xref: /freebsd/sys/kern/vfs_cache.c (revision 47cf7c780a3ebdd4b2daf2060fbd1598d384e798)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "opt_ddb.h"
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/capsicum.h>
41 #include <sys/counter.h>
42 #include <sys/filedesc.h>
43 #include <sys/fnv_hash.h>
44 #include <sys/kernel.h>
45 #include <sys/ktr.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/fcntl.h>
49 #include <sys/jail.h>
50 #include <sys/mount.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/seqc.h>
54 #include <sys/sdt.h>
55 #include <sys/smr.h>
56 #include <sys/smp.h>
57 #include <sys/syscallsubr.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vnode.h>
61 #include <ck_queue.h>
62 #ifdef KTRACE
63 #include <sys/ktrace.h>
64 #endif
65 #ifdef INVARIANTS
66 #include <machine/_inttypes.h>
67 #endif
68 
69 #include <security/audit/audit.h>
70 #include <security/mac/mac_framework.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 /*
79  * High level overview of name caching in the VFS layer.
80  *
81  * Originally caching was implemented as part of UFS, later extracted to allow
82  * use by other filesystems. A decision was made to make it optional and
83  * completely detached from the rest of the kernel, which comes with limitations
84  * outlined near the end of this comment block.
85  *
86  * This fundamental choice needs to be revisited. In the meantime, the current
87  * state is described below. Significance of all notable routines is explained
88  * in comments placed above their implementation. Scattered thoroughout the
89  * file are TODO comments indicating shortcomings which can be fixed without
90  * reworking everything (most of the fixes will likely be reusable). Various
91  * details are omitted from this explanation to not clutter the overview, they
92  * have to be checked by reading the code and associated commentary.
93  *
94  * Keep in mind that it's individual path components which are cached, not full
95  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
96  * one for each name.
97  *
98  * I. Data organization
99  *
100  * Entries are described by "struct namecache" objects and stored in a hash
101  * table. See cache_get_hash for more information.
102  *
103  * "struct vnode" contains pointers to source entries (names which can be found
104  * when traversing through said vnode), destination entries (names of that
105  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
106  * the parent vnode.
107  *
108  * The (directory vnode; name) tuple reliably determines the target entry if
109  * it exists.
110  *
111  * Since there are no small locks at this time (all are 32 bytes in size on
112  * LP64), the code works around the problem by introducing lock arrays to
113  * protect hash buckets and vnode lists.
114  *
115  * II. Filesystem integration
116  *
117  * Filesystems participating in name caching do the following:
118  * - set vop_lookup routine to vfs_cache_lookup
119  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
120  * - if they support lockless lookup (see below), vop_fplookup_vexec and
121  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
122  *   mount point
123  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
124  *   applicable
125  * - call cache_enter to add entries depending on the MAKEENTRY flag
126  *
127  * With the above in mind, there are 2 entry points when doing lookups:
128  * - ... -> namei -> cache_fplookup -- this is the default
129  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
130  *   should the above fail
131  *
132  * Example code flow how an entry is added:
133  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
134  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
135  *
136  * III. Performance considerations
137  *
138  * For lockless case forward lookup avoids any writes to shared areas apart
139  * from the terminal path component. In other words non-modifying lookups of
140  * different files don't suffer any scalability problems in the namecache.
141  * Looking up the same file is limited by VFS and goes beyond the scope of this
142  * file.
143  *
144  * At least on amd64 the single-threaded bottleneck for long paths is hashing
145  * (see cache_get_hash). There are cases where the code issues acquire fence
146  * multiple times, they can be combined on architectures which suffer from it.
147  *
148  * For locked case each encountered vnode has to be referenced and locked in
149  * order to be handed out to the caller (normally that's namei). This
150  * introduces significant hit single-threaded and serialization multi-threaded.
151  *
152  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
153  * avoids any writes to shared areas to any components.
154  *
155  * Unrelated insertions are partially serialized on updating the global entry
156  * counter and possibly serialized on colliding bucket or vnode locks.
157  *
158  * IV. Observability
159  *
160  * Note not everything has an explicit dtrace probe nor it should have, thus
161  * some of the one-liners below depend on implementation details.
162  *
163  * Examples:
164  *
165  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
166  * # line number, column 2 is status code (see cache_fpl_status)
167  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
168  *
169  * # Lengths of names added by binary name
170  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
171  *
172  * # Same as above but only those which exceed 64 characters
173  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
174  *
175  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
176  * # path is it
177  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
178  *
179  * V. Limitations and implementation defects
180  *
181  * - since it is possible there is no entry for an open file, tools like
182  *   "procstat" may fail to resolve fd -> vnode -> path to anything
183  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
184  *   shortage) in which case the above problem applies
185  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
186  *   way, resolving a name may return a different path than the one used to
187  *   open it (even if said path is still valid)
188  * - by default entries are not added for newly created files
189  * - adding an entry may need to evict negative entry first, which happens in 2
190  *   distinct places (evicting on lookup, adding in a later VOP) making it
191  *   impossible to simply reuse it
192  * - there is a simple scheme to evict negative entries as the cache is approaching
193  *   its capacity, but it is very unclear if doing so is a good idea to begin with
194  * - vnodes are subject to being recycled even if target inode is left in memory,
195  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
196  *   names get duplicated -- kept by filesystem itself and namecache separately
197  * - struct namecache has a fixed size and comes in 2 variants, often wasting
198  *   space.  now hard to replace with malloc due to dependence on SMR, which
199  *   requires UMA zones to opt in
200  * - lack of better integration with the kernel also turns nullfs into a layered
201  *   filesystem instead of something which can take advantage of caching
202  *
203  * Appendix A: where is the time lost, expanding on paragraph III
204  *
205  * While some care went into optimizing lookups, there is still plenty of
206  * performance left on the table, most notably from single-threaded standpoint.
207  * Below is a woefully incomplete list of changes which can help.  Ideas are
208  * mostly sketched out, no claim is made all kinks or prerequisites are laid
209  * out.
210  *
211  * Note there is performance lost all over VFS.
212  *
213  * === SMR-only lookup
214  *
215  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
216  * lockless lookup could refrain from refing/locking the found vnode and
217  * instead return while within the SMR section. Then a call to, say,
218  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
219  * would be validated with seqc not changing. This would be faster
220  * single-threaded as it dodges atomics and would provide full scalability for
221  * multicore uses. This would *not* work for open(2) or other calls which need
222  * the vnode to hang around for the long haul, but would work for aforementioned
223  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
224  *
225  * === hotpatching for sdt probes
226  *
227  * They result in *tons* of branches all over with rather regrettable codegen
228  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
229  * Reworking the code to patch itself at runtime with asm goto would solve it.
230  * asm goto is fully supported by gcc and clang.
231  *
232  * === copyinstr
233  *
234  * On all architectures it operates one byte at a time, while it could be
235  * word-sized instead thanks to the Mycroft trick.
236  *
237  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
238  * *optionally* filling in the length parameter.
239  *
240  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
241  * size which is a multiply of the word (and never zero), with the length
242  * always returned. On top of it the routine could be allowed to transform the
243  * buffer in arbitrary ways, most notably writing past the found length (not to
244  * be confused with writing past buffer size) -- this would allow word-sized
245  * movs while checking for '\0' later.
246  *
247  * === detour through namei
248  *
249  * Currently one suffers being called from namei, which then has to check if
250  * things worked out locklessly. Instead the lockless lookup could be the
251  * actual entry point which calls what is currently namei as a fallback.
252  *
253  * === avoidable branches in cache_can_fplookup
254  *
255  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
256  * this is off, none of fplookup code should execute).
257  *
258  * Both audit and capsicum branches can be combined into one, but it requires
259  * paying off a lot of tech debt first.
260  *
261  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
262  * branch.
263  *
264  * === mount stacks
265  *
266  * Crossing a mount requires checking if perhaps something is mounted on top.
267  * Instead, an additional entry could be added to struct mount with a pointer
268  * to the final mount on the stack. This would be recalculated on each
269  * mount/unmount.
270  *
271  * === root vnodes
272  *
273  * It could become part of the API contract to *always* have a rootvnode set in
274  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
275  * to be modified to always skip them.
276  *
277  * === inactive on v_usecount reaching 0
278  *
279  * VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
280  * processing with a bit in usecount.
281  *
282  * === v_holdcnt
283  *
284  * Hold count should probably get eliminated, but one can argue it is a useful
285  * feature. Even if so, handling of v_usecount could be decoupled from it --
286  * vnlru et al would consider the vnode not-freeable if has either hold or
287  * usecount on it.
288  *
289  * This would eliminate 2 atomics.
290  */
291 
292 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
293     "Name cache");
294 
295 SDT_PROVIDER_DECLARE(vfs);
296 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
297     "struct vnode *");
298 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
299     "struct vnode *");
300 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
301     "char *");
302 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
303     "const char *");
304 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
305     "struct namecache *", "int", "int");
306 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
307 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
308     "char *", "struct vnode *");
309 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
310 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
311     "struct vnode *", "char *");
312 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
313     "struct vnode *");
314 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
315     "struct vnode *", "char *");
316 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
317     "char *");
318 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
319     "struct componentname *");
320 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
321     "struct componentname *");
322 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
323 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
324 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
325 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
326 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
327     "struct vnode *");
328 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
329     "char *");
330 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
331     "char *");
332 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
333 
334 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
335 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
336 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
337 
338 static char __read_frequently cache_fast_lookup_enabled = true;
339 
340 /*
341  * This structure describes the elements in the cache of recent
342  * names looked up by namei.
343  */
344 struct negstate {
345 	u_char neg_flag;
346 	u_char neg_hit;
347 };
348 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
349     "the state must fit in a union with a pointer without growing it");
350 
351 struct	namecache {
352 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
353 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
354 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
355 	struct	vnode *nc_dvp;		/* vnode of parent of name */
356 	union {
357 		struct	vnode *nu_vp;	/* vnode the name refers to */
358 		struct	negstate nu_neg;/* negative entry state */
359 	} n_un;
360 	u_char	nc_flag;		/* flag bits */
361 	u_char	nc_nlen;		/* length of name */
362 	char	nc_name[];		/* segment name + nul */
363 };
364 
365 /*
366  * struct namecache_ts repeats struct namecache layout up to the
367  * nc_nlen member.
368  * struct namecache_ts is used in place of struct namecache when time(s) need
369  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
370  * both a non-dotdot directory name plus dotdot for the directory's
371  * parent.
372  *
373  * See below for alignment requirement.
374  */
375 struct	namecache_ts {
376 	struct	timespec nc_time;	/* timespec provided by fs */
377 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
378 	int	nc_ticks;		/* ticks value when entry was added */
379 	int	nc_pad;
380 	struct namecache nc_nc;
381 };
382 
383 TAILQ_HEAD(cache_freebatch, namecache);
384 
385 /*
386  * At least mips n32 performs 64-bit accesses to timespec as found
387  * in namecache_ts and requires them to be aligned. Since others
388  * may be in the same spot suffer a little bit and enforce the
389  * alignment for everyone. Note this is a nop for 64-bit platforms.
390  */
391 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
392 
393 /*
394  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
395  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
396  * smaller and the value was bumped to retain the total size, but it
397  * was never re-evaluated for suitability. A simple test counting
398  * lengths during package building shows that the value of 45 covers
399  * about 86% of all added entries, reaching 99% at 65.
400  *
401  * Regardless of the above, use of dedicated zones instead of malloc may be
402  * inducing additional waste. This may be hard to address as said zones are
403  * tied to VFS SMR. Even if retaining them, the current split should be
404  * re-evaluated.
405  */
406 #ifdef __LP64__
407 #define	CACHE_PATH_CUTOFF	45
408 #define	CACHE_LARGE_PAD		6
409 #else
410 #define	CACHE_PATH_CUTOFF	41
411 #define	CACHE_LARGE_PAD		2
412 #endif
413 
414 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
415 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
416 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
417 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
418 
419 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
420 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
421 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
422 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
423 
424 #define	nc_vp		n_un.nu_vp
425 #define	nc_neg		n_un.nu_neg
426 
427 /*
428  * Flags in namecache.nc_flag
429  */
430 #define NCF_WHITE	0x01
431 #define NCF_ISDOTDOT	0x02
432 #define	NCF_TS		0x04
433 #define	NCF_DTS		0x08
434 #define	NCF_DVDROP	0x10
435 #define	NCF_NEGATIVE	0x20
436 #define	NCF_INVALID	0x40
437 #define	NCF_WIP		0x80
438 
439 /*
440  * Flags in negstate.neg_flag
441  */
442 #define NEG_HOT		0x01
443 
444 static bool	cache_neg_evict_cond(u_long lnumcache);
445 
446 /*
447  * Mark an entry as invalid.
448  *
449  * This is called before it starts getting deconstructed.
450  */
451 static void
452 cache_ncp_invalidate(struct namecache *ncp)
453 {
454 
455 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
456 	    ("%s: entry %p already invalid", __func__, ncp));
457 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
458 	atomic_thread_fence_rel();
459 }
460 
461 /*
462  * Does this entry match the given directory and name?
463  */
464 static bool
465 cache_ncp_match(struct namecache *ncp, struct vnode *dvp,
466     struct componentname *cnp)
467 {
468 	return (ncp->nc_dvp == dvp &&
469 	    ncp->nc_nlen == cnp->cn_namelen &&
470 	    bcmp(ncp->nc_name, cnp->cn_nameptr, cnp->cn_namelen) == 0);
471 }
472 
473 /*
474  * Check whether the entry can be safely used.
475  *
476  * All places which elide locks are supposed to call this after they are
477  * done with reading from an entry.
478  */
479 #define cache_ncp_canuse(ncp)	({					\
480 	struct namecache *_ncp = (ncp);					\
481 	u_char _nc_flag;						\
482 									\
483 	atomic_thread_fence_acq();					\
484 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
485 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
486 })
487 
488 /*
489  * Like the above but also checks NCF_WHITE.
490  */
491 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
492 	struct namecache *_ncp = (ncp);					\
493 	u_char _nc_flag;						\
494 									\
495 	atomic_thread_fence_acq();					\
496 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
497 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
498 })
499 
500 VFS_SMR_DECLARE;
501 
502 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
503     "Name cache parameters");
504 
505 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
506 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
507     "Total namecache capacity");
508 
509 u_int ncsizefactor = 2;
510 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
511     "Size factor for namecache");
512 
513 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
514 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
515     "Ratio of negative namecache entries");
516 
517 /*
518  * Negative entry % of namecache capacity above which automatic eviction is allowed.
519  *
520  * Check cache_neg_evict_cond for details.
521  */
522 static u_int ncnegminpct = 3;
523 
524 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
525 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
526     "Negative entry count above which automatic eviction is allowed");
527 
528 /*
529  * Structures associated with name caching.
530  */
531 #define NCHHASH(hash) \
532 	(&nchashtbl[(hash) & nchash])
533 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
534 static u_long __read_mostly	nchash;			/* size of hash table */
535 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
536     "Size of namecache hash table");
537 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
538 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
539 
540 struct nchstats	nchstats;		/* cache effectiveness statistics */
541 
542 static u_int __exclusive_cache_line neg_cycle;
543 
544 #define ncneghash	3
545 #define	numneglists	(ncneghash + 1)
546 
547 struct neglist {
548 	struct mtx		nl_evict_lock;
549 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
550 	TAILQ_HEAD(, namecache) nl_list;
551 	TAILQ_HEAD(, namecache) nl_hotlist;
552 	u_long			nl_hotnum;
553 } __aligned(CACHE_LINE_SIZE);
554 
555 static struct neglist neglists[numneglists];
556 
557 static inline struct neglist *
558 NCP2NEGLIST(struct namecache *ncp)
559 {
560 
561 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
562 }
563 
564 static inline struct negstate *
565 NCP2NEGSTATE(struct namecache *ncp)
566 {
567 
568 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
569 	return (&ncp->nc_neg);
570 }
571 
572 #define	numbucketlocks (ncbuckethash + 1)
573 static u_int __read_mostly  ncbuckethash;
574 static struct mtx_padalign __read_mostly  *bucketlocks;
575 #define	HASH2BUCKETLOCK(hash) \
576 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
577 
578 #define	numvnodelocks (ncvnodehash + 1)
579 static u_int __read_mostly  ncvnodehash;
580 static struct mtx __read_mostly *vnodelocks;
581 static inline struct mtx *
582 VP2VNODELOCK(struct vnode *vp)
583 {
584 
585 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
586 }
587 
588 /*
589  * Search the hash table for a namecache entry.  Either the corresponding bucket
590  * must be locked, or the caller must be in an SMR read section.
591  */
592 static struct namecache *
593 cache_ncp_find(struct vnode *dvp, struct componentname *cnp, uint32_t hash)
594 {
595 	struct namecache *ncp;
596 
597 	KASSERT(mtx_owned(HASH2BUCKETLOCK(hash)) || VFS_SMR_ENTERED(),
598 	    ("%s: hash %u not locked", __func__, hash));
599 	CK_SLIST_FOREACH(ncp, NCHHASH(hash), nc_hash) {
600 		if (cache_ncp_match(ncp, dvp, cnp))
601 			break;
602 	}
603 	return (ncp);
604 }
605 
606 static void
607 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
608 {
609 	struct namecache_ts *ncp_ts;
610 
611 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
612 	    (tsp == NULL && ticksp == NULL),
613 	    ("No NCF_TS"));
614 
615 	if (tsp == NULL)
616 		return;
617 
618 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
619 	*tsp = ncp_ts->nc_time;
620 	*ticksp = ncp_ts->nc_ticks;
621 }
622 
623 #ifdef DEBUG_CACHE
624 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
625 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
626     "VFS namecache enabled");
627 #endif
628 
629 /* Export size information to userland */
630 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
631     sizeof(struct namecache), "sizeof(struct namecache)");
632 
633 /*
634  * The new name cache statistics
635  */
636 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
637     "Name cache statistics");
638 
639 #define STATNODE_ULONG(name, varname, descr)					\
640 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
641 #define STATNODE_COUNTER(name, varname, descr)					\
642 	static COUNTER_U64_DEFINE_EARLY(varname);				\
643 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
644 	    descr);
645 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
646 STATNODE_ULONG(count, numcache, "Number of cache entries");
647 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
648 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
649 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
650 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
651 STATNODE_COUNTER(poszaps, numposzaps,
652     "Number of cache hits (positive) we do not want to cache");
653 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
654 STATNODE_COUNTER(negzaps, numnegzaps,
655     "Number of cache hits (negative) we do not want to cache");
656 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
657 /* These count for vn_getcwd(), too. */
658 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
659 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
660     "Number of fullpath search errors (VOP_VPTOCNP failures)");
661 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
662 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
663 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
664 
665 /*
666  * Debug or developer statistics.
667  */
668 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
669     "Name cache debugging");
670 #define DEBUGNODE_ULONG(name, varname, descr)					\
671 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
672 static u_long zap_bucket_relock_success;
673 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
674     "Number of successful removals after relocking");
675 static u_long zap_bucket_fail;
676 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
677 static u_long zap_bucket_fail2;
678 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
679 static u_long cache_lock_vnodes_cel_3_failures;
680 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
681     "Number of times 3-way vnode locking failed");
682 
683 static void cache_zap_locked(struct namecache *ncp);
684 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
685     char **retbuf, size_t *buflen, size_t addend);
686 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
687     char **retbuf, size_t *buflen);
688 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
689     char **retbuf, size_t *len, size_t addend);
690 
691 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
692 
693 static inline void
694 cache_assert_vlp_locked(struct mtx *vlp)
695 {
696 
697 	if (vlp != NULL)
698 		mtx_assert(vlp, MA_OWNED);
699 }
700 
701 static inline void
702 cache_assert_vnode_locked(struct vnode *vp)
703 {
704 	struct mtx *vlp;
705 
706 	vlp = VP2VNODELOCK(vp);
707 	cache_assert_vlp_locked(vlp);
708 }
709 
710 /*
711  * Directory vnodes with entries are held for two reasons:
712  * 1. make them less of a target for reclamation in vnlru
713  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
714  *
715  * It will be feasible to stop doing it altogether if all filesystems start
716  * supporting lockless lookup.
717  */
718 static void
719 cache_hold_vnode(struct vnode *vp)
720 {
721 
722 	cache_assert_vnode_locked(vp);
723 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
724 	vhold(vp);
725 	counter_u64_add(numcachehv, 1);
726 }
727 
728 static void
729 cache_drop_vnode(struct vnode *vp)
730 {
731 
732 	/*
733 	 * Called after all locks are dropped, meaning we can't assert
734 	 * on the state of v_cache_src.
735 	 */
736 	vdrop(vp);
737 	counter_u64_add(numcachehv, -1);
738 }
739 
740 /*
741  * UMA zones.
742  */
743 static uma_zone_t __read_mostly cache_zone_small;
744 static uma_zone_t __read_mostly cache_zone_small_ts;
745 static uma_zone_t __read_mostly cache_zone_large;
746 static uma_zone_t __read_mostly cache_zone_large_ts;
747 
748 char *
749 cache_symlink_alloc(size_t size, int flags)
750 {
751 
752 	if (size < CACHE_ZONE_SMALL_SIZE) {
753 		return (uma_zalloc_smr(cache_zone_small, flags));
754 	}
755 	if (size < CACHE_ZONE_LARGE_SIZE) {
756 		return (uma_zalloc_smr(cache_zone_large, flags));
757 	}
758 	counter_u64_add(symlinktoobig, 1);
759 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
760 	return (NULL);
761 }
762 
763 void
764 cache_symlink_free(char *string, size_t size)
765 {
766 
767 	MPASS(string != NULL);
768 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
769 	    ("%s: size %zu too big", __func__, size));
770 
771 	if (size < CACHE_ZONE_SMALL_SIZE) {
772 		uma_zfree_smr(cache_zone_small, string);
773 		return;
774 	}
775 	if (size < CACHE_ZONE_LARGE_SIZE) {
776 		uma_zfree_smr(cache_zone_large, string);
777 		return;
778 	}
779 	__assert_unreachable();
780 }
781 
782 static struct namecache *
783 cache_alloc_uma(int len, bool ts)
784 {
785 	struct namecache_ts *ncp_ts;
786 	struct namecache *ncp;
787 
788 	if (__predict_false(ts)) {
789 		if (len <= CACHE_PATH_CUTOFF)
790 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
791 		else
792 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
793 		ncp = &ncp_ts->nc_nc;
794 	} else {
795 		if (len <= CACHE_PATH_CUTOFF)
796 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
797 		else
798 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
799 	}
800 	return (ncp);
801 }
802 
803 static void
804 cache_free_uma(struct namecache *ncp)
805 {
806 	struct namecache_ts *ncp_ts;
807 
808 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
809 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
810 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
811 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
812 		else
813 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
814 	} else {
815 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
816 			uma_zfree_smr(cache_zone_small, ncp);
817 		else
818 			uma_zfree_smr(cache_zone_large, ncp);
819 	}
820 }
821 
822 static struct namecache *
823 cache_alloc(int len, bool ts)
824 {
825 	u_long lnumcache;
826 
827 	/*
828 	 * Avoid blowout in namecache entries.
829 	 *
830 	 * Bugs:
831 	 * 1. filesystems may end up trying to add an already existing entry
832 	 * (for example this can happen after a cache miss during concurrent
833 	 * lookup), in which case we will call cache_neg_evict despite not
834 	 * adding anything.
835 	 * 2. the routine may fail to free anything and no provisions are made
836 	 * to make it try harder (see the inside for failure modes)
837 	 * 3. it only ever looks at negative entries.
838 	 */
839 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
840 	if (cache_neg_evict_cond(lnumcache)) {
841 		lnumcache = atomic_load_long(&numcache);
842 	}
843 	if (__predict_false(lnumcache >= ncsize)) {
844 		atomic_subtract_long(&numcache, 1);
845 		counter_u64_add(numdrops, 1);
846 		return (NULL);
847 	}
848 	return (cache_alloc_uma(len, ts));
849 }
850 
851 static void
852 cache_free(struct namecache *ncp)
853 {
854 
855 	MPASS(ncp != NULL);
856 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
857 		cache_drop_vnode(ncp->nc_dvp);
858 	}
859 	cache_free_uma(ncp);
860 	atomic_subtract_long(&numcache, 1);
861 }
862 
863 static void
864 cache_free_batch(struct cache_freebatch *batch)
865 {
866 	struct namecache *ncp, *nnp;
867 	int i;
868 
869 	i = 0;
870 	if (TAILQ_EMPTY(batch))
871 		goto out;
872 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
873 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
874 			cache_drop_vnode(ncp->nc_dvp);
875 		}
876 		cache_free_uma(ncp);
877 		i++;
878 	}
879 	atomic_subtract_long(&numcache, i);
880 out:
881 	SDT_PROBE1(vfs, namecache, purge, batch, i);
882 }
883 
884 /*
885  * Hashing.
886  *
887  * The code was made to use FNV in 2001 and this choice needs to be revisited.
888  *
889  * Short summary of the difficulty:
890  * The longest name which can be inserted is NAME_MAX characters in length (or
891  * 255 at the time of writing this comment), while majority of names used in
892  * practice are significantly shorter (mostly below 10). More importantly
893  * majority of lookups performed find names are even shorter than that.
894  *
895  * This poses a problem where hashes which do better than FNV past word size
896  * (or so) tend to come with additional overhead when finalizing the result,
897  * making them noticeably slower for the most commonly used range.
898  *
899  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
900  *
901  * When looking it up the most time consuming part by a large margin (at least
902  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
903  * input would make the slowest part stand out even more.
904  */
905 
906 /*
907  * TODO: With the value stored we can do better than computing the hash based
908  * on the address.
909  */
910 static void
911 cache_prehash(struct vnode *vp)
912 {
913 
914 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
915 }
916 
917 static uint32_t
918 cache_get_hash(char *name, u_char len, struct vnode *dvp)
919 {
920 
921 	return (fnv_32_buf(name, len, dvp->v_nchash));
922 }
923 
924 static uint32_t
925 cache_get_hash_iter_start(struct vnode *dvp)
926 {
927 
928 	return (dvp->v_nchash);
929 }
930 
931 static uint32_t
932 cache_get_hash_iter(char c, uint32_t hash)
933 {
934 
935 	return (fnv_32_buf(&c, 1, hash));
936 }
937 
938 static uint32_t
939 cache_get_hash_iter_finish(uint32_t hash)
940 {
941 
942 	return (hash);
943 }
944 
945 static inline struct nchashhead *
946 NCP2BUCKET(struct namecache *ncp)
947 {
948 	uint32_t hash;
949 
950 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
951 	return (NCHHASH(hash));
952 }
953 
954 static inline struct mtx *
955 NCP2BUCKETLOCK(struct namecache *ncp)
956 {
957 	uint32_t hash;
958 
959 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
960 	return (HASH2BUCKETLOCK(hash));
961 }
962 
963 #ifdef INVARIANTS
964 static void
965 cache_assert_bucket_locked(struct namecache *ncp)
966 {
967 	struct mtx *blp;
968 
969 	blp = NCP2BUCKETLOCK(ncp);
970 	mtx_assert(blp, MA_OWNED);
971 }
972 
973 static void
974 cache_assert_bucket_unlocked(struct namecache *ncp)
975 {
976 	struct mtx *blp;
977 
978 	blp = NCP2BUCKETLOCK(ncp);
979 	mtx_assert(blp, MA_NOTOWNED);
980 }
981 #else
982 #define cache_assert_bucket_locked(x) do { } while (0)
983 #define cache_assert_bucket_unlocked(x) do { } while (0)
984 #endif
985 
986 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
987 static void
988 _cache_sort_vnodes(void **p1, void **p2)
989 {
990 	void *tmp;
991 
992 	MPASS(*p1 != NULL || *p2 != NULL);
993 
994 	if (*p1 > *p2) {
995 		tmp = *p2;
996 		*p2 = *p1;
997 		*p1 = tmp;
998 	}
999 }
1000 
1001 static void
1002 cache_lock_all_buckets(void)
1003 {
1004 	u_int i;
1005 
1006 	for (i = 0; i < numbucketlocks; i++)
1007 		mtx_lock(&bucketlocks[i]);
1008 }
1009 
1010 static void
1011 cache_unlock_all_buckets(void)
1012 {
1013 	u_int i;
1014 
1015 	for (i = 0; i < numbucketlocks; i++)
1016 		mtx_unlock(&bucketlocks[i]);
1017 }
1018 
1019 static void
1020 cache_lock_all_vnodes(void)
1021 {
1022 	u_int i;
1023 
1024 	for (i = 0; i < numvnodelocks; i++)
1025 		mtx_lock(&vnodelocks[i]);
1026 }
1027 
1028 static void
1029 cache_unlock_all_vnodes(void)
1030 {
1031 	u_int i;
1032 
1033 	for (i = 0; i < numvnodelocks; i++)
1034 		mtx_unlock(&vnodelocks[i]);
1035 }
1036 
1037 static int
1038 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1039 {
1040 
1041 	cache_sort_vnodes(&vlp1, &vlp2);
1042 
1043 	if (vlp1 != NULL) {
1044 		if (!mtx_trylock(vlp1))
1045 			return (EAGAIN);
1046 	}
1047 	if (!mtx_trylock(vlp2)) {
1048 		if (vlp1 != NULL)
1049 			mtx_unlock(vlp1);
1050 		return (EAGAIN);
1051 	}
1052 
1053 	return (0);
1054 }
1055 
1056 static void
1057 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1058 {
1059 
1060 	MPASS(vlp1 != NULL || vlp2 != NULL);
1061 	MPASS(vlp1 <= vlp2);
1062 
1063 	if (vlp1 != NULL)
1064 		mtx_lock(vlp1);
1065 	if (vlp2 != NULL)
1066 		mtx_lock(vlp2);
1067 }
1068 
1069 static void
1070 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1071 {
1072 
1073 	MPASS(vlp1 != NULL || vlp2 != NULL);
1074 
1075 	if (vlp1 != NULL)
1076 		mtx_unlock(vlp1);
1077 	if (vlp2 != NULL)
1078 		mtx_unlock(vlp2);
1079 }
1080 
1081 static int
1082 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1083 {
1084 	struct nchstats snap;
1085 
1086 	if (req->oldptr == NULL)
1087 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1088 
1089 	snap = nchstats;
1090 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1091 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1092 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1093 	    counter_u64_fetch(numnegzaps);
1094 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1095 	    counter_u64_fetch(nummiss);
1096 
1097 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1098 }
1099 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1100     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1101     "VFS cache effectiveness statistics");
1102 
1103 static int
1104 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
1105 {
1106 	long poshits, neghits, miss, total;
1107 	long pct;
1108 
1109 	poshits = counter_u64_fetch(numposhits);
1110 	neghits = counter_u64_fetch(numneghits);
1111 	miss = counter_u64_fetch(nummiss);
1112 	total = poshits + neghits + miss;
1113 
1114 	pct = 0;
1115 	if (total != 0)
1116 		pct = ((poshits + neghits) * 100) / total;
1117 	return (sysctl_handle_int(oidp, 0, pct, req));
1118 }
1119 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
1120     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
1121     "I", "Percentage of hits");
1122 
1123 static void
1124 cache_recalc_neg_min(void)
1125 {
1126 
1127 	neg_min = (ncsize * ncnegminpct) / 100;
1128 }
1129 
1130 static int
1131 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1132 {
1133 	u_int val;
1134 	int error;
1135 
1136 	val = ncnegminpct;
1137 	error = sysctl_handle_int(oidp, &val, 0, req);
1138 	if (error != 0 || req->newptr == NULL)
1139 		return (error);
1140 
1141 	if (val == ncnegminpct)
1142 		return (0);
1143 	if (val < 0 || val > 99)
1144 		return (EINVAL);
1145 	ncnegminpct = val;
1146 	cache_recalc_neg_min();
1147 	return (0);
1148 }
1149 
1150 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1151     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1152     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1153 
1154 #ifdef DEBUG_CACHE
1155 /*
1156  * Grab an atomic snapshot of the name cache hash chain lengths
1157  */
1158 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1159     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1160     "hash table stats");
1161 
1162 static int
1163 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1164 {
1165 	struct nchashhead *ncpp;
1166 	struct namecache *ncp;
1167 	int i, error, n_nchash, *cntbuf;
1168 
1169 retry:
1170 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1171 	if (req->oldptr == NULL)
1172 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1173 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1174 	cache_lock_all_buckets();
1175 	if (n_nchash != nchash + 1) {
1176 		cache_unlock_all_buckets();
1177 		free(cntbuf, M_TEMP);
1178 		goto retry;
1179 	}
1180 	/* Scan hash tables counting entries */
1181 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1182 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1183 			cntbuf[i]++;
1184 	cache_unlock_all_buckets();
1185 	for (error = 0, i = 0; i < n_nchash; i++)
1186 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1187 			break;
1188 	free(cntbuf, M_TEMP);
1189 	return (error);
1190 }
1191 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1192     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1193     "nchash chain lengths");
1194 
1195 static int
1196 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1197 {
1198 	int error;
1199 	struct nchashhead *ncpp;
1200 	struct namecache *ncp;
1201 	int n_nchash;
1202 	int count, maxlength, used, pct;
1203 
1204 	if (!req->oldptr)
1205 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1206 
1207 	cache_lock_all_buckets();
1208 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1209 	used = 0;
1210 	maxlength = 0;
1211 
1212 	/* Scan hash tables for applicable entries */
1213 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1214 		count = 0;
1215 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1216 			count++;
1217 		}
1218 		if (count)
1219 			used++;
1220 		if (maxlength < count)
1221 			maxlength = count;
1222 	}
1223 	n_nchash = nchash + 1;
1224 	cache_unlock_all_buckets();
1225 	pct = (used * 100) / (n_nchash / 100);
1226 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1227 	if (error)
1228 		return (error);
1229 	error = SYSCTL_OUT(req, &used, sizeof(used));
1230 	if (error)
1231 		return (error);
1232 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1233 	if (error)
1234 		return (error);
1235 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1236 	if (error)
1237 		return (error);
1238 	return (0);
1239 }
1240 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1241     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1242     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1243 #endif
1244 
1245 /*
1246  * Negative entries management
1247  *
1248  * Various workloads create plenty of negative entries and barely use them
1249  * afterwards. Moreover malicious users can keep performing bogus lookups
1250  * adding even more entries. For example "make tinderbox" as of writing this
1251  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1252  * negative.
1253  *
1254  * As such, a rather aggressive eviction method is needed. The currently
1255  * employed method is a placeholder.
1256  *
1257  * Entries are split over numneglists separate lists, each of which is further
1258  * split into hot and cold entries. Entries get promoted after getting a hit.
1259  * Eviction happens on addition of new entry.
1260  */
1261 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1262     "Name cache negative entry statistics");
1263 
1264 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1265     "Number of negative cache entries");
1266 
1267 static COUNTER_U64_DEFINE_EARLY(neg_created);
1268 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1269     "Number of created negative entries");
1270 
1271 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1272 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1273     "Number of evicted negative entries");
1274 
1275 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1276 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1277     &neg_evict_skipped_empty,
1278     "Number of times evicting failed due to lack of entries");
1279 
1280 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1281 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1282     &neg_evict_skipped_missed,
1283     "Number of times evicting failed due to target entry disappearing");
1284 
1285 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1286 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1287     &neg_evict_skipped_contended,
1288     "Number of times evicting failed due to contention");
1289 
1290 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1291     "Number of cache hits (negative)");
1292 
1293 static int
1294 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1295 {
1296 	int i, out;
1297 
1298 	out = 0;
1299 	for (i = 0; i < numneglists; i++)
1300 		out += neglists[i].nl_hotnum;
1301 
1302 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1303 }
1304 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1305     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1306     "Number of hot negative entries");
1307 
1308 static void
1309 cache_neg_init(struct namecache *ncp)
1310 {
1311 	struct negstate *ns;
1312 
1313 	ncp->nc_flag |= NCF_NEGATIVE;
1314 	ns = NCP2NEGSTATE(ncp);
1315 	ns->neg_flag = 0;
1316 	ns->neg_hit = 0;
1317 	counter_u64_add(neg_created, 1);
1318 }
1319 
1320 #define CACHE_NEG_PROMOTION_THRESH 2
1321 
1322 static bool
1323 cache_neg_hit_prep(struct namecache *ncp)
1324 {
1325 	struct negstate *ns;
1326 	u_char n;
1327 
1328 	ns = NCP2NEGSTATE(ncp);
1329 	n = atomic_load_char(&ns->neg_hit);
1330 	for (;;) {
1331 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1332 			return (false);
1333 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1334 			break;
1335 	}
1336 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1337 }
1338 
1339 /*
1340  * Nothing to do here but it is provided for completeness as some
1341  * cache_neg_hit_prep callers may end up returning without even
1342  * trying to promote.
1343  */
1344 #define cache_neg_hit_abort(ncp)	do { } while (0)
1345 
1346 static void
1347 cache_neg_hit_finish(struct namecache *ncp)
1348 {
1349 
1350 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1351 	counter_u64_add(numneghits, 1);
1352 }
1353 
1354 /*
1355  * Move a negative entry to the hot list.
1356  */
1357 static void
1358 cache_neg_promote_locked(struct namecache *ncp)
1359 {
1360 	struct neglist *nl;
1361 	struct negstate *ns;
1362 
1363 	ns = NCP2NEGSTATE(ncp);
1364 	nl = NCP2NEGLIST(ncp);
1365 	mtx_assert(&nl->nl_lock, MA_OWNED);
1366 	if ((ns->neg_flag & NEG_HOT) == 0) {
1367 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1368 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1369 		nl->nl_hotnum++;
1370 		ns->neg_flag |= NEG_HOT;
1371 	}
1372 }
1373 
1374 /*
1375  * Move a hot negative entry to the cold list.
1376  */
1377 static void
1378 cache_neg_demote_locked(struct namecache *ncp)
1379 {
1380 	struct neglist *nl;
1381 	struct negstate *ns;
1382 
1383 	ns = NCP2NEGSTATE(ncp);
1384 	nl = NCP2NEGLIST(ncp);
1385 	mtx_assert(&nl->nl_lock, MA_OWNED);
1386 	MPASS(ns->neg_flag & NEG_HOT);
1387 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1388 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1389 	nl->nl_hotnum--;
1390 	ns->neg_flag &= ~NEG_HOT;
1391 	atomic_store_char(&ns->neg_hit, 0);
1392 }
1393 
1394 /*
1395  * Move a negative entry to the hot list if it matches the lookup.
1396  *
1397  * We have to take locks, but they may be contended and in the worst
1398  * case we may need to go off CPU. We don't want to spin within the
1399  * smr section and we can't block with it. Exiting the section means
1400  * the found entry could have been evicted. We are going to look it
1401  * up again.
1402  */
1403 static bool
1404 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1405     struct namecache *oncp, uint32_t hash)
1406 {
1407 	struct namecache *ncp;
1408 	struct neglist *nl;
1409 	u_char nc_flag;
1410 
1411 	nl = NCP2NEGLIST(oncp);
1412 
1413 	mtx_lock(&nl->nl_lock);
1414 	/*
1415 	 * For hash iteration.
1416 	 */
1417 	vfs_smr_enter();
1418 
1419 	/*
1420 	 * Avoid all surprises by only succeeding if we got the same entry and
1421 	 * bailing completely otherwise.
1422 	 * XXX There are no provisions to keep the vnode around, meaning we may
1423 	 * end up promoting a negative entry for a *new* vnode and returning
1424 	 * ENOENT on its account. This is the error we want to return anyway
1425 	 * and promotion is harmless.
1426 	 *
1427 	 * In particular at this point there can be a new ncp which matches the
1428 	 * search but hashes to a different neglist.
1429 	 */
1430 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1431 		if (ncp == oncp)
1432 			break;
1433 	}
1434 
1435 	/*
1436 	 * No match to begin with.
1437 	 */
1438 	if (__predict_false(ncp == NULL)) {
1439 		goto out_abort;
1440 	}
1441 
1442 	/*
1443 	 * The newly found entry may be something different...
1444 	 */
1445 	if (!cache_ncp_match(ncp, dvp, cnp)) {
1446 		goto out_abort;
1447 	}
1448 
1449 	/*
1450 	 * ... and not even negative.
1451 	 */
1452 	nc_flag = atomic_load_char(&ncp->nc_flag);
1453 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1454 		goto out_abort;
1455 	}
1456 
1457 	if (!cache_ncp_canuse(ncp)) {
1458 		goto out_abort;
1459 	}
1460 
1461 	cache_neg_promote_locked(ncp);
1462 	cache_neg_hit_finish(ncp);
1463 	vfs_smr_exit();
1464 	mtx_unlock(&nl->nl_lock);
1465 	return (true);
1466 out_abort:
1467 	vfs_smr_exit();
1468 	mtx_unlock(&nl->nl_lock);
1469 	return (false);
1470 }
1471 
1472 static void
1473 cache_neg_promote(struct namecache *ncp)
1474 {
1475 	struct neglist *nl;
1476 
1477 	nl = NCP2NEGLIST(ncp);
1478 	mtx_lock(&nl->nl_lock);
1479 	cache_neg_promote_locked(ncp);
1480 	mtx_unlock(&nl->nl_lock);
1481 }
1482 
1483 static void
1484 cache_neg_insert(struct namecache *ncp)
1485 {
1486 	struct neglist *nl;
1487 
1488 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1489 	cache_assert_bucket_locked(ncp);
1490 	nl = NCP2NEGLIST(ncp);
1491 	mtx_lock(&nl->nl_lock);
1492 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1493 	mtx_unlock(&nl->nl_lock);
1494 	atomic_add_long(&numneg, 1);
1495 }
1496 
1497 static void
1498 cache_neg_remove(struct namecache *ncp)
1499 {
1500 	struct neglist *nl;
1501 	struct negstate *ns;
1502 
1503 	cache_assert_bucket_locked(ncp);
1504 	nl = NCP2NEGLIST(ncp);
1505 	ns = NCP2NEGSTATE(ncp);
1506 	mtx_lock(&nl->nl_lock);
1507 	if ((ns->neg_flag & NEG_HOT) != 0) {
1508 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1509 		nl->nl_hotnum--;
1510 	} else {
1511 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1512 	}
1513 	mtx_unlock(&nl->nl_lock);
1514 	atomic_subtract_long(&numneg, 1);
1515 }
1516 
1517 static struct neglist *
1518 cache_neg_evict_select_list(void)
1519 {
1520 	struct neglist *nl;
1521 	u_int c;
1522 
1523 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1524 	nl = &neglists[c % numneglists];
1525 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1526 		counter_u64_add(neg_evict_skipped_contended, 1);
1527 		return (NULL);
1528 	}
1529 	return (nl);
1530 }
1531 
1532 static struct namecache *
1533 cache_neg_evict_select_entry(struct neglist *nl)
1534 {
1535 	struct namecache *ncp, *lncp;
1536 	struct negstate *ns, *lns;
1537 	int i;
1538 
1539 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1540 	mtx_assert(&nl->nl_lock, MA_OWNED);
1541 	ncp = TAILQ_FIRST(&nl->nl_list);
1542 	if (ncp == NULL)
1543 		return (NULL);
1544 	lncp = ncp;
1545 	lns = NCP2NEGSTATE(lncp);
1546 	for (i = 1; i < 4; i++) {
1547 		ncp = TAILQ_NEXT(ncp, nc_dst);
1548 		if (ncp == NULL)
1549 			break;
1550 		ns = NCP2NEGSTATE(ncp);
1551 		if (ns->neg_hit < lns->neg_hit) {
1552 			lncp = ncp;
1553 			lns = ns;
1554 		}
1555 	}
1556 	return (lncp);
1557 }
1558 
1559 static bool
1560 cache_neg_evict(void)
1561 {
1562 	struct namecache *ncp, *ncp2;
1563 	struct neglist *nl;
1564 	struct vnode *dvp;
1565 	struct mtx *dvlp;
1566 	struct mtx *blp;
1567 	uint32_t hash;
1568 	u_char nlen;
1569 	bool evicted;
1570 
1571 	nl = cache_neg_evict_select_list();
1572 	if (nl == NULL) {
1573 		return (false);
1574 	}
1575 
1576 	mtx_lock(&nl->nl_lock);
1577 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1578 	if (ncp != NULL) {
1579 		cache_neg_demote_locked(ncp);
1580 	}
1581 	ncp = cache_neg_evict_select_entry(nl);
1582 	if (ncp == NULL) {
1583 		counter_u64_add(neg_evict_skipped_empty, 1);
1584 		mtx_unlock(&nl->nl_lock);
1585 		mtx_unlock(&nl->nl_evict_lock);
1586 		return (false);
1587 	}
1588 	nlen = ncp->nc_nlen;
1589 	dvp = ncp->nc_dvp;
1590 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1591 	dvlp = VP2VNODELOCK(dvp);
1592 	blp = HASH2BUCKETLOCK(hash);
1593 	mtx_unlock(&nl->nl_lock);
1594 	mtx_unlock(&nl->nl_evict_lock);
1595 	mtx_lock(dvlp);
1596 	mtx_lock(blp);
1597 	/*
1598 	 * Note that since all locks were dropped above, the entry may be
1599 	 * gone or reallocated to be something else.
1600 	 */
1601 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1602 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1603 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1604 			break;
1605 	}
1606 	if (ncp2 == NULL) {
1607 		counter_u64_add(neg_evict_skipped_missed, 1);
1608 		ncp = NULL;
1609 		evicted = false;
1610 	} else {
1611 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1612 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1613 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1614 		    ncp->nc_name);
1615 		cache_zap_locked(ncp);
1616 		counter_u64_add(neg_evicted, 1);
1617 		evicted = true;
1618 	}
1619 	mtx_unlock(blp);
1620 	mtx_unlock(dvlp);
1621 	if (ncp != NULL)
1622 		cache_free(ncp);
1623 	return (evicted);
1624 }
1625 
1626 /*
1627  * Maybe evict a negative entry to create more room.
1628  *
1629  * The ncnegfactor parameter limits what fraction of the total count
1630  * can comprise of negative entries. However, if the cache is just
1631  * warming up this leads to excessive evictions.  As such, ncnegminpct
1632  * (recomputed to neg_min) dictates whether the above should be
1633  * applied.
1634  *
1635  * Try evicting if the cache is close to full capacity regardless of
1636  * other considerations.
1637  */
1638 static bool
1639 cache_neg_evict_cond(u_long lnumcache)
1640 {
1641 	u_long lnumneg;
1642 
1643 	if (ncsize - 1000 < lnumcache)
1644 		goto out_evict;
1645 	lnumneg = atomic_load_long(&numneg);
1646 	if (lnumneg < neg_min)
1647 		return (false);
1648 	if (lnumneg * ncnegfactor < lnumcache)
1649 		return (false);
1650 out_evict:
1651 	return (cache_neg_evict());
1652 }
1653 
1654 /*
1655  * cache_zap_locked():
1656  *
1657  *   Removes a namecache entry from cache, whether it contains an actual
1658  *   pointer to a vnode or if it is just a negative cache entry.
1659  */
1660 static void
1661 cache_zap_locked(struct namecache *ncp)
1662 {
1663 	struct nchashhead *ncpp;
1664 	struct vnode *dvp, *vp;
1665 
1666 	dvp = ncp->nc_dvp;
1667 	vp = ncp->nc_vp;
1668 
1669 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1670 		cache_assert_vnode_locked(vp);
1671 	cache_assert_vnode_locked(dvp);
1672 	cache_assert_bucket_locked(ncp);
1673 
1674 	cache_ncp_invalidate(ncp);
1675 
1676 	ncpp = NCP2BUCKET(ncp);
1677 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1678 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1679 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1680 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1681 		if (ncp == vp->v_cache_dd) {
1682 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1683 		}
1684 	} else {
1685 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1686 		cache_neg_remove(ncp);
1687 	}
1688 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1689 		if (ncp == dvp->v_cache_dd) {
1690 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1691 		}
1692 	} else {
1693 		LIST_REMOVE(ncp, nc_src);
1694 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1695 			ncp->nc_flag |= NCF_DVDROP;
1696 		}
1697 	}
1698 }
1699 
1700 static void
1701 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1702 {
1703 	struct mtx *blp;
1704 
1705 	MPASS(ncp->nc_dvp == vp);
1706 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1707 	cache_assert_vnode_locked(vp);
1708 
1709 	blp = NCP2BUCKETLOCK(ncp);
1710 	mtx_lock(blp);
1711 	cache_zap_locked(ncp);
1712 	mtx_unlock(blp);
1713 }
1714 
1715 static bool
1716 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1717     struct mtx **vlpp)
1718 {
1719 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1720 	struct mtx *blp;
1721 
1722 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1723 	cache_assert_vnode_locked(vp);
1724 
1725 	if (ncp->nc_flag & NCF_NEGATIVE) {
1726 		if (*vlpp != NULL) {
1727 			mtx_unlock(*vlpp);
1728 			*vlpp = NULL;
1729 		}
1730 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1731 		return (true);
1732 	}
1733 
1734 	pvlp = VP2VNODELOCK(vp);
1735 	blp = NCP2BUCKETLOCK(ncp);
1736 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1737 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1738 
1739 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1740 		to_unlock = *vlpp;
1741 		*vlpp = NULL;
1742 	} else {
1743 		if (*vlpp != NULL) {
1744 			mtx_unlock(*vlpp);
1745 			*vlpp = NULL;
1746 		}
1747 		cache_sort_vnodes(&vlp1, &vlp2);
1748 		if (vlp1 == pvlp) {
1749 			mtx_lock(vlp2);
1750 			to_unlock = vlp2;
1751 		} else {
1752 			if (!mtx_trylock(vlp1))
1753 				goto out_relock;
1754 			to_unlock = vlp1;
1755 		}
1756 	}
1757 	mtx_lock(blp);
1758 	cache_zap_locked(ncp);
1759 	mtx_unlock(blp);
1760 	if (to_unlock != NULL)
1761 		mtx_unlock(to_unlock);
1762 	return (true);
1763 
1764 out_relock:
1765 	mtx_unlock(vlp2);
1766 	mtx_lock(vlp1);
1767 	mtx_lock(vlp2);
1768 	MPASS(*vlpp == NULL);
1769 	*vlpp = vlp1;
1770 	return (false);
1771 }
1772 
1773 /*
1774  * If trylocking failed we can get here. We know enough to take all needed locks
1775  * in the right order and re-lookup the entry.
1776  */
1777 static int
1778 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1779     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1780     struct mtx *blp)
1781 {
1782 	struct namecache *rncp;
1783 	struct mtx *rvlp;
1784 
1785 	cache_assert_bucket_unlocked(ncp);
1786 
1787 	cache_sort_vnodes(&dvlp, &vlp);
1788 	cache_lock_vnodes(dvlp, vlp);
1789 	mtx_lock(blp);
1790 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1791 		if (rncp == ncp && cache_ncp_match(rncp, dvp, cnp))
1792 			break;
1793 	}
1794 	if (rncp == NULL)
1795 		goto out_mismatch;
1796 
1797 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1798 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1799 	else
1800 		rvlp = NULL;
1801 	if (rvlp != vlp)
1802 		goto out_mismatch;
1803 
1804 	cache_zap_locked(rncp);
1805 	mtx_unlock(blp);
1806 	cache_unlock_vnodes(dvlp, vlp);
1807 	atomic_add_long(&zap_bucket_relock_success, 1);
1808 	return (0);
1809 
1810 out_mismatch:
1811 	mtx_unlock(blp);
1812 	cache_unlock_vnodes(dvlp, vlp);
1813 	return (EAGAIN);
1814 }
1815 
1816 static int __noinline
1817 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1818     uint32_t hash, struct mtx *blp)
1819 {
1820 	struct mtx *dvlp, *vlp;
1821 	struct vnode *dvp;
1822 
1823 	cache_assert_bucket_locked(ncp);
1824 
1825 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1826 	vlp = NULL;
1827 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1828 		vlp = VP2VNODELOCK(ncp->nc_vp);
1829 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1830 		cache_zap_locked(ncp);
1831 		mtx_unlock(blp);
1832 		cache_unlock_vnodes(dvlp, vlp);
1833 		return (0);
1834 	}
1835 
1836 	dvp = ncp->nc_dvp;
1837 	mtx_unlock(blp);
1838 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1839 }
1840 
1841 static __noinline int
1842 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1843 {
1844 	struct namecache *ncp;
1845 	struct mtx *blp;
1846 	struct mtx *dvlp, *dvlp2;
1847 	uint32_t hash;
1848 	int error;
1849 
1850 	if (cnp->cn_namelen == 2 &&
1851 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1852 		dvlp = VP2VNODELOCK(dvp);
1853 		dvlp2 = NULL;
1854 		mtx_lock(dvlp);
1855 retry_dotdot:
1856 		ncp = dvp->v_cache_dd;
1857 		if (ncp == NULL) {
1858 			mtx_unlock(dvlp);
1859 			if (dvlp2 != NULL)
1860 				mtx_unlock(dvlp2);
1861 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1862 			return (0);
1863 		}
1864 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1865 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1866 				goto retry_dotdot;
1867 			MPASS(dvp->v_cache_dd == NULL);
1868 			mtx_unlock(dvlp);
1869 			if (dvlp2 != NULL)
1870 				mtx_unlock(dvlp2);
1871 			cache_free(ncp);
1872 		} else {
1873 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1874 			mtx_unlock(dvlp);
1875 			if (dvlp2 != NULL)
1876 				mtx_unlock(dvlp2);
1877 		}
1878 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1879 		return (1);
1880 	}
1881 
1882 	/*
1883 	 * XXX note that access here is completely unlocked with no provisions
1884 	 * to keep the hash allocated. If one is sufficiently unlucky a
1885 	 * parallel cache resize can reallocate the hash, unmap backing pages
1886 	 * and cause the empty check below to fault.
1887 	 *
1888 	 * Fixing this has epsilon priority, but can be done with no overhead
1889 	 * for this codepath with sufficient effort.
1890 	 */
1891 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1892 	blp = HASH2BUCKETLOCK(hash);
1893 retry:
1894 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1895 		goto out_no_entry;
1896 
1897 	mtx_lock(blp);
1898 	ncp = cache_ncp_find(dvp, cnp, hash);
1899 	if (ncp == NULL) {
1900 		mtx_unlock(blp);
1901 		goto out_no_entry;
1902 	}
1903 
1904 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1905 	if (__predict_false(error != 0)) {
1906 		atomic_add_long(&zap_bucket_fail, 1);
1907 		goto retry;
1908 	}
1909 	counter_u64_add(numposzaps, 1);
1910 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1911 	cache_free(ncp);
1912 	return (1);
1913 out_no_entry:
1914 	counter_u64_add(nummisszap, 1);
1915 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1916 	return (0);
1917 }
1918 
1919 static int __noinline
1920 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1921     struct timespec *tsp, int *ticksp)
1922 {
1923 	int ltype;
1924 
1925 	*vpp = dvp;
1926 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1927 	if (tsp != NULL)
1928 		timespecclear(tsp);
1929 	if (ticksp != NULL)
1930 		*ticksp = ticks;
1931 	vrefact(*vpp);
1932 	/*
1933 	 * When we lookup "." we still can be asked to lock it
1934 	 * differently...
1935 	 */
1936 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1937 	if (ltype != VOP_ISLOCKED(*vpp)) {
1938 		if (ltype == LK_EXCLUSIVE) {
1939 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1940 			if (VN_IS_DOOMED((*vpp))) {
1941 				/* forced unmount */
1942 				vrele(*vpp);
1943 				*vpp = NULL;
1944 				return (ENOENT);
1945 			}
1946 		} else
1947 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1948 	}
1949 	return (-1);
1950 }
1951 
1952 static int __noinline
1953 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1954     struct timespec *tsp, int *ticksp)
1955 {
1956 	struct namecache_ts *ncp_ts;
1957 	struct namecache *ncp;
1958 	struct mtx *dvlp;
1959 	enum vgetstate vs;
1960 	int error, ltype;
1961 	bool whiteout;
1962 
1963 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1964 
1965 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1966 		cache_remove_cnp(dvp, cnp);
1967 		return (0);
1968 	}
1969 
1970 retry:
1971 	dvlp = VP2VNODELOCK(dvp);
1972 	mtx_lock(dvlp);
1973 	ncp = dvp->v_cache_dd;
1974 	if (ncp == NULL) {
1975 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1976 		mtx_unlock(dvlp);
1977 		return (0);
1978 	}
1979 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1980 		if (ncp->nc_flag & NCF_NEGATIVE)
1981 			*vpp = NULL;
1982 		else
1983 			*vpp = ncp->nc_vp;
1984 	} else
1985 		*vpp = ncp->nc_dvp;
1986 	if (*vpp == NULL)
1987 		goto negative_success;
1988 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1989 	cache_out_ts(ncp, tsp, ticksp);
1990 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1991 	    NCF_DTS && tsp != NULL) {
1992 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1993 		*tsp = ncp_ts->nc_dotdottime;
1994 	}
1995 
1996 	MPASS(dvp != *vpp);
1997 	ltype = VOP_ISLOCKED(dvp);
1998 	VOP_UNLOCK(dvp);
1999 	vs = vget_prep(*vpp);
2000 	mtx_unlock(dvlp);
2001 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2002 	vn_lock(dvp, ltype | LK_RETRY);
2003 	if (VN_IS_DOOMED(dvp)) {
2004 		if (error == 0)
2005 			vput(*vpp);
2006 		*vpp = NULL;
2007 		return (ENOENT);
2008 	}
2009 	if (error) {
2010 		*vpp = NULL;
2011 		goto retry;
2012 	}
2013 	return (-1);
2014 negative_success:
2015 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
2016 		if (cnp->cn_flags & ISLASTCN) {
2017 			counter_u64_add(numnegzaps, 1);
2018 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
2019 			mtx_unlock(dvlp);
2020 			cache_free(ncp);
2021 			return (0);
2022 		}
2023 	}
2024 
2025 	whiteout = (ncp->nc_flag & NCF_WHITE);
2026 	cache_out_ts(ncp, tsp, ticksp);
2027 	if (cache_neg_hit_prep(ncp))
2028 		cache_neg_promote(ncp);
2029 	else
2030 		cache_neg_hit_finish(ncp);
2031 	mtx_unlock(dvlp);
2032 	if (whiteout)
2033 		cnp->cn_flags |= ISWHITEOUT;
2034 	return (ENOENT);
2035 }
2036 
2037 /**
2038  * Lookup a name in the name cache
2039  *
2040  * # Arguments
2041  *
2042  * - dvp:	Parent directory in which to search.
2043  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
2044  * - cnp:	Parameters of the name search.  The most interesting bits of
2045  *   		the cn_flags field have the following meanings:
2046  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
2047  *   			it up.
2048  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
2049  * - tsp:	Return storage for cache timestamp.  On a successful (positive
2050  *   		or negative) lookup, tsp will be filled with any timespec that
2051  *   		was stored when this cache entry was created.  However, it will
2052  *   		be clear for "." entries.
2053  * - ticks:	Return storage for alternate cache timestamp.  On a successful
2054  *   		(positive or negative) lookup, it will contain the ticks value
2055  *   		that was current when the cache entry was created, unless cnp
2056  *   		was ".".
2057  *
2058  * Either both tsp and ticks have to be provided or neither of them.
2059  *
2060  * # Returns
2061  *
2062  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
2063  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
2064  *		to a forced unmount.  vpp will not be modified.  If the entry
2065  *		is a whiteout, then the ISWHITEOUT flag will be set in
2066  *		cnp->cn_flags.
2067  * - 0:		A cache miss.  vpp will not be modified.
2068  *
2069  * # Locking
2070  *
2071  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2072  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2073  * lock is not recursively acquired.
2074  */
2075 static int __noinline
2076 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2077     struct timespec *tsp, int *ticksp)
2078 {
2079 	struct namecache *ncp;
2080 	struct mtx *blp;
2081 	uint32_t hash;
2082 	enum vgetstate vs;
2083 	int error;
2084 	bool whiteout;
2085 
2086 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2087 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2088 
2089 retry:
2090 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2091 	blp = HASH2BUCKETLOCK(hash);
2092 	mtx_lock(blp);
2093 
2094 	ncp = cache_ncp_find(dvp, cnp, hash);
2095 	if (__predict_false(ncp == NULL)) {
2096 		mtx_unlock(blp);
2097 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2098 		counter_u64_add(nummiss, 1);
2099 		return (0);
2100 	}
2101 
2102 	if (ncp->nc_flag & NCF_NEGATIVE)
2103 		goto negative_success;
2104 
2105 	counter_u64_add(numposhits, 1);
2106 	*vpp = ncp->nc_vp;
2107 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2108 	cache_out_ts(ncp, tsp, ticksp);
2109 	MPASS(dvp != *vpp);
2110 	vs = vget_prep(*vpp);
2111 	mtx_unlock(blp);
2112 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2113 	if (error) {
2114 		*vpp = NULL;
2115 		goto retry;
2116 	}
2117 	return (-1);
2118 negative_success:
2119 	/*
2120 	 * We don't get here with regular lookup apart from corner cases.
2121 	 */
2122 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2123 		if (cnp->cn_flags & ISLASTCN) {
2124 			counter_u64_add(numnegzaps, 1);
2125 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2126 			if (__predict_false(error != 0)) {
2127 				atomic_add_long(&zap_bucket_fail2, 1);
2128 				goto retry;
2129 			}
2130 			cache_free(ncp);
2131 			return (0);
2132 		}
2133 	}
2134 
2135 	whiteout = (ncp->nc_flag & NCF_WHITE);
2136 	cache_out_ts(ncp, tsp, ticksp);
2137 	if (cache_neg_hit_prep(ncp))
2138 		cache_neg_promote(ncp);
2139 	else
2140 		cache_neg_hit_finish(ncp);
2141 	mtx_unlock(blp);
2142 	if (whiteout)
2143 		cnp->cn_flags |= ISWHITEOUT;
2144 	return (ENOENT);
2145 }
2146 
2147 int
2148 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2149     struct timespec *tsp, int *ticksp)
2150 {
2151 	struct namecache *ncp;
2152 	uint32_t hash;
2153 	enum vgetstate vs;
2154 	int error;
2155 	bool whiteout, neg_promote;
2156 	u_short nc_flag;
2157 
2158 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2159 
2160 #ifdef DEBUG_CACHE
2161 	if (__predict_false(!doingcache)) {
2162 		cnp->cn_flags &= ~MAKEENTRY;
2163 		return (0);
2164 	}
2165 #endif
2166 
2167 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2168 		if (cnp->cn_namelen == 1)
2169 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2170 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2171 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2172 	}
2173 
2174 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2175 
2176 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2177 		cache_remove_cnp(dvp, cnp);
2178 		return (0);
2179 	}
2180 
2181 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2182 	vfs_smr_enter();
2183 
2184 	ncp = cache_ncp_find(dvp, cnp, hash);
2185 	if (__predict_false(ncp == NULL)) {
2186 		vfs_smr_exit();
2187 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2188 		counter_u64_add(nummiss, 1);
2189 		return (0);
2190 	}
2191 
2192 	nc_flag = atomic_load_char(&ncp->nc_flag);
2193 	if (nc_flag & NCF_NEGATIVE)
2194 		goto negative_success;
2195 
2196 	counter_u64_add(numposhits, 1);
2197 	*vpp = ncp->nc_vp;
2198 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2199 	cache_out_ts(ncp, tsp, ticksp);
2200 	MPASS(dvp != *vpp);
2201 	if (!cache_ncp_canuse(ncp)) {
2202 		vfs_smr_exit();
2203 		*vpp = NULL;
2204 		goto out_fallback;
2205 	}
2206 	vs = vget_prep_smr(*vpp);
2207 	vfs_smr_exit();
2208 	if (__predict_false(vs == VGET_NONE)) {
2209 		*vpp = NULL;
2210 		goto out_fallback;
2211 	}
2212 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2213 	if (error) {
2214 		*vpp = NULL;
2215 		goto out_fallback;
2216 	}
2217 	return (-1);
2218 negative_success:
2219 	if (cnp->cn_nameiop == CREATE) {
2220 		if (cnp->cn_flags & ISLASTCN) {
2221 			vfs_smr_exit();
2222 			goto out_fallback;
2223 		}
2224 	}
2225 
2226 	cache_out_ts(ncp, tsp, ticksp);
2227 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2228 	neg_promote = cache_neg_hit_prep(ncp);
2229 	if (!cache_ncp_canuse(ncp)) {
2230 		cache_neg_hit_abort(ncp);
2231 		vfs_smr_exit();
2232 		goto out_fallback;
2233 	}
2234 	if (neg_promote) {
2235 		vfs_smr_exit();
2236 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2237 			goto out_fallback;
2238 	} else {
2239 		cache_neg_hit_finish(ncp);
2240 		vfs_smr_exit();
2241 	}
2242 	if (whiteout)
2243 		cnp->cn_flags |= ISWHITEOUT;
2244 	return (ENOENT);
2245 out_fallback:
2246 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2247 }
2248 
2249 struct celockstate {
2250 	struct mtx *vlp[3];
2251 	struct mtx *blp[2];
2252 };
2253 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2254 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2255 
2256 static inline void
2257 cache_celockstate_init(struct celockstate *cel)
2258 {
2259 
2260 	bzero(cel, sizeof(*cel));
2261 }
2262 
2263 static void
2264 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2265     struct vnode *dvp)
2266 {
2267 	struct mtx *vlp1, *vlp2;
2268 
2269 	MPASS(cel->vlp[0] == NULL);
2270 	MPASS(cel->vlp[1] == NULL);
2271 	MPASS(cel->vlp[2] == NULL);
2272 
2273 	MPASS(vp != NULL || dvp != NULL);
2274 
2275 	vlp1 = VP2VNODELOCK(vp);
2276 	vlp2 = VP2VNODELOCK(dvp);
2277 	cache_sort_vnodes(&vlp1, &vlp2);
2278 
2279 	if (vlp1 != NULL) {
2280 		mtx_lock(vlp1);
2281 		cel->vlp[0] = vlp1;
2282 	}
2283 	mtx_lock(vlp2);
2284 	cel->vlp[1] = vlp2;
2285 }
2286 
2287 static void
2288 cache_unlock_vnodes_cel(struct celockstate *cel)
2289 {
2290 
2291 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2292 
2293 	if (cel->vlp[0] != NULL)
2294 		mtx_unlock(cel->vlp[0]);
2295 	if (cel->vlp[1] != NULL)
2296 		mtx_unlock(cel->vlp[1]);
2297 	if (cel->vlp[2] != NULL)
2298 		mtx_unlock(cel->vlp[2]);
2299 }
2300 
2301 static bool
2302 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2303 {
2304 	struct mtx *vlp;
2305 	bool ret;
2306 
2307 	cache_assert_vlp_locked(cel->vlp[0]);
2308 	cache_assert_vlp_locked(cel->vlp[1]);
2309 	MPASS(cel->vlp[2] == NULL);
2310 
2311 	MPASS(vp != NULL);
2312 	vlp = VP2VNODELOCK(vp);
2313 
2314 	ret = true;
2315 	if (vlp >= cel->vlp[1]) {
2316 		mtx_lock(vlp);
2317 	} else {
2318 		if (mtx_trylock(vlp))
2319 			goto out;
2320 		cache_unlock_vnodes_cel(cel);
2321 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2322 		if (vlp < cel->vlp[0]) {
2323 			mtx_lock(vlp);
2324 			mtx_lock(cel->vlp[0]);
2325 			mtx_lock(cel->vlp[1]);
2326 		} else {
2327 			if (cel->vlp[0] != NULL)
2328 				mtx_lock(cel->vlp[0]);
2329 			mtx_lock(vlp);
2330 			mtx_lock(cel->vlp[1]);
2331 		}
2332 		ret = false;
2333 	}
2334 out:
2335 	cel->vlp[2] = vlp;
2336 	return (ret);
2337 }
2338 
2339 static void
2340 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2341     struct mtx *blp2)
2342 {
2343 
2344 	MPASS(cel->blp[0] == NULL);
2345 	MPASS(cel->blp[1] == NULL);
2346 
2347 	cache_sort_vnodes(&blp1, &blp2);
2348 
2349 	if (blp1 != NULL) {
2350 		mtx_lock(blp1);
2351 		cel->blp[0] = blp1;
2352 	}
2353 	mtx_lock(blp2);
2354 	cel->blp[1] = blp2;
2355 }
2356 
2357 static void
2358 cache_unlock_buckets_cel(struct celockstate *cel)
2359 {
2360 
2361 	if (cel->blp[0] != NULL)
2362 		mtx_unlock(cel->blp[0]);
2363 	mtx_unlock(cel->blp[1]);
2364 }
2365 
2366 /*
2367  * Lock part of the cache affected by the insertion.
2368  *
2369  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2370  * However, insertion can result in removal of an old entry. In this
2371  * case we have an additional vnode and bucketlock pair to lock.
2372  *
2373  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2374  * preserving the locking order (smaller address first).
2375  */
2376 static void
2377 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2378     uint32_t hash)
2379 {
2380 	struct namecache *ncp;
2381 	struct mtx *blps[2];
2382 	u_char nc_flag;
2383 
2384 	blps[0] = HASH2BUCKETLOCK(hash);
2385 	for (;;) {
2386 		blps[1] = NULL;
2387 		cache_lock_vnodes_cel(cel, dvp, vp);
2388 		if (vp == NULL || vp->v_type != VDIR)
2389 			break;
2390 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2391 		if (ncp == NULL)
2392 			break;
2393 		nc_flag = atomic_load_char(&ncp->nc_flag);
2394 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2395 			break;
2396 		MPASS(ncp->nc_dvp == vp);
2397 		blps[1] = NCP2BUCKETLOCK(ncp);
2398 		if ((nc_flag & NCF_NEGATIVE) != 0)
2399 			break;
2400 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2401 			break;
2402 		/*
2403 		 * All vnodes got re-locked. Re-validate the state and if
2404 		 * nothing changed we are done. Otherwise restart.
2405 		 */
2406 		if (ncp == vp->v_cache_dd &&
2407 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2408 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2409 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2410 			break;
2411 		cache_unlock_vnodes_cel(cel);
2412 		cel->vlp[0] = NULL;
2413 		cel->vlp[1] = NULL;
2414 		cel->vlp[2] = NULL;
2415 	}
2416 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2417 }
2418 
2419 static void
2420 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2421     uint32_t hash)
2422 {
2423 	struct namecache *ncp;
2424 	struct mtx *blps[2];
2425 	u_char nc_flag;
2426 
2427 	blps[0] = HASH2BUCKETLOCK(hash);
2428 	for (;;) {
2429 		blps[1] = NULL;
2430 		cache_lock_vnodes_cel(cel, dvp, vp);
2431 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2432 		if (ncp == NULL)
2433 			break;
2434 		nc_flag = atomic_load_char(&ncp->nc_flag);
2435 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2436 			break;
2437 		MPASS(ncp->nc_dvp == dvp);
2438 		blps[1] = NCP2BUCKETLOCK(ncp);
2439 		if ((nc_flag & NCF_NEGATIVE) != 0)
2440 			break;
2441 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2442 			break;
2443 		if (ncp == dvp->v_cache_dd &&
2444 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2445 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2446 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2447 			break;
2448 		cache_unlock_vnodes_cel(cel);
2449 		cel->vlp[0] = NULL;
2450 		cel->vlp[1] = NULL;
2451 		cel->vlp[2] = NULL;
2452 	}
2453 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2454 }
2455 
2456 static void
2457 cache_enter_unlock(struct celockstate *cel)
2458 {
2459 
2460 	cache_unlock_buckets_cel(cel);
2461 	cache_unlock_vnodes_cel(cel);
2462 }
2463 
2464 static void __noinline
2465 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2466     struct componentname *cnp)
2467 {
2468 	struct celockstate cel;
2469 	struct namecache *ncp;
2470 	uint32_t hash;
2471 	int len;
2472 
2473 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2474 		return;
2475 	len = cnp->cn_namelen;
2476 	cache_celockstate_init(&cel);
2477 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2478 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2479 	ncp = dvp->v_cache_dd;
2480 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2481 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2482 		cache_zap_locked(ncp);
2483 	} else {
2484 		ncp = NULL;
2485 	}
2486 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2487 	cache_enter_unlock(&cel);
2488 	if (ncp != NULL)
2489 		cache_free(ncp);
2490 }
2491 
2492 /*
2493  * Add an entry to the cache.
2494  */
2495 void
2496 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2497     struct timespec *tsp, struct timespec *dtsp)
2498 {
2499 	struct celockstate cel;
2500 	struct namecache *ncp, *n2, *ndd;
2501 	struct namecache_ts *ncp_ts;
2502 	uint32_t hash;
2503 	int flag;
2504 	int len;
2505 
2506 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2507 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2508 	    NAME_MAX));
2509 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2510 	VNPASS(dvp->v_type != VNON, dvp);
2511 	if (vp != NULL) {
2512 		VNPASS(!VN_IS_DOOMED(vp), vp);
2513 		VNPASS(vp->v_type != VNON, vp);
2514 	}
2515 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2516 		KASSERT(dvp == vp,
2517 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2518 		    dvp, vp));
2519 	} else {
2520 		KASSERT(dvp != vp,
2521 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2522 		    cnp->cn_nameptr, dvp));
2523 	}
2524 
2525 #ifdef DEBUG_CACHE
2526 	if (__predict_false(!doingcache))
2527 		return;
2528 #endif
2529 
2530 	flag = 0;
2531 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2532 		if (cnp->cn_namelen == 1)
2533 			return;
2534 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2535 			cache_enter_dotdot_prep(dvp, vp, cnp);
2536 			flag = NCF_ISDOTDOT;
2537 		}
2538 	}
2539 
2540 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2541 	if (ncp == NULL)
2542 		return;
2543 
2544 	cache_celockstate_init(&cel);
2545 	ndd = NULL;
2546 	ncp_ts = NULL;
2547 
2548 	/*
2549 	 * Calculate the hash key and setup as much of the new
2550 	 * namecache entry as possible before acquiring the lock.
2551 	 */
2552 	ncp->nc_flag = flag | NCF_WIP;
2553 	ncp->nc_vp = vp;
2554 	if (vp == NULL)
2555 		cache_neg_init(ncp);
2556 	ncp->nc_dvp = dvp;
2557 	if (tsp != NULL) {
2558 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2559 		ncp_ts->nc_time = *tsp;
2560 		ncp_ts->nc_ticks = ticks;
2561 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2562 		if (dtsp != NULL) {
2563 			ncp_ts->nc_dotdottime = *dtsp;
2564 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2565 		}
2566 	}
2567 	len = ncp->nc_nlen = cnp->cn_namelen;
2568 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2569 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2570 	ncp->nc_name[len] = '\0';
2571 	cache_enter_lock(&cel, dvp, vp, hash);
2572 
2573 	/*
2574 	 * See if this vnode or negative entry is already in the cache
2575 	 * with this name.  This can happen with concurrent lookups of
2576 	 * the same path name.
2577 	 */
2578 	n2 = cache_ncp_find(dvp, cnp, hash);
2579 	if (n2 != NULL) {
2580 		MPASS(cache_ncp_canuse(n2));
2581 		if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2582 			KASSERT(vp == NULL,
2583 			    ("%s: found entry pointing to a different vnode "
2584 			    "(%p != %p); name [%s]",
2585 			    __func__, NULL, vp, cnp->cn_nameptr));
2586 		else
2587 			KASSERT(n2->nc_vp == vp,
2588 			    ("%s: found entry pointing to a different vnode "
2589 			    "(%p != %p); name [%s]",
2590 			    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2591 		/*
2592 		 * Entries are supposed to be immutable unless in the
2593 		 * process of getting destroyed. Accommodating for
2594 		 * changing timestamps is possible but not worth it.
2595 		 * This should be harmless in terms of correctness, in
2596 		 * the worst case resulting in an earlier expiration.
2597 		 * Alternatively, the found entry can be replaced
2598 		 * altogether.
2599 		 */
2600 		MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) ==
2601 		    (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2602 #if 0
2603 		if (tsp != NULL) {
2604 			KASSERT((n2->nc_flag & NCF_TS) != 0,
2605 			    ("no NCF_TS"));
2606 			n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2607 			n2_ts->nc_time = ncp_ts->nc_time;
2608 			n2_ts->nc_ticks = ncp_ts->nc_ticks;
2609 			if (dtsp != NULL) {
2610 				n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2611 				n2_ts->nc_nc.nc_flag |= NCF_DTS;
2612 			}
2613 		}
2614 #endif
2615 		SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2616 		    vp);
2617 		goto out_unlock_free;
2618 	}
2619 
2620 	if (flag == NCF_ISDOTDOT) {
2621 		/*
2622 		 * See if we are trying to add .. entry, but some other lookup
2623 		 * has populated v_cache_dd pointer already.
2624 		 */
2625 		if (dvp->v_cache_dd != NULL)
2626 			goto out_unlock_free;
2627 		KASSERT(vp == NULL || vp->v_type == VDIR,
2628 		    ("wrong vnode type %p", vp));
2629 		atomic_thread_fence_rel();
2630 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2631 	} else if (vp != NULL) {
2632 		/*
2633 		 * For this case, the cache entry maps both the
2634 		 * directory name in it and the name ".." for the
2635 		 * directory's parent.
2636 		 */
2637 		if ((ndd = vp->v_cache_dd) != NULL) {
2638 			if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2639 				cache_zap_locked(ndd);
2640 			else
2641 				ndd = NULL;
2642 		}
2643 		atomic_thread_fence_rel();
2644 		atomic_store_ptr(&vp->v_cache_dd, ncp);
2645 	}
2646 
2647 	if (flag != NCF_ISDOTDOT) {
2648 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2649 			cache_hold_vnode(dvp);
2650 		}
2651 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2652 	}
2653 
2654 	/*
2655 	 * If the entry is "negative", we place it into the
2656 	 * "negative" cache queue, otherwise, we place it into the
2657 	 * destination vnode's cache entries queue.
2658 	 */
2659 	if (vp != NULL) {
2660 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2661 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2662 		    vp);
2663 	} else {
2664 		if (cnp->cn_flags & ISWHITEOUT)
2665 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2666 		cache_neg_insert(ncp);
2667 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2668 		    ncp->nc_name);
2669 	}
2670 
2671 	/*
2672 	 * Insert the new namecache entry into the appropriate chain
2673 	 * within the cache entries table.
2674 	 */
2675 	CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2676 
2677 	atomic_thread_fence_rel();
2678 	/*
2679 	 * Mark the entry as fully constructed.
2680 	 * It is immutable past this point until its removal.
2681 	 */
2682 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2683 
2684 	cache_enter_unlock(&cel);
2685 	if (ndd != NULL)
2686 		cache_free(ndd);
2687 	return;
2688 out_unlock_free:
2689 	cache_enter_unlock(&cel);
2690 	cache_free(ncp);
2691 	return;
2692 }
2693 
2694 /*
2695  * A variant of the above accepting flags.
2696  *
2697  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2698  *
2699  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2700  * happens to match and it is doing it in an inefficient manner. It was added
2701  * to accommodate NFS which runs into a case where the target for a given name
2702  * may change from under it. Note this does nothing to solve the following
2703  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2704  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2705  */
2706 void
2707 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2708     struct timespec *tsp, struct timespec *dtsp, int flags)
2709 {
2710 
2711 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2712 
2713 	if (flags & VFS_CACHE_DROPOLD)
2714 		cache_remove_cnp(dvp, cnp);
2715 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2716 }
2717 
2718 static u_long
2719 cache_roundup_2(u_long val)
2720 {
2721 	u_long res;
2722 
2723 	for (res = 1; res <= val; res <<= 1)
2724 		continue;
2725 
2726 	return (res);
2727 }
2728 
2729 static struct nchashhead *
2730 nchinittbl(u_long elements, u_long *hashmask)
2731 {
2732 	struct nchashhead *hashtbl;
2733 	u_long hashsize, i;
2734 
2735 	hashsize = cache_roundup_2(elements) / 2;
2736 
2737 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2738 	for (i = 0; i < hashsize; i++)
2739 		CK_SLIST_INIT(&hashtbl[i]);
2740 	*hashmask = hashsize - 1;
2741 	return (hashtbl);
2742 }
2743 
2744 static void
2745 ncfreetbl(struct nchashhead *hashtbl)
2746 {
2747 
2748 	free(hashtbl, M_VFSCACHE);
2749 }
2750 
2751 /*
2752  * Name cache initialization, from vfs_init() when we are booting
2753  */
2754 static void
2755 nchinit(void *dummy __unused)
2756 {
2757 	u_int i;
2758 
2759 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2760 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2761 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2762 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2763 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2764 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2765 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2766 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2767 
2768 	VFS_SMR_ZONE_SET(cache_zone_small);
2769 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2770 	VFS_SMR_ZONE_SET(cache_zone_large);
2771 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2772 
2773 	ncsize = desiredvnodes * ncsizefactor;
2774 	cache_recalc_neg_min();
2775 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2776 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2777 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2778 		ncbuckethash = 7;
2779 	if (ncbuckethash > nchash)
2780 		ncbuckethash = nchash;
2781 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2782 	    M_WAITOK | M_ZERO);
2783 	for (i = 0; i < numbucketlocks; i++)
2784 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2785 	ncvnodehash = ncbuckethash;
2786 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2787 	    M_WAITOK | M_ZERO);
2788 	for (i = 0; i < numvnodelocks; i++)
2789 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2790 
2791 	for (i = 0; i < numneglists; i++) {
2792 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2793 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2794 		TAILQ_INIT(&neglists[i].nl_list);
2795 		TAILQ_INIT(&neglists[i].nl_hotlist);
2796 	}
2797 }
2798 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2799 
2800 void
2801 cache_vnode_init(struct vnode *vp)
2802 {
2803 
2804 	LIST_INIT(&vp->v_cache_src);
2805 	TAILQ_INIT(&vp->v_cache_dst);
2806 	vp->v_cache_dd = NULL;
2807 	cache_prehash(vp);
2808 }
2809 
2810 /*
2811  * Induce transient cache misses for lockless operation in cache_lookup() by
2812  * using a temporary hash table.
2813  *
2814  * This will force a fs lookup.
2815  *
2816  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2817  * to observe all CPUs not performing the lookup.
2818  */
2819 static void
2820 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2821 {
2822 
2823 	MPASS(temphash < nchash);
2824 	/*
2825 	 * Change the size. The new size is smaller and can safely be used
2826 	 * against the existing table. All lookups which now hash wrong will
2827 	 * result in a cache miss, which all callers are supposed to know how
2828 	 * to handle.
2829 	 */
2830 	atomic_store_long(&nchash, temphash);
2831 	atomic_thread_fence_rel();
2832 	vfs_smr_synchronize();
2833 	/*
2834 	 * At this point everyone sees the updated hash value, but they still
2835 	 * see the old table.
2836 	 */
2837 	atomic_store_ptr(&nchashtbl, temptbl);
2838 	atomic_thread_fence_rel();
2839 	vfs_smr_synchronize();
2840 	/*
2841 	 * At this point everyone sees the updated table pointer and size pair.
2842 	 */
2843 }
2844 
2845 /*
2846  * Set the new hash table.
2847  *
2848  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2849  * lockless operation in cache_lookup().
2850  */
2851 static void
2852 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2853 {
2854 
2855 	MPASS(nchash < new_hash);
2856 	/*
2857 	 * Change the pointer first. This wont result in out of bounds access
2858 	 * since the temporary table is guaranteed to be smaller.
2859 	 */
2860 	atomic_store_ptr(&nchashtbl, new_tbl);
2861 	atomic_thread_fence_rel();
2862 	vfs_smr_synchronize();
2863 	/*
2864 	 * At this point everyone sees the updated pointer value, but they
2865 	 * still see the old size.
2866 	 */
2867 	atomic_store_long(&nchash, new_hash);
2868 	atomic_thread_fence_rel();
2869 	vfs_smr_synchronize();
2870 	/*
2871 	 * At this point everyone sees the updated table pointer and size pair.
2872 	 */
2873 }
2874 
2875 void
2876 cache_changesize(u_long newmaxvnodes)
2877 {
2878 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2879 	u_long new_nchash, old_nchash, temphash;
2880 	struct namecache *ncp;
2881 	uint32_t hash;
2882 	u_long newncsize;
2883 	u_long i;
2884 
2885 	newncsize = newmaxvnodes * ncsizefactor;
2886 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2887 	if (newmaxvnodes < numbucketlocks)
2888 		newmaxvnodes = numbucketlocks;
2889 
2890 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2891 	/* If same hash table size, nothing to do */
2892 	if (nchash == new_nchash) {
2893 		ncfreetbl(new_nchashtbl);
2894 		return;
2895 	}
2896 
2897 	temptbl = nchinittbl(1, &temphash);
2898 
2899 	/*
2900 	 * Move everything from the old hash table to the new table.
2901 	 * None of the namecache entries in the table can be removed
2902 	 * because to do so, they have to be removed from the hash table.
2903 	 */
2904 	cache_lock_all_vnodes();
2905 	cache_lock_all_buckets();
2906 	old_nchashtbl = nchashtbl;
2907 	old_nchash = nchash;
2908 	cache_changesize_set_temp(temptbl, temphash);
2909 	for (i = 0; i <= old_nchash; i++) {
2910 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2911 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2912 			    ncp->nc_dvp);
2913 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2914 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2915 		}
2916 	}
2917 	ncsize = newncsize;
2918 	cache_recalc_neg_min();
2919 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2920 	cache_unlock_all_buckets();
2921 	cache_unlock_all_vnodes();
2922 	ncfreetbl(old_nchashtbl);
2923 	ncfreetbl(temptbl);
2924 }
2925 
2926 /*
2927  * Remove all entries from and to a particular vnode.
2928  */
2929 static void
2930 cache_purge_impl(struct vnode *vp)
2931 {
2932 	struct cache_freebatch batch;
2933 	struct namecache *ncp;
2934 	struct mtx *vlp, *vlp2;
2935 
2936 	TAILQ_INIT(&batch);
2937 	vlp = VP2VNODELOCK(vp);
2938 	vlp2 = NULL;
2939 	mtx_lock(vlp);
2940 retry:
2941 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2942 		ncp = LIST_FIRST(&vp->v_cache_src);
2943 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2944 			goto retry;
2945 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2946 	}
2947 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2948 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2949 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2950 			goto retry;
2951 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2952 	}
2953 	ncp = vp->v_cache_dd;
2954 	if (ncp != NULL) {
2955 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2956 		   ("lost dotdot link"));
2957 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2958 			goto retry;
2959 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2960 	}
2961 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2962 	mtx_unlock(vlp);
2963 	if (vlp2 != NULL)
2964 		mtx_unlock(vlp2);
2965 	cache_free_batch(&batch);
2966 }
2967 
2968 /*
2969  * Opportunistic check to see if there is anything to do.
2970  */
2971 static bool
2972 cache_has_entries(struct vnode *vp)
2973 {
2974 
2975 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2976 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2977 		return (false);
2978 	return (true);
2979 }
2980 
2981 void
2982 cache_purge(struct vnode *vp)
2983 {
2984 
2985 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2986 	if (!cache_has_entries(vp))
2987 		return;
2988 	cache_purge_impl(vp);
2989 }
2990 
2991 /*
2992  * Only to be used by vgone.
2993  */
2994 void
2995 cache_purge_vgone(struct vnode *vp)
2996 {
2997 	struct mtx *vlp;
2998 
2999 	VNPASS(VN_IS_DOOMED(vp), vp);
3000 	if (cache_has_entries(vp)) {
3001 		cache_purge_impl(vp);
3002 		return;
3003 	}
3004 
3005 	/*
3006 	 * Serialize against a potential thread doing cache_purge.
3007 	 */
3008 	vlp = VP2VNODELOCK(vp);
3009 	mtx_wait_unlocked(vlp);
3010 	if (cache_has_entries(vp)) {
3011 		cache_purge_impl(vp);
3012 		return;
3013 	}
3014 	return;
3015 }
3016 
3017 /*
3018  * Remove all negative entries for a particular directory vnode.
3019  */
3020 void
3021 cache_purge_negative(struct vnode *vp)
3022 {
3023 	struct cache_freebatch batch;
3024 	struct namecache *ncp, *nnp;
3025 	struct mtx *vlp;
3026 
3027 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
3028 	if (LIST_EMPTY(&vp->v_cache_src))
3029 		return;
3030 	TAILQ_INIT(&batch);
3031 	vlp = VP2VNODELOCK(vp);
3032 	mtx_lock(vlp);
3033 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
3034 		if (!(ncp->nc_flag & NCF_NEGATIVE))
3035 			continue;
3036 		cache_zap_negative_locked_vnode_kl(ncp, vp);
3037 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
3038 	}
3039 	mtx_unlock(vlp);
3040 	cache_free_batch(&batch);
3041 }
3042 
3043 /*
3044  * Entry points for modifying VOP operations.
3045  */
3046 void
3047 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3048     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3049 {
3050 
3051 	ASSERT_VOP_IN_SEQC(fdvp);
3052 	ASSERT_VOP_IN_SEQC(fvp);
3053 	ASSERT_VOP_IN_SEQC(tdvp);
3054 	if (tvp != NULL)
3055 		ASSERT_VOP_IN_SEQC(tvp);
3056 
3057 	cache_purge(fvp);
3058 	if (tvp != NULL) {
3059 		cache_purge(tvp);
3060 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3061 		    ("%s: lingering negative entry", __func__));
3062 	} else {
3063 		cache_remove_cnp(tdvp, tcnp);
3064 	}
3065 
3066 	/*
3067 	 * TODO
3068 	 *
3069 	 * Historically renaming was always purging all revelang entries,
3070 	 * but that's quite wasteful. In particular turns out that in many cases
3071 	 * the target file is immediately accessed after rename, inducing a cache
3072 	 * miss.
3073 	 *
3074 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3075 	 * instead of just removing it above and allocating a new one here.
3076 	 */
3077 	cache_enter(tdvp, fvp, tcnp);
3078 }
3079 
3080 void
3081 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3082 {
3083 
3084 	ASSERT_VOP_IN_SEQC(dvp);
3085 	ASSERT_VOP_IN_SEQC(vp);
3086 	cache_purge(vp);
3087 }
3088 
3089 #ifdef INVARIANTS
3090 /*
3091  * Validate that if an entry exists it matches.
3092  */
3093 void
3094 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3095 {
3096 	struct namecache *ncp;
3097 	struct mtx *blp;
3098 	uint32_t hash;
3099 
3100 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3101 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3102 		return;
3103 	blp = HASH2BUCKETLOCK(hash);
3104 	mtx_lock(blp);
3105 	ncp = cache_ncp_find(dvp, cnp, hash);
3106 	if (ncp != NULL && ncp->nc_vp != vp) {
3107 		panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3108 		    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3109 	}
3110 	mtx_unlock(blp);
3111 }
3112 
3113 void
3114 cache_assert_no_entries(struct vnode *vp)
3115 {
3116 
3117 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3118 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3119 	VNPASS(vp->v_cache_dd == NULL, vp);
3120 }
3121 #endif
3122 
3123 /*
3124  * Flush all entries referencing a particular filesystem.
3125  */
3126 void
3127 cache_purgevfs(struct mount *mp)
3128 {
3129 	struct vnode *vp, *mvp;
3130 	size_t visited __sdt_used, purged __sdt_used;
3131 
3132 	visited = purged = 0;
3133 	/*
3134 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3135 	 * support filtering and avoid the interlock to begin with.
3136 	 */
3137 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3138 		visited++;
3139 		if (!cache_has_entries(vp)) {
3140 			VI_UNLOCK(vp);
3141 			continue;
3142 		}
3143 		vholdl(vp);
3144 		VI_UNLOCK(vp);
3145 		cache_purge(vp);
3146 		purged++;
3147 		vdrop(vp);
3148 	}
3149 
3150 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3151 }
3152 
3153 /*
3154  * Perform canonical checks and cache lookup and pass on to filesystem
3155  * through the vop_cachedlookup only if needed.
3156  */
3157 
3158 int
3159 vfs_cache_lookup(struct vop_lookup_args *ap)
3160 {
3161 	struct vnode *dvp;
3162 	int error;
3163 	struct vnode **vpp = ap->a_vpp;
3164 	struct componentname *cnp = ap->a_cnp;
3165 	int flags = cnp->cn_flags;
3166 
3167 	*vpp = NULL;
3168 	dvp = ap->a_dvp;
3169 
3170 	if (dvp->v_type != VDIR)
3171 		return (ENOTDIR);
3172 
3173 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3174 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3175 		return (EROFS);
3176 
3177 	error = vn_dir_check_exec(dvp, cnp);
3178 	if (error != 0)
3179 		return (error);
3180 
3181 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3182 	if (error == 0)
3183 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3184 	if (error == -1)
3185 		return (0);
3186 	return (error);
3187 }
3188 
3189 /* Implementation of the getcwd syscall. */
3190 int
3191 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3192 {
3193 	char *buf, *retbuf;
3194 	size_t buflen;
3195 	int error;
3196 
3197 	buflen = uap->buflen;
3198 	if (__predict_false(buflen < 2))
3199 		return (EINVAL);
3200 	if (buflen > MAXPATHLEN)
3201 		buflen = MAXPATHLEN;
3202 
3203 	buf = uma_zalloc(namei_zone, M_WAITOK);
3204 	error = vn_getcwd(buf, &retbuf, &buflen);
3205 	if (error == 0)
3206 		error = copyout(retbuf, uap->buf, buflen);
3207 	uma_zfree(namei_zone, buf);
3208 	return (error);
3209 }
3210 
3211 int
3212 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3213 {
3214 	struct pwd *pwd;
3215 	int error;
3216 
3217 	vfs_smr_enter();
3218 	pwd = pwd_get_smr();
3219 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3220 	    buflen, 0);
3221 	VFS_SMR_ASSERT_NOT_ENTERED();
3222 	if (error < 0) {
3223 		pwd = pwd_hold(curthread);
3224 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3225 		    retbuf, buflen);
3226 		pwd_drop(pwd);
3227 	}
3228 
3229 #ifdef KTRACE
3230 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3231 		ktrnamei(*retbuf);
3232 #endif
3233 	return (error);
3234 }
3235 
3236 /*
3237  * Canonicalize a path by walking it forward and back.
3238  *
3239  * BUGS:
3240  * - Nothing guarantees the integrity of the entire chain. Consider the case
3241  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3242  *   "foo" into "quux" during the backwards walk. The result will be
3243  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3244  *   walk in userspace. Moreover, the path we return is inaccessible if the
3245  *   calling thread lacks permission to traverse "quux".
3246  */
3247 static int
3248 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3249     size_t size, int flags, enum uio_seg pathseg)
3250 {
3251 	struct nameidata nd;
3252 	char *retbuf, *freebuf;
3253 	int error;
3254 
3255 	if (flags != 0)
3256 		return (EINVAL);
3257 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3258 	    pathseg, path, fd, &cap_fstat_rights);
3259 	if ((error = namei(&nd)) != 0)
3260 		return (error);
3261 
3262 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3263 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3264 		struct vnode *covered_vp;
3265 
3266 		/*
3267 		 * This happens if vp is a file mount. The call to
3268 		 * vn_fullpath_hardlink can panic if path resolution can't be
3269 		 * handled without the directory.
3270 		 *
3271 		 * To resolve this, we find the vnode which was mounted on -
3272 		 * this should have a unique global path since we disallow
3273 		 * mounting on linked files.
3274 		 */
3275 		error = vn_lock(nd.ni_vp, LK_SHARED);
3276 		if (error != 0)
3277 			goto out;
3278 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3279 		vref(covered_vp);
3280 		VOP_UNLOCK(nd.ni_vp);
3281 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3282 		vrele(covered_vp);
3283 	} else {
3284 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
3285 		    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
3286 		    &freebuf, &size);
3287 	}
3288 	if (error == 0) {
3289 		size_t len;
3290 
3291 		len = strlen(retbuf) + 1;
3292 		if (size < len)
3293 			error = ENAMETOOLONG;
3294 		else if (pathseg == UIO_USERSPACE)
3295 			error = copyout(retbuf, buf, len);
3296 		else
3297 			memcpy(buf, retbuf, len);
3298 		free(freebuf, M_TEMP);
3299 	}
3300 out:
3301 	vrele(nd.ni_vp);
3302 	vrele(nd.ni_dvp);
3303 	NDFREE_PNBUF(&nd);
3304 	return (error);
3305 }
3306 
3307 int
3308 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3309 {
3310 
3311 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3312 	    uap->flags, UIO_USERSPACE));
3313 }
3314 
3315 /*
3316  * Retrieve the full filesystem path that correspond to a vnode from the name
3317  * cache (if available)
3318  */
3319 int
3320 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3321 {
3322 	struct pwd *pwd;
3323 	char *buf;
3324 	size_t buflen;
3325 	int error;
3326 
3327 	if (__predict_false(vp == NULL))
3328 		return (EINVAL);
3329 
3330 	buflen = MAXPATHLEN;
3331 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3332 	vfs_smr_enter();
3333 	pwd = pwd_get_smr();
3334 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3335 	VFS_SMR_ASSERT_NOT_ENTERED();
3336 	if (error < 0) {
3337 		pwd = pwd_hold(curthread);
3338 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3339 		pwd_drop(pwd);
3340 	}
3341 	if (error == 0)
3342 		*freebuf = buf;
3343 	else
3344 		free(buf, M_TEMP);
3345 	return (error);
3346 }
3347 
3348 /*
3349  * This function is similar to vn_fullpath, but it attempts to lookup the
3350  * pathname relative to the global root mount point.  This is required for the
3351  * auditing sub-system, as audited pathnames must be absolute, relative to the
3352  * global root mount point.
3353  */
3354 int
3355 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3356 {
3357 	char *buf;
3358 	size_t buflen;
3359 	int error;
3360 
3361 	if (__predict_false(vp == NULL))
3362 		return (EINVAL);
3363 	buflen = MAXPATHLEN;
3364 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3365 	vfs_smr_enter();
3366 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3367 	VFS_SMR_ASSERT_NOT_ENTERED();
3368 	if (error < 0) {
3369 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3370 	}
3371 	if (error == 0)
3372 		*freebuf = buf;
3373 	else
3374 		free(buf, M_TEMP);
3375 	return (error);
3376 }
3377 
3378 static struct namecache *
3379 vn_dd_from_dst(struct vnode *vp)
3380 {
3381 	struct namecache *ncp;
3382 
3383 	cache_assert_vnode_locked(vp);
3384 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3385 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3386 			return (ncp);
3387 	}
3388 	return (NULL);
3389 }
3390 
3391 int
3392 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3393 {
3394 	struct vnode *dvp;
3395 	struct namecache *ncp;
3396 	struct mtx *vlp;
3397 	int error;
3398 
3399 	vlp = VP2VNODELOCK(*vp);
3400 	mtx_lock(vlp);
3401 	ncp = (*vp)->v_cache_dd;
3402 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3403 		KASSERT(ncp == vn_dd_from_dst(*vp),
3404 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3405 		    ncp, vn_dd_from_dst(*vp)));
3406 	} else {
3407 		ncp = vn_dd_from_dst(*vp);
3408 	}
3409 	if (ncp != NULL) {
3410 		if (*buflen < ncp->nc_nlen) {
3411 			mtx_unlock(vlp);
3412 			vrele(*vp);
3413 			counter_u64_add(numfullpathfail4, 1);
3414 			error = ENOMEM;
3415 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3416 			    vp, NULL);
3417 			return (error);
3418 		}
3419 		*buflen -= ncp->nc_nlen;
3420 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3421 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3422 		    ncp->nc_name, vp);
3423 		dvp = *vp;
3424 		*vp = ncp->nc_dvp;
3425 		vref(*vp);
3426 		mtx_unlock(vlp);
3427 		vrele(dvp);
3428 		return (0);
3429 	}
3430 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3431 
3432 	mtx_unlock(vlp);
3433 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3434 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3435 	vput(*vp);
3436 	if (error) {
3437 		counter_u64_add(numfullpathfail2, 1);
3438 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3439 		return (error);
3440 	}
3441 
3442 	*vp = dvp;
3443 	if (VN_IS_DOOMED(dvp)) {
3444 		/* forced unmount */
3445 		vrele(dvp);
3446 		error = ENOENT;
3447 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3448 		return (error);
3449 	}
3450 	/*
3451 	 * *vp has its use count incremented still.
3452 	 */
3453 
3454 	return (0);
3455 }
3456 
3457 /*
3458  * Resolve a directory to a pathname.
3459  *
3460  * The name of the directory can always be found in the namecache or fetched
3461  * from the filesystem. There is also guaranteed to be only one parent, meaning
3462  * we can just follow vnodes up until we find the root.
3463  *
3464  * The vnode must be referenced.
3465  */
3466 static int
3467 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3468     size_t *len, size_t addend)
3469 {
3470 #ifdef KDTRACE_HOOKS
3471 	struct vnode *startvp = vp;
3472 #endif
3473 	struct vnode *vp1;
3474 	size_t buflen;
3475 	int error;
3476 	bool slash_prefixed;
3477 
3478 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3479 	VNPASS(vp->v_usecount > 0, vp);
3480 
3481 	buflen = *len;
3482 
3483 	slash_prefixed = true;
3484 	if (addend == 0) {
3485 		MPASS(*len >= 2);
3486 		buflen--;
3487 		buf[buflen] = '\0';
3488 		slash_prefixed = false;
3489 	}
3490 
3491 	error = 0;
3492 
3493 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3494 	counter_u64_add(numfullpathcalls, 1);
3495 	while (vp != rdir && vp != rootvnode) {
3496 		/*
3497 		 * The vp vnode must be already fully constructed,
3498 		 * since it is either found in namecache or obtained
3499 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3500 		 * without obtaining the vnode lock.
3501 		 */
3502 		if ((vp->v_vflag & VV_ROOT) != 0) {
3503 			vn_lock(vp, LK_RETRY | LK_SHARED);
3504 
3505 			/*
3506 			 * With the vnode locked, check for races with
3507 			 * unmount, forced or not.  Note that we
3508 			 * already verified that vp is not equal to
3509 			 * the root vnode, which means that
3510 			 * mnt_vnodecovered can be NULL only for the
3511 			 * case of unmount.
3512 			 */
3513 			if (VN_IS_DOOMED(vp) ||
3514 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3515 			    vp1->v_mountedhere != vp->v_mount) {
3516 				vput(vp);
3517 				error = ENOENT;
3518 				SDT_PROBE3(vfs, namecache, fullpath, return,
3519 				    error, vp, NULL);
3520 				break;
3521 			}
3522 
3523 			vref(vp1);
3524 			vput(vp);
3525 			vp = vp1;
3526 			continue;
3527 		}
3528 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3529 		error = vn_vptocnp(&vp, buf, &buflen);
3530 		if (error)
3531 			break;
3532 		if (buflen == 0) {
3533 			vrele(vp);
3534 			error = ENOMEM;
3535 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3536 			    startvp, NULL);
3537 			break;
3538 		}
3539 		buf[--buflen] = '/';
3540 		slash_prefixed = true;
3541 	}
3542 	if (error)
3543 		return (error);
3544 	if (!slash_prefixed) {
3545 		if (buflen == 0) {
3546 			vrele(vp);
3547 			counter_u64_add(numfullpathfail4, 1);
3548 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3549 			    startvp, NULL);
3550 			return (ENOMEM);
3551 		}
3552 		buf[--buflen] = '/';
3553 	}
3554 	counter_u64_add(numfullpathfound, 1);
3555 	vrele(vp);
3556 
3557 	*retbuf = buf + buflen;
3558 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3559 	*len -= buflen;
3560 	*len += addend;
3561 	return (0);
3562 }
3563 
3564 /*
3565  * Resolve an arbitrary vnode to a pathname.
3566  *
3567  * Note 2 caveats:
3568  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3569  *   resolve to a different path than the one used to find it
3570  * - namecache is not mandatory, meaning names are not guaranteed to be added
3571  *   (in which case resolving fails)
3572  */
3573 static void __inline
3574 cache_rev_failed_impl(int *reason, int line)
3575 {
3576 
3577 	*reason = line;
3578 }
3579 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3580 
3581 static int
3582 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3583     char **retbuf, size_t *buflen, size_t addend)
3584 {
3585 #ifdef KDTRACE_HOOKS
3586 	struct vnode *startvp = vp;
3587 #endif
3588 	struct vnode *tvp;
3589 	struct mount *mp;
3590 	struct namecache *ncp;
3591 	size_t orig_buflen;
3592 	int reason;
3593 	int error;
3594 #ifdef KDTRACE_HOOKS
3595 	int i;
3596 #endif
3597 	seqc_t vp_seqc, tvp_seqc;
3598 	u_char nc_flag;
3599 
3600 	VFS_SMR_ASSERT_ENTERED();
3601 
3602 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3603 		vfs_smr_exit();
3604 		return (-1);
3605 	}
3606 
3607 	orig_buflen = *buflen;
3608 
3609 	if (addend == 0) {
3610 		MPASS(*buflen >= 2);
3611 		*buflen -= 1;
3612 		buf[*buflen] = '\0';
3613 	}
3614 
3615 	if (vp == rdir || vp == rootvnode) {
3616 		if (addend == 0) {
3617 			*buflen -= 1;
3618 			buf[*buflen] = '/';
3619 		}
3620 		goto out_ok;
3621 	}
3622 
3623 #ifdef KDTRACE_HOOKS
3624 	i = 0;
3625 #endif
3626 	error = -1;
3627 	ncp = NULL; /* for sdt probe down below */
3628 	vp_seqc = vn_seqc_read_any(vp);
3629 	if (seqc_in_modify(vp_seqc)) {
3630 		cache_rev_failed(&reason);
3631 		goto out_abort;
3632 	}
3633 
3634 	for (;;) {
3635 #ifdef KDTRACE_HOOKS
3636 		i++;
3637 #endif
3638 		if ((vp->v_vflag & VV_ROOT) != 0) {
3639 			mp = atomic_load_ptr(&vp->v_mount);
3640 			if (mp == NULL) {
3641 				cache_rev_failed(&reason);
3642 				goto out_abort;
3643 			}
3644 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3645 			tvp_seqc = vn_seqc_read_any(tvp);
3646 			if (seqc_in_modify(tvp_seqc)) {
3647 				cache_rev_failed(&reason);
3648 				goto out_abort;
3649 			}
3650 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3651 				cache_rev_failed(&reason);
3652 				goto out_abort;
3653 			}
3654 			vp = tvp;
3655 			vp_seqc = tvp_seqc;
3656 			continue;
3657 		}
3658 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3659 		if (ncp == NULL) {
3660 			cache_rev_failed(&reason);
3661 			goto out_abort;
3662 		}
3663 		nc_flag = atomic_load_char(&ncp->nc_flag);
3664 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3665 			cache_rev_failed(&reason);
3666 			goto out_abort;
3667 		}
3668 		if (ncp->nc_nlen >= *buflen) {
3669 			cache_rev_failed(&reason);
3670 			error = ENOMEM;
3671 			goto out_abort;
3672 		}
3673 		*buflen -= ncp->nc_nlen;
3674 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3675 		*buflen -= 1;
3676 		buf[*buflen] = '/';
3677 		tvp = ncp->nc_dvp;
3678 		tvp_seqc = vn_seqc_read_any(tvp);
3679 		if (seqc_in_modify(tvp_seqc)) {
3680 			cache_rev_failed(&reason);
3681 			goto out_abort;
3682 		}
3683 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3684 			cache_rev_failed(&reason);
3685 			goto out_abort;
3686 		}
3687 		/*
3688 		 * Acquire fence provided by vn_seqc_read_any above.
3689 		 */
3690 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3691 			cache_rev_failed(&reason);
3692 			goto out_abort;
3693 		}
3694 		if (!cache_ncp_canuse(ncp)) {
3695 			cache_rev_failed(&reason);
3696 			goto out_abort;
3697 		}
3698 		vp = tvp;
3699 		vp_seqc = tvp_seqc;
3700 		if (vp == rdir || vp == rootvnode)
3701 			break;
3702 	}
3703 out_ok:
3704 	vfs_smr_exit();
3705 	*retbuf = buf + *buflen;
3706 	*buflen = orig_buflen - *buflen + addend;
3707 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3708 	return (0);
3709 
3710 out_abort:
3711 	*buflen = orig_buflen;
3712 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3713 	vfs_smr_exit();
3714 	return (error);
3715 }
3716 
3717 static int
3718 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3719     size_t *buflen)
3720 {
3721 	size_t orig_buflen, addend;
3722 	int error;
3723 
3724 	if (*buflen < 2)
3725 		return (EINVAL);
3726 
3727 	orig_buflen = *buflen;
3728 
3729 	vref(vp);
3730 	addend = 0;
3731 	if (vp->v_type != VDIR) {
3732 		*buflen -= 1;
3733 		buf[*buflen] = '\0';
3734 		error = vn_vptocnp(&vp, buf, buflen);
3735 		if (error)
3736 			return (error);
3737 		if (*buflen == 0) {
3738 			vrele(vp);
3739 			return (ENOMEM);
3740 		}
3741 		*buflen -= 1;
3742 		buf[*buflen] = '/';
3743 		addend = orig_buflen - *buflen;
3744 	}
3745 
3746 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3747 }
3748 
3749 /*
3750  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3751  *
3752  * Since the namecache does not track hardlinks, the caller is expected to
3753  * first look up the target vnode with WANTPARENT flag passed to namei to get
3754  * dvp and vp.
3755  *
3756  * Then we have 2 cases:
3757  * - if the found vnode is a directory, the path can be constructed just by
3758  *   following names up the chain
3759  * - otherwise we populate the buffer with the saved name and start resolving
3760  *   from the parent
3761  */
3762 int
3763 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3764     const char *hrdl_name, size_t hrdl_name_length,
3765     char **retbuf, char **freebuf, size_t *buflen)
3766 {
3767 	char *buf, *tmpbuf;
3768 	struct pwd *pwd;
3769 	size_t addend;
3770 	int error;
3771 	__enum_uint8(vtype) type;
3772 
3773 	if (*buflen < 2)
3774 		return (EINVAL);
3775 	if (*buflen > MAXPATHLEN)
3776 		*buflen = MAXPATHLEN;
3777 
3778 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3779 
3780 	addend = 0;
3781 
3782 	/*
3783 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3784 	 *
3785 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3786 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3787 	 * If the type is VDIR (like in this very case) we can skip looking
3788 	 * at ni_dvp in the first place. However, since vnodes get passed here
3789 	 * unlocked the target may transition to doomed state (type == VBAD)
3790 	 * before we get to evaluate the condition. If this happens, we will
3791 	 * populate part of the buffer and descend to vn_fullpath_dir with
3792 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3793 	 */
3794 	type = atomic_load_8(&vp->v_type);
3795 	if (type == VBAD) {
3796 		error = ENOENT;
3797 		goto out_bad;
3798 	}
3799 	if (type != VDIR) {
3800 		addend = hrdl_name_length + 2;
3801 		if (*buflen < addend) {
3802 			error = ENOMEM;
3803 			goto out_bad;
3804 		}
3805 		*buflen -= addend;
3806 		tmpbuf = buf + *buflen;
3807 		tmpbuf[0] = '/';
3808 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3809 		tmpbuf[addend - 1] = '\0';
3810 		vp = dvp;
3811 	}
3812 
3813 	vfs_smr_enter();
3814 	pwd = pwd_get_smr();
3815 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3816 	    addend);
3817 	VFS_SMR_ASSERT_NOT_ENTERED();
3818 	if (error < 0) {
3819 		pwd = pwd_hold(curthread);
3820 		vref(vp);
3821 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3822 		    addend);
3823 		pwd_drop(pwd);
3824 	}
3825 	if (error != 0)
3826 		goto out_bad;
3827 
3828 	*freebuf = buf;
3829 
3830 	return (0);
3831 out_bad:
3832 	free(buf, M_TEMP);
3833 	return (error);
3834 }
3835 
3836 struct vnode *
3837 vn_dir_dd_ino(struct vnode *vp)
3838 {
3839 	struct namecache *ncp;
3840 	struct vnode *ddvp;
3841 	struct mtx *vlp;
3842 	enum vgetstate vs;
3843 
3844 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3845 	vlp = VP2VNODELOCK(vp);
3846 	mtx_lock(vlp);
3847 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3848 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3849 			continue;
3850 		ddvp = ncp->nc_dvp;
3851 		vs = vget_prep(ddvp);
3852 		mtx_unlock(vlp);
3853 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3854 			return (NULL);
3855 		return (ddvp);
3856 	}
3857 	mtx_unlock(vlp);
3858 	return (NULL);
3859 }
3860 
3861 int
3862 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3863 {
3864 	struct namecache *ncp;
3865 	struct mtx *vlp;
3866 	int l;
3867 
3868 	vlp = VP2VNODELOCK(vp);
3869 	mtx_lock(vlp);
3870 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3871 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3872 			break;
3873 	if (ncp == NULL) {
3874 		mtx_unlock(vlp);
3875 		return (ENOENT);
3876 	}
3877 	l = min(ncp->nc_nlen, buflen - 1);
3878 	memcpy(buf, ncp->nc_name, l);
3879 	mtx_unlock(vlp);
3880 	buf[l] = '\0';
3881 	return (0);
3882 }
3883 
3884 /*
3885  * This function updates path string to vnode's full global path
3886  * and checks the size of the new path string against the pathlen argument.
3887  *
3888  * Requires a locked, referenced vnode.
3889  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3890  *
3891  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3892  * because it falls back to the ".." lookup if the namecache lookup fails.
3893  */
3894 int
3895 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3896     u_int pathlen)
3897 {
3898 	struct nameidata nd;
3899 	struct vnode *vp1;
3900 	char *rpath, *fbuf;
3901 	int error;
3902 
3903 	ASSERT_VOP_ELOCKED(vp, __func__);
3904 
3905 	/* Construct global filesystem path from vp. */
3906 	VOP_UNLOCK(vp);
3907 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3908 
3909 	if (error != 0) {
3910 		vrele(vp);
3911 		return (error);
3912 	}
3913 
3914 	if (strlen(rpath) >= pathlen) {
3915 		vrele(vp);
3916 		error = ENAMETOOLONG;
3917 		goto out;
3918 	}
3919 
3920 	/*
3921 	 * Re-lookup the vnode by path to detect a possible rename.
3922 	 * As a side effect, the vnode is relocked.
3923 	 * If vnode was renamed, return ENOENT.
3924 	 */
3925 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3926 	error = namei(&nd);
3927 	if (error != 0) {
3928 		vrele(vp);
3929 		goto out;
3930 	}
3931 	NDFREE_PNBUF(&nd);
3932 	vp1 = nd.ni_vp;
3933 	vrele(vp);
3934 	if (vp1 == vp)
3935 		strcpy(path, rpath);
3936 	else {
3937 		vput(vp1);
3938 		error = ENOENT;
3939 	}
3940 
3941 out:
3942 	free(fbuf, M_TEMP);
3943 	return (error);
3944 }
3945 
3946 /*
3947  * This is similar to vn_path_to_global_path but allows for regular
3948  * files which may not be present in the cache.
3949  *
3950  * Requires a locked, referenced vnode.
3951  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3952  */
3953 int
3954 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3955     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3956     size_t leaf_length)
3957 {
3958 	struct nameidata nd;
3959 	struct vnode *vp1;
3960 	char *rpath, *fbuf;
3961 	size_t len;
3962 	int error;
3963 
3964 	ASSERT_VOP_ELOCKED(vp, __func__);
3965 
3966 	/*
3967 	 * Construct global filesystem path from dvp, vp and leaf
3968 	 * name.
3969 	 */
3970 	VOP_UNLOCK(vp);
3971 	len = pathlen;
3972 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3973 	    &rpath, &fbuf, &len);
3974 
3975 	if (error != 0) {
3976 		vrele(vp);
3977 		return (error);
3978 	}
3979 
3980 	if (strlen(rpath) >= pathlen) {
3981 		vrele(vp);
3982 		error = ENAMETOOLONG;
3983 		goto out;
3984 	}
3985 
3986 	/*
3987 	 * Re-lookup the vnode by path to detect a possible rename.
3988 	 * As a side effect, the vnode is relocked.
3989 	 * If vnode was renamed, return ENOENT.
3990 	 */
3991 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3992 	error = namei(&nd);
3993 	if (error != 0) {
3994 		vrele(vp);
3995 		goto out;
3996 	}
3997 	NDFREE_PNBUF(&nd);
3998 	vp1 = nd.ni_vp;
3999 	vrele(vp);
4000 	if (vp1 == vp)
4001 		strcpy(path, rpath);
4002 	else {
4003 		vput(vp1);
4004 		error = ENOENT;
4005 	}
4006 
4007 out:
4008 	free(fbuf, M_TEMP);
4009 	return (error);
4010 }
4011 
4012 #ifdef DDB
4013 static void
4014 db_print_vpath(struct vnode *vp)
4015 {
4016 
4017 	while (vp != NULL) {
4018 		db_printf("%p: ", vp);
4019 		if (vp == rootvnode) {
4020 			db_printf("/");
4021 			vp = NULL;
4022 		} else {
4023 			if (vp->v_vflag & VV_ROOT) {
4024 				db_printf("<mount point>");
4025 				vp = vp->v_mount->mnt_vnodecovered;
4026 			} else {
4027 				struct namecache *ncp;
4028 				char *ncn;
4029 				int i;
4030 
4031 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
4032 				if (ncp != NULL) {
4033 					ncn = ncp->nc_name;
4034 					for (i = 0; i < ncp->nc_nlen; i++)
4035 						db_printf("%c", *ncn++);
4036 					vp = ncp->nc_dvp;
4037 				} else {
4038 					vp = NULL;
4039 				}
4040 			}
4041 		}
4042 		db_printf("\n");
4043 	}
4044 
4045 	return;
4046 }
4047 
4048 DB_SHOW_COMMAND(vpath, db_show_vpath)
4049 {
4050 	struct vnode *vp;
4051 
4052 	if (!have_addr) {
4053 		db_printf("usage: show vpath <struct vnode *>\n");
4054 		return;
4055 	}
4056 
4057 	vp = (struct vnode *)addr;
4058 	db_print_vpath(vp);
4059 }
4060 
4061 #endif
4062 
4063 static int cache_fast_lookup = 1;
4064 
4065 #define CACHE_FPL_FAILED	-2020
4066 
4067 static int
4068 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4069 {
4070 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4071 	panic("no proper vop_fplookup_vexec");
4072 }
4073 
4074 static int
4075 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4076 {
4077 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4078 	panic("no proper vop_fplookup_symlink");
4079 }
4080 
4081 void
4082 cache_vop_vector_register(struct vop_vector *v)
4083 {
4084 	size_t ops;
4085 
4086 	ops = 0;
4087 	if (v->vop_fplookup_vexec != NULL) {
4088 		ops++;
4089 	}
4090 	if (v->vop_fplookup_symlink != NULL) {
4091 		ops++;
4092 	}
4093 
4094 	if (ops == 2) {
4095 		return;
4096 	}
4097 
4098 	if (ops == 0) {
4099 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4100 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4101 		return;
4102 	}
4103 
4104 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4105 	    "need to be provided",  __func__, v);
4106 	if (v->vop_fplookup_vexec == NULL) {
4107 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4108 	}
4109 	if (v->vop_fplookup_symlink == NULL) {
4110 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4111 	}
4112 	panic("bad vop vector %p", v);
4113 }
4114 
4115 #ifdef INVARIANTS
4116 void
4117 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4118 {
4119 	if (mp == NULL)
4120 		return;
4121 
4122 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4123 		return;
4124 
4125 	if (vops->vop_fplookup_vexec == NULL ||
4126 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4127 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4128 		    vops, mp->mnt_vfc->vfc_name);
4129 
4130 	if (vops->vop_fplookup_symlink == NULL ||
4131 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4132 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4133 		    vops, mp->mnt_vfc->vfc_name);
4134 }
4135 #endif
4136 
4137 void
4138 cache_fast_lookup_enabled_recalc(void)
4139 {
4140 	int lookup_flag;
4141 	int mac_on;
4142 
4143 #ifdef MAC
4144 	mac_on = mac_vnode_check_lookup_enabled();
4145 	mac_on |= mac_vnode_check_readlink_enabled();
4146 #else
4147 	mac_on = 0;
4148 #endif
4149 
4150 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4151 	if (lookup_flag && !mac_on) {
4152 		atomic_store_char(&cache_fast_lookup_enabled, true);
4153 	} else {
4154 		atomic_store_char(&cache_fast_lookup_enabled, false);
4155 	}
4156 }
4157 
4158 static int
4159 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4160 {
4161 	int error, old;
4162 
4163 	old = atomic_load_int(&cache_fast_lookup);
4164 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4165 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4166 		cache_fast_lookup_enabled_recalc();
4167 	return (error);
4168 }
4169 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4170     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4171 
4172 /*
4173  * Components of nameidata (or objects it can point to) which may
4174  * need restoring in case fast path lookup fails.
4175  */
4176 struct nameidata_outer {
4177 	size_t ni_pathlen;
4178 	int cn_flags;
4179 };
4180 
4181 struct nameidata_saved {
4182 #ifdef INVARIANTS
4183 	char *cn_nameptr;
4184 	size_t ni_pathlen;
4185 #endif
4186 };
4187 
4188 #ifdef INVARIANTS
4189 struct cache_fpl_debug {
4190 	size_t ni_pathlen;
4191 };
4192 #endif
4193 
4194 struct cache_fpl {
4195 	struct nameidata *ndp;
4196 	struct componentname *cnp;
4197 	char *nulchar;
4198 	struct vnode *dvp;
4199 	struct vnode *tvp;
4200 	seqc_t dvp_seqc;
4201 	seqc_t tvp_seqc;
4202 	uint32_t hash;
4203 	struct nameidata_saved snd;
4204 	struct nameidata_outer snd_outer;
4205 	int line;
4206 	enum cache_fpl_status status:8;
4207 	bool in_smr;
4208 	bool fsearch;
4209 	struct pwd **pwd;
4210 #ifdef INVARIANTS
4211 	struct cache_fpl_debug debug;
4212 #endif
4213 };
4214 
4215 static bool cache_fplookup_mp_supported(struct mount *mp);
4216 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4217 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4218 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4219 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4220 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4221 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4222 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4223 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4224 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4225 
4226 static void
4227 cache_fpl_cleanup_cnp(struct componentname *cnp)
4228 {
4229 
4230 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4231 	cnp->cn_pnbuf = NULL;
4232 	cnp->cn_nameptr = NULL;
4233 }
4234 
4235 static struct vnode *
4236 cache_fpl_handle_root(struct cache_fpl *fpl)
4237 {
4238 	struct nameidata *ndp;
4239 	struct componentname *cnp;
4240 
4241 	ndp = fpl->ndp;
4242 	cnp = fpl->cnp;
4243 
4244 	MPASS(*(cnp->cn_nameptr) == '/');
4245 	cnp->cn_nameptr++;
4246 	cache_fpl_pathlen_dec(fpl);
4247 
4248 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4249 		do {
4250 			cnp->cn_nameptr++;
4251 			cache_fpl_pathlen_dec(fpl);
4252 		} while (*(cnp->cn_nameptr) == '/');
4253 	}
4254 
4255 	return (ndp->ni_rootdir);
4256 }
4257 
4258 static void
4259 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4260 {
4261 
4262 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4263 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4264 }
4265 
4266 static void
4267 cache_fpl_checkpoint(struct cache_fpl *fpl)
4268 {
4269 
4270 #ifdef INVARIANTS
4271 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4272 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4273 #endif
4274 }
4275 
4276 static void
4277 cache_fpl_restore_partial(struct cache_fpl *fpl)
4278 {
4279 
4280 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4281 #ifdef INVARIANTS
4282 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4283 #endif
4284 }
4285 
4286 static void
4287 cache_fpl_restore_abort(struct cache_fpl *fpl)
4288 {
4289 
4290 	cache_fpl_restore_partial(fpl);
4291 	/*
4292 	 * It is 0 on entry by API contract.
4293 	 */
4294 	fpl->ndp->ni_resflags = 0;
4295 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4296 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4297 }
4298 
4299 #ifdef INVARIANTS
4300 #define cache_fpl_smr_assert_entered(fpl) ({			\
4301 	struct cache_fpl *_fpl = (fpl);				\
4302 	MPASS(_fpl->in_smr == true);				\
4303 	VFS_SMR_ASSERT_ENTERED();				\
4304 })
4305 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4306 	struct cache_fpl *_fpl = (fpl);				\
4307 	MPASS(_fpl->in_smr == false);				\
4308 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4309 })
4310 static void
4311 cache_fpl_assert_status(struct cache_fpl *fpl)
4312 {
4313 
4314 	switch (fpl->status) {
4315 	case CACHE_FPL_STATUS_UNSET:
4316 		__assert_unreachable();
4317 		break;
4318 	case CACHE_FPL_STATUS_DESTROYED:
4319 	case CACHE_FPL_STATUS_ABORTED:
4320 	case CACHE_FPL_STATUS_PARTIAL:
4321 	case CACHE_FPL_STATUS_HANDLED:
4322 		break;
4323 	}
4324 }
4325 #else
4326 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4327 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4328 #define cache_fpl_assert_status(fpl) do { } while (0)
4329 #endif
4330 
4331 #define cache_fpl_smr_enter_initial(fpl) ({			\
4332 	struct cache_fpl *_fpl = (fpl);				\
4333 	vfs_smr_enter();					\
4334 	_fpl->in_smr = true;					\
4335 })
4336 
4337 #define cache_fpl_smr_enter(fpl) ({				\
4338 	struct cache_fpl *_fpl = (fpl);				\
4339 	MPASS(_fpl->in_smr == false);				\
4340 	vfs_smr_enter();					\
4341 	_fpl->in_smr = true;					\
4342 })
4343 
4344 #define cache_fpl_smr_exit(fpl) ({				\
4345 	struct cache_fpl *_fpl = (fpl);				\
4346 	MPASS(_fpl->in_smr == true);				\
4347 	vfs_smr_exit();						\
4348 	_fpl->in_smr = false;					\
4349 })
4350 
4351 static int
4352 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4353 {
4354 
4355 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4356 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4357 		    ("%s: converting to abort from %d at %d, set at %d\n",
4358 		    __func__, fpl->status, line, fpl->line));
4359 	}
4360 	cache_fpl_smr_assert_not_entered(fpl);
4361 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4362 	fpl->line = line;
4363 	return (CACHE_FPL_FAILED);
4364 }
4365 
4366 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4367 
4368 static int __noinline
4369 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4370 {
4371 	struct nameidata *ndp;
4372 	struct componentname *cnp;
4373 
4374 	ndp = fpl->ndp;
4375 	cnp = fpl->cnp;
4376 
4377 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4378 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4379 		    ("%s: converting to abort from %d at %d, set at %d\n",
4380 		    __func__, fpl->status, line, fpl->line));
4381 	}
4382 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4383 	fpl->line = line;
4384 	if (fpl->in_smr)
4385 		cache_fpl_smr_exit(fpl);
4386 	cache_fpl_restore_abort(fpl);
4387 	/*
4388 	 * Resolving symlinks overwrites data passed by the caller.
4389 	 * Let namei know.
4390 	 */
4391 	if (ndp->ni_loopcnt > 0) {
4392 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4393 		cache_fpl_cleanup_cnp(cnp);
4394 	}
4395 	return (CACHE_FPL_FAILED);
4396 }
4397 
4398 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4399 
4400 static int __noinline
4401 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4402 {
4403 
4404 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4405 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4406 	    __func__, line, fpl->status, fpl->line));
4407 	cache_fpl_smr_assert_entered(fpl);
4408 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4409 	fpl->line = line;
4410 	return (cache_fplookup_partial_setup(fpl));
4411 }
4412 
4413 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4414 
4415 static int
4416 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4417 {
4418 
4419 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4420 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4421 	    __func__, line, fpl->status, fpl->line));
4422 	cache_fpl_smr_assert_not_entered(fpl);
4423 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4424 	fpl->line = line;
4425 	return (0);
4426 }
4427 
4428 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4429 
4430 static int
4431 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4432 {
4433 
4434 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4435 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4436 	    __func__, line, fpl->status, fpl->line));
4437 	MPASS(error != 0);
4438 	MPASS(error != CACHE_FPL_FAILED);
4439 	cache_fpl_smr_assert_not_entered(fpl);
4440 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4441 	fpl->line = line;
4442 	fpl->dvp = NULL;
4443 	fpl->tvp = NULL;
4444 	return (error);
4445 }
4446 
4447 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4448 
4449 static bool
4450 cache_fpl_terminated(struct cache_fpl *fpl)
4451 {
4452 
4453 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4454 }
4455 
4456 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4457 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4458 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4459 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4460 	 OPENWRITE | WANTIOCTLCAPS | OPENNAMED)
4461 
4462 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4463 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4464 
4465 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4466     "supported and internal flags overlap");
4467 
4468 static bool
4469 cache_fpl_islastcn(struct nameidata *ndp)
4470 {
4471 
4472 	return (*ndp->ni_next == 0);
4473 }
4474 
4475 static bool
4476 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4477 {
4478 
4479 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4480 	return (*(fpl->nulchar - 1) == '/');
4481 }
4482 
4483 static bool
4484 cache_fpl_isdotdot(struct componentname *cnp)
4485 {
4486 
4487 	if (cnp->cn_namelen == 2 &&
4488 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4489 		return (true);
4490 	return (false);
4491 }
4492 
4493 static bool
4494 cache_can_fplookup(struct cache_fpl *fpl)
4495 {
4496 	struct nameidata *ndp;
4497 	struct componentname *cnp;
4498 	struct thread *td;
4499 
4500 	ndp = fpl->ndp;
4501 	cnp = fpl->cnp;
4502 	td = curthread;
4503 
4504 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4505 		cache_fpl_aborted_early(fpl);
4506 		return (false);
4507 	}
4508 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4509 		cache_fpl_aborted_early(fpl);
4510 		return (false);
4511 	}
4512 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4513 		cache_fpl_aborted_early(fpl);
4514 		return (false);
4515 	}
4516 	if (AUDITING_TD(td)) {
4517 		cache_fpl_aborted_early(fpl);
4518 		return (false);
4519 	}
4520 	if (ndp->ni_startdir != NULL) {
4521 		cache_fpl_aborted_early(fpl);
4522 		return (false);
4523 	}
4524 	if ((cnp->cn_flags & OPENNAMED) != 0) {
4525 		cache_fpl_aborted_early(fpl);
4526 		return (false);
4527 	}
4528 	return (true);
4529 }
4530 
4531 static int __noinline
4532 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4533 {
4534 	struct nameidata *ndp;
4535 	struct componentname *cnp;
4536 	int error;
4537 	bool fsearch;
4538 
4539 	ndp = fpl->ndp;
4540 	cnp = fpl->cnp;
4541 
4542 	error = fgetvp_lookup_smr(ndp, vpp, &fsearch);
4543 	if (__predict_false(error != 0)) {
4544 		return (cache_fpl_aborted(fpl));
4545 	}
4546 	fpl->fsearch = fsearch;
4547 	if ((*vpp)->v_type != VDIR) {
4548 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4549 			cache_fpl_smr_exit(fpl);
4550 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4551 		}
4552 	}
4553 	return (0);
4554 }
4555 
4556 static int __noinline
4557 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4558     uint32_t hash)
4559 {
4560 	struct componentname *cnp;
4561 	struct vnode *dvp;
4562 
4563 	cnp = fpl->cnp;
4564 	dvp = fpl->dvp;
4565 
4566 	cache_fpl_smr_exit(fpl);
4567 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4568 		return (cache_fpl_handled_error(fpl, ENOENT));
4569 	else
4570 		return (cache_fpl_aborted(fpl));
4571 }
4572 
4573 /*
4574  * The target vnode is not supported, prepare for the slow path to take over.
4575  */
4576 static int __noinline
4577 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4578 {
4579 	struct nameidata *ndp;
4580 	struct componentname *cnp;
4581 	enum vgetstate dvs;
4582 	struct vnode *dvp;
4583 	struct pwd *pwd;
4584 	seqc_t dvp_seqc;
4585 
4586 	ndp = fpl->ndp;
4587 	cnp = fpl->cnp;
4588 	pwd = *(fpl->pwd);
4589 	dvp = fpl->dvp;
4590 	dvp_seqc = fpl->dvp_seqc;
4591 
4592 	if (!pwd_hold_smr(pwd)) {
4593 		return (cache_fpl_aborted(fpl));
4594 	}
4595 
4596 	/*
4597 	 * Note that seqc is checked before the vnode is locked, so by
4598 	 * the time regular lookup gets to it it may have moved.
4599 	 *
4600 	 * Ultimately this does not affect correctness, any lookup errors
4601 	 * are userspace racing with itself. It is guaranteed that any
4602 	 * path which ultimately gets found could also have been found
4603 	 * by regular lookup going all the way in absence of concurrent
4604 	 * modifications.
4605 	 */
4606 	dvs = vget_prep_smr(dvp);
4607 	cache_fpl_smr_exit(fpl);
4608 	if (__predict_false(dvs == VGET_NONE)) {
4609 		pwd_drop(pwd);
4610 		return (cache_fpl_aborted(fpl));
4611 	}
4612 
4613 	vget_finish_ref(dvp, dvs);
4614 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4615 		vrele(dvp);
4616 		pwd_drop(pwd);
4617 		return (cache_fpl_aborted(fpl));
4618 	}
4619 
4620 	cache_fpl_restore_partial(fpl);
4621 #ifdef INVARIANTS
4622 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4623 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4624 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4625 	}
4626 #endif
4627 
4628 	ndp->ni_startdir = dvp;
4629 	cnp->cn_flags |= MAKEENTRY;
4630 	if (cache_fpl_islastcn(ndp))
4631 		cnp->cn_flags |= ISLASTCN;
4632 	if (cache_fpl_isdotdot(cnp))
4633 		cnp->cn_flags |= ISDOTDOT;
4634 
4635 	/*
4636 	 * Skip potential extra slashes parsing did not take care of.
4637 	 * cache_fplookup_skip_slashes explains the mechanism.
4638 	 */
4639 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4640 		do {
4641 			cnp->cn_nameptr++;
4642 			cache_fpl_pathlen_dec(fpl);
4643 		} while (*(cnp->cn_nameptr) == '/');
4644 	}
4645 
4646 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4647 #ifdef INVARIANTS
4648 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4649 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4650 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4651 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4652 	}
4653 #endif
4654 	return (0);
4655 }
4656 
4657 static int
4658 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4659 {
4660 	struct componentname *cnp;
4661 	struct vnode *tvp;
4662 	seqc_t tvp_seqc;
4663 	int error, lkflags;
4664 
4665 	cnp = fpl->cnp;
4666 	tvp = fpl->tvp;
4667 	tvp_seqc = fpl->tvp_seqc;
4668 
4669 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4670 		lkflags = LK_SHARED;
4671 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4672 			lkflags = LK_EXCLUSIVE;
4673 		error = vget_finish(tvp, lkflags, tvs);
4674 		if (__predict_false(error != 0)) {
4675 			return (cache_fpl_aborted(fpl));
4676 		}
4677 	} else {
4678 		vget_finish_ref(tvp, tvs);
4679 	}
4680 
4681 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4682 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4683 			vput(tvp);
4684 		else
4685 			vrele(tvp);
4686 		return (cache_fpl_aborted(fpl));
4687 	}
4688 
4689 	return (cache_fpl_handled(fpl));
4690 }
4691 
4692 /*
4693  * They want to possibly modify the state of the namecache.
4694  */
4695 static int __noinline
4696 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4697 {
4698 	struct nameidata *ndp __diagused;
4699 	struct componentname *cnp;
4700 	enum vgetstate dvs;
4701 	struct vnode *dvp, *tvp;
4702 	struct mount *mp;
4703 	seqc_t dvp_seqc;
4704 	int error;
4705 	bool docache;
4706 
4707 	ndp = fpl->ndp;
4708 	cnp = fpl->cnp;
4709 	dvp = fpl->dvp;
4710 	dvp_seqc = fpl->dvp_seqc;
4711 
4712 	MPASS(*(cnp->cn_nameptr) != '/');
4713 	MPASS(cache_fpl_islastcn(ndp));
4714 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4715 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4716 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4717 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4718 	    cnp->cn_nameiop == RENAME);
4719 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4720 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4721 
4722 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4723 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4724 		docache = false;
4725 
4726 	/*
4727 	 * Regular lookup nulifies the slash, which we don't do here.
4728 	 * Don't take chances with filesystem routines seeing it for
4729 	 * the last entry.
4730 	 */
4731 	if (cache_fpl_istrailingslash(fpl)) {
4732 		return (cache_fpl_partial(fpl));
4733 	}
4734 
4735 	mp = atomic_load_ptr(&dvp->v_mount);
4736 	if (__predict_false(mp == NULL)) {
4737 		return (cache_fpl_aborted(fpl));
4738 	}
4739 
4740 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4741 		cache_fpl_smr_exit(fpl);
4742 		/*
4743 		 * Original code keeps not checking for CREATE which
4744 		 * might be a bug. For now let the old lookup decide.
4745 		 */
4746 		if (cnp->cn_nameiop == CREATE) {
4747 			return (cache_fpl_aborted(fpl));
4748 		}
4749 		return (cache_fpl_handled_error(fpl, EROFS));
4750 	}
4751 
4752 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4753 		cache_fpl_smr_exit(fpl);
4754 		return (cache_fpl_handled_error(fpl, EEXIST));
4755 	}
4756 
4757 	/*
4758 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4759 	 * reasoning.
4760 	 *
4761 	 * XXX At least UFS requires its lookup routine to be called for
4762 	 * the last path component, which leads to some level of complication
4763 	 * and inefficiency:
4764 	 * - the target routine always locks the target vnode, but our caller
4765 	 *   may not need it locked
4766 	 * - some of the VOP machinery asserts that the parent is locked, which
4767 	 *   once more may be not required
4768 	 *
4769 	 * TODO: add a flag for filesystems which don't need this.
4770 	 */
4771 	dvs = vget_prep_smr(dvp);
4772 	cache_fpl_smr_exit(fpl);
4773 	if (__predict_false(dvs == VGET_NONE)) {
4774 		return (cache_fpl_aborted(fpl));
4775 	}
4776 
4777 	vget_finish_ref(dvp, dvs);
4778 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4779 		vrele(dvp);
4780 		return (cache_fpl_aborted(fpl));
4781 	}
4782 
4783 	error = vn_lock(dvp, LK_EXCLUSIVE);
4784 	if (__predict_false(error != 0)) {
4785 		vrele(dvp);
4786 		return (cache_fpl_aborted(fpl));
4787 	}
4788 
4789 	tvp = NULL;
4790 	cnp->cn_flags |= ISLASTCN;
4791 	if (docache)
4792 		cnp->cn_flags |= MAKEENTRY;
4793 	if (cache_fpl_isdotdot(cnp))
4794 		cnp->cn_flags |= ISDOTDOT;
4795 	cnp->cn_lkflags = LK_EXCLUSIVE;
4796 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4797 	switch (error) {
4798 	case EJUSTRETURN:
4799 	case 0:
4800 		break;
4801 	case ENOTDIR:
4802 	case ENOENT:
4803 		vput(dvp);
4804 		return (cache_fpl_handled_error(fpl, error));
4805 	default:
4806 		vput(dvp);
4807 		return (cache_fpl_aborted(fpl));
4808 	}
4809 
4810 	fpl->tvp = tvp;
4811 
4812 	if (tvp == NULL) {
4813 		MPASS(error == EJUSTRETURN);
4814 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4815 			VOP_UNLOCK(dvp);
4816 		}
4817 		return (cache_fpl_handled(fpl));
4818 	}
4819 
4820 	/*
4821 	 * There are very hairy corner cases concerning various flag combinations
4822 	 * and locking state. In particular here we only hold one lock instead of
4823 	 * two.
4824 	 *
4825 	 * Skip the complexity as it is of no significance for normal workloads.
4826 	 */
4827 	if (__predict_false(tvp == dvp)) {
4828 		vput(dvp);
4829 		vrele(tvp);
4830 		return (cache_fpl_aborted(fpl));
4831 	}
4832 
4833 	/*
4834 	 * If they want the symlink itself we are fine, but if they want to
4835 	 * follow it regular lookup has to be engaged.
4836 	 */
4837 	if (tvp->v_type == VLNK) {
4838 		if ((cnp->cn_flags & FOLLOW) != 0) {
4839 			vput(dvp);
4840 			vput(tvp);
4841 			return (cache_fpl_aborted(fpl));
4842 		}
4843 	}
4844 
4845 	/*
4846 	 * Since we expect this to be the terminal vnode it should almost never
4847 	 * be a mount point.
4848 	 */
4849 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4850 		vput(dvp);
4851 		vput(tvp);
4852 		return (cache_fpl_aborted(fpl));
4853 	}
4854 
4855 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4856 		vput(dvp);
4857 		vput(tvp);
4858 		return (cache_fpl_handled_error(fpl, EEXIST));
4859 	}
4860 
4861 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4862 		VOP_UNLOCK(tvp);
4863 	}
4864 
4865 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4866 		VOP_UNLOCK(dvp);
4867 	}
4868 
4869 	return (cache_fpl_handled(fpl));
4870 }
4871 
4872 static int __noinline
4873 cache_fplookup_modifying(struct cache_fpl *fpl)
4874 {
4875 	struct nameidata *ndp;
4876 
4877 	ndp = fpl->ndp;
4878 
4879 	if (!cache_fpl_islastcn(ndp)) {
4880 		return (cache_fpl_partial(fpl));
4881 	}
4882 	return (cache_fplookup_final_modifying(fpl));
4883 }
4884 
4885 static int __noinline
4886 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4887 {
4888 	struct componentname *cnp;
4889 	enum vgetstate dvs, tvs;
4890 	struct vnode *dvp, *tvp;
4891 	seqc_t dvp_seqc;
4892 	int error;
4893 
4894 	cnp = fpl->cnp;
4895 	dvp = fpl->dvp;
4896 	dvp_seqc = fpl->dvp_seqc;
4897 	tvp = fpl->tvp;
4898 
4899 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4900 
4901 	/*
4902 	 * This is less efficient than it can be for simplicity.
4903 	 */
4904 	dvs = vget_prep_smr(dvp);
4905 	if (__predict_false(dvs == VGET_NONE)) {
4906 		return (cache_fpl_aborted(fpl));
4907 	}
4908 	tvs = vget_prep_smr(tvp);
4909 	if (__predict_false(tvs == VGET_NONE)) {
4910 		cache_fpl_smr_exit(fpl);
4911 		vget_abort(dvp, dvs);
4912 		return (cache_fpl_aborted(fpl));
4913 	}
4914 
4915 	cache_fpl_smr_exit(fpl);
4916 
4917 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4918 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4919 		if (__predict_false(error != 0)) {
4920 			vget_abort(tvp, tvs);
4921 			return (cache_fpl_aborted(fpl));
4922 		}
4923 	} else {
4924 		vget_finish_ref(dvp, dvs);
4925 	}
4926 
4927 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4928 		vget_abort(tvp, tvs);
4929 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4930 			vput(dvp);
4931 		else
4932 			vrele(dvp);
4933 		return (cache_fpl_aborted(fpl));
4934 	}
4935 
4936 	error = cache_fplookup_final_child(fpl, tvs);
4937 	if (__predict_false(error != 0)) {
4938 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4939 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4940 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4941 			vput(dvp);
4942 		else
4943 			vrele(dvp);
4944 		return (error);
4945 	}
4946 
4947 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4948 	return (0);
4949 }
4950 
4951 static int
4952 cache_fplookup_final(struct cache_fpl *fpl)
4953 {
4954 	struct componentname *cnp;
4955 	enum vgetstate tvs;
4956 	struct vnode *dvp, *tvp;
4957 	seqc_t dvp_seqc;
4958 
4959 	cnp = fpl->cnp;
4960 	dvp = fpl->dvp;
4961 	dvp_seqc = fpl->dvp_seqc;
4962 	tvp = fpl->tvp;
4963 
4964 	MPASS(*(cnp->cn_nameptr) != '/');
4965 
4966 	if (cnp->cn_nameiop != LOOKUP) {
4967 		return (cache_fplookup_final_modifying(fpl));
4968 	}
4969 
4970 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4971 		return (cache_fplookup_final_withparent(fpl));
4972 
4973 	tvs = vget_prep_smr(tvp);
4974 	if (__predict_false(tvs == VGET_NONE)) {
4975 		return (cache_fpl_partial(fpl));
4976 	}
4977 
4978 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4979 		cache_fpl_smr_exit(fpl);
4980 		vget_abort(tvp, tvs);
4981 		return (cache_fpl_aborted(fpl));
4982 	}
4983 
4984 	cache_fpl_smr_exit(fpl);
4985 	return (cache_fplookup_final_child(fpl, tvs));
4986 }
4987 
4988 /*
4989  * Comment from locked lookup:
4990  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4991  * directory, e.g. like "/." or ".".
4992  */
4993 static int __noinline
4994 cache_fplookup_degenerate(struct cache_fpl *fpl)
4995 {
4996 	struct componentname *cnp;
4997 	struct vnode *dvp;
4998 	enum vgetstate dvs;
4999 	int error, lkflags;
5000 #ifdef INVARIANTS
5001 	char *cp;
5002 #endif
5003 
5004 	fpl->tvp = fpl->dvp;
5005 	fpl->tvp_seqc = fpl->dvp_seqc;
5006 
5007 	cnp = fpl->cnp;
5008 	dvp = fpl->dvp;
5009 
5010 #ifdef INVARIANTS
5011 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
5012 		KASSERT(*cp == '/',
5013 		    ("%s: encountered non-slash; string [%s]\n", __func__,
5014 		    cnp->cn_pnbuf));
5015 	}
5016 #endif
5017 
5018 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
5019 		cache_fpl_smr_exit(fpl);
5020 		return (cache_fpl_handled_error(fpl, EISDIR));
5021 	}
5022 
5023 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
5024 		return (cache_fplookup_final_withparent(fpl));
5025 	}
5026 
5027 	dvs = vget_prep_smr(dvp);
5028 	cache_fpl_smr_exit(fpl);
5029 	if (__predict_false(dvs == VGET_NONE)) {
5030 		return (cache_fpl_aborted(fpl));
5031 	}
5032 
5033 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5034 		lkflags = LK_SHARED;
5035 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5036 			lkflags = LK_EXCLUSIVE;
5037 		error = vget_finish(dvp, lkflags, dvs);
5038 		if (__predict_false(error != 0)) {
5039 			return (cache_fpl_aborted(fpl));
5040 		}
5041 	} else {
5042 		vget_finish_ref(dvp, dvs);
5043 	}
5044 	return (cache_fpl_handled(fpl));
5045 }
5046 
5047 static int __noinline
5048 cache_fplookup_emptypath(struct cache_fpl *fpl)
5049 {
5050 	struct nameidata *ndp;
5051 	struct componentname *cnp;
5052 	enum vgetstate tvs;
5053 	struct vnode *tvp;
5054 	int error, lkflags;
5055 
5056 	fpl->tvp = fpl->dvp;
5057 	fpl->tvp_seqc = fpl->dvp_seqc;
5058 
5059 	ndp = fpl->ndp;
5060 	cnp = fpl->cnp;
5061 	tvp = fpl->tvp;
5062 
5063 	MPASS(*cnp->cn_pnbuf == '\0');
5064 
5065 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5066 		cache_fpl_smr_exit(fpl);
5067 		return (cache_fpl_handled_error(fpl, ENOENT));
5068 	}
5069 
5070 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5071 
5072 	tvs = vget_prep_smr(tvp);
5073 	cache_fpl_smr_exit(fpl);
5074 	if (__predict_false(tvs == VGET_NONE)) {
5075 		return (cache_fpl_aborted(fpl));
5076 	}
5077 
5078 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5079 		lkflags = LK_SHARED;
5080 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5081 			lkflags = LK_EXCLUSIVE;
5082 		error = vget_finish(tvp, lkflags, tvs);
5083 		if (__predict_false(error != 0)) {
5084 			return (cache_fpl_aborted(fpl));
5085 		}
5086 	} else {
5087 		vget_finish_ref(tvp, tvs);
5088 	}
5089 
5090 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5091 	return (cache_fpl_handled(fpl));
5092 }
5093 
5094 static int __noinline
5095 cache_fplookup_noentry(struct cache_fpl *fpl)
5096 {
5097 	struct nameidata *ndp;
5098 	struct componentname *cnp;
5099 	enum vgetstate dvs;
5100 	struct vnode *dvp, *tvp;
5101 	seqc_t dvp_seqc;
5102 	int error;
5103 
5104 	ndp = fpl->ndp;
5105 	cnp = fpl->cnp;
5106 	dvp = fpl->dvp;
5107 	dvp_seqc = fpl->dvp_seqc;
5108 
5109 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5110 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5111 	if (cnp->cn_nameiop == LOOKUP)
5112 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5113 	MPASS(!cache_fpl_isdotdot(cnp));
5114 
5115 	/*
5116 	 * Hack: delayed name len checking.
5117 	 */
5118 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5119 		cache_fpl_smr_exit(fpl);
5120 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5121 	}
5122 
5123 	if (cnp->cn_nameptr[0] == '/') {
5124 		return (cache_fplookup_skip_slashes(fpl));
5125 	}
5126 
5127 	if (cnp->cn_pnbuf[0] == '\0') {
5128 		return (cache_fplookup_emptypath(fpl));
5129 	}
5130 
5131 	if (cnp->cn_nameptr[0] == '\0') {
5132 		if (fpl->tvp == NULL) {
5133 			return (cache_fplookup_degenerate(fpl));
5134 		}
5135 		return (cache_fplookup_trailingslash(fpl));
5136 	}
5137 
5138 	if (cnp->cn_nameiop != LOOKUP) {
5139 		fpl->tvp = NULL;
5140 		return (cache_fplookup_modifying(fpl));
5141 	}
5142 
5143 	/*
5144 	 * Only try to fill in the component if it is the last one,
5145 	 * otherwise not only there may be several to handle but the
5146 	 * walk may be complicated.
5147 	 */
5148 	if (!cache_fpl_islastcn(ndp)) {
5149 		return (cache_fpl_partial(fpl));
5150 	}
5151 
5152 	/*
5153 	 * Regular lookup nulifies the slash, which we don't do here.
5154 	 * Don't take chances with filesystem routines seeing it for
5155 	 * the last entry.
5156 	 */
5157 	if (cache_fpl_istrailingslash(fpl)) {
5158 		return (cache_fpl_partial(fpl));
5159 	}
5160 
5161 	/*
5162 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5163 	 * reasoning.
5164 	 */
5165 	dvs = vget_prep_smr(dvp);
5166 	cache_fpl_smr_exit(fpl);
5167 	if (__predict_false(dvs == VGET_NONE)) {
5168 		return (cache_fpl_aborted(fpl));
5169 	}
5170 
5171 	vget_finish_ref(dvp, dvs);
5172 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5173 		vrele(dvp);
5174 		return (cache_fpl_aborted(fpl));
5175 	}
5176 
5177 	error = vn_lock(dvp, LK_SHARED);
5178 	if (__predict_false(error != 0)) {
5179 		vrele(dvp);
5180 		return (cache_fpl_aborted(fpl));
5181 	}
5182 
5183 	tvp = NULL;
5184 	/*
5185 	 * TODO: provide variants which don't require locking either vnode.
5186 	 */
5187 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5188 	cnp->cn_lkflags = LK_SHARED;
5189 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5190 		cnp->cn_lkflags = LK_EXCLUSIVE;
5191 	}
5192 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5193 	switch (error) {
5194 	case EJUSTRETURN:
5195 	case 0:
5196 		break;
5197 	case ENOTDIR:
5198 	case ENOENT:
5199 		vput(dvp);
5200 		return (cache_fpl_handled_error(fpl, error));
5201 	default:
5202 		vput(dvp);
5203 		return (cache_fpl_aborted(fpl));
5204 	}
5205 
5206 	fpl->tvp = tvp;
5207 
5208 	if (tvp == NULL) {
5209 		MPASS(error == EJUSTRETURN);
5210 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5211 			vput(dvp);
5212 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5213 			VOP_UNLOCK(dvp);
5214 		}
5215 		return (cache_fpl_handled(fpl));
5216 	}
5217 
5218 	if (tvp->v_type == VLNK) {
5219 		if ((cnp->cn_flags & FOLLOW) != 0) {
5220 			vput(dvp);
5221 			vput(tvp);
5222 			return (cache_fpl_aborted(fpl));
5223 		}
5224 	}
5225 
5226 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5227 		vput(dvp);
5228 		vput(tvp);
5229 		return (cache_fpl_aborted(fpl));
5230 	}
5231 
5232 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5233 		VOP_UNLOCK(tvp);
5234 	}
5235 
5236 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5237 		vput(dvp);
5238 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5239 		VOP_UNLOCK(dvp);
5240 	}
5241 	return (cache_fpl_handled(fpl));
5242 }
5243 
5244 static int __noinline
5245 cache_fplookup_dot(struct cache_fpl *fpl)
5246 {
5247 	int error;
5248 
5249 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5250 
5251 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5252 		cache_fpl_smr_exit(fpl);
5253 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5254 	}
5255 
5256 	/*
5257 	 * Just re-assign the value. seqc will be checked later for the first
5258 	 * non-dot path component in line and/or before deciding to return the
5259 	 * vnode.
5260 	 */
5261 	fpl->tvp = fpl->dvp;
5262 	fpl->tvp_seqc = fpl->dvp_seqc;
5263 
5264 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5265 
5266 	error = 0;
5267 	if (cache_fplookup_is_mp(fpl)) {
5268 		error = cache_fplookup_cross_mount(fpl);
5269 	}
5270 	return (error);
5271 }
5272 
5273 static int __noinline
5274 cache_fplookup_dotdot(struct cache_fpl *fpl)
5275 {
5276 	struct nameidata *ndp;
5277 	struct componentname *cnp;
5278 	struct namecache *ncp;
5279 	struct vnode *dvp;
5280 	struct prison *pr;
5281 	u_char nc_flag;
5282 
5283 	ndp = fpl->ndp;
5284 	cnp = fpl->cnp;
5285 	dvp = fpl->dvp;
5286 
5287 	MPASS(cache_fpl_isdotdot(cnp));
5288 
5289 	/*
5290 	 * XXX this is racy the same way regular lookup is
5291 	 */
5292 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5293 	    pr = pr->pr_parent)
5294 		if (dvp == pr->pr_root)
5295 			break;
5296 
5297 	if (dvp == ndp->ni_rootdir ||
5298 	    dvp == ndp->ni_topdir ||
5299 	    dvp == rootvnode ||
5300 	    pr != NULL) {
5301 		fpl->tvp = dvp;
5302 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5303 		if (seqc_in_modify(fpl->tvp_seqc)) {
5304 			return (cache_fpl_aborted(fpl));
5305 		}
5306 		return (0);
5307 	}
5308 
5309 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5310 		/*
5311 		 * TODO
5312 		 * The opposite of climb mount is needed here.
5313 		 */
5314 		return (cache_fpl_partial(fpl));
5315 	}
5316 
5317 	if (__predict_false(dvp->v_type != VDIR)) {
5318 		cache_fpl_smr_exit(fpl);
5319 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5320 	}
5321 
5322 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5323 	if (ncp == NULL) {
5324 		return (cache_fpl_aborted(fpl));
5325 	}
5326 
5327 	nc_flag = atomic_load_char(&ncp->nc_flag);
5328 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5329 		if ((nc_flag & NCF_NEGATIVE) != 0)
5330 			return (cache_fpl_aborted(fpl));
5331 		fpl->tvp = ncp->nc_vp;
5332 	} else {
5333 		fpl->tvp = ncp->nc_dvp;
5334 	}
5335 
5336 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5337 	if (seqc_in_modify(fpl->tvp_seqc)) {
5338 		return (cache_fpl_partial(fpl));
5339 	}
5340 
5341 	/*
5342 	 * Acquire fence provided by vn_seqc_read_any above.
5343 	 */
5344 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5345 		return (cache_fpl_aborted(fpl));
5346 	}
5347 
5348 	if (!cache_ncp_canuse(ncp)) {
5349 		return (cache_fpl_aborted(fpl));
5350 	}
5351 
5352 	return (0);
5353 }
5354 
5355 static int __noinline
5356 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5357 {
5358 	u_char nc_flag __diagused;
5359 	bool neg_promote;
5360 
5361 #ifdef INVARIANTS
5362 	nc_flag = atomic_load_char(&ncp->nc_flag);
5363 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5364 #endif
5365 	/*
5366 	 * If they want to create an entry we need to replace this one.
5367 	 */
5368 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5369 		fpl->tvp = NULL;
5370 		return (cache_fplookup_modifying(fpl));
5371 	}
5372 	neg_promote = cache_neg_hit_prep(ncp);
5373 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5374 		cache_neg_hit_abort(ncp);
5375 		return (cache_fpl_partial(fpl));
5376 	}
5377 	if (neg_promote) {
5378 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5379 	}
5380 	cache_neg_hit_finish(ncp);
5381 	cache_fpl_smr_exit(fpl);
5382 	return (cache_fpl_handled_error(fpl, ENOENT));
5383 }
5384 
5385 /*
5386  * Resolve a symlink. Called by filesystem-specific routines.
5387  *
5388  * Code flow is:
5389  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5390  */
5391 int
5392 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5393 {
5394 	struct nameidata *ndp;
5395 	struct componentname *cnp;
5396 	size_t adjust;
5397 
5398 	ndp = fpl->ndp;
5399 	cnp = fpl->cnp;
5400 
5401 	if (__predict_false(len == 0)) {
5402 		return (ENOENT);
5403 	}
5404 
5405 	if (__predict_false(len > MAXPATHLEN - 2)) {
5406 		if (cache_fpl_istrailingslash(fpl)) {
5407 			return (EAGAIN);
5408 		}
5409 	}
5410 
5411 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5412 #ifdef INVARIANTS
5413 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5414 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5415 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5416 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5417 	}
5418 #endif
5419 
5420 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5421 		return (ENAMETOOLONG);
5422 	}
5423 
5424 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5425 		return (ELOOP);
5426 	}
5427 
5428 	adjust = len;
5429 	if (ndp->ni_pathlen > 1) {
5430 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5431 	} else {
5432 		if (cache_fpl_istrailingslash(fpl)) {
5433 			adjust = len + 1;
5434 			cnp->cn_pnbuf[len] = '/';
5435 			cnp->cn_pnbuf[len + 1] = '\0';
5436 		} else {
5437 			cnp->cn_pnbuf[len] = '\0';
5438 		}
5439 	}
5440 	bcopy(string, cnp->cn_pnbuf, len);
5441 
5442 	ndp->ni_pathlen += adjust;
5443 	cache_fpl_pathlen_add(fpl, adjust);
5444 	cnp->cn_nameptr = cnp->cn_pnbuf;
5445 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5446 	fpl->tvp = NULL;
5447 	return (0);
5448 }
5449 
5450 static int __noinline
5451 cache_fplookup_symlink(struct cache_fpl *fpl)
5452 {
5453 	struct mount *mp;
5454 	struct nameidata *ndp;
5455 	struct componentname *cnp;
5456 	struct vnode *dvp, *tvp;
5457 	struct pwd *pwd;
5458 	int error;
5459 
5460 	ndp = fpl->ndp;
5461 	cnp = fpl->cnp;
5462 	dvp = fpl->dvp;
5463 	tvp = fpl->tvp;
5464 	pwd = *(fpl->pwd);
5465 
5466 	if (cache_fpl_islastcn(ndp)) {
5467 		if ((cnp->cn_flags & FOLLOW) == 0) {
5468 			return (cache_fplookup_final(fpl));
5469 		}
5470 	}
5471 
5472 	mp = atomic_load_ptr(&dvp->v_mount);
5473 	if (__predict_false(mp == NULL)) {
5474 		return (cache_fpl_aborted(fpl));
5475 	}
5476 
5477 	/*
5478 	 * Note this check races against setting the flag just like regular
5479 	 * lookup.
5480 	 */
5481 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5482 		cache_fpl_smr_exit(fpl);
5483 		return (cache_fpl_handled_error(fpl, EACCES));
5484 	}
5485 
5486 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5487 	if (__predict_false(error != 0)) {
5488 		switch (error) {
5489 		case EAGAIN:
5490 			return (cache_fpl_partial(fpl));
5491 		case ENOENT:
5492 		case ENAMETOOLONG:
5493 		case ELOOP:
5494 			cache_fpl_smr_exit(fpl);
5495 			return (cache_fpl_handled_error(fpl, error));
5496 		default:
5497 			return (cache_fpl_aborted(fpl));
5498 		}
5499 	}
5500 
5501 	if (*(cnp->cn_nameptr) == '/') {
5502 		fpl->dvp = cache_fpl_handle_root(fpl);
5503 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5504 		if (seqc_in_modify(fpl->dvp_seqc)) {
5505 			return (cache_fpl_aborted(fpl));
5506 		}
5507 		/*
5508 		 * The main loop assumes that ->dvp points to a vnode belonging
5509 		 * to a filesystem which can do lockless lookup, but the absolute
5510 		 * symlink can be wandering off to one which does not.
5511 		 */
5512 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5513 		if (__predict_false(mp == NULL)) {
5514 			return (cache_fpl_aborted(fpl));
5515 		}
5516 		if (!cache_fplookup_mp_supported(mp)) {
5517 			cache_fpl_checkpoint(fpl);
5518 			return (cache_fpl_partial(fpl));
5519 		}
5520 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5521 			return (cache_fpl_aborted(fpl));
5522 		}
5523 	}
5524 	return (0);
5525 }
5526 
5527 static int
5528 cache_fplookup_next(struct cache_fpl *fpl)
5529 {
5530 	struct componentname *cnp;
5531 	struct namecache *ncp;
5532 	struct vnode *dvp, *tvp;
5533 	u_char nc_flag;
5534 	uint32_t hash;
5535 	int error;
5536 
5537 	cnp = fpl->cnp;
5538 	dvp = fpl->dvp;
5539 	hash = fpl->hash;
5540 
5541 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5542 		if (cnp->cn_namelen == 1) {
5543 			return (cache_fplookup_dot(fpl));
5544 		}
5545 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5546 			return (cache_fplookup_dotdot(fpl));
5547 		}
5548 	}
5549 
5550 	MPASS(!cache_fpl_isdotdot(cnp));
5551 
5552 	ncp = cache_ncp_find(dvp, cnp, hash);
5553 	if (__predict_false(ncp == NULL)) {
5554 		return (cache_fplookup_noentry(fpl));
5555 	}
5556 
5557 	tvp = atomic_load_ptr(&ncp->nc_vp);
5558 	nc_flag = atomic_load_char(&ncp->nc_flag);
5559 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5560 		return (cache_fplookup_neg(fpl, ncp, hash));
5561 	}
5562 
5563 	if (!cache_ncp_canuse(ncp)) {
5564 		return (cache_fpl_partial(fpl));
5565 	}
5566 
5567 	fpl->tvp = tvp;
5568 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5569 	if (seqc_in_modify(fpl->tvp_seqc)) {
5570 		return (cache_fpl_partial(fpl));
5571 	}
5572 
5573 	counter_u64_add(numposhits, 1);
5574 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5575 
5576 	error = 0;
5577 	if (cache_fplookup_is_mp(fpl)) {
5578 		error = cache_fplookup_cross_mount(fpl);
5579 	}
5580 	return (error);
5581 }
5582 
5583 static bool
5584 cache_fplookup_mp_supported(struct mount *mp)
5585 {
5586 
5587 	MPASS(mp != NULL);
5588 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5589 		return (false);
5590 	return (true);
5591 }
5592 
5593 /*
5594  * Walk up the mount stack (if any).
5595  *
5596  * Correctness is provided in the following ways:
5597  * - all vnodes are protected from freeing with SMR
5598  * - struct mount objects are type stable making them always safe to access
5599  * - stability of the particular mount is provided by busying it
5600  * - relationship between the vnode which is mounted on and the mount is
5601  *   verified with the vnode sequence counter after busying
5602  * - association between root vnode of the mount and the mount is protected
5603  *   by busy
5604  *
5605  * From that point on we can read the sequence counter of the root vnode
5606  * and get the next mount on the stack (if any) using the same protection.
5607  *
5608  * By the end of successful walk we are guaranteed the reached state was
5609  * indeed present at least at some point which matches the regular lookup.
5610  */
5611 static int __noinline
5612 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5613 {
5614 	struct mount *mp, *prev_mp;
5615 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5616 	struct vnode *vp;
5617 	seqc_t vp_seqc;
5618 
5619 	vp = fpl->tvp;
5620 	vp_seqc = fpl->tvp_seqc;
5621 
5622 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5623 	mp = atomic_load_ptr(&vp->v_mountedhere);
5624 	if (__predict_false(mp == NULL)) {
5625 		return (0);
5626 	}
5627 
5628 	prev_mp = NULL;
5629 	for (;;) {
5630 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5631 			if (prev_mp != NULL)
5632 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5633 			return (cache_fpl_partial(fpl));
5634 		}
5635 		if (prev_mp != NULL)
5636 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5637 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5638 			vfs_op_thread_exit_crit(mp, mpcpu);
5639 			return (cache_fpl_partial(fpl));
5640 		}
5641 		if (!cache_fplookup_mp_supported(mp)) {
5642 			vfs_op_thread_exit_crit(mp, mpcpu);
5643 			return (cache_fpl_partial(fpl));
5644 		}
5645 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5646 		if (vp == NULL) {
5647 			vfs_op_thread_exit_crit(mp, mpcpu);
5648 			return (cache_fpl_partial(fpl));
5649 		}
5650 		vp_seqc = vn_seqc_read_any(vp);
5651 		if (seqc_in_modify(vp_seqc)) {
5652 			vfs_op_thread_exit_crit(mp, mpcpu);
5653 			return (cache_fpl_partial(fpl));
5654 		}
5655 		prev_mp = mp;
5656 		prev_mpcpu = mpcpu;
5657 		mp = atomic_load_ptr(&vp->v_mountedhere);
5658 		if (mp == NULL)
5659 			break;
5660 	}
5661 
5662 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5663 	fpl->tvp = vp;
5664 	fpl->tvp_seqc = vp_seqc;
5665 	return (0);
5666 }
5667 
5668 static int __noinline
5669 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5670 {
5671 	struct mount *mp;
5672 	struct mount_pcpu *mpcpu;
5673 	struct vnode *vp;
5674 	seqc_t vp_seqc;
5675 
5676 	vp = fpl->tvp;
5677 	vp_seqc = fpl->tvp_seqc;
5678 
5679 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5680 	mp = atomic_load_ptr(&vp->v_mountedhere);
5681 	if (__predict_false(mp == NULL)) {
5682 		return (0);
5683 	}
5684 
5685 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5686 		return (cache_fpl_partial(fpl));
5687 	}
5688 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5689 		vfs_op_thread_exit_crit(mp, mpcpu);
5690 		return (cache_fpl_partial(fpl));
5691 	}
5692 	if (!cache_fplookup_mp_supported(mp)) {
5693 		vfs_op_thread_exit_crit(mp, mpcpu);
5694 		return (cache_fpl_partial(fpl));
5695 	}
5696 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5697 	if (__predict_false(vp == NULL)) {
5698 		vfs_op_thread_exit_crit(mp, mpcpu);
5699 		return (cache_fpl_partial(fpl));
5700 	}
5701 	vp_seqc = vn_seqc_read_any(vp);
5702 	vfs_op_thread_exit_crit(mp, mpcpu);
5703 	if (seqc_in_modify(vp_seqc)) {
5704 		return (cache_fpl_partial(fpl));
5705 	}
5706 	mp = atomic_load_ptr(&vp->v_mountedhere);
5707 	if (__predict_false(mp != NULL)) {
5708 		/*
5709 		 * There are possibly more mount points on top.
5710 		 * Normally this does not happen so for simplicity just start
5711 		 * over.
5712 		 */
5713 		return (cache_fplookup_climb_mount(fpl));
5714 	}
5715 
5716 	fpl->tvp = vp;
5717 	fpl->tvp_seqc = vp_seqc;
5718 	return (0);
5719 }
5720 
5721 /*
5722  * Check if a vnode is mounted on.
5723  */
5724 static bool
5725 cache_fplookup_is_mp(struct cache_fpl *fpl)
5726 {
5727 	struct vnode *vp;
5728 
5729 	vp = fpl->tvp;
5730 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5731 }
5732 
5733 /*
5734  * Parse the path.
5735  *
5736  * The code was originally copy-pasted from regular lookup and despite
5737  * clean ups leaves performance on the table. Any modifications here
5738  * must take into account that in case off fallback the resulting
5739  * nameidata state has to be compatible with the original.
5740  */
5741 
5742 /*
5743  * Debug ni_pathlen tracking.
5744  */
5745 #ifdef INVARIANTS
5746 static void
5747 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5748 {
5749 
5750 	fpl->debug.ni_pathlen += n;
5751 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5752 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5753 }
5754 
5755 static void
5756 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5757 {
5758 
5759 	fpl->debug.ni_pathlen -= n;
5760 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5761 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5762 }
5763 
5764 static void
5765 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5766 {
5767 
5768 	cache_fpl_pathlen_add(fpl, 1);
5769 }
5770 
5771 static void
5772 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5773 {
5774 
5775 	cache_fpl_pathlen_sub(fpl, 1);
5776 }
5777 #else
5778 static void
5779 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5780 {
5781 }
5782 
5783 static void
5784 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5785 {
5786 }
5787 
5788 static void
5789 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5790 {
5791 }
5792 
5793 static void
5794 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5795 {
5796 }
5797 #endif
5798 
5799 static void
5800 cache_fplookup_parse(struct cache_fpl *fpl)
5801 {
5802 	struct nameidata *ndp;
5803 	struct componentname *cnp;
5804 	struct vnode *dvp;
5805 	char *cp;
5806 	uint32_t hash;
5807 
5808 	ndp = fpl->ndp;
5809 	cnp = fpl->cnp;
5810 	dvp = fpl->dvp;
5811 
5812 	/*
5813 	 * Find the end of this path component, it is either / or nul.
5814 	 *
5815 	 * Store / as a temporary sentinel so that we only have one character
5816 	 * to test for. Pathnames tend to be short so this should not be
5817 	 * resulting in cache misses.
5818 	 *
5819 	 * TODO: fix this to be word-sized.
5820 	 */
5821 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5822 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5823 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5824 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5825 	    fpl->nulchar, cnp->cn_pnbuf));
5826 	KASSERT(*fpl->nulchar == '\0',
5827 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5828 	    cnp->cn_pnbuf));
5829 	hash = cache_get_hash_iter_start(dvp);
5830 	*fpl->nulchar = '/';
5831 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5832 		KASSERT(*cp != '\0',
5833 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5834 		    cnp->cn_nameptr));
5835 		hash = cache_get_hash_iter(*cp, hash);
5836 		continue;
5837 	}
5838 	*fpl->nulchar = '\0';
5839 	fpl->hash = cache_get_hash_iter_finish(hash);
5840 
5841 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5842 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5843 
5844 #ifdef INVARIANTS
5845 	/*
5846 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5847 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5848 	 */
5849 	if (cnp->cn_namelen <= NAME_MAX) {
5850 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5851 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5852 			    cnp->cn_nameptr, cnp->cn_namelen);
5853 		}
5854 	}
5855 #endif
5856 
5857 	/*
5858 	 * Hack: we have to check if the found path component's length exceeds
5859 	 * NAME_MAX. However, the condition is very rarely true and check can
5860 	 * be elided in the common case -- if an entry was found in the cache,
5861 	 * then it could not have been too long to begin with.
5862 	 */
5863 	ndp->ni_next = cp;
5864 }
5865 
5866 static void
5867 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5868 {
5869 	struct nameidata *ndp;
5870 	struct componentname *cnp;
5871 
5872 	ndp = fpl->ndp;
5873 	cnp = fpl->cnp;
5874 
5875 	cnp->cn_nameptr = ndp->ni_next;
5876 	KASSERT(*(cnp->cn_nameptr) == '/',
5877 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5878 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5879 	cnp->cn_nameptr++;
5880 	cache_fpl_pathlen_dec(fpl);
5881 }
5882 
5883 /*
5884  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5885  *
5886  * Lockless lookup tries to elide checking for spurious slashes and should they
5887  * be present is guaranteed to fail to find an entry. In this case the caller
5888  * must check if the name starts with a slash and call this routine.  It is
5889  * going to fast forward across the spurious slashes and set the state up for
5890  * retry.
5891  */
5892 static int __noinline
5893 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5894 {
5895 	struct nameidata *ndp;
5896 	struct componentname *cnp;
5897 
5898 	ndp = fpl->ndp;
5899 	cnp = fpl->cnp;
5900 
5901 	MPASS(*(cnp->cn_nameptr) == '/');
5902 	do {
5903 		cnp->cn_nameptr++;
5904 		cache_fpl_pathlen_dec(fpl);
5905 	} while (*(cnp->cn_nameptr) == '/');
5906 
5907 	/*
5908 	 * Go back to one slash so that cache_fplookup_parse_advance has
5909 	 * something to skip.
5910 	 */
5911 	cnp->cn_nameptr--;
5912 	cache_fpl_pathlen_inc(fpl);
5913 
5914 	/*
5915 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5916 	 */
5917 	ndp->ni_next = cnp->cn_nameptr;
5918 
5919 	/*
5920 	 * See cache_fplookup_dot.
5921 	 */
5922 	fpl->tvp = fpl->dvp;
5923 	fpl->tvp_seqc = fpl->dvp_seqc;
5924 
5925 	return (0);
5926 }
5927 
5928 /*
5929  * Handle trailing slashes (e.g., "foo/").
5930  *
5931  * If a trailing slash is found the terminal vnode must be a directory.
5932  * Regular lookup shortens the path by nulifying the first trailing slash and
5933  * sets the TRAILINGSLASH flag to denote this took place. There are several
5934  * checks on it performed later.
5935  *
5936  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5937  * manner relying on an invariant that a non-directory vnode will get a miss.
5938  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5939  *
5940  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5941  * and denotes this is the last path component, which avoids looping back.
5942  *
5943  * Only plain lookups are supported for now to restrict corner cases to handle.
5944  */
5945 static int __noinline
5946 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5947 {
5948 #ifdef INVARIANTS
5949 	size_t ni_pathlen;
5950 #endif
5951 	struct nameidata *ndp;
5952 	struct componentname *cnp;
5953 	struct namecache *ncp;
5954 	struct vnode *tvp;
5955 	char *cn_nameptr_orig, *cn_nameptr_slash;
5956 	seqc_t tvp_seqc;
5957 	u_char nc_flag;
5958 
5959 	ndp = fpl->ndp;
5960 	cnp = fpl->cnp;
5961 	tvp = fpl->tvp;
5962 	tvp_seqc = fpl->tvp_seqc;
5963 
5964 	MPASS(fpl->dvp == fpl->tvp);
5965 	KASSERT(cache_fpl_istrailingslash(fpl),
5966 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5967 	    cnp->cn_pnbuf));
5968 	KASSERT(cnp->cn_nameptr[0] == '\0',
5969 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5970 	    cnp->cn_pnbuf));
5971 	KASSERT(cnp->cn_namelen == 0,
5972 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5973 	    cnp->cn_pnbuf));
5974 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5975 
5976 	if (cnp->cn_nameiop != LOOKUP) {
5977 		return (cache_fpl_aborted(fpl));
5978 	}
5979 
5980 	if (__predict_false(tvp->v_type != VDIR)) {
5981 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5982 			return (cache_fpl_aborted(fpl));
5983 		}
5984 		cache_fpl_smr_exit(fpl);
5985 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5986 	}
5987 
5988 	/*
5989 	 * Denote the last component.
5990 	 */
5991 	ndp->ni_next = &cnp->cn_nameptr[0];
5992 	MPASS(cache_fpl_islastcn(ndp));
5993 
5994 	/*
5995 	 * Unwind trailing slashes.
5996 	 */
5997 	cn_nameptr_orig = cnp->cn_nameptr;
5998 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5999 		cnp->cn_nameptr--;
6000 		if (cnp->cn_nameptr[0] != '/') {
6001 			break;
6002 		}
6003 	}
6004 
6005 	/*
6006 	 * Unwind to the beginning of the path component.
6007 	 *
6008 	 * Note the path may or may not have started with a slash.
6009 	 */
6010 	cn_nameptr_slash = cnp->cn_nameptr;
6011 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
6012 		cnp->cn_nameptr--;
6013 		if (cnp->cn_nameptr[0] == '/') {
6014 			break;
6015 		}
6016 	}
6017 	if (cnp->cn_nameptr[0] == '/') {
6018 		cnp->cn_nameptr++;
6019 	}
6020 
6021 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
6022 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
6023 	cache_fpl_checkpoint(fpl);
6024 
6025 #ifdef INVARIANTS
6026 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
6027 	if (ni_pathlen != fpl->debug.ni_pathlen) {
6028 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
6029 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
6030 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
6031 	}
6032 #endif
6033 
6034 	/*
6035 	 * If this was a "./" lookup the parent directory is already correct.
6036 	 */
6037 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
6038 		return (0);
6039 	}
6040 
6041 	/*
6042 	 * Otherwise we need to look it up.
6043 	 */
6044 	tvp = fpl->tvp;
6045 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
6046 	if (__predict_false(ncp == NULL)) {
6047 		return (cache_fpl_aborted(fpl));
6048 	}
6049 	nc_flag = atomic_load_char(&ncp->nc_flag);
6050 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
6051 		return (cache_fpl_aborted(fpl));
6052 	}
6053 	fpl->dvp = ncp->nc_dvp;
6054 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
6055 	if (seqc_in_modify(fpl->dvp_seqc)) {
6056 		return (cache_fpl_aborted(fpl));
6057 	}
6058 	return (0);
6059 }
6060 
6061 /*
6062  * See the API contract for VOP_FPLOOKUP_VEXEC.
6063  */
6064 static int __noinline
6065 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6066 {
6067 	struct componentname *cnp;
6068 	struct vnode *dvp;
6069 	seqc_t dvp_seqc;
6070 
6071 	cnp = fpl->cnp;
6072 	dvp = fpl->dvp;
6073 	dvp_seqc = fpl->dvp_seqc;
6074 
6075 	/*
6076 	 * Hack: delayed empty path checking.
6077 	 */
6078 	if (cnp->cn_pnbuf[0] == '\0') {
6079 		return (cache_fplookup_emptypath(fpl));
6080 	}
6081 
6082 	/*
6083 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6084 	 * permission check on the last dir when it should not be doing it.  It
6085 	 * may fail, but said failure should be ignored. It is possible to fix
6086 	 * it up fully without resorting to regular lookup, but for now just
6087 	 * abort.
6088 	 */
6089 	if (cache_fpl_istrailingslash(fpl)) {
6090 		return (cache_fpl_aborted(fpl));
6091 	}
6092 
6093 	/*
6094 	 * Hack: delayed degenerate path checking.
6095 	 */
6096 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6097 		return (cache_fplookup_degenerate(fpl));
6098 	}
6099 
6100 	/*
6101 	 * Hack: delayed name len checking.
6102 	 */
6103 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6104 		cache_fpl_smr_exit(fpl);
6105 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6106 	}
6107 
6108 	/*
6109 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6110 	 * In such a case we need to return ENOTDIR, but we may happen to get
6111 	 * here with a different error.
6112 	 */
6113 	if (dvp->v_type != VDIR) {
6114 		error = ENOTDIR;
6115 	}
6116 
6117 	/*
6118 	 * Hack: handle O_SEARCH.
6119 	 *
6120 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6121 	 * <quote>
6122 	 * If the access mode of the open file description associated with the
6123 	 * file descriptor is not O_SEARCH, the function shall check whether
6124 	 * directory searches are permitted using the current permissions of
6125 	 * the directory underlying the file descriptor. If the access mode is
6126 	 * O_SEARCH, the function shall not perform the check.
6127 	 * </quote>
6128 	 *
6129 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6130 	 * component to decide whether to do the permission check. However,
6131 	 * since most lookups never have the flag (and when they do it is only
6132 	 * present for the first path component), lockless lookup only acts on
6133 	 * it if there is a permission problem. Here the flag is represented
6134 	 * with a boolean so that we don't have to clear it on the way out.
6135 	 *
6136 	 * For simplicity this always aborts.
6137 	 * TODO: check if this is the first lookup and ignore the permission
6138 	 * problem. Note the flag has to survive fallback (if it happens to be
6139 	 * performed).
6140 	 */
6141 	if (fpl->fsearch) {
6142 		return (cache_fpl_aborted(fpl));
6143 	}
6144 
6145 	switch (error) {
6146 	case EAGAIN:
6147 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6148 			error = cache_fpl_aborted(fpl);
6149 		} else {
6150 			cache_fpl_partial(fpl);
6151 		}
6152 		break;
6153 	default:
6154 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6155 			error = cache_fpl_aborted(fpl);
6156 		} else {
6157 			cache_fpl_smr_exit(fpl);
6158 			cache_fpl_handled_error(fpl, error);
6159 		}
6160 		break;
6161 	}
6162 	return (error);
6163 }
6164 
6165 static int
6166 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6167 {
6168 	struct nameidata *ndp;
6169 	struct componentname *cnp;
6170 	struct mount *mp;
6171 	int error;
6172 
6173 	ndp = fpl->ndp;
6174 	cnp = fpl->cnp;
6175 
6176 	cache_fpl_checkpoint(fpl);
6177 
6178 	/*
6179 	 * The vnode at hand is almost always stable, skip checking for it.
6180 	 * Worst case this postpones the check towards the end of the iteration
6181 	 * of the main loop.
6182 	 */
6183 	fpl->dvp = dvp;
6184 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6185 
6186 	mp = atomic_load_ptr(&dvp->v_mount);
6187 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6188 		return (cache_fpl_aborted(fpl));
6189 	}
6190 
6191 	MPASS(fpl->tvp == NULL);
6192 
6193 	for (;;) {
6194 		cache_fplookup_parse(fpl);
6195 
6196 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6197 		if (__predict_false(error != 0)) {
6198 			error = cache_fplookup_failed_vexec(fpl, error);
6199 			break;
6200 		}
6201 
6202 		error = cache_fplookup_next(fpl);
6203 		if (__predict_false(cache_fpl_terminated(fpl))) {
6204 			break;
6205 		}
6206 
6207 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6208 
6209 		if (fpl->tvp->v_type == VLNK) {
6210 			error = cache_fplookup_symlink(fpl);
6211 			if (cache_fpl_terminated(fpl)) {
6212 				break;
6213 			}
6214 		} else {
6215 			if (cache_fpl_islastcn(ndp)) {
6216 				error = cache_fplookup_final(fpl);
6217 				break;
6218 			}
6219 
6220 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6221 				error = cache_fpl_aborted(fpl);
6222 				break;
6223 			}
6224 
6225 			fpl->dvp = fpl->tvp;
6226 			fpl->dvp_seqc = fpl->tvp_seqc;
6227 			cache_fplookup_parse_advance(fpl);
6228 		}
6229 
6230 		cache_fpl_checkpoint(fpl);
6231 	}
6232 
6233 	return (error);
6234 }
6235 
6236 /*
6237  * Fast path lookup protected with SMR and sequence counters.
6238  *
6239  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6240  *
6241  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6242  * outlined below.
6243  *
6244  * Traditional vnode lookup conceptually looks like this:
6245  *
6246  * vn_lock(current);
6247  * for (;;) {
6248  *	next = find();
6249  *	vn_lock(next);
6250  *	vn_unlock(current);
6251  *	current = next;
6252  *	if (last)
6253  *	    break;
6254  * }
6255  * return (current);
6256  *
6257  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6258  * any modifications thanks to holding respective locks.
6259  *
6260  * The same guarantee can be provided with a combination of safe memory
6261  * reclamation and sequence counters instead. If all operations which affect
6262  * the relationship between the current vnode and the one we are looking for
6263  * also modify the counter, we can verify whether all the conditions held as
6264  * we made the jump. This includes things like permissions, mount points etc.
6265  * Counter modification is provided by enclosing relevant places in
6266  * vn_seqc_write_begin()/end() calls.
6267  *
6268  * Thus this translates to:
6269  *
6270  * vfs_smr_enter();
6271  * dvp_seqc = seqc_read_any(dvp);
6272  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6273  *     abort();
6274  * for (;;) {
6275  * 	tvp = find();
6276  * 	tvp_seqc = seqc_read_any(tvp);
6277  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6278  * 	    abort();
6279  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6280  * 	    abort();
6281  * 	dvp = tvp; // we know nothing of importance has changed
6282  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6283  * 	if (last)
6284  * 	    break;
6285  * }
6286  * vget(); // secure the vnode
6287  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6288  * 	    abort();
6289  * // at this point we know nothing has changed for any parent<->child pair
6290  * // as they were crossed during the lookup, meaning we matched the guarantee
6291  * // of the locked variant
6292  * return (tvp);
6293  *
6294  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6295  * - they are called while within vfs_smr protection which they must never exit
6296  * - EAGAIN can be returned to denote checking could not be performed, it is
6297  *   always valid to return it
6298  * - if the sequence counter has not changed the result must be valid
6299  * - if the sequence counter has changed both false positives and false negatives
6300  *   are permitted (since the result will be rejected later)
6301  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6302  *
6303  * Caveats to watch out for:
6304  * - vnodes are passed unlocked and unreferenced with nothing stopping
6305  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6306  *   to use atomic_load_ptr to fetch it.
6307  * - the aforementioned object can also get freed, meaning absent other means it
6308  *   should be protected with vfs_smr
6309  * - either safely checking permissions as they are modified or guaranteeing
6310  *   their stability is left to the routine
6311  */
6312 int
6313 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6314     struct pwd **pwdp)
6315 {
6316 	struct cache_fpl fpl;
6317 	struct pwd *pwd;
6318 	struct vnode *dvp;
6319 	struct componentname *cnp;
6320 	int error;
6321 
6322 	fpl.status = CACHE_FPL_STATUS_UNSET;
6323 	fpl.in_smr = false;
6324 	fpl.ndp = ndp;
6325 	fpl.cnp = cnp = &ndp->ni_cnd;
6326 	MPASS(ndp->ni_lcf == 0);
6327 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6328 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6329 	    cnp->cn_flags));
6330 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6331 	MPASS(ndp->ni_resflags == 0);
6332 
6333 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6334 		*status = fpl.status;
6335 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6336 		return (EOPNOTSUPP);
6337 	}
6338 
6339 	cache_fpl_checkpoint_outer(&fpl);
6340 
6341 	cache_fpl_smr_enter_initial(&fpl);
6342 #ifdef INVARIANTS
6343 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6344 #endif
6345 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6346 	fpl.fsearch = false;
6347 	fpl.tvp = NULL; /* for degenerate path handling */
6348 	fpl.pwd = pwdp;
6349 	pwd = pwd_get_smr();
6350 	*(fpl.pwd) = pwd;
6351 	namei_setup_rootdir(ndp, cnp, pwd);
6352 	ndp->ni_topdir = pwd->pwd_jdir;
6353 
6354 	if (cnp->cn_pnbuf[0] == '/') {
6355 		dvp = cache_fpl_handle_root(&fpl);
6356 		ndp->ni_resflags = NIRES_ABS;
6357 	} else {
6358 		if (ndp->ni_dirfd == AT_FDCWD) {
6359 			dvp = pwd->pwd_cdir;
6360 		} else {
6361 			error = cache_fplookup_dirfd(&fpl, &dvp);
6362 			if (__predict_false(error != 0)) {
6363 				goto out;
6364 			}
6365 		}
6366 	}
6367 
6368 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6369 	error = cache_fplookup_impl(dvp, &fpl);
6370 out:
6371 	cache_fpl_smr_assert_not_entered(&fpl);
6372 	cache_fpl_assert_status(&fpl);
6373 	*status = fpl.status;
6374 	if (SDT_PROBES_ENABLED()) {
6375 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6376 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6377 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6378 			    ndp);
6379 	}
6380 
6381 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6382 		MPASS(error != CACHE_FPL_FAILED);
6383 		if (error != 0) {
6384 			cache_fpl_cleanup_cnp(fpl.cnp);
6385 			MPASS(fpl.dvp == NULL);
6386 			MPASS(fpl.tvp == NULL);
6387 		}
6388 		ndp->ni_dvp = fpl.dvp;
6389 		ndp->ni_vp = fpl.tvp;
6390 	}
6391 	return (error);
6392 }
6393