xref: /freebsd/sys/kern/vfs_cache.c (revision 5b5b7e2ca2fa9a2418dd51749f4ef6f881ae7179)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/seqc.h>
59 #include <sys/sdt.h>
60 #include <sys/smr.h>
61 #include <sys/smp.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/vnode.h>
66 #include <ck_queue.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 #ifdef INVARIANTS
71 #include <machine/_inttypes.h>
72 #endif
73 
74 #include <sys/capsicum.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #ifdef DDB
80 #include <ddb/ddb.h>
81 #endif
82 
83 #include <vm/uma.h>
84 
85 /*
86  * High level overview of name caching in the VFS layer.
87  *
88  * Originally caching was implemented as part of UFS, later extracted to allow
89  * use by other filesystems. A decision was made to make it optional and
90  * completely detached from the rest of the kernel, which comes with limitations
91  * outlined near the end of this comment block.
92  *
93  * This fundamental choice needs to be revisited. In the meantime, the current
94  * state is described below. Significance of all notable routines is explained
95  * in comments placed above their implementation. Scattered thoroughout the
96  * file are TODO comments indicating shortcomings which can be fixed without
97  * reworking everything (most of the fixes will likely be reusable). Various
98  * details are omitted from this explanation to not clutter the overview, they
99  * have to be checked by reading the code and associated commentary.
100  *
101  * Keep in mind that it's individual path components which are cached, not full
102  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
103  * one for each name.
104  *
105  * I. Data organization
106  *
107  * Entries are described by "struct namecache" objects and stored in a hash
108  * table. See cache_get_hash for more information.
109  *
110  * "struct vnode" contains pointers to source entries (names which can be found
111  * when traversing through said vnode), destination entries (names of that
112  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
113  * the parent vnode.
114  *
115  * The (directory vnode; name) tuple reliably determines the target entry if
116  * it exists.
117  *
118  * Since there are no small locks at this time (all are 32 bytes in size on
119  * LP64), the code works around the problem by introducing lock arrays to
120  * protect hash buckets and vnode lists.
121  *
122  * II. Filesystem integration
123  *
124  * Filesystems participating in name caching do the following:
125  * - set vop_lookup routine to vfs_cache_lookup
126  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
127  * - if they support lockless lookup (see below), vop_fplookup_vexec and
128  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
129  *   mount point
130  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
131  *   applicable
132  * - call cache_enter to add entries depending on the MAKEENTRY flag
133  *
134  * With the above in mind, there are 2 entry points when doing lookups:
135  * - ... -> namei -> cache_fplookup -- this is the default
136  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
137  *   should the above fail
138  *
139  * Example code flow how an entry is added:
140  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
141  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
142  *
143  * III. Performance considerations
144  *
145  * For lockless case forward lookup avoids any writes to shared areas apart
146  * from the terminal path component. In other words non-modifying lookups of
147  * different files don't suffer any scalability problems in the namecache.
148  * Looking up the same file is limited by VFS and goes beyond the scope of this
149  * file.
150  *
151  * At least on amd64 the single-threaded bottleneck for long paths is hashing
152  * (see cache_get_hash). There are cases where the code issues acquire fence
153  * multiple times, they can be combined on architectures which suffer from it.
154  *
155  * For locked case each encountered vnode has to be referenced and locked in
156  * order to be handed out to the caller (normally that's namei). This
157  * introduces significant hit single-threaded and serialization multi-threaded.
158  *
159  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
160  * avoids any writes to shared areas to any components.
161  *
162  * Unrelated insertions are partially serialized on updating the global entry
163  * counter and possibly serialized on colliding bucket or vnode locks.
164  *
165  * IV. Observability
166  *
167  * Note not everything has an explicit dtrace probe nor it should have, thus
168  * some of the one-liners below depend on implementation details.
169  *
170  * Examples:
171  *
172  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
173  * # line number, column 2 is status code (see cache_fpl_status)
174  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
175  *
176  * # Lengths of names added by binary name
177  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
178  *
179  * # Same as above but only those which exceed 64 characters
180  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
181  *
182  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
183  * # path is it
184  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
185  *
186  * V. Limitations and implementation defects
187  *
188  * - since it is possible there is no entry for an open file, tools like
189  *   "procstat" may fail to resolve fd -> vnode -> path to anything
190  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
191  *   shortage) in which case the above problem applies
192  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
193  *   way, resolving a name may return a different path than the one used to
194  *   open it (even if said path is still valid)
195  * - by default entries are not added for newly created files
196  * - adding an entry may need to evict negative entry first, which happens in 2
197  *   distinct places (evicting on lookup, adding in a later VOP) making it
198  *   impossible to simply reuse it
199  * - there is a simple scheme to evict negative entries as the cache is approaching
200  *   its capacity, but it is very unclear if doing so is a good idea to begin with
201  * - vnodes are subject to being recycled even if target inode is left in memory,
202  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
203  *   names get duplicated -- kept by filesystem itself and namecache separately
204  * - struct namecache has a fixed size and comes in 2 variants, often wasting space.
205  *   now hard to replace with malloc due to dependence on SMR.
206  * - lack of better integration with the kernel also turns nullfs into a layered
207  *   filesystem instead of something which can take advantage of caching
208  */
209 
210 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
211     "Name cache");
212 
213 SDT_PROVIDER_DECLARE(vfs);
214 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
215     "struct vnode *");
216 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
217     "struct vnode *");
218 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
219     "char *");
220 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
221     "const char *");
222 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
223     "struct namecache *", "int", "int");
224 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
225 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
226     "char *", "struct vnode *");
227 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
228 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
229     "struct vnode *", "char *");
230 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
231     "struct vnode *");
232 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
233     "struct vnode *", "char *");
234 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
235     "char *");
236 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
237     "struct componentname *");
238 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
239     "struct componentname *");
240 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
241 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
242 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
243 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
244 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
245     "struct vnode *");
246 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
247     "char *");
248 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
249     "char *");
250 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
251 
252 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
253 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
254 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
255 
256 static char __read_frequently cache_fast_lookup_enabled = true;
257 
258 /*
259  * This structure describes the elements in the cache of recent
260  * names looked up by namei.
261  */
262 struct negstate {
263 	u_char neg_flag;
264 	u_char neg_hit;
265 };
266 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
267     "the state must fit in a union with a pointer without growing it");
268 
269 struct	namecache {
270 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
271 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
272 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
273 	struct	vnode *nc_dvp;		/* vnode of parent of name */
274 	union {
275 		struct	vnode *nu_vp;	/* vnode the name refers to */
276 		struct	negstate nu_neg;/* negative entry state */
277 	} n_un;
278 	u_char	nc_flag;		/* flag bits */
279 	u_char	nc_nlen;		/* length of name */
280 	char	nc_name[];		/* segment name + nul */
281 };
282 
283 /*
284  * struct namecache_ts repeats struct namecache layout up to the
285  * nc_nlen member.
286  * struct namecache_ts is used in place of struct namecache when time(s) need
287  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
288  * both a non-dotdot directory name plus dotdot for the directory's
289  * parent.
290  *
291  * See below for alignment requirement.
292  */
293 struct	namecache_ts {
294 	struct	timespec nc_time;	/* timespec provided by fs */
295 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
296 	int	nc_ticks;		/* ticks value when entry was added */
297 	int	nc_pad;
298 	struct namecache nc_nc;
299 };
300 
301 TAILQ_HEAD(cache_freebatch, namecache);
302 
303 /*
304  * At least mips n32 performs 64-bit accesses to timespec as found
305  * in namecache_ts and requires them to be aligned. Since others
306  * may be in the same spot suffer a little bit and enforce the
307  * alignment for everyone. Note this is a nop for 64-bit platforms.
308  */
309 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
310 
311 /*
312  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
313  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
314  * smaller and the value was bumped to retain the total size, but it
315  * was never re-evaluated for suitability. A simple test counting
316  * lengths during package building shows that the value of 45 covers
317  * about 86% of all added entries, reaching 99% at 65.
318  *
319  * Regardless of the above, use of dedicated zones instead of malloc may be
320  * inducing additional waste. This may be hard to address as said zones are
321  * tied to VFS SMR. Even if retaining them, the current split should be
322  * re-evaluated.
323  */
324 #ifdef __LP64__
325 #define	CACHE_PATH_CUTOFF	45
326 #define	CACHE_LARGE_PAD		6
327 #else
328 #define	CACHE_PATH_CUTOFF	41
329 #define	CACHE_LARGE_PAD		2
330 #endif
331 
332 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
333 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
334 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
335 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
336 
337 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
338 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
339 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
340 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
341 
342 #define	nc_vp		n_un.nu_vp
343 #define	nc_neg		n_un.nu_neg
344 
345 /*
346  * Flags in namecache.nc_flag
347  */
348 #define NCF_WHITE	0x01
349 #define NCF_ISDOTDOT	0x02
350 #define	NCF_TS		0x04
351 #define	NCF_DTS		0x08
352 #define	NCF_DVDROP	0x10
353 #define	NCF_NEGATIVE	0x20
354 #define	NCF_INVALID	0x40
355 #define	NCF_WIP		0x80
356 
357 /*
358  * Flags in negstate.neg_flag
359  */
360 #define NEG_HOT		0x01
361 
362 static bool	cache_neg_evict_cond(u_long lnumcache);
363 
364 /*
365  * Mark an entry as invalid.
366  *
367  * This is called before it starts getting deconstructed.
368  */
369 static void
370 cache_ncp_invalidate(struct namecache *ncp)
371 {
372 
373 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
374 	    ("%s: entry %p already invalid", __func__, ncp));
375 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
376 	atomic_thread_fence_rel();
377 }
378 
379 /*
380  * Check whether the entry can be safely used.
381  *
382  * All places which elide locks are supposed to call this after they are
383  * done with reading from an entry.
384  */
385 #define cache_ncp_canuse(ncp)	({					\
386 	struct namecache *_ncp = (ncp);					\
387 	u_char _nc_flag;						\
388 									\
389 	atomic_thread_fence_acq();					\
390 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
391 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
392 })
393 
394 /*
395  * Like the above but also checks NCF_WHITE.
396  */
397 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
398 	struct namecache *_ncp = (ncp);					\
399 	u_char _nc_flag;						\
400 									\
401 	atomic_thread_fence_acq();					\
402 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
403 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
404 })
405 
406 VFS_SMR_DECLARE;
407 
408 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
409     "Name cache parameters");
410 
411 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
412 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
413     "Total namecache capacity");
414 
415 u_int ncsizefactor = 2;
416 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
417     "Size factor for namecache");
418 
419 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
420 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
421     "Ratio of negative namecache entries");
422 
423 /*
424  * Negative entry % of namecache capacity above which automatic eviction is allowed.
425  *
426  * Check cache_neg_evict_cond for details.
427  */
428 static u_int ncnegminpct = 3;
429 
430 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
431 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
432     "Negative entry count above which automatic eviction is allowed");
433 
434 /*
435  * Structures associated with name caching.
436  */
437 #define NCHHASH(hash) \
438 	(&nchashtbl[(hash) & nchash])
439 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
440 static u_long __read_mostly	nchash;			/* size of hash table */
441 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
442     "Size of namecache hash table");
443 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
444 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
445 
446 struct nchstats	nchstats;		/* cache effectiveness statistics */
447 
448 static u_int __exclusive_cache_line neg_cycle;
449 
450 #define ncneghash	3
451 #define	numneglists	(ncneghash + 1)
452 
453 struct neglist {
454 	struct mtx		nl_evict_lock;
455 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
456 	TAILQ_HEAD(, namecache) nl_list;
457 	TAILQ_HEAD(, namecache) nl_hotlist;
458 	u_long			nl_hotnum;
459 } __aligned(CACHE_LINE_SIZE);
460 
461 static struct neglist neglists[numneglists];
462 
463 static inline struct neglist *
464 NCP2NEGLIST(struct namecache *ncp)
465 {
466 
467 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
468 }
469 
470 static inline struct negstate *
471 NCP2NEGSTATE(struct namecache *ncp)
472 {
473 
474 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
475 	return (&ncp->nc_neg);
476 }
477 
478 #define	numbucketlocks (ncbuckethash + 1)
479 static u_int __read_mostly  ncbuckethash;
480 static struct mtx_padalign __read_mostly  *bucketlocks;
481 #define	HASH2BUCKETLOCK(hash) \
482 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
483 
484 #define	numvnodelocks (ncvnodehash + 1)
485 static u_int __read_mostly  ncvnodehash;
486 static struct mtx __read_mostly *vnodelocks;
487 static inline struct mtx *
488 VP2VNODELOCK(struct vnode *vp)
489 {
490 
491 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
492 }
493 
494 static void
495 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
496 {
497 	struct namecache_ts *ncp_ts;
498 
499 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
500 	    (tsp == NULL && ticksp == NULL),
501 	    ("No NCF_TS"));
502 
503 	if (tsp == NULL)
504 		return;
505 
506 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
507 	*tsp = ncp_ts->nc_time;
508 	*ticksp = ncp_ts->nc_ticks;
509 }
510 
511 #ifdef DEBUG_CACHE
512 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
513 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
514     "VFS namecache enabled");
515 #endif
516 
517 /* Export size information to userland */
518 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
519     sizeof(struct namecache), "sizeof(struct namecache)");
520 
521 /*
522  * The new name cache statistics
523  */
524 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
525     "Name cache statistics");
526 
527 #define STATNODE_ULONG(name, varname, descr)					\
528 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
529 #define STATNODE_COUNTER(name, varname, descr)					\
530 	static COUNTER_U64_DEFINE_EARLY(varname);				\
531 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
532 	    descr);
533 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
534 STATNODE_ULONG(count, numcache, "Number of cache entries");
535 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
536 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
537 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
538 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits");
539 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
540 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
541 STATNODE_COUNTER(posszaps, numposzaps,
542     "Number of cache hits (positive) we do not want to cache");
543 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
544 STATNODE_COUNTER(negzaps, numnegzaps,
545     "Number of cache hits (negative) we do not want to cache");
546 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
547 /* These count for vn_getcwd(), too. */
548 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
549 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
550 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
551     "Number of fullpath search errors (VOP_VPTOCNP failures)");
552 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
553 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
554 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
555 
556 /*
557  * Debug or developer statistics.
558  */
559 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
560     "Name cache debugging");
561 #define DEBUGNODE_ULONG(name, varname, descr)					\
562 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
563 #define DEBUGNODE_COUNTER(name, varname, descr)					\
564 	static COUNTER_U64_DEFINE_EARLY(varname);				\
565 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
566 	    descr);
567 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
568     "Number of successful removals after relocking");
569 static long zap_bucket_fail;
570 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
571 static long zap_bucket_fail2;
572 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
573 static long cache_lock_vnodes_cel_3_failures;
574 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
575     "Number of times 3-way vnode locking failed");
576 
577 static void cache_zap_locked(struct namecache *ncp);
578 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
579     char **retbuf, size_t *buflen, size_t addend);
580 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
581     char **retbuf, size_t *buflen);
582 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
583     char **retbuf, size_t *len, size_t addend);
584 
585 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
586 
587 static inline void
588 cache_assert_vlp_locked(struct mtx *vlp)
589 {
590 
591 	if (vlp != NULL)
592 		mtx_assert(vlp, MA_OWNED);
593 }
594 
595 static inline void
596 cache_assert_vnode_locked(struct vnode *vp)
597 {
598 	struct mtx *vlp;
599 
600 	vlp = VP2VNODELOCK(vp);
601 	cache_assert_vlp_locked(vlp);
602 }
603 
604 /*
605  * Directory vnodes with entries are held for two reasons:
606  * 1. make them less of a target for reclamation in vnlru
607  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
608  *
609  * It will be feasible to stop doing it altogether if all filesystems start
610  * supporting lockless lookup.
611  */
612 static void
613 cache_hold_vnode(struct vnode *vp)
614 {
615 
616 	cache_assert_vnode_locked(vp);
617 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
618 	vhold(vp);
619 	counter_u64_add(numcachehv, 1);
620 }
621 
622 static void
623 cache_drop_vnode(struct vnode *vp)
624 {
625 
626 	/*
627 	 * Called after all locks are dropped, meaning we can't assert
628 	 * on the state of v_cache_src.
629 	 */
630 	vdrop(vp);
631 	counter_u64_add(numcachehv, -1);
632 }
633 
634 /*
635  * UMA zones.
636  */
637 static uma_zone_t __read_mostly cache_zone_small;
638 static uma_zone_t __read_mostly cache_zone_small_ts;
639 static uma_zone_t __read_mostly cache_zone_large;
640 static uma_zone_t __read_mostly cache_zone_large_ts;
641 
642 char *
643 cache_symlink_alloc(size_t size, int flags)
644 {
645 
646 	if (size < CACHE_ZONE_SMALL_SIZE) {
647 		return (uma_zalloc_smr(cache_zone_small, flags));
648 	}
649 	if (size < CACHE_ZONE_LARGE_SIZE) {
650 		return (uma_zalloc_smr(cache_zone_large, flags));
651 	}
652 	counter_u64_add(symlinktoobig, 1);
653 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
654 	return (NULL);
655 }
656 
657 void
658 cache_symlink_free(char *string, size_t size)
659 {
660 
661 	MPASS(string != NULL);
662 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
663 	    ("%s: size %zu too big", __func__, size));
664 
665 	if (size < CACHE_ZONE_SMALL_SIZE) {
666 		uma_zfree_smr(cache_zone_small, string);
667 		return;
668 	}
669 	if (size < CACHE_ZONE_LARGE_SIZE) {
670 		uma_zfree_smr(cache_zone_large, string);
671 		return;
672 	}
673 	__assert_unreachable();
674 }
675 
676 static struct namecache *
677 cache_alloc_uma(int len, bool ts)
678 {
679 	struct namecache_ts *ncp_ts;
680 	struct namecache *ncp;
681 
682 	if (__predict_false(ts)) {
683 		if (len <= CACHE_PATH_CUTOFF)
684 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
685 		else
686 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
687 		ncp = &ncp_ts->nc_nc;
688 	} else {
689 		if (len <= CACHE_PATH_CUTOFF)
690 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
691 		else
692 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
693 	}
694 	return (ncp);
695 }
696 
697 static void
698 cache_free_uma(struct namecache *ncp)
699 {
700 	struct namecache_ts *ncp_ts;
701 
702 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
703 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
704 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
705 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
706 		else
707 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
708 	} else {
709 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
710 			uma_zfree_smr(cache_zone_small, ncp);
711 		else
712 			uma_zfree_smr(cache_zone_large, ncp);
713 	}
714 }
715 
716 static struct namecache *
717 cache_alloc(int len, bool ts)
718 {
719 	u_long lnumcache;
720 
721 	/*
722 	 * Avoid blowout in namecache entries.
723 	 *
724 	 * Bugs:
725 	 * 1. filesystems may end up trying to add an already existing entry
726 	 * (for example this can happen after a cache miss during concurrent
727 	 * lookup), in which case we will call cache_neg_evict despite not
728 	 * adding anything.
729 	 * 2. the routine may fail to free anything and no provisions are made
730 	 * to make it try harder (see the inside for failure modes)
731 	 * 3. it only ever looks at negative entries.
732 	 */
733 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
734 	if (cache_neg_evict_cond(lnumcache)) {
735 		lnumcache = atomic_load_long(&numcache);
736 	}
737 	if (__predict_false(lnumcache >= ncsize)) {
738 		atomic_subtract_long(&numcache, 1);
739 		counter_u64_add(numdrops, 1);
740 		return (NULL);
741 	}
742 	return (cache_alloc_uma(len, ts));
743 }
744 
745 static void
746 cache_free(struct namecache *ncp)
747 {
748 
749 	MPASS(ncp != NULL);
750 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
751 		cache_drop_vnode(ncp->nc_dvp);
752 	}
753 	cache_free_uma(ncp);
754 	atomic_subtract_long(&numcache, 1);
755 }
756 
757 static void
758 cache_free_batch(struct cache_freebatch *batch)
759 {
760 	struct namecache *ncp, *nnp;
761 	int i;
762 
763 	i = 0;
764 	if (TAILQ_EMPTY(batch))
765 		goto out;
766 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
767 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
768 			cache_drop_vnode(ncp->nc_dvp);
769 		}
770 		cache_free_uma(ncp);
771 		i++;
772 	}
773 	atomic_subtract_long(&numcache, i);
774 out:
775 	SDT_PROBE1(vfs, namecache, purge, batch, i);
776 }
777 
778 /*
779  * Hashing.
780  *
781  * The code was made to use FNV in 2001 and this choice needs to be revisited.
782  *
783  * Short summary of the difficulty:
784  * The longest name which can be inserted is NAME_MAX characters in length (or
785  * 255 at the time of writing this comment), while majority of names used in
786  * practice are significantly shorter (mostly below 10). More importantly
787  * majority of lookups performed find names are even shorter than that.
788  *
789  * This poses a problem where hashes which do better than FNV past word size
790  * (or so) tend to come with additional overhead when finalizing the result,
791  * making them noticeably slower for the most commonly used range.
792  *
793  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
794  *
795  * When looking it up the most time consuming part by a large margin (at least
796  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
797  * input would make the slowest part stand out even more.
798  */
799 
800 /*
801  * TODO: With the value stored we can do better than computing the hash based
802  * on the address.
803  */
804 static void
805 cache_prehash(struct vnode *vp)
806 {
807 
808 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
809 }
810 
811 static uint32_t
812 cache_get_hash(char *name, u_char len, struct vnode *dvp)
813 {
814 
815 	return (fnv_32_buf(name, len, dvp->v_nchash));
816 }
817 
818 static uint32_t
819 cache_get_hash_iter_start(struct vnode *dvp)
820 {
821 
822 	return (dvp->v_nchash);
823 }
824 
825 static uint32_t
826 cache_get_hash_iter(char c, uint32_t hash)
827 {
828 
829 	return (fnv_32_buf(&c, 1, hash));
830 }
831 
832 static uint32_t
833 cache_get_hash_iter_finish(uint32_t hash)
834 {
835 
836 	return (hash);
837 }
838 
839 static inline struct nchashhead *
840 NCP2BUCKET(struct namecache *ncp)
841 {
842 	uint32_t hash;
843 
844 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
845 	return (NCHHASH(hash));
846 }
847 
848 static inline struct mtx *
849 NCP2BUCKETLOCK(struct namecache *ncp)
850 {
851 	uint32_t hash;
852 
853 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
854 	return (HASH2BUCKETLOCK(hash));
855 }
856 
857 #ifdef INVARIANTS
858 static void
859 cache_assert_bucket_locked(struct namecache *ncp)
860 {
861 	struct mtx *blp;
862 
863 	blp = NCP2BUCKETLOCK(ncp);
864 	mtx_assert(blp, MA_OWNED);
865 }
866 
867 static void
868 cache_assert_bucket_unlocked(struct namecache *ncp)
869 {
870 	struct mtx *blp;
871 
872 	blp = NCP2BUCKETLOCK(ncp);
873 	mtx_assert(blp, MA_NOTOWNED);
874 }
875 #else
876 #define cache_assert_bucket_locked(x) do { } while (0)
877 #define cache_assert_bucket_unlocked(x) do { } while (0)
878 #endif
879 
880 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
881 static void
882 _cache_sort_vnodes(void **p1, void **p2)
883 {
884 	void *tmp;
885 
886 	MPASS(*p1 != NULL || *p2 != NULL);
887 
888 	if (*p1 > *p2) {
889 		tmp = *p2;
890 		*p2 = *p1;
891 		*p1 = tmp;
892 	}
893 }
894 
895 static void
896 cache_lock_all_buckets(void)
897 {
898 	u_int i;
899 
900 	for (i = 0; i < numbucketlocks; i++)
901 		mtx_lock(&bucketlocks[i]);
902 }
903 
904 static void
905 cache_unlock_all_buckets(void)
906 {
907 	u_int i;
908 
909 	for (i = 0; i < numbucketlocks; i++)
910 		mtx_unlock(&bucketlocks[i]);
911 }
912 
913 static void
914 cache_lock_all_vnodes(void)
915 {
916 	u_int i;
917 
918 	for (i = 0; i < numvnodelocks; i++)
919 		mtx_lock(&vnodelocks[i]);
920 }
921 
922 static void
923 cache_unlock_all_vnodes(void)
924 {
925 	u_int i;
926 
927 	for (i = 0; i < numvnodelocks; i++)
928 		mtx_unlock(&vnodelocks[i]);
929 }
930 
931 static int
932 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
933 {
934 
935 	cache_sort_vnodes(&vlp1, &vlp2);
936 
937 	if (vlp1 != NULL) {
938 		if (!mtx_trylock(vlp1))
939 			return (EAGAIN);
940 	}
941 	if (!mtx_trylock(vlp2)) {
942 		if (vlp1 != NULL)
943 			mtx_unlock(vlp1);
944 		return (EAGAIN);
945 	}
946 
947 	return (0);
948 }
949 
950 static void
951 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
952 {
953 
954 	MPASS(vlp1 != NULL || vlp2 != NULL);
955 	MPASS(vlp1 <= vlp2);
956 
957 	if (vlp1 != NULL)
958 		mtx_lock(vlp1);
959 	if (vlp2 != NULL)
960 		mtx_lock(vlp2);
961 }
962 
963 static void
964 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
965 {
966 
967 	MPASS(vlp1 != NULL || vlp2 != NULL);
968 
969 	if (vlp1 != NULL)
970 		mtx_unlock(vlp1);
971 	if (vlp2 != NULL)
972 		mtx_unlock(vlp2);
973 }
974 
975 static int
976 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
977 {
978 	struct nchstats snap;
979 
980 	if (req->oldptr == NULL)
981 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
982 
983 	snap = nchstats;
984 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
985 	snap.ncs_neghits = counter_u64_fetch(numneghits);
986 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
987 	    counter_u64_fetch(numnegzaps);
988 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
989 	    counter_u64_fetch(nummiss);
990 
991 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
992 }
993 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
994     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
995     "VFS cache effectiveness statistics");
996 
997 static void
998 cache_recalc_neg_min(u_int val)
999 {
1000 
1001 	neg_min = (ncsize * val) / 100;
1002 }
1003 
1004 static int
1005 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1006 {
1007 	u_int val;
1008 	int error;
1009 
1010 	val = ncnegminpct;
1011 	error = sysctl_handle_int(oidp, &val, 0, req);
1012 	if (error != 0 || req->newptr == NULL)
1013 		return (error);
1014 
1015 	if (val == ncnegminpct)
1016 		return (0);
1017 	if (val < 0 || val > 99)
1018 		return (EINVAL);
1019 	ncnegminpct = val;
1020 	cache_recalc_neg_min(val);
1021 	return (0);
1022 }
1023 
1024 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1025     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1026     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1027 
1028 #ifdef DEBUG_CACHE
1029 /*
1030  * Grab an atomic snapshot of the name cache hash chain lengths
1031  */
1032 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1033     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1034     "hash table stats");
1035 
1036 static int
1037 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1038 {
1039 	struct nchashhead *ncpp;
1040 	struct namecache *ncp;
1041 	int i, error, n_nchash, *cntbuf;
1042 
1043 retry:
1044 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1045 	if (req->oldptr == NULL)
1046 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1047 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1048 	cache_lock_all_buckets();
1049 	if (n_nchash != nchash + 1) {
1050 		cache_unlock_all_buckets();
1051 		free(cntbuf, M_TEMP);
1052 		goto retry;
1053 	}
1054 	/* Scan hash tables counting entries */
1055 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1056 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1057 			cntbuf[i]++;
1058 	cache_unlock_all_buckets();
1059 	for (error = 0, i = 0; i < n_nchash; i++)
1060 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1061 			break;
1062 	free(cntbuf, M_TEMP);
1063 	return (error);
1064 }
1065 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1066     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1067     "nchash chain lengths");
1068 
1069 static int
1070 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1071 {
1072 	int error;
1073 	struct nchashhead *ncpp;
1074 	struct namecache *ncp;
1075 	int n_nchash;
1076 	int count, maxlength, used, pct;
1077 
1078 	if (!req->oldptr)
1079 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1080 
1081 	cache_lock_all_buckets();
1082 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1083 	used = 0;
1084 	maxlength = 0;
1085 
1086 	/* Scan hash tables for applicable entries */
1087 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1088 		count = 0;
1089 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1090 			count++;
1091 		}
1092 		if (count)
1093 			used++;
1094 		if (maxlength < count)
1095 			maxlength = count;
1096 	}
1097 	n_nchash = nchash + 1;
1098 	cache_unlock_all_buckets();
1099 	pct = (used * 100) / (n_nchash / 100);
1100 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1101 	if (error)
1102 		return (error);
1103 	error = SYSCTL_OUT(req, &used, sizeof(used));
1104 	if (error)
1105 		return (error);
1106 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1107 	if (error)
1108 		return (error);
1109 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1110 	if (error)
1111 		return (error);
1112 	return (0);
1113 }
1114 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1115     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1116     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1117 #endif
1118 
1119 /*
1120  * Negative entries management
1121  *
1122  * Various workloads create plenty of negative entries and barely use them
1123  * afterwards. Moreover malicious users can keep performing bogus lookups
1124  * adding even more entries. For example "make tinderbox" as of writing this
1125  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1126  * negative.
1127  *
1128  * As such, a rather aggressive eviction method is needed. The currently
1129  * employed method is a placeholder.
1130  *
1131  * Entries are split over numneglists separate lists, each of which is further
1132  * split into hot and cold entries. Entries get promoted after getting a hit.
1133  * Eviction happens on addition of new entry.
1134  */
1135 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1136     "Name cache negative entry statistics");
1137 
1138 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1139     "Number of negative cache entries");
1140 
1141 static COUNTER_U64_DEFINE_EARLY(neg_created);
1142 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1143     "Number of created negative entries");
1144 
1145 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1146 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1147     "Number of evicted negative entries");
1148 
1149 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1150 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1151     &neg_evict_skipped_empty,
1152     "Number of times evicting failed due to lack of entries");
1153 
1154 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1155 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1156     &neg_evict_skipped_missed,
1157     "Number of times evicting failed due to target entry disappearing");
1158 
1159 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1160 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1161     &neg_evict_skipped_contended,
1162     "Number of times evicting failed due to contention");
1163 
1164 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1165     "Number of cache hits (negative)");
1166 
1167 static int
1168 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1169 {
1170 	int i, out;
1171 
1172 	out = 0;
1173 	for (i = 0; i < numneglists; i++)
1174 		out += neglists[i].nl_hotnum;
1175 
1176 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1177 }
1178 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1179     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1180     "Number of hot negative entries");
1181 
1182 static void
1183 cache_neg_init(struct namecache *ncp)
1184 {
1185 	struct negstate *ns;
1186 
1187 	ncp->nc_flag |= NCF_NEGATIVE;
1188 	ns = NCP2NEGSTATE(ncp);
1189 	ns->neg_flag = 0;
1190 	ns->neg_hit = 0;
1191 	counter_u64_add(neg_created, 1);
1192 }
1193 
1194 #define CACHE_NEG_PROMOTION_THRESH 2
1195 
1196 static bool
1197 cache_neg_hit_prep(struct namecache *ncp)
1198 {
1199 	struct negstate *ns;
1200 	u_char n;
1201 
1202 	ns = NCP2NEGSTATE(ncp);
1203 	n = atomic_load_char(&ns->neg_hit);
1204 	for (;;) {
1205 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1206 			return (false);
1207 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1208 			break;
1209 	}
1210 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1211 }
1212 
1213 /*
1214  * Nothing to do here but it is provided for completeness as some
1215  * cache_neg_hit_prep callers may end up returning without even
1216  * trying to promote.
1217  */
1218 #define cache_neg_hit_abort(ncp)	do { } while (0)
1219 
1220 static void
1221 cache_neg_hit_finish(struct namecache *ncp)
1222 {
1223 
1224 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1225 	counter_u64_add(numneghits, 1);
1226 }
1227 
1228 /*
1229  * Move a negative entry to the hot list.
1230  */
1231 static void
1232 cache_neg_promote_locked(struct namecache *ncp)
1233 {
1234 	struct neglist *nl;
1235 	struct negstate *ns;
1236 
1237 	ns = NCP2NEGSTATE(ncp);
1238 	nl = NCP2NEGLIST(ncp);
1239 	mtx_assert(&nl->nl_lock, MA_OWNED);
1240 	if ((ns->neg_flag & NEG_HOT) == 0) {
1241 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1242 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1243 		nl->nl_hotnum++;
1244 		ns->neg_flag |= NEG_HOT;
1245 	}
1246 }
1247 
1248 /*
1249  * Move a hot negative entry to the cold list.
1250  */
1251 static void
1252 cache_neg_demote_locked(struct namecache *ncp)
1253 {
1254 	struct neglist *nl;
1255 	struct negstate *ns;
1256 
1257 	ns = NCP2NEGSTATE(ncp);
1258 	nl = NCP2NEGLIST(ncp);
1259 	mtx_assert(&nl->nl_lock, MA_OWNED);
1260 	MPASS(ns->neg_flag & NEG_HOT);
1261 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1262 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1263 	nl->nl_hotnum--;
1264 	ns->neg_flag &= ~NEG_HOT;
1265 	atomic_store_char(&ns->neg_hit, 0);
1266 }
1267 
1268 /*
1269  * Move a negative entry to the hot list if it matches the lookup.
1270  *
1271  * We have to take locks, but they may be contended and in the worst
1272  * case we may need to go off CPU. We don't want to spin within the
1273  * smr section and we can't block with it. Exiting the section means
1274  * the found entry could have been evicted. We are going to look it
1275  * up again.
1276  */
1277 static bool
1278 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1279     struct namecache *oncp, uint32_t hash)
1280 {
1281 	struct namecache *ncp;
1282 	struct neglist *nl;
1283 	u_char nc_flag;
1284 
1285 	nl = NCP2NEGLIST(oncp);
1286 
1287 	mtx_lock(&nl->nl_lock);
1288 	/*
1289 	 * For hash iteration.
1290 	 */
1291 	vfs_smr_enter();
1292 
1293 	/*
1294 	 * Avoid all surprises by only succeeding if we got the same entry and
1295 	 * bailing completely otherwise.
1296 	 * XXX There are no provisions to keep the vnode around, meaning we may
1297 	 * end up promoting a negative entry for a *new* vnode and returning
1298 	 * ENOENT on its account. This is the error we want to return anyway
1299 	 * and promotion is harmless.
1300 	 *
1301 	 * In particular at this point there can be a new ncp which matches the
1302 	 * search but hashes to a different neglist.
1303 	 */
1304 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1305 		if (ncp == oncp)
1306 			break;
1307 	}
1308 
1309 	/*
1310 	 * No match to begin with.
1311 	 */
1312 	if (__predict_false(ncp == NULL)) {
1313 		goto out_abort;
1314 	}
1315 
1316 	/*
1317 	 * The newly found entry may be something different...
1318 	 */
1319 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1320 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1321 		goto out_abort;
1322 	}
1323 
1324 	/*
1325 	 * ... and not even negative.
1326 	 */
1327 	nc_flag = atomic_load_char(&ncp->nc_flag);
1328 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1329 		goto out_abort;
1330 	}
1331 
1332 	if (!cache_ncp_canuse(ncp)) {
1333 		goto out_abort;
1334 	}
1335 
1336 	cache_neg_promote_locked(ncp);
1337 	cache_neg_hit_finish(ncp);
1338 	vfs_smr_exit();
1339 	mtx_unlock(&nl->nl_lock);
1340 	return (true);
1341 out_abort:
1342 	vfs_smr_exit();
1343 	mtx_unlock(&nl->nl_lock);
1344 	return (false);
1345 }
1346 
1347 static void
1348 cache_neg_promote(struct namecache *ncp)
1349 {
1350 	struct neglist *nl;
1351 
1352 	nl = NCP2NEGLIST(ncp);
1353 	mtx_lock(&nl->nl_lock);
1354 	cache_neg_promote_locked(ncp);
1355 	mtx_unlock(&nl->nl_lock);
1356 }
1357 
1358 static void
1359 cache_neg_insert(struct namecache *ncp)
1360 {
1361 	struct neglist *nl;
1362 
1363 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1364 	cache_assert_bucket_locked(ncp);
1365 	nl = NCP2NEGLIST(ncp);
1366 	mtx_lock(&nl->nl_lock);
1367 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1368 	mtx_unlock(&nl->nl_lock);
1369 	atomic_add_long(&numneg, 1);
1370 }
1371 
1372 static void
1373 cache_neg_remove(struct namecache *ncp)
1374 {
1375 	struct neglist *nl;
1376 	struct negstate *ns;
1377 
1378 	cache_assert_bucket_locked(ncp);
1379 	nl = NCP2NEGLIST(ncp);
1380 	ns = NCP2NEGSTATE(ncp);
1381 	mtx_lock(&nl->nl_lock);
1382 	if ((ns->neg_flag & NEG_HOT) != 0) {
1383 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1384 		nl->nl_hotnum--;
1385 	} else {
1386 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1387 	}
1388 	mtx_unlock(&nl->nl_lock);
1389 	atomic_subtract_long(&numneg, 1);
1390 }
1391 
1392 static struct neglist *
1393 cache_neg_evict_select_list(void)
1394 {
1395 	struct neglist *nl;
1396 	u_int c;
1397 
1398 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1399 	nl = &neglists[c % numneglists];
1400 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1401 		counter_u64_add(neg_evict_skipped_contended, 1);
1402 		return (NULL);
1403 	}
1404 	return (nl);
1405 }
1406 
1407 static struct namecache *
1408 cache_neg_evict_select_entry(struct neglist *nl)
1409 {
1410 	struct namecache *ncp, *lncp;
1411 	struct negstate *ns, *lns;
1412 	int i;
1413 
1414 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1415 	mtx_assert(&nl->nl_lock, MA_OWNED);
1416 	ncp = TAILQ_FIRST(&nl->nl_list);
1417 	if (ncp == NULL)
1418 		return (NULL);
1419 	lncp = ncp;
1420 	lns = NCP2NEGSTATE(lncp);
1421 	for (i = 1; i < 4; i++) {
1422 		ncp = TAILQ_NEXT(ncp, nc_dst);
1423 		if (ncp == NULL)
1424 			break;
1425 		ns = NCP2NEGSTATE(ncp);
1426 		if (ns->neg_hit < lns->neg_hit) {
1427 			lncp = ncp;
1428 			lns = ns;
1429 		}
1430 	}
1431 	return (lncp);
1432 }
1433 
1434 static bool
1435 cache_neg_evict(void)
1436 {
1437 	struct namecache *ncp, *ncp2;
1438 	struct neglist *nl;
1439 	struct vnode *dvp;
1440 	struct mtx *dvlp;
1441 	struct mtx *blp;
1442 	uint32_t hash;
1443 	u_char nlen;
1444 	bool evicted;
1445 
1446 	nl = cache_neg_evict_select_list();
1447 	if (nl == NULL) {
1448 		return (false);
1449 	}
1450 
1451 	mtx_lock(&nl->nl_lock);
1452 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1453 	if (ncp != NULL) {
1454 		cache_neg_demote_locked(ncp);
1455 	}
1456 	ncp = cache_neg_evict_select_entry(nl);
1457 	if (ncp == NULL) {
1458 		counter_u64_add(neg_evict_skipped_empty, 1);
1459 		mtx_unlock(&nl->nl_lock);
1460 		mtx_unlock(&nl->nl_evict_lock);
1461 		return (false);
1462 	}
1463 	nlen = ncp->nc_nlen;
1464 	dvp = ncp->nc_dvp;
1465 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1466 	dvlp = VP2VNODELOCK(dvp);
1467 	blp = HASH2BUCKETLOCK(hash);
1468 	mtx_unlock(&nl->nl_lock);
1469 	mtx_unlock(&nl->nl_evict_lock);
1470 	mtx_lock(dvlp);
1471 	mtx_lock(blp);
1472 	/*
1473 	 * Note that since all locks were dropped above, the entry may be
1474 	 * gone or reallocated to be something else.
1475 	 */
1476 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1477 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1478 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1479 			break;
1480 	}
1481 	if (ncp2 == NULL) {
1482 		counter_u64_add(neg_evict_skipped_missed, 1);
1483 		ncp = NULL;
1484 		evicted = false;
1485 	} else {
1486 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1487 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1488 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1489 		    ncp->nc_name);
1490 		cache_zap_locked(ncp);
1491 		counter_u64_add(neg_evicted, 1);
1492 		evicted = true;
1493 	}
1494 	mtx_unlock(blp);
1495 	mtx_unlock(dvlp);
1496 	if (ncp != NULL)
1497 		cache_free(ncp);
1498 	return (evicted);
1499 }
1500 
1501 /*
1502  * Maybe evict a negative entry to create more room.
1503  *
1504  * The ncnegfactor parameter limits what fraction of the total count
1505  * can comprise of negative entries. However, if the cache is just
1506  * warming up this leads to excessive evictions.  As such, ncnegminpct
1507  * (recomputed to neg_min) dictates whether the above should be
1508  * applied.
1509  *
1510  * Try evicting if the cache is close to full capacity regardless of
1511  * other considerations.
1512  */
1513 static bool
1514 cache_neg_evict_cond(u_long lnumcache)
1515 {
1516 	u_long lnumneg;
1517 
1518 	if (ncsize - 1000 < lnumcache)
1519 		goto out_evict;
1520 	lnumneg = atomic_load_long(&numneg);
1521 	if (lnumneg < neg_min)
1522 		return (false);
1523 	if (lnumneg * ncnegfactor < lnumcache)
1524 		return (false);
1525 out_evict:
1526 	return (cache_neg_evict());
1527 }
1528 
1529 /*
1530  * cache_zap_locked():
1531  *
1532  *   Removes a namecache entry from cache, whether it contains an actual
1533  *   pointer to a vnode or if it is just a negative cache entry.
1534  */
1535 static void
1536 cache_zap_locked(struct namecache *ncp)
1537 {
1538 	struct nchashhead *ncpp;
1539 	struct vnode *dvp, *vp;
1540 
1541 	dvp = ncp->nc_dvp;
1542 	vp = ncp->nc_vp;
1543 
1544 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1545 		cache_assert_vnode_locked(vp);
1546 	cache_assert_vnode_locked(dvp);
1547 	cache_assert_bucket_locked(ncp);
1548 
1549 	cache_ncp_invalidate(ncp);
1550 
1551 	ncpp = NCP2BUCKET(ncp);
1552 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1553 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1554 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1555 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1556 		if (ncp == vp->v_cache_dd) {
1557 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1558 		}
1559 	} else {
1560 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1561 		cache_neg_remove(ncp);
1562 	}
1563 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1564 		if (ncp == dvp->v_cache_dd) {
1565 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1566 		}
1567 	} else {
1568 		LIST_REMOVE(ncp, nc_src);
1569 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1570 			ncp->nc_flag |= NCF_DVDROP;
1571 		}
1572 	}
1573 }
1574 
1575 static void
1576 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1577 {
1578 	struct mtx *blp;
1579 
1580 	MPASS(ncp->nc_dvp == vp);
1581 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1582 	cache_assert_vnode_locked(vp);
1583 
1584 	blp = NCP2BUCKETLOCK(ncp);
1585 	mtx_lock(blp);
1586 	cache_zap_locked(ncp);
1587 	mtx_unlock(blp);
1588 }
1589 
1590 static bool
1591 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1592     struct mtx **vlpp)
1593 {
1594 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1595 	struct mtx *blp;
1596 
1597 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1598 	cache_assert_vnode_locked(vp);
1599 
1600 	if (ncp->nc_flag & NCF_NEGATIVE) {
1601 		if (*vlpp != NULL) {
1602 			mtx_unlock(*vlpp);
1603 			*vlpp = NULL;
1604 		}
1605 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1606 		return (true);
1607 	}
1608 
1609 	pvlp = VP2VNODELOCK(vp);
1610 	blp = NCP2BUCKETLOCK(ncp);
1611 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1612 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1613 
1614 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1615 		to_unlock = *vlpp;
1616 		*vlpp = NULL;
1617 	} else {
1618 		if (*vlpp != NULL) {
1619 			mtx_unlock(*vlpp);
1620 			*vlpp = NULL;
1621 		}
1622 		cache_sort_vnodes(&vlp1, &vlp2);
1623 		if (vlp1 == pvlp) {
1624 			mtx_lock(vlp2);
1625 			to_unlock = vlp2;
1626 		} else {
1627 			if (!mtx_trylock(vlp1))
1628 				goto out_relock;
1629 			to_unlock = vlp1;
1630 		}
1631 	}
1632 	mtx_lock(blp);
1633 	cache_zap_locked(ncp);
1634 	mtx_unlock(blp);
1635 	if (to_unlock != NULL)
1636 		mtx_unlock(to_unlock);
1637 	return (true);
1638 
1639 out_relock:
1640 	mtx_unlock(vlp2);
1641 	mtx_lock(vlp1);
1642 	mtx_lock(vlp2);
1643 	MPASS(*vlpp == NULL);
1644 	*vlpp = vlp1;
1645 	return (false);
1646 }
1647 
1648 /*
1649  * If trylocking failed we can get here. We know enough to take all needed locks
1650  * in the right order and re-lookup the entry.
1651  */
1652 static int
1653 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1654     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1655     struct mtx *blp)
1656 {
1657 	struct namecache *rncp;
1658 
1659 	cache_assert_bucket_unlocked(ncp);
1660 
1661 	cache_sort_vnodes(&dvlp, &vlp);
1662 	cache_lock_vnodes(dvlp, vlp);
1663 	mtx_lock(blp);
1664 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1665 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1666 		    rncp->nc_nlen == cnp->cn_namelen &&
1667 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1668 			break;
1669 	}
1670 	if (rncp != NULL) {
1671 		cache_zap_locked(rncp);
1672 		mtx_unlock(blp);
1673 		cache_unlock_vnodes(dvlp, vlp);
1674 		counter_u64_add(zap_bucket_relock_success, 1);
1675 		return (0);
1676 	}
1677 
1678 	mtx_unlock(blp);
1679 	cache_unlock_vnodes(dvlp, vlp);
1680 	return (EAGAIN);
1681 }
1682 
1683 static int __noinline
1684 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1685     uint32_t hash, struct mtx *blp)
1686 {
1687 	struct mtx *dvlp, *vlp;
1688 	struct vnode *dvp;
1689 
1690 	cache_assert_bucket_locked(ncp);
1691 
1692 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1693 	vlp = NULL;
1694 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1695 		vlp = VP2VNODELOCK(ncp->nc_vp);
1696 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1697 		cache_zap_locked(ncp);
1698 		mtx_unlock(blp);
1699 		cache_unlock_vnodes(dvlp, vlp);
1700 		return (0);
1701 	}
1702 
1703 	dvp = ncp->nc_dvp;
1704 	mtx_unlock(blp);
1705 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1706 }
1707 
1708 static __noinline int
1709 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1710 {
1711 	struct namecache *ncp;
1712 	struct mtx *blp;
1713 	struct mtx *dvlp, *dvlp2;
1714 	uint32_t hash;
1715 	int error;
1716 
1717 	if (cnp->cn_namelen == 2 &&
1718 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1719 		dvlp = VP2VNODELOCK(dvp);
1720 		dvlp2 = NULL;
1721 		mtx_lock(dvlp);
1722 retry_dotdot:
1723 		ncp = dvp->v_cache_dd;
1724 		if (ncp == NULL) {
1725 			mtx_unlock(dvlp);
1726 			if (dvlp2 != NULL)
1727 				mtx_unlock(dvlp2);
1728 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1729 			return (0);
1730 		}
1731 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1732 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1733 				goto retry_dotdot;
1734 			MPASS(dvp->v_cache_dd == NULL);
1735 			mtx_unlock(dvlp);
1736 			if (dvlp2 != NULL)
1737 				mtx_unlock(dvlp2);
1738 			cache_free(ncp);
1739 		} else {
1740 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1741 			mtx_unlock(dvlp);
1742 			if (dvlp2 != NULL)
1743 				mtx_unlock(dvlp2);
1744 		}
1745 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1746 		return (1);
1747 	}
1748 
1749 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1750 	blp = HASH2BUCKETLOCK(hash);
1751 retry:
1752 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1753 		goto out_no_entry;
1754 
1755 	mtx_lock(blp);
1756 
1757 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1758 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1759 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1760 			break;
1761 	}
1762 
1763 	if (ncp == NULL) {
1764 		mtx_unlock(blp);
1765 		goto out_no_entry;
1766 	}
1767 
1768 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1769 	if (__predict_false(error != 0)) {
1770 		zap_bucket_fail++;
1771 		goto retry;
1772 	}
1773 	counter_u64_add(numposzaps, 1);
1774 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1775 	cache_free(ncp);
1776 	return (1);
1777 out_no_entry:
1778 	counter_u64_add(nummisszap, 1);
1779 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1780 	return (0);
1781 }
1782 
1783 static int __noinline
1784 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1785     struct timespec *tsp, int *ticksp)
1786 {
1787 	int ltype;
1788 
1789 	*vpp = dvp;
1790 	counter_u64_add(dothits, 1);
1791 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1792 	if (tsp != NULL)
1793 		timespecclear(tsp);
1794 	if (ticksp != NULL)
1795 		*ticksp = ticks;
1796 	vrefact(*vpp);
1797 	/*
1798 	 * When we lookup "." we still can be asked to lock it
1799 	 * differently...
1800 	 */
1801 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1802 	if (ltype != VOP_ISLOCKED(*vpp)) {
1803 		if (ltype == LK_EXCLUSIVE) {
1804 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1805 			if (VN_IS_DOOMED((*vpp))) {
1806 				/* forced unmount */
1807 				vrele(*vpp);
1808 				*vpp = NULL;
1809 				return (ENOENT);
1810 			}
1811 		} else
1812 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1813 	}
1814 	return (-1);
1815 }
1816 
1817 static int __noinline
1818 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1819     struct timespec *tsp, int *ticksp)
1820 {
1821 	struct namecache_ts *ncp_ts;
1822 	struct namecache *ncp;
1823 	struct mtx *dvlp;
1824 	enum vgetstate vs;
1825 	int error, ltype;
1826 	bool whiteout;
1827 
1828 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1829 
1830 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1831 		cache_remove_cnp(dvp, cnp);
1832 		return (0);
1833 	}
1834 
1835 	counter_u64_add(dotdothits, 1);
1836 retry:
1837 	dvlp = VP2VNODELOCK(dvp);
1838 	mtx_lock(dvlp);
1839 	ncp = dvp->v_cache_dd;
1840 	if (ncp == NULL) {
1841 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1842 		mtx_unlock(dvlp);
1843 		return (0);
1844 	}
1845 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1846 		if (ncp->nc_flag & NCF_NEGATIVE)
1847 			*vpp = NULL;
1848 		else
1849 			*vpp = ncp->nc_vp;
1850 	} else
1851 		*vpp = ncp->nc_dvp;
1852 	if (*vpp == NULL)
1853 		goto negative_success;
1854 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1855 	cache_out_ts(ncp, tsp, ticksp);
1856 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1857 	    NCF_DTS && tsp != NULL) {
1858 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1859 		*tsp = ncp_ts->nc_dotdottime;
1860 	}
1861 
1862 	MPASS(dvp != *vpp);
1863 	ltype = VOP_ISLOCKED(dvp);
1864 	VOP_UNLOCK(dvp);
1865 	vs = vget_prep(*vpp);
1866 	mtx_unlock(dvlp);
1867 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1868 	vn_lock(dvp, ltype | LK_RETRY);
1869 	if (VN_IS_DOOMED(dvp)) {
1870 		if (error == 0)
1871 			vput(*vpp);
1872 		*vpp = NULL;
1873 		return (ENOENT);
1874 	}
1875 	if (error) {
1876 		*vpp = NULL;
1877 		goto retry;
1878 	}
1879 	return (-1);
1880 negative_success:
1881 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1882 		if (cnp->cn_flags & ISLASTCN) {
1883 			counter_u64_add(numnegzaps, 1);
1884 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1885 			mtx_unlock(dvlp);
1886 			cache_free(ncp);
1887 			return (0);
1888 		}
1889 	}
1890 
1891 	whiteout = (ncp->nc_flag & NCF_WHITE);
1892 	cache_out_ts(ncp, tsp, ticksp);
1893 	if (cache_neg_hit_prep(ncp))
1894 		cache_neg_promote(ncp);
1895 	else
1896 		cache_neg_hit_finish(ncp);
1897 	mtx_unlock(dvlp);
1898 	if (whiteout)
1899 		cnp->cn_flags |= ISWHITEOUT;
1900 	return (ENOENT);
1901 }
1902 
1903 /**
1904  * Lookup a name in the name cache
1905  *
1906  * # Arguments
1907  *
1908  * - dvp:	Parent directory in which to search.
1909  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1910  * - cnp:	Parameters of the name search.  The most interesting bits of
1911  *   		the cn_flags field have the following meanings:
1912  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1913  *   			it up.
1914  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1915  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1916  *   		or negative) lookup, tsp will be filled with any timespec that
1917  *   		was stored when this cache entry was created.  However, it will
1918  *   		be clear for "." entries.
1919  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1920  *   		(positive or negative) lookup, it will contain the ticks value
1921  *   		that was current when the cache entry was created, unless cnp
1922  *   		was ".".
1923  *
1924  * Either both tsp and ticks have to be provided or neither of them.
1925  *
1926  * # Returns
1927  *
1928  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1929  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1930  *		to a forced unmount.  vpp will not be modified.  If the entry
1931  *		is a whiteout, then the ISWHITEOUT flag will be set in
1932  *		cnp->cn_flags.
1933  * - 0:		A cache miss.  vpp will not be modified.
1934  *
1935  * # Locking
1936  *
1937  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1938  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1939  * lock is not recursively acquired.
1940  */
1941 static int __noinline
1942 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1943     struct timespec *tsp, int *ticksp)
1944 {
1945 	struct namecache *ncp;
1946 	struct mtx *blp;
1947 	uint32_t hash;
1948 	enum vgetstate vs;
1949 	int error;
1950 	bool whiteout;
1951 
1952 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1953 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1954 
1955 retry:
1956 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1957 	blp = HASH2BUCKETLOCK(hash);
1958 	mtx_lock(blp);
1959 
1960 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1961 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1962 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1963 			break;
1964 	}
1965 
1966 	if (__predict_false(ncp == NULL)) {
1967 		mtx_unlock(blp);
1968 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
1969 		counter_u64_add(nummiss, 1);
1970 		return (0);
1971 	}
1972 
1973 	if (ncp->nc_flag & NCF_NEGATIVE)
1974 		goto negative_success;
1975 
1976 	counter_u64_add(numposhits, 1);
1977 	*vpp = ncp->nc_vp;
1978 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1979 	cache_out_ts(ncp, tsp, ticksp);
1980 	MPASS(dvp != *vpp);
1981 	vs = vget_prep(*vpp);
1982 	mtx_unlock(blp);
1983 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1984 	if (error) {
1985 		*vpp = NULL;
1986 		goto retry;
1987 	}
1988 	return (-1);
1989 negative_success:
1990 	/*
1991 	 * We don't get here with regular lookup apart from corner cases.
1992 	 */
1993 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
1994 		if (cnp->cn_flags & ISLASTCN) {
1995 			counter_u64_add(numnegzaps, 1);
1996 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1997 			if (__predict_false(error != 0)) {
1998 				zap_bucket_fail2++;
1999 				goto retry;
2000 			}
2001 			cache_free(ncp);
2002 			return (0);
2003 		}
2004 	}
2005 
2006 	whiteout = (ncp->nc_flag & NCF_WHITE);
2007 	cache_out_ts(ncp, tsp, ticksp);
2008 	if (cache_neg_hit_prep(ncp))
2009 		cache_neg_promote(ncp);
2010 	else
2011 		cache_neg_hit_finish(ncp);
2012 	mtx_unlock(blp);
2013 	if (whiteout)
2014 		cnp->cn_flags |= ISWHITEOUT;
2015 	return (ENOENT);
2016 }
2017 
2018 int
2019 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2020     struct timespec *tsp, int *ticksp)
2021 {
2022 	struct namecache *ncp;
2023 	uint32_t hash;
2024 	enum vgetstate vs;
2025 	int error;
2026 	bool whiteout, neg_promote;
2027 	u_short nc_flag;
2028 
2029 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2030 
2031 #ifdef DEBUG_CACHE
2032 	if (__predict_false(!doingcache)) {
2033 		cnp->cn_flags &= ~MAKEENTRY;
2034 		return (0);
2035 	}
2036 #endif
2037 
2038 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2039 		if (cnp->cn_namelen == 1)
2040 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2041 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2042 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2043 	}
2044 
2045 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2046 
2047 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2048 		cache_remove_cnp(dvp, cnp);
2049 		return (0);
2050 	}
2051 
2052 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2053 	vfs_smr_enter();
2054 
2055 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2056 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2057 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2058 			break;
2059 	}
2060 
2061 	if (__predict_false(ncp == NULL)) {
2062 		vfs_smr_exit();
2063 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2064 		counter_u64_add(nummiss, 1);
2065 		return (0);
2066 	}
2067 
2068 	nc_flag = atomic_load_char(&ncp->nc_flag);
2069 	if (nc_flag & NCF_NEGATIVE)
2070 		goto negative_success;
2071 
2072 	counter_u64_add(numposhits, 1);
2073 	*vpp = ncp->nc_vp;
2074 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2075 	cache_out_ts(ncp, tsp, ticksp);
2076 	MPASS(dvp != *vpp);
2077 	if (!cache_ncp_canuse(ncp)) {
2078 		vfs_smr_exit();
2079 		*vpp = NULL;
2080 		goto out_fallback;
2081 	}
2082 	vs = vget_prep_smr(*vpp);
2083 	vfs_smr_exit();
2084 	if (__predict_false(vs == VGET_NONE)) {
2085 		*vpp = NULL;
2086 		goto out_fallback;
2087 	}
2088 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2089 	if (error) {
2090 		*vpp = NULL;
2091 		goto out_fallback;
2092 	}
2093 	return (-1);
2094 negative_success:
2095 	if (cnp->cn_nameiop == CREATE) {
2096 		if (cnp->cn_flags & ISLASTCN) {
2097 			vfs_smr_exit();
2098 			goto out_fallback;
2099 		}
2100 	}
2101 
2102 	cache_out_ts(ncp, tsp, ticksp);
2103 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2104 	neg_promote = cache_neg_hit_prep(ncp);
2105 	if (!cache_ncp_canuse(ncp)) {
2106 		cache_neg_hit_abort(ncp);
2107 		vfs_smr_exit();
2108 		goto out_fallback;
2109 	}
2110 	if (neg_promote) {
2111 		vfs_smr_exit();
2112 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2113 			goto out_fallback;
2114 	} else {
2115 		cache_neg_hit_finish(ncp);
2116 		vfs_smr_exit();
2117 	}
2118 	if (whiteout)
2119 		cnp->cn_flags |= ISWHITEOUT;
2120 	return (ENOENT);
2121 out_fallback:
2122 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2123 }
2124 
2125 struct celockstate {
2126 	struct mtx *vlp[3];
2127 	struct mtx *blp[2];
2128 };
2129 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2130 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2131 
2132 static inline void
2133 cache_celockstate_init(struct celockstate *cel)
2134 {
2135 
2136 	bzero(cel, sizeof(*cel));
2137 }
2138 
2139 static void
2140 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2141     struct vnode *dvp)
2142 {
2143 	struct mtx *vlp1, *vlp2;
2144 
2145 	MPASS(cel->vlp[0] == NULL);
2146 	MPASS(cel->vlp[1] == NULL);
2147 	MPASS(cel->vlp[2] == NULL);
2148 
2149 	MPASS(vp != NULL || dvp != NULL);
2150 
2151 	vlp1 = VP2VNODELOCK(vp);
2152 	vlp2 = VP2VNODELOCK(dvp);
2153 	cache_sort_vnodes(&vlp1, &vlp2);
2154 
2155 	if (vlp1 != NULL) {
2156 		mtx_lock(vlp1);
2157 		cel->vlp[0] = vlp1;
2158 	}
2159 	mtx_lock(vlp2);
2160 	cel->vlp[1] = vlp2;
2161 }
2162 
2163 static void
2164 cache_unlock_vnodes_cel(struct celockstate *cel)
2165 {
2166 
2167 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2168 
2169 	if (cel->vlp[0] != NULL)
2170 		mtx_unlock(cel->vlp[0]);
2171 	if (cel->vlp[1] != NULL)
2172 		mtx_unlock(cel->vlp[1]);
2173 	if (cel->vlp[2] != NULL)
2174 		mtx_unlock(cel->vlp[2]);
2175 }
2176 
2177 static bool
2178 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2179 {
2180 	struct mtx *vlp;
2181 	bool ret;
2182 
2183 	cache_assert_vlp_locked(cel->vlp[0]);
2184 	cache_assert_vlp_locked(cel->vlp[1]);
2185 	MPASS(cel->vlp[2] == NULL);
2186 
2187 	MPASS(vp != NULL);
2188 	vlp = VP2VNODELOCK(vp);
2189 
2190 	ret = true;
2191 	if (vlp >= cel->vlp[1]) {
2192 		mtx_lock(vlp);
2193 	} else {
2194 		if (mtx_trylock(vlp))
2195 			goto out;
2196 		cache_lock_vnodes_cel_3_failures++;
2197 		cache_unlock_vnodes_cel(cel);
2198 		if (vlp < cel->vlp[0]) {
2199 			mtx_lock(vlp);
2200 			mtx_lock(cel->vlp[0]);
2201 			mtx_lock(cel->vlp[1]);
2202 		} else {
2203 			if (cel->vlp[0] != NULL)
2204 				mtx_lock(cel->vlp[0]);
2205 			mtx_lock(vlp);
2206 			mtx_lock(cel->vlp[1]);
2207 		}
2208 		ret = false;
2209 	}
2210 out:
2211 	cel->vlp[2] = vlp;
2212 	return (ret);
2213 }
2214 
2215 static void
2216 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2217     struct mtx *blp2)
2218 {
2219 
2220 	MPASS(cel->blp[0] == NULL);
2221 	MPASS(cel->blp[1] == NULL);
2222 
2223 	cache_sort_vnodes(&blp1, &blp2);
2224 
2225 	if (blp1 != NULL) {
2226 		mtx_lock(blp1);
2227 		cel->blp[0] = blp1;
2228 	}
2229 	mtx_lock(blp2);
2230 	cel->blp[1] = blp2;
2231 }
2232 
2233 static void
2234 cache_unlock_buckets_cel(struct celockstate *cel)
2235 {
2236 
2237 	if (cel->blp[0] != NULL)
2238 		mtx_unlock(cel->blp[0]);
2239 	mtx_unlock(cel->blp[1]);
2240 }
2241 
2242 /*
2243  * Lock part of the cache affected by the insertion.
2244  *
2245  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2246  * However, insertion can result in removal of an old entry. In this
2247  * case we have an additional vnode and bucketlock pair to lock.
2248  *
2249  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2250  * preserving the locking order (smaller address first).
2251  */
2252 static void
2253 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2254     uint32_t hash)
2255 {
2256 	struct namecache *ncp;
2257 	struct mtx *blps[2];
2258 	u_char nc_flag;
2259 
2260 	blps[0] = HASH2BUCKETLOCK(hash);
2261 	for (;;) {
2262 		blps[1] = NULL;
2263 		cache_lock_vnodes_cel(cel, dvp, vp);
2264 		if (vp == NULL || vp->v_type != VDIR)
2265 			break;
2266 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2267 		if (ncp == NULL)
2268 			break;
2269 		nc_flag = atomic_load_char(&ncp->nc_flag);
2270 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2271 			break;
2272 		MPASS(ncp->nc_dvp == vp);
2273 		blps[1] = NCP2BUCKETLOCK(ncp);
2274 		if ((nc_flag & NCF_NEGATIVE) != 0)
2275 			break;
2276 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2277 			break;
2278 		/*
2279 		 * All vnodes got re-locked. Re-validate the state and if
2280 		 * nothing changed we are done. Otherwise restart.
2281 		 */
2282 		if (ncp == vp->v_cache_dd &&
2283 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2284 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2285 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2286 			break;
2287 		cache_unlock_vnodes_cel(cel);
2288 		cel->vlp[0] = NULL;
2289 		cel->vlp[1] = NULL;
2290 		cel->vlp[2] = NULL;
2291 	}
2292 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2293 }
2294 
2295 static void
2296 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2297     uint32_t hash)
2298 {
2299 	struct namecache *ncp;
2300 	struct mtx *blps[2];
2301 	u_char nc_flag;
2302 
2303 	blps[0] = HASH2BUCKETLOCK(hash);
2304 	for (;;) {
2305 		blps[1] = NULL;
2306 		cache_lock_vnodes_cel(cel, dvp, vp);
2307 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2308 		if (ncp == NULL)
2309 			break;
2310 		nc_flag = atomic_load_char(&ncp->nc_flag);
2311 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2312 			break;
2313 		MPASS(ncp->nc_dvp == dvp);
2314 		blps[1] = NCP2BUCKETLOCK(ncp);
2315 		if ((nc_flag & NCF_NEGATIVE) != 0)
2316 			break;
2317 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2318 			break;
2319 		if (ncp == dvp->v_cache_dd &&
2320 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2321 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2322 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2323 			break;
2324 		cache_unlock_vnodes_cel(cel);
2325 		cel->vlp[0] = NULL;
2326 		cel->vlp[1] = NULL;
2327 		cel->vlp[2] = NULL;
2328 	}
2329 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2330 }
2331 
2332 static void
2333 cache_enter_unlock(struct celockstate *cel)
2334 {
2335 
2336 	cache_unlock_buckets_cel(cel);
2337 	cache_unlock_vnodes_cel(cel);
2338 }
2339 
2340 static void __noinline
2341 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2342     struct componentname *cnp)
2343 {
2344 	struct celockstate cel;
2345 	struct namecache *ncp;
2346 	uint32_t hash;
2347 	int len;
2348 
2349 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2350 		return;
2351 	len = cnp->cn_namelen;
2352 	cache_celockstate_init(&cel);
2353 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2354 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2355 	ncp = dvp->v_cache_dd;
2356 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2357 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2358 		cache_zap_locked(ncp);
2359 	} else {
2360 		ncp = NULL;
2361 	}
2362 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2363 	cache_enter_unlock(&cel);
2364 	if (ncp != NULL)
2365 		cache_free(ncp);
2366 }
2367 
2368 /*
2369  * Add an entry to the cache.
2370  */
2371 void
2372 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2373     struct timespec *tsp, struct timespec *dtsp)
2374 {
2375 	struct celockstate cel;
2376 	struct namecache *ncp, *n2, *ndd;
2377 	struct namecache_ts *ncp_ts;
2378 	struct nchashhead *ncpp;
2379 	uint32_t hash;
2380 	int flag;
2381 	int len;
2382 
2383 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2384 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2385 	    NAME_MAX));
2386 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2387 	VNPASS(dvp->v_type != VNON, dvp);
2388 	if (vp != NULL) {
2389 		VNPASS(!VN_IS_DOOMED(vp), vp);
2390 		VNPASS(vp->v_type != VNON, vp);
2391 	}
2392 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2393 		KASSERT(dvp == vp,
2394 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2395 		    dvp, vp));
2396 	} else {
2397 		KASSERT(dvp != vp,
2398 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2399 		    cnp->cn_nameptr, dvp));
2400 	}
2401 
2402 #ifdef DEBUG_CACHE
2403 	if (__predict_false(!doingcache))
2404 		return;
2405 #endif
2406 
2407 	flag = 0;
2408 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2409 		if (cnp->cn_namelen == 1)
2410 			return;
2411 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2412 			cache_enter_dotdot_prep(dvp, vp, cnp);
2413 			flag = NCF_ISDOTDOT;
2414 		}
2415 	}
2416 
2417 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2418 	if (ncp == NULL)
2419 		return;
2420 
2421 	cache_celockstate_init(&cel);
2422 	ndd = NULL;
2423 	ncp_ts = NULL;
2424 
2425 	/*
2426 	 * Calculate the hash key and setup as much of the new
2427 	 * namecache entry as possible before acquiring the lock.
2428 	 */
2429 	ncp->nc_flag = flag | NCF_WIP;
2430 	ncp->nc_vp = vp;
2431 	if (vp == NULL)
2432 		cache_neg_init(ncp);
2433 	ncp->nc_dvp = dvp;
2434 	if (tsp != NULL) {
2435 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2436 		ncp_ts->nc_time = *tsp;
2437 		ncp_ts->nc_ticks = ticks;
2438 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2439 		if (dtsp != NULL) {
2440 			ncp_ts->nc_dotdottime = *dtsp;
2441 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2442 		}
2443 	}
2444 	len = ncp->nc_nlen = cnp->cn_namelen;
2445 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2446 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2447 	ncp->nc_name[len] = '\0';
2448 	cache_enter_lock(&cel, dvp, vp, hash);
2449 
2450 	/*
2451 	 * See if this vnode or negative entry is already in the cache
2452 	 * with this name.  This can happen with concurrent lookups of
2453 	 * the same path name.
2454 	 */
2455 	ncpp = NCHHASH(hash);
2456 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2457 		if (n2->nc_dvp == dvp &&
2458 		    n2->nc_nlen == cnp->cn_namelen &&
2459 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2460 			MPASS(cache_ncp_canuse(n2));
2461 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2462 				KASSERT(vp == NULL,
2463 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2464 				    __func__, NULL, vp, cnp->cn_nameptr));
2465 			else
2466 				KASSERT(n2->nc_vp == vp,
2467 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2468 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2469 			/*
2470 			 * Entries are supposed to be immutable unless in the
2471 			 * process of getting destroyed. Accommodating for
2472 			 * changing timestamps is possible but not worth it.
2473 			 * This should be harmless in terms of correctness, in
2474 			 * the worst case resulting in an earlier expiration.
2475 			 * Alternatively, the found entry can be replaced
2476 			 * altogether.
2477 			 */
2478 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2479 #if 0
2480 			if (tsp != NULL) {
2481 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2482 				    ("no NCF_TS"));
2483 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2484 				n2_ts->nc_time = ncp_ts->nc_time;
2485 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2486 				if (dtsp != NULL) {
2487 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2488 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2489 				}
2490 			}
2491 #endif
2492 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2493 			    vp);
2494 			goto out_unlock_free;
2495 		}
2496 	}
2497 
2498 	if (flag == NCF_ISDOTDOT) {
2499 		/*
2500 		 * See if we are trying to add .. entry, but some other lookup
2501 		 * has populated v_cache_dd pointer already.
2502 		 */
2503 		if (dvp->v_cache_dd != NULL)
2504 			goto out_unlock_free;
2505 		KASSERT(vp == NULL || vp->v_type == VDIR,
2506 		    ("wrong vnode type %p", vp));
2507 		atomic_thread_fence_rel();
2508 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2509 	}
2510 
2511 	if (vp != NULL) {
2512 		if (flag != NCF_ISDOTDOT) {
2513 			/*
2514 			 * For this case, the cache entry maps both the
2515 			 * directory name in it and the name ".." for the
2516 			 * directory's parent.
2517 			 */
2518 			if ((ndd = vp->v_cache_dd) != NULL) {
2519 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2520 					cache_zap_locked(ndd);
2521 				else
2522 					ndd = NULL;
2523 			}
2524 			atomic_thread_fence_rel();
2525 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2526 		} else if (vp->v_type != VDIR) {
2527 			if (vp->v_cache_dd != NULL) {
2528 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2529 			}
2530 		}
2531 	}
2532 
2533 	if (flag != NCF_ISDOTDOT) {
2534 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2535 			cache_hold_vnode(dvp);
2536 		}
2537 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2538 	}
2539 
2540 	/*
2541 	 * If the entry is "negative", we place it into the
2542 	 * "negative" cache queue, otherwise, we place it into the
2543 	 * destination vnode's cache entries queue.
2544 	 */
2545 	if (vp != NULL) {
2546 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2547 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2548 		    vp);
2549 	} else {
2550 		if (cnp->cn_flags & ISWHITEOUT)
2551 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2552 		cache_neg_insert(ncp);
2553 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2554 		    ncp->nc_name);
2555 	}
2556 
2557 	/*
2558 	 * Insert the new namecache entry into the appropriate chain
2559 	 * within the cache entries table.
2560 	 */
2561 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2562 
2563 	atomic_thread_fence_rel();
2564 	/*
2565 	 * Mark the entry as fully constructed.
2566 	 * It is immutable past this point until its removal.
2567 	 */
2568 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2569 
2570 	cache_enter_unlock(&cel);
2571 	if (ndd != NULL)
2572 		cache_free(ndd);
2573 	return;
2574 out_unlock_free:
2575 	cache_enter_unlock(&cel);
2576 	cache_free(ncp);
2577 	return;
2578 }
2579 
2580 /*
2581  * A variant of the above accepting flags.
2582  *
2583  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2584  *
2585  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2586  * happens to match and it is doing it in an inefficient manner. It was added
2587  * to accommodate NFS which runs into a case where the target for a given name
2588  * may change from under it. Note this does nothing to solve the following
2589  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2590  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2591  */
2592 void
2593 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2594     struct timespec *tsp, struct timespec *dtsp, int flags)
2595 {
2596 
2597 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2598 
2599 	if (flags & VFS_CACHE_DROPOLD)
2600 		cache_remove_cnp(dvp, cnp);
2601 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2602 }
2603 
2604 static u_int
2605 cache_roundup_2(u_int val)
2606 {
2607 	u_int res;
2608 
2609 	for (res = 1; res <= val; res <<= 1)
2610 		continue;
2611 
2612 	return (res);
2613 }
2614 
2615 static struct nchashhead *
2616 nchinittbl(u_long elements, u_long *hashmask)
2617 {
2618 	struct nchashhead *hashtbl;
2619 	u_long hashsize, i;
2620 
2621 	hashsize = cache_roundup_2(elements) / 2;
2622 
2623 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2624 	for (i = 0; i < hashsize; i++)
2625 		CK_SLIST_INIT(&hashtbl[i]);
2626 	*hashmask = hashsize - 1;
2627 	return (hashtbl);
2628 }
2629 
2630 static void
2631 ncfreetbl(struct nchashhead *hashtbl)
2632 {
2633 
2634 	free(hashtbl, M_VFSCACHE);
2635 }
2636 
2637 /*
2638  * Name cache initialization, from vfs_init() when we are booting
2639  */
2640 static void
2641 nchinit(void *dummy __unused)
2642 {
2643 	u_int i;
2644 
2645 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2646 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2647 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2648 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2649 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2650 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2651 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2652 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2653 
2654 	VFS_SMR_ZONE_SET(cache_zone_small);
2655 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2656 	VFS_SMR_ZONE_SET(cache_zone_large);
2657 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2658 
2659 	ncsize = desiredvnodes * ncsizefactor;
2660 	cache_recalc_neg_min(ncnegminpct);
2661 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2662 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2663 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2664 		ncbuckethash = 7;
2665 	if (ncbuckethash > nchash)
2666 		ncbuckethash = nchash;
2667 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2668 	    M_WAITOK | M_ZERO);
2669 	for (i = 0; i < numbucketlocks; i++)
2670 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2671 	ncvnodehash = ncbuckethash;
2672 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2673 	    M_WAITOK | M_ZERO);
2674 	for (i = 0; i < numvnodelocks; i++)
2675 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2676 
2677 	for (i = 0; i < numneglists; i++) {
2678 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2679 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2680 		TAILQ_INIT(&neglists[i].nl_list);
2681 		TAILQ_INIT(&neglists[i].nl_hotlist);
2682 	}
2683 }
2684 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2685 
2686 void
2687 cache_vnode_init(struct vnode *vp)
2688 {
2689 
2690 	LIST_INIT(&vp->v_cache_src);
2691 	TAILQ_INIT(&vp->v_cache_dst);
2692 	vp->v_cache_dd = NULL;
2693 	cache_prehash(vp);
2694 }
2695 
2696 /*
2697  * Induce transient cache misses for lockless operation in cache_lookup() by
2698  * using a temporary hash table.
2699  *
2700  * This will force a fs lookup.
2701  *
2702  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2703  * to observe all CPUs not performing the lookup.
2704  */
2705 static void
2706 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2707 {
2708 
2709 	MPASS(temphash < nchash);
2710 	/*
2711 	 * Change the size. The new size is smaller and can safely be used
2712 	 * against the existing table. All lookups which now hash wrong will
2713 	 * result in a cache miss, which all callers are supposed to know how
2714 	 * to handle.
2715 	 */
2716 	atomic_store_long(&nchash, temphash);
2717 	atomic_thread_fence_rel();
2718 	vfs_smr_synchronize();
2719 	/*
2720 	 * At this point everyone sees the updated hash value, but they still
2721 	 * see the old table.
2722 	 */
2723 	atomic_store_ptr(&nchashtbl, temptbl);
2724 	atomic_thread_fence_rel();
2725 	vfs_smr_synchronize();
2726 	/*
2727 	 * At this point everyone sees the updated table pointer and size pair.
2728 	 */
2729 }
2730 
2731 /*
2732  * Set the new hash table.
2733  *
2734  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2735  * lockless operation in cache_lookup().
2736  */
2737 static void
2738 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2739 {
2740 
2741 	MPASS(nchash < new_hash);
2742 	/*
2743 	 * Change the pointer first. This wont result in out of bounds access
2744 	 * since the temporary table is guaranteed to be smaller.
2745 	 */
2746 	atomic_store_ptr(&nchashtbl, new_tbl);
2747 	atomic_thread_fence_rel();
2748 	vfs_smr_synchronize();
2749 	/*
2750 	 * At this point everyone sees the updated pointer value, but they
2751 	 * still see the old size.
2752 	 */
2753 	atomic_store_long(&nchash, new_hash);
2754 	atomic_thread_fence_rel();
2755 	vfs_smr_synchronize();
2756 	/*
2757 	 * At this point everyone sees the updated table pointer and size pair.
2758 	 */
2759 }
2760 
2761 void
2762 cache_changesize(u_long newmaxvnodes)
2763 {
2764 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2765 	u_long new_nchash, old_nchash, temphash;
2766 	struct namecache *ncp;
2767 	uint32_t hash;
2768 	u_long newncsize;
2769 	int i;
2770 
2771 	newncsize = newmaxvnodes * ncsizefactor;
2772 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2773 	if (newmaxvnodes < numbucketlocks)
2774 		newmaxvnodes = numbucketlocks;
2775 
2776 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2777 	/* If same hash table size, nothing to do */
2778 	if (nchash == new_nchash) {
2779 		ncfreetbl(new_nchashtbl);
2780 		return;
2781 	}
2782 
2783 	temptbl = nchinittbl(1, &temphash);
2784 
2785 	/*
2786 	 * Move everything from the old hash table to the new table.
2787 	 * None of the namecache entries in the table can be removed
2788 	 * because to do so, they have to be removed from the hash table.
2789 	 */
2790 	cache_lock_all_vnodes();
2791 	cache_lock_all_buckets();
2792 	old_nchashtbl = nchashtbl;
2793 	old_nchash = nchash;
2794 	cache_changesize_set_temp(temptbl, temphash);
2795 	for (i = 0; i <= old_nchash; i++) {
2796 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2797 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2798 			    ncp->nc_dvp);
2799 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2800 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2801 		}
2802 	}
2803 	ncsize = newncsize;
2804 	cache_recalc_neg_min(ncnegminpct);
2805 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2806 	cache_unlock_all_buckets();
2807 	cache_unlock_all_vnodes();
2808 	ncfreetbl(old_nchashtbl);
2809 	ncfreetbl(temptbl);
2810 }
2811 
2812 /*
2813  * Remove all entries from and to a particular vnode.
2814  */
2815 static void
2816 cache_purge_impl(struct vnode *vp)
2817 {
2818 	struct cache_freebatch batch;
2819 	struct namecache *ncp;
2820 	struct mtx *vlp, *vlp2;
2821 
2822 	TAILQ_INIT(&batch);
2823 	vlp = VP2VNODELOCK(vp);
2824 	vlp2 = NULL;
2825 	mtx_lock(vlp);
2826 retry:
2827 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2828 		ncp = LIST_FIRST(&vp->v_cache_src);
2829 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2830 			goto retry;
2831 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2832 	}
2833 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2834 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2835 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2836 			goto retry;
2837 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2838 	}
2839 	ncp = vp->v_cache_dd;
2840 	if (ncp != NULL) {
2841 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2842 		   ("lost dotdot link"));
2843 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2844 			goto retry;
2845 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2846 	}
2847 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2848 	mtx_unlock(vlp);
2849 	if (vlp2 != NULL)
2850 		mtx_unlock(vlp2);
2851 	cache_free_batch(&batch);
2852 }
2853 
2854 /*
2855  * Opportunistic check to see if there is anything to do.
2856  */
2857 static bool
2858 cache_has_entries(struct vnode *vp)
2859 {
2860 
2861 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2862 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2863 		return (false);
2864 	return (true);
2865 }
2866 
2867 void
2868 cache_purge(struct vnode *vp)
2869 {
2870 
2871 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2872 	if (!cache_has_entries(vp))
2873 		return;
2874 	cache_purge_impl(vp);
2875 }
2876 
2877 /*
2878  * Only to be used by vgone.
2879  */
2880 void
2881 cache_purge_vgone(struct vnode *vp)
2882 {
2883 	struct mtx *vlp;
2884 
2885 	VNPASS(VN_IS_DOOMED(vp), vp);
2886 	if (cache_has_entries(vp)) {
2887 		cache_purge_impl(vp);
2888 		return;
2889 	}
2890 
2891 	/*
2892 	 * Serialize against a potential thread doing cache_purge.
2893 	 */
2894 	vlp = VP2VNODELOCK(vp);
2895 	mtx_wait_unlocked(vlp);
2896 	if (cache_has_entries(vp)) {
2897 		cache_purge_impl(vp);
2898 		return;
2899 	}
2900 	return;
2901 }
2902 
2903 /*
2904  * Remove all negative entries for a particular directory vnode.
2905  */
2906 void
2907 cache_purge_negative(struct vnode *vp)
2908 {
2909 	struct cache_freebatch batch;
2910 	struct namecache *ncp, *nnp;
2911 	struct mtx *vlp;
2912 
2913 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2914 	if (LIST_EMPTY(&vp->v_cache_src))
2915 		return;
2916 	TAILQ_INIT(&batch);
2917 	vlp = VP2VNODELOCK(vp);
2918 	mtx_lock(vlp);
2919 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2920 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2921 			continue;
2922 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2923 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2924 	}
2925 	mtx_unlock(vlp);
2926 	cache_free_batch(&batch);
2927 }
2928 
2929 /*
2930  * Entry points for modifying VOP operations.
2931  */
2932 void
2933 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2934     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2935 {
2936 
2937 	ASSERT_VOP_IN_SEQC(fdvp);
2938 	ASSERT_VOP_IN_SEQC(fvp);
2939 	ASSERT_VOP_IN_SEQC(tdvp);
2940 	if (tvp != NULL)
2941 		ASSERT_VOP_IN_SEQC(tvp);
2942 
2943 	cache_purge(fvp);
2944 	if (tvp != NULL) {
2945 		cache_purge(tvp);
2946 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2947 		    ("%s: lingering negative entry", __func__));
2948 	} else {
2949 		cache_remove_cnp(tdvp, tcnp);
2950 	}
2951 
2952 	/*
2953 	 * TODO
2954 	 *
2955 	 * Historically renaming was always purging all revelang entries,
2956 	 * but that's quite wasteful. In particular turns out that in many cases
2957 	 * the target file is immediately accessed after rename, inducing a cache
2958 	 * miss.
2959 	 *
2960 	 * Recode this to reduce relocking and reuse the existing entry (if any)
2961 	 * instead of just removing it above and allocating a new one here.
2962 	 */
2963 	cache_enter(tdvp, fvp, tcnp);
2964 }
2965 
2966 void
2967 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2968 {
2969 
2970 	ASSERT_VOP_IN_SEQC(dvp);
2971 	ASSERT_VOP_IN_SEQC(vp);
2972 	cache_purge(vp);
2973 }
2974 
2975 #ifdef INVARIANTS
2976 /*
2977  * Validate that if an entry exists it matches.
2978  */
2979 void
2980 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2981 {
2982 	struct namecache *ncp;
2983 	struct mtx *blp;
2984 	uint32_t hash;
2985 
2986 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2987 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
2988 		return;
2989 	blp = HASH2BUCKETLOCK(hash);
2990 	mtx_lock(blp);
2991 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2992 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2993 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
2994 			if (ncp->nc_vp != vp)
2995 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
2996 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
2997 		}
2998 	}
2999 	mtx_unlock(blp);
3000 }
3001 #endif
3002 
3003 /*
3004  * Flush all entries referencing a particular filesystem.
3005  */
3006 void
3007 cache_purgevfs(struct mount *mp)
3008 {
3009 	struct vnode *vp, *mvp;
3010 	size_t visited, purged;
3011 
3012 	visited = purged = 0;
3013 	/*
3014 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3015 	 * support filtering and avoid the interlock to begin with.
3016 	 */
3017 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3018 		visited++;
3019 		if (!cache_has_entries(vp)) {
3020 			VI_UNLOCK(vp);
3021 			continue;
3022 		}
3023 		vholdl(vp);
3024 		VI_UNLOCK(vp);
3025 		cache_purge(vp);
3026 		purged++;
3027 		vdrop(vp);
3028 	}
3029 
3030 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3031 }
3032 
3033 /*
3034  * Perform canonical checks and cache lookup and pass on to filesystem
3035  * through the vop_cachedlookup only if needed.
3036  */
3037 
3038 int
3039 vfs_cache_lookup(struct vop_lookup_args *ap)
3040 {
3041 	struct vnode *dvp;
3042 	int error;
3043 	struct vnode **vpp = ap->a_vpp;
3044 	struct componentname *cnp = ap->a_cnp;
3045 	int flags = cnp->cn_flags;
3046 
3047 	*vpp = NULL;
3048 	dvp = ap->a_dvp;
3049 
3050 	if (dvp->v_type != VDIR)
3051 		return (ENOTDIR);
3052 
3053 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3054 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3055 		return (EROFS);
3056 
3057 	error = vn_dir_check_exec(dvp, cnp);
3058 	if (error != 0)
3059 		return (error);
3060 
3061 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3062 	if (error == 0)
3063 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3064 	if (error == -1)
3065 		return (0);
3066 	return (error);
3067 }
3068 
3069 /* Implementation of the getcwd syscall. */
3070 int
3071 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3072 {
3073 	char *buf, *retbuf;
3074 	size_t buflen;
3075 	int error;
3076 
3077 	buflen = uap->buflen;
3078 	if (__predict_false(buflen < 2))
3079 		return (EINVAL);
3080 	if (buflen > MAXPATHLEN)
3081 		buflen = MAXPATHLEN;
3082 
3083 	buf = uma_zalloc(namei_zone, M_WAITOK);
3084 	error = vn_getcwd(buf, &retbuf, &buflen);
3085 	if (error == 0)
3086 		error = copyout(retbuf, uap->buf, buflen);
3087 	uma_zfree(namei_zone, buf);
3088 	return (error);
3089 }
3090 
3091 int
3092 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3093 {
3094 	struct pwd *pwd;
3095 	int error;
3096 
3097 	vfs_smr_enter();
3098 	pwd = pwd_get_smr();
3099 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3100 	    buflen, 0);
3101 	VFS_SMR_ASSERT_NOT_ENTERED();
3102 	if (error < 0) {
3103 		pwd = pwd_hold(curthread);
3104 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3105 		    retbuf, buflen);
3106 		pwd_drop(pwd);
3107 	}
3108 
3109 #ifdef KTRACE
3110 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3111 		ktrnamei(*retbuf);
3112 #endif
3113 	return (error);
3114 }
3115 
3116 /*
3117  * Canonicalize a path by walking it forward and back.
3118  *
3119  * BUGS:
3120  * - Nothing guarantees the integrity of the entire chain. Consider the case
3121  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3122  *   "foo" into "quux" during the backwards walk. The result will be
3123  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3124  *   walk in userspace. Moreover, the path we return is inaccessible if the
3125  *   calling thread lacks permission to traverse "quux".
3126  */
3127 static int
3128 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3129     size_t size, int flags, enum uio_seg pathseg)
3130 {
3131 	struct nameidata nd;
3132 	char *retbuf, *freebuf;
3133 	int error;
3134 
3135 	if (flags != 0)
3136 		return (EINVAL);
3137 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3138 	    pathseg, path, fd, &cap_fstat_rights);
3139 	if ((error = namei(&nd)) != 0)
3140 		return (error);
3141 	error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3142 	    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3143 	if (error == 0) {
3144 		error = copyout(retbuf, buf, size);
3145 		free(freebuf, M_TEMP);
3146 	}
3147 	NDFREE(&nd, 0);
3148 	return (error);
3149 }
3150 
3151 int
3152 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3153 {
3154 
3155 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3156 	    uap->flags, UIO_USERSPACE));
3157 }
3158 
3159 /*
3160  * Retrieve the full filesystem path that correspond to a vnode from the name
3161  * cache (if available)
3162  */
3163 int
3164 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3165 {
3166 	struct pwd *pwd;
3167 	char *buf;
3168 	size_t buflen;
3169 	int error;
3170 
3171 	if (__predict_false(vp == NULL))
3172 		return (EINVAL);
3173 
3174 	buflen = MAXPATHLEN;
3175 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3176 	vfs_smr_enter();
3177 	pwd = pwd_get_smr();
3178 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3179 	VFS_SMR_ASSERT_NOT_ENTERED();
3180 	if (error < 0) {
3181 		pwd = pwd_hold(curthread);
3182 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3183 		pwd_drop(pwd);
3184 	}
3185 	if (error == 0)
3186 		*freebuf = buf;
3187 	else
3188 		free(buf, M_TEMP);
3189 	return (error);
3190 }
3191 
3192 /*
3193  * This function is similar to vn_fullpath, but it attempts to lookup the
3194  * pathname relative to the global root mount point.  This is required for the
3195  * auditing sub-system, as audited pathnames must be absolute, relative to the
3196  * global root mount point.
3197  */
3198 int
3199 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3200 {
3201 	char *buf;
3202 	size_t buflen;
3203 	int error;
3204 
3205 	if (__predict_false(vp == NULL))
3206 		return (EINVAL);
3207 	buflen = MAXPATHLEN;
3208 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3209 	vfs_smr_enter();
3210 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3211 	VFS_SMR_ASSERT_NOT_ENTERED();
3212 	if (error < 0) {
3213 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3214 	}
3215 	if (error == 0)
3216 		*freebuf = buf;
3217 	else
3218 		free(buf, M_TEMP);
3219 	return (error);
3220 }
3221 
3222 static struct namecache *
3223 vn_dd_from_dst(struct vnode *vp)
3224 {
3225 	struct namecache *ncp;
3226 
3227 	cache_assert_vnode_locked(vp);
3228 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3229 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3230 			return (ncp);
3231 	}
3232 	return (NULL);
3233 }
3234 
3235 int
3236 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3237 {
3238 	struct vnode *dvp;
3239 	struct namecache *ncp;
3240 	struct mtx *vlp;
3241 	int error;
3242 
3243 	vlp = VP2VNODELOCK(*vp);
3244 	mtx_lock(vlp);
3245 	ncp = (*vp)->v_cache_dd;
3246 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3247 		KASSERT(ncp == vn_dd_from_dst(*vp),
3248 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3249 		    ncp, vn_dd_from_dst(*vp)));
3250 	} else {
3251 		ncp = vn_dd_from_dst(*vp);
3252 	}
3253 	if (ncp != NULL) {
3254 		if (*buflen < ncp->nc_nlen) {
3255 			mtx_unlock(vlp);
3256 			vrele(*vp);
3257 			counter_u64_add(numfullpathfail4, 1);
3258 			error = ENOMEM;
3259 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3260 			    vp, NULL);
3261 			return (error);
3262 		}
3263 		*buflen -= ncp->nc_nlen;
3264 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3265 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3266 		    ncp->nc_name, vp);
3267 		dvp = *vp;
3268 		*vp = ncp->nc_dvp;
3269 		vref(*vp);
3270 		mtx_unlock(vlp);
3271 		vrele(dvp);
3272 		return (0);
3273 	}
3274 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3275 
3276 	mtx_unlock(vlp);
3277 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3278 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3279 	vput(*vp);
3280 	if (error) {
3281 		counter_u64_add(numfullpathfail2, 1);
3282 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3283 		return (error);
3284 	}
3285 
3286 	*vp = dvp;
3287 	if (VN_IS_DOOMED(dvp)) {
3288 		/* forced unmount */
3289 		vrele(dvp);
3290 		error = ENOENT;
3291 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3292 		return (error);
3293 	}
3294 	/*
3295 	 * *vp has its use count incremented still.
3296 	 */
3297 
3298 	return (0);
3299 }
3300 
3301 /*
3302  * Resolve a directory to a pathname.
3303  *
3304  * The name of the directory can always be found in the namecache or fetched
3305  * from the filesystem. There is also guaranteed to be only one parent, meaning
3306  * we can just follow vnodes up until we find the root.
3307  *
3308  * The vnode must be referenced.
3309  */
3310 static int
3311 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3312     size_t *len, size_t addend)
3313 {
3314 #ifdef KDTRACE_HOOKS
3315 	struct vnode *startvp = vp;
3316 #endif
3317 	struct vnode *vp1;
3318 	size_t buflen;
3319 	int error;
3320 	bool slash_prefixed;
3321 
3322 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3323 	VNPASS(vp->v_usecount > 0, vp);
3324 
3325 	buflen = *len;
3326 
3327 	slash_prefixed = true;
3328 	if (addend == 0) {
3329 		MPASS(*len >= 2);
3330 		buflen--;
3331 		buf[buflen] = '\0';
3332 		slash_prefixed = false;
3333 	}
3334 
3335 	error = 0;
3336 
3337 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3338 	counter_u64_add(numfullpathcalls, 1);
3339 	while (vp != rdir && vp != rootvnode) {
3340 		/*
3341 		 * The vp vnode must be already fully constructed,
3342 		 * since it is either found in namecache or obtained
3343 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3344 		 * without obtaining the vnode lock.
3345 		 */
3346 		if ((vp->v_vflag & VV_ROOT) != 0) {
3347 			vn_lock(vp, LK_RETRY | LK_SHARED);
3348 
3349 			/*
3350 			 * With the vnode locked, check for races with
3351 			 * unmount, forced or not.  Note that we
3352 			 * already verified that vp is not equal to
3353 			 * the root vnode, which means that
3354 			 * mnt_vnodecovered can be NULL only for the
3355 			 * case of unmount.
3356 			 */
3357 			if (VN_IS_DOOMED(vp) ||
3358 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3359 			    vp1->v_mountedhere != vp->v_mount) {
3360 				vput(vp);
3361 				error = ENOENT;
3362 				SDT_PROBE3(vfs, namecache, fullpath, return,
3363 				    error, vp, NULL);
3364 				break;
3365 			}
3366 
3367 			vref(vp1);
3368 			vput(vp);
3369 			vp = vp1;
3370 			continue;
3371 		}
3372 		if (vp->v_type != VDIR) {
3373 			vrele(vp);
3374 			counter_u64_add(numfullpathfail1, 1);
3375 			error = ENOTDIR;
3376 			SDT_PROBE3(vfs, namecache, fullpath, return,
3377 			    error, vp, NULL);
3378 			break;
3379 		}
3380 		error = vn_vptocnp(&vp, buf, &buflen);
3381 		if (error)
3382 			break;
3383 		if (buflen == 0) {
3384 			vrele(vp);
3385 			error = ENOMEM;
3386 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3387 			    startvp, NULL);
3388 			break;
3389 		}
3390 		buf[--buflen] = '/';
3391 		slash_prefixed = true;
3392 	}
3393 	if (error)
3394 		return (error);
3395 	if (!slash_prefixed) {
3396 		if (buflen == 0) {
3397 			vrele(vp);
3398 			counter_u64_add(numfullpathfail4, 1);
3399 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3400 			    startvp, NULL);
3401 			return (ENOMEM);
3402 		}
3403 		buf[--buflen] = '/';
3404 	}
3405 	counter_u64_add(numfullpathfound, 1);
3406 	vrele(vp);
3407 
3408 	*retbuf = buf + buflen;
3409 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3410 	*len -= buflen;
3411 	*len += addend;
3412 	return (0);
3413 }
3414 
3415 /*
3416  * Resolve an arbitrary vnode to a pathname.
3417  *
3418  * Note 2 caveats:
3419  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3420  *   resolve to a different path than the one used to find it
3421  * - namecache is not mandatory, meaning names are not guaranteed to be added
3422  *   (in which case resolving fails)
3423  */
3424 static void __inline
3425 cache_rev_failed_impl(int *reason, int line)
3426 {
3427 
3428 	*reason = line;
3429 }
3430 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3431 
3432 static int
3433 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3434     char **retbuf, size_t *buflen, size_t addend)
3435 {
3436 #ifdef KDTRACE_HOOKS
3437 	struct vnode *startvp = vp;
3438 #endif
3439 	struct vnode *tvp;
3440 	struct mount *mp;
3441 	struct namecache *ncp;
3442 	size_t orig_buflen;
3443 	int reason;
3444 	int error;
3445 #ifdef KDTRACE_HOOKS
3446 	int i;
3447 #endif
3448 	seqc_t vp_seqc, tvp_seqc;
3449 	u_char nc_flag;
3450 
3451 	VFS_SMR_ASSERT_ENTERED();
3452 
3453 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3454 		vfs_smr_exit();
3455 		return (-1);
3456 	}
3457 
3458 	orig_buflen = *buflen;
3459 
3460 	if (addend == 0) {
3461 		MPASS(*buflen >= 2);
3462 		*buflen -= 1;
3463 		buf[*buflen] = '\0';
3464 	}
3465 
3466 	if (vp == rdir || vp == rootvnode) {
3467 		if (addend == 0) {
3468 			*buflen -= 1;
3469 			buf[*buflen] = '/';
3470 		}
3471 		goto out_ok;
3472 	}
3473 
3474 #ifdef KDTRACE_HOOKS
3475 	i = 0;
3476 #endif
3477 	error = -1;
3478 	ncp = NULL; /* for sdt probe down below */
3479 	vp_seqc = vn_seqc_read_any(vp);
3480 	if (seqc_in_modify(vp_seqc)) {
3481 		cache_rev_failed(&reason);
3482 		goto out_abort;
3483 	}
3484 
3485 	for (;;) {
3486 #ifdef KDTRACE_HOOKS
3487 		i++;
3488 #endif
3489 		if ((vp->v_vflag & VV_ROOT) != 0) {
3490 			mp = atomic_load_ptr(&vp->v_mount);
3491 			if (mp == NULL) {
3492 				cache_rev_failed(&reason);
3493 				goto out_abort;
3494 			}
3495 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3496 			tvp_seqc = vn_seqc_read_any(tvp);
3497 			if (seqc_in_modify(tvp_seqc)) {
3498 				cache_rev_failed(&reason);
3499 				goto out_abort;
3500 			}
3501 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3502 				cache_rev_failed(&reason);
3503 				goto out_abort;
3504 			}
3505 			vp = tvp;
3506 			vp_seqc = tvp_seqc;
3507 			continue;
3508 		}
3509 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3510 		if (ncp == NULL) {
3511 			cache_rev_failed(&reason);
3512 			goto out_abort;
3513 		}
3514 		nc_flag = atomic_load_char(&ncp->nc_flag);
3515 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3516 			cache_rev_failed(&reason);
3517 			goto out_abort;
3518 		}
3519 		if (ncp->nc_nlen >= *buflen) {
3520 			cache_rev_failed(&reason);
3521 			error = ENOMEM;
3522 			goto out_abort;
3523 		}
3524 		*buflen -= ncp->nc_nlen;
3525 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3526 		*buflen -= 1;
3527 		buf[*buflen] = '/';
3528 		tvp = ncp->nc_dvp;
3529 		tvp_seqc = vn_seqc_read_any(tvp);
3530 		if (seqc_in_modify(tvp_seqc)) {
3531 			cache_rev_failed(&reason);
3532 			goto out_abort;
3533 		}
3534 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3535 			cache_rev_failed(&reason);
3536 			goto out_abort;
3537 		}
3538 		/*
3539 		 * Acquire fence provided by vn_seqc_read_any above.
3540 		 */
3541 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3542 			cache_rev_failed(&reason);
3543 			goto out_abort;
3544 		}
3545 		if (!cache_ncp_canuse(ncp)) {
3546 			cache_rev_failed(&reason);
3547 			goto out_abort;
3548 		}
3549 		vp = tvp;
3550 		vp_seqc = tvp_seqc;
3551 		if (vp == rdir || vp == rootvnode)
3552 			break;
3553 	}
3554 out_ok:
3555 	vfs_smr_exit();
3556 	*retbuf = buf + *buflen;
3557 	*buflen = orig_buflen - *buflen + addend;
3558 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3559 	return (0);
3560 
3561 out_abort:
3562 	*buflen = orig_buflen;
3563 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3564 	vfs_smr_exit();
3565 	return (error);
3566 }
3567 
3568 static int
3569 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3570     size_t *buflen)
3571 {
3572 	size_t orig_buflen, addend;
3573 	int error;
3574 
3575 	if (*buflen < 2)
3576 		return (EINVAL);
3577 
3578 	orig_buflen = *buflen;
3579 
3580 	vref(vp);
3581 	addend = 0;
3582 	if (vp->v_type != VDIR) {
3583 		*buflen -= 1;
3584 		buf[*buflen] = '\0';
3585 		error = vn_vptocnp(&vp, buf, buflen);
3586 		if (error)
3587 			return (error);
3588 		if (*buflen == 0) {
3589 			vrele(vp);
3590 			return (ENOMEM);
3591 		}
3592 		*buflen -= 1;
3593 		buf[*buflen] = '/';
3594 		addend = orig_buflen - *buflen;
3595 	}
3596 
3597 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3598 }
3599 
3600 /*
3601  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3602  *
3603  * Since the namecache does not track hardlinks, the caller is expected to
3604  * first look up the target vnode with WANTPARENT flag passed to namei to get
3605  * dvp and vp.
3606  *
3607  * Then we have 2 cases:
3608  * - if the found vnode is a directory, the path can be constructed just by
3609  *   following names up the chain
3610  * - otherwise we populate the buffer with the saved name and start resolving
3611  *   from the parent
3612  */
3613 int
3614 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3615     const char *hrdl_name, size_t hrdl_name_length,
3616     char **retbuf, char **freebuf, size_t *buflen)
3617 {
3618 	char *buf, *tmpbuf;
3619 	struct pwd *pwd;
3620 	size_t addend;
3621 	int error;
3622 	enum vtype type;
3623 
3624 	if (*buflen < 2)
3625 		return (EINVAL);
3626 	if (*buflen > MAXPATHLEN)
3627 		*buflen = MAXPATHLEN;
3628 
3629 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3630 
3631 	addend = 0;
3632 
3633 	/*
3634 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3635 	 *
3636 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3637 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3638 	 * If the type is VDIR (like in this very case) we can skip looking
3639 	 * at ni_dvp in the first place. However, since vnodes get passed here
3640 	 * unlocked the target may transition to doomed state (type == VBAD)
3641 	 * before we get to evaluate the condition. If this happens, we will
3642 	 * populate part of the buffer and descend to vn_fullpath_dir with
3643 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3644 	 *
3645 	 * This should be atomic_load(&vp->v_type) but it is illegal to take
3646 	 * an address of a bit field, even if said field is sized to char.
3647 	 * Work around the problem by reading the value into a full-sized enum
3648 	 * and then re-reading it with atomic_load which will still prevent
3649 	 * the compiler from re-reading down the road.
3650 	 */
3651 	type = vp->v_type;
3652 	type = atomic_load_int(&type);
3653 	if (type == VBAD) {
3654 		error = ENOENT;
3655 		goto out_bad;
3656 	}
3657 	if (type != VDIR) {
3658 		addend = hrdl_name_length + 2;
3659 		if (*buflen < addend) {
3660 			error = ENOMEM;
3661 			goto out_bad;
3662 		}
3663 		*buflen -= addend;
3664 		tmpbuf = buf + *buflen;
3665 		tmpbuf[0] = '/';
3666 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3667 		tmpbuf[addend - 1] = '\0';
3668 		vp = dvp;
3669 	}
3670 
3671 	vfs_smr_enter();
3672 	pwd = pwd_get_smr();
3673 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3674 	    addend);
3675 	VFS_SMR_ASSERT_NOT_ENTERED();
3676 	if (error < 0) {
3677 		pwd = pwd_hold(curthread);
3678 		vref(vp);
3679 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3680 		    addend);
3681 		pwd_drop(pwd);
3682 	}
3683 	if (error != 0)
3684 		goto out_bad;
3685 
3686 	*freebuf = buf;
3687 
3688 	return (0);
3689 out_bad:
3690 	free(buf, M_TEMP);
3691 	return (error);
3692 }
3693 
3694 struct vnode *
3695 vn_dir_dd_ino(struct vnode *vp)
3696 {
3697 	struct namecache *ncp;
3698 	struct vnode *ddvp;
3699 	struct mtx *vlp;
3700 	enum vgetstate vs;
3701 
3702 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3703 	vlp = VP2VNODELOCK(vp);
3704 	mtx_lock(vlp);
3705 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3706 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3707 			continue;
3708 		ddvp = ncp->nc_dvp;
3709 		vs = vget_prep(ddvp);
3710 		mtx_unlock(vlp);
3711 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3712 			return (NULL);
3713 		return (ddvp);
3714 	}
3715 	mtx_unlock(vlp);
3716 	return (NULL);
3717 }
3718 
3719 int
3720 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3721 {
3722 	struct namecache *ncp;
3723 	struct mtx *vlp;
3724 	int l;
3725 
3726 	vlp = VP2VNODELOCK(vp);
3727 	mtx_lock(vlp);
3728 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3729 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3730 			break;
3731 	if (ncp == NULL) {
3732 		mtx_unlock(vlp);
3733 		return (ENOENT);
3734 	}
3735 	l = min(ncp->nc_nlen, buflen - 1);
3736 	memcpy(buf, ncp->nc_name, l);
3737 	mtx_unlock(vlp);
3738 	buf[l] = '\0';
3739 	return (0);
3740 }
3741 
3742 /*
3743  * This function updates path string to vnode's full global path
3744  * and checks the size of the new path string against the pathlen argument.
3745  *
3746  * Requires a locked, referenced vnode.
3747  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3748  *
3749  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3750  * because it falls back to the ".." lookup if the namecache lookup fails.
3751  */
3752 int
3753 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3754     u_int pathlen)
3755 {
3756 	struct nameidata nd;
3757 	struct vnode *vp1;
3758 	char *rpath, *fbuf;
3759 	int error;
3760 
3761 	ASSERT_VOP_ELOCKED(vp, __func__);
3762 
3763 	/* Construct global filesystem path from vp. */
3764 	VOP_UNLOCK(vp);
3765 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3766 
3767 	if (error != 0) {
3768 		vrele(vp);
3769 		return (error);
3770 	}
3771 
3772 	if (strlen(rpath) >= pathlen) {
3773 		vrele(vp);
3774 		error = ENAMETOOLONG;
3775 		goto out;
3776 	}
3777 
3778 	/*
3779 	 * Re-lookup the vnode by path to detect a possible rename.
3780 	 * As a side effect, the vnode is relocked.
3781 	 * If vnode was renamed, return ENOENT.
3782 	 */
3783 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3784 	error = namei(&nd);
3785 	if (error != 0) {
3786 		vrele(vp);
3787 		goto out;
3788 	}
3789 	NDFREE_PNBUF(&nd);
3790 	vp1 = nd.ni_vp;
3791 	vrele(vp);
3792 	if (vp1 == vp)
3793 		strcpy(path, rpath);
3794 	else {
3795 		vput(vp1);
3796 		error = ENOENT;
3797 	}
3798 
3799 out:
3800 	free(fbuf, M_TEMP);
3801 	return (error);
3802 }
3803 
3804 #ifdef DDB
3805 static void
3806 db_print_vpath(struct vnode *vp)
3807 {
3808 
3809 	while (vp != NULL) {
3810 		db_printf("%p: ", vp);
3811 		if (vp == rootvnode) {
3812 			db_printf("/");
3813 			vp = NULL;
3814 		} else {
3815 			if (vp->v_vflag & VV_ROOT) {
3816 				db_printf("<mount point>");
3817 				vp = vp->v_mount->mnt_vnodecovered;
3818 			} else {
3819 				struct namecache *ncp;
3820 				char *ncn;
3821 				int i;
3822 
3823 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3824 				if (ncp != NULL) {
3825 					ncn = ncp->nc_name;
3826 					for (i = 0; i < ncp->nc_nlen; i++)
3827 						db_printf("%c", *ncn++);
3828 					vp = ncp->nc_dvp;
3829 				} else {
3830 					vp = NULL;
3831 				}
3832 			}
3833 		}
3834 		db_printf("\n");
3835 	}
3836 
3837 	return;
3838 }
3839 
3840 DB_SHOW_COMMAND(vpath, db_show_vpath)
3841 {
3842 	struct vnode *vp;
3843 
3844 	if (!have_addr) {
3845 		db_printf("usage: show vpath <struct vnode *>\n");
3846 		return;
3847 	}
3848 
3849 	vp = (struct vnode *)addr;
3850 	db_print_vpath(vp);
3851 }
3852 
3853 #endif
3854 
3855 static int cache_fast_lookup = 1;
3856 
3857 #define CACHE_FPL_FAILED	-2020
3858 
3859 void
3860 cache_fast_lookup_enabled_recalc(void)
3861 {
3862 	int lookup_flag;
3863 	int mac_on;
3864 
3865 #ifdef MAC
3866 	mac_on = mac_vnode_check_lookup_enabled();
3867 	mac_on |= mac_vnode_check_readlink_enabled();
3868 #else
3869 	mac_on = 0;
3870 #endif
3871 
3872 	lookup_flag = atomic_load_int(&cache_fast_lookup);
3873 	if (lookup_flag && !mac_on) {
3874 		atomic_store_char(&cache_fast_lookup_enabled, true);
3875 	} else {
3876 		atomic_store_char(&cache_fast_lookup_enabled, false);
3877 	}
3878 }
3879 
3880 static int
3881 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
3882 {
3883 	int error, old;
3884 
3885 	old = atomic_load_int(&cache_fast_lookup);
3886 	error = sysctl_handle_int(oidp, arg1, arg2, req);
3887 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
3888 		cache_fast_lookup_enabled_recalc();
3889 	return (error);
3890 }
3891 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
3892     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
3893 
3894 /*
3895  * Components of nameidata (or objects it can point to) which may
3896  * need restoring in case fast path lookup fails.
3897  */
3898 struct nameidata_outer {
3899 	size_t ni_pathlen;
3900 	int cn_flags;
3901 };
3902 
3903 struct nameidata_saved {
3904 #ifdef INVARIANTS
3905 	char *cn_nameptr;
3906 	size_t ni_pathlen;
3907 #endif
3908 };
3909 
3910 #ifdef INVARIANTS
3911 struct cache_fpl_debug {
3912 	size_t ni_pathlen;
3913 };
3914 #endif
3915 
3916 struct cache_fpl {
3917 	struct nameidata *ndp;
3918 	struct componentname *cnp;
3919 	char *nulchar;
3920 	struct vnode *dvp;
3921 	struct vnode *tvp;
3922 	seqc_t dvp_seqc;
3923 	seqc_t tvp_seqc;
3924 	uint32_t hash;
3925 	struct nameidata_saved snd;
3926 	struct nameidata_outer snd_outer;
3927 	int line;
3928 	enum cache_fpl_status status:8;
3929 	bool in_smr;
3930 	bool fsearch;
3931 	struct pwd **pwd;
3932 #ifdef INVARIANTS
3933 	struct cache_fpl_debug debug;
3934 #endif
3935 };
3936 
3937 static bool cache_fplookup_mp_supported(struct mount *mp);
3938 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
3939 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
3940 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
3941 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
3942 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
3943 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
3944 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
3945 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
3946 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
3947 
3948 static void
3949 cache_fpl_cleanup_cnp(struct componentname *cnp)
3950 {
3951 
3952 	uma_zfree(namei_zone, cnp->cn_pnbuf);
3953 	cnp->cn_pnbuf = NULL;
3954 	cnp->cn_nameptr = NULL;
3955 }
3956 
3957 static struct vnode *
3958 cache_fpl_handle_root(struct cache_fpl *fpl)
3959 {
3960 	struct nameidata *ndp;
3961 	struct componentname *cnp;
3962 
3963 	ndp = fpl->ndp;
3964 	cnp = fpl->cnp;
3965 
3966 	MPASS(*(cnp->cn_nameptr) == '/');
3967 	cnp->cn_nameptr++;
3968 	cache_fpl_pathlen_dec(fpl);
3969 
3970 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
3971 		do {
3972 			cnp->cn_nameptr++;
3973 			cache_fpl_pathlen_dec(fpl);
3974 		} while (*(cnp->cn_nameptr) == '/');
3975 	}
3976 
3977 	return (ndp->ni_rootdir);
3978 }
3979 
3980 static void
3981 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
3982 {
3983 
3984 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
3985 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
3986 }
3987 
3988 static void
3989 cache_fpl_checkpoint(struct cache_fpl *fpl)
3990 {
3991 
3992 #ifdef INVARIANTS
3993 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
3994 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
3995 #endif
3996 }
3997 
3998 static void
3999 cache_fpl_restore_partial(struct cache_fpl *fpl)
4000 {
4001 
4002 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4003 #ifdef INVARIANTS
4004 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4005 #endif
4006 }
4007 
4008 static void
4009 cache_fpl_restore_abort(struct cache_fpl *fpl)
4010 {
4011 
4012 	cache_fpl_restore_partial(fpl);
4013 	/*
4014 	 * It is 0 on entry by API contract.
4015 	 */
4016 	fpl->ndp->ni_resflags = 0;
4017 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4018 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4019 }
4020 
4021 #ifdef INVARIANTS
4022 #define cache_fpl_smr_assert_entered(fpl) ({			\
4023 	struct cache_fpl *_fpl = (fpl);				\
4024 	MPASS(_fpl->in_smr == true);				\
4025 	VFS_SMR_ASSERT_ENTERED();				\
4026 })
4027 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4028 	struct cache_fpl *_fpl = (fpl);				\
4029 	MPASS(_fpl->in_smr == false);				\
4030 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4031 })
4032 static void
4033 cache_fpl_assert_status(struct cache_fpl *fpl)
4034 {
4035 
4036 	switch (fpl->status) {
4037 	case CACHE_FPL_STATUS_UNSET:
4038 		__assert_unreachable();
4039 		break;
4040 	case CACHE_FPL_STATUS_DESTROYED:
4041 	case CACHE_FPL_STATUS_ABORTED:
4042 	case CACHE_FPL_STATUS_PARTIAL:
4043 	case CACHE_FPL_STATUS_HANDLED:
4044 		break;
4045 	}
4046 }
4047 #else
4048 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4049 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4050 #define cache_fpl_assert_status(fpl) do { } while (0)
4051 #endif
4052 
4053 #define cache_fpl_smr_enter_initial(fpl) ({			\
4054 	struct cache_fpl *_fpl = (fpl);				\
4055 	vfs_smr_enter();					\
4056 	_fpl->in_smr = true;					\
4057 })
4058 
4059 #define cache_fpl_smr_enter(fpl) ({				\
4060 	struct cache_fpl *_fpl = (fpl);				\
4061 	MPASS(_fpl->in_smr == false);				\
4062 	vfs_smr_enter();					\
4063 	_fpl->in_smr = true;					\
4064 })
4065 
4066 #define cache_fpl_smr_exit(fpl) ({				\
4067 	struct cache_fpl *_fpl = (fpl);				\
4068 	MPASS(_fpl->in_smr == true);				\
4069 	vfs_smr_exit();						\
4070 	_fpl->in_smr = false;					\
4071 })
4072 
4073 static int
4074 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4075 {
4076 
4077 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4078 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4079 		    ("%s: converting to abort from %d at %d, set at %d\n",
4080 		    __func__, fpl->status, line, fpl->line));
4081 	}
4082 	cache_fpl_smr_assert_not_entered(fpl);
4083 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4084 	fpl->line = line;
4085 	return (CACHE_FPL_FAILED);
4086 }
4087 
4088 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4089 
4090 static int __noinline
4091 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4092 {
4093 	struct nameidata *ndp;
4094 	struct componentname *cnp;
4095 
4096 	ndp = fpl->ndp;
4097 	cnp = fpl->cnp;
4098 
4099 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4100 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4101 		    ("%s: converting to abort from %d at %d, set at %d\n",
4102 		    __func__, fpl->status, line, fpl->line));
4103 	}
4104 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4105 	fpl->line = line;
4106 	if (fpl->in_smr)
4107 		cache_fpl_smr_exit(fpl);
4108 	cache_fpl_restore_abort(fpl);
4109 	/*
4110 	 * Resolving symlinks overwrites data passed by the caller.
4111 	 * Let namei know.
4112 	 */
4113 	if (ndp->ni_loopcnt > 0) {
4114 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4115 		cache_fpl_cleanup_cnp(cnp);
4116 	}
4117 	return (CACHE_FPL_FAILED);
4118 }
4119 
4120 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4121 
4122 static int __noinline
4123 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4124 {
4125 
4126 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4127 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4128 	    __func__, line, fpl->status, fpl->line));
4129 	cache_fpl_smr_assert_entered(fpl);
4130 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4131 	fpl->line = line;
4132 	return (cache_fplookup_partial_setup(fpl));
4133 }
4134 
4135 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4136 
4137 static int
4138 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4139 {
4140 
4141 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4142 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4143 	    __func__, line, fpl->status, fpl->line));
4144 	cache_fpl_smr_assert_not_entered(fpl);
4145 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4146 	fpl->line = line;
4147 	return (0);
4148 }
4149 
4150 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4151 
4152 static int
4153 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4154 {
4155 
4156 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4157 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4158 	    __func__, line, fpl->status, fpl->line));
4159 	MPASS(error != 0);
4160 	MPASS(error != CACHE_FPL_FAILED);
4161 	cache_fpl_smr_assert_not_entered(fpl);
4162 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4163 	fpl->line = line;
4164 	fpl->dvp = NULL;
4165 	fpl->tvp = NULL;
4166 	return (error);
4167 }
4168 
4169 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4170 
4171 static bool
4172 cache_fpl_terminated(struct cache_fpl *fpl)
4173 {
4174 
4175 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4176 }
4177 
4178 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4179 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4180 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | SAVESTART | WILLBEDIR | \
4181 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4182 	 OPENWRITE | WANTIOCTLCAPS)
4183 
4184 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4185 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4186 
4187 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4188     "supported and internal flags overlap");
4189 
4190 static bool
4191 cache_fpl_islastcn(struct nameidata *ndp)
4192 {
4193 
4194 	return (*ndp->ni_next == 0);
4195 }
4196 
4197 static bool
4198 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4199 {
4200 
4201 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4202 	return (*(fpl->nulchar - 1) == '/');
4203 }
4204 
4205 static bool
4206 cache_fpl_isdotdot(struct componentname *cnp)
4207 {
4208 
4209 	if (cnp->cn_namelen == 2 &&
4210 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4211 		return (true);
4212 	return (false);
4213 }
4214 
4215 static bool
4216 cache_can_fplookup(struct cache_fpl *fpl)
4217 {
4218 	struct nameidata *ndp;
4219 	struct componentname *cnp;
4220 	struct thread *td;
4221 
4222 	ndp = fpl->ndp;
4223 	cnp = fpl->cnp;
4224 	td = curthread;
4225 
4226 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4227 		cache_fpl_aborted_early(fpl);
4228 		return (false);
4229 	}
4230 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4231 		cache_fpl_aborted_early(fpl);
4232 		return (false);
4233 	}
4234 	if (IN_CAPABILITY_MODE(td)) {
4235 		cache_fpl_aborted_early(fpl);
4236 		return (false);
4237 	}
4238 	if (AUDITING_TD(td)) {
4239 		cache_fpl_aborted_early(fpl);
4240 		return (false);
4241 	}
4242 	if (ndp->ni_startdir != NULL) {
4243 		cache_fpl_aborted_early(fpl);
4244 		return (false);
4245 	}
4246 	return (true);
4247 }
4248 
4249 static int __noinline
4250 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4251 {
4252 	struct nameidata *ndp;
4253 	struct componentname *cnp;
4254 	int error;
4255 	bool fsearch;
4256 
4257 	ndp = fpl->ndp;
4258 	cnp = fpl->cnp;
4259 
4260 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
4261 	if (__predict_false(error != 0)) {
4262 		return (cache_fpl_aborted(fpl));
4263 	}
4264 	fpl->fsearch = fsearch;
4265 	if ((*vpp)->v_type != VDIR) {
4266 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4267 			cache_fpl_smr_exit(fpl);
4268 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4269 		}
4270 	}
4271 	return (0);
4272 }
4273 
4274 static int __noinline
4275 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4276     uint32_t hash)
4277 {
4278 	struct componentname *cnp;
4279 	struct vnode *dvp;
4280 
4281 	cnp = fpl->cnp;
4282 	dvp = fpl->dvp;
4283 
4284 	cache_fpl_smr_exit(fpl);
4285 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4286 		return (cache_fpl_handled_error(fpl, ENOENT));
4287 	else
4288 		return (cache_fpl_aborted(fpl));
4289 }
4290 
4291 /*
4292  * The target vnode is not supported, prepare for the slow path to take over.
4293  */
4294 static int __noinline
4295 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4296 {
4297 	struct nameidata *ndp;
4298 	struct componentname *cnp;
4299 	enum vgetstate dvs;
4300 	struct vnode *dvp;
4301 	struct pwd *pwd;
4302 	seqc_t dvp_seqc;
4303 
4304 	ndp = fpl->ndp;
4305 	cnp = fpl->cnp;
4306 	pwd = *(fpl->pwd);
4307 	dvp = fpl->dvp;
4308 	dvp_seqc = fpl->dvp_seqc;
4309 
4310 	if (!pwd_hold_smr(pwd)) {
4311 		return (cache_fpl_aborted(fpl));
4312 	}
4313 
4314 	/*
4315 	 * Note that seqc is checked before the vnode is locked, so by
4316 	 * the time regular lookup gets to it it may have moved.
4317 	 *
4318 	 * Ultimately this does not affect correctness, any lookup errors
4319 	 * are userspace racing with itself. It is guaranteed that any
4320 	 * path which ultimately gets found could also have been found
4321 	 * by regular lookup going all the way in absence of concurrent
4322 	 * modifications.
4323 	 */
4324 	dvs = vget_prep_smr(dvp);
4325 	cache_fpl_smr_exit(fpl);
4326 	if (__predict_false(dvs == VGET_NONE)) {
4327 		pwd_drop(pwd);
4328 		return (cache_fpl_aborted(fpl));
4329 	}
4330 
4331 	vget_finish_ref(dvp, dvs);
4332 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4333 		vrele(dvp);
4334 		pwd_drop(pwd);
4335 		return (cache_fpl_aborted(fpl));
4336 	}
4337 
4338 	cache_fpl_restore_partial(fpl);
4339 #ifdef INVARIANTS
4340 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4341 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4342 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4343 	}
4344 #endif
4345 
4346 	ndp->ni_startdir = dvp;
4347 	cnp->cn_flags |= MAKEENTRY;
4348 	if (cache_fpl_islastcn(ndp))
4349 		cnp->cn_flags |= ISLASTCN;
4350 	if (cache_fpl_isdotdot(cnp))
4351 		cnp->cn_flags |= ISDOTDOT;
4352 
4353 	/*
4354 	 * Skip potential extra slashes parsing did not take care of.
4355 	 * cache_fplookup_skip_slashes explains the mechanism.
4356 	 */
4357 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4358 		do {
4359 			cnp->cn_nameptr++;
4360 			cache_fpl_pathlen_dec(fpl);
4361 		} while (*(cnp->cn_nameptr) == '/');
4362 	}
4363 
4364 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4365 #ifdef INVARIANTS
4366 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4367 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4368 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4369 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4370 	}
4371 #endif
4372 	return (0);
4373 }
4374 
4375 static int
4376 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4377 {
4378 	struct componentname *cnp;
4379 	struct vnode *tvp;
4380 	seqc_t tvp_seqc;
4381 	int error, lkflags;
4382 
4383 	cnp = fpl->cnp;
4384 	tvp = fpl->tvp;
4385 	tvp_seqc = fpl->tvp_seqc;
4386 
4387 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4388 		lkflags = LK_SHARED;
4389 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4390 			lkflags = LK_EXCLUSIVE;
4391 		error = vget_finish(tvp, lkflags, tvs);
4392 		if (__predict_false(error != 0)) {
4393 			return (cache_fpl_aborted(fpl));
4394 		}
4395 	} else {
4396 		vget_finish_ref(tvp, tvs);
4397 	}
4398 
4399 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4400 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4401 			vput(tvp);
4402 		else
4403 			vrele(tvp);
4404 		return (cache_fpl_aborted(fpl));
4405 	}
4406 
4407 	return (cache_fpl_handled(fpl));
4408 }
4409 
4410 /*
4411  * They want to possibly modify the state of the namecache.
4412  */
4413 static int __noinline
4414 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4415 {
4416 	struct nameidata *ndp;
4417 	struct componentname *cnp;
4418 	enum vgetstate dvs;
4419 	struct vnode *dvp, *tvp;
4420 	struct mount *mp;
4421 	seqc_t dvp_seqc;
4422 	int error;
4423 	bool docache;
4424 
4425 	ndp = fpl->ndp;
4426 	cnp = fpl->cnp;
4427 	dvp = fpl->dvp;
4428 	dvp_seqc = fpl->dvp_seqc;
4429 
4430 	MPASS(*(cnp->cn_nameptr) != '/');
4431 	MPASS(cache_fpl_islastcn(ndp));
4432 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4433 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4434 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4435 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4436 	    cnp->cn_nameiop == RENAME);
4437 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4438 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4439 
4440 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4441 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4442 		docache = false;
4443 
4444 	/*
4445 	 * Regular lookup nulifies the slash, which we don't do here.
4446 	 * Don't take chances with filesystem routines seeing it for
4447 	 * the last entry.
4448 	 */
4449 	if (cache_fpl_istrailingslash(fpl)) {
4450 		return (cache_fpl_partial(fpl));
4451 	}
4452 
4453 	mp = atomic_load_ptr(&dvp->v_mount);
4454 	if (__predict_false(mp == NULL)) {
4455 		return (cache_fpl_aborted(fpl));
4456 	}
4457 
4458 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4459 		cache_fpl_smr_exit(fpl);
4460 		/*
4461 		 * Original code keeps not checking for CREATE which
4462 		 * might be a bug. For now let the old lookup decide.
4463 		 */
4464 		if (cnp->cn_nameiop == CREATE) {
4465 			return (cache_fpl_aborted(fpl));
4466 		}
4467 		return (cache_fpl_handled_error(fpl, EROFS));
4468 	}
4469 
4470 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4471 		cache_fpl_smr_exit(fpl);
4472 		return (cache_fpl_handled_error(fpl, EEXIST));
4473 	}
4474 
4475 	/*
4476 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4477 	 * reasoning.
4478 	 *
4479 	 * XXX At least UFS requires its lookup routine to be called for
4480 	 * the last path component, which leads to some level of complication
4481 	 * and inefficiency:
4482 	 * - the target routine always locks the target vnode, but our caller
4483 	 *   may not need it locked
4484 	 * - some of the VOP machinery asserts that the parent is locked, which
4485 	 *   once more may be not required
4486 	 *
4487 	 * TODO: add a flag for filesystems which don't need this.
4488 	 */
4489 	dvs = vget_prep_smr(dvp);
4490 	cache_fpl_smr_exit(fpl);
4491 	if (__predict_false(dvs == VGET_NONE)) {
4492 		return (cache_fpl_aborted(fpl));
4493 	}
4494 
4495 	vget_finish_ref(dvp, dvs);
4496 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4497 		vrele(dvp);
4498 		return (cache_fpl_aborted(fpl));
4499 	}
4500 
4501 	error = vn_lock(dvp, LK_EXCLUSIVE);
4502 	if (__predict_false(error != 0)) {
4503 		vrele(dvp);
4504 		return (cache_fpl_aborted(fpl));
4505 	}
4506 
4507 	tvp = NULL;
4508 	cnp->cn_flags |= ISLASTCN;
4509 	if (docache)
4510 		cnp->cn_flags |= MAKEENTRY;
4511 	if (cache_fpl_isdotdot(cnp))
4512 		cnp->cn_flags |= ISDOTDOT;
4513 	cnp->cn_lkflags = LK_EXCLUSIVE;
4514 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4515 	switch (error) {
4516 	case EJUSTRETURN:
4517 	case 0:
4518 		break;
4519 	case ENOTDIR:
4520 	case ENOENT:
4521 		vput(dvp);
4522 		return (cache_fpl_handled_error(fpl, error));
4523 	default:
4524 		vput(dvp);
4525 		return (cache_fpl_aborted(fpl));
4526 	}
4527 
4528 	fpl->tvp = tvp;
4529 
4530 	if (tvp == NULL) {
4531 		if ((cnp->cn_flags & SAVESTART) != 0) {
4532 			ndp->ni_startdir = dvp;
4533 			vrefact(ndp->ni_startdir);
4534 		}
4535 		MPASS(error == EJUSTRETURN);
4536 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4537 			VOP_UNLOCK(dvp);
4538 		}
4539 		return (cache_fpl_handled(fpl));
4540 	}
4541 
4542 	/*
4543 	 * There are very hairy corner cases concerning various flag combinations
4544 	 * and locking state. In particular here we only hold one lock instead of
4545 	 * two.
4546 	 *
4547 	 * Skip the complexity as it is of no significance for normal workloads.
4548 	 */
4549 	if (__predict_false(tvp == dvp)) {
4550 		vput(dvp);
4551 		vrele(tvp);
4552 		return (cache_fpl_aborted(fpl));
4553 	}
4554 
4555 	/*
4556 	 * If they want the symlink itself we are fine, but if they want to
4557 	 * follow it regular lookup has to be engaged.
4558 	 */
4559 	if (tvp->v_type == VLNK) {
4560 		if ((cnp->cn_flags & FOLLOW) != 0) {
4561 			vput(dvp);
4562 			vput(tvp);
4563 			return (cache_fpl_aborted(fpl));
4564 		}
4565 	}
4566 
4567 	/*
4568 	 * Since we expect this to be the terminal vnode it should almost never
4569 	 * be a mount point.
4570 	 */
4571 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4572 		vput(dvp);
4573 		vput(tvp);
4574 		return (cache_fpl_aborted(fpl));
4575 	}
4576 
4577 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4578 		vput(dvp);
4579 		vput(tvp);
4580 		return (cache_fpl_handled_error(fpl, EEXIST));
4581 	}
4582 
4583 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4584 		VOP_UNLOCK(tvp);
4585 	}
4586 
4587 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4588 		VOP_UNLOCK(dvp);
4589 	}
4590 
4591 	if ((cnp->cn_flags & SAVESTART) != 0) {
4592 		ndp->ni_startdir = dvp;
4593 		vrefact(ndp->ni_startdir);
4594 	}
4595 
4596 	return (cache_fpl_handled(fpl));
4597 }
4598 
4599 static int __noinline
4600 cache_fplookup_modifying(struct cache_fpl *fpl)
4601 {
4602 	struct nameidata *ndp;
4603 
4604 	ndp = fpl->ndp;
4605 
4606 	if (!cache_fpl_islastcn(ndp)) {
4607 		return (cache_fpl_partial(fpl));
4608 	}
4609 	return (cache_fplookup_final_modifying(fpl));
4610 }
4611 
4612 static int __noinline
4613 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4614 {
4615 	struct componentname *cnp;
4616 	enum vgetstate dvs, tvs;
4617 	struct vnode *dvp, *tvp;
4618 	seqc_t dvp_seqc;
4619 	int error;
4620 
4621 	cnp = fpl->cnp;
4622 	dvp = fpl->dvp;
4623 	dvp_seqc = fpl->dvp_seqc;
4624 	tvp = fpl->tvp;
4625 
4626 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4627 
4628 	/*
4629 	 * This is less efficient than it can be for simplicity.
4630 	 */
4631 	dvs = vget_prep_smr(dvp);
4632 	if (__predict_false(dvs == VGET_NONE)) {
4633 		return (cache_fpl_aborted(fpl));
4634 	}
4635 	tvs = vget_prep_smr(tvp);
4636 	if (__predict_false(tvs == VGET_NONE)) {
4637 		cache_fpl_smr_exit(fpl);
4638 		vget_abort(dvp, dvs);
4639 		return (cache_fpl_aborted(fpl));
4640 	}
4641 
4642 	cache_fpl_smr_exit(fpl);
4643 
4644 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4645 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4646 		if (__predict_false(error != 0)) {
4647 			vget_abort(tvp, tvs);
4648 			return (cache_fpl_aborted(fpl));
4649 		}
4650 	} else {
4651 		vget_finish_ref(dvp, dvs);
4652 	}
4653 
4654 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4655 		vget_abort(tvp, tvs);
4656 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4657 			vput(dvp);
4658 		else
4659 			vrele(dvp);
4660 		return (cache_fpl_aborted(fpl));
4661 	}
4662 
4663 	error = cache_fplookup_final_child(fpl, tvs);
4664 	if (__predict_false(error != 0)) {
4665 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4666 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4667 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4668 			vput(dvp);
4669 		else
4670 			vrele(dvp);
4671 		return (error);
4672 	}
4673 
4674 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4675 	return (0);
4676 }
4677 
4678 static int
4679 cache_fplookup_final(struct cache_fpl *fpl)
4680 {
4681 	struct componentname *cnp;
4682 	enum vgetstate tvs;
4683 	struct vnode *dvp, *tvp;
4684 	seqc_t dvp_seqc;
4685 
4686 	cnp = fpl->cnp;
4687 	dvp = fpl->dvp;
4688 	dvp_seqc = fpl->dvp_seqc;
4689 	tvp = fpl->tvp;
4690 
4691 	MPASS(*(cnp->cn_nameptr) != '/');
4692 
4693 	if (cnp->cn_nameiop != LOOKUP) {
4694 		return (cache_fplookup_final_modifying(fpl));
4695 	}
4696 
4697 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4698 		return (cache_fplookup_final_withparent(fpl));
4699 
4700 	tvs = vget_prep_smr(tvp);
4701 	if (__predict_false(tvs == VGET_NONE)) {
4702 		return (cache_fpl_partial(fpl));
4703 	}
4704 
4705 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4706 		cache_fpl_smr_exit(fpl);
4707 		vget_abort(tvp, tvs);
4708 		return (cache_fpl_aborted(fpl));
4709 	}
4710 
4711 	cache_fpl_smr_exit(fpl);
4712 	return (cache_fplookup_final_child(fpl, tvs));
4713 }
4714 
4715 /*
4716  * Comment from locked lookup:
4717  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4718  * directory, e.g. like "/." or ".".
4719  */
4720 static int __noinline
4721 cache_fplookup_degenerate(struct cache_fpl *fpl)
4722 {
4723 	struct componentname *cnp;
4724 	struct vnode *dvp;
4725 	enum vgetstate dvs;
4726 	int error, lkflags;
4727 #ifdef INVARIANTS
4728 	char *cp;
4729 #endif
4730 
4731 	fpl->tvp = fpl->dvp;
4732 	fpl->tvp_seqc = fpl->dvp_seqc;
4733 
4734 	cnp = fpl->cnp;
4735 	dvp = fpl->dvp;
4736 
4737 #ifdef INVARIANTS
4738 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4739 		KASSERT(*cp == '/',
4740 		    ("%s: encountered non-slash; string [%s]\n", __func__,
4741 		    cnp->cn_pnbuf));
4742 	}
4743 #endif
4744 
4745 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4746 		cache_fpl_smr_exit(fpl);
4747 		return (cache_fpl_handled_error(fpl, EISDIR));
4748 	}
4749 
4750 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4751 
4752 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4753 		return (cache_fplookup_final_withparent(fpl));
4754 	}
4755 
4756 	dvs = vget_prep_smr(dvp);
4757 	cache_fpl_smr_exit(fpl);
4758 	if (__predict_false(dvs == VGET_NONE)) {
4759 		return (cache_fpl_aborted(fpl));
4760 	}
4761 
4762 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4763 		lkflags = LK_SHARED;
4764 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4765 			lkflags = LK_EXCLUSIVE;
4766 		error = vget_finish(dvp, lkflags, dvs);
4767 		if (__predict_false(error != 0)) {
4768 			return (cache_fpl_aborted(fpl));
4769 		}
4770 	} else {
4771 		vget_finish_ref(dvp, dvs);
4772 	}
4773 	return (cache_fpl_handled(fpl));
4774 }
4775 
4776 static int __noinline
4777 cache_fplookup_emptypath(struct cache_fpl *fpl)
4778 {
4779 	struct nameidata *ndp;
4780 	struct componentname *cnp;
4781 	enum vgetstate tvs;
4782 	struct vnode *tvp;
4783 	int error, lkflags;
4784 
4785 	fpl->tvp = fpl->dvp;
4786 	fpl->tvp_seqc = fpl->dvp_seqc;
4787 
4788 	ndp = fpl->ndp;
4789 	cnp = fpl->cnp;
4790 	tvp = fpl->tvp;
4791 
4792 	MPASS(*cnp->cn_pnbuf == '\0');
4793 
4794 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
4795 		cache_fpl_smr_exit(fpl);
4796 		return (cache_fpl_handled_error(fpl, ENOENT));
4797 	}
4798 
4799 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
4800 
4801 	tvs = vget_prep_smr(tvp);
4802 	cache_fpl_smr_exit(fpl);
4803 	if (__predict_false(tvs == VGET_NONE)) {
4804 		return (cache_fpl_aborted(fpl));
4805 	}
4806 
4807 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4808 		lkflags = LK_SHARED;
4809 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4810 			lkflags = LK_EXCLUSIVE;
4811 		error = vget_finish(tvp, lkflags, tvs);
4812 		if (__predict_false(error != 0)) {
4813 			return (cache_fpl_aborted(fpl));
4814 		}
4815 	} else {
4816 		vget_finish_ref(tvp, tvs);
4817 	}
4818 
4819 	ndp->ni_resflags |= NIRES_EMPTYPATH;
4820 	return (cache_fpl_handled(fpl));
4821 }
4822 
4823 static int __noinline
4824 cache_fplookup_noentry(struct cache_fpl *fpl)
4825 {
4826 	struct nameidata *ndp;
4827 	struct componentname *cnp;
4828 	enum vgetstate dvs;
4829 	struct vnode *dvp, *tvp;
4830 	seqc_t dvp_seqc;
4831 	int error;
4832 
4833 	ndp = fpl->ndp;
4834 	cnp = fpl->cnp;
4835 	dvp = fpl->dvp;
4836 	dvp_seqc = fpl->dvp_seqc;
4837 
4838 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4839 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4840 	if (cnp->cn_nameiop == LOOKUP)
4841 		MPASS((cnp->cn_flags & NOCACHE) == 0);
4842 	MPASS(!cache_fpl_isdotdot(cnp));
4843 
4844 	/*
4845 	 * Hack: delayed name len checking.
4846 	 */
4847 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4848 		cache_fpl_smr_exit(fpl);
4849 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
4850 	}
4851 
4852 	if (cnp->cn_nameptr[0] == '/') {
4853 		return (cache_fplookup_skip_slashes(fpl));
4854 	}
4855 
4856 	if (cnp->cn_pnbuf[0] == '\0') {
4857 		return (cache_fplookup_emptypath(fpl));
4858 	}
4859 
4860 	if (cnp->cn_nameptr[0] == '\0') {
4861 		if (fpl->tvp == NULL) {
4862 			return (cache_fplookup_degenerate(fpl));
4863 		}
4864 		return (cache_fplookup_trailingslash(fpl));
4865 	}
4866 
4867 	if (cnp->cn_nameiop != LOOKUP) {
4868 		fpl->tvp = NULL;
4869 		return (cache_fplookup_modifying(fpl));
4870 	}
4871 
4872 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4873 
4874 	/*
4875 	 * Only try to fill in the component if it is the last one,
4876 	 * otherwise not only there may be several to handle but the
4877 	 * walk may be complicated.
4878 	 */
4879 	if (!cache_fpl_islastcn(ndp)) {
4880 		return (cache_fpl_partial(fpl));
4881 	}
4882 
4883 	/*
4884 	 * Regular lookup nulifies the slash, which we don't do here.
4885 	 * Don't take chances with filesystem routines seeing it for
4886 	 * the last entry.
4887 	 */
4888 	if (cache_fpl_istrailingslash(fpl)) {
4889 		return (cache_fpl_partial(fpl));
4890 	}
4891 
4892 	/*
4893 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4894 	 * reasoning.
4895 	 */
4896 	dvs = vget_prep_smr(dvp);
4897 	cache_fpl_smr_exit(fpl);
4898 	if (__predict_false(dvs == VGET_NONE)) {
4899 		return (cache_fpl_aborted(fpl));
4900 	}
4901 
4902 	vget_finish_ref(dvp, dvs);
4903 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4904 		vrele(dvp);
4905 		return (cache_fpl_aborted(fpl));
4906 	}
4907 
4908 	error = vn_lock(dvp, LK_SHARED);
4909 	if (__predict_false(error != 0)) {
4910 		vrele(dvp);
4911 		return (cache_fpl_aborted(fpl));
4912 	}
4913 
4914 	tvp = NULL;
4915 	/*
4916 	 * TODO: provide variants which don't require locking either vnode.
4917 	 */
4918 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
4919 	cnp->cn_lkflags = LK_SHARED;
4920 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
4921 		cnp->cn_lkflags = LK_EXCLUSIVE;
4922 	}
4923 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4924 	switch (error) {
4925 	case EJUSTRETURN:
4926 	case 0:
4927 		break;
4928 	case ENOTDIR:
4929 	case ENOENT:
4930 		vput(dvp);
4931 		return (cache_fpl_handled_error(fpl, error));
4932 	default:
4933 		vput(dvp);
4934 		return (cache_fpl_aborted(fpl));
4935 	}
4936 
4937 	fpl->tvp = tvp;
4938 
4939 	if (tvp == NULL) {
4940 		MPASS(error == EJUSTRETURN);
4941 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4942 			vput(dvp);
4943 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4944 			VOP_UNLOCK(dvp);
4945 		}
4946 		return (cache_fpl_handled(fpl));
4947 	}
4948 
4949 	if (tvp->v_type == VLNK) {
4950 		if ((cnp->cn_flags & FOLLOW) != 0) {
4951 			vput(dvp);
4952 			vput(tvp);
4953 			return (cache_fpl_aborted(fpl));
4954 		}
4955 	}
4956 
4957 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4958 		vput(dvp);
4959 		vput(tvp);
4960 		return (cache_fpl_aborted(fpl));
4961 	}
4962 
4963 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4964 		VOP_UNLOCK(tvp);
4965 	}
4966 
4967 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4968 		vput(dvp);
4969 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4970 		VOP_UNLOCK(dvp);
4971 	}
4972 	return (cache_fpl_handled(fpl));
4973 }
4974 
4975 static int __noinline
4976 cache_fplookup_dot(struct cache_fpl *fpl)
4977 {
4978 	int error;
4979 
4980 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
4981 	/*
4982 	 * Just re-assign the value. seqc will be checked later for the first
4983 	 * non-dot path component in line and/or before deciding to return the
4984 	 * vnode.
4985 	 */
4986 	fpl->tvp = fpl->dvp;
4987 	fpl->tvp_seqc = fpl->dvp_seqc;
4988 
4989 	counter_u64_add(dothits, 1);
4990 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
4991 
4992 	error = 0;
4993 	if (cache_fplookup_is_mp(fpl)) {
4994 		error = cache_fplookup_cross_mount(fpl);
4995 	}
4996 	return (error);
4997 }
4998 
4999 static int __noinline
5000 cache_fplookup_dotdot(struct cache_fpl *fpl)
5001 {
5002 	struct nameidata *ndp;
5003 	struct componentname *cnp;
5004 	struct namecache *ncp;
5005 	struct vnode *dvp;
5006 	struct prison *pr;
5007 	u_char nc_flag;
5008 
5009 	ndp = fpl->ndp;
5010 	cnp = fpl->cnp;
5011 	dvp = fpl->dvp;
5012 
5013 	MPASS(cache_fpl_isdotdot(cnp));
5014 
5015 	/*
5016 	 * XXX this is racy the same way regular lookup is
5017 	 */
5018 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5019 	    pr = pr->pr_parent)
5020 		if (dvp == pr->pr_root)
5021 			break;
5022 
5023 	if (dvp == ndp->ni_rootdir ||
5024 	    dvp == ndp->ni_topdir ||
5025 	    dvp == rootvnode ||
5026 	    pr != NULL) {
5027 		fpl->tvp = dvp;
5028 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5029 		if (seqc_in_modify(fpl->tvp_seqc)) {
5030 			return (cache_fpl_aborted(fpl));
5031 		}
5032 		return (0);
5033 	}
5034 
5035 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5036 		/*
5037 		 * TODO
5038 		 * The opposite of climb mount is needed here.
5039 		 */
5040 		return (cache_fpl_partial(fpl));
5041 	}
5042 
5043 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5044 	if (ncp == NULL) {
5045 		return (cache_fpl_aborted(fpl));
5046 	}
5047 
5048 	nc_flag = atomic_load_char(&ncp->nc_flag);
5049 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5050 		if ((nc_flag & NCF_NEGATIVE) != 0)
5051 			return (cache_fpl_aborted(fpl));
5052 		fpl->tvp = ncp->nc_vp;
5053 	} else {
5054 		fpl->tvp = ncp->nc_dvp;
5055 	}
5056 
5057 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5058 	if (seqc_in_modify(fpl->tvp_seqc)) {
5059 		return (cache_fpl_partial(fpl));
5060 	}
5061 
5062 	/*
5063 	 * Acquire fence provided by vn_seqc_read_any above.
5064 	 */
5065 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5066 		return (cache_fpl_aborted(fpl));
5067 	}
5068 
5069 	if (!cache_ncp_canuse(ncp)) {
5070 		return (cache_fpl_aborted(fpl));
5071 	}
5072 
5073 	counter_u64_add(dotdothits, 1);
5074 	return (0);
5075 }
5076 
5077 static int __noinline
5078 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5079 {
5080 	u_char nc_flag __diagused;
5081 	bool neg_promote;
5082 
5083 #ifdef INVARIANTS
5084 	nc_flag = atomic_load_char(&ncp->nc_flag);
5085 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5086 #endif
5087 	/*
5088 	 * If they want to create an entry we need to replace this one.
5089 	 */
5090 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5091 		fpl->tvp = NULL;
5092 		return (cache_fplookup_modifying(fpl));
5093 	}
5094 	neg_promote = cache_neg_hit_prep(ncp);
5095 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5096 		cache_neg_hit_abort(ncp);
5097 		return (cache_fpl_partial(fpl));
5098 	}
5099 	if (neg_promote) {
5100 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5101 	}
5102 	cache_neg_hit_finish(ncp);
5103 	cache_fpl_smr_exit(fpl);
5104 	return (cache_fpl_handled_error(fpl, ENOENT));
5105 }
5106 
5107 /*
5108  * Resolve a symlink. Called by filesystem-specific routines.
5109  *
5110  * Code flow is:
5111  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5112  */
5113 int
5114 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5115 {
5116 	struct nameidata *ndp;
5117 	struct componentname *cnp;
5118 	size_t adjust;
5119 
5120 	ndp = fpl->ndp;
5121 	cnp = fpl->cnp;
5122 
5123 	if (__predict_false(len == 0)) {
5124 		return (ENOENT);
5125 	}
5126 
5127 	if (__predict_false(len > MAXPATHLEN - 2)) {
5128 		if (cache_fpl_istrailingslash(fpl)) {
5129 			return (EAGAIN);
5130 		}
5131 	}
5132 
5133 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5134 #ifdef INVARIANTS
5135 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5136 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5137 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5138 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5139 	}
5140 #endif
5141 
5142 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5143 		return (ENAMETOOLONG);
5144 	}
5145 
5146 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5147 		return (ELOOP);
5148 	}
5149 
5150 	adjust = len;
5151 	if (ndp->ni_pathlen > 1) {
5152 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5153 	} else {
5154 		if (cache_fpl_istrailingslash(fpl)) {
5155 			adjust = len + 1;
5156 			cnp->cn_pnbuf[len] = '/';
5157 			cnp->cn_pnbuf[len + 1] = '\0';
5158 		} else {
5159 			cnp->cn_pnbuf[len] = '\0';
5160 		}
5161 	}
5162 	bcopy(string, cnp->cn_pnbuf, len);
5163 
5164 	ndp->ni_pathlen += adjust;
5165 	cache_fpl_pathlen_add(fpl, adjust);
5166 	cnp->cn_nameptr = cnp->cn_pnbuf;
5167 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5168 	fpl->tvp = NULL;
5169 	return (0);
5170 }
5171 
5172 static int __noinline
5173 cache_fplookup_symlink(struct cache_fpl *fpl)
5174 {
5175 	struct mount *mp;
5176 	struct nameidata *ndp;
5177 	struct componentname *cnp;
5178 	struct vnode *dvp, *tvp;
5179 	int error;
5180 
5181 	ndp = fpl->ndp;
5182 	cnp = fpl->cnp;
5183 	dvp = fpl->dvp;
5184 	tvp = fpl->tvp;
5185 
5186 	if (cache_fpl_islastcn(ndp)) {
5187 		if ((cnp->cn_flags & FOLLOW) == 0) {
5188 			return (cache_fplookup_final(fpl));
5189 		}
5190 	}
5191 
5192 	mp = atomic_load_ptr(&dvp->v_mount);
5193 	if (__predict_false(mp == NULL)) {
5194 		return (cache_fpl_aborted(fpl));
5195 	}
5196 
5197 	/*
5198 	 * Note this check races against setting the flag just like regular
5199 	 * lookup.
5200 	 */
5201 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5202 		cache_fpl_smr_exit(fpl);
5203 		return (cache_fpl_handled_error(fpl, EACCES));
5204 	}
5205 
5206 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5207 	if (__predict_false(error != 0)) {
5208 		switch (error) {
5209 		case EAGAIN:
5210 			return (cache_fpl_partial(fpl));
5211 		case ENOENT:
5212 		case ENAMETOOLONG:
5213 		case ELOOP:
5214 			cache_fpl_smr_exit(fpl);
5215 			return (cache_fpl_handled_error(fpl, error));
5216 		default:
5217 			return (cache_fpl_aborted(fpl));
5218 		}
5219 	}
5220 
5221 	if (*(cnp->cn_nameptr) == '/') {
5222 		fpl->dvp = cache_fpl_handle_root(fpl);
5223 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5224 		if (seqc_in_modify(fpl->dvp_seqc)) {
5225 			return (cache_fpl_aborted(fpl));
5226 		}
5227 		/*
5228 		 * The main loop assumes that ->dvp points to a vnode belonging
5229 		 * to a filesystem which can do lockless lookup, but the absolute
5230 		 * symlink can be wandering off to one which does not.
5231 		 */
5232 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5233 		if (__predict_false(mp == NULL)) {
5234 			return (cache_fpl_aborted(fpl));
5235 		}
5236 		if (!cache_fplookup_mp_supported(mp)) {
5237 			cache_fpl_checkpoint(fpl);
5238 			return (cache_fpl_partial(fpl));
5239 		}
5240 	}
5241 	return (0);
5242 }
5243 
5244 static int
5245 cache_fplookup_next(struct cache_fpl *fpl)
5246 {
5247 	struct componentname *cnp;
5248 	struct namecache *ncp;
5249 	struct vnode *dvp, *tvp;
5250 	u_char nc_flag;
5251 	uint32_t hash;
5252 	int error;
5253 
5254 	cnp = fpl->cnp;
5255 	dvp = fpl->dvp;
5256 	hash = fpl->hash;
5257 
5258 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5259 		if (cnp->cn_namelen == 1) {
5260 			return (cache_fplookup_dot(fpl));
5261 		}
5262 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5263 			return (cache_fplookup_dotdot(fpl));
5264 		}
5265 	}
5266 
5267 	MPASS(!cache_fpl_isdotdot(cnp));
5268 
5269 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5270 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5271 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5272 			break;
5273 	}
5274 
5275 	if (__predict_false(ncp == NULL)) {
5276 		return (cache_fplookup_noentry(fpl));
5277 	}
5278 
5279 	tvp = atomic_load_ptr(&ncp->nc_vp);
5280 	nc_flag = atomic_load_char(&ncp->nc_flag);
5281 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5282 		return (cache_fplookup_neg(fpl, ncp, hash));
5283 	}
5284 
5285 	if (!cache_ncp_canuse(ncp)) {
5286 		return (cache_fpl_partial(fpl));
5287 	}
5288 
5289 	fpl->tvp = tvp;
5290 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5291 	if (seqc_in_modify(fpl->tvp_seqc)) {
5292 		return (cache_fpl_partial(fpl));
5293 	}
5294 
5295 	counter_u64_add(numposhits, 1);
5296 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5297 
5298 	error = 0;
5299 	if (cache_fplookup_is_mp(fpl)) {
5300 		error = cache_fplookup_cross_mount(fpl);
5301 	}
5302 	return (error);
5303 }
5304 
5305 static bool
5306 cache_fplookup_mp_supported(struct mount *mp)
5307 {
5308 
5309 	MPASS(mp != NULL);
5310 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5311 		return (false);
5312 	return (true);
5313 }
5314 
5315 /*
5316  * Walk up the mount stack (if any).
5317  *
5318  * Correctness is provided in the following ways:
5319  * - all vnodes are protected from freeing with SMR
5320  * - struct mount objects are type stable making them always safe to access
5321  * - stability of the particular mount is provided by busying it
5322  * - relationship between the vnode which is mounted on and the mount is
5323  *   verified with the vnode sequence counter after busying
5324  * - association between root vnode of the mount and the mount is protected
5325  *   by busy
5326  *
5327  * From that point on we can read the sequence counter of the root vnode
5328  * and get the next mount on the stack (if any) using the same protection.
5329  *
5330  * By the end of successful walk we are guaranteed the reached state was
5331  * indeed present at least at some point which matches the regular lookup.
5332  */
5333 static int __noinline
5334 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5335 {
5336 	struct mount *mp, *prev_mp;
5337 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5338 	struct vnode *vp;
5339 	seqc_t vp_seqc;
5340 
5341 	vp = fpl->tvp;
5342 	vp_seqc = fpl->tvp_seqc;
5343 
5344 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
5345 	mp = atomic_load_ptr(&vp->v_mountedhere);
5346 	if (__predict_false(mp == NULL)) {
5347 		return (0);
5348 	}
5349 
5350 	prev_mp = NULL;
5351 	for (;;) {
5352 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5353 			if (prev_mp != NULL)
5354 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5355 			return (cache_fpl_partial(fpl));
5356 		}
5357 		if (prev_mp != NULL)
5358 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5359 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5360 			vfs_op_thread_exit_crit(mp, mpcpu);
5361 			return (cache_fpl_partial(fpl));
5362 		}
5363 		if (!cache_fplookup_mp_supported(mp)) {
5364 			vfs_op_thread_exit_crit(mp, mpcpu);
5365 			return (cache_fpl_partial(fpl));
5366 		}
5367 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5368 		if (vp == NULL) {
5369 			vfs_op_thread_exit_crit(mp, mpcpu);
5370 			return (cache_fpl_partial(fpl));
5371 		}
5372 		vp_seqc = vn_seqc_read_any(vp);
5373 		if (seqc_in_modify(vp_seqc)) {
5374 			vfs_op_thread_exit_crit(mp, mpcpu);
5375 			return (cache_fpl_partial(fpl));
5376 		}
5377 		prev_mp = mp;
5378 		prev_mpcpu = mpcpu;
5379 		mp = atomic_load_ptr(&vp->v_mountedhere);
5380 		if (mp == NULL)
5381 			break;
5382 	}
5383 
5384 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5385 	fpl->tvp = vp;
5386 	fpl->tvp_seqc = vp_seqc;
5387 	return (0);
5388 }
5389 
5390 static int __noinline
5391 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5392 {
5393 	struct mount *mp;
5394 	struct mount_pcpu *mpcpu;
5395 	struct vnode *vp;
5396 	seqc_t vp_seqc;
5397 
5398 	vp = fpl->tvp;
5399 	vp_seqc = fpl->tvp_seqc;
5400 
5401 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
5402 	mp = atomic_load_ptr(&vp->v_mountedhere);
5403 	if (__predict_false(mp == NULL)) {
5404 		return (0);
5405 	}
5406 
5407 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5408 		return (cache_fpl_partial(fpl));
5409 	}
5410 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5411 		vfs_op_thread_exit_crit(mp, mpcpu);
5412 		return (cache_fpl_partial(fpl));
5413 	}
5414 	if (!cache_fplookup_mp_supported(mp)) {
5415 		vfs_op_thread_exit_crit(mp, mpcpu);
5416 		return (cache_fpl_partial(fpl));
5417 	}
5418 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5419 	if (__predict_false(vp == NULL)) {
5420 		vfs_op_thread_exit_crit(mp, mpcpu);
5421 		return (cache_fpl_partial(fpl));
5422 	}
5423 	vp_seqc = vn_seqc_read_any(vp);
5424 	vfs_op_thread_exit_crit(mp, mpcpu);
5425 	if (seqc_in_modify(vp_seqc)) {
5426 		return (cache_fpl_partial(fpl));
5427 	}
5428 	mp = atomic_load_ptr(&vp->v_mountedhere);
5429 	if (__predict_false(mp != NULL)) {
5430 		/*
5431 		 * There are possibly more mount points on top.
5432 		 * Normally this does not happen so for simplicity just start
5433 		 * over.
5434 		 */
5435 		return (cache_fplookup_climb_mount(fpl));
5436 	}
5437 
5438 	fpl->tvp = vp;
5439 	fpl->tvp_seqc = vp_seqc;
5440 	return (0);
5441 }
5442 
5443 /*
5444  * Check if a vnode is mounted on.
5445  */
5446 static bool
5447 cache_fplookup_is_mp(struct cache_fpl *fpl)
5448 {
5449 	struct vnode *vp;
5450 
5451 	vp = fpl->tvp;
5452 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5453 }
5454 
5455 /*
5456  * Parse the path.
5457  *
5458  * The code was originally copy-pasted from regular lookup and despite
5459  * clean ups leaves performance on the table. Any modifications here
5460  * must take into account that in case off fallback the resulting
5461  * nameidata state has to be compatible with the original.
5462  */
5463 
5464 /*
5465  * Debug ni_pathlen tracking.
5466  */
5467 #ifdef INVARIANTS
5468 static void
5469 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5470 {
5471 
5472 	fpl->debug.ni_pathlen += n;
5473 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5474 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5475 }
5476 
5477 static void
5478 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5479 {
5480 
5481 	fpl->debug.ni_pathlen -= n;
5482 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5483 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5484 }
5485 
5486 static void
5487 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5488 {
5489 
5490 	cache_fpl_pathlen_add(fpl, 1);
5491 }
5492 
5493 static void
5494 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5495 {
5496 
5497 	cache_fpl_pathlen_sub(fpl, 1);
5498 }
5499 #else
5500 static void
5501 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5502 {
5503 }
5504 
5505 static void
5506 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5507 {
5508 }
5509 
5510 static void
5511 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5512 {
5513 }
5514 
5515 static void
5516 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5517 {
5518 }
5519 #endif
5520 
5521 static void
5522 cache_fplookup_parse(struct cache_fpl *fpl)
5523 {
5524 	struct nameidata *ndp;
5525 	struct componentname *cnp;
5526 	struct vnode *dvp;
5527 	char *cp;
5528 	uint32_t hash;
5529 
5530 	ndp = fpl->ndp;
5531 	cnp = fpl->cnp;
5532 	dvp = fpl->dvp;
5533 
5534 	/*
5535 	 * Find the end of this path component, it is either / or nul.
5536 	 *
5537 	 * Store / as a temporary sentinel so that we only have one character
5538 	 * to test for. Pathnames tend to be short so this should not be
5539 	 * resulting in cache misses.
5540 	 *
5541 	 * TODO: fix this to be word-sized.
5542 	 */
5543 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5544 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5545 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5546 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5547 	    fpl->nulchar, cnp->cn_pnbuf));
5548 	KASSERT(*fpl->nulchar == '\0',
5549 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5550 	    cnp->cn_pnbuf));
5551 	hash = cache_get_hash_iter_start(dvp);
5552 	*fpl->nulchar = '/';
5553 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5554 		KASSERT(*cp != '\0',
5555 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5556 		    cnp->cn_nameptr));
5557 		hash = cache_get_hash_iter(*cp, hash);
5558 		continue;
5559 	}
5560 	*fpl->nulchar = '\0';
5561 	fpl->hash = cache_get_hash_iter_finish(hash);
5562 
5563 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5564 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5565 
5566 #ifdef INVARIANTS
5567 	/*
5568 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5569 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5570 	 */
5571 	if (cnp->cn_namelen <= NAME_MAX) {
5572 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5573 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5574 			    cnp->cn_nameptr, cnp->cn_namelen);
5575 		}
5576 	}
5577 #endif
5578 
5579 	/*
5580 	 * Hack: we have to check if the found path component's length exceeds
5581 	 * NAME_MAX. However, the condition is very rarely true and check can
5582 	 * be elided in the common case -- if an entry was found in the cache,
5583 	 * then it could not have been too long to begin with.
5584 	 */
5585 	ndp->ni_next = cp;
5586 }
5587 
5588 static void
5589 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5590 {
5591 	struct nameidata *ndp;
5592 	struct componentname *cnp;
5593 
5594 	ndp = fpl->ndp;
5595 	cnp = fpl->cnp;
5596 
5597 	cnp->cn_nameptr = ndp->ni_next;
5598 	KASSERT(*(cnp->cn_nameptr) == '/',
5599 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5600 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5601 	cnp->cn_nameptr++;
5602 	cache_fpl_pathlen_dec(fpl);
5603 }
5604 
5605 /*
5606  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5607  *
5608  * Lockless lookup tries to elide checking for spurious slashes and should they
5609  * be present is guaranteed to fail to find an entry. In this case the caller
5610  * must check if the name starts with a slash and call this routine.  It is
5611  * going to fast forward across the spurious slashes and set the state up for
5612  * retry.
5613  */
5614 static int __noinline
5615 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5616 {
5617 	struct nameidata *ndp;
5618 	struct componentname *cnp;
5619 
5620 	ndp = fpl->ndp;
5621 	cnp = fpl->cnp;
5622 
5623 	MPASS(*(cnp->cn_nameptr) == '/');
5624 	do {
5625 		cnp->cn_nameptr++;
5626 		cache_fpl_pathlen_dec(fpl);
5627 	} while (*(cnp->cn_nameptr) == '/');
5628 
5629 	/*
5630 	 * Go back to one slash so that cache_fplookup_parse_advance has
5631 	 * something to skip.
5632 	 */
5633 	cnp->cn_nameptr--;
5634 	cache_fpl_pathlen_inc(fpl);
5635 
5636 	/*
5637 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5638 	 */
5639 	ndp->ni_next = cnp->cn_nameptr;
5640 
5641 	/*
5642 	 * See cache_fplookup_dot.
5643 	 */
5644 	fpl->tvp = fpl->dvp;
5645 	fpl->tvp_seqc = fpl->dvp_seqc;
5646 
5647 	return (0);
5648 }
5649 
5650 /*
5651  * Handle trailing slashes (e.g., "foo/").
5652  *
5653  * If a trailing slash is found the terminal vnode must be a directory.
5654  * Regular lookup shortens the path by nulifying the first trailing slash and
5655  * sets the TRAILINGSLASH flag to denote this took place. There are several
5656  * checks on it performed later.
5657  *
5658  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5659  * manner relying on an invariant that a non-directory vnode will get a miss.
5660  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5661  *
5662  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5663  * and denotes this is the last path component, which avoids looping back.
5664  *
5665  * Only plain lookups are supported for now to restrict corner cases to handle.
5666  */
5667 static int __noinline
5668 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5669 {
5670 #ifdef INVARIANTS
5671 	size_t ni_pathlen;
5672 #endif
5673 	struct nameidata *ndp;
5674 	struct componentname *cnp;
5675 	struct namecache *ncp;
5676 	struct vnode *tvp;
5677 	char *cn_nameptr_orig, *cn_nameptr_slash;
5678 	seqc_t tvp_seqc;
5679 	u_char nc_flag;
5680 
5681 	ndp = fpl->ndp;
5682 	cnp = fpl->cnp;
5683 	tvp = fpl->tvp;
5684 	tvp_seqc = fpl->tvp_seqc;
5685 
5686 	MPASS(fpl->dvp == fpl->tvp);
5687 	KASSERT(cache_fpl_istrailingslash(fpl),
5688 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5689 	    cnp->cn_pnbuf));
5690 	KASSERT(cnp->cn_nameptr[0] == '\0',
5691 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5692 	    cnp->cn_pnbuf));
5693 	KASSERT(cnp->cn_namelen == 0,
5694 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5695 	    cnp->cn_pnbuf));
5696 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5697 
5698 	if (cnp->cn_nameiop != LOOKUP) {
5699 		return (cache_fpl_aborted(fpl));
5700 	}
5701 
5702 	if (__predict_false(tvp->v_type != VDIR)) {
5703 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5704 			return (cache_fpl_aborted(fpl));
5705 		}
5706 		cache_fpl_smr_exit(fpl);
5707 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5708 	}
5709 
5710 	/*
5711 	 * Denote the last component.
5712 	 */
5713 	ndp->ni_next = &cnp->cn_nameptr[0];
5714 	MPASS(cache_fpl_islastcn(ndp));
5715 
5716 	/*
5717 	 * Unwind trailing slashes.
5718 	 */
5719 	cn_nameptr_orig = cnp->cn_nameptr;
5720 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5721 		cnp->cn_nameptr--;
5722 		if (cnp->cn_nameptr[0] != '/') {
5723 			break;
5724 		}
5725 	}
5726 
5727 	/*
5728 	 * Unwind to the beginning of the path component.
5729 	 *
5730 	 * Note the path may or may not have started with a slash.
5731 	 */
5732 	cn_nameptr_slash = cnp->cn_nameptr;
5733 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5734 		cnp->cn_nameptr--;
5735 		if (cnp->cn_nameptr[0] == '/') {
5736 			break;
5737 		}
5738 	}
5739 	if (cnp->cn_nameptr[0] == '/') {
5740 		cnp->cn_nameptr++;
5741 	}
5742 
5743 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5744 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5745 	cache_fpl_checkpoint(fpl);
5746 
5747 #ifdef INVARIANTS
5748 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
5749 	if (ni_pathlen != fpl->debug.ni_pathlen) {
5750 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5751 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5752 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5753 	}
5754 #endif
5755 
5756 	/*
5757 	 * If this was a "./" lookup the parent directory is already correct.
5758 	 */
5759 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
5760 		return (0);
5761 	}
5762 
5763 	/*
5764 	 * Otherwise we need to look it up.
5765 	 */
5766 	tvp = fpl->tvp;
5767 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
5768 	if (__predict_false(ncp == NULL)) {
5769 		return (cache_fpl_aborted(fpl));
5770 	}
5771 	nc_flag = atomic_load_char(&ncp->nc_flag);
5772 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5773 		return (cache_fpl_aborted(fpl));
5774 	}
5775 	fpl->dvp = ncp->nc_dvp;
5776 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5777 	if (seqc_in_modify(fpl->dvp_seqc)) {
5778 		return (cache_fpl_aborted(fpl));
5779 	}
5780 	return (0);
5781 }
5782 
5783 /*
5784  * See the API contract for VOP_FPLOOKUP_VEXEC.
5785  */
5786 static int __noinline
5787 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
5788 {
5789 	struct componentname *cnp;
5790 	struct vnode *dvp;
5791 	seqc_t dvp_seqc;
5792 
5793 	cnp = fpl->cnp;
5794 	dvp = fpl->dvp;
5795 	dvp_seqc = fpl->dvp_seqc;
5796 
5797 	/*
5798 	 * Hack: delayed empty path checking.
5799 	 */
5800 	if (cnp->cn_pnbuf[0] == '\0') {
5801 		return (cache_fplookup_emptypath(fpl));
5802 	}
5803 
5804 	/*
5805 	 * TODO: Due to ignoring trailing slashes lookup will perform a
5806 	 * permission check on the last dir when it should not be doing it.  It
5807 	 * may fail, but said failure should be ignored. It is possible to fix
5808 	 * it up fully without resorting to regular lookup, but for now just
5809 	 * abort.
5810 	 */
5811 	if (cache_fpl_istrailingslash(fpl)) {
5812 		return (cache_fpl_aborted(fpl));
5813 	}
5814 
5815 	/*
5816 	 * Hack: delayed degenerate path checking.
5817 	 */
5818 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
5819 		return (cache_fplookup_degenerate(fpl));
5820 	}
5821 
5822 	/*
5823 	 * Hack: delayed name len checking.
5824 	 */
5825 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5826 		cache_fpl_smr_exit(fpl);
5827 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5828 	}
5829 
5830 	/*
5831 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
5832 	 * In such a case we need to return ENOTDIR, but we may happen to get
5833 	 * here with a different error.
5834 	 */
5835 	if (dvp->v_type != VDIR) {
5836 		error = ENOTDIR;
5837 	}
5838 
5839 	/*
5840 	 * Hack: handle O_SEARCH.
5841 	 *
5842 	 * Open Group Base Specifications Issue 7, 2018 edition states:
5843 	 * <quote>
5844 	 * If the access mode of the open file description associated with the
5845 	 * file descriptor is not O_SEARCH, the function shall check whether
5846 	 * directory searches are permitted using the current permissions of
5847 	 * the directory underlying the file descriptor. If the access mode is
5848 	 * O_SEARCH, the function shall not perform the check.
5849 	 * </quote>
5850 	 *
5851 	 * Regular lookup tests for the NOEXECCHECK flag for every path
5852 	 * component to decide whether to do the permission check. However,
5853 	 * since most lookups never have the flag (and when they do it is only
5854 	 * present for the first path component), lockless lookup only acts on
5855 	 * it if there is a permission problem. Here the flag is represented
5856 	 * with a boolean so that we don't have to clear it on the way out.
5857 	 *
5858 	 * For simplicity this always aborts.
5859 	 * TODO: check if this is the first lookup and ignore the permission
5860 	 * problem. Note the flag has to survive fallback (if it happens to be
5861 	 * performed).
5862 	 */
5863 	if (fpl->fsearch) {
5864 		return (cache_fpl_aborted(fpl));
5865 	}
5866 
5867 	switch (error) {
5868 	case EAGAIN:
5869 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5870 			error = cache_fpl_aborted(fpl);
5871 		} else {
5872 			cache_fpl_partial(fpl);
5873 		}
5874 		break;
5875 	default:
5876 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5877 			error = cache_fpl_aborted(fpl);
5878 		} else {
5879 			cache_fpl_smr_exit(fpl);
5880 			cache_fpl_handled_error(fpl, error);
5881 		}
5882 		break;
5883 	}
5884 	return (error);
5885 }
5886 
5887 static int
5888 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
5889 {
5890 	struct nameidata *ndp;
5891 	struct componentname *cnp;
5892 	struct mount *mp;
5893 	int error;
5894 
5895 	ndp = fpl->ndp;
5896 	cnp = fpl->cnp;
5897 
5898 	cache_fpl_checkpoint(fpl);
5899 
5900 	/*
5901 	 * The vnode at hand is almost always stable, skip checking for it.
5902 	 * Worst case this postpones the check towards the end of the iteration
5903 	 * of the main loop.
5904 	 */
5905 	fpl->dvp = dvp;
5906 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
5907 
5908 	mp = atomic_load_ptr(&dvp->v_mount);
5909 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
5910 		return (cache_fpl_aborted(fpl));
5911 	}
5912 
5913 	MPASS(fpl->tvp == NULL);
5914 
5915 	for (;;) {
5916 		cache_fplookup_parse(fpl);
5917 
5918 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
5919 		if (__predict_false(error != 0)) {
5920 			error = cache_fplookup_failed_vexec(fpl, error);
5921 			break;
5922 		}
5923 
5924 		error = cache_fplookup_next(fpl);
5925 		if (__predict_false(cache_fpl_terminated(fpl))) {
5926 			break;
5927 		}
5928 
5929 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
5930 
5931 		if (fpl->tvp->v_type == VLNK) {
5932 			error = cache_fplookup_symlink(fpl);
5933 			if (cache_fpl_terminated(fpl)) {
5934 				break;
5935 			}
5936 		} else {
5937 			if (cache_fpl_islastcn(ndp)) {
5938 				error = cache_fplookup_final(fpl);
5939 				break;
5940 			}
5941 
5942 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
5943 				error = cache_fpl_aborted(fpl);
5944 				break;
5945 			}
5946 
5947 			fpl->dvp = fpl->tvp;
5948 			fpl->dvp_seqc = fpl->tvp_seqc;
5949 			cache_fplookup_parse_advance(fpl);
5950 		}
5951 
5952 		cache_fpl_checkpoint(fpl);
5953 	}
5954 
5955 	return (error);
5956 }
5957 
5958 /*
5959  * Fast path lookup protected with SMR and sequence counters.
5960  *
5961  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
5962  *
5963  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
5964  * outlined below.
5965  *
5966  * Traditional vnode lookup conceptually looks like this:
5967  *
5968  * vn_lock(current);
5969  * for (;;) {
5970  *	next = find();
5971  *	vn_lock(next);
5972  *	vn_unlock(current);
5973  *	current = next;
5974  *	if (last)
5975  *	    break;
5976  * }
5977  * return (current);
5978  *
5979  * Each jump to the next vnode is safe memory-wise and atomic with respect to
5980  * any modifications thanks to holding respective locks.
5981  *
5982  * The same guarantee can be provided with a combination of safe memory
5983  * reclamation and sequence counters instead. If all operations which affect
5984  * the relationship between the current vnode and the one we are looking for
5985  * also modify the counter, we can verify whether all the conditions held as
5986  * we made the jump. This includes things like permissions, mount points etc.
5987  * Counter modification is provided by enclosing relevant places in
5988  * vn_seqc_write_begin()/end() calls.
5989  *
5990  * Thus this translates to:
5991  *
5992  * vfs_smr_enter();
5993  * dvp_seqc = seqc_read_any(dvp);
5994  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
5995  *     abort();
5996  * for (;;) {
5997  * 	tvp = find();
5998  * 	tvp_seqc = seqc_read_any(tvp);
5999  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6000  * 	    abort();
6001  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6002  * 	    abort();
6003  * 	dvp = tvp; // we know nothing of importance has changed
6004  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6005  * 	if (last)
6006  * 	    break;
6007  * }
6008  * vget(); // secure the vnode
6009  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6010  * 	    abort();
6011  * // at this point we know nothing has changed for any parent<->child pair
6012  * // as they were crossed during the lookup, meaning we matched the guarantee
6013  * // of the locked variant
6014  * return (tvp);
6015  *
6016  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6017  * - they are called while within vfs_smr protection which they must never exit
6018  * - EAGAIN can be returned to denote checking could not be performed, it is
6019  *   always valid to return it
6020  * - if the sequence counter has not changed the result must be valid
6021  * - if the sequence counter has changed both false positives and false negatives
6022  *   are permitted (since the result will be rejected later)
6023  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6024  *
6025  * Caveats to watch out for:
6026  * - vnodes are passed unlocked and unreferenced with nothing stopping
6027  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6028  *   to use atomic_load_ptr to fetch it.
6029  * - the aforementioned object can also get freed, meaning absent other means it
6030  *   should be protected with vfs_smr
6031  * - either safely checking permissions as they are modified or guaranteeing
6032  *   their stability is left to the routine
6033  */
6034 int
6035 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6036     struct pwd **pwdp)
6037 {
6038 	struct cache_fpl fpl;
6039 	struct pwd *pwd;
6040 	struct vnode *dvp;
6041 	struct componentname *cnp;
6042 	int error;
6043 
6044 	fpl.status = CACHE_FPL_STATUS_UNSET;
6045 	fpl.in_smr = false;
6046 	fpl.ndp = ndp;
6047 	fpl.cnp = cnp = &ndp->ni_cnd;
6048 	MPASS(ndp->ni_lcf == 0);
6049 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6050 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6051 	    cnp->cn_flags));
6052 	if ((cnp->cn_flags & SAVESTART) != 0) {
6053 		MPASS(cnp->cn_nameiop != LOOKUP);
6054 	}
6055 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6056 
6057 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6058 		*status = fpl.status;
6059 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6060 		return (EOPNOTSUPP);
6061 	}
6062 
6063 	cache_fpl_checkpoint_outer(&fpl);
6064 
6065 	cache_fpl_smr_enter_initial(&fpl);
6066 #ifdef INVARIANTS
6067 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6068 #endif
6069 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6070 	fpl.fsearch = false;
6071 	fpl.tvp = NULL; /* for degenerate path handling */
6072 	fpl.pwd = pwdp;
6073 	pwd = pwd_get_smr();
6074 	*(fpl.pwd) = pwd;
6075 	ndp->ni_rootdir = pwd->pwd_rdir;
6076 	ndp->ni_topdir = pwd->pwd_jdir;
6077 
6078 	if (cnp->cn_pnbuf[0] == '/') {
6079 		dvp = cache_fpl_handle_root(&fpl);
6080 		MPASS(ndp->ni_resflags == 0);
6081 		ndp->ni_resflags = NIRES_ABS;
6082 	} else {
6083 		if (ndp->ni_dirfd == AT_FDCWD) {
6084 			dvp = pwd->pwd_cdir;
6085 		} else {
6086 			error = cache_fplookup_dirfd(&fpl, &dvp);
6087 			if (__predict_false(error != 0)) {
6088 				goto out;
6089 			}
6090 		}
6091 	}
6092 
6093 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6094 	error = cache_fplookup_impl(dvp, &fpl);
6095 out:
6096 	cache_fpl_smr_assert_not_entered(&fpl);
6097 	cache_fpl_assert_status(&fpl);
6098 	*status = fpl.status;
6099 	if (SDT_PROBES_ENABLED()) {
6100 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6101 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6102 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6103 			    ndp);
6104 	}
6105 
6106 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6107 		MPASS(error != CACHE_FPL_FAILED);
6108 		if (error != 0) {
6109 			cache_fpl_cleanup_cnp(fpl.cnp);
6110 			MPASS(fpl.dvp == NULL);
6111 			MPASS(fpl.tvp == NULL);
6112 		}
6113 		ndp->ni_dvp = fpl.dvp;
6114 		ndp->ni_vp = fpl.tvp;
6115 	}
6116 	return (error);
6117 }
6118