xref: /freebsd/sys/kern/vfs_cache.c (revision 4e579ad047720775ab580b74192c7de8a3386fea)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/counter.h>
45 #include <sys/filedesc.h>
46 #include <sys/fnv_hash.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/fcntl.h>
52 #include <sys/jail.h>
53 #include <sys/mount.h>
54 #include <sys/namei.h>
55 #include <sys/proc.h>
56 #include <sys/seqc.h>
57 #include <sys/sdt.h>
58 #include <sys/smr.h>
59 #include <sys/smp.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/sysctl.h>
62 #include <sys/sysproto.h>
63 #include <sys/vnode.h>
64 #include <ck_queue.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #ifdef INVARIANTS
69 #include <machine/_inttypes.h>
70 #endif
71 
72 #include <security/audit/audit.h>
73 #include <security/mac/mac_framework.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 #include <vm/uma.h>
80 
81 /*
82  * High level overview of name caching in the VFS layer.
83  *
84  * Originally caching was implemented as part of UFS, later extracted to allow
85  * use by other filesystems. A decision was made to make it optional and
86  * completely detached from the rest of the kernel, which comes with limitations
87  * outlined near the end of this comment block.
88  *
89  * This fundamental choice needs to be revisited. In the meantime, the current
90  * state is described below. Significance of all notable routines is explained
91  * in comments placed above their implementation. Scattered thoroughout the
92  * file are TODO comments indicating shortcomings which can be fixed without
93  * reworking everything (most of the fixes will likely be reusable). Various
94  * details are omitted from this explanation to not clutter the overview, they
95  * have to be checked by reading the code and associated commentary.
96  *
97  * Keep in mind that it's individual path components which are cached, not full
98  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
99  * one for each name.
100  *
101  * I. Data organization
102  *
103  * Entries are described by "struct namecache" objects and stored in a hash
104  * table. See cache_get_hash for more information.
105  *
106  * "struct vnode" contains pointers to source entries (names which can be found
107  * when traversing through said vnode), destination entries (names of that
108  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
109  * the parent vnode.
110  *
111  * The (directory vnode; name) tuple reliably determines the target entry if
112  * it exists.
113  *
114  * Since there are no small locks at this time (all are 32 bytes in size on
115  * LP64), the code works around the problem by introducing lock arrays to
116  * protect hash buckets and vnode lists.
117  *
118  * II. Filesystem integration
119  *
120  * Filesystems participating in name caching do the following:
121  * - set vop_lookup routine to vfs_cache_lookup
122  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
123  * - if they support lockless lookup (see below), vop_fplookup_vexec and
124  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
125  *   mount point
126  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
127  *   applicable
128  * - call cache_enter to add entries depending on the MAKEENTRY flag
129  *
130  * With the above in mind, there are 2 entry points when doing lookups:
131  * - ... -> namei -> cache_fplookup -- this is the default
132  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
133  *   should the above fail
134  *
135  * Example code flow how an entry is added:
136  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
137  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
138  *
139  * III. Performance considerations
140  *
141  * For lockless case forward lookup avoids any writes to shared areas apart
142  * from the terminal path component. In other words non-modifying lookups of
143  * different files don't suffer any scalability problems in the namecache.
144  * Looking up the same file is limited by VFS and goes beyond the scope of this
145  * file.
146  *
147  * At least on amd64 the single-threaded bottleneck for long paths is hashing
148  * (see cache_get_hash). There are cases where the code issues acquire fence
149  * multiple times, they can be combined on architectures which suffer from it.
150  *
151  * For locked case each encountered vnode has to be referenced and locked in
152  * order to be handed out to the caller (normally that's namei). This
153  * introduces significant hit single-threaded and serialization multi-threaded.
154  *
155  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
156  * avoids any writes to shared areas to any components.
157  *
158  * Unrelated insertions are partially serialized on updating the global entry
159  * counter and possibly serialized on colliding bucket or vnode locks.
160  *
161  * IV. Observability
162  *
163  * Note not everything has an explicit dtrace probe nor it should have, thus
164  * some of the one-liners below depend on implementation details.
165  *
166  * Examples:
167  *
168  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
169  * # line number, column 2 is status code (see cache_fpl_status)
170  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
171  *
172  * # Lengths of names added by binary name
173  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
174  *
175  * # Same as above but only those which exceed 64 characters
176  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
177  *
178  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
179  * # path is it
180  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
181  *
182  * V. Limitations and implementation defects
183  *
184  * - since it is possible there is no entry for an open file, tools like
185  *   "procstat" may fail to resolve fd -> vnode -> path to anything
186  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
187  *   shortage) in which case the above problem applies
188  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
189  *   way, resolving a name may return a different path than the one used to
190  *   open it (even if said path is still valid)
191  * - by default entries are not added for newly created files
192  * - adding an entry may need to evict negative entry first, which happens in 2
193  *   distinct places (evicting on lookup, adding in a later VOP) making it
194  *   impossible to simply reuse it
195  * - there is a simple scheme to evict negative entries as the cache is approaching
196  *   its capacity, but it is very unclear if doing so is a good idea to begin with
197  * - vnodes are subject to being recycled even if target inode is left in memory,
198  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
199  *   names get duplicated -- kept by filesystem itself and namecache separately
200  * - struct namecache has a fixed size and comes in 2 variants, often wasting space.
201  *   now hard to replace with malloc due to dependence on SMR.
202  * - lack of better integration with the kernel also turns nullfs into a layered
203  *   filesystem instead of something which can take advantage of caching
204  */
205 
206 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
207     "Name cache");
208 
209 SDT_PROVIDER_DECLARE(vfs);
210 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
211     "struct vnode *");
212 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
213     "struct vnode *");
214 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
215     "char *");
216 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
217     "const char *");
218 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
219     "struct namecache *", "int", "int");
220 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
221 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
222     "char *", "struct vnode *");
223 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
224 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
225     "struct vnode *", "char *");
226 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
227     "struct vnode *");
228 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
229     "struct vnode *", "char *");
230 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
231     "char *");
232 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
233     "struct componentname *");
234 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
235     "struct componentname *");
236 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
237 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
238 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
239 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
240 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
241     "struct vnode *");
242 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
243     "char *");
244 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
245     "char *");
246 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
247 
248 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
249 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
250 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
251 
252 static char __read_frequently cache_fast_lookup_enabled = true;
253 
254 /*
255  * This structure describes the elements in the cache of recent
256  * names looked up by namei.
257  */
258 struct negstate {
259 	u_char neg_flag;
260 	u_char neg_hit;
261 };
262 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
263     "the state must fit in a union with a pointer without growing it");
264 
265 struct	namecache {
266 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
267 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
268 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
269 	struct	vnode *nc_dvp;		/* vnode of parent of name */
270 	union {
271 		struct	vnode *nu_vp;	/* vnode the name refers to */
272 		struct	negstate nu_neg;/* negative entry state */
273 	} n_un;
274 	u_char	nc_flag;		/* flag bits */
275 	u_char	nc_nlen;		/* length of name */
276 	char	nc_name[];		/* segment name + nul */
277 };
278 
279 /*
280  * struct namecache_ts repeats struct namecache layout up to the
281  * nc_nlen member.
282  * struct namecache_ts is used in place of struct namecache when time(s) need
283  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
284  * both a non-dotdot directory name plus dotdot for the directory's
285  * parent.
286  *
287  * See below for alignment requirement.
288  */
289 struct	namecache_ts {
290 	struct	timespec nc_time;	/* timespec provided by fs */
291 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
292 	int	nc_ticks;		/* ticks value when entry was added */
293 	int	nc_pad;
294 	struct namecache nc_nc;
295 };
296 
297 TAILQ_HEAD(cache_freebatch, namecache);
298 
299 /*
300  * At least mips n32 performs 64-bit accesses to timespec as found
301  * in namecache_ts and requires them to be aligned. Since others
302  * may be in the same spot suffer a little bit and enforce the
303  * alignment for everyone. Note this is a nop for 64-bit platforms.
304  */
305 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
306 
307 /*
308  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
309  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
310  * smaller and the value was bumped to retain the total size, but it
311  * was never re-evaluated for suitability. A simple test counting
312  * lengths during package building shows that the value of 45 covers
313  * about 86% of all added entries, reaching 99% at 65.
314  *
315  * Regardless of the above, use of dedicated zones instead of malloc may be
316  * inducing additional waste. This may be hard to address as said zones are
317  * tied to VFS SMR. Even if retaining them, the current split should be
318  * re-evaluated.
319  */
320 #ifdef __LP64__
321 #define	CACHE_PATH_CUTOFF	45
322 #define	CACHE_LARGE_PAD		6
323 #else
324 #define	CACHE_PATH_CUTOFF	41
325 #define	CACHE_LARGE_PAD		2
326 #endif
327 
328 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
329 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
330 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
331 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
332 
333 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
334 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
335 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
336 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
337 
338 #define	nc_vp		n_un.nu_vp
339 #define	nc_neg		n_un.nu_neg
340 
341 /*
342  * Flags in namecache.nc_flag
343  */
344 #define NCF_WHITE	0x01
345 #define NCF_ISDOTDOT	0x02
346 #define	NCF_TS		0x04
347 #define	NCF_DTS		0x08
348 #define	NCF_DVDROP	0x10
349 #define	NCF_NEGATIVE	0x20
350 #define	NCF_INVALID	0x40
351 #define	NCF_WIP		0x80
352 
353 /*
354  * Flags in negstate.neg_flag
355  */
356 #define NEG_HOT		0x01
357 
358 static bool	cache_neg_evict_cond(u_long lnumcache);
359 
360 /*
361  * Mark an entry as invalid.
362  *
363  * This is called before it starts getting deconstructed.
364  */
365 static void
366 cache_ncp_invalidate(struct namecache *ncp)
367 {
368 
369 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
370 	    ("%s: entry %p already invalid", __func__, ncp));
371 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
372 	atomic_thread_fence_rel();
373 }
374 
375 /*
376  * Check whether the entry can be safely used.
377  *
378  * All places which elide locks are supposed to call this after they are
379  * done with reading from an entry.
380  */
381 #define cache_ncp_canuse(ncp)	({					\
382 	struct namecache *_ncp = (ncp);					\
383 	u_char _nc_flag;						\
384 									\
385 	atomic_thread_fence_acq();					\
386 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
387 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
388 })
389 
390 /*
391  * Like the above but also checks NCF_WHITE.
392  */
393 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
394 	struct namecache *_ncp = (ncp);					\
395 	u_char _nc_flag;						\
396 									\
397 	atomic_thread_fence_acq();					\
398 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
399 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
400 })
401 
402 VFS_SMR_DECLARE;
403 
404 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
405     "Name cache parameters");
406 
407 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
408 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
409     "Total namecache capacity");
410 
411 u_int ncsizefactor = 2;
412 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
413     "Size factor for namecache");
414 
415 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
416 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
417     "Ratio of negative namecache entries");
418 
419 /*
420  * Negative entry % of namecache capacity above which automatic eviction is allowed.
421  *
422  * Check cache_neg_evict_cond for details.
423  */
424 static u_int ncnegminpct = 3;
425 
426 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
427 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
428     "Negative entry count above which automatic eviction is allowed");
429 
430 /*
431  * Structures associated with name caching.
432  */
433 #define NCHHASH(hash) \
434 	(&nchashtbl[(hash) & nchash])
435 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
436 static u_long __read_mostly	nchash;			/* size of hash table */
437 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
438     "Size of namecache hash table");
439 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
440 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
441 
442 struct nchstats	nchstats;		/* cache effectiveness statistics */
443 
444 static u_int __exclusive_cache_line neg_cycle;
445 
446 #define ncneghash	3
447 #define	numneglists	(ncneghash + 1)
448 
449 struct neglist {
450 	struct mtx		nl_evict_lock;
451 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
452 	TAILQ_HEAD(, namecache) nl_list;
453 	TAILQ_HEAD(, namecache) nl_hotlist;
454 	u_long			nl_hotnum;
455 } __aligned(CACHE_LINE_SIZE);
456 
457 static struct neglist neglists[numneglists];
458 
459 static inline struct neglist *
460 NCP2NEGLIST(struct namecache *ncp)
461 {
462 
463 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
464 }
465 
466 static inline struct negstate *
467 NCP2NEGSTATE(struct namecache *ncp)
468 {
469 
470 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
471 	return (&ncp->nc_neg);
472 }
473 
474 #define	numbucketlocks (ncbuckethash + 1)
475 static u_int __read_mostly  ncbuckethash;
476 static struct mtx_padalign __read_mostly  *bucketlocks;
477 #define	HASH2BUCKETLOCK(hash) \
478 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
479 
480 #define	numvnodelocks (ncvnodehash + 1)
481 static u_int __read_mostly  ncvnodehash;
482 static struct mtx __read_mostly *vnodelocks;
483 static inline struct mtx *
484 VP2VNODELOCK(struct vnode *vp)
485 {
486 
487 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
488 }
489 
490 static void
491 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
492 {
493 	struct namecache_ts *ncp_ts;
494 
495 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
496 	    (tsp == NULL && ticksp == NULL),
497 	    ("No NCF_TS"));
498 
499 	if (tsp == NULL)
500 		return;
501 
502 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
503 	*tsp = ncp_ts->nc_time;
504 	*ticksp = ncp_ts->nc_ticks;
505 }
506 
507 #ifdef DEBUG_CACHE
508 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
509 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
510     "VFS namecache enabled");
511 #endif
512 
513 /* Export size information to userland */
514 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
515     sizeof(struct namecache), "sizeof(struct namecache)");
516 
517 /*
518  * The new name cache statistics
519  */
520 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
521     "Name cache statistics");
522 
523 #define STATNODE_ULONG(name, varname, descr)					\
524 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
525 #define STATNODE_COUNTER(name, varname, descr)					\
526 	static COUNTER_U64_DEFINE_EARLY(varname);				\
527 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
528 	    descr);
529 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
530 STATNODE_ULONG(count, numcache, "Number of cache entries");
531 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
532 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
533 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
534 STATNODE_COUNTER(dotdothits, dotdothits, "Number of '..' hits");
535 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
536 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
537 STATNODE_COUNTER(poszaps, numposzaps,
538     "Number of cache hits (positive) we do not want to cache");
539 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
540 STATNODE_COUNTER(negzaps, numnegzaps,
541     "Number of cache hits (negative) we do not want to cache");
542 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
543 /* These count for vn_getcwd(), too. */
544 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
545 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
546     "Number of fullpath search errors (VOP_VPTOCNP failures)");
547 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
548 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
549 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
550 
551 /*
552  * Debug or developer statistics.
553  */
554 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
555     "Name cache debugging");
556 #define DEBUGNODE_ULONG(name, varname, descr)					\
557 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
558 #define DEBUGNODE_COUNTER(name, varname, descr)					\
559 	static COUNTER_U64_DEFINE_EARLY(varname);				\
560 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
561 	    descr);
562 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
563     "Number of successful removals after relocking");
564 static long zap_bucket_fail;
565 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
566 static long zap_bucket_fail2;
567 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
568 static long cache_lock_vnodes_cel_3_failures;
569 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
570     "Number of times 3-way vnode locking failed");
571 
572 static void cache_zap_locked(struct namecache *ncp);
573 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
574     char **retbuf, size_t *buflen, size_t addend);
575 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
576     char **retbuf, size_t *buflen);
577 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
578     char **retbuf, size_t *len, size_t addend);
579 
580 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
581 
582 static inline void
583 cache_assert_vlp_locked(struct mtx *vlp)
584 {
585 
586 	if (vlp != NULL)
587 		mtx_assert(vlp, MA_OWNED);
588 }
589 
590 static inline void
591 cache_assert_vnode_locked(struct vnode *vp)
592 {
593 	struct mtx *vlp;
594 
595 	vlp = VP2VNODELOCK(vp);
596 	cache_assert_vlp_locked(vlp);
597 }
598 
599 /*
600  * Directory vnodes with entries are held for two reasons:
601  * 1. make them less of a target for reclamation in vnlru
602  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
603  *
604  * It will be feasible to stop doing it altogether if all filesystems start
605  * supporting lockless lookup.
606  */
607 static void
608 cache_hold_vnode(struct vnode *vp)
609 {
610 
611 	cache_assert_vnode_locked(vp);
612 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
613 	vhold(vp);
614 	counter_u64_add(numcachehv, 1);
615 }
616 
617 static void
618 cache_drop_vnode(struct vnode *vp)
619 {
620 
621 	/*
622 	 * Called after all locks are dropped, meaning we can't assert
623 	 * on the state of v_cache_src.
624 	 */
625 	vdrop(vp);
626 	counter_u64_add(numcachehv, -1);
627 }
628 
629 /*
630  * UMA zones.
631  */
632 static uma_zone_t __read_mostly cache_zone_small;
633 static uma_zone_t __read_mostly cache_zone_small_ts;
634 static uma_zone_t __read_mostly cache_zone_large;
635 static uma_zone_t __read_mostly cache_zone_large_ts;
636 
637 char *
638 cache_symlink_alloc(size_t size, int flags)
639 {
640 
641 	if (size < CACHE_ZONE_SMALL_SIZE) {
642 		return (uma_zalloc_smr(cache_zone_small, flags));
643 	}
644 	if (size < CACHE_ZONE_LARGE_SIZE) {
645 		return (uma_zalloc_smr(cache_zone_large, flags));
646 	}
647 	counter_u64_add(symlinktoobig, 1);
648 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
649 	return (NULL);
650 }
651 
652 void
653 cache_symlink_free(char *string, size_t size)
654 {
655 
656 	MPASS(string != NULL);
657 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
658 	    ("%s: size %zu too big", __func__, size));
659 
660 	if (size < CACHE_ZONE_SMALL_SIZE) {
661 		uma_zfree_smr(cache_zone_small, string);
662 		return;
663 	}
664 	if (size < CACHE_ZONE_LARGE_SIZE) {
665 		uma_zfree_smr(cache_zone_large, string);
666 		return;
667 	}
668 	__assert_unreachable();
669 }
670 
671 static struct namecache *
672 cache_alloc_uma(int len, bool ts)
673 {
674 	struct namecache_ts *ncp_ts;
675 	struct namecache *ncp;
676 
677 	if (__predict_false(ts)) {
678 		if (len <= CACHE_PATH_CUTOFF)
679 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
680 		else
681 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
682 		ncp = &ncp_ts->nc_nc;
683 	} else {
684 		if (len <= CACHE_PATH_CUTOFF)
685 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
686 		else
687 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
688 	}
689 	return (ncp);
690 }
691 
692 static void
693 cache_free_uma(struct namecache *ncp)
694 {
695 	struct namecache_ts *ncp_ts;
696 
697 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
698 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
699 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
700 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
701 		else
702 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
703 	} else {
704 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
705 			uma_zfree_smr(cache_zone_small, ncp);
706 		else
707 			uma_zfree_smr(cache_zone_large, ncp);
708 	}
709 }
710 
711 static struct namecache *
712 cache_alloc(int len, bool ts)
713 {
714 	u_long lnumcache;
715 
716 	/*
717 	 * Avoid blowout in namecache entries.
718 	 *
719 	 * Bugs:
720 	 * 1. filesystems may end up trying to add an already existing entry
721 	 * (for example this can happen after a cache miss during concurrent
722 	 * lookup), in which case we will call cache_neg_evict despite not
723 	 * adding anything.
724 	 * 2. the routine may fail to free anything and no provisions are made
725 	 * to make it try harder (see the inside for failure modes)
726 	 * 3. it only ever looks at negative entries.
727 	 */
728 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
729 	if (cache_neg_evict_cond(lnumcache)) {
730 		lnumcache = atomic_load_long(&numcache);
731 	}
732 	if (__predict_false(lnumcache >= ncsize)) {
733 		atomic_subtract_long(&numcache, 1);
734 		counter_u64_add(numdrops, 1);
735 		return (NULL);
736 	}
737 	return (cache_alloc_uma(len, ts));
738 }
739 
740 static void
741 cache_free(struct namecache *ncp)
742 {
743 
744 	MPASS(ncp != NULL);
745 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
746 		cache_drop_vnode(ncp->nc_dvp);
747 	}
748 	cache_free_uma(ncp);
749 	atomic_subtract_long(&numcache, 1);
750 }
751 
752 static void
753 cache_free_batch(struct cache_freebatch *batch)
754 {
755 	struct namecache *ncp, *nnp;
756 	int i;
757 
758 	i = 0;
759 	if (TAILQ_EMPTY(batch))
760 		goto out;
761 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
762 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
763 			cache_drop_vnode(ncp->nc_dvp);
764 		}
765 		cache_free_uma(ncp);
766 		i++;
767 	}
768 	atomic_subtract_long(&numcache, i);
769 out:
770 	SDT_PROBE1(vfs, namecache, purge, batch, i);
771 }
772 
773 /*
774  * Hashing.
775  *
776  * The code was made to use FNV in 2001 and this choice needs to be revisited.
777  *
778  * Short summary of the difficulty:
779  * The longest name which can be inserted is NAME_MAX characters in length (or
780  * 255 at the time of writing this comment), while majority of names used in
781  * practice are significantly shorter (mostly below 10). More importantly
782  * majority of lookups performed find names are even shorter than that.
783  *
784  * This poses a problem where hashes which do better than FNV past word size
785  * (or so) tend to come with additional overhead when finalizing the result,
786  * making them noticeably slower for the most commonly used range.
787  *
788  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
789  *
790  * When looking it up the most time consuming part by a large margin (at least
791  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
792  * input would make the slowest part stand out even more.
793  */
794 
795 /*
796  * TODO: With the value stored we can do better than computing the hash based
797  * on the address.
798  */
799 static void
800 cache_prehash(struct vnode *vp)
801 {
802 
803 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
804 }
805 
806 static uint32_t
807 cache_get_hash(char *name, u_char len, struct vnode *dvp)
808 {
809 
810 	return (fnv_32_buf(name, len, dvp->v_nchash));
811 }
812 
813 static uint32_t
814 cache_get_hash_iter_start(struct vnode *dvp)
815 {
816 
817 	return (dvp->v_nchash);
818 }
819 
820 static uint32_t
821 cache_get_hash_iter(char c, uint32_t hash)
822 {
823 
824 	return (fnv_32_buf(&c, 1, hash));
825 }
826 
827 static uint32_t
828 cache_get_hash_iter_finish(uint32_t hash)
829 {
830 
831 	return (hash);
832 }
833 
834 static inline struct nchashhead *
835 NCP2BUCKET(struct namecache *ncp)
836 {
837 	uint32_t hash;
838 
839 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
840 	return (NCHHASH(hash));
841 }
842 
843 static inline struct mtx *
844 NCP2BUCKETLOCK(struct namecache *ncp)
845 {
846 	uint32_t hash;
847 
848 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
849 	return (HASH2BUCKETLOCK(hash));
850 }
851 
852 #ifdef INVARIANTS
853 static void
854 cache_assert_bucket_locked(struct namecache *ncp)
855 {
856 	struct mtx *blp;
857 
858 	blp = NCP2BUCKETLOCK(ncp);
859 	mtx_assert(blp, MA_OWNED);
860 }
861 
862 static void
863 cache_assert_bucket_unlocked(struct namecache *ncp)
864 {
865 	struct mtx *blp;
866 
867 	blp = NCP2BUCKETLOCK(ncp);
868 	mtx_assert(blp, MA_NOTOWNED);
869 }
870 #else
871 #define cache_assert_bucket_locked(x) do { } while (0)
872 #define cache_assert_bucket_unlocked(x) do { } while (0)
873 #endif
874 
875 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
876 static void
877 _cache_sort_vnodes(void **p1, void **p2)
878 {
879 	void *tmp;
880 
881 	MPASS(*p1 != NULL || *p2 != NULL);
882 
883 	if (*p1 > *p2) {
884 		tmp = *p2;
885 		*p2 = *p1;
886 		*p1 = tmp;
887 	}
888 }
889 
890 static void
891 cache_lock_all_buckets(void)
892 {
893 	u_int i;
894 
895 	for (i = 0; i < numbucketlocks; i++)
896 		mtx_lock(&bucketlocks[i]);
897 }
898 
899 static void
900 cache_unlock_all_buckets(void)
901 {
902 	u_int i;
903 
904 	for (i = 0; i < numbucketlocks; i++)
905 		mtx_unlock(&bucketlocks[i]);
906 }
907 
908 static void
909 cache_lock_all_vnodes(void)
910 {
911 	u_int i;
912 
913 	for (i = 0; i < numvnodelocks; i++)
914 		mtx_lock(&vnodelocks[i]);
915 }
916 
917 static void
918 cache_unlock_all_vnodes(void)
919 {
920 	u_int i;
921 
922 	for (i = 0; i < numvnodelocks; i++)
923 		mtx_unlock(&vnodelocks[i]);
924 }
925 
926 static int
927 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
928 {
929 
930 	cache_sort_vnodes(&vlp1, &vlp2);
931 
932 	if (vlp1 != NULL) {
933 		if (!mtx_trylock(vlp1))
934 			return (EAGAIN);
935 	}
936 	if (!mtx_trylock(vlp2)) {
937 		if (vlp1 != NULL)
938 			mtx_unlock(vlp1);
939 		return (EAGAIN);
940 	}
941 
942 	return (0);
943 }
944 
945 static void
946 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
947 {
948 
949 	MPASS(vlp1 != NULL || vlp2 != NULL);
950 	MPASS(vlp1 <= vlp2);
951 
952 	if (vlp1 != NULL)
953 		mtx_lock(vlp1);
954 	if (vlp2 != NULL)
955 		mtx_lock(vlp2);
956 }
957 
958 static void
959 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
960 {
961 
962 	MPASS(vlp1 != NULL || vlp2 != NULL);
963 
964 	if (vlp1 != NULL)
965 		mtx_unlock(vlp1);
966 	if (vlp2 != NULL)
967 		mtx_unlock(vlp2);
968 }
969 
970 static int
971 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
972 {
973 	struct nchstats snap;
974 
975 	if (req->oldptr == NULL)
976 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
977 
978 	snap = nchstats;
979 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
980 	snap.ncs_neghits = counter_u64_fetch(numneghits);
981 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
982 	    counter_u64_fetch(numnegzaps);
983 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
984 	    counter_u64_fetch(nummiss);
985 
986 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
987 }
988 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
989     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
990     "VFS cache effectiveness statistics");
991 
992 static void
993 cache_recalc_neg_min(u_int val)
994 {
995 
996 	neg_min = (ncsize * val) / 100;
997 }
998 
999 static int
1000 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1001 {
1002 	u_int val;
1003 	int error;
1004 
1005 	val = ncnegminpct;
1006 	error = sysctl_handle_int(oidp, &val, 0, req);
1007 	if (error != 0 || req->newptr == NULL)
1008 		return (error);
1009 
1010 	if (val == ncnegminpct)
1011 		return (0);
1012 	if (val < 0 || val > 99)
1013 		return (EINVAL);
1014 	ncnegminpct = val;
1015 	cache_recalc_neg_min(val);
1016 	return (0);
1017 }
1018 
1019 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1020     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1021     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1022 
1023 #ifdef DEBUG_CACHE
1024 /*
1025  * Grab an atomic snapshot of the name cache hash chain lengths
1026  */
1027 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1028     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1029     "hash table stats");
1030 
1031 static int
1032 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1033 {
1034 	struct nchashhead *ncpp;
1035 	struct namecache *ncp;
1036 	int i, error, n_nchash, *cntbuf;
1037 
1038 retry:
1039 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1040 	if (req->oldptr == NULL)
1041 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1042 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1043 	cache_lock_all_buckets();
1044 	if (n_nchash != nchash + 1) {
1045 		cache_unlock_all_buckets();
1046 		free(cntbuf, M_TEMP);
1047 		goto retry;
1048 	}
1049 	/* Scan hash tables counting entries */
1050 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1051 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1052 			cntbuf[i]++;
1053 	cache_unlock_all_buckets();
1054 	for (error = 0, i = 0; i < n_nchash; i++)
1055 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1056 			break;
1057 	free(cntbuf, M_TEMP);
1058 	return (error);
1059 }
1060 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1061     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1062     "nchash chain lengths");
1063 
1064 static int
1065 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1066 {
1067 	int error;
1068 	struct nchashhead *ncpp;
1069 	struct namecache *ncp;
1070 	int n_nchash;
1071 	int count, maxlength, used, pct;
1072 
1073 	if (!req->oldptr)
1074 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1075 
1076 	cache_lock_all_buckets();
1077 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1078 	used = 0;
1079 	maxlength = 0;
1080 
1081 	/* Scan hash tables for applicable entries */
1082 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1083 		count = 0;
1084 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1085 			count++;
1086 		}
1087 		if (count)
1088 			used++;
1089 		if (maxlength < count)
1090 			maxlength = count;
1091 	}
1092 	n_nchash = nchash + 1;
1093 	cache_unlock_all_buckets();
1094 	pct = (used * 100) / (n_nchash / 100);
1095 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1096 	if (error)
1097 		return (error);
1098 	error = SYSCTL_OUT(req, &used, sizeof(used));
1099 	if (error)
1100 		return (error);
1101 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1102 	if (error)
1103 		return (error);
1104 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1105 	if (error)
1106 		return (error);
1107 	return (0);
1108 }
1109 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1110     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1111     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1112 #endif
1113 
1114 /*
1115  * Negative entries management
1116  *
1117  * Various workloads create plenty of negative entries and barely use them
1118  * afterwards. Moreover malicious users can keep performing bogus lookups
1119  * adding even more entries. For example "make tinderbox" as of writing this
1120  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1121  * negative.
1122  *
1123  * As such, a rather aggressive eviction method is needed. The currently
1124  * employed method is a placeholder.
1125  *
1126  * Entries are split over numneglists separate lists, each of which is further
1127  * split into hot and cold entries. Entries get promoted after getting a hit.
1128  * Eviction happens on addition of new entry.
1129  */
1130 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1131     "Name cache negative entry statistics");
1132 
1133 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1134     "Number of negative cache entries");
1135 
1136 static COUNTER_U64_DEFINE_EARLY(neg_created);
1137 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1138     "Number of created negative entries");
1139 
1140 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1141 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1142     "Number of evicted negative entries");
1143 
1144 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1145 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1146     &neg_evict_skipped_empty,
1147     "Number of times evicting failed due to lack of entries");
1148 
1149 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1150 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1151     &neg_evict_skipped_missed,
1152     "Number of times evicting failed due to target entry disappearing");
1153 
1154 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1155 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1156     &neg_evict_skipped_contended,
1157     "Number of times evicting failed due to contention");
1158 
1159 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1160     "Number of cache hits (negative)");
1161 
1162 static int
1163 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1164 {
1165 	int i, out;
1166 
1167 	out = 0;
1168 	for (i = 0; i < numneglists; i++)
1169 		out += neglists[i].nl_hotnum;
1170 
1171 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1172 }
1173 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1174     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1175     "Number of hot negative entries");
1176 
1177 static void
1178 cache_neg_init(struct namecache *ncp)
1179 {
1180 	struct negstate *ns;
1181 
1182 	ncp->nc_flag |= NCF_NEGATIVE;
1183 	ns = NCP2NEGSTATE(ncp);
1184 	ns->neg_flag = 0;
1185 	ns->neg_hit = 0;
1186 	counter_u64_add(neg_created, 1);
1187 }
1188 
1189 #define CACHE_NEG_PROMOTION_THRESH 2
1190 
1191 static bool
1192 cache_neg_hit_prep(struct namecache *ncp)
1193 {
1194 	struct negstate *ns;
1195 	u_char n;
1196 
1197 	ns = NCP2NEGSTATE(ncp);
1198 	n = atomic_load_char(&ns->neg_hit);
1199 	for (;;) {
1200 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1201 			return (false);
1202 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1203 			break;
1204 	}
1205 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1206 }
1207 
1208 /*
1209  * Nothing to do here but it is provided for completeness as some
1210  * cache_neg_hit_prep callers may end up returning without even
1211  * trying to promote.
1212  */
1213 #define cache_neg_hit_abort(ncp)	do { } while (0)
1214 
1215 static void
1216 cache_neg_hit_finish(struct namecache *ncp)
1217 {
1218 
1219 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1220 	counter_u64_add(numneghits, 1);
1221 }
1222 
1223 /*
1224  * Move a negative entry to the hot list.
1225  */
1226 static void
1227 cache_neg_promote_locked(struct namecache *ncp)
1228 {
1229 	struct neglist *nl;
1230 	struct negstate *ns;
1231 
1232 	ns = NCP2NEGSTATE(ncp);
1233 	nl = NCP2NEGLIST(ncp);
1234 	mtx_assert(&nl->nl_lock, MA_OWNED);
1235 	if ((ns->neg_flag & NEG_HOT) == 0) {
1236 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1237 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1238 		nl->nl_hotnum++;
1239 		ns->neg_flag |= NEG_HOT;
1240 	}
1241 }
1242 
1243 /*
1244  * Move a hot negative entry to the cold list.
1245  */
1246 static void
1247 cache_neg_demote_locked(struct namecache *ncp)
1248 {
1249 	struct neglist *nl;
1250 	struct negstate *ns;
1251 
1252 	ns = NCP2NEGSTATE(ncp);
1253 	nl = NCP2NEGLIST(ncp);
1254 	mtx_assert(&nl->nl_lock, MA_OWNED);
1255 	MPASS(ns->neg_flag & NEG_HOT);
1256 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1257 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1258 	nl->nl_hotnum--;
1259 	ns->neg_flag &= ~NEG_HOT;
1260 	atomic_store_char(&ns->neg_hit, 0);
1261 }
1262 
1263 /*
1264  * Move a negative entry to the hot list if it matches the lookup.
1265  *
1266  * We have to take locks, but they may be contended and in the worst
1267  * case we may need to go off CPU. We don't want to spin within the
1268  * smr section and we can't block with it. Exiting the section means
1269  * the found entry could have been evicted. We are going to look it
1270  * up again.
1271  */
1272 static bool
1273 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1274     struct namecache *oncp, uint32_t hash)
1275 {
1276 	struct namecache *ncp;
1277 	struct neglist *nl;
1278 	u_char nc_flag;
1279 
1280 	nl = NCP2NEGLIST(oncp);
1281 
1282 	mtx_lock(&nl->nl_lock);
1283 	/*
1284 	 * For hash iteration.
1285 	 */
1286 	vfs_smr_enter();
1287 
1288 	/*
1289 	 * Avoid all surprises by only succeeding if we got the same entry and
1290 	 * bailing completely otherwise.
1291 	 * XXX There are no provisions to keep the vnode around, meaning we may
1292 	 * end up promoting a negative entry for a *new* vnode and returning
1293 	 * ENOENT on its account. This is the error we want to return anyway
1294 	 * and promotion is harmless.
1295 	 *
1296 	 * In particular at this point there can be a new ncp which matches the
1297 	 * search but hashes to a different neglist.
1298 	 */
1299 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1300 		if (ncp == oncp)
1301 			break;
1302 	}
1303 
1304 	/*
1305 	 * No match to begin with.
1306 	 */
1307 	if (__predict_false(ncp == NULL)) {
1308 		goto out_abort;
1309 	}
1310 
1311 	/*
1312 	 * The newly found entry may be something different...
1313 	 */
1314 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1315 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1316 		goto out_abort;
1317 	}
1318 
1319 	/*
1320 	 * ... and not even negative.
1321 	 */
1322 	nc_flag = atomic_load_char(&ncp->nc_flag);
1323 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1324 		goto out_abort;
1325 	}
1326 
1327 	if (!cache_ncp_canuse(ncp)) {
1328 		goto out_abort;
1329 	}
1330 
1331 	cache_neg_promote_locked(ncp);
1332 	cache_neg_hit_finish(ncp);
1333 	vfs_smr_exit();
1334 	mtx_unlock(&nl->nl_lock);
1335 	return (true);
1336 out_abort:
1337 	vfs_smr_exit();
1338 	mtx_unlock(&nl->nl_lock);
1339 	return (false);
1340 }
1341 
1342 static void
1343 cache_neg_promote(struct namecache *ncp)
1344 {
1345 	struct neglist *nl;
1346 
1347 	nl = NCP2NEGLIST(ncp);
1348 	mtx_lock(&nl->nl_lock);
1349 	cache_neg_promote_locked(ncp);
1350 	mtx_unlock(&nl->nl_lock);
1351 }
1352 
1353 static void
1354 cache_neg_insert(struct namecache *ncp)
1355 {
1356 	struct neglist *nl;
1357 
1358 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1359 	cache_assert_bucket_locked(ncp);
1360 	nl = NCP2NEGLIST(ncp);
1361 	mtx_lock(&nl->nl_lock);
1362 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1363 	mtx_unlock(&nl->nl_lock);
1364 	atomic_add_long(&numneg, 1);
1365 }
1366 
1367 static void
1368 cache_neg_remove(struct namecache *ncp)
1369 {
1370 	struct neglist *nl;
1371 	struct negstate *ns;
1372 
1373 	cache_assert_bucket_locked(ncp);
1374 	nl = NCP2NEGLIST(ncp);
1375 	ns = NCP2NEGSTATE(ncp);
1376 	mtx_lock(&nl->nl_lock);
1377 	if ((ns->neg_flag & NEG_HOT) != 0) {
1378 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1379 		nl->nl_hotnum--;
1380 	} else {
1381 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1382 	}
1383 	mtx_unlock(&nl->nl_lock);
1384 	atomic_subtract_long(&numneg, 1);
1385 }
1386 
1387 static struct neglist *
1388 cache_neg_evict_select_list(void)
1389 {
1390 	struct neglist *nl;
1391 	u_int c;
1392 
1393 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1394 	nl = &neglists[c % numneglists];
1395 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1396 		counter_u64_add(neg_evict_skipped_contended, 1);
1397 		return (NULL);
1398 	}
1399 	return (nl);
1400 }
1401 
1402 static struct namecache *
1403 cache_neg_evict_select_entry(struct neglist *nl)
1404 {
1405 	struct namecache *ncp, *lncp;
1406 	struct negstate *ns, *lns;
1407 	int i;
1408 
1409 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1410 	mtx_assert(&nl->nl_lock, MA_OWNED);
1411 	ncp = TAILQ_FIRST(&nl->nl_list);
1412 	if (ncp == NULL)
1413 		return (NULL);
1414 	lncp = ncp;
1415 	lns = NCP2NEGSTATE(lncp);
1416 	for (i = 1; i < 4; i++) {
1417 		ncp = TAILQ_NEXT(ncp, nc_dst);
1418 		if (ncp == NULL)
1419 			break;
1420 		ns = NCP2NEGSTATE(ncp);
1421 		if (ns->neg_hit < lns->neg_hit) {
1422 			lncp = ncp;
1423 			lns = ns;
1424 		}
1425 	}
1426 	return (lncp);
1427 }
1428 
1429 static bool
1430 cache_neg_evict(void)
1431 {
1432 	struct namecache *ncp, *ncp2;
1433 	struct neglist *nl;
1434 	struct vnode *dvp;
1435 	struct mtx *dvlp;
1436 	struct mtx *blp;
1437 	uint32_t hash;
1438 	u_char nlen;
1439 	bool evicted;
1440 
1441 	nl = cache_neg_evict_select_list();
1442 	if (nl == NULL) {
1443 		return (false);
1444 	}
1445 
1446 	mtx_lock(&nl->nl_lock);
1447 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1448 	if (ncp != NULL) {
1449 		cache_neg_demote_locked(ncp);
1450 	}
1451 	ncp = cache_neg_evict_select_entry(nl);
1452 	if (ncp == NULL) {
1453 		counter_u64_add(neg_evict_skipped_empty, 1);
1454 		mtx_unlock(&nl->nl_lock);
1455 		mtx_unlock(&nl->nl_evict_lock);
1456 		return (false);
1457 	}
1458 	nlen = ncp->nc_nlen;
1459 	dvp = ncp->nc_dvp;
1460 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1461 	dvlp = VP2VNODELOCK(dvp);
1462 	blp = HASH2BUCKETLOCK(hash);
1463 	mtx_unlock(&nl->nl_lock);
1464 	mtx_unlock(&nl->nl_evict_lock);
1465 	mtx_lock(dvlp);
1466 	mtx_lock(blp);
1467 	/*
1468 	 * Note that since all locks were dropped above, the entry may be
1469 	 * gone or reallocated to be something else.
1470 	 */
1471 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1472 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1473 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1474 			break;
1475 	}
1476 	if (ncp2 == NULL) {
1477 		counter_u64_add(neg_evict_skipped_missed, 1);
1478 		ncp = NULL;
1479 		evicted = false;
1480 	} else {
1481 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1482 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1483 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1484 		    ncp->nc_name);
1485 		cache_zap_locked(ncp);
1486 		counter_u64_add(neg_evicted, 1);
1487 		evicted = true;
1488 	}
1489 	mtx_unlock(blp);
1490 	mtx_unlock(dvlp);
1491 	if (ncp != NULL)
1492 		cache_free(ncp);
1493 	return (evicted);
1494 }
1495 
1496 /*
1497  * Maybe evict a negative entry to create more room.
1498  *
1499  * The ncnegfactor parameter limits what fraction of the total count
1500  * can comprise of negative entries. However, if the cache is just
1501  * warming up this leads to excessive evictions.  As such, ncnegminpct
1502  * (recomputed to neg_min) dictates whether the above should be
1503  * applied.
1504  *
1505  * Try evicting if the cache is close to full capacity regardless of
1506  * other considerations.
1507  */
1508 static bool
1509 cache_neg_evict_cond(u_long lnumcache)
1510 {
1511 	u_long lnumneg;
1512 
1513 	if (ncsize - 1000 < lnumcache)
1514 		goto out_evict;
1515 	lnumneg = atomic_load_long(&numneg);
1516 	if (lnumneg < neg_min)
1517 		return (false);
1518 	if (lnumneg * ncnegfactor < lnumcache)
1519 		return (false);
1520 out_evict:
1521 	return (cache_neg_evict());
1522 }
1523 
1524 /*
1525  * cache_zap_locked():
1526  *
1527  *   Removes a namecache entry from cache, whether it contains an actual
1528  *   pointer to a vnode or if it is just a negative cache entry.
1529  */
1530 static void
1531 cache_zap_locked(struct namecache *ncp)
1532 {
1533 	struct nchashhead *ncpp;
1534 	struct vnode *dvp, *vp;
1535 
1536 	dvp = ncp->nc_dvp;
1537 	vp = ncp->nc_vp;
1538 
1539 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1540 		cache_assert_vnode_locked(vp);
1541 	cache_assert_vnode_locked(dvp);
1542 	cache_assert_bucket_locked(ncp);
1543 
1544 	cache_ncp_invalidate(ncp);
1545 
1546 	ncpp = NCP2BUCKET(ncp);
1547 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1548 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1549 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1550 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1551 		if (ncp == vp->v_cache_dd) {
1552 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1553 		}
1554 	} else {
1555 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1556 		cache_neg_remove(ncp);
1557 	}
1558 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1559 		if (ncp == dvp->v_cache_dd) {
1560 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1561 		}
1562 	} else {
1563 		LIST_REMOVE(ncp, nc_src);
1564 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1565 			ncp->nc_flag |= NCF_DVDROP;
1566 		}
1567 	}
1568 }
1569 
1570 static void
1571 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1572 {
1573 	struct mtx *blp;
1574 
1575 	MPASS(ncp->nc_dvp == vp);
1576 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1577 	cache_assert_vnode_locked(vp);
1578 
1579 	blp = NCP2BUCKETLOCK(ncp);
1580 	mtx_lock(blp);
1581 	cache_zap_locked(ncp);
1582 	mtx_unlock(blp);
1583 }
1584 
1585 static bool
1586 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1587     struct mtx **vlpp)
1588 {
1589 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1590 	struct mtx *blp;
1591 
1592 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1593 	cache_assert_vnode_locked(vp);
1594 
1595 	if (ncp->nc_flag & NCF_NEGATIVE) {
1596 		if (*vlpp != NULL) {
1597 			mtx_unlock(*vlpp);
1598 			*vlpp = NULL;
1599 		}
1600 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1601 		return (true);
1602 	}
1603 
1604 	pvlp = VP2VNODELOCK(vp);
1605 	blp = NCP2BUCKETLOCK(ncp);
1606 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1607 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1608 
1609 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1610 		to_unlock = *vlpp;
1611 		*vlpp = NULL;
1612 	} else {
1613 		if (*vlpp != NULL) {
1614 			mtx_unlock(*vlpp);
1615 			*vlpp = NULL;
1616 		}
1617 		cache_sort_vnodes(&vlp1, &vlp2);
1618 		if (vlp1 == pvlp) {
1619 			mtx_lock(vlp2);
1620 			to_unlock = vlp2;
1621 		} else {
1622 			if (!mtx_trylock(vlp1))
1623 				goto out_relock;
1624 			to_unlock = vlp1;
1625 		}
1626 	}
1627 	mtx_lock(blp);
1628 	cache_zap_locked(ncp);
1629 	mtx_unlock(blp);
1630 	if (to_unlock != NULL)
1631 		mtx_unlock(to_unlock);
1632 	return (true);
1633 
1634 out_relock:
1635 	mtx_unlock(vlp2);
1636 	mtx_lock(vlp1);
1637 	mtx_lock(vlp2);
1638 	MPASS(*vlpp == NULL);
1639 	*vlpp = vlp1;
1640 	return (false);
1641 }
1642 
1643 /*
1644  * If trylocking failed we can get here. We know enough to take all needed locks
1645  * in the right order and re-lookup the entry.
1646  */
1647 static int
1648 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1649     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1650     struct mtx *blp)
1651 {
1652 	struct namecache *rncp;
1653 
1654 	cache_assert_bucket_unlocked(ncp);
1655 
1656 	cache_sort_vnodes(&dvlp, &vlp);
1657 	cache_lock_vnodes(dvlp, vlp);
1658 	mtx_lock(blp);
1659 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1660 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1661 		    rncp->nc_nlen == cnp->cn_namelen &&
1662 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1663 			break;
1664 	}
1665 	if (rncp != NULL) {
1666 		cache_zap_locked(rncp);
1667 		mtx_unlock(blp);
1668 		cache_unlock_vnodes(dvlp, vlp);
1669 		counter_u64_add(zap_bucket_relock_success, 1);
1670 		return (0);
1671 	}
1672 
1673 	mtx_unlock(blp);
1674 	cache_unlock_vnodes(dvlp, vlp);
1675 	return (EAGAIN);
1676 }
1677 
1678 static int __noinline
1679 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1680     uint32_t hash, struct mtx *blp)
1681 {
1682 	struct mtx *dvlp, *vlp;
1683 	struct vnode *dvp;
1684 
1685 	cache_assert_bucket_locked(ncp);
1686 
1687 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1688 	vlp = NULL;
1689 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1690 		vlp = VP2VNODELOCK(ncp->nc_vp);
1691 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1692 		cache_zap_locked(ncp);
1693 		mtx_unlock(blp);
1694 		cache_unlock_vnodes(dvlp, vlp);
1695 		return (0);
1696 	}
1697 
1698 	dvp = ncp->nc_dvp;
1699 	mtx_unlock(blp);
1700 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1701 }
1702 
1703 static __noinline int
1704 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1705 {
1706 	struct namecache *ncp;
1707 	struct mtx *blp;
1708 	struct mtx *dvlp, *dvlp2;
1709 	uint32_t hash;
1710 	int error;
1711 
1712 	if (cnp->cn_namelen == 2 &&
1713 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1714 		dvlp = VP2VNODELOCK(dvp);
1715 		dvlp2 = NULL;
1716 		mtx_lock(dvlp);
1717 retry_dotdot:
1718 		ncp = dvp->v_cache_dd;
1719 		if (ncp == NULL) {
1720 			mtx_unlock(dvlp);
1721 			if (dvlp2 != NULL)
1722 				mtx_unlock(dvlp2);
1723 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1724 			return (0);
1725 		}
1726 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1727 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1728 				goto retry_dotdot;
1729 			MPASS(dvp->v_cache_dd == NULL);
1730 			mtx_unlock(dvlp);
1731 			if (dvlp2 != NULL)
1732 				mtx_unlock(dvlp2);
1733 			cache_free(ncp);
1734 		} else {
1735 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1736 			mtx_unlock(dvlp);
1737 			if (dvlp2 != NULL)
1738 				mtx_unlock(dvlp2);
1739 		}
1740 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1741 		return (1);
1742 	}
1743 
1744 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1745 	blp = HASH2BUCKETLOCK(hash);
1746 retry:
1747 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1748 		goto out_no_entry;
1749 
1750 	mtx_lock(blp);
1751 
1752 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1753 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1754 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1755 			break;
1756 	}
1757 
1758 	if (ncp == NULL) {
1759 		mtx_unlock(blp);
1760 		goto out_no_entry;
1761 	}
1762 
1763 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1764 	if (__predict_false(error != 0)) {
1765 		zap_bucket_fail++;
1766 		goto retry;
1767 	}
1768 	counter_u64_add(numposzaps, 1);
1769 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1770 	cache_free(ncp);
1771 	return (1);
1772 out_no_entry:
1773 	counter_u64_add(nummisszap, 1);
1774 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1775 	return (0);
1776 }
1777 
1778 static int __noinline
1779 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1780     struct timespec *tsp, int *ticksp)
1781 {
1782 	int ltype;
1783 
1784 	*vpp = dvp;
1785 	counter_u64_add(dothits, 1);
1786 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1787 	if (tsp != NULL)
1788 		timespecclear(tsp);
1789 	if (ticksp != NULL)
1790 		*ticksp = ticks;
1791 	vrefact(*vpp);
1792 	/*
1793 	 * When we lookup "." we still can be asked to lock it
1794 	 * differently...
1795 	 */
1796 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1797 	if (ltype != VOP_ISLOCKED(*vpp)) {
1798 		if (ltype == LK_EXCLUSIVE) {
1799 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1800 			if (VN_IS_DOOMED((*vpp))) {
1801 				/* forced unmount */
1802 				vrele(*vpp);
1803 				*vpp = NULL;
1804 				return (ENOENT);
1805 			}
1806 		} else
1807 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1808 	}
1809 	return (-1);
1810 }
1811 
1812 static int __noinline
1813 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1814     struct timespec *tsp, int *ticksp)
1815 {
1816 	struct namecache_ts *ncp_ts;
1817 	struct namecache *ncp;
1818 	struct mtx *dvlp;
1819 	enum vgetstate vs;
1820 	int error, ltype;
1821 	bool whiteout;
1822 
1823 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1824 
1825 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1826 		cache_remove_cnp(dvp, cnp);
1827 		return (0);
1828 	}
1829 
1830 	counter_u64_add(dotdothits, 1);
1831 retry:
1832 	dvlp = VP2VNODELOCK(dvp);
1833 	mtx_lock(dvlp);
1834 	ncp = dvp->v_cache_dd;
1835 	if (ncp == NULL) {
1836 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1837 		mtx_unlock(dvlp);
1838 		return (0);
1839 	}
1840 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1841 		if (ncp->nc_flag & NCF_NEGATIVE)
1842 			*vpp = NULL;
1843 		else
1844 			*vpp = ncp->nc_vp;
1845 	} else
1846 		*vpp = ncp->nc_dvp;
1847 	if (*vpp == NULL)
1848 		goto negative_success;
1849 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1850 	cache_out_ts(ncp, tsp, ticksp);
1851 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1852 	    NCF_DTS && tsp != NULL) {
1853 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1854 		*tsp = ncp_ts->nc_dotdottime;
1855 	}
1856 
1857 	MPASS(dvp != *vpp);
1858 	ltype = VOP_ISLOCKED(dvp);
1859 	VOP_UNLOCK(dvp);
1860 	vs = vget_prep(*vpp);
1861 	mtx_unlock(dvlp);
1862 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1863 	vn_lock(dvp, ltype | LK_RETRY);
1864 	if (VN_IS_DOOMED(dvp)) {
1865 		if (error == 0)
1866 			vput(*vpp);
1867 		*vpp = NULL;
1868 		return (ENOENT);
1869 	}
1870 	if (error) {
1871 		*vpp = NULL;
1872 		goto retry;
1873 	}
1874 	return (-1);
1875 negative_success:
1876 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1877 		if (cnp->cn_flags & ISLASTCN) {
1878 			counter_u64_add(numnegzaps, 1);
1879 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1880 			mtx_unlock(dvlp);
1881 			cache_free(ncp);
1882 			return (0);
1883 		}
1884 	}
1885 
1886 	whiteout = (ncp->nc_flag & NCF_WHITE);
1887 	cache_out_ts(ncp, tsp, ticksp);
1888 	if (cache_neg_hit_prep(ncp))
1889 		cache_neg_promote(ncp);
1890 	else
1891 		cache_neg_hit_finish(ncp);
1892 	mtx_unlock(dvlp);
1893 	if (whiteout)
1894 		cnp->cn_flags |= ISWHITEOUT;
1895 	return (ENOENT);
1896 }
1897 
1898 /**
1899  * Lookup a name in the name cache
1900  *
1901  * # Arguments
1902  *
1903  * - dvp:	Parent directory in which to search.
1904  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1905  * - cnp:	Parameters of the name search.  The most interesting bits of
1906  *   		the cn_flags field have the following meanings:
1907  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1908  *   			it up.
1909  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1910  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1911  *   		or negative) lookup, tsp will be filled with any timespec that
1912  *   		was stored when this cache entry was created.  However, it will
1913  *   		be clear for "." entries.
1914  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1915  *   		(positive or negative) lookup, it will contain the ticks value
1916  *   		that was current when the cache entry was created, unless cnp
1917  *   		was ".".
1918  *
1919  * Either both tsp and ticks have to be provided or neither of them.
1920  *
1921  * # Returns
1922  *
1923  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1924  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1925  *		to a forced unmount.  vpp will not be modified.  If the entry
1926  *		is a whiteout, then the ISWHITEOUT flag will be set in
1927  *		cnp->cn_flags.
1928  * - 0:		A cache miss.  vpp will not be modified.
1929  *
1930  * # Locking
1931  *
1932  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1933  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1934  * lock is not recursively acquired.
1935  */
1936 static int __noinline
1937 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1938     struct timespec *tsp, int *ticksp)
1939 {
1940 	struct namecache *ncp;
1941 	struct mtx *blp;
1942 	uint32_t hash;
1943 	enum vgetstate vs;
1944 	int error;
1945 	bool whiteout;
1946 
1947 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1948 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1949 
1950 retry:
1951 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1952 	blp = HASH2BUCKETLOCK(hash);
1953 	mtx_lock(blp);
1954 
1955 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1956 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1957 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1958 			break;
1959 	}
1960 
1961 	if (__predict_false(ncp == NULL)) {
1962 		mtx_unlock(blp);
1963 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
1964 		counter_u64_add(nummiss, 1);
1965 		return (0);
1966 	}
1967 
1968 	if (ncp->nc_flag & NCF_NEGATIVE)
1969 		goto negative_success;
1970 
1971 	counter_u64_add(numposhits, 1);
1972 	*vpp = ncp->nc_vp;
1973 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1974 	cache_out_ts(ncp, tsp, ticksp);
1975 	MPASS(dvp != *vpp);
1976 	vs = vget_prep(*vpp);
1977 	mtx_unlock(blp);
1978 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1979 	if (error) {
1980 		*vpp = NULL;
1981 		goto retry;
1982 	}
1983 	return (-1);
1984 negative_success:
1985 	/*
1986 	 * We don't get here with regular lookup apart from corner cases.
1987 	 */
1988 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
1989 		if (cnp->cn_flags & ISLASTCN) {
1990 			counter_u64_add(numnegzaps, 1);
1991 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1992 			if (__predict_false(error != 0)) {
1993 				zap_bucket_fail2++;
1994 				goto retry;
1995 			}
1996 			cache_free(ncp);
1997 			return (0);
1998 		}
1999 	}
2000 
2001 	whiteout = (ncp->nc_flag & NCF_WHITE);
2002 	cache_out_ts(ncp, tsp, ticksp);
2003 	if (cache_neg_hit_prep(ncp))
2004 		cache_neg_promote(ncp);
2005 	else
2006 		cache_neg_hit_finish(ncp);
2007 	mtx_unlock(blp);
2008 	if (whiteout)
2009 		cnp->cn_flags |= ISWHITEOUT;
2010 	return (ENOENT);
2011 }
2012 
2013 int
2014 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2015     struct timespec *tsp, int *ticksp)
2016 {
2017 	struct namecache *ncp;
2018 	uint32_t hash;
2019 	enum vgetstate vs;
2020 	int error;
2021 	bool whiteout, neg_promote;
2022 	u_short nc_flag;
2023 
2024 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2025 
2026 #ifdef DEBUG_CACHE
2027 	if (__predict_false(!doingcache)) {
2028 		cnp->cn_flags &= ~MAKEENTRY;
2029 		return (0);
2030 	}
2031 #endif
2032 
2033 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2034 		if (cnp->cn_namelen == 1)
2035 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2036 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2037 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2038 	}
2039 
2040 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2041 
2042 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2043 		cache_remove_cnp(dvp, cnp);
2044 		return (0);
2045 	}
2046 
2047 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2048 	vfs_smr_enter();
2049 
2050 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2051 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2052 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2053 			break;
2054 	}
2055 
2056 	if (__predict_false(ncp == NULL)) {
2057 		vfs_smr_exit();
2058 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2059 		counter_u64_add(nummiss, 1);
2060 		return (0);
2061 	}
2062 
2063 	nc_flag = atomic_load_char(&ncp->nc_flag);
2064 	if (nc_flag & NCF_NEGATIVE)
2065 		goto negative_success;
2066 
2067 	counter_u64_add(numposhits, 1);
2068 	*vpp = ncp->nc_vp;
2069 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2070 	cache_out_ts(ncp, tsp, ticksp);
2071 	MPASS(dvp != *vpp);
2072 	if (!cache_ncp_canuse(ncp)) {
2073 		vfs_smr_exit();
2074 		*vpp = NULL;
2075 		goto out_fallback;
2076 	}
2077 	vs = vget_prep_smr(*vpp);
2078 	vfs_smr_exit();
2079 	if (__predict_false(vs == VGET_NONE)) {
2080 		*vpp = NULL;
2081 		goto out_fallback;
2082 	}
2083 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2084 	if (error) {
2085 		*vpp = NULL;
2086 		goto out_fallback;
2087 	}
2088 	return (-1);
2089 negative_success:
2090 	if (cnp->cn_nameiop == CREATE) {
2091 		if (cnp->cn_flags & ISLASTCN) {
2092 			vfs_smr_exit();
2093 			goto out_fallback;
2094 		}
2095 	}
2096 
2097 	cache_out_ts(ncp, tsp, ticksp);
2098 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2099 	neg_promote = cache_neg_hit_prep(ncp);
2100 	if (!cache_ncp_canuse(ncp)) {
2101 		cache_neg_hit_abort(ncp);
2102 		vfs_smr_exit();
2103 		goto out_fallback;
2104 	}
2105 	if (neg_promote) {
2106 		vfs_smr_exit();
2107 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2108 			goto out_fallback;
2109 	} else {
2110 		cache_neg_hit_finish(ncp);
2111 		vfs_smr_exit();
2112 	}
2113 	if (whiteout)
2114 		cnp->cn_flags |= ISWHITEOUT;
2115 	return (ENOENT);
2116 out_fallback:
2117 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2118 }
2119 
2120 struct celockstate {
2121 	struct mtx *vlp[3];
2122 	struct mtx *blp[2];
2123 };
2124 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2125 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2126 
2127 static inline void
2128 cache_celockstate_init(struct celockstate *cel)
2129 {
2130 
2131 	bzero(cel, sizeof(*cel));
2132 }
2133 
2134 static void
2135 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2136     struct vnode *dvp)
2137 {
2138 	struct mtx *vlp1, *vlp2;
2139 
2140 	MPASS(cel->vlp[0] == NULL);
2141 	MPASS(cel->vlp[1] == NULL);
2142 	MPASS(cel->vlp[2] == NULL);
2143 
2144 	MPASS(vp != NULL || dvp != NULL);
2145 
2146 	vlp1 = VP2VNODELOCK(vp);
2147 	vlp2 = VP2VNODELOCK(dvp);
2148 	cache_sort_vnodes(&vlp1, &vlp2);
2149 
2150 	if (vlp1 != NULL) {
2151 		mtx_lock(vlp1);
2152 		cel->vlp[0] = vlp1;
2153 	}
2154 	mtx_lock(vlp2);
2155 	cel->vlp[1] = vlp2;
2156 }
2157 
2158 static void
2159 cache_unlock_vnodes_cel(struct celockstate *cel)
2160 {
2161 
2162 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2163 
2164 	if (cel->vlp[0] != NULL)
2165 		mtx_unlock(cel->vlp[0]);
2166 	if (cel->vlp[1] != NULL)
2167 		mtx_unlock(cel->vlp[1]);
2168 	if (cel->vlp[2] != NULL)
2169 		mtx_unlock(cel->vlp[2]);
2170 }
2171 
2172 static bool
2173 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2174 {
2175 	struct mtx *vlp;
2176 	bool ret;
2177 
2178 	cache_assert_vlp_locked(cel->vlp[0]);
2179 	cache_assert_vlp_locked(cel->vlp[1]);
2180 	MPASS(cel->vlp[2] == NULL);
2181 
2182 	MPASS(vp != NULL);
2183 	vlp = VP2VNODELOCK(vp);
2184 
2185 	ret = true;
2186 	if (vlp >= cel->vlp[1]) {
2187 		mtx_lock(vlp);
2188 	} else {
2189 		if (mtx_trylock(vlp))
2190 			goto out;
2191 		cache_lock_vnodes_cel_3_failures++;
2192 		cache_unlock_vnodes_cel(cel);
2193 		if (vlp < cel->vlp[0]) {
2194 			mtx_lock(vlp);
2195 			mtx_lock(cel->vlp[0]);
2196 			mtx_lock(cel->vlp[1]);
2197 		} else {
2198 			if (cel->vlp[0] != NULL)
2199 				mtx_lock(cel->vlp[0]);
2200 			mtx_lock(vlp);
2201 			mtx_lock(cel->vlp[1]);
2202 		}
2203 		ret = false;
2204 	}
2205 out:
2206 	cel->vlp[2] = vlp;
2207 	return (ret);
2208 }
2209 
2210 static void
2211 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2212     struct mtx *blp2)
2213 {
2214 
2215 	MPASS(cel->blp[0] == NULL);
2216 	MPASS(cel->blp[1] == NULL);
2217 
2218 	cache_sort_vnodes(&blp1, &blp2);
2219 
2220 	if (blp1 != NULL) {
2221 		mtx_lock(blp1);
2222 		cel->blp[0] = blp1;
2223 	}
2224 	mtx_lock(blp2);
2225 	cel->blp[1] = blp2;
2226 }
2227 
2228 static void
2229 cache_unlock_buckets_cel(struct celockstate *cel)
2230 {
2231 
2232 	if (cel->blp[0] != NULL)
2233 		mtx_unlock(cel->blp[0]);
2234 	mtx_unlock(cel->blp[1]);
2235 }
2236 
2237 /*
2238  * Lock part of the cache affected by the insertion.
2239  *
2240  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2241  * However, insertion can result in removal of an old entry. In this
2242  * case we have an additional vnode and bucketlock pair to lock.
2243  *
2244  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2245  * preserving the locking order (smaller address first).
2246  */
2247 static void
2248 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2249     uint32_t hash)
2250 {
2251 	struct namecache *ncp;
2252 	struct mtx *blps[2];
2253 	u_char nc_flag;
2254 
2255 	blps[0] = HASH2BUCKETLOCK(hash);
2256 	for (;;) {
2257 		blps[1] = NULL;
2258 		cache_lock_vnodes_cel(cel, dvp, vp);
2259 		if (vp == NULL || vp->v_type != VDIR)
2260 			break;
2261 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2262 		if (ncp == NULL)
2263 			break;
2264 		nc_flag = atomic_load_char(&ncp->nc_flag);
2265 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2266 			break;
2267 		MPASS(ncp->nc_dvp == vp);
2268 		blps[1] = NCP2BUCKETLOCK(ncp);
2269 		if ((nc_flag & NCF_NEGATIVE) != 0)
2270 			break;
2271 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2272 			break;
2273 		/*
2274 		 * All vnodes got re-locked. Re-validate the state and if
2275 		 * nothing changed we are done. Otherwise restart.
2276 		 */
2277 		if (ncp == vp->v_cache_dd &&
2278 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2279 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2280 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2281 			break;
2282 		cache_unlock_vnodes_cel(cel);
2283 		cel->vlp[0] = NULL;
2284 		cel->vlp[1] = NULL;
2285 		cel->vlp[2] = NULL;
2286 	}
2287 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2288 }
2289 
2290 static void
2291 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2292     uint32_t hash)
2293 {
2294 	struct namecache *ncp;
2295 	struct mtx *blps[2];
2296 	u_char nc_flag;
2297 
2298 	blps[0] = HASH2BUCKETLOCK(hash);
2299 	for (;;) {
2300 		blps[1] = NULL;
2301 		cache_lock_vnodes_cel(cel, dvp, vp);
2302 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2303 		if (ncp == NULL)
2304 			break;
2305 		nc_flag = atomic_load_char(&ncp->nc_flag);
2306 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2307 			break;
2308 		MPASS(ncp->nc_dvp == dvp);
2309 		blps[1] = NCP2BUCKETLOCK(ncp);
2310 		if ((nc_flag & NCF_NEGATIVE) != 0)
2311 			break;
2312 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2313 			break;
2314 		if (ncp == dvp->v_cache_dd &&
2315 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2316 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2317 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2318 			break;
2319 		cache_unlock_vnodes_cel(cel);
2320 		cel->vlp[0] = NULL;
2321 		cel->vlp[1] = NULL;
2322 		cel->vlp[2] = NULL;
2323 	}
2324 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2325 }
2326 
2327 static void
2328 cache_enter_unlock(struct celockstate *cel)
2329 {
2330 
2331 	cache_unlock_buckets_cel(cel);
2332 	cache_unlock_vnodes_cel(cel);
2333 }
2334 
2335 static void __noinline
2336 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2337     struct componentname *cnp)
2338 {
2339 	struct celockstate cel;
2340 	struct namecache *ncp;
2341 	uint32_t hash;
2342 	int len;
2343 
2344 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2345 		return;
2346 	len = cnp->cn_namelen;
2347 	cache_celockstate_init(&cel);
2348 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2349 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2350 	ncp = dvp->v_cache_dd;
2351 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2352 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2353 		cache_zap_locked(ncp);
2354 	} else {
2355 		ncp = NULL;
2356 	}
2357 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2358 	cache_enter_unlock(&cel);
2359 	if (ncp != NULL)
2360 		cache_free(ncp);
2361 }
2362 
2363 /*
2364  * Add an entry to the cache.
2365  */
2366 void
2367 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2368     struct timespec *tsp, struct timespec *dtsp)
2369 {
2370 	struct celockstate cel;
2371 	struct namecache *ncp, *n2, *ndd;
2372 	struct namecache_ts *ncp_ts;
2373 	struct nchashhead *ncpp;
2374 	uint32_t hash;
2375 	int flag;
2376 	int len;
2377 
2378 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2379 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2380 	    NAME_MAX));
2381 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2382 	VNPASS(dvp->v_type != VNON, dvp);
2383 	if (vp != NULL) {
2384 		VNPASS(!VN_IS_DOOMED(vp), vp);
2385 		VNPASS(vp->v_type != VNON, vp);
2386 	}
2387 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2388 		KASSERT(dvp == vp,
2389 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2390 		    dvp, vp));
2391 	} else {
2392 		KASSERT(dvp != vp,
2393 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2394 		    cnp->cn_nameptr, dvp));
2395 	}
2396 
2397 #ifdef DEBUG_CACHE
2398 	if (__predict_false(!doingcache))
2399 		return;
2400 #endif
2401 
2402 	flag = 0;
2403 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2404 		if (cnp->cn_namelen == 1)
2405 			return;
2406 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2407 			cache_enter_dotdot_prep(dvp, vp, cnp);
2408 			flag = NCF_ISDOTDOT;
2409 		}
2410 	}
2411 
2412 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2413 	if (ncp == NULL)
2414 		return;
2415 
2416 	cache_celockstate_init(&cel);
2417 	ndd = NULL;
2418 	ncp_ts = NULL;
2419 
2420 	/*
2421 	 * Calculate the hash key and setup as much of the new
2422 	 * namecache entry as possible before acquiring the lock.
2423 	 */
2424 	ncp->nc_flag = flag | NCF_WIP;
2425 	ncp->nc_vp = vp;
2426 	if (vp == NULL)
2427 		cache_neg_init(ncp);
2428 	ncp->nc_dvp = dvp;
2429 	if (tsp != NULL) {
2430 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2431 		ncp_ts->nc_time = *tsp;
2432 		ncp_ts->nc_ticks = ticks;
2433 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2434 		if (dtsp != NULL) {
2435 			ncp_ts->nc_dotdottime = *dtsp;
2436 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2437 		}
2438 	}
2439 	len = ncp->nc_nlen = cnp->cn_namelen;
2440 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2441 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2442 	ncp->nc_name[len] = '\0';
2443 	cache_enter_lock(&cel, dvp, vp, hash);
2444 
2445 	/*
2446 	 * See if this vnode or negative entry is already in the cache
2447 	 * with this name.  This can happen with concurrent lookups of
2448 	 * the same path name.
2449 	 */
2450 	ncpp = NCHHASH(hash);
2451 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2452 		if (n2->nc_dvp == dvp &&
2453 		    n2->nc_nlen == cnp->cn_namelen &&
2454 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2455 			MPASS(cache_ncp_canuse(n2));
2456 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2457 				KASSERT(vp == NULL,
2458 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2459 				    __func__, NULL, vp, cnp->cn_nameptr));
2460 			else
2461 				KASSERT(n2->nc_vp == vp,
2462 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2463 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2464 			/*
2465 			 * Entries are supposed to be immutable unless in the
2466 			 * process of getting destroyed. Accommodating for
2467 			 * changing timestamps is possible but not worth it.
2468 			 * This should be harmless in terms of correctness, in
2469 			 * the worst case resulting in an earlier expiration.
2470 			 * Alternatively, the found entry can be replaced
2471 			 * altogether.
2472 			 */
2473 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2474 #if 0
2475 			if (tsp != NULL) {
2476 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2477 				    ("no NCF_TS"));
2478 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2479 				n2_ts->nc_time = ncp_ts->nc_time;
2480 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2481 				if (dtsp != NULL) {
2482 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2483 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2484 				}
2485 			}
2486 #endif
2487 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2488 			    vp);
2489 			goto out_unlock_free;
2490 		}
2491 	}
2492 
2493 	if (flag == NCF_ISDOTDOT) {
2494 		/*
2495 		 * See if we are trying to add .. entry, but some other lookup
2496 		 * has populated v_cache_dd pointer already.
2497 		 */
2498 		if (dvp->v_cache_dd != NULL)
2499 			goto out_unlock_free;
2500 		KASSERT(vp == NULL || vp->v_type == VDIR,
2501 		    ("wrong vnode type %p", vp));
2502 		atomic_thread_fence_rel();
2503 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2504 	}
2505 
2506 	if (vp != NULL) {
2507 		if (flag != NCF_ISDOTDOT) {
2508 			/*
2509 			 * For this case, the cache entry maps both the
2510 			 * directory name in it and the name ".." for the
2511 			 * directory's parent.
2512 			 */
2513 			if ((ndd = vp->v_cache_dd) != NULL) {
2514 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2515 					cache_zap_locked(ndd);
2516 				else
2517 					ndd = NULL;
2518 			}
2519 			atomic_thread_fence_rel();
2520 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2521 		} else if (vp->v_type != VDIR) {
2522 			if (vp->v_cache_dd != NULL) {
2523 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2524 			}
2525 		}
2526 	}
2527 
2528 	if (flag != NCF_ISDOTDOT) {
2529 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2530 			cache_hold_vnode(dvp);
2531 		}
2532 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2533 	}
2534 
2535 	/*
2536 	 * If the entry is "negative", we place it into the
2537 	 * "negative" cache queue, otherwise, we place it into the
2538 	 * destination vnode's cache entries queue.
2539 	 */
2540 	if (vp != NULL) {
2541 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2542 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2543 		    vp);
2544 	} else {
2545 		if (cnp->cn_flags & ISWHITEOUT)
2546 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2547 		cache_neg_insert(ncp);
2548 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2549 		    ncp->nc_name);
2550 	}
2551 
2552 	/*
2553 	 * Insert the new namecache entry into the appropriate chain
2554 	 * within the cache entries table.
2555 	 */
2556 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2557 
2558 	atomic_thread_fence_rel();
2559 	/*
2560 	 * Mark the entry as fully constructed.
2561 	 * It is immutable past this point until its removal.
2562 	 */
2563 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2564 
2565 	cache_enter_unlock(&cel);
2566 	if (ndd != NULL)
2567 		cache_free(ndd);
2568 	return;
2569 out_unlock_free:
2570 	cache_enter_unlock(&cel);
2571 	cache_free(ncp);
2572 	return;
2573 }
2574 
2575 /*
2576  * A variant of the above accepting flags.
2577  *
2578  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2579  *
2580  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2581  * happens to match and it is doing it in an inefficient manner. It was added
2582  * to accommodate NFS which runs into a case where the target for a given name
2583  * may change from under it. Note this does nothing to solve the following
2584  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2585  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2586  */
2587 void
2588 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2589     struct timespec *tsp, struct timespec *dtsp, int flags)
2590 {
2591 
2592 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2593 
2594 	if (flags & VFS_CACHE_DROPOLD)
2595 		cache_remove_cnp(dvp, cnp);
2596 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2597 }
2598 
2599 static u_long
2600 cache_roundup_2(u_long val)
2601 {
2602 	u_long res;
2603 
2604 	for (res = 1; res <= val; res <<= 1)
2605 		continue;
2606 
2607 	return (res);
2608 }
2609 
2610 static struct nchashhead *
2611 nchinittbl(u_long elements, u_long *hashmask)
2612 {
2613 	struct nchashhead *hashtbl;
2614 	u_long hashsize, i;
2615 
2616 	hashsize = cache_roundup_2(elements) / 2;
2617 
2618 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2619 	for (i = 0; i < hashsize; i++)
2620 		CK_SLIST_INIT(&hashtbl[i]);
2621 	*hashmask = hashsize - 1;
2622 	return (hashtbl);
2623 }
2624 
2625 static void
2626 ncfreetbl(struct nchashhead *hashtbl)
2627 {
2628 
2629 	free(hashtbl, M_VFSCACHE);
2630 }
2631 
2632 /*
2633  * Name cache initialization, from vfs_init() when we are booting
2634  */
2635 static void
2636 nchinit(void *dummy __unused)
2637 {
2638 	u_int i;
2639 
2640 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2641 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2642 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2643 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2644 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2645 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2646 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2647 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2648 
2649 	VFS_SMR_ZONE_SET(cache_zone_small);
2650 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2651 	VFS_SMR_ZONE_SET(cache_zone_large);
2652 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2653 
2654 	ncsize = desiredvnodes * ncsizefactor;
2655 	cache_recalc_neg_min(ncnegminpct);
2656 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2657 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2658 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2659 		ncbuckethash = 7;
2660 	if (ncbuckethash > nchash)
2661 		ncbuckethash = nchash;
2662 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2663 	    M_WAITOK | M_ZERO);
2664 	for (i = 0; i < numbucketlocks; i++)
2665 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2666 	ncvnodehash = ncbuckethash;
2667 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2668 	    M_WAITOK | M_ZERO);
2669 	for (i = 0; i < numvnodelocks; i++)
2670 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2671 
2672 	for (i = 0; i < numneglists; i++) {
2673 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2674 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2675 		TAILQ_INIT(&neglists[i].nl_list);
2676 		TAILQ_INIT(&neglists[i].nl_hotlist);
2677 	}
2678 }
2679 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2680 
2681 void
2682 cache_vnode_init(struct vnode *vp)
2683 {
2684 
2685 	LIST_INIT(&vp->v_cache_src);
2686 	TAILQ_INIT(&vp->v_cache_dst);
2687 	vp->v_cache_dd = NULL;
2688 	cache_prehash(vp);
2689 }
2690 
2691 /*
2692  * Induce transient cache misses for lockless operation in cache_lookup() by
2693  * using a temporary hash table.
2694  *
2695  * This will force a fs lookup.
2696  *
2697  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2698  * to observe all CPUs not performing the lookup.
2699  */
2700 static void
2701 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2702 {
2703 
2704 	MPASS(temphash < nchash);
2705 	/*
2706 	 * Change the size. The new size is smaller and can safely be used
2707 	 * against the existing table. All lookups which now hash wrong will
2708 	 * result in a cache miss, which all callers are supposed to know how
2709 	 * to handle.
2710 	 */
2711 	atomic_store_long(&nchash, temphash);
2712 	atomic_thread_fence_rel();
2713 	vfs_smr_synchronize();
2714 	/*
2715 	 * At this point everyone sees the updated hash value, but they still
2716 	 * see the old table.
2717 	 */
2718 	atomic_store_ptr(&nchashtbl, temptbl);
2719 	atomic_thread_fence_rel();
2720 	vfs_smr_synchronize();
2721 	/*
2722 	 * At this point everyone sees the updated table pointer and size pair.
2723 	 */
2724 }
2725 
2726 /*
2727  * Set the new hash table.
2728  *
2729  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2730  * lockless operation in cache_lookup().
2731  */
2732 static void
2733 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2734 {
2735 
2736 	MPASS(nchash < new_hash);
2737 	/*
2738 	 * Change the pointer first. This wont result in out of bounds access
2739 	 * since the temporary table is guaranteed to be smaller.
2740 	 */
2741 	atomic_store_ptr(&nchashtbl, new_tbl);
2742 	atomic_thread_fence_rel();
2743 	vfs_smr_synchronize();
2744 	/*
2745 	 * At this point everyone sees the updated pointer value, but they
2746 	 * still see the old size.
2747 	 */
2748 	atomic_store_long(&nchash, new_hash);
2749 	atomic_thread_fence_rel();
2750 	vfs_smr_synchronize();
2751 	/*
2752 	 * At this point everyone sees the updated table pointer and size pair.
2753 	 */
2754 }
2755 
2756 void
2757 cache_changesize(u_long newmaxvnodes)
2758 {
2759 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2760 	u_long new_nchash, old_nchash, temphash;
2761 	struct namecache *ncp;
2762 	uint32_t hash;
2763 	u_long newncsize;
2764 	u_long i;
2765 
2766 	newncsize = newmaxvnodes * ncsizefactor;
2767 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2768 	if (newmaxvnodes < numbucketlocks)
2769 		newmaxvnodes = numbucketlocks;
2770 
2771 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2772 	/* If same hash table size, nothing to do */
2773 	if (nchash == new_nchash) {
2774 		ncfreetbl(new_nchashtbl);
2775 		return;
2776 	}
2777 
2778 	temptbl = nchinittbl(1, &temphash);
2779 
2780 	/*
2781 	 * Move everything from the old hash table to the new table.
2782 	 * None of the namecache entries in the table can be removed
2783 	 * because to do so, they have to be removed from the hash table.
2784 	 */
2785 	cache_lock_all_vnodes();
2786 	cache_lock_all_buckets();
2787 	old_nchashtbl = nchashtbl;
2788 	old_nchash = nchash;
2789 	cache_changesize_set_temp(temptbl, temphash);
2790 	for (i = 0; i <= old_nchash; i++) {
2791 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2792 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2793 			    ncp->nc_dvp);
2794 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2795 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2796 		}
2797 	}
2798 	ncsize = newncsize;
2799 	cache_recalc_neg_min(ncnegminpct);
2800 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2801 	cache_unlock_all_buckets();
2802 	cache_unlock_all_vnodes();
2803 	ncfreetbl(old_nchashtbl);
2804 	ncfreetbl(temptbl);
2805 }
2806 
2807 /*
2808  * Remove all entries from and to a particular vnode.
2809  */
2810 static void
2811 cache_purge_impl(struct vnode *vp)
2812 {
2813 	struct cache_freebatch batch;
2814 	struct namecache *ncp;
2815 	struct mtx *vlp, *vlp2;
2816 
2817 	TAILQ_INIT(&batch);
2818 	vlp = VP2VNODELOCK(vp);
2819 	vlp2 = NULL;
2820 	mtx_lock(vlp);
2821 retry:
2822 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2823 		ncp = LIST_FIRST(&vp->v_cache_src);
2824 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2825 			goto retry;
2826 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2827 	}
2828 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2829 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2830 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2831 			goto retry;
2832 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2833 	}
2834 	ncp = vp->v_cache_dd;
2835 	if (ncp != NULL) {
2836 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2837 		   ("lost dotdot link"));
2838 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2839 			goto retry;
2840 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2841 	}
2842 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2843 	mtx_unlock(vlp);
2844 	if (vlp2 != NULL)
2845 		mtx_unlock(vlp2);
2846 	cache_free_batch(&batch);
2847 }
2848 
2849 /*
2850  * Opportunistic check to see if there is anything to do.
2851  */
2852 static bool
2853 cache_has_entries(struct vnode *vp)
2854 {
2855 
2856 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2857 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2858 		return (false);
2859 	return (true);
2860 }
2861 
2862 void
2863 cache_purge(struct vnode *vp)
2864 {
2865 
2866 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2867 	if (!cache_has_entries(vp))
2868 		return;
2869 	cache_purge_impl(vp);
2870 }
2871 
2872 /*
2873  * Only to be used by vgone.
2874  */
2875 void
2876 cache_purge_vgone(struct vnode *vp)
2877 {
2878 	struct mtx *vlp;
2879 
2880 	VNPASS(VN_IS_DOOMED(vp), vp);
2881 	if (cache_has_entries(vp)) {
2882 		cache_purge_impl(vp);
2883 		return;
2884 	}
2885 
2886 	/*
2887 	 * Serialize against a potential thread doing cache_purge.
2888 	 */
2889 	vlp = VP2VNODELOCK(vp);
2890 	mtx_wait_unlocked(vlp);
2891 	if (cache_has_entries(vp)) {
2892 		cache_purge_impl(vp);
2893 		return;
2894 	}
2895 	return;
2896 }
2897 
2898 /*
2899  * Remove all negative entries for a particular directory vnode.
2900  */
2901 void
2902 cache_purge_negative(struct vnode *vp)
2903 {
2904 	struct cache_freebatch batch;
2905 	struct namecache *ncp, *nnp;
2906 	struct mtx *vlp;
2907 
2908 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2909 	if (LIST_EMPTY(&vp->v_cache_src))
2910 		return;
2911 	TAILQ_INIT(&batch);
2912 	vlp = VP2VNODELOCK(vp);
2913 	mtx_lock(vlp);
2914 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2915 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2916 			continue;
2917 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2918 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2919 	}
2920 	mtx_unlock(vlp);
2921 	cache_free_batch(&batch);
2922 }
2923 
2924 /*
2925  * Entry points for modifying VOP operations.
2926  */
2927 void
2928 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2929     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2930 {
2931 
2932 	ASSERT_VOP_IN_SEQC(fdvp);
2933 	ASSERT_VOP_IN_SEQC(fvp);
2934 	ASSERT_VOP_IN_SEQC(tdvp);
2935 	if (tvp != NULL)
2936 		ASSERT_VOP_IN_SEQC(tvp);
2937 
2938 	cache_purge(fvp);
2939 	if (tvp != NULL) {
2940 		cache_purge(tvp);
2941 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2942 		    ("%s: lingering negative entry", __func__));
2943 	} else {
2944 		cache_remove_cnp(tdvp, tcnp);
2945 	}
2946 
2947 	/*
2948 	 * TODO
2949 	 *
2950 	 * Historically renaming was always purging all revelang entries,
2951 	 * but that's quite wasteful. In particular turns out that in many cases
2952 	 * the target file is immediately accessed after rename, inducing a cache
2953 	 * miss.
2954 	 *
2955 	 * Recode this to reduce relocking and reuse the existing entry (if any)
2956 	 * instead of just removing it above and allocating a new one here.
2957 	 */
2958 	cache_enter(tdvp, fvp, tcnp);
2959 }
2960 
2961 void
2962 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2963 {
2964 
2965 	ASSERT_VOP_IN_SEQC(dvp);
2966 	ASSERT_VOP_IN_SEQC(vp);
2967 	cache_purge(vp);
2968 }
2969 
2970 #ifdef INVARIANTS
2971 /*
2972  * Validate that if an entry exists it matches.
2973  */
2974 void
2975 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2976 {
2977 	struct namecache *ncp;
2978 	struct mtx *blp;
2979 	uint32_t hash;
2980 
2981 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2982 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
2983 		return;
2984 	blp = HASH2BUCKETLOCK(hash);
2985 	mtx_lock(blp);
2986 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2987 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2988 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
2989 			if (ncp->nc_vp != vp)
2990 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
2991 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
2992 		}
2993 	}
2994 	mtx_unlock(blp);
2995 }
2996 
2997 void
2998 cache_assert_no_entries(struct vnode *vp)
2999 {
3000 
3001 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3002 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3003 	VNPASS(vp->v_cache_dd == NULL, vp);
3004 }
3005 #endif
3006 
3007 /*
3008  * Flush all entries referencing a particular filesystem.
3009  */
3010 void
3011 cache_purgevfs(struct mount *mp)
3012 {
3013 	struct vnode *vp, *mvp;
3014 	size_t visited __sdt_used, purged __sdt_used;
3015 
3016 	visited = purged = 0;
3017 	/*
3018 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3019 	 * support filtering and avoid the interlock to begin with.
3020 	 */
3021 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3022 		visited++;
3023 		if (!cache_has_entries(vp)) {
3024 			VI_UNLOCK(vp);
3025 			continue;
3026 		}
3027 		vholdl(vp);
3028 		VI_UNLOCK(vp);
3029 		cache_purge(vp);
3030 		purged++;
3031 		vdrop(vp);
3032 	}
3033 
3034 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3035 }
3036 
3037 /*
3038  * Perform canonical checks and cache lookup and pass on to filesystem
3039  * through the vop_cachedlookup only if needed.
3040  */
3041 
3042 int
3043 vfs_cache_lookup(struct vop_lookup_args *ap)
3044 {
3045 	struct vnode *dvp;
3046 	int error;
3047 	struct vnode **vpp = ap->a_vpp;
3048 	struct componentname *cnp = ap->a_cnp;
3049 	int flags = cnp->cn_flags;
3050 
3051 	*vpp = NULL;
3052 	dvp = ap->a_dvp;
3053 
3054 	if (dvp->v_type != VDIR)
3055 		return (ENOTDIR);
3056 
3057 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3058 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3059 		return (EROFS);
3060 
3061 	error = vn_dir_check_exec(dvp, cnp);
3062 	if (error != 0)
3063 		return (error);
3064 
3065 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3066 	if (error == 0)
3067 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3068 	if (error == -1)
3069 		return (0);
3070 	return (error);
3071 }
3072 
3073 /* Implementation of the getcwd syscall. */
3074 int
3075 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3076 {
3077 	char *buf, *retbuf;
3078 	size_t buflen;
3079 	int error;
3080 
3081 	buflen = uap->buflen;
3082 	if (__predict_false(buflen < 2))
3083 		return (EINVAL);
3084 	if (buflen > MAXPATHLEN)
3085 		buflen = MAXPATHLEN;
3086 
3087 	buf = uma_zalloc(namei_zone, M_WAITOK);
3088 	error = vn_getcwd(buf, &retbuf, &buflen);
3089 	if (error == 0)
3090 		error = copyout(retbuf, uap->buf, buflen);
3091 	uma_zfree(namei_zone, buf);
3092 	return (error);
3093 }
3094 
3095 int
3096 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3097 {
3098 	struct pwd *pwd;
3099 	int error;
3100 
3101 	vfs_smr_enter();
3102 	pwd = pwd_get_smr();
3103 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3104 	    buflen, 0);
3105 	VFS_SMR_ASSERT_NOT_ENTERED();
3106 	if (error < 0) {
3107 		pwd = pwd_hold(curthread);
3108 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3109 		    retbuf, buflen);
3110 		pwd_drop(pwd);
3111 	}
3112 
3113 #ifdef KTRACE
3114 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3115 		ktrnamei(*retbuf);
3116 #endif
3117 	return (error);
3118 }
3119 
3120 /*
3121  * Canonicalize a path by walking it forward and back.
3122  *
3123  * BUGS:
3124  * - Nothing guarantees the integrity of the entire chain. Consider the case
3125  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3126  *   "foo" into "quux" during the backwards walk. The result will be
3127  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3128  *   walk in userspace. Moreover, the path we return is inaccessible if the
3129  *   calling thread lacks permission to traverse "quux".
3130  */
3131 static int
3132 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3133     size_t size, int flags, enum uio_seg pathseg)
3134 {
3135 	struct nameidata nd;
3136 	char *retbuf, *freebuf;
3137 	int error;
3138 
3139 	if (flags != 0)
3140 		return (EINVAL);
3141 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3142 	    pathseg, path, fd, &cap_fstat_rights);
3143 	if ((error = namei(&nd)) != 0)
3144 		return (error);
3145 
3146 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3147 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3148 		/*
3149 		 * This happens if vp is a file mount. The call to
3150 		 * vn_fullpath_hardlink can panic if path resolution can't be
3151 		 * handled without the directory.
3152 		 *
3153 		 * To resolve this, we find the vnode which was mounted on -
3154 		 * this should have a unique global path since we disallow
3155 		 * mounting on linked files.
3156 		 */
3157 		struct vnode *covered_vp;
3158 		error = vn_lock(nd.ni_vp, LK_SHARED);
3159 		if (error != 0)
3160 			goto out;
3161 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3162 		vref(covered_vp);
3163 		VOP_UNLOCK(nd.ni_vp);
3164 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3165 		vrele(covered_vp);
3166 	} else {
3167 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3168 		    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3169 	}
3170 	if (error == 0) {
3171 		error = copyout(retbuf, buf, size);
3172 		free(freebuf, M_TEMP);
3173 	}
3174 out:
3175 	vrele(nd.ni_vp);
3176 	vrele(nd.ni_dvp);
3177 	NDFREE_PNBUF(&nd);
3178 	return (error);
3179 }
3180 
3181 int
3182 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3183 {
3184 
3185 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3186 	    uap->flags, UIO_USERSPACE));
3187 }
3188 
3189 /*
3190  * Retrieve the full filesystem path that correspond to a vnode from the name
3191  * cache (if available)
3192  */
3193 int
3194 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3195 {
3196 	struct pwd *pwd;
3197 	char *buf;
3198 	size_t buflen;
3199 	int error;
3200 
3201 	if (__predict_false(vp == NULL))
3202 		return (EINVAL);
3203 
3204 	buflen = MAXPATHLEN;
3205 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3206 	vfs_smr_enter();
3207 	pwd = pwd_get_smr();
3208 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3209 	VFS_SMR_ASSERT_NOT_ENTERED();
3210 	if (error < 0) {
3211 		pwd = pwd_hold(curthread);
3212 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3213 		pwd_drop(pwd);
3214 	}
3215 	if (error == 0)
3216 		*freebuf = buf;
3217 	else
3218 		free(buf, M_TEMP);
3219 	return (error);
3220 }
3221 
3222 /*
3223  * This function is similar to vn_fullpath, but it attempts to lookup the
3224  * pathname relative to the global root mount point.  This is required for the
3225  * auditing sub-system, as audited pathnames must be absolute, relative to the
3226  * global root mount point.
3227  */
3228 int
3229 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3230 {
3231 	char *buf;
3232 	size_t buflen;
3233 	int error;
3234 
3235 	if (__predict_false(vp == NULL))
3236 		return (EINVAL);
3237 	buflen = MAXPATHLEN;
3238 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3239 	vfs_smr_enter();
3240 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3241 	VFS_SMR_ASSERT_NOT_ENTERED();
3242 	if (error < 0) {
3243 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3244 	}
3245 	if (error == 0)
3246 		*freebuf = buf;
3247 	else
3248 		free(buf, M_TEMP);
3249 	return (error);
3250 }
3251 
3252 static struct namecache *
3253 vn_dd_from_dst(struct vnode *vp)
3254 {
3255 	struct namecache *ncp;
3256 
3257 	cache_assert_vnode_locked(vp);
3258 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3259 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3260 			return (ncp);
3261 	}
3262 	return (NULL);
3263 }
3264 
3265 int
3266 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3267 {
3268 	struct vnode *dvp;
3269 	struct namecache *ncp;
3270 	struct mtx *vlp;
3271 	int error;
3272 
3273 	vlp = VP2VNODELOCK(*vp);
3274 	mtx_lock(vlp);
3275 	ncp = (*vp)->v_cache_dd;
3276 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3277 		KASSERT(ncp == vn_dd_from_dst(*vp),
3278 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3279 		    ncp, vn_dd_from_dst(*vp)));
3280 	} else {
3281 		ncp = vn_dd_from_dst(*vp);
3282 	}
3283 	if (ncp != NULL) {
3284 		if (*buflen < ncp->nc_nlen) {
3285 			mtx_unlock(vlp);
3286 			vrele(*vp);
3287 			counter_u64_add(numfullpathfail4, 1);
3288 			error = ENOMEM;
3289 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3290 			    vp, NULL);
3291 			return (error);
3292 		}
3293 		*buflen -= ncp->nc_nlen;
3294 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3295 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3296 		    ncp->nc_name, vp);
3297 		dvp = *vp;
3298 		*vp = ncp->nc_dvp;
3299 		vref(*vp);
3300 		mtx_unlock(vlp);
3301 		vrele(dvp);
3302 		return (0);
3303 	}
3304 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3305 
3306 	mtx_unlock(vlp);
3307 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3308 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3309 	vput(*vp);
3310 	if (error) {
3311 		counter_u64_add(numfullpathfail2, 1);
3312 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3313 		return (error);
3314 	}
3315 
3316 	*vp = dvp;
3317 	if (VN_IS_DOOMED(dvp)) {
3318 		/* forced unmount */
3319 		vrele(dvp);
3320 		error = ENOENT;
3321 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3322 		return (error);
3323 	}
3324 	/*
3325 	 * *vp has its use count incremented still.
3326 	 */
3327 
3328 	return (0);
3329 }
3330 
3331 /*
3332  * Resolve a directory to a pathname.
3333  *
3334  * The name of the directory can always be found in the namecache or fetched
3335  * from the filesystem. There is also guaranteed to be only one parent, meaning
3336  * we can just follow vnodes up until we find the root.
3337  *
3338  * The vnode must be referenced.
3339  */
3340 static int
3341 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3342     size_t *len, size_t addend)
3343 {
3344 #ifdef KDTRACE_HOOKS
3345 	struct vnode *startvp = vp;
3346 #endif
3347 	struct vnode *vp1;
3348 	size_t buflen;
3349 	int error;
3350 	bool slash_prefixed;
3351 
3352 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3353 	VNPASS(vp->v_usecount > 0, vp);
3354 
3355 	buflen = *len;
3356 
3357 	slash_prefixed = true;
3358 	if (addend == 0) {
3359 		MPASS(*len >= 2);
3360 		buflen--;
3361 		buf[buflen] = '\0';
3362 		slash_prefixed = false;
3363 	}
3364 
3365 	error = 0;
3366 
3367 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3368 	counter_u64_add(numfullpathcalls, 1);
3369 	while (vp != rdir && vp != rootvnode) {
3370 		/*
3371 		 * The vp vnode must be already fully constructed,
3372 		 * since it is either found in namecache or obtained
3373 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3374 		 * without obtaining the vnode lock.
3375 		 */
3376 		if ((vp->v_vflag & VV_ROOT) != 0) {
3377 			vn_lock(vp, LK_RETRY | LK_SHARED);
3378 
3379 			/*
3380 			 * With the vnode locked, check for races with
3381 			 * unmount, forced or not.  Note that we
3382 			 * already verified that vp is not equal to
3383 			 * the root vnode, which means that
3384 			 * mnt_vnodecovered can be NULL only for the
3385 			 * case of unmount.
3386 			 */
3387 			if (VN_IS_DOOMED(vp) ||
3388 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3389 			    vp1->v_mountedhere != vp->v_mount) {
3390 				vput(vp);
3391 				error = ENOENT;
3392 				SDT_PROBE3(vfs, namecache, fullpath, return,
3393 				    error, vp, NULL);
3394 				break;
3395 			}
3396 
3397 			vref(vp1);
3398 			vput(vp);
3399 			vp = vp1;
3400 			continue;
3401 		}
3402 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3403 		error = vn_vptocnp(&vp, buf, &buflen);
3404 		if (error)
3405 			break;
3406 		if (buflen == 0) {
3407 			vrele(vp);
3408 			error = ENOMEM;
3409 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3410 			    startvp, NULL);
3411 			break;
3412 		}
3413 		buf[--buflen] = '/';
3414 		slash_prefixed = true;
3415 	}
3416 	if (error)
3417 		return (error);
3418 	if (!slash_prefixed) {
3419 		if (buflen == 0) {
3420 			vrele(vp);
3421 			counter_u64_add(numfullpathfail4, 1);
3422 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3423 			    startvp, NULL);
3424 			return (ENOMEM);
3425 		}
3426 		buf[--buflen] = '/';
3427 	}
3428 	counter_u64_add(numfullpathfound, 1);
3429 	vrele(vp);
3430 
3431 	*retbuf = buf + buflen;
3432 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3433 	*len -= buflen;
3434 	*len += addend;
3435 	return (0);
3436 }
3437 
3438 /*
3439  * Resolve an arbitrary vnode to a pathname.
3440  *
3441  * Note 2 caveats:
3442  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3443  *   resolve to a different path than the one used to find it
3444  * - namecache is not mandatory, meaning names are not guaranteed to be added
3445  *   (in which case resolving fails)
3446  */
3447 static void __inline
3448 cache_rev_failed_impl(int *reason, int line)
3449 {
3450 
3451 	*reason = line;
3452 }
3453 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3454 
3455 static int
3456 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3457     char **retbuf, size_t *buflen, size_t addend)
3458 {
3459 #ifdef KDTRACE_HOOKS
3460 	struct vnode *startvp = vp;
3461 #endif
3462 	struct vnode *tvp;
3463 	struct mount *mp;
3464 	struct namecache *ncp;
3465 	size_t orig_buflen;
3466 	int reason;
3467 	int error;
3468 #ifdef KDTRACE_HOOKS
3469 	int i;
3470 #endif
3471 	seqc_t vp_seqc, tvp_seqc;
3472 	u_char nc_flag;
3473 
3474 	VFS_SMR_ASSERT_ENTERED();
3475 
3476 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3477 		vfs_smr_exit();
3478 		return (-1);
3479 	}
3480 
3481 	orig_buflen = *buflen;
3482 
3483 	if (addend == 0) {
3484 		MPASS(*buflen >= 2);
3485 		*buflen -= 1;
3486 		buf[*buflen] = '\0';
3487 	}
3488 
3489 	if (vp == rdir || vp == rootvnode) {
3490 		if (addend == 0) {
3491 			*buflen -= 1;
3492 			buf[*buflen] = '/';
3493 		}
3494 		goto out_ok;
3495 	}
3496 
3497 #ifdef KDTRACE_HOOKS
3498 	i = 0;
3499 #endif
3500 	error = -1;
3501 	ncp = NULL; /* for sdt probe down below */
3502 	vp_seqc = vn_seqc_read_any(vp);
3503 	if (seqc_in_modify(vp_seqc)) {
3504 		cache_rev_failed(&reason);
3505 		goto out_abort;
3506 	}
3507 
3508 	for (;;) {
3509 #ifdef KDTRACE_HOOKS
3510 		i++;
3511 #endif
3512 		if ((vp->v_vflag & VV_ROOT) != 0) {
3513 			mp = atomic_load_ptr(&vp->v_mount);
3514 			if (mp == NULL) {
3515 				cache_rev_failed(&reason);
3516 				goto out_abort;
3517 			}
3518 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3519 			tvp_seqc = vn_seqc_read_any(tvp);
3520 			if (seqc_in_modify(tvp_seqc)) {
3521 				cache_rev_failed(&reason);
3522 				goto out_abort;
3523 			}
3524 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3525 				cache_rev_failed(&reason);
3526 				goto out_abort;
3527 			}
3528 			vp = tvp;
3529 			vp_seqc = tvp_seqc;
3530 			continue;
3531 		}
3532 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3533 		if (ncp == NULL) {
3534 			cache_rev_failed(&reason);
3535 			goto out_abort;
3536 		}
3537 		nc_flag = atomic_load_char(&ncp->nc_flag);
3538 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3539 			cache_rev_failed(&reason);
3540 			goto out_abort;
3541 		}
3542 		if (ncp->nc_nlen >= *buflen) {
3543 			cache_rev_failed(&reason);
3544 			error = ENOMEM;
3545 			goto out_abort;
3546 		}
3547 		*buflen -= ncp->nc_nlen;
3548 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3549 		*buflen -= 1;
3550 		buf[*buflen] = '/';
3551 		tvp = ncp->nc_dvp;
3552 		tvp_seqc = vn_seqc_read_any(tvp);
3553 		if (seqc_in_modify(tvp_seqc)) {
3554 			cache_rev_failed(&reason);
3555 			goto out_abort;
3556 		}
3557 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3558 			cache_rev_failed(&reason);
3559 			goto out_abort;
3560 		}
3561 		/*
3562 		 * Acquire fence provided by vn_seqc_read_any above.
3563 		 */
3564 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3565 			cache_rev_failed(&reason);
3566 			goto out_abort;
3567 		}
3568 		if (!cache_ncp_canuse(ncp)) {
3569 			cache_rev_failed(&reason);
3570 			goto out_abort;
3571 		}
3572 		vp = tvp;
3573 		vp_seqc = tvp_seqc;
3574 		if (vp == rdir || vp == rootvnode)
3575 			break;
3576 	}
3577 out_ok:
3578 	vfs_smr_exit();
3579 	*retbuf = buf + *buflen;
3580 	*buflen = orig_buflen - *buflen + addend;
3581 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3582 	return (0);
3583 
3584 out_abort:
3585 	*buflen = orig_buflen;
3586 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3587 	vfs_smr_exit();
3588 	return (error);
3589 }
3590 
3591 static int
3592 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3593     size_t *buflen)
3594 {
3595 	size_t orig_buflen, addend;
3596 	int error;
3597 
3598 	if (*buflen < 2)
3599 		return (EINVAL);
3600 
3601 	orig_buflen = *buflen;
3602 
3603 	vref(vp);
3604 	addend = 0;
3605 	if (vp->v_type != VDIR) {
3606 		*buflen -= 1;
3607 		buf[*buflen] = '\0';
3608 		error = vn_vptocnp(&vp, buf, buflen);
3609 		if (error)
3610 			return (error);
3611 		if (*buflen == 0) {
3612 			vrele(vp);
3613 			return (ENOMEM);
3614 		}
3615 		*buflen -= 1;
3616 		buf[*buflen] = '/';
3617 		addend = orig_buflen - *buflen;
3618 	}
3619 
3620 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3621 }
3622 
3623 /*
3624  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3625  *
3626  * Since the namecache does not track hardlinks, the caller is expected to
3627  * first look up the target vnode with WANTPARENT flag passed to namei to get
3628  * dvp and vp.
3629  *
3630  * Then we have 2 cases:
3631  * - if the found vnode is a directory, the path can be constructed just by
3632  *   following names up the chain
3633  * - otherwise we populate the buffer with the saved name and start resolving
3634  *   from the parent
3635  */
3636 int
3637 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3638     const char *hrdl_name, size_t hrdl_name_length,
3639     char **retbuf, char **freebuf, size_t *buflen)
3640 {
3641 	char *buf, *tmpbuf;
3642 	struct pwd *pwd;
3643 	size_t addend;
3644 	int error;
3645 	__enum_uint8(vtype) type;
3646 
3647 	if (*buflen < 2)
3648 		return (EINVAL);
3649 	if (*buflen > MAXPATHLEN)
3650 		*buflen = MAXPATHLEN;
3651 
3652 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3653 
3654 	addend = 0;
3655 
3656 	/*
3657 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3658 	 *
3659 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3660 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3661 	 * If the type is VDIR (like in this very case) we can skip looking
3662 	 * at ni_dvp in the first place. However, since vnodes get passed here
3663 	 * unlocked the target may transition to doomed state (type == VBAD)
3664 	 * before we get to evaluate the condition. If this happens, we will
3665 	 * populate part of the buffer and descend to vn_fullpath_dir with
3666 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3667 	 */
3668 	type = atomic_load_8(&vp->v_type);
3669 	if (type == VBAD) {
3670 		error = ENOENT;
3671 		goto out_bad;
3672 	}
3673 	if (type != VDIR) {
3674 		addend = hrdl_name_length + 2;
3675 		if (*buflen < addend) {
3676 			error = ENOMEM;
3677 			goto out_bad;
3678 		}
3679 		*buflen -= addend;
3680 		tmpbuf = buf + *buflen;
3681 		tmpbuf[0] = '/';
3682 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3683 		tmpbuf[addend - 1] = '\0';
3684 		vp = dvp;
3685 	}
3686 
3687 	vfs_smr_enter();
3688 	pwd = pwd_get_smr();
3689 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3690 	    addend);
3691 	VFS_SMR_ASSERT_NOT_ENTERED();
3692 	if (error < 0) {
3693 		pwd = pwd_hold(curthread);
3694 		vref(vp);
3695 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3696 		    addend);
3697 		pwd_drop(pwd);
3698 	}
3699 	if (error != 0)
3700 		goto out_bad;
3701 
3702 	*freebuf = buf;
3703 
3704 	return (0);
3705 out_bad:
3706 	free(buf, M_TEMP);
3707 	return (error);
3708 }
3709 
3710 struct vnode *
3711 vn_dir_dd_ino(struct vnode *vp)
3712 {
3713 	struct namecache *ncp;
3714 	struct vnode *ddvp;
3715 	struct mtx *vlp;
3716 	enum vgetstate vs;
3717 
3718 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3719 	vlp = VP2VNODELOCK(vp);
3720 	mtx_lock(vlp);
3721 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3722 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3723 			continue;
3724 		ddvp = ncp->nc_dvp;
3725 		vs = vget_prep(ddvp);
3726 		mtx_unlock(vlp);
3727 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3728 			return (NULL);
3729 		return (ddvp);
3730 	}
3731 	mtx_unlock(vlp);
3732 	return (NULL);
3733 }
3734 
3735 int
3736 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3737 {
3738 	struct namecache *ncp;
3739 	struct mtx *vlp;
3740 	int l;
3741 
3742 	vlp = VP2VNODELOCK(vp);
3743 	mtx_lock(vlp);
3744 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3745 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3746 			break;
3747 	if (ncp == NULL) {
3748 		mtx_unlock(vlp);
3749 		return (ENOENT);
3750 	}
3751 	l = min(ncp->nc_nlen, buflen - 1);
3752 	memcpy(buf, ncp->nc_name, l);
3753 	mtx_unlock(vlp);
3754 	buf[l] = '\0';
3755 	return (0);
3756 }
3757 
3758 /*
3759  * This function updates path string to vnode's full global path
3760  * and checks the size of the new path string against the pathlen argument.
3761  *
3762  * Requires a locked, referenced vnode.
3763  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3764  *
3765  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3766  * because it falls back to the ".." lookup if the namecache lookup fails.
3767  */
3768 int
3769 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3770     u_int pathlen)
3771 {
3772 	struct nameidata nd;
3773 	struct vnode *vp1;
3774 	char *rpath, *fbuf;
3775 	int error;
3776 
3777 	ASSERT_VOP_ELOCKED(vp, __func__);
3778 
3779 	/* Construct global filesystem path from vp. */
3780 	VOP_UNLOCK(vp);
3781 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3782 
3783 	if (error != 0) {
3784 		vrele(vp);
3785 		return (error);
3786 	}
3787 
3788 	if (strlen(rpath) >= pathlen) {
3789 		vrele(vp);
3790 		error = ENAMETOOLONG;
3791 		goto out;
3792 	}
3793 
3794 	/*
3795 	 * Re-lookup the vnode by path to detect a possible rename.
3796 	 * As a side effect, the vnode is relocked.
3797 	 * If vnode was renamed, return ENOENT.
3798 	 */
3799 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3800 	error = namei(&nd);
3801 	if (error != 0) {
3802 		vrele(vp);
3803 		goto out;
3804 	}
3805 	NDFREE_PNBUF(&nd);
3806 	vp1 = nd.ni_vp;
3807 	vrele(vp);
3808 	if (vp1 == vp)
3809 		strcpy(path, rpath);
3810 	else {
3811 		vput(vp1);
3812 		error = ENOENT;
3813 	}
3814 
3815 out:
3816 	free(fbuf, M_TEMP);
3817 	return (error);
3818 }
3819 
3820 /*
3821  * This is similar to vn_path_to_global_path but allows for regular
3822  * files which may not be present in the cache.
3823  *
3824  * Requires a locked, referenced vnode.
3825  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3826  */
3827 int
3828 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3829     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3830     size_t leaf_length)
3831 {
3832 	struct nameidata nd;
3833 	struct vnode *vp1;
3834 	char *rpath, *fbuf;
3835 	size_t len;
3836 	int error;
3837 
3838 	ASSERT_VOP_ELOCKED(vp, __func__);
3839 
3840 	/*
3841 	 * Construct global filesystem path from dvp, vp and leaf
3842 	 * name.
3843 	 */
3844 	VOP_UNLOCK(vp);
3845 	len = pathlen;
3846 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3847 	    &rpath, &fbuf, &len);
3848 
3849 	if (error != 0) {
3850 		vrele(vp);
3851 		return (error);
3852 	}
3853 
3854 	if (strlen(rpath) >= pathlen) {
3855 		vrele(vp);
3856 		error = ENAMETOOLONG;
3857 		goto out;
3858 	}
3859 
3860 	/*
3861 	 * Re-lookup the vnode by path to detect a possible rename.
3862 	 * As a side effect, the vnode is relocked.
3863 	 * If vnode was renamed, return ENOENT.
3864 	 */
3865 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3866 	error = namei(&nd);
3867 	if (error != 0) {
3868 		vrele(vp);
3869 		goto out;
3870 	}
3871 	NDFREE_PNBUF(&nd);
3872 	vp1 = nd.ni_vp;
3873 	vrele(vp);
3874 	if (vp1 == vp)
3875 		strcpy(path, rpath);
3876 	else {
3877 		vput(vp1);
3878 		error = ENOENT;
3879 	}
3880 
3881 out:
3882 	free(fbuf, M_TEMP);
3883 	return (error);
3884 }
3885 
3886 #ifdef DDB
3887 static void
3888 db_print_vpath(struct vnode *vp)
3889 {
3890 
3891 	while (vp != NULL) {
3892 		db_printf("%p: ", vp);
3893 		if (vp == rootvnode) {
3894 			db_printf("/");
3895 			vp = NULL;
3896 		} else {
3897 			if (vp->v_vflag & VV_ROOT) {
3898 				db_printf("<mount point>");
3899 				vp = vp->v_mount->mnt_vnodecovered;
3900 			} else {
3901 				struct namecache *ncp;
3902 				char *ncn;
3903 				int i;
3904 
3905 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3906 				if (ncp != NULL) {
3907 					ncn = ncp->nc_name;
3908 					for (i = 0; i < ncp->nc_nlen; i++)
3909 						db_printf("%c", *ncn++);
3910 					vp = ncp->nc_dvp;
3911 				} else {
3912 					vp = NULL;
3913 				}
3914 			}
3915 		}
3916 		db_printf("\n");
3917 	}
3918 
3919 	return;
3920 }
3921 
3922 DB_SHOW_COMMAND(vpath, db_show_vpath)
3923 {
3924 	struct vnode *vp;
3925 
3926 	if (!have_addr) {
3927 		db_printf("usage: show vpath <struct vnode *>\n");
3928 		return;
3929 	}
3930 
3931 	vp = (struct vnode *)addr;
3932 	db_print_vpath(vp);
3933 }
3934 
3935 #endif
3936 
3937 static int cache_fast_lookup = 1;
3938 
3939 #define CACHE_FPL_FAILED	-2020
3940 
3941 static int
3942 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
3943 {
3944 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
3945 	panic("no proper vop_fplookup_vexec");
3946 }
3947 
3948 static int
3949 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
3950 {
3951 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
3952 	panic("no proper vop_fplookup_symlink");
3953 }
3954 
3955 void
3956 cache_vop_vector_register(struct vop_vector *v)
3957 {
3958 	size_t ops;
3959 
3960 	ops = 0;
3961 	if (v->vop_fplookup_vexec != NULL) {
3962 		ops++;
3963 	}
3964 	if (v->vop_fplookup_symlink != NULL) {
3965 		ops++;
3966 	}
3967 
3968 	if (ops == 2) {
3969 		return;
3970 	}
3971 
3972 	if (ops == 0) {
3973 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
3974 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
3975 		return;
3976 	}
3977 
3978 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
3979 	    "need to be provided",  __func__, v);
3980 	if (v->vop_fplookup_vexec == NULL) {
3981 		printf("%s: missing vop_fplookup_vexec\n", __func__);
3982 	}
3983 	if (v->vop_fplookup_symlink == NULL) {
3984 		printf("%s: missing vop_fplookup_symlink\n", __func__);
3985 	}
3986 	panic("bad vop vector %p", v);
3987 }
3988 
3989 #ifdef INVARIANTS
3990 void
3991 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
3992 {
3993 	if (mp == NULL)
3994 		return;
3995 
3996 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
3997 		return;
3998 
3999 	if (vops->vop_fplookup_vexec == NULL ||
4000 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4001 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4002 		    vops, mp->mnt_vfc->vfc_name);
4003 
4004 	if (vops->vop_fplookup_symlink == NULL ||
4005 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4006 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4007 		    vops, mp->mnt_vfc->vfc_name);
4008 }
4009 #endif
4010 
4011 void
4012 cache_fast_lookup_enabled_recalc(void)
4013 {
4014 	int lookup_flag;
4015 	int mac_on;
4016 
4017 #ifdef MAC
4018 	mac_on = mac_vnode_check_lookup_enabled();
4019 	mac_on |= mac_vnode_check_readlink_enabled();
4020 #else
4021 	mac_on = 0;
4022 #endif
4023 
4024 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4025 	if (lookup_flag && !mac_on) {
4026 		atomic_store_char(&cache_fast_lookup_enabled, true);
4027 	} else {
4028 		atomic_store_char(&cache_fast_lookup_enabled, false);
4029 	}
4030 }
4031 
4032 static int
4033 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4034 {
4035 	int error, old;
4036 
4037 	old = atomic_load_int(&cache_fast_lookup);
4038 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4039 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4040 		cache_fast_lookup_enabled_recalc();
4041 	return (error);
4042 }
4043 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4044     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4045 
4046 /*
4047  * Components of nameidata (or objects it can point to) which may
4048  * need restoring in case fast path lookup fails.
4049  */
4050 struct nameidata_outer {
4051 	size_t ni_pathlen;
4052 	int cn_flags;
4053 };
4054 
4055 struct nameidata_saved {
4056 #ifdef INVARIANTS
4057 	char *cn_nameptr;
4058 	size_t ni_pathlen;
4059 #endif
4060 };
4061 
4062 #ifdef INVARIANTS
4063 struct cache_fpl_debug {
4064 	size_t ni_pathlen;
4065 };
4066 #endif
4067 
4068 struct cache_fpl {
4069 	struct nameidata *ndp;
4070 	struct componentname *cnp;
4071 	char *nulchar;
4072 	struct vnode *dvp;
4073 	struct vnode *tvp;
4074 	seqc_t dvp_seqc;
4075 	seqc_t tvp_seqc;
4076 	uint32_t hash;
4077 	struct nameidata_saved snd;
4078 	struct nameidata_outer snd_outer;
4079 	int line;
4080 	enum cache_fpl_status status:8;
4081 	bool in_smr;
4082 	bool fsearch;
4083 	struct pwd **pwd;
4084 #ifdef INVARIANTS
4085 	struct cache_fpl_debug debug;
4086 #endif
4087 };
4088 
4089 static bool cache_fplookup_mp_supported(struct mount *mp);
4090 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4091 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4092 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4093 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4094 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4095 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4096 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4097 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4098 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4099 
4100 static void
4101 cache_fpl_cleanup_cnp(struct componentname *cnp)
4102 {
4103 
4104 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4105 	cnp->cn_pnbuf = NULL;
4106 	cnp->cn_nameptr = NULL;
4107 }
4108 
4109 static struct vnode *
4110 cache_fpl_handle_root(struct cache_fpl *fpl)
4111 {
4112 	struct nameidata *ndp;
4113 	struct componentname *cnp;
4114 
4115 	ndp = fpl->ndp;
4116 	cnp = fpl->cnp;
4117 
4118 	MPASS(*(cnp->cn_nameptr) == '/');
4119 	cnp->cn_nameptr++;
4120 	cache_fpl_pathlen_dec(fpl);
4121 
4122 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4123 		do {
4124 			cnp->cn_nameptr++;
4125 			cache_fpl_pathlen_dec(fpl);
4126 		} while (*(cnp->cn_nameptr) == '/');
4127 	}
4128 
4129 	return (ndp->ni_rootdir);
4130 }
4131 
4132 static void
4133 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4134 {
4135 
4136 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4137 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4138 }
4139 
4140 static void
4141 cache_fpl_checkpoint(struct cache_fpl *fpl)
4142 {
4143 
4144 #ifdef INVARIANTS
4145 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4146 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4147 #endif
4148 }
4149 
4150 static void
4151 cache_fpl_restore_partial(struct cache_fpl *fpl)
4152 {
4153 
4154 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4155 #ifdef INVARIANTS
4156 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4157 #endif
4158 }
4159 
4160 static void
4161 cache_fpl_restore_abort(struct cache_fpl *fpl)
4162 {
4163 
4164 	cache_fpl_restore_partial(fpl);
4165 	/*
4166 	 * It is 0 on entry by API contract.
4167 	 */
4168 	fpl->ndp->ni_resflags = 0;
4169 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4170 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4171 }
4172 
4173 #ifdef INVARIANTS
4174 #define cache_fpl_smr_assert_entered(fpl) ({			\
4175 	struct cache_fpl *_fpl = (fpl);				\
4176 	MPASS(_fpl->in_smr == true);				\
4177 	VFS_SMR_ASSERT_ENTERED();				\
4178 })
4179 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4180 	struct cache_fpl *_fpl = (fpl);				\
4181 	MPASS(_fpl->in_smr == false);				\
4182 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4183 })
4184 static void
4185 cache_fpl_assert_status(struct cache_fpl *fpl)
4186 {
4187 
4188 	switch (fpl->status) {
4189 	case CACHE_FPL_STATUS_UNSET:
4190 		__assert_unreachable();
4191 		break;
4192 	case CACHE_FPL_STATUS_DESTROYED:
4193 	case CACHE_FPL_STATUS_ABORTED:
4194 	case CACHE_FPL_STATUS_PARTIAL:
4195 	case CACHE_FPL_STATUS_HANDLED:
4196 		break;
4197 	}
4198 }
4199 #else
4200 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4201 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4202 #define cache_fpl_assert_status(fpl) do { } while (0)
4203 #endif
4204 
4205 #define cache_fpl_smr_enter_initial(fpl) ({			\
4206 	struct cache_fpl *_fpl = (fpl);				\
4207 	vfs_smr_enter();					\
4208 	_fpl->in_smr = true;					\
4209 })
4210 
4211 #define cache_fpl_smr_enter(fpl) ({				\
4212 	struct cache_fpl *_fpl = (fpl);				\
4213 	MPASS(_fpl->in_smr == false);				\
4214 	vfs_smr_enter();					\
4215 	_fpl->in_smr = true;					\
4216 })
4217 
4218 #define cache_fpl_smr_exit(fpl) ({				\
4219 	struct cache_fpl *_fpl = (fpl);				\
4220 	MPASS(_fpl->in_smr == true);				\
4221 	vfs_smr_exit();						\
4222 	_fpl->in_smr = false;					\
4223 })
4224 
4225 static int
4226 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4227 {
4228 
4229 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4230 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4231 		    ("%s: converting to abort from %d at %d, set at %d\n",
4232 		    __func__, fpl->status, line, fpl->line));
4233 	}
4234 	cache_fpl_smr_assert_not_entered(fpl);
4235 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4236 	fpl->line = line;
4237 	return (CACHE_FPL_FAILED);
4238 }
4239 
4240 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4241 
4242 static int __noinline
4243 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4244 {
4245 	struct nameidata *ndp;
4246 	struct componentname *cnp;
4247 
4248 	ndp = fpl->ndp;
4249 	cnp = fpl->cnp;
4250 
4251 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4252 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4253 		    ("%s: converting to abort from %d at %d, set at %d\n",
4254 		    __func__, fpl->status, line, fpl->line));
4255 	}
4256 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4257 	fpl->line = line;
4258 	if (fpl->in_smr)
4259 		cache_fpl_smr_exit(fpl);
4260 	cache_fpl_restore_abort(fpl);
4261 	/*
4262 	 * Resolving symlinks overwrites data passed by the caller.
4263 	 * Let namei know.
4264 	 */
4265 	if (ndp->ni_loopcnt > 0) {
4266 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4267 		cache_fpl_cleanup_cnp(cnp);
4268 	}
4269 	return (CACHE_FPL_FAILED);
4270 }
4271 
4272 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4273 
4274 static int __noinline
4275 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4276 {
4277 
4278 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4279 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4280 	    __func__, line, fpl->status, fpl->line));
4281 	cache_fpl_smr_assert_entered(fpl);
4282 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4283 	fpl->line = line;
4284 	return (cache_fplookup_partial_setup(fpl));
4285 }
4286 
4287 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4288 
4289 static int
4290 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4291 {
4292 
4293 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4294 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4295 	    __func__, line, fpl->status, fpl->line));
4296 	cache_fpl_smr_assert_not_entered(fpl);
4297 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4298 	fpl->line = line;
4299 	return (0);
4300 }
4301 
4302 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4303 
4304 static int
4305 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4306 {
4307 
4308 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4309 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4310 	    __func__, line, fpl->status, fpl->line));
4311 	MPASS(error != 0);
4312 	MPASS(error != CACHE_FPL_FAILED);
4313 	cache_fpl_smr_assert_not_entered(fpl);
4314 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4315 	fpl->line = line;
4316 	fpl->dvp = NULL;
4317 	fpl->tvp = NULL;
4318 	return (error);
4319 }
4320 
4321 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4322 
4323 static bool
4324 cache_fpl_terminated(struct cache_fpl *fpl)
4325 {
4326 
4327 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4328 }
4329 
4330 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4331 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4332 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4333 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4334 	 OPENWRITE | WANTIOCTLCAPS)
4335 
4336 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4337 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4338 
4339 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4340     "supported and internal flags overlap");
4341 
4342 static bool
4343 cache_fpl_islastcn(struct nameidata *ndp)
4344 {
4345 
4346 	return (*ndp->ni_next == 0);
4347 }
4348 
4349 static bool
4350 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4351 {
4352 
4353 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4354 	return (*(fpl->nulchar - 1) == '/');
4355 }
4356 
4357 static bool
4358 cache_fpl_isdotdot(struct componentname *cnp)
4359 {
4360 
4361 	if (cnp->cn_namelen == 2 &&
4362 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4363 		return (true);
4364 	return (false);
4365 }
4366 
4367 static bool
4368 cache_can_fplookup(struct cache_fpl *fpl)
4369 {
4370 	struct nameidata *ndp;
4371 	struct componentname *cnp;
4372 	struct thread *td;
4373 
4374 	ndp = fpl->ndp;
4375 	cnp = fpl->cnp;
4376 	td = curthread;
4377 
4378 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4379 		cache_fpl_aborted_early(fpl);
4380 		return (false);
4381 	}
4382 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4383 		cache_fpl_aborted_early(fpl);
4384 		return (false);
4385 	}
4386 	if (IN_CAPABILITY_MODE(td)) {
4387 		cache_fpl_aborted_early(fpl);
4388 		return (false);
4389 	}
4390 	if (AUDITING_TD(td)) {
4391 		cache_fpl_aborted_early(fpl);
4392 		return (false);
4393 	}
4394 	if (ndp->ni_startdir != NULL) {
4395 		cache_fpl_aborted_early(fpl);
4396 		return (false);
4397 	}
4398 	return (true);
4399 }
4400 
4401 static int __noinline
4402 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4403 {
4404 	struct nameidata *ndp;
4405 	struct componentname *cnp;
4406 	int error;
4407 	bool fsearch;
4408 
4409 	ndp = fpl->ndp;
4410 	cnp = fpl->cnp;
4411 
4412 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
4413 	if (__predict_false(error != 0)) {
4414 		return (cache_fpl_aborted(fpl));
4415 	}
4416 	fpl->fsearch = fsearch;
4417 	if ((*vpp)->v_type != VDIR) {
4418 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4419 			cache_fpl_smr_exit(fpl);
4420 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4421 		}
4422 	}
4423 	return (0);
4424 }
4425 
4426 static int __noinline
4427 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4428     uint32_t hash)
4429 {
4430 	struct componentname *cnp;
4431 	struct vnode *dvp;
4432 
4433 	cnp = fpl->cnp;
4434 	dvp = fpl->dvp;
4435 
4436 	cache_fpl_smr_exit(fpl);
4437 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4438 		return (cache_fpl_handled_error(fpl, ENOENT));
4439 	else
4440 		return (cache_fpl_aborted(fpl));
4441 }
4442 
4443 /*
4444  * The target vnode is not supported, prepare for the slow path to take over.
4445  */
4446 static int __noinline
4447 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4448 {
4449 	struct nameidata *ndp;
4450 	struct componentname *cnp;
4451 	enum vgetstate dvs;
4452 	struct vnode *dvp;
4453 	struct pwd *pwd;
4454 	seqc_t dvp_seqc;
4455 
4456 	ndp = fpl->ndp;
4457 	cnp = fpl->cnp;
4458 	pwd = *(fpl->pwd);
4459 	dvp = fpl->dvp;
4460 	dvp_seqc = fpl->dvp_seqc;
4461 
4462 	if (!pwd_hold_smr(pwd)) {
4463 		return (cache_fpl_aborted(fpl));
4464 	}
4465 
4466 	/*
4467 	 * Note that seqc is checked before the vnode is locked, so by
4468 	 * the time regular lookup gets to it it may have moved.
4469 	 *
4470 	 * Ultimately this does not affect correctness, any lookup errors
4471 	 * are userspace racing with itself. It is guaranteed that any
4472 	 * path which ultimately gets found could also have been found
4473 	 * by regular lookup going all the way in absence of concurrent
4474 	 * modifications.
4475 	 */
4476 	dvs = vget_prep_smr(dvp);
4477 	cache_fpl_smr_exit(fpl);
4478 	if (__predict_false(dvs == VGET_NONE)) {
4479 		pwd_drop(pwd);
4480 		return (cache_fpl_aborted(fpl));
4481 	}
4482 
4483 	vget_finish_ref(dvp, dvs);
4484 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4485 		vrele(dvp);
4486 		pwd_drop(pwd);
4487 		return (cache_fpl_aborted(fpl));
4488 	}
4489 
4490 	cache_fpl_restore_partial(fpl);
4491 #ifdef INVARIANTS
4492 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4493 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4494 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4495 	}
4496 #endif
4497 
4498 	ndp->ni_startdir = dvp;
4499 	cnp->cn_flags |= MAKEENTRY;
4500 	if (cache_fpl_islastcn(ndp))
4501 		cnp->cn_flags |= ISLASTCN;
4502 	if (cache_fpl_isdotdot(cnp))
4503 		cnp->cn_flags |= ISDOTDOT;
4504 
4505 	/*
4506 	 * Skip potential extra slashes parsing did not take care of.
4507 	 * cache_fplookup_skip_slashes explains the mechanism.
4508 	 */
4509 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4510 		do {
4511 			cnp->cn_nameptr++;
4512 			cache_fpl_pathlen_dec(fpl);
4513 		} while (*(cnp->cn_nameptr) == '/');
4514 	}
4515 
4516 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4517 #ifdef INVARIANTS
4518 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4519 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4520 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4521 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4522 	}
4523 #endif
4524 	return (0);
4525 }
4526 
4527 static int
4528 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4529 {
4530 	struct componentname *cnp;
4531 	struct vnode *tvp;
4532 	seqc_t tvp_seqc;
4533 	int error, lkflags;
4534 
4535 	cnp = fpl->cnp;
4536 	tvp = fpl->tvp;
4537 	tvp_seqc = fpl->tvp_seqc;
4538 
4539 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4540 		lkflags = LK_SHARED;
4541 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4542 			lkflags = LK_EXCLUSIVE;
4543 		error = vget_finish(tvp, lkflags, tvs);
4544 		if (__predict_false(error != 0)) {
4545 			return (cache_fpl_aborted(fpl));
4546 		}
4547 	} else {
4548 		vget_finish_ref(tvp, tvs);
4549 	}
4550 
4551 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4552 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4553 			vput(tvp);
4554 		else
4555 			vrele(tvp);
4556 		return (cache_fpl_aborted(fpl));
4557 	}
4558 
4559 	return (cache_fpl_handled(fpl));
4560 }
4561 
4562 /*
4563  * They want to possibly modify the state of the namecache.
4564  */
4565 static int __noinline
4566 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4567 {
4568 	struct nameidata *ndp __diagused;
4569 	struct componentname *cnp;
4570 	enum vgetstate dvs;
4571 	struct vnode *dvp, *tvp;
4572 	struct mount *mp;
4573 	seqc_t dvp_seqc;
4574 	int error;
4575 	bool docache;
4576 
4577 	ndp = fpl->ndp;
4578 	cnp = fpl->cnp;
4579 	dvp = fpl->dvp;
4580 	dvp_seqc = fpl->dvp_seqc;
4581 
4582 	MPASS(*(cnp->cn_nameptr) != '/');
4583 	MPASS(cache_fpl_islastcn(ndp));
4584 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4585 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4586 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4587 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4588 	    cnp->cn_nameiop == RENAME);
4589 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4590 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4591 
4592 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4593 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4594 		docache = false;
4595 
4596 	/*
4597 	 * Regular lookup nulifies the slash, which we don't do here.
4598 	 * Don't take chances with filesystem routines seeing it for
4599 	 * the last entry.
4600 	 */
4601 	if (cache_fpl_istrailingslash(fpl)) {
4602 		return (cache_fpl_partial(fpl));
4603 	}
4604 
4605 	mp = atomic_load_ptr(&dvp->v_mount);
4606 	if (__predict_false(mp == NULL)) {
4607 		return (cache_fpl_aborted(fpl));
4608 	}
4609 
4610 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4611 		cache_fpl_smr_exit(fpl);
4612 		/*
4613 		 * Original code keeps not checking for CREATE which
4614 		 * might be a bug. For now let the old lookup decide.
4615 		 */
4616 		if (cnp->cn_nameiop == CREATE) {
4617 			return (cache_fpl_aborted(fpl));
4618 		}
4619 		return (cache_fpl_handled_error(fpl, EROFS));
4620 	}
4621 
4622 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4623 		cache_fpl_smr_exit(fpl);
4624 		return (cache_fpl_handled_error(fpl, EEXIST));
4625 	}
4626 
4627 	/*
4628 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4629 	 * reasoning.
4630 	 *
4631 	 * XXX At least UFS requires its lookup routine to be called for
4632 	 * the last path component, which leads to some level of complication
4633 	 * and inefficiency:
4634 	 * - the target routine always locks the target vnode, but our caller
4635 	 *   may not need it locked
4636 	 * - some of the VOP machinery asserts that the parent is locked, which
4637 	 *   once more may be not required
4638 	 *
4639 	 * TODO: add a flag for filesystems which don't need this.
4640 	 */
4641 	dvs = vget_prep_smr(dvp);
4642 	cache_fpl_smr_exit(fpl);
4643 	if (__predict_false(dvs == VGET_NONE)) {
4644 		return (cache_fpl_aborted(fpl));
4645 	}
4646 
4647 	vget_finish_ref(dvp, dvs);
4648 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4649 		vrele(dvp);
4650 		return (cache_fpl_aborted(fpl));
4651 	}
4652 
4653 	error = vn_lock(dvp, LK_EXCLUSIVE);
4654 	if (__predict_false(error != 0)) {
4655 		vrele(dvp);
4656 		return (cache_fpl_aborted(fpl));
4657 	}
4658 
4659 	tvp = NULL;
4660 	cnp->cn_flags |= ISLASTCN;
4661 	if (docache)
4662 		cnp->cn_flags |= MAKEENTRY;
4663 	if (cache_fpl_isdotdot(cnp))
4664 		cnp->cn_flags |= ISDOTDOT;
4665 	cnp->cn_lkflags = LK_EXCLUSIVE;
4666 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4667 	switch (error) {
4668 	case EJUSTRETURN:
4669 	case 0:
4670 		break;
4671 	case ENOTDIR:
4672 	case ENOENT:
4673 		vput(dvp);
4674 		return (cache_fpl_handled_error(fpl, error));
4675 	default:
4676 		vput(dvp);
4677 		return (cache_fpl_aborted(fpl));
4678 	}
4679 
4680 	fpl->tvp = tvp;
4681 
4682 	if (tvp == NULL) {
4683 		MPASS(error == EJUSTRETURN);
4684 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4685 			VOP_UNLOCK(dvp);
4686 		}
4687 		return (cache_fpl_handled(fpl));
4688 	}
4689 
4690 	/*
4691 	 * There are very hairy corner cases concerning various flag combinations
4692 	 * and locking state. In particular here we only hold one lock instead of
4693 	 * two.
4694 	 *
4695 	 * Skip the complexity as it is of no significance for normal workloads.
4696 	 */
4697 	if (__predict_false(tvp == dvp)) {
4698 		vput(dvp);
4699 		vrele(tvp);
4700 		return (cache_fpl_aborted(fpl));
4701 	}
4702 
4703 	/*
4704 	 * If they want the symlink itself we are fine, but if they want to
4705 	 * follow it regular lookup has to be engaged.
4706 	 */
4707 	if (tvp->v_type == VLNK) {
4708 		if ((cnp->cn_flags & FOLLOW) != 0) {
4709 			vput(dvp);
4710 			vput(tvp);
4711 			return (cache_fpl_aborted(fpl));
4712 		}
4713 	}
4714 
4715 	/*
4716 	 * Since we expect this to be the terminal vnode it should almost never
4717 	 * be a mount point.
4718 	 */
4719 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4720 		vput(dvp);
4721 		vput(tvp);
4722 		return (cache_fpl_aborted(fpl));
4723 	}
4724 
4725 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4726 		vput(dvp);
4727 		vput(tvp);
4728 		return (cache_fpl_handled_error(fpl, EEXIST));
4729 	}
4730 
4731 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4732 		VOP_UNLOCK(tvp);
4733 	}
4734 
4735 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4736 		VOP_UNLOCK(dvp);
4737 	}
4738 
4739 	return (cache_fpl_handled(fpl));
4740 }
4741 
4742 static int __noinline
4743 cache_fplookup_modifying(struct cache_fpl *fpl)
4744 {
4745 	struct nameidata *ndp;
4746 
4747 	ndp = fpl->ndp;
4748 
4749 	if (!cache_fpl_islastcn(ndp)) {
4750 		return (cache_fpl_partial(fpl));
4751 	}
4752 	return (cache_fplookup_final_modifying(fpl));
4753 }
4754 
4755 static int __noinline
4756 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4757 {
4758 	struct componentname *cnp;
4759 	enum vgetstate dvs, tvs;
4760 	struct vnode *dvp, *tvp;
4761 	seqc_t dvp_seqc;
4762 	int error;
4763 
4764 	cnp = fpl->cnp;
4765 	dvp = fpl->dvp;
4766 	dvp_seqc = fpl->dvp_seqc;
4767 	tvp = fpl->tvp;
4768 
4769 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4770 
4771 	/*
4772 	 * This is less efficient than it can be for simplicity.
4773 	 */
4774 	dvs = vget_prep_smr(dvp);
4775 	if (__predict_false(dvs == VGET_NONE)) {
4776 		return (cache_fpl_aborted(fpl));
4777 	}
4778 	tvs = vget_prep_smr(tvp);
4779 	if (__predict_false(tvs == VGET_NONE)) {
4780 		cache_fpl_smr_exit(fpl);
4781 		vget_abort(dvp, dvs);
4782 		return (cache_fpl_aborted(fpl));
4783 	}
4784 
4785 	cache_fpl_smr_exit(fpl);
4786 
4787 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4788 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4789 		if (__predict_false(error != 0)) {
4790 			vget_abort(tvp, tvs);
4791 			return (cache_fpl_aborted(fpl));
4792 		}
4793 	} else {
4794 		vget_finish_ref(dvp, dvs);
4795 	}
4796 
4797 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4798 		vget_abort(tvp, tvs);
4799 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4800 			vput(dvp);
4801 		else
4802 			vrele(dvp);
4803 		return (cache_fpl_aborted(fpl));
4804 	}
4805 
4806 	error = cache_fplookup_final_child(fpl, tvs);
4807 	if (__predict_false(error != 0)) {
4808 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4809 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4810 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4811 			vput(dvp);
4812 		else
4813 			vrele(dvp);
4814 		return (error);
4815 	}
4816 
4817 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4818 	return (0);
4819 }
4820 
4821 static int
4822 cache_fplookup_final(struct cache_fpl *fpl)
4823 {
4824 	struct componentname *cnp;
4825 	enum vgetstate tvs;
4826 	struct vnode *dvp, *tvp;
4827 	seqc_t dvp_seqc;
4828 
4829 	cnp = fpl->cnp;
4830 	dvp = fpl->dvp;
4831 	dvp_seqc = fpl->dvp_seqc;
4832 	tvp = fpl->tvp;
4833 
4834 	MPASS(*(cnp->cn_nameptr) != '/');
4835 
4836 	if (cnp->cn_nameiop != LOOKUP) {
4837 		return (cache_fplookup_final_modifying(fpl));
4838 	}
4839 
4840 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4841 		return (cache_fplookup_final_withparent(fpl));
4842 
4843 	tvs = vget_prep_smr(tvp);
4844 	if (__predict_false(tvs == VGET_NONE)) {
4845 		return (cache_fpl_partial(fpl));
4846 	}
4847 
4848 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4849 		cache_fpl_smr_exit(fpl);
4850 		vget_abort(tvp, tvs);
4851 		return (cache_fpl_aborted(fpl));
4852 	}
4853 
4854 	cache_fpl_smr_exit(fpl);
4855 	return (cache_fplookup_final_child(fpl, tvs));
4856 }
4857 
4858 /*
4859  * Comment from locked lookup:
4860  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4861  * directory, e.g. like "/." or ".".
4862  */
4863 static int __noinline
4864 cache_fplookup_degenerate(struct cache_fpl *fpl)
4865 {
4866 	struct componentname *cnp;
4867 	struct vnode *dvp;
4868 	enum vgetstate dvs;
4869 	int error, lkflags;
4870 #ifdef INVARIANTS
4871 	char *cp;
4872 #endif
4873 
4874 	fpl->tvp = fpl->dvp;
4875 	fpl->tvp_seqc = fpl->dvp_seqc;
4876 
4877 	cnp = fpl->cnp;
4878 	dvp = fpl->dvp;
4879 
4880 #ifdef INVARIANTS
4881 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4882 		KASSERT(*cp == '/',
4883 		    ("%s: encountered non-slash; string [%s]\n", __func__,
4884 		    cnp->cn_pnbuf));
4885 	}
4886 #endif
4887 
4888 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4889 		cache_fpl_smr_exit(fpl);
4890 		return (cache_fpl_handled_error(fpl, EISDIR));
4891 	}
4892 
4893 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4894 		return (cache_fplookup_final_withparent(fpl));
4895 	}
4896 
4897 	dvs = vget_prep_smr(dvp);
4898 	cache_fpl_smr_exit(fpl);
4899 	if (__predict_false(dvs == VGET_NONE)) {
4900 		return (cache_fpl_aborted(fpl));
4901 	}
4902 
4903 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4904 		lkflags = LK_SHARED;
4905 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4906 			lkflags = LK_EXCLUSIVE;
4907 		error = vget_finish(dvp, lkflags, dvs);
4908 		if (__predict_false(error != 0)) {
4909 			return (cache_fpl_aborted(fpl));
4910 		}
4911 	} else {
4912 		vget_finish_ref(dvp, dvs);
4913 	}
4914 	return (cache_fpl_handled(fpl));
4915 }
4916 
4917 static int __noinline
4918 cache_fplookup_emptypath(struct cache_fpl *fpl)
4919 {
4920 	struct nameidata *ndp;
4921 	struct componentname *cnp;
4922 	enum vgetstate tvs;
4923 	struct vnode *tvp;
4924 	int error, lkflags;
4925 
4926 	fpl->tvp = fpl->dvp;
4927 	fpl->tvp_seqc = fpl->dvp_seqc;
4928 
4929 	ndp = fpl->ndp;
4930 	cnp = fpl->cnp;
4931 	tvp = fpl->tvp;
4932 
4933 	MPASS(*cnp->cn_pnbuf == '\0');
4934 
4935 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
4936 		cache_fpl_smr_exit(fpl);
4937 		return (cache_fpl_handled_error(fpl, ENOENT));
4938 	}
4939 
4940 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
4941 
4942 	tvs = vget_prep_smr(tvp);
4943 	cache_fpl_smr_exit(fpl);
4944 	if (__predict_false(tvs == VGET_NONE)) {
4945 		return (cache_fpl_aborted(fpl));
4946 	}
4947 
4948 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4949 		lkflags = LK_SHARED;
4950 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4951 			lkflags = LK_EXCLUSIVE;
4952 		error = vget_finish(tvp, lkflags, tvs);
4953 		if (__predict_false(error != 0)) {
4954 			return (cache_fpl_aborted(fpl));
4955 		}
4956 	} else {
4957 		vget_finish_ref(tvp, tvs);
4958 	}
4959 
4960 	ndp->ni_resflags |= NIRES_EMPTYPATH;
4961 	return (cache_fpl_handled(fpl));
4962 }
4963 
4964 static int __noinline
4965 cache_fplookup_noentry(struct cache_fpl *fpl)
4966 {
4967 	struct nameidata *ndp;
4968 	struct componentname *cnp;
4969 	enum vgetstate dvs;
4970 	struct vnode *dvp, *tvp;
4971 	seqc_t dvp_seqc;
4972 	int error;
4973 
4974 	ndp = fpl->ndp;
4975 	cnp = fpl->cnp;
4976 	dvp = fpl->dvp;
4977 	dvp_seqc = fpl->dvp_seqc;
4978 
4979 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4980 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4981 	if (cnp->cn_nameiop == LOOKUP)
4982 		MPASS((cnp->cn_flags & NOCACHE) == 0);
4983 	MPASS(!cache_fpl_isdotdot(cnp));
4984 
4985 	/*
4986 	 * Hack: delayed name len checking.
4987 	 */
4988 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4989 		cache_fpl_smr_exit(fpl);
4990 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
4991 	}
4992 
4993 	if (cnp->cn_nameptr[0] == '/') {
4994 		return (cache_fplookup_skip_slashes(fpl));
4995 	}
4996 
4997 	if (cnp->cn_pnbuf[0] == '\0') {
4998 		return (cache_fplookup_emptypath(fpl));
4999 	}
5000 
5001 	if (cnp->cn_nameptr[0] == '\0') {
5002 		if (fpl->tvp == NULL) {
5003 			return (cache_fplookup_degenerate(fpl));
5004 		}
5005 		return (cache_fplookup_trailingslash(fpl));
5006 	}
5007 
5008 	if (cnp->cn_nameiop != LOOKUP) {
5009 		fpl->tvp = NULL;
5010 		return (cache_fplookup_modifying(fpl));
5011 	}
5012 
5013 	/*
5014 	 * Only try to fill in the component if it is the last one,
5015 	 * otherwise not only there may be several to handle but the
5016 	 * walk may be complicated.
5017 	 */
5018 	if (!cache_fpl_islastcn(ndp)) {
5019 		return (cache_fpl_partial(fpl));
5020 	}
5021 
5022 	/*
5023 	 * Regular lookup nulifies the slash, which we don't do here.
5024 	 * Don't take chances with filesystem routines seeing it for
5025 	 * the last entry.
5026 	 */
5027 	if (cache_fpl_istrailingslash(fpl)) {
5028 		return (cache_fpl_partial(fpl));
5029 	}
5030 
5031 	/*
5032 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5033 	 * reasoning.
5034 	 */
5035 	dvs = vget_prep_smr(dvp);
5036 	cache_fpl_smr_exit(fpl);
5037 	if (__predict_false(dvs == VGET_NONE)) {
5038 		return (cache_fpl_aborted(fpl));
5039 	}
5040 
5041 	vget_finish_ref(dvp, dvs);
5042 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5043 		vrele(dvp);
5044 		return (cache_fpl_aborted(fpl));
5045 	}
5046 
5047 	error = vn_lock(dvp, LK_SHARED);
5048 	if (__predict_false(error != 0)) {
5049 		vrele(dvp);
5050 		return (cache_fpl_aborted(fpl));
5051 	}
5052 
5053 	tvp = NULL;
5054 	/*
5055 	 * TODO: provide variants which don't require locking either vnode.
5056 	 */
5057 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5058 	cnp->cn_lkflags = LK_SHARED;
5059 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5060 		cnp->cn_lkflags = LK_EXCLUSIVE;
5061 	}
5062 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5063 	switch (error) {
5064 	case EJUSTRETURN:
5065 	case 0:
5066 		break;
5067 	case ENOTDIR:
5068 	case ENOENT:
5069 		vput(dvp);
5070 		return (cache_fpl_handled_error(fpl, error));
5071 	default:
5072 		vput(dvp);
5073 		return (cache_fpl_aborted(fpl));
5074 	}
5075 
5076 	fpl->tvp = tvp;
5077 
5078 	if (tvp == NULL) {
5079 		MPASS(error == EJUSTRETURN);
5080 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5081 			vput(dvp);
5082 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5083 			VOP_UNLOCK(dvp);
5084 		}
5085 		return (cache_fpl_handled(fpl));
5086 	}
5087 
5088 	if (tvp->v_type == VLNK) {
5089 		if ((cnp->cn_flags & FOLLOW) != 0) {
5090 			vput(dvp);
5091 			vput(tvp);
5092 			return (cache_fpl_aborted(fpl));
5093 		}
5094 	}
5095 
5096 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5097 		vput(dvp);
5098 		vput(tvp);
5099 		return (cache_fpl_aborted(fpl));
5100 	}
5101 
5102 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5103 		VOP_UNLOCK(tvp);
5104 	}
5105 
5106 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5107 		vput(dvp);
5108 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5109 		VOP_UNLOCK(dvp);
5110 	}
5111 	return (cache_fpl_handled(fpl));
5112 }
5113 
5114 static int __noinline
5115 cache_fplookup_dot(struct cache_fpl *fpl)
5116 {
5117 	int error;
5118 
5119 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5120 
5121 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5122 		cache_fpl_smr_exit(fpl);
5123 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5124 	}
5125 
5126 	/*
5127 	 * Just re-assign the value. seqc will be checked later for the first
5128 	 * non-dot path component in line and/or before deciding to return the
5129 	 * vnode.
5130 	 */
5131 	fpl->tvp = fpl->dvp;
5132 	fpl->tvp_seqc = fpl->dvp_seqc;
5133 
5134 	counter_u64_add(dothits, 1);
5135 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5136 
5137 	error = 0;
5138 	if (cache_fplookup_is_mp(fpl)) {
5139 		error = cache_fplookup_cross_mount(fpl);
5140 	}
5141 	return (error);
5142 }
5143 
5144 static int __noinline
5145 cache_fplookup_dotdot(struct cache_fpl *fpl)
5146 {
5147 	struct nameidata *ndp;
5148 	struct componentname *cnp;
5149 	struct namecache *ncp;
5150 	struct vnode *dvp;
5151 	struct prison *pr;
5152 	u_char nc_flag;
5153 
5154 	ndp = fpl->ndp;
5155 	cnp = fpl->cnp;
5156 	dvp = fpl->dvp;
5157 
5158 	MPASS(cache_fpl_isdotdot(cnp));
5159 
5160 	/*
5161 	 * XXX this is racy the same way regular lookup is
5162 	 */
5163 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5164 	    pr = pr->pr_parent)
5165 		if (dvp == pr->pr_root)
5166 			break;
5167 
5168 	if (dvp == ndp->ni_rootdir ||
5169 	    dvp == ndp->ni_topdir ||
5170 	    dvp == rootvnode ||
5171 	    pr != NULL) {
5172 		fpl->tvp = dvp;
5173 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5174 		if (seqc_in_modify(fpl->tvp_seqc)) {
5175 			return (cache_fpl_aborted(fpl));
5176 		}
5177 		return (0);
5178 	}
5179 
5180 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5181 		/*
5182 		 * TODO
5183 		 * The opposite of climb mount is needed here.
5184 		 */
5185 		return (cache_fpl_partial(fpl));
5186 	}
5187 
5188 	if (__predict_false(dvp->v_type != VDIR)) {
5189 		cache_fpl_smr_exit(fpl);
5190 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5191 	}
5192 
5193 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5194 	if (ncp == NULL) {
5195 		return (cache_fpl_aborted(fpl));
5196 	}
5197 
5198 	nc_flag = atomic_load_char(&ncp->nc_flag);
5199 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5200 		if ((nc_flag & NCF_NEGATIVE) != 0)
5201 			return (cache_fpl_aborted(fpl));
5202 		fpl->tvp = ncp->nc_vp;
5203 	} else {
5204 		fpl->tvp = ncp->nc_dvp;
5205 	}
5206 
5207 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5208 	if (seqc_in_modify(fpl->tvp_seqc)) {
5209 		return (cache_fpl_partial(fpl));
5210 	}
5211 
5212 	/*
5213 	 * Acquire fence provided by vn_seqc_read_any above.
5214 	 */
5215 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5216 		return (cache_fpl_aborted(fpl));
5217 	}
5218 
5219 	if (!cache_ncp_canuse(ncp)) {
5220 		return (cache_fpl_aborted(fpl));
5221 	}
5222 
5223 	counter_u64_add(dotdothits, 1);
5224 	return (0);
5225 }
5226 
5227 static int __noinline
5228 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5229 {
5230 	u_char nc_flag __diagused;
5231 	bool neg_promote;
5232 
5233 #ifdef INVARIANTS
5234 	nc_flag = atomic_load_char(&ncp->nc_flag);
5235 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5236 #endif
5237 	/*
5238 	 * If they want to create an entry we need to replace this one.
5239 	 */
5240 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5241 		fpl->tvp = NULL;
5242 		return (cache_fplookup_modifying(fpl));
5243 	}
5244 	neg_promote = cache_neg_hit_prep(ncp);
5245 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5246 		cache_neg_hit_abort(ncp);
5247 		return (cache_fpl_partial(fpl));
5248 	}
5249 	if (neg_promote) {
5250 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5251 	}
5252 	cache_neg_hit_finish(ncp);
5253 	cache_fpl_smr_exit(fpl);
5254 	return (cache_fpl_handled_error(fpl, ENOENT));
5255 }
5256 
5257 /*
5258  * Resolve a symlink. Called by filesystem-specific routines.
5259  *
5260  * Code flow is:
5261  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5262  */
5263 int
5264 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5265 {
5266 	struct nameidata *ndp;
5267 	struct componentname *cnp;
5268 	size_t adjust;
5269 
5270 	ndp = fpl->ndp;
5271 	cnp = fpl->cnp;
5272 
5273 	if (__predict_false(len == 0)) {
5274 		return (ENOENT);
5275 	}
5276 
5277 	if (__predict_false(len > MAXPATHLEN - 2)) {
5278 		if (cache_fpl_istrailingslash(fpl)) {
5279 			return (EAGAIN);
5280 		}
5281 	}
5282 
5283 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5284 #ifdef INVARIANTS
5285 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5286 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5287 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5288 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5289 	}
5290 #endif
5291 
5292 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5293 		return (ENAMETOOLONG);
5294 	}
5295 
5296 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5297 		return (ELOOP);
5298 	}
5299 
5300 	adjust = len;
5301 	if (ndp->ni_pathlen > 1) {
5302 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5303 	} else {
5304 		if (cache_fpl_istrailingslash(fpl)) {
5305 			adjust = len + 1;
5306 			cnp->cn_pnbuf[len] = '/';
5307 			cnp->cn_pnbuf[len + 1] = '\0';
5308 		} else {
5309 			cnp->cn_pnbuf[len] = '\0';
5310 		}
5311 	}
5312 	bcopy(string, cnp->cn_pnbuf, len);
5313 
5314 	ndp->ni_pathlen += adjust;
5315 	cache_fpl_pathlen_add(fpl, adjust);
5316 	cnp->cn_nameptr = cnp->cn_pnbuf;
5317 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5318 	fpl->tvp = NULL;
5319 	return (0);
5320 }
5321 
5322 static int __noinline
5323 cache_fplookup_symlink(struct cache_fpl *fpl)
5324 {
5325 	struct mount *mp;
5326 	struct nameidata *ndp;
5327 	struct componentname *cnp;
5328 	struct vnode *dvp, *tvp;
5329 	int error;
5330 
5331 	ndp = fpl->ndp;
5332 	cnp = fpl->cnp;
5333 	dvp = fpl->dvp;
5334 	tvp = fpl->tvp;
5335 
5336 	if (cache_fpl_islastcn(ndp)) {
5337 		if ((cnp->cn_flags & FOLLOW) == 0) {
5338 			return (cache_fplookup_final(fpl));
5339 		}
5340 	}
5341 
5342 	mp = atomic_load_ptr(&dvp->v_mount);
5343 	if (__predict_false(mp == NULL)) {
5344 		return (cache_fpl_aborted(fpl));
5345 	}
5346 
5347 	/*
5348 	 * Note this check races against setting the flag just like regular
5349 	 * lookup.
5350 	 */
5351 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5352 		cache_fpl_smr_exit(fpl);
5353 		return (cache_fpl_handled_error(fpl, EACCES));
5354 	}
5355 
5356 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5357 	if (__predict_false(error != 0)) {
5358 		switch (error) {
5359 		case EAGAIN:
5360 			return (cache_fpl_partial(fpl));
5361 		case ENOENT:
5362 		case ENAMETOOLONG:
5363 		case ELOOP:
5364 			cache_fpl_smr_exit(fpl);
5365 			return (cache_fpl_handled_error(fpl, error));
5366 		default:
5367 			return (cache_fpl_aborted(fpl));
5368 		}
5369 	}
5370 
5371 	if (*(cnp->cn_nameptr) == '/') {
5372 		fpl->dvp = cache_fpl_handle_root(fpl);
5373 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5374 		if (seqc_in_modify(fpl->dvp_seqc)) {
5375 			return (cache_fpl_aborted(fpl));
5376 		}
5377 		/*
5378 		 * The main loop assumes that ->dvp points to a vnode belonging
5379 		 * to a filesystem which can do lockless lookup, but the absolute
5380 		 * symlink can be wandering off to one which does not.
5381 		 */
5382 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5383 		if (__predict_false(mp == NULL)) {
5384 			return (cache_fpl_aborted(fpl));
5385 		}
5386 		if (!cache_fplookup_mp_supported(mp)) {
5387 			cache_fpl_checkpoint(fpl);
5388 			return (cache_fpl_partial(fpl));
5389 		}
5390 	}
5391 	return (0);
5392 }
5393 
5394 static int
5395 cache_fplookup_next(struct cache_fpl *fpl)
5396 {
5397 	struct componentname *cnp;
5398 	struct namecache *ncp;
5399 	struct vnode *dvp, *tvp;
5400 	u_char nc_flag;
5401 	uint32_t hash;
5402 	int error;
5403 
5404 	cnp = fpl->cnp;
5405 	dvp = fpl->dvp;
5406 	hash = fpl->hash;
5407 
5408 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5409 		if (cnp->cn_namelen == 1) {
5410 			return (cache_fplookup_dot(fpl));
5411 		}
5412 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5413 			return (cache_fplookup_dotdot(fpl));
5414 		}
5415 	}
5416 
5417 	MPASS(!cache_fpl_isdotdot(cnp));
5418 
5419 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5420 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5421 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5422 			break;
5423 	}
5424 
5425 	if (__predict_false(ncp == NULL)) {
5426 		return (cache_fplookup_noentry(fpl));
5427 	}
5428 
5429 	tvp = atomic_load_ptr(&ncp->nc_vp);
5430 	nc_flag = atomic_load_char(&ncp->nc_flag);
5431 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5432 		return (cache_fplookup_neg(fpl, ncp, hash));
5433 	}
5434 
5435 	if (!cache_ncp_canuse(ncp)) {
5436 		return (cache_fpl_partial(fpl));
5437 	}
5438 
5439 	fpl->tvp = tvp;
5440 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5441 	if (seqc_in_modify(fpl->tvp_seqc)) {
5442 		return (cache_fpl_partial(fpl));
5443 	}
5444 
5445 	counter_u64_add(numposhits, 1);
5446 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5447 
5448 	error = 0;
5449 	if (cache_fplookup_is_mp(fpl)) {
5450 		error = cache_fplookup_cross_mount(fpl);
5451 	}
5452 	return (error);
5453 }
5454 
5455 static bool
5456 cache_fplookup_mp_supported(struct mount *mp)
5457 {
5458 
5459 	MPASS(mp != NULL);
5460 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5461 		return (false);
5462 	return (true);
5463 }
5464 
5465 /*
5466  * Walk up the mount stack (if any).
5467  *
5468  * Correctness is provided in the following ways:
5469  * - all vnodes are protected from freeing with SMR
5470  * - struct mount objects are type stable making them always safe to access
5471  * - stability of the particular mount is provided by busying it
5472  * - relationship between the vnode which is mounted on and the mount is
5473  *   verified with the vnode sequence counter after busying
5474  * - association between root vnode of the mount and the mount is protected
5475  *   by busy
5476  *
5477  * From that point on we can read the sequence counter of the root vnode
5478  * and get the next mount on the stack (if any) using the same protection.
5479  *
5480  * By the end of successful walk we are guaranteed the reached state was
5481  * indeed present at least at some point which matches the regular lookup.
5482  */
5483 static int __noinline
5484 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5485 {
5486 	struct mount *mp, *prev_mp;
5487 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5488 	struct vnode *vp;
5489 	seqc_t vp_seqc;
5490 
5491 	vp = fpl->tvp;
5492 	vp_seqc = fpl->tvp_seqc;
5493 
5494 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5495 	mp = atomic_load_ptr(&vp->v_mountedhere);
5496 	if (__predict_false(mp == NULL)) {
5497 		return (0);
5498 	}
5499 
5500 	prev_mp = NULL;
5501 	for (;;) {
5502 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5503 			if (prev_mp != NULL)
5504 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5505 			return (cache_fpl_partial(fpl));
5506 		}
5507 		if (prev_mp != NULL)
5508 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5509 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5510 			vfs_op_thread_exit_crit(mp, mpcpu);
5511 			return (cache_fpl_partial(fpl));
5512 		}
5513 		if (!cache_fplookup_mp_supported(mp)) {
5514 			vfs_op_thread_exit_crit(mp, mpcpu);
5515 			return (cache_fpl_partial(fpl));
5516 		}
5517 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5518 		if (vp == NULL) {
5519 			vfs_op_thread_exit_crit(mp, mpcpu);
5520 			return (cache_fpl_partial(fpl));
5521 		}
5522 		vp_seqc = vn_seqc_read_any(vp);
5523 		if (seqc_in_modify(vp_seqc)) {
5524 			vfs_op_thread_exit_crit(mp, mpcpu);
5525 			return (cache_fpl_partial(fpl));
5526 		}
5527 		prev_mp = mp;
5528 		prev_mpcpu = mpcpu;
5529 		mp = atomic_load_ptr(&vp->v_mountedhere);
5530 		if (mp == NULL)
5531 			break;
5532 	}
5533 
5534 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5535 	fpl->tvp = vp;
5536 	fpl->tvp_seqc = vp_seqc;
5537 	return (0);
5538 }
5539 
5540 static int __noinline
5541 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5542 {
5543 	struct mount *mp;
5544 	struct mount_pcpu *mpcpu;
5545 	struct vnode *vp;
5546 	seqc_t vp_seqc;
5547 
5548 	vp = fpl->tvp;
5549 	vp_seqc = fpl->tvp_seqc;
5550 
5551 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5552 	mp = atomic_load_ptr(&vp->v_mountedhere);
5553 	if (__predict_false(mp == NULL)) {
5554 		return (0);
5555 	}
5556 
5557 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5558 		return (cache_fpl_partial(fpl));
5559 	}
5560 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5561 		vfs_op_thread_exit_crit(mp, mpcpu);
5562 		return (cache_fpl_partial(fpl));
5563 	}
5564 	if (!cache_fplookup_mp_supported(mp)) {
5565 		vfs_op_thread_exit_crit(mp, mpcpu);
5566 		return (cache_fpl_partial(fpl));
5567 	}
5568 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5569 	if (__predict_false(vp == NULL)) {
5570 		vfs_op_thread_exit_crit(mp, mpcpu);
5571 		return (cache_fpl_partial(fpl));
5572 	}
5573 	vp_seqc = vn_seqc_read_any(vp);
5574 	vfs_op_thread_exit_crit(mp, mpcpu);
5575 	if (seqc_in_modify(vp_seqc)) {
5576 		return (cache_fpl_partial(fpl));
5577 	}
5578 	mp = atomic_load_ptr(&vp->v_mountedhere);
5579 	if (__predict_false(mp != NULL)) {
5580 		/*
5581 		 * There are possibly more mount points on top.
5582 		 * Normally this does not happen so for simplicity just start
5583 		 * over.
5584 		 */
5585 		return (cache_fplookup_climb_mount(fpl));
5586 	}
5587 
5588 	fpl->tvp = vp;
5589 	fpl->tvp_seqc = vp_seqc;
5590 	return (0);
5591 }
5592 
5593 /*
5594  * Check if a vnode is mounted on.
5595  */
5596 static bool
5597 cache_fplookup_is_mp(struct cache_fpl *fpl)
5598 {
5599 	struct vnode *vp;
5600 
5601 	vp = fpl->tvp;
5602 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5603 }
5604 
5605 /*
5606  * Parse the path.
5607  *
5608  * The code was originally copy-pasted from regular lookup and despite
5609  * clean ups leaves performance on the table. Any modifications here
5610  * must take into account that in case off fallback the resulting
5611  * nameidata state has to be compatible with the original.
5612  */
5613 
5614 /*
5615  * Debug ni_pathlen tracking.
5616  */
5617 #ifdef INVARIANTS
5618 static void
5619 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5620 {
5621 
5622 	fpl->debug.ni_pathlen += n;
5623 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5624 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5625 }
5626 
5627 static void
5628 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5629 {
5630 
5631 	fpl->debug.ni_pathlen -= n;
5632 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5633 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5634 }
5635 
5636 static void
5637 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5638 {
5639 
5640 	cache_fpl_pathlen_add(fpl, 1);
5641 }
5642 
5643 static void
5644 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5645 {
5646 
5647 	cache_fpl_pathlen_sub(fpl, 1);
5648 }
5649 #else
5650 static void
5651 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5652 {
5653 }
5654 
5655 static void
5656 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5657 {
5658 }
5659 
5660 static void
5661 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5662 {
5663 }
5664 
5665 static void
5666 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5667 {
5668 }
5669 #endif
5670 
5671 static void
5672 cache_fplookup_parse(struct cache_fpl *fpl)
5673 {
5674 	struct nameidata *ndp;
5675 	struct componentname *cnp;
5676 	struct vnode *dvp;
5677 	char *cp;
5678 	uint32_t hash;
5679 
5680 	ndp = fpl->ndp;
5681 	cnp = fpl->cnp;
5682 	dvp = fpl->dvp;
5683 
5684 	/*
5685 	 * Find the end of this path component, it is either / or nul.
5686 	 *
5687 	 * Store / as a temporary sentinel so that we only have one character
5688 	 * to test for. Pathnames tend to be short so this should not be
5689 	 * resulting in cache misses.
5690 	 *
5691 	 * TODO: fix this to be word-sized.
5692 	 */
5693 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5694 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5695 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5696 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5697 	    fpl->nulchar, cnp->cn_pnbuf));
5698 	KASSERT(*fpl->nulchar == '\0',
5699 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5700 	    cnp->cn_pnbuf));
5701 	hash = cache_get_hash_iter_start(dvp);
5702 	*fpl->nulchar = '/';
5703 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5704 		KASSERT(*cp != '\0',
5705 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5706 		    cnp->cn_nameptr));
5707 		hash = cache_get_hash_iter(*cp, hash);
5708 		continue;
5709 	}
5710 	*fpl->nulchar = '\0';
5711 	fpl->hash = cache_get_hash_iter_finish(hash);
5712 
5713 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5714 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5715 
5716 #ifdef INVARIANTS
5717 	/*
5718 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5719 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5720 	 */
5721 	if (cnp->cn_namelen <= NAME_MAX) {
5722 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5723 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5724 			    cnp->cn_nameptr, cnp->cn_namelen);
5725 		}
5726 	}
5727 #endif
5728 
5729 	/*
5730 	 * Hack: we have to check if the found path component's length exceeds
5731 	 * NAME_MAX. However, the condition is very rarely true and check can
5732 	 * be elided in the common case -- if an entry was found in the cache,
5733 	 * then it could not have been too long to begin with.
5734 	 */
5735 	ndp->ni_next = cp;
5736 }
5737 
5738 static void
5739 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5740 {
5741 	struct nameidata *ndp;
5742 	struct componentname *cnp;
5743 
5744 	ndp = fpl->ndp;
5745 	cnp = fpl->cnp;
5746 
5747 	cnp->cn_nameptr = ndp->ni_next;
5748 	KASSERT(*(cnp->cn_nameptr) == '/',
5749 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5750 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5751 	cnp->cn_nameptr++;
5752 	cache_fpl_pathlen_dec(fpl);
5753 }
5754 
5755 /*
5756  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5757  *
5758  * Lockless lookup tries to elide checking for spurious slashes and should they
5759  * be present is guaranteed to fail to find an entry. In this case the caller
5760  * must check if the name starts with a slash and call this routine.  It is
5761  * going to fast forward across the spurious slashes and set the state up for
5762  * retry.
5763  */
5764 static int __noinline
5765 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5766 {
5767 	struct nameidata *ndp;
5768 	struct componentname *cnp;
5769 
5770 	ndp = fpl->ndp;
5771 	cnp = fpl->cnp;
5772 
5773 	MPASS(*(cnp->cn_nameptr) == '/');
5774 	do {
5775 		cnp->cn_nameptr++;
5776 		cache_fpl_pathlen_dec(fpl);
5777 	} while (*(cnp->cn_nameptr) == '/');
5778 
5779 	/*
5780 	 * Go back to one slash so that cache_fplookup_parse_advance has
5781 	 * something to skip.
5782 	 */
5783 	cnp->cn_nameptr--;
5784 	cache_fpl_pathlen_inc(fpl);
5785 
5786 	/*
5787 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5788 	 */
5789 	ndp->ni_next = cnp->cn_nameptr;
5790 
5791 	/*
5792 	 * See cache_fplookup_dot.
5793 	 */
5794 	fpl->tvp = fpl->dvp;
5795 	fpl->tvp_seqc = fpl->dvp_seqc;
5796 
5797 	return (0);
5798 }
5799 
5800 /*
5801  * Handle trailing slashes (e.g., "foo/").
5802  *
5803  * If a trailing slash is found the terminal vnode must be a directory.
5804  * Regular lookup shortens the path by nulifying the first trailing slash and
5805  * sets the TRAILINGSLASH flag to denote this took place. There are several
5806  * checks on it performed later.
5807  *
5808  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5809  * manner relying on an invariant that a non-directory vnode will get a miss.
5810  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5811  *
5812  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5813  * and denotes this is the last path component, which avoids looping back.
5814  *
5815  * Only plain lookups are supported for now to restrict corner cases to handle.
5816  */
5817 static int __noinline
5818 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5819 {
5820 #ifdef INVARIANTS
5821 	size_t ni_pathlen;
5822 #endif
5823 	struct nameidata *ndp;
5824 	struct componentname *cnp;
5825 	struct namecache *ncp;
5826 	struct vnode *tvp;
5827 	char *cn_nameptr_orig, *cn_nameptr_slash;
5828 	seqc_t tvp_seqc;
5829 	u_char nc_flag;
5830 
5831 	ndp = fpl->ndp;
5832 	cnp = fpl->cnp;
5833 	tvp = fpl->tvp;
5834 	tvp_seqc = fpl->tvp_seqc;
5835 
5836 	MPASS(fpl->dvp == fpl->tvp);
5837 	KASSERT(cache_fpl_istrailingslash(fpl),
5838 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5839 	    cnp->cn_pnbuf));
5840 	KASSERT(cnp->cn_nameptr[0] == '\0',
5841 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5842 	    cnp->cn_pnbuf));
5843 	KASSERT(cnp->cn_namelen == 0,
5844 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5845 	    cnp->cn_pnbuf));
5846 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5847 
5848 	if (cnp->cn_nameiop != LOOKUP) {
5849 		return (cache_fpl_aborted(fpl));
5850 	}
5851 
5852 	if (__predict_false(tvp->v_type != VDIR)) {
5853 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5854 			return (cache_fpl_aborted(fpl));
5855 		}
5856 		cache_fpl_smr_exit(fpl);
5857 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5858 	}
5859 
5860 	/*
5861 	 * Denote the last component.
5862 	 */
5863 	ndp->ni_next = &cnp->cn_nameptr[0];
5864 	MPASS(cache_fpl_islastcn(ndp));
5865 
5866 	/*
5867 	 * Unwind trailing slashes.
5868 	 */
5869 	cn_nameptr_orig = cnp->cn_nameptr;
5870 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5871 		cnp->cn_nameptr--;
5872 		if (cnp->cn_nameptr[0] != '/') {
5873 			break;
5874 		}
5875 	}
5876 
5877 	/*
5878 	 * Unwind to the beginning of the path component.
5879 	 *
5880 	 * Note the path may or may not have started with a slash.
5881 	 */
5882 	cn_nameptr_slash = cnp->cn_nameptr;
5883 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5884 		cnp->cn_nameptr--;
5885 		if (cnp->cn_nameptr[0] == '/') {
5886 			break;
5887 		}
5888 	}
5889 	if (cnp->cn_nameptr[0] == '/') {
5890 		cnp->cn_nameptr++;
5891 	}
5892 
5893 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5894 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5895 	cache_fpl_checkpoint(fpl);
5896 
5897 #ifdef INVARIANTS
5898 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
5899 	if (ni_pathlen != fpl->debug.ni_pathlen) {
5900 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5901 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5902 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5903 	}
5904 #endif
5905 
5906 	/*
5907 	 * If this was a "./" lookup the parent directory is already correct.
5908 	 */
5909 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
5910 		return (0);
5911 	}
5912 
5913 	/*
5914 	 * Otherwise we need to look it up.
5915 	 */
5916 	tvp = fpl->tvp;
5917 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
5918 	if (__predict_false(ncp == NULL)) {
5919 		return (cache_fpl_aborted(fpl));
5920 	}
5921 	nc_flag = atomic_load_char(&ncp->nc_flag);
5922 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5923 		return (cache_fpl_aborted(fpl));
5924 	}
5925 	fpl->dvp = ncp->nc_dvp;
5926 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5927 	if (seqc_in_modify(fpl->dvp_seqc)) {
5928 		return (cache_fpl_aborted(fpl));
5929 	}
5930 	return (0);
5931 }
5932 
5933 /*
5934  * See the API contract for VOP_FPLOOKUP_VEXEC.
5935  */
5936 static int __noinline
5937 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
5938 {
5939 	struct componentname *cnp;
5940 	struct vnode *dvp;
5941 	seqc_t dvp_seqc;
5942 
5943 	cnp = fpl->cnp;
5944 	dvp = fpl->dvp;
5945 	dvp_seqc = fpl->dvp_seqc;
5946 
5947 	/*
5948 	 * Hack: delayed empty path checking.
5949 	 */
5950 	if (cnp->cn_pnbuf[0] == '\0') {
5951 		return (cache_fplookup_emptypath(fpl));
5952 	}
5953 
5954 	/*
5955 	 * TODO: Due to ignoring trailing slashes lookup will perform a
5956 	 * permission check on the last dir when it should not be doing it.  It
5957 	 * may fail, but said failure should be ignored. It is possible to fix
5958 	 * it up fully without resorting to regular lookup, but for now just
5959 	 * abort.
5960 	 */
5961 	if (cache_fpl_istrailingslash(fpl)) {
5962 		return (cache_fpl_aborted(fpl));
5963 	}
5964 
5965 	/*
5966 	 * Hack: delayed degenerate path checking.
5967 	 */
5968 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
5969 		return (cache_fplookup_degenerate(fpl));
5970 	}
5971 
5972 	/*
5973 	 * Hack: delayed name len checking.
5974 	 */
5975 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5976 		cache_fpl_smr_exit(fpl);
5977 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5978 	}
5979 
5980 	/*
5981 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
5982 	 * In such a case we need to return ENOTDIR, but we may happen to get
5983 	 * here with a different error.
5984 	 */
5985 	if (dvp->v_type != VDIR) {
5986 		error = ENOTDIR;
5987 	}
5988 
5989 	/*
5990 	 * Hack: handle O_SEARCH.
5991 	 *
5992 	 * Open Group Base Specifications Issue 7, 2018 edition states:
5993 	 * <quote>
5994 	 * If the access mode of the open file description associated with the
5995 	 * file descriptor is not O_SEARCH, the function shall check whether
5996 	 * directory searches are permitted using the current permissions of
5997 	 * the directory underlying the file descriptor. If the access mode is
5998 	 * O_SEARCH, the function shall not perform the check.
5999 	 * </quote>
6000 	 *
6001 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6002 	 * component to decide whether to do the permission check. However,
6003 	 * since most lookups never have the flag (and when they do it is only
6004 	 * present for the first path component), lockless lookup only acts on
6005 	 * it if there is a permission problem. Here the flag is represented
6006 	 * with a boolean so that we don't have to clear it on the way out.
6007 	 *
6008 	 * For simplicity this always aborts.
6009 	 * TODO: check if this is the first lookup and ignore the permission
6010 	 * problem. Note the flag has to survive fallback (if it happens to be
6011 	 * performed).
6012 	 */
6013 	if (fpl->fsearch) {
6014 		return (cache_fpl_aborted(fpl));
6015 	}
6016 
6017 	switch (error) {
6018 	case EAGAIN:
6019 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6020 			error = cache_fpl_aborted(fpl);
6021 		} else {
6022 			cache_fpl_partial(fpl);
6023 		}
6024 		break;
6025 	default:
6026 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6027 			error = cache_fpl_aborted(fpl);
6028 		} else {
6029 			cache_fpl_smr_exit(fpl);
6030 			cache_fpl_handled_error(fpl, error);
6031 		}
6032 		break;
6033 	}
6034 	return (error);
6035 }
6036 
6037 static int
6038 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6039 {
6040 	struct nameidata *ndp;
6041 	struct componentname *cnp;
6042 	struct mount *mp;
6043 	int error;
6044 
6045 	ndp = fpl->ndp;
6046 	cnp = fpl->cnp;
6047 
6048 	cache_fpl_checkpoint(fpl);
6049 
6050 	/*
6051 	 * The vnode at hand is almost always stable, skip checking for it.
6052 	 * Worst case this postpones the check towards the end of the iteration
6053 	 * of the main loop.
6054 	 */
6055 	fpl->dvp = dvp;
6056 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6057 
6058 	mp = atomic_load_ptr(&dvp->v_mount);
6059 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6060 		return (cache_fpl_aborted(fpl));
6061 	}
6062 
6063 	MPASS(fpl->tvp == NULL);
6064 
6065 	for (;;) {
6066 		cache_fplookup_parse(fpl);
6067 
6068 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6069 		if (__predict_false(error != 0)) {
6070 			error = cache_fplookup_failed_vexec(fpl, error);
6071 			break;
6072 		}
6073 
6074 		error = cache_fplookup_next(fpl);
6075 		if (__predict_false(cache_fpl_terminated(fpl))) {
6076 			break;
6077 		}
6078 
6079 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6080 
6081 		if (fpl->tvp->v_type == VLNK) {
6082 			error = cache_fplookup_symlink(fpl);
6083 			if (cache_fpl_terminated(fpl)) {
6084 				break;
6085 			}
6086 		} else {
6087 			if (cache_fpl_islastcn(ndp)) {
6088 				error = cache_fplookup_final(fpl);
6089 				break;
6090 			}
6091 
6092 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6093 				error = cache_fpl_aborted(fpl);
6094 				break;
6095 			}
6096 
6097 			fpl->dvp = fpl->tvp;
6098 			fpl->dvp_seqc = fpl->tvp_seqc;
6099 			cache_fplookup_parse_advance(fpl);
6100 		}
6101 
6102 		cache_fpl_checkpoint(fpl);
6103 	}
6104 
6105 	return (error);
6106 }
6107 
6108 /*
6109  * Fast path lookup protected with SMR and sequence counters.
6110  *
6111  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6112  *
6113  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6114  * outlined below.
6115  *
6116  * Traditional vnode lookup conceptually looks like this:
6117  *
6118  * vn_lock(current);
6119  * for (;;) {
6120  *	next = find();
6121  *	vn_lock(next);
6122  *	vn_unlock(current);
6123  *	current = next;
6124  *	if (last)
6125  *	    break;
6126  * }
6127  * return (current);
6128  *
6129  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6130  * any modifications thanks to holding respective locks.
6131  *
6132  * The same guarantee can be provided with a combination of safe memory
6133  * reclamation and sequence counters instead. If all operations which affect
6134  * the relationship between the current vnode and the one we are looking for
6135  * also modify the counter, we can verify whether all the conditions held as
6136  * we made the jump. This includes things like permissions, mount points etc.
6137  * Counter modification is provided by enclosing relevant places in
6138  * vn_seqc_write_begin()/end() calls.
6139  *
6140  * Thus this translates to:
6141  *
6142  * vfs_smr_enter();
6143  * dvp_seqc = seqc_read_any(dvp);
6144  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6145  *     abort();
6146  * for (;;) {
6147  * 	tvp = find();
6148  * 	tvp_seqc = seqc_read_any(tvp);
6149  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6150  * 	    abort();
6151  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6152  * 	    abort();
6153  * 	dvp = tvp; // we know nothing of importance has changed
6154  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6155  * 	if (last)
6156  * 	    break;
6157  * }
6158  * vget(); // secure the vnode
6159  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6160  * 	    abort();
6161  * // at this point we know nothing has changed for any parent<->child pair
6162  * // as they were crossed during the lookup, meaning we matched the guarantee
6163  * // of the locked variant
6164  * return (tvp);
6165  *
6166  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6167  * - they are called while within vfs_smr protection which they must never exit
6168  * - EAGAIN can be returned to denote checking could not be performed, it is
6169  *   always valid to return it
6170  * - if the sequence counter has not changed the result must be valid
6171  * - if the sequence counter has changed both false positives and false negatives
6172  *   are permitted (since the result will be rejected later)
6173  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6174  *
6175  * Caveats to watch out for:
6176  * - vnodes are passed unlocked and unreferenced with nothing stopping
6177  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6178  *   to use atomic_load_ptr to fetch it.
6179  * - the aforementioned object can also get freed, meaning absent other means it
6180  *   should be protected with vfs_smr
6181  * - either safely checking permissions as they are modified or guaranteeing
6182  *   their stability is left to the routine
6183  */
6184 int
6185 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6186     struct pwd **pwdp)
6187 {
6188 	struct cache_fpl fpl;
6189 	struct pwd *pwd;
6190 	struct vnode *dvp;
6191 	struct componentname *cnp;
6192 	int error;
6193 
6194 	fpl.status = CACHE_FPL_STATUS_UNSET;
6195 	fpl.in_smr = false;
6196 	fpl.ndp = ndp;
6197 	fpl.cnp = cnp = &ndp->ni_cnd;
6198 	MPASS(ndp->ni_lcf == 0);
6199 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6200 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6201 	    cnp->cn_flags));
6202 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6203 	MPASS(ndp->ni_resflags == 0);
6204 
6205 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6206 		*status = fpl.status;
6207 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6208 		return (EOPNOTSUPP);
6209 	}
6210 
6211 	cache_fpl_checkpoint_outer(&fpl);
6212 
6213 	cache_fpl_smr_enter_initial(&fpl);
6214 #ifdef INVARIANTS
6215 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6216 #endif
6217 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6218 	fpl.fsearch = false;
6219 	fpl.tvp = NULL; /* for degenerate path handling */
6220 	fpl.pwd = pwdp;
6221 	pwd = pwd_get_smr();
6222 	*(fpl.pwd) = pwd;
6223 	namei_setup_rootdir(ndp, cnp, pwd);
6224 	ndp->ni_topdir = pwd->pwd_jdir;
6225 
6226 	if (cnp->cn_pnbuf[0] == '/') {
6227 		dvp = cache_fpl_handle_root(&fpl);
6228 		ndp->ni_resflags = NIRES_ABS;
6229 	} else {
6230 		if (ndp->ni_dirfd == AT_FDCWD) {
6231 			dvp = pwd->pwd_cdir;
6232 		} else {
6233 			error = cache_fplookup_dirfd(&fpl, &dvp);
6234 			if (__predict_false(error != 0)) {
6235 				goto out;
6236 			}
6237 		}
6238 	}
6239 
6240 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6241 	error = cache_fplookup_impl(dvp, &fpl);
6242 out:
6243 	cache_fpl_smr_assert_not_entered(&fpl);
6244 	cache_fpl_assert_status(&fpl);
6245 	*status = fpl.status;
6246 	if (SDT_PROBES_ENABLED()) {
6247 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6248 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6249 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6250 			    ndp);
6251 	}
6252 
6253 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6254 		MPASS(error != CACHE_FPL_FAILED);
6255 		if (error != 0) {
6256 			cache_fpl_cleanup_cnp(fpl.cnp);
6257 			MPASS(fpl.dvp == NULL);
6258 			MPASS(fpl.tvp == NULL);
6259 		}
6260 		ndp->ni_dvp = fpl.dvp;
6261 		ndp->ni_vp = fpl.tvp;
6262 	}
6263 	return (error);
6264 }
6265