018 edition states:
4919 	 * If the access mode of the open file description associated with the
4920 	 * file descriptor is not O_SEARCH, the function shall check whether
4921 	 * directory searches are permitted using the current permissions of
4922 	 * the directory underlying the file descriptor. If the access mode is
4923 	 * O_SEARCH, the function shall not perform the check.
4924 	 *
4925 	 * Regular lookup tests for the NOEXECCHECK flag for every path
4926 	 * component to decide whether to do the permission check. However,
4927 	 * since most lookups never have the flag (and when they do it is only
4928 	 * present for the first path component), lockless lookup only acts on
4929 	 * it if there is a permission problem. Here the flag is represented
4930 	 * with a boolean so that we don't have to clear it on the way out.
4931 	 *
4932 	 * For simplicity this always aborts.
4933 	 * TODO: check if this is the first lookup and ignore the permission
4934 	 * problem. Note the flag has to survive fallback (if it happens to be
4935 	 * performed).
4936 	 */
4937 	if (fpl->fsearch) {
4938 		return (cache_fpl_aborted(fpl));
4939 	}
4940 
4941 	switch (error) {
4942 	case EAGAIN:
4943 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4944 			error = cache_fpl_aborted(fpl);
4945 		} else {
4946 			cache_fpl_partial(fpl);
4947 		}
4948 		break;
4949 	default:
4950 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4951 			error = cache_fpl_aborted(fpl);
4952 		} else {
4953 			cache_fpl_smr_exit(fpl);
4954 			cache_fpl_handled(fpl, error);
4955 		}
4956 		break;
4957 	}
4958 	return (error);
4959 }
4960 
4961 static int
4962 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
4963 {
4964 	struct nameidata *ndp;
4965 	struct componentname *cnp;
4966 	struct mount *mp;
4967 	int error;
4968 
4969 	error = CACHE_FPL_FAILED;
4970 	ndp = fpl->ndp;
4971 	cnp = fpl->cnp;
4972 
4973 	cache_fpl_checkpoint(fpl, &fpl->snd);
4974 
4975 	fpl->dvp = dvp;
4976 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
4977 	if (seqc_in_modify(fpl->dvp_seqc)) {
4978 		cache_fpl_aborted(fpl);
4979 		goto out;
4980 	}
4981 	mp = atomic_load_ptr(&dvp->v_mount);
4982 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
4983 		cache_fpl_aborted(fpl);
4984 		goto out;
4985 	}
4986 
4987 	VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
4988 
4989 	error = cache_fplookup_preparse(fpl);
4990 	if (__predict_false(cache_fpl_terminated(fpl))) {
4991 		goto out;
4992 	}
4993 
4994 	for (;;) {
4995 		error = cache_fplookup_parse(fpl);
4996 		if (__predict_false(error != 0)) {
4997 			break;
4998 		}
4999 
5000 		VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
5001 
5002 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
5003 		if (__predict_false(error != 0)) {
5004 			error = cache_fplookup_failed_vexec(fpl, error);
5005 			break;
5006 		}
5007 
5008 		error = cache_fplookup_next(fpl);
5009 		if (__predict_false(cache_fpl_terminated(fpl))) {
5010 			break;
5011 		}
5012 
5013 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
5014 
5015 		if (cache_fpl_islastcn(ndp)) {
5016 			error = cache_fplookup_final(fpl);
5017 			break;
5018 		}
5019 
5020 		if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
5021 			error = cache_fpl_aborted(fpl);
5022 			break;
5023 		}
5024 
5025 		fpl->dvp = fpl->tvp;
5026 		fpl->dvp_seqc = fpl->tvp_seqc;
5027 
5028 		cache_fplookup_parse_advance(fpl);
5029 		cache_fpl_checkpoint(fpl, &fpl->snd);
5030 	}
5031 out:
5032 	switch (fpl->status) {
5033 	case CACHE_FPL_STATUS_UNSET:
5034 		__assert_unreachable();
5035 		break;
5036 	case CACHE_FPL_STATUS_PARTIAL:
5037 		cache_fpl_smr_assert_entered(fpl);
5038 		return (cache_fplookup_partial_setup(fpl));
5039 	case CACHE_FPL_STATUS_ABORTED:
5040 		if (fpl->in_smr)
5041 			cache_fpl_smr_exit(fpl);
5042 		return (CACHE_FPL_FAILED);
5043 	case CACHE_FPL_STATUS_HANDLED:
5044 		MPASS(error != CACHE_FPL_FAILED);
5045 		cache_fpl_smr_assert_not_entered(fpl);
5046 		/*
5047 		 * A common error is ENOENT.
5048 		 */
5049 		if (error != 0) {
5050 			ndp->ni_dvp = NULL;
5051 			ndp->ni_vp = NULL;
5052 			cache_fpl_cleanup_cnp(cnp);
5053 			return (error);
5054 		}
5055 		ndp->ni_dvp = fpl->dvp;
5056 		ndp->ni_vp = fpl->tvp;
5057 		if (cnp->cn_flags & SAVENAME)
5058 			cnp->cn_flags |= HASBUF;
5059 		else
5060 			cache_fpl_cleanup_cnp(cnp);
5061 		return (error);
5062 	}
5063 	__assert_unreachable();
5064 }
5065 
5066 /*
5067  * Fast path lookup protected with SMR and sequence counters.
5068  *
5069  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
5070  *
5071  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
5072  * outlined below.
5073  *
5074  * Traditional vnode lookup conceptually looks like this:
5075  *
5076  * vn_lock(current);
5077  * for (;;) {
5078  *	next = find();
5079  *	vn_lock(next);
5080  *	vn_unlock(current);
5081  *	current = next;
5082  *	if (last)
5083  *	    break;
5084  * }
5085  * return (current);
5086  *
5087  * Each jump to the next vnode is safe memory-wise and atomic with respect to
5088  * any modifications thanks to holding respective locks.
5089  *
5090  * The same guarantee can be provided with a combination of safe memory
5091  * reclamation and sequence counters instead. If all operations which affect
5092  * the relationship between the current vnode and the one we are looking for
5093  * also modify the counter, we can verify whether all the conditions held as
5094  * we made the jump. This includes things like permissions, mount points etc.
5095  * Counter modification is provided by enclosing relevant places in
5096  * vn_seqc_write_begin()/end() calls.
5097  *
5098  * Thus this translates to:
5099  *
5100  * vfs_smr_enter();
5101  * dvp_seqc = seqc_read_any(dvp);
5102  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
5103  *     abort();
5104  * for (;;) {
5105  * 	tvp = find();
5106  * 	tvp_seqc = seqc_read_any(tvp);
5107  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
5108  * 	    abort();
5109  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
5110  * 	    abort();
5111  * 	dvp = tvp; // we know nothing of importance has changed
5112  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
5113  * 	if (last)
5114  * 	    break;
5115  * }
5116  * vget(); // secure the vnode
5117  * if (!seqc_consistent(tvp, tvp_seqc) // final check
5118  * 	    abort();
5119  * // at this point we know nothing has changed for any parent<->child pair
5120  * // as they were crossed during the lookup, meaning we matched the guarantee
5121  * // of the locked variant
5122  * return (tvp);
5123  *
5124  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
5125  * - they are called while within vfs_smr protection which they must never exit
5126  * - EAGAIN can be returned to denote checking could not be performed, it is
5127  *   always valid to return it
5128  * - if the sequence counter has not changed the result must be valid
5129  * - if the sequence counter has changed both false positives and false negatives
5130  *   are permitted (since the result will be rejected later)
5131  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
5132  *
5133  * Caveats to watch out for:
5134  * - vnodes are passed unlocked and unreferenced with nothing stopping
5135  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
5136  *   to use atomic_load_ptr to fetch it.
5137  * - the aforementioned object can also get freed, meaning absent other means it
5138  *   should be protected with vfs_smr
5139  * - either safely checking permissions as they are modified or guaranteeing
5140  *   their stability is left to the routine
5141  */
5142 int
5143 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
5144     struct pwd **pwdp)
5145 {
5146 	struct cache_fpl fpl;
5147 	struct pwd *pwd;
5148 	struct vnode *dvp;
5149 	struct componentname *cnp;
5150 	struct nameidata_saved orig;
5151 	int error;
5152 
5153 	MPASS(ndp->ni_lcf == 0);
5154 
5155 	fpl.status = CACHE_FPL_STATUS_UNSET;
5156 	fpl.ndp = ndp;
5157 	fpl.cnp = &ndp->ni_cnd;
5158 	MPASS(curthread == fpl.cnp->cn_thread);
5159 	KASSERT ((fpl.cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
5160 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
5161 	    fpl.cnp->cn_flags));
5162 
5163 	if ((fpl.cnp->cn_flags & SAVESTART) != 0)
5164 		MPASS(fpl.cnp->cn_nameiop != LOOKUP);
5165 
5166 	if (!cache_can_fplookup(&fpl)) {
5167 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
5168 		*status = fpl.status;
5169 		return (EOPNOTSUPP);
5170 	}
5171 
5172 	cache_fpl_checkpoint(&fpl, &orig);
5173 
5174 	cache_fpl_smr_enter_initial(&fpl);
5175 	fpl.fsearch = false;
5176 	pwd = pwd_get_smr();
5177 	fpl.pwd = pwd;
5178 	ndp->ni_rootdir = pwd->pwd_rdir;
5179 	ndp->ni_topdir = pwd->pwd_jdir;
5180 
5181 	cnp = fpl.cnp;
5182 	cnp->cn_nameptr = cnp->cn_pnbuf;
5183 	if (cnp->cn_pnbuf[0] == '/') {
5184 		dvp = cache_fpl_handle_root(&fpl);
5185 		ndp->ni_resflags |= NIRES_ABS;
5186 	} else {
5187 		if (ndp->ni_dirfd == AT_FDCWD) {
5188 			dvp = pwd->pwd_cdir;
5189 		} else {
5190 			error = cache_fplookup_dirfd(&fpl, &dvp);
5191 			if (__predict_false(error != 0)) {
5192 				goto out;
5193 			}
5194 		}
5195 	}
5196 
5197 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
5198 
5199 	error = cache_fplookup_impl(dvp, &fpl);
5200 out:
5201 	cache_fpl_smr_assert_not_entered(&fpl);
5202 	SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
5203 
5204 	*status = fpl.status;
5205 	switch (fpl.status) {
5206 	case CACHE_FPL_STATUS_UNSET:
5207 		__assert_unreachable();
5208 		break;
5209 	case CACHE_FPL_STATUS_HANDLED:
5210 		SDT_PROBE3(vfs, namei, lookup, return, error,
5211 		    (error == 0 ? ndp->ni_vp : NULL), true);
5212 		break;
5213 	case CACHE_FPL_STATUS_PARTIAL:
5214 		*pwdp = fpl.pwd;
5215 		/*
5216 		 * Status restored by cache_fplookup_partial_setup.
5217 		 */
5218 		break;
5219 	case CACHE_FPL_STATUS_ABORTED:
5220 		cache_fpl_restore_abort(&fpl, &orig);
5221 		break;
5222 	}
5223 	return (error);
5224 }
5225