1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Poul-Henning Kamp of the FreeBSD Project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ddb.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/capsicum.h> 46 #include <sys/counter.h> 47 #include <sys/filedesc.h> 48 #include <sys/fnv_hash.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/fcntl.h> 54 #include <sys/jail.h> 55 #include <sys/mount.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/seqc.h> 59 #include <sys/sdt.h> 60 #include <sys/smr.h> 61 #include <sys/smp.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/vnode.h> 66 #include <ck_queue.h> 67 #ifdef KTRACE 68 #include <sys/ktrace.h> 69 #endif 70 71 #include <sys/capsicum.h> 72 73 #include <security/audit/audit.h> 74 #include <security/mac/mac_framework.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/uma.h> 81 82 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 83 "Name cache"); 84 85 SDT_PROVIDER_DECLARE(vfs); 86 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", 87 "struct vnode *"); 88 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *", 89 "struct vnode *"); 90 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", 91 "char *"); 92 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *", 93 "const char *"); 94 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", 95 "struct namecache *", "int", "int"); 96 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *"); 97 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *", 98 "char *", "struct vnode *"); 99 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *"); 100 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int", 101 "struct vnode *", "char *"); 102 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *", 103 "struct vnode *"); 104 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative, 105 "struct vnode *", "char *"); 106 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *", 107 "char *"); 108 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *", 109 "struct componentname *"); 110 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *", 111 "struct componentname *"); 112 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *"); 113 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int"); 114 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *"); 115 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *"); 116 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *", 117 "struct vnode *"); 118 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *", 119 "char *"); 120 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *", 121 "char *"); 122 123 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool"); 124 SDT_PROBE_DECLARE(vfs, namei, lookup, entry); 125 SDT_PROBE_DECLARE(vfs, namei, lookup, return); 126 127 /* 128 * This structure describes the elements in the cache of recent 129 * names looked up by namei. 130 */ 131 struct negstate { 132 u_char neg_flag; 133 u_char neg_hit; 134 }; 135 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *), 136 "the state must fit in a union with a pointer without growing it"); 137 138 struct namecache { 139 LIST_ENTRY(namecache) nc_src; /* source vnode list */ 140 TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */ 141 CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */ 142 struct vnode *nc_dvp; /* vnode of parent of name */ 143 union { 144 struct vnode *nu_vp; /* vnode the name refers to */ 145 struct negstate nu_neg;/* negative entry state */ 146 } n_un; 147 u_char nc_flag; /* flag bits */ 148 u_char nc_nlen; /* length of name */ 149 char nc_name[0]; /* segment name + nul */ 150 }; 151 152 /* 153 * struct namecache_ts repeats struct namecache layout up to the 154 * nc_nlen member. 155 * struct namecache_ts is used in place of struct namecache when time(s) need 156 * to be stored. The nc_dotdottime field is used when a cache entry is mapping 157 * both a non-dotdot directory name plus dotdot for the directory's 158 * parent. 159 * 160 * See below for alignment requirement. 161 */ 162 struct namecache_ts { 163 struct timespec nc_time; /* timespec provided by fs */ 164 struct timespec nc_dotdottime; /* dotdot timespec provided by fs */ 165 int nc_ticks; /* ticks value when entry was added */ 166 int nc_pad; 167 struct namecache nc_nc; 168 }; 169 170 TAILQ_HEAD(cache_freebatch, namecache); 171 172 /* 173 * At least mips n32 performs 64-bit accesses to timespec as found 174 * in namecache_ts and requires them to be aligned. Since others 175 * may be in the same spot suffer a little bit and enforce the 176 * alignment for everyone. Note this is a nop for 64-bit platforms. 177 */ 178 #define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t) 179 180 /* 181 * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the 182 * 4.4 BSD codebase. Later on struct namecache was tweaked to become 183 * smaller and the value was bumped to retain the total size, but it 184 * was never re-evaluated for suitability. A simple test counting 185 * lengths during package building shows that the value of 45 covers 186 * about 86% of all added entries, reaching 99% at 65. 187 * 188 * Regardless of the above, use of dedicated zones instead of malloc may be 189 * inducing additional waste. This may be hard to address as said zones are 190 * tied to VFS SMR. Even if retaining them, the current split should be 191 * re-evaluated. 192 */ 193 #ifdef __LP64__ 194 #define CACHE_PATH_CUTOFF 45 195 #define CACHE_LARGE_PAD 6 196 #else 197 #define CACHE_PATH_CUTOFF 41 198 #define CACHE_LARGE_PAD 2 199 #endif 200 201 #define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1) 202 #define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE) 203 #define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD) 204 #define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE) 205 206 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 207 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 208 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 209 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 210 211 #define nc_vp n_un.nu_vp 212 #define nc_neg n_un.nu_neg 213 214 /* 215 * Flags in namecache.nc_flag 216 */ 217 #define NCF_WHITE 0x01 218 #define NCF_ISDOTDOT 0x02 219 #define NCF_TS 0x04 220 #define NCF_DTS 0x08 221 #define NCF_DVDROP 0x10 222 #define NCF_NEGATIVE 0x20 223 #define NCF_INVALID 0x40 224 #define NCF_WIP 0x80 225 226 /* 227 * Flags in negstate.neg_flag 228 */ 229 #define NEG_HOT 0x01 230 231 static bool cache_neg_evict_cond(u_long lnumcache); 232 233 /* 234 * Mark an entry as invalid. 235 * 236 * This is called before it starts getting deconstructed. 237 */ 238 static void 239 cache_ncp_invalidate(struct namecache *ncp) 240 { 241 242 KASSERT((ncp->nc_flag & NCF_INVALID) == 0, 243 ("%s: entry %p already invalid", __func__, ncp)); 244 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID); 245 atomic_thread_fence_rel(); 246 } 247 248 /* 249 * Check whether the entry can be safely used. 250 * 251 * All places which elide locks are supposed to call this after they are 252 * done with reading from an entry. 253 */ 254 #define cache_ncp_canuse(ncp) ({ \ 255 struct namecache *_ncp = (ncp); \ 256 u_char _nc_flag; \ 257 \ 258 atomic_thread_fence_acq(); \ 259 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 260 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \ 261 }) 262 263 /* 264 * Name caching works as follows: 265 * 266 * Names found by directory scans are retained in a cache 267 * for future reference. It is managed LRU, so frequently 268 * used names will hang around. Cache is indexed by hash value 269 * obtained from (dvp, name) where dvp refers to the directory 270 * containing name. 271 * 272 * If it is a "negative" entry, (i.e. for a name that is known NOT to 273 * exist) the vnode pointer will be NULL. 274 * 275 * Upon reaching the last segment of a path, if the reference 276 * is for DELETE, or NOCACHE is set (rewrite), and the 277 * name is located in the cache, it will be dropped. 278 * 279 * These locks are used (in the order in which they can be taken): 280 * NAME TYPE ROLE 281 * vnodelock mtx vnode lists and v_cache_dd field protection 282 * bucketlock mtx for access to given set of hash buckets 283 * neglist mtx negative entry LRU management 284 * 285 * It is legal to take multiple vnodelock and bucketlock locks. The locking 286 * order is lower address first. Both are recursive. 287 * 288 * "." lookups are lockless. 289 * 290 * ".." and vnode -> name lookups require vnodelock. 291 * 292 * name -> vnode lookup requires the relevant bucketlock to be held for reading. 293 * 294 * Insertions and removals of entries require involved vnodes and bucketlocks 295 * to be locked to provide safe operation against other threads modifying the 296 * cache. 297 * 298 * Some lookups result in removal of the found entry (e.g. getting rid of a 299 * negative entry with the intent to create a positive one), which poses a 300 * problem when multiple threads reach the state. Similarly, two different 301 * threads can purge two different vnodes and try to remove the same name. 302 * 303 * If the already held vnode lock is lower than the second required lock, we 304 * can just take the other lock. However, in the opposite case, this could 305 * deadlock. As such, this is resolved by trylocking and if that fails unlocking 306 * the first node, locking everything in order and revalidating the state. 307 */ 308 309 VFS_SMR_DECLARE; 310 311 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 312 "Name cache parameters"); 313 314 static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */ 315 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, 316 "Total namecache capacity"); 317 318 u_int ncsizefactor = 2; 319 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0, 320 "Size factor for namecache"); 321 322 static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */ 323 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, 324 "Ratio of negative namecache entries"); 325 326 /* 327 * Negative entry % of namecache capacity above which automatic eviction is allowed. 328 * 329 * Check cache_neg_evict_cond for details. 330 */ 331 static u_int ncnegminpct = 3; 332 333 static u_int __read_mostly neg_min; /* the above recomputed against ncsize */ 334 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0, 335 "Negative entry count above which automatic eviction is allowed"); 336 337 /* 338 * Structures associated with name caching. 339 */ 340 #define NCHHASH(hash) \ 341 (&nchashtbl[(hash) & nchash]) 342 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */ 343 static u_long __read_mostly nchash; /* size of hash table */ 344 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, 345 "Size of namecache hash table"); 346 static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */ 347 static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */ 348 349 struct nchstats nchstats; /* cache effectiveness statistics */ 350 351 static bool __read_frequently cache_fast_revlookup = true; 352 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW, 353 &cache_fast_revlookup, 0, ""); 354 355 static u_int __exclusive_cache_line neg_cycle; 356 357 #define ncneghash 3 358 #define numneglists (ncneghash + 1) 359 360 struct neglist { 361 struct mtx nl_evict_lock; 362 struct mtx nl_lock __aligned(CACHE_LINE_SIZE); 363 TAILQ_HEAD(, namecache) nl_list; 364 TAILQ_HEAD(, namecache) nl_hotlist; 365 u_long nl_hotnum; 366 } __aligned(CACHE_LINE_SIZE); 367 368 static struct neglist neglists[numneglists]; 369 370 static inline struct neglist * 371 NCP2NEGLIST(struct namecache *ncp) 372 { 373 374 return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]); 375 } 376 377 static inline struct negstate * 378 NCP2NEGSTATE(struct namecache *ncp) 379 { 380 381 MPASS(ncp->nc_flag & NCF_NEGATIVE); 382 return (&ncp->nc_neg); 383 } 384 385 #define numbucketlocks (ncbuckethash + 1) 386 static u_int __read_mostly ncbuckethash; 387 static struct mtx_padalign __read_mostly *bucketlocks; 388 #define HASH2BUCKETLOCK(hash) \ 389 ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)])) 390 391 #define numvnodelocks (ncvnodehash + 1) 392 static u_int __read_mostly ncvnodehash; 393 static struct mtx __read_mostly *vnodelocks; 394 static inline struct mtx * 395 VP2VNODELOCK(struct vnode *vp) 396 { 397 398 return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]); 399 } 400 401 static void 402 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp) 403 { 404 struct namecache_ts *ncp_ts; 405 406 KASSERT((ncp->nc_flag & NCF_TS) != 0 || 407 (tsp == NULL && ticksp == NULL), 408 ("No NCF_TS")); 409 410 if (tsp == NULL) 411 return; 412 413 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 414 *tsp = ncp_ts->nc_time; 415 *ticksp = ncp_ts->nc_ticks; 416 } 417 418 #ifdef DEBUG_CACHE 419 static int __read_mostly doingcache = 1; /* 1 => enable the cache */ 420 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, 421 "VFS namecache enabled"); 422 #endif 423 424 /* Export size information to userland */ 425 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, 426 sizeof(struct namecache), "sizeof(struct namecache)"); 427 428 /* 429 * The new name cache statistics 430 */ 431 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 432 "Name cache statistics"); 433 434 #define STATNODE_ULONG(name, varname, descr) \ 435 SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 436 #define STATNODE_COUNTER(name, varname, descr) \ 437 static COUNTER_U64_DEFINE_EARLY(varname); \ 438 SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \ 439 descr); 440 STATNODE_ULONG(neg, numneg, "Number of negative cache entries"); 441 STATNODE_ULONG(count, numcache, "Number of cache entries"); 442 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held"); 443 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit"); 444 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits"); 445 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits"); 446 STATNODE_COUNTER(miss, nummiss, "Number of cache misses"); 447 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache"); 448 STATNODE_COUNTER(posszaps, numposzaps, 449 "Number of cache hits (positive) we do not want to cache"); 450 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)"); 451 STATNODE_COUNTER(negzaps, numnegzaps, 452 "Number of cache hits (negative) we do not want to cache"); 453 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)"); 454 /* These count for vn_getcwd(), too. */ 455 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls"); 456 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)"); 457 STATNODE_COUNTER(fullpathfail2, numfullpathfail2, 458 "Number of fullpath search errors (VOP_VPTOCNP failures)"); 459 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)"); 460 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls"); 461 462 /* 463 * Debug or developer statistics. 464 */ 465 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 466 "Name cache debugging"); 467 #define DEBUGNODE_ULONG(name, varname, descr) \ 468 SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 469 #define DEBUGNODE_COUNTER(name, varname, descr) \ 470 static COUNTER_U64_DEFINE_EARLY(varname); \ 471 SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \ 472 descr); 473 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success, 474 "Number of successful removals after relocking"); 475 static long zap_bucket_fail; 476 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, ""); 477 static long zap_bucket_fail2; 478 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, ""); 479 static long cache_lock_vnodes_cel_3_failures; 480 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures, 481 "Number of times 3-way vnode locking failed"); 482 483 static void cache_zap_locked(struct namecache *ncp); 484 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, 485 char **freebuf, size_t *buflen); 486 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 487 char **retbuf, size_t *buflen, size_t addend); 488 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, 489 char **retbuf, size_t *buflen); 490 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, 491 char **retbuf, size_t *len, size_t addend); 492 493 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 494 495 static inline void 496 cache_assert_vlp_locked(struct mtx *vlp) 497 { 498 499 if (vlp != NULL) 500 mtx_assert(vlp, MA_OWNED); 501 } 502 503 static inline void 504 cache_assert_vnode_locked(struct vnode *vp) 505 { 506 struct mtx *vlp; 507 508 vlp = VP2VNODELOCK(vp); 509 cache_assert_vlp_locked(vlp); 510 } 511 512 /* 513 * Directory vnodes with entries are held for two reasons: 514 * 1. make them less of a target for reclamation in vnlru 515 * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided 516 * 517 * It will be feasible to stop doing it altogether if all filesystems start 518 * supporting lockless lookup. 519 */ 520 static void 521 cache_hold_vnode(struct vnode *vp) 522 { 523 524 cache_assert_vnode_locked(vp); 525 VNPASS(LIST_EMPTY(&vp->v_cache_src), vp); 526 vhold(vp); 527 counter_u64_add(numcachehv, 1); 528 } 529 530 static void 531 cache_drop_vnode(struct vnode *vp) 532 { 533 534 /* 535 * Called after all locks are dropped, meaning we can't assert 536 * on the state of v_cache_src. 537 */ 538 vdrop(vp); 539 counter_u64_add(numcachehv, -1); 540 } 541 542 /* 543 * UMA zones. 544 */ 545 static uma_zone_t __read_mostly cache_zone_small; 546 static uma_zone_t __read_mostly cache_zone_small_ts; 547 static uma_zone_t __read_mostly cache_zone_large; 548 static uma_zone_t __read_mostly cache_zone_large_ts; 549 550 static struct namecache * 551 cache_alloc_uma(int len, bool ts) 552 { 553 struct namecache_ts *ncp_ts; 554 struct namecache *ncp; 555 556 if (__predict_false(ts)) { 557 if (len <= CACHE_PATH_CUTOFF) 558 ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK); 559 else 560 ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK); 561 ncp = &ncp_ts->nc_nc; 562 } else { 563 if (len <= CACHE_PATH_CUTOFF) 564 ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK); 565 else 566 ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK); 567 } 568 return (ncp); 569 } 570 571 static void 572 cache_free_uma(struct namecache *ncp) 573 { 574 struct namecache_ts *ncp_ts; 575 576 if (__predict_false(ncp->nc_flag & NCF_TS)) { 577 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 578 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 579 uma_zfree_smr(cache_zone_small_ts, ncp_ts); 580 else 581 uma_zfree_smr(cache_zone_large_ts, ncp_ts); 582 } else { 583 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 584 uma_zfree_smr(cache_zone_small, ncp); 585 else 586 uma_zfree_smr(cache_zone_large, ncp); 587 } 588 } 589 590 static struct namecache * 591 cache_alloc(int len, bool ts) 592 { 593 u_long lnumcache; 594 595 /* 596 * Avoid blowout in namecache entries. 597 * 598 * Bugs: 599 * 1. filesystems may end up trying to add an already existing entry 600 * (for example this can happen after a cache miss during concurrent 601 * lookup), in which case we will call cache_neg_evict despite not 602 * adding anything. 603 * 2. the routine may fail to free anything and no provisions are made 604 * to make it try harder (see the inside for failure modes) 605 * 3. it only ever looks at negative entries. 606 */ 607 lnumcache = atomic_fetchadd_long(&numcache, 1) + 1; 608 if (cache_neg_evict_cond(lnumcache)) { 609 lnumcache = atomic_load_long(&numcache); 610 } 611 if (__predict_false(lnumcache >= ncsize)) { 612 atomic_subtract_long(&numcache, 1); 613 counter_u64_add(numdrops, 1); 614 return (NULL); 615 } 616 return (cache_alloc_uma(len, ts)); 617 } 618 619 static void 620 cache_free(struct namecache *ncp) 621 { 622 623 MPASS(ncp != NULL); 624 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 625 cache_drop_vnode(ncp->nc_dvp); 626 } 627 cache_free_uma(ncp); 628 atomic_subtract_long(&numcache, 1); 629 } 630 631 static void 632 cache_free_batch(struct cache_freebatch *batch) 633 { 634 struct namecache *ncp, *nnp; 635 int i; 636 637 i = 0; 638 if (TAILQ_EMPTY(batch)) 639 goto out; 640 TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) { 641 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 642 cache_drop_vnode(ncp->nc_dvp); 643 } 644 cache_free_uma(ncp); 645 i++; 646 } 647 atomic_subtract_long(&numcache, i); 648 out: 649 SDT_PROBE1(vfs, namecache, purge, batch, i); 650 } 651 652 /* 653 * TODO: With the value stored we can do better than computing the hash based 654 * on the address. The choice of FNV should also be revisited. 655 */ 656 static void 657 cache_prehash(struct vnode *vp) 658 { 659 660 vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT); 661 } 662 663 static uint32_t 664 cache_get_hash(char *name, u_char len, struct vnode *dvp) 665 { 666 667 return (fnv_32_buf(name, len, dvp->v_nchash)); 668 } 669 670 static inline struct nchashhead * 671 NCP2BUCKET(struct namecache *ncp) 672 { 673 uint32_t hash; 674 675 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 676 return (NCHHASH(hash)); 677 } 678 679 static inline struct mtx * 680 NCP2BUCKETLOCK(struct namecache *ncp) 681 { 682 uint32_t hash; 683 684 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 685 return (HASH2BUCKETLOCK(hash)); 686 } 687 688 #ifdef INVARIANTS 689 static void 690 cache_assert_bucket_locked(struct namecache *ncp) 691 { 692 struct mtx *blp; 693 694 blp = NCP2BUCKETLOCK(ncp); 695 mtx_assert(blp, MA_OWNED); 696 } 697 698 static void 699 cache_assert_bucket_unlocked(struct namecache *ncp) 700 { 701 struct mtx *blp; 702 703 blp = NCP2BUCKETLOCK(ncp); 704 mtx_assert(blp, MA_NOTOWNED); 705 } 706 #else 707 #define cache_assert_bucket_locked(x) do { } while (0) 708 #define cache_assert_bucket_unlocked(x) do { } while (0) 709 #endif 710 711 #define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y)) 712 static void 713 _cache_sort_vnodes(void **p1, void **p2) 714 { 715 void *tmp; 716 717 MPASS(*p1 != NULL || *p2 != NULL); 718 719 if (*p1 > *p2) { 720 tmp = *p2; 721 *p2 = *p1; 722 *p1 = tmp; 723 } 724 } 725 726 static void 727 cache_lock_all_buckets(void) 728 { 729 u_int i; 730 731 for (i = 0; i < numbucketlocks; i++) 732 mtx_lock(&bucketlocks[i]); 733 } 734 735 static void 736 cache_unlock_all_buckets(void) 737 { 738 u_int i; 739 740 for (i = 0; i < numbucketlocks; i++) 741 mtx_unlock(&bucketlocks[i]); 742 } 743 744 static void 745 cache_lock_all_vnodes(void) 746 { 747 u_int i; 748 749 for (i = 0; i < numvnodelocks; i++) 750 mtx_lock(&vnodelocks[i]); 751 } 752 753 static void 754 cache_unlock_all_vnodes(void) 755 { 756 u_int i; 757 758 for (i = 0; i < numvnodelocks; i++) 759 mtx_unlock(&vnodelocks[i]); 760 } 761 762 static int 763 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 764 { 765 766 cache_sort_vnodes(&vlp1, &vlp2); 767 768 if (vlp1 != NULL) { 769 if (!mtx_trylock(vlp1)) 770 return (EAGAIN); 771 } 772 if (!mtx_trylock(vlp2)) { 773 if (vlp1 != NULL) 774 mtx_unlock(vlp1); 775 return (EAGAIN); 776 } 777 778 return (0); 779 } 780 781 static void 782 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 783 { 784 785 MPASS(vlp1 != NULL || vlp2 != NULL); 786 MPASS(vlp1 <= vlp2); 787 788 if (vlp1 != NULL) 789 mtx_lock(vlp1); 790 if (vlp2 != NULL) 791 mtx_lock(vlp2); 792 } 793 794 static void 795 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 796 { 797 798 MPASS(vlp1 != NULL || vlp2 != NULL); 799 800 if (vlp1 != NULL) 801 mtx_unlock(vlp1); 802 if (vlp2 != NULL) 803 mtx_unlock(vlp2); 804 } 805 806 static int 807 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 808 { 809 struct nchstats snap; 810 811 if (req->oldptr == NULL) 812 return (SYSCTL_OUT(req, 0, sizeof(snap))); 813 814 snap = nchstats; 815 snap.ncs_goodhits = counter_u64_fetch(numposhits); 816 snap.ncs_neghits = counter_u64_fetch(numneghits); 817 snap.ncs_badhits = counter_u64_fetch(numposzaps) + 818 counter_u64_fetch(numnegzaps); 819 snap.ncs_miss = counter_u64_fetch(nummisszap) + 820 counter_u64_fetch(nummiss); 821 822 return (SYSCTL_OUT(req, &snap, sizeof(snap))); 823 } 824 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD | 825 CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", 826 "VFS cache effectiveness statistics"); 827 828 static void 829 cache_recalc_neg_min(u_int val) 830 { 831 832 neg_min = (ncsize * val) / 100; 833 } 834 835 static int 836 sysctl_negminpct(SYSCTL_HANDLER_ARGS) 837 { 838 u_int val; 839 int error; 840 841 val = ncnegminpct; 842 error = sysctl_handle_int(oidp, &val, 0, req); 843 if (error != 0 || req->newptr == NULL) 844 return (error); 845 846 if (val == ncnegminpct) 847 return (0); 848 if (val < 0 || val > 99) 849 return (EINVAL); 850 ncnegminpct = val; 851 cache_recalc_neg_min(val); 852 return (0); 853 } 854 855 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct, 856 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct, 857 "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed"); 858 859 #ifdef DIAGNOSTIC 860 /* 861 * Grab an atomic snapshot of the name cache hash chain lengths 862 */ 863 static SYSCTL_NODE(_debug, OID_AUTO, hashstat, 864 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 865 "hash table stats"); 866 867 static int 868 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS) 869 { 870 struct nchashhead *ncpp; 871 struct namecache *ncp; 872 int i, error, n_nchash, *cntbuf; 873 874 retry: 875 n_nchash = nchash + 1; /* nchash is max index, not count */ 876 if (req->oldptr == NULL) 877 return SYSCTL_OUT(req, 0, n_nchash * sizeof(int)); 878 cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK); 879 cache_lock_all_buckets(); 880 if (n_nchash != nchash + 1) { 881 cache_unlock_all_buckets(); 882 free(cntbuf, M_TEMP); 883 goto retry; 884 } 885 /* Scan hash tables counting entries */ 886 for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++) 887 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) 888 cntbuf[i]++; 889 cache_unlock_all_buckets(); 890 for (error = 0, i = 0; i < n_nchash; i++) 891 if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0) 892 break; 893 free(cntbuf, M_TEMP); 894 return (error); 895 } 896 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD| 897 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int", 898 "nchash chain lengths"); 899 900 static int 901 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS) 902 { 903 int error; 904 struct nchashhead *ncpp; 905 struct namecache *ncp; 906 int n_nchash; 907 int count, maxlength, used, pct; 908 909 if (!req->oldptr) 910 return SYSCTL_OUT(req, 0, 4 * sizeof(int)); 911 912 cache_lock_all_buckets(); 913 n_nchash = nchash + 1; /* nchash is max index, not count */ 914 used = 0; 915 maxlength = 0; 916 917 /* Scan hash tables for applicable entries */ 918 for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) { 919 count = 0; 920 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) { 921 count++; 922 } 923 if (count) 924 used++; 925 if (maxlength < count) 926 maxlength = count; 927 } 928 n_nchash = nchash + 1; 929 cache_unlock_all_buckets(); 930 pct = (used * 100) / (n_nchash / 100); 931 error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash)); 932 if (error) 933 return (error); 934 error = SYSCTL_OUT(req, &used, sizeof(used)); 935 if (error) 936 return (error); 937 error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength)); 938 if (error) 939 return (error); 940 error = SYSCTL_OUT(req, &pct, sizeof(pct)); 941 if (error) 942 return (error); 943 return (0); 944 } 945 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD| 946 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I", 947 "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)"); 948 #endif 949 950 /* 951 * Negative entries management 952 * 953 * Various workloads create plenty of negative entries and barely use them 954 * afterwards. Moreover malicious users can keep performing bogus lookups 955 * adding even more entries. For example "make tinderbox" as of writing this 956 * comment ends up with 2.6M namecache entries in total, 1.2M of which are 957 * negative. 958 * 959 * As such, a rather aggressive eviction method is needed. The currently 960 * employed method is a placeholder. 961 * 962 * Entries are split over numneglists separate lists, each of which is further 963 * split into hot and cold entries. Entries get promoted after getting a hit. 964 * Eviction happens on addition of new entry. 965 */ 966 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 967 "Name cache negative entry statistics"); 968 969 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0, 970 "Number of negative cache entries"); 971 972 static COUNTER_U64_DEFINE_EARLY(neg_created); 973 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, 974 "Number of created negative entries"); 975 976 static COUNTER_U64_DEFINE_EARLY(neg_evicted); 977 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted, 978 "Number of evicted negative entries"); 979 980 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty); 981 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD, 982 &neg_evict_skipped_empty, 983 "Number of times evicting failed due to lack of entries"); 984 985 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed); 986 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD, 987 &neg_evict_skipped_missed, 988 "Number of times evicting failed due to target entry disappearing"); 989 990 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended); 991 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD, 992 &neg_evict_skipped_contended, 993 "Number of times evicting failed due to contention"); 994 995 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits, 996 "Number of cache hits (negative)"); 997 998 static int 999 sysctl_neg_hot(SYSCTL_HANDLER_ARGS) 1000 { 1001 int i, out; 1002 1003 out = 0; 1004 for (i = 0; i < numneglists; i++) 1005 out += neglists[i].nl_hotnum; 1006 1007 return (SYSCTL_OUT(req, &out, sizeof(out))); 1008 } 1009 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD | 1010 CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I", 1011 "Number of hot negative entries"); 1012 1013 static void 1014 cache_neg_init(struct namecache *ncp) 1015 { 1016 struct negstate *ns; 1017 1018 ncp->nc_flag |= NCF_NEGATIVE; 1019 ns = NCP2NEGSTATE(ncp); 1020 ns->neg_flag = 0; 1021 ns->neg_hit = 0; 1022 counter_u64_add(neg_created, 1); 1023 } 1024 1025 #define CACHE_NEG_PROMOTION_THRESH 2 1026 1027 static bool 1028 cache_neg_hit_prep(struct namecache *ncp) 1029 { 1030 struct negstate *ns; 1031 u_char n; 1032 1033 ns = NCP2NEGSTATE(ncp); 1034 n = atomic_load_char(&ns->neg_hit); 1035 for (;;) { 1036 if (n >= CACHE_NEG_PROMOTION_THRESH) 1037 return (false); 1038 if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1)) 1039 break; 1040 } 1041 return (n + 1 == CACHE_NEG_PROMOTION_THRESH); 1042 } 1043 1044 /* 1045 * Nothing to do here but it is provided for completeness as some 1046 * cache_neg_hit_prep callers may end up returning without even 1047 * trying to promote. 1048 */ 1049 #define cache_neg_hit_abort(ncp) do { } while (0) 1050 1051 static void 1052 cache_neg_hit_finish(struct namecache *ncp) 1053 { 1054 1055 SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name); 1056 counter_u64_add(numneghits, 1); 1057 } 1058 1059 /* 1060 * Move a negative entry to the hot list. 1061 */ 1062 static void 1063 cache_neg_promote_locked(struct namecache *ncp) 1064 { 1065 struct neglist *nl; 1066 struct negstate *ns; 1067 1068 ns = NCP2NEGSTATE(ncp); 1069 nl = NCP2NEGLIST(ncp); 1070 mtx_assert(&nl->nl_lock, MA_OWNED); 1071 if ((ns->neg_flag & NEG_HOT) == 0) { 1072 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1073 TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst); 1074 nl->nl_hotnum++; 1075 ns->neg_flag |= NEG_HOT; 1076 } 1077 } 1078 1079 /* 1080 * Move a hot negative entry to the cold list. 1081 */ 1082 static void 1083 cache_neg_demote_locked(struct namecache *ncp) 1084 { 1085 struct neglist *nl; 1086 struct negstate *ns; 1087 1088 ns = NCP2NEGSTATE(ncp); 1089 nl = NCP2NEGLIST(ncp); 1090 mtx_assert(&nl->nl_lock, MA_OWNED); 1091 MPASS(ns->neg_flag & NEG_HOT); 1092 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1093 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1094 nl->nl_hotnum--; 1095 ns->neg_flag &= ~NEG_HOT; 1096 atomic_store_char(&ns->neg_hit, 0); 1097 } 1098 1099 /* 1100 * Move a negative entry to the hot list if it matches the lookup. 1101 * 1102 * We have to take locks, but they may be contended and in the worst 1103 * case we may need to go off CPU. We don't want to spin within the 1104 * smr section and we can't block with it. Exiting the section means 1105 * the found entry could have been evicted. We are going to look it 1106 * up again. 1107 */ 1108 static bool 1109 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, 1110 struct namecache *oncp, uint32_t hash) 1111 { 1112 struct namecache *ncp; 1113 struct neglist *nl; 1114 u_char nc_flag; 1115 1116 nl = NCP2NEGLIST(oncp); 1117 1118 mtx_lock(&nl->nl_lock); 1119 /* 1120 * For hash iteration. 1121 */ 1122 vfs_smr_enter(); 1123 1124 /* 1125 * Avoid all surprises by only succeeding if we got the same entry and 1126 * bailing completely otherwise. 1127 * XXX There are no provisions to keep the vnode around, meaning we may 1128 * end up promoting a negative entry for a *new* vnode and returning 1129 * ENOENT on its account. This is the error we want to return anyway 1130 * and promotion is harmless. 1131 * 1132 * In particular at this point there can be a new ncp which matches the 1133 * search but hashes to a different neglist. 1134 */ 1135 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1136 if (ncp == oncp) 1137 break; 1138 } 1139 1140 /* 1141 * No match to begin with. 1142 */ 1143 if (__predict_false(ncp == NULL)) { 1144 goto out_abort; 1145 } 1146 1147 /* 1148 * The newly found entry may be something different... 1149 */ 1150 if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1151 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) { 1152 goto out_abort; 1153 } 1154 1155 /* 1156 * ... and not even negative. 1157 */ 1158 nc_flag = atomic_load_char(&ncp->nc_flag); 1159 if ((nc_flag & NCF_NEGATIVE) == 0) { 1160 goto out_abort; 1161 } 1162 1163 if (!cache_ncp_canuse(ncp)) { 1164 goto out_abort; 1165 } 1166 1167 cache_neg_promote_locked(ncp); 1168 cache_neg_hit_finish(ncp); 1169 vfs_smr_exit(); 1170 mtx_unlock(&nl->nl_lock); 1171 return (true); 1172 out_abort: 1173 vfs_smr_exit(); 1174 mtx_unlock(&nl->nl_lock); 1175 return (false); 1176 } 1177 1178 static void 1179 cache_neg_promote(struct namecache *ncp) 1180 { 1181 struct neglist *nl; 1182 1183 nl = NCP2NEGLIST(ncp); 1184 mtx_lock(&nl->nl_lock); 1185 cache_neg_promote_locked(ncp); 1186 mtx_unlock(&nl->nl_lock); 1187 } 1188 1189 static void 1190 cache_neg_insert(struct namecache *ncp) 1191 { 1192 struct neglist *nl; 1193 1194 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1195 cache_assert_bucket_locked(ncp); 1196 nl = NCP2NEGLIST(ncp); 1197 mtx_lock(&nl->nl_lock); 1198 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1199 mtx_unlock(&nl->nl_lock); 1200 atomic_add_long(&numneg, 1); 1201 } 1202 1203 static void 1204 cache_neg_remove(struct namecache *ncp) 1205 { 1206 struct neglist *nl; 1207 struct negstate *ns; 1208 1209 cache_assert_bucket_locked(ncp); 1210 nl = NCP2NEGLIST(ncp); 1211 ns = NCP2NEGSTATE(ncp); 1212 mtx_lock(&nl->nl_lock); 1213 if ((ns->neg_flag & NEG_HOT) != 0) { 1214 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1215 nl->nl_hotnum--; 1216 } else { 1217 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1218 } 1219 mtx_unlock(&nl->nl_lock); 1220 atomic_subtract_long(&numneg, 1); 1221 } 1222 1223 static struct neglist * 1224 cache_neg_evict_select_list(void) 1225 { 1226 struct neglist *nl; 1227 u_int c; 1228 1229 c = atomic_fetchadd_int(&neg_cycle, 1) + 1; 1230 nl = &neglists[c % numneglists]; 1231 if (!mtx_trylock(&nl->nl_evict_lock)) { 1232 counter_u64_add(neg_evict_skipped_contended, 1); 1233 return (NULL); 1234 } 1235 return (nl); 1236 } 1237 1238 static struct namecache * 1239 cache_neg_evict_select_entry(struct neglist *nl) 1240 { 1241 struct namecache *ncp, *lncp; 1242 struct negstate *ns, *lns; 1243 int i; 1244 1245 mtx_assert(&nl->nl_evict_lock, MA_OWNED); 1246 mtx_assert(&nl->nl_lock, MA_OWNED); 1247 ncp = TAILQ_FIRST(&nl->nl_list); 1248 if (ncp == NULL) 1249 return (NULL); 1250 lncp = ncp; 1251 lns = NCP2NEGSTATE(lncp); 1252 for (i = 1; i < 4; i++) { 1253 ncp = TAILQ_NEXT(ncp, nc_dst); 1254 if (ncp == NULL) 1255 break; 1256 ns = NCP2NEGSTATE(ncp); 1257 if (ns->neg_hit < lns->neg_hit) { 1258 lncp = ncp; 1259 lns = ns; 1260 } 1261 } 1262 return (lncp); 1263 } 1264 1265 static bool 1266 cache_neg_evict(void) 1267 { 1268 struct namecache *ncp, *ncp2; 1269 struct neglist *nl; 1270 struct vnode *dvp; 1271 struct mtx *dvlp; 1272 struct mtx *blp; 1273 uint32_t hash; 1274 u_char nlen; 1275 bool evicted; 1276 1277 nl = cache_neg_evict_select_list(); 1278 if (nl == NULL) { 1279 return (false); 1280 } 1281 1282 mtx_lock(&nl->nl_lock); 1283 ncp = TAILQ_FIRST(&nl->nl_hotlist); 1284 if (ncp != NULL) { 1285 cache_neg_demote_locked(ncp); 1286 } 1287 ncp = cache_neg_evict_select_entry(nl); 1288 if (ncp == NULL) { 1289 counter_u64_add(neg_evict_skipped_empty, 1); 1290 mtx_unlock(&nl->nl_lock); 1291 mtx_unlock(&nl->nl_evict_lock); 1292 return (false); 1293 } 1294 nlen = ncp->nc_nlen; 1295 dvp = ncp->nc_dvp; 1296 hash = cache_get_hash(ncp->nc_name, nlen, dvp); 1297 dvlp = VP2VNODELOCK(dvp); 1298 blp = HASH2BUCKETLOCK(hash); 1299 mtx_unlock(&nl->nl_lock); 1300 mtx_unlock(&nl->nl_evict_lock); 1301 mtx_lock(dvlp); 1302 mtx_lock(blp); 1303 /* 1304 * Note that since all locks were dropped above, the entry may be 1305 * gone or reallocated to be something else. 1306 */ 1307 CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) { 1308 if (ncp2 == ncp && ncp2->nc_dvp == dvp && 1309 ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0) 1310 break; 1311 } 1312 if (ncp2 == NULL) { 1313 counter_u64_add(neg_evict_skipped_missed, 1); 1314 ncp = NULL; 1315 evicted = false; 1316 } else { 1317 MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp)); 1318 MPASS(blp == NCP2BUCKETLOCK(ncp)); 1319 SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp, 1320 ncp->nc_name); 1321 cache_zap_locked(ncp); 1322 counter_u64_add(neg_evicted, 1); 1323 evicted = true; 1324 } 1325 mtx_unlock(blp); 1326 mtx_unlock(dvlp); 1327 if (ncp != NULL) 1328 cache_free(ncp); 1329 return (evicted); 1330 } 1331 1332 /* 1333 * Maybe evict a negative entry to create more room. 1334 * 1335 * The ncnegfactor parameter limits what fraction of the total count 1336 * can comprise of negative entries. However, if the cache is just 1337 * warming up this leads to excessive evictions. As such, ncnegminpct 1338 * (recomputed to neg_min) dictates whether the above should be 1339 * applied. 1340 * 1341 * Try evicting if the cache is close to full capacity regardless of 1342 * other considerations. 1343 */ 1344 static bool 1345 cache_neg_evict_cond(u_long lnumcache) 1346 { 1347 u_long lnumneg; 1348 1349 if (ncsize - 1000 < lnumcache) 1350 goto out_evict; 1351 lnumneg = atomic_load_long(&numneg); 1352 if (lnumneg < neg_min) 1353 return (false); 1354 if (lnumneg * ncnegfactor < lnumcache) 1355 return (false); 1356 out_evict: 1357 return (cache_neg_evict()); 1358 } 1359 1360 /* 1361 * cache_zap_locked(): 1362 * 1363 * Removes a namecache entry from cache, whether it contains an actual 1364 * pointer to a vnode or if it is just a negative cache entry. 1365 */ 1366 static void 1367 cache_zap_locked(struct namecache *ncp) 1368 { 1369 struct nchashhead *ncpp; 1370 1371 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1372 cache_assert_vnode_locked(ncp->nc_vp); 1373 cache_assert_vnode_locked(ncp->nc_dvp); 1374 cache_assert_bucket_locked(ncp); 1375 1376 cache_ncp_invalidate(ncp); 1377 1378 ncpp = NCP2BUCKET(ncp); 1379 CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash); 1380 if (!(ncp->nc_flag & NCF_NEGATIVE)) { 1381 SDT_PROBE3(vfs, namecache, zap, done, ncp->nc_dvp, 1382 ncp->nc_name, ncp->nc_vp); 1383 TAILQ_REMOVE(&ncp->nc_vp->v_cache_dst, ncp, nc_dst); 1384 if (ncp == ncp->nc_vp->v_cache_dd) { 1385 vn_seqc_write_begin_unheld(ncp->nc_vp); 1386 ncp->nc_vp->v_cache_dd = NULL; 1387 vn_seqc_write_end(ncp->nc_vp); 1388 } 1389 } else { 1390 SDT_PROBE2(vfs, namecache, zap_negative, done, ncp->nc_dvp, 1391 ncp->nc_name); 1392 cache_neg_remove(ncp); 1393 } 1394 if (ncp->nc_flag & NCF_ISDOTDOT) { 1395 if (ncp == ncp->nc_dvp->v_cache_dd) { 1396 vn_seqc_write_begin_unheld(ncp->nc_dvp); 1397 ncp->nc_dvp->v_cache_dd = NULL; 1398 vn_seqc_write_end(ncp->nc_dvp); 1399 } 1400 } else { 1401 LIST_REMOVE(ncp, nc_src); 1402 if (LIST_EMPTY(&ncp->nc_dvp->v_cache_src)) { 1403 ncp->nc_flag |= NCF_DVDROP; 1404 } 1405 } 1406 } 1407 1408 static void 1409 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp) 1410 { 1411 struct mtx *blp; 1412 1413 MPASS(ncp->nc_dvp == vp); 1414 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1415 cache_assert_vnode_locked(vp); 1416 1417 blp = NCP2BUCKETLOCK(ncp); 1418 mtx_lock(blp); 1419 cache_zap_locked(ncp); 1420 mtx_unlock(blp); 1421 } 1422 1423 static bool 1424 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, 1425 struct mtx **vlpp) 1426 { 1427 struct mtx *pvlp, *vlp1, *vlp2, *to_unlock; 1428 struct mtx *blp; 1429 1430 MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp); 1431 cache_assert_vnode_locked(vp); 1432 1433 if (ncp->nc_flag & NCF_NEGATIVE) { 1434 if (*vlpp != NULL) { 1435 mtx_unlock(*vlpp); 1436 *vlpp = NULL; 1437 } 1438 cache_zap_negative_locked_vnode_kl(ncp, vp); 1439 return (true); 1440 } 1441 1442 pvlp = VP2VNODELOCK(vp); 1443 blp = NCP2BUCKETLOCK(ncp); 1444 vlp1 = VP2VNODELOCK(ncp->nc_dvp); 1445 vlp2 = VP2VNODELOCK(ncp->nc_vp); 1446 1447 if (*vlpp == vlp1 || *vlpp == vlp2) { 1448 to_unlock = *vlpp; 1449 *vlpp = NULL; 1450 } else { 1451 if (*vlpp != NULL) { 1452 mtx_unlock(*vlpp); 1453 *vlpp = NULL; 1454 } 1455 cache_sort_vnodes(&vlp1, &vlp2); 1456 if (vlp1 == pvlp) { 1457 mtx_lock(vlp2); 1458 to_unlock = vlp2; 1459 } else { 1460 if (!mtx_trylock(vlp1)) 1461 goto out_relock; 1462 to_unlock = vlp1; 1463 } 1464 } 1465 mtx_lock(blp); 1466 cache_zap_locked(ncp); 1467 mtx_unlock(blp); 1468 if (to_unlock != NULL) 1469 mtx_unlock(to_unlock); 1470 return (true); 1471 1472 out_relock: 1473 mtx_unlock(vlp2); 1474 mtx_lock(vlp1); 1475 mtx_lock(vlp2); 1476 MPASS(*vlpp == NULL); 1477 *vlpp = vlp1; 1478 return (false); 1479 } 1480 1481 /* 1482 * If trylocking failed we can get here. We know enough to take all needed locks 1483 * in the right order and re-lookup the entry. 1484 */ 1485 static int 1486 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, 1487 struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, 1488 struct mtx *blp) 1489 { 1490 struct namecache *rncp; 1491 1492 cache_assert_bucket_unlocked(ncp); 1493 1494 cache_sort_vnodes(&dvlp, &vlp); 1495 cache_lock_vnodes(dvlp, vlp); 1496 mtx_lock(blp); 1497 CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) { 1498 if (rncp == ncp && rncp->nc_dvp == dvp && 1499 rncp->nc_nlen == cnp->cn_namelen && 1500 !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen)) 1501 break; 1502 } 1503 if (rncp != NULL) { 1504 cache_zap_locked(rncp); 1505 mtx_unlock(blp); 1506 cache_unlock_vnodes(dvlp, vlp); 1507 counter_u64_add(zap_bucket_relock_success, 1); 1508 return (0); 1509 } 1510 1511 mtx_unlock(blp); 1512 cache_unlock_vnodes(dvlp, vlp); 1513 return (EAGAIN); 1514 } 1515 1516 static int __noinline 1517 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, 1518 uint32_t hash, struct mtx *blp) 1519 { 1520 struct mtx *dvlp, *vlp; 1521 struct vnode *dvp; 1522 1523 cache_assert_bucket_locked(ncp); 1524 1525 dvlp = VP2VNODELOCK(ncp->nc_dvp); 1526 vlp = NULL; 1527 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1528 vlp = VP2VNODELOCK(ncp->nc_vp); 1529 if (cache_trylock_vnodes(dvlp, vlp) == 0) { 1530 cache_zap_locked(ncp); 1531 mtx_unlock(blp); 1532 cache_unlock_vnodes(dvlp, vlp); 1533 return (0); 1534 } 1535 1536 dvp = ncp->nc_dvp; 1537 mtx_unlock(blp); 1538 return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp)); 1539 } 1540 1541 static __noinline int 1542 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp) 1543 { 1544 struct namecache *ncp; 1545 struct mtx *blp; 1546 struct mtx *dvlp, *dvlp2; 1547 uint32_t hash; 1548 int error; 1549 1550 if (cnp->cn_namelen == 2 && 1551 cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') { 1552 dvlp = VP2VNODELOCK(dvp); 1553 dvlp2 = NULL; 1554 mtx_lock(dvlp); 1555 retry_dotdot: 1556 ncp = dvp->v_cache_dd; 1557 if (ncp == NULL) { 1558 mtx_unlock(dvlp); 1559 if (dvlp2 != NULL) 1560 mtx_unlock(dvlp2); 1561 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1562 return (0); 1563 } 1564 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1565 if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2)) 1566 goto retry_dotdot; 1567 MPASS(dvp->v_cache_dd == NULL); 1568 mtx_unlock(dvlp); 1569 if (dvlp2 != NULL) 1570 mtx_unlock(dvlp2); 1571 cache_free(ncp); 1572 } else { 1573 vn_seqc_write_begin(dvp); 1574 dvp->v_cache_dd = NULL; 1575 vn_seqc_write_end(dvp); 1576 mtx_unlock(dvlp); 1577 if (dvlp2 != NULL) 1578 mtx_unlock(dvlp2); 1579 } 1580 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1581 return (1); 1582 } 1583 1584 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1585 blp = HASH2BUCKETLOCK(hash); 1586 retry: 1587 if (CK_SLIST_EMPTY(NCHHASH(hash))) 1588 goto out_no_entry; 1589 1590 mtx_lock(blp); 1591 1592 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1593 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1594 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1595 break; 1596 } 1597 1598 if (ncp == NULL) { 1599 mtx_unlock(blp); 1600 goto out_no_entry; 1601 } 1602 1603 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1604 if (__predict_false(error != 0)) { 1605 zap_bucket_fail++; 1606 goto retry; 1607 } 1608 counter_u64_add(numposzaps, 1); 1609 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1610 cache_free(ncp); 1611 return (1); 1612 out_no_entry: 1613 counter_u64_add(nummisszap, 1); 1614 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1615 return (0); 1616 } 1617 1618 static int __noinline 1619 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1620 struct timespec *tsp, int *ticksp) 1621 { 1622 int ltype; 1623 1624 *vpp = dvp; 1625 counter_u64_add(dothits, 1); 1626 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp); 1627 if (tsp != NULL) 1628 timespecclear(tsp); 1629 if (ticksp != NULL) 1630 *ticksp = ticks; 1631 vrefact(*vpp); 1632 /* 1633 * When we lookup "." we still can be asked to lock it 1634 * differently... 1635 */ 1636 ltype = cnp->cn_lkflags & LK_TYPE_MASK; 1637 if (ltype != VOP_ISLOCKED(*vpp)) { 1638 if (ltype == LK_EXCLUSIVE) { 1639 vn_lock(*vpp, LK_UPGRADE | LK_RETRY); 1640 if (VN_IS_DOOMED((*vpp))) { 1641 /* forced unmount */ 1642 vrele(*vpp); 1643 *vpp = NULL; 1644 return (ENOENT); 1645 } 1646 } else 1647 vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY); 1648 } 1649 return (-1); 1650 } 1651 1652 static int __noinline 1653 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1654 struct timespec *tsp, int *ticksp) 1655 { 1656 struct namecache_ts *ncp_ts; 1657 struct namecache *ncp; 1658 struct mtx *dvlp; 1659 enum vgetstate vs; 1660 int error, ltype; 1661 bool whiteout; 1662 1663 MPASS((cnp->cn_flags & ISDOTDOT) != 0); 1664 1665 if ((cnp->cn_flags & MAKEENTRY) == 0) { 1666 cache_remove_cnp(dvp, cnp); 1667 return (0); 1668 } 1669 1670 counter_u64_add(dotdothits, 1); 1671 retry: 1672 dvlp = VP2VNODELOCK(dvp); 1673 mtx_lock(dvlp); 1674 ncp = dvp->v_cache_dd; 1675 if (ncp == NULL) { 1676 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, "..", NULL); 1677 mtx_unlock(dvlp); 1678 return (0); 1679 } 1680 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1681 if (ncp->nc_flag & NCF_NEGATIVE) 1682 *vpp = NULL; 1683 else 1684 *vpp = ncp->nc_vp; 1685 } else 1686 *vpp = ncp->nc_dvp; 1687 if (*vpp == NULL) 1688 goto negative_success; 1689 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp); 1690 cache_out_ts(ncp, tsp, ticksp); 1691 if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) == 1692 NCF_DTS && tsp != NULL) { 1693 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 1694 *tsp = ncp_ts->nc_dotdottime; 1695 } 1696 1697 MPASS(dvp != *vpp); 1698 ltype = VOP_ISLOCKED(dvp); 1699 VOP_UNLOCK(dvp); 1700 vs = vget_prep(*vpp); 1701 mtx_unlock(dvlp); 1702 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1703 vn_lock(dvp, ltype | LK_RETRY); 1704 if (VN_IS_DOOMED(dvp)) { 1705 if (error == 0) 1706 vput(*vpp); 1707 *vpp = NULL; 1708 return (ENOENT); 1709 } 1710 if (error) { 1711 *vpp = NULL; 1712 goto retry; 1713 } 1714 return (-1); 1715 negative_success: 1716 if (__predict_false(cnp->cn_nameiop == CREATE)) { 1717 if (cnp->cn_flags & ISLASTCN) { 1718 counter_u64_add(numnegzaps, 1); 1719 cache_zap_negative_locked_vnode_kl(ncp, dvp); 1720 mtx_unlock(dvlp); 1721 cache_free(ncp); 1722 return (0); 1723 } 1724 } 1725 1726 whiteout = (ncp->nc_flag & NCF_WHITE); 1727 cache_out_ts(ncp, tsp, ticksp); 1728 if (cache_neg_hit_prep(ncp)) 1729 cache_neg_promote(ncp); 1730 else 1731 cache_neg_hit_finish(ncp); 1732 mtx_unlock(dvlp); 1733 if (whiteout) 1734 cnp->cn_flags |= ISWHITEOUT; 1735 return (ENOENT); 1736 } 1737 1738 /** 1739 * Lookup a name in the name cache 1740 * 1741 * # Arguments 1742 * 1743 * - dvp: Parent directory in which to search. 1744 * - vpp: Return argument. Will contain desired vnode on cache hit. 1745 * - cnp: Parameters of the name search. The most interesting bits of 1746 * the cn_flags field have the following meanings: 1747 * - MAKEENTRY: If clear, free an entry from the cache rather than look 1748 * it up. 1749 * - ISDOTDOT: Must be set if and only if cn_nameptr == ".." 1750 * - tsp: Return storage for cache timestamp. On a successful (positive 1751 * or negative) lookup, tsp will be filled with any timespec that 1752 * was stored when this cache entry was created. However, it will 1753 * be clear for "." entries. 1754 * - ticks: Return storage for alternate cache timestamp. On a successful 1755 * (positive or negative) lookup, it will contain the ticks value 1756 * that was current when the cache entry was created, unless cnp 1757 * was ".". 1758 * 1759 * Either both tsp and ticks have to be provided or neither of them. 1760 * 1761 * # Returns 1762 * 1763 * - -1: A positive cache hit. vpp will contain the desired vnode. 1764 * - ENOENT: A negative cache hit, or dvp was recycled out from under us due 1765 * to a forced unmount. vpp will not be modified. If the entry 1766 * is a whiteout, then the ISWHITEOUT flag will be set in 1767 * cnp->cn_flags. 1768 * - 0: A cache miss. vpp will not be modified. 1769 * 1770 * # Locking 1771 * 1772 * On a cache hit, vpp will be returned locked and ref'd. If we're looking up 1773 * .., dvp is unlocked. If we're looking up . an extra ref is taken, but the 1774 * lock is not recursively acquired. 1775 */ 1776 static int __noinline 1777 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1778 struct timespec *tsp, int *ticksp) 1779 { 1780 struct namecache *ncp; 1781 struct mtx *blp; 1782 uint32_t hash; 1783 enum vgetstate vs; 1784 int error; 1785 bool whiteout; 1786 1787 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1788 MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0); 1789 1790 retry: 1791 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1792 blp = HASH2BUCKETLOCK(hash); 1793 mtx_lock(blp); 1794 1795 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1796 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1797 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1798 break; 1799 } 1800 1801 if (__predict_false(ncp == NULL)) { 1802 mtx_unlock(blp); 1803 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr, 1804 NULL); 1805 counter_u64_add(nummiss, 1); 1806 return (0); 1807 } 1808 1809 if (ncp->nc_flag & NCF_NEGATIVE) 1810 goto negative_success; 1811 1812 counter_u64_add(numposhits, 1); 1813 *vpp = ncp->nc_vp; 1814 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1815 cache_out_ts(ncp, tsp, ticksp); 1816 MPASS(dvp != *vpp); 1817 vs = vget_prep(*vpp); 1818 mtx_unlock(blp); 1819 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1820 if (error) { 1821 *vpp = NULL; 1822 goto retry; 1823 } 1824 return (-1); 1825 negative_success: 1826 /* 1827 * We don't get here with regular lookup apart from corner cases. 1828 */ 1829 if (__predict_true(cnp->cn_nameiop == CREATE)) { 1830 if (cnp->cn_flags & ISLASTCN) { 1831 counter_u64_add(numnegzaps, 1); 1832 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1833 if (__predict_false(error != 0)) { 1834 zap_bucket_fail2++; 1835 goto retry; 1836 } 1837 cache_free(ncp); 1838 return (0); 1839 } 1840 } 1841 1842 whiteout = (ncp->nc_flag & NCF_WHITE); 1843 cache_out_ts(ncp, tsp, ticksp); 1844 if (cache_neg_hit_prep(ncp)) 1845 cache_neg_promote(ncp); 1846 else 1847 cache_neg_hit_finish(ncp); 1848 mtx_unlock(blp); 1849 if (whiteout) 1850 cnp->cn_flags |= ISWHITEOUT; 1851 return (ENOENT); 1852 } 1853 1854 int 1855 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1856 struct timespec *tsp, int *ticksp) 1857 { 1858 struct namecache *ncp; 1859 uint32_t hash; 1860 enum vgetstate vs; 1861 int error; 1862 bool whiteout, neg_promote; 1863 u_short nc_flag; 1864 1865 MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL)); 1866 1867 #ifdef DEBUG_CACHE 1868 if (__predict_false(!doingcache)) { 1869 cnp->cn_flags &= ~MAKEENTRY; 1870 return (0); 1871 } 1872 #endif 1873 1874 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 1875 if (cnp->cn_namelen == 1) 1876 return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp)); 1877 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') 1878 return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp)); 1879 } 1880 1881 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1882 1883 if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) { 1884 cache_remove_cnp(dvp, cnp); 1885 return (0); 1886 } 1887 1888 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1889 vfs_smr_enter(); 1890 1891 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1892 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1893 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1894 break; 1895 } 1896 1897 if (__predict_false(ncp == NULL)) { 1898 vfs_smr_exit(); 1899 SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr, 1900 NULL); 1901 counter_u64_add(nummiss, 1); 1902 return (0); 1903 } 1904 1905 nc_flag = atomic_load_char(&ncp->nc_flag); 1906 if (nc_flag & NCF_NEGATIVE) 1907 goto negative_success; 1908 1909 counter_u64_add(numposhits, 1); 1910 *vpp = ncp->nc_vp; 1911 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1912 cache_out_ts(ncp, tsp, ticksp); 1913 MPASS(dvp != *vpp); 1914 if (!cache_ncp_canuse(ncp)) { 1915 vfs_smr_exit(); 1916 *vpp = NULL; 1917 goto out_fallback; 1918 } 1919 vs = vget_prep_smr(*vpp); 1920 vfs_smr_exit(); 1921 if (__predict_false(vs == VGET_NONE)) { 1922 *vpp = NULL; 1923 goto out_fallback; 1924 } 1925 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1926 if (error) { 1927 *vpp = NULL; 1928 goto out_fallback; 1929 } 1930 return (-1); 1931 negative_success: 1932 if (cnp->cn_nameiop == CREATE) { 1933 if (cnp->cn_flags & ISLASTCN) { 1934 vfs_smr_exit(); 1935 goto out_fallback; 1936 } 1937 } 1938 1939 cache_out_ts(ncp, tsp, ticksp); 1940 whiteout = (ncp->nc_flag & NCF_WHITE); 1941 neg_promote = cache_neg_hit_prep(ncp); 1942 if (!cache_ncp_canuse(ncp)) { 1943 cache_neg_hit_abort(ncp); 1944 vfs_smr_exit(); 1945 goto out_fallback; 1946 } 1947 if (neg_promote) { 1948 vfs_smr_exit(); 1949 if (!cache_neg_promote_cond(dvp, cnp, ncp, hash)) 1950 goto out_fallback; 1951 } else { 1952 cache_neg_hit_finish(ncp); 1953 vfs_smr_exit(); 1954 } 1955 if (whiteout) 1956 cnp->cn_flags |= ISWHITEOUT; 1957 return (ENOENT); 1958 out_fallback: 1959 return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp)); 1960 } 1961 1962 struct celockstate { 1963 struct mtx *vlp[3]; 1964 struct mtx *blp[2]; 1965 }; 1966 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3)); 1967 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2)); 1968 1969 static inline void 1970 cache_celockstate_init(struct celockstate *cel) 1971 { 1972 1973 bzero(cel, sizeof(*cel)); 1974 } 1975 1976 static void 1977 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, 1978 struct vnode *dvp) 1979 { 1980 struct mtx *vlp1, *vlp2; 1981 1982 MPASS(cel->vlp[0] == NULL); 1983 MPASS(cel->vlp[1] == NULL); 1984 MPASS(cel->vlp[2] == NULL); 1985 1986 MPASS(vp != NULL || dvp != NULL); 1987 1988 vlp1 = VP2VNODELOCK(vp); 1989 vlp2 = VP2VNODELOCK(dvp); 1990 cache_sort_vnodes(&vlp1, &vlp2); 1991 1992 if (vlp1 != NULL) { 1993 mtx_lock(vlp1); 1994 cel->vlp[0] = vlp1; 1995 } 1996 mtx_lock(vlp2); 1997 cel->vlp[1] = vlp2; 1998 } 1999 2000 static void 2001 cache_unlock_vnodes_cel(struct celockstate *cel) 2002 { 2003 2004 MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL); 2005 2006 if (cel->vlp[0] != NULL) 2007 mtx_unlock(cel->vlp[0]); 2008 if (cel->vlp[1] != NULL) 2009 mtx_unlock(cel->vlp[1]); 2010 if (cel->vlp[2] != NULL) 2011 mtx_unlock(cel->vlp[2]); 2012 } 2013 2014 static bool 2015 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp) 2016 { 2017 struct mtx *vlp; 2018 bool ret; 2019 2020 cache_assert_vlp_locked(cel->vlp[0]); 2021 cache_assert_vlp_locked(cel->vlp[1]); 2022 MPASS(cel->vlp[2] == NULL); 2023 2024 MPASS(vp != NULL); 2025 vlp = VP2VNODELOCK(vp); 2026 2027 ret = true; 2028 if (vlp >= cel->vlp[1]) { 2029 mtx_lock(vlp); 2030 } else { 2031 if (mtx_trylock(vlp)) 2032 goto out; 2033 cache_lock_vnodes_cel_3_failures++; 2034 cache_unlock_vnodes_cel(cel); 2035 if (vlp < cel->vlp[0]) { 2036 mtx_lock(vlp); 2037 mtx_lock(cel->vlp[0]); 2038 mtx_lock(cel->vlp[1]); 2039 } else { 2040 if (cel->vlp[0] != NULL) 2041 mtx_lock(cel->vlp[0]); 2042 mtx_lock(vlp); 2043 mtx_lock(cel->vlp[1]); 2044 } 2045 ret = false; 2046 } 2047 out: 2048 cel->vlp[2] = vlp; 2049 return (ret); 2050 } 2051 2052 static void 2053 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, 2054 struct mtx *blp2) 2055 { 2056 2057 MPASS(cel->blp[0] == NULL); 2058 MPASS(cel->blp[1] == NULL); 2059 2060 cache_sort_vnodes(&blp1, &blp2); 2061 2062 if (blp1 != NULL) { 2063 mtx_lock(blp1); 2064 cel->blp[0] = blp1; 2065 } 2066 mtx_lock(blp2); 2067 cel->blp[1] = blp2; 2068 } 2069 2070 static void 2071 cache_unlock_buckets_cel(struct celockstate *cel) 2072 { 2073 2074 if (cel->blp[0] != NULL) 2075 mtx_unlock(cel->blp[0]); 2076 mtx_unlock(cel->blp[1]); 2077 } 2078 2079 /* 2080 * Lock part of the cache affected by the insertion. 2081 * 2082 * This means vnodelocks for dvp, vp and the relevant bucketlock. 2083 * However, insertion can result in removal of an old entry. In this 2084 * case we have an additional vnode and bucketlock pair to lock. 2085 * 2086 * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while 2087 * preserving the locking order (smaller address first). 2088 */ 2089 static void 2090 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2091 uint32_t hash) 2092 { 2093 struct namecache *ncp; 2094 struct mtx *blps[2]; 2095 2096 blps[0] = HASH2BUCKETLOCK(hash); 2097 for (;;) { 2098 blps[1] = NULL; 2099 cache_lock_vnodes_cel(cel, dvp, vp); 2100 if (vp == NULL || vp->v_type != VDIR) 2101 break; 2102 ncp = vp->v_cache_dd; 2103 if (ncp == NULL) 2104 break; 2105 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 2106 break; 2107 MPASS(ncp->nc_dvp == vp); 2108 blps[1] = NCP2BUCKETLOCK(ncp); 2109 if (ncp->nc_flag & NCF_NEGATIVE) 2110 break; 2111 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2112 break; 2113 /* 2114 * All vnodes got re-locked. Re-validate the state and if 2115 * nothing changed we are done. Otherwise restart. 2116 */ 2117 if (ncp == vp->v_cache_dd && 2118 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2119 blps[1] == NCP2BUCKETLOCK(ncp) && 2120 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2121 break; 2122 cache_unlock_vnodes_cel(cel); 2123 cel->vlp[0] = NULL; 2124 cel->vlp[1] = NULL; 2125 cel->vlp[2] = NULL; 2126 } 2127 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2128 } 2129 2130 static void 2131 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2132 uint32_t hash) 2133 { 2134 struct namecache *ncp; 2135 struct mtx *blps[2]; 2136 2137 blps[0] = HASH2BUCKETLOCK(hash); 2138 for (;;) { 2139 blps[1] = NULL; 2140 cache_lock_vnodes_cel(cel, dvp, vp); 2141 ncp = dvp->v_cache_dd; 2142 if (ncp == NULL) 2143 break; 2144 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 2145 break; 2146 MPASS(ncp->nc_dvp == dvp); 2147 blps[1] = NCP2BUCKETLOCK(ncp); 2148 if (ncp->nc_flag & NCF_NEGATIVE) 2149 break; 2150 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2151 break; 2152 if (ncp == dvp->v_cache_dd && 2153 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2154 blps[1] == NCP2BUCKETLOCK(ncp) && 2155 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2156 break; 2157 cache_unlock_vnodes_cel(cel); 2158 cel->vlp[0] = NULL; 2159 cel->vlp[1] = NULL; 2160 cel->vlp[2] = NULL; 2161 } 2162 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2163 } 2164 2165 static void 2166 cache_enter_unlock(struct celockstate *cel) 2167 { 2168 2169 cache_unlock_buckets_cel(cel); 2170 cache_unlock_vnodes_cel(cel); 2171 } 2172 2173 static void __noinline 2174 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, 2175 struct componentname *cnp) 2176 { 2177 struct celockstate cel; 2178 struct namecache *ncp; 2179 uint32_t hash; 2180 int len; 2181 2182 if (dvp->v_cache_dd == NULL) 2183 return; 2184 len = cnp->cn_namelen; 2185 cache_celockstate_init(&cel); 2186 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2187 cache_enter_lock_dd(&cel, dvp, vp, hash); 2188 vn_seqc_write_begin(dvp); 2189 ncp = dvp->v_cache_dd; 2190 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) { 2191 KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent")); 2192 cache_zap_locked(ncp); 2193 } else { 2194 ncp = NULL; 2195 } 2196 dvp->v_cache_dd = NULL; 2197 vn_seqc_write_end(dvp); 2198 cache_enter_unlock(&cel); 2199 if (ncp != NULL) 2200 cache_free(ncp); 2201 } 2202 2203 /* 2204 * Add an entry to the cache. 2205 */ 2206 void 2207 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2208 struct timespec *tsp, struct timespec *dtsp) 2209 { 2210 struct celockstate cel; 2211 struct namecache *ncp, *n2, *ndd; 2212 struct namecache_ts *ncp_ts; 2213 struct nchashhead *ncpp; 2214 uint32_t hash; 2215 int flag; 2216 int len; 2217 2218 VNPASS(dvp != vp, dvp); 2219 VNPASS(!VN_IS_DOOMED(dvp), dvp); 2220 VNPASS(dvp->v_type != VNON, dvp); 2221 if (vp != NULL) { 2222 VNPASS(!VN_IS_DOOMED(vp), vp); 2223 VNPASS(vp->v_type != VNON, vp); 2224 } 2225 2226 #ifdef DEBUG_CACHE 2227 if (__predict_false(!doingcache)) 2228 return; 2229 #endif 2230 2231 flag = 0; 2232 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2233 if (cnp->cn_namelen == 1) 2234 return; 2235 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 2236 cache_enter_dotdot_prep(dvp, vp, cnp); 2237 flag = NCF_ISDOTDOT; 2238 } 2239 } 2240 2241 ncp = cache_alloc(cnp->cn_namelen, tsp != NULL); 2242 if (ncp == NULL) 2243 return; 2244 2245 cache_celockstate_init(&cel); 2246 ndd = NULL; 2247 ncp_ts = NULL; 2248 2249 /* 2250 * Calculate the hash key and setup as much of the new 2251 * namecache entry as possible before acquiring the lock. 2252 */ 2253 ncp->nc_flag = flag | NCF_WIP; 2254 ncp->nc_vp = vp; 2255 if (vp == NULL) 2256 cache_neg_init(ncp); 2257 ncp->nc_dvp = dvp; 2258 if (tsp != NULL) { 2259 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 2260 ncp_ts->nc_time = *tsp; 2261 ncp_ts->nc_ticks = ticks; 2262 ncp_ts->nc_nc.nc_flag |= NCF_TS; 2263 if (dtsp != NULL) { 2264 ncp_ts->nc_dotdottime = *dtsp; 2265 ncp_ts->nc_nc.nc_flag |= NCF_DTS; 2266 } 2267 } 2268 len = ncp->nc_nlen = cnp->cn_namelen; 2269 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2270 memcpy(ncp->nc_name, cnp->cn_nameptr, len); 2271 ncp->nc_name[len] = '\0'; 2272 cache_enter_lock(&cel, dvp, vp, hash); 2273 2274 /* 2275 * See if this vnode or negative entry is already in the cache 2276 * with this name. This can happen with concurrent lookups of 2277 * the same path name. 2278 */ 2279 ncpp = NCHHASH(hash); 2280 CK_SLIST_FOREACH(n2, ncpp, nc_hash) { 2281 if (n2->nc_dvp == dvp && 2282 n2->nc_nlen == cnp->cn_namelen && 2283 !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) { 2284 MPASS(cache_ncp_canuse(n2)); 2285 if ((n2->nc_flag & NCF_NEGATIVE) != 0) 2286 KASSERT(vp == NULL, 2287 ("%s: found entry pointing to a different vnode (%p != %p)", 2288 __func__, NULL, vp)); 2289 else 2290 KASSERT(n2->nc_vp == vp, 2291 ("%s: found entry pointing to a different vnode (%p != %p)", 2292 __func__, n2->nc_vp, vp)); 2293 /* 2294 * Entries are supposed to be immutable unless in the 2295 * process of getting destroyed. Accommodating for 2296 * changing timestamps is possible but not worth it. 2297 * This should be harmless in terms of correctness, in 2298 * the worst case resulting in an earlier expiration. 2299 * Alternatively, the found entry can be replaced 2300 * altogether. 2301 */ 2302 MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS))); 2303 #if 0 2304 if (tsp != NULL) { 2305 KASSERT((n2->nc_flag & NCF_TS) != 0, 2306 ("no NCF_TS")); 2307 n2_ts = __containerof(n2, struct namecache_ts, nc_nc); 2308 n2_ts->nc_time = ncp_ts->nc_time; 2309 n2_ts->nc_ticks = ncp_ts->nc_ticks; 2310 if (dtsp != NULL) { 2311 n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime; 2312 n2_ts->nc_nc.nc_flag |= NCF_DTS; 2313 } 2314 } 2315 #endif 2316 SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name, 2317 vp); 2318 goto out_unlock_free; 2319 } 2320 } 2321 2322 if (flag == NCF_ISDOTDOT) { 2323 /* 2324 * See if we are trying to add .. entry, but some other lookup 2325 * has populated v_cache_dd pointer already. 2326 */ 2327 if (dvp->v_cache_dd != NULL) 2328 goto out_unlock_free; 2329 KASSERT(vp == NULL || vp->v_type == VDIR, 2330 ("wrong vnode type %p", vp)); 2331 vn_seqc_write_begin(dvp); 2332 dvp->v_cache_dd = ncp; 2333 vn_seqc_write_end(dvp); 2334 } 2335 2336 if (vp != NULL) { 2337 if (flag != NCF_ISDOTDOT) { 2338 /* 2339 * For this case, the cache entry maps both the 2340 * directory name in it and the name ".." for the 2341 * directory's parent. 2342 */ 2343 vn_seqc_write_begin(vp); 2344 if ((ndd = vp->v_cache_dd) != NULL) { 2345 if ((ndd->nc_flag & NCF_ISDOTDOT) != 0) 2346 cache_zap_locked(ndd); 2347 else 2348 ndd = NULL; 2349 } 2350 vp->v_cache_dd = ncp; 2351 vn_seqc_write_end(vp); 2352 } else if (vp->v_type != VDIR) { 2353 if (vp->v_cache_dd != NULL) { 2354 vn_seqc_write_begin(vp); 2355 vp->v_cache_dd = NULL; 2356 vn_seqc_write_end(vp); 2357 } 2358 } 2359 } 2360 2361 if (flag != NCF_ISDOTDOT) { 2362 if (LIST_EMPTY(&dvp->v_cache_src)) { 2363 cache_hold_vnode(dvp); 2364 } 2365 LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src); 2366 } 2367 2368 /* 2369 * If the entry is "negative", we place it into the 2370 * "negative" cache queue, otherwise, we place it into the 2371 * destination vnode's cache entries queue. 2372 */ 2373 if (vp != NULL) { 2374 TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst); 2375 SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name, 2376 vp); 2377 } else { 2378 if (cnp->cn_flags & ISWHITEOUT) 2379 ncp->nc_flag |= NCF_WHITE; 2380 cache_neg_insert(ncp); 2381 SDT_PROBE2(vfs, namecache, enter_negative, done, dvp, 2382 ncp->nc_name); 2383 } 2384 2385 /* 2386 * Insert the new namecache entry into the appropriate chain 2387 * within the cache entries table. 2388 */ 2389 CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash); 2390 2391 atomic_thread_fence_rel(); 2392 /* 2393 * Mark the entry as fully constructed. 2394 * It is immutable past this point until its removal. 2395 */ 2396 atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP); 2397 2398 cache_enter_unlock(&cel); 2399 if (ndd != NULL) 2400 cache_free(ndd); 2401 return; 2402 out_unlock_free: 2403 cache_enter_unlock(&cel); 2404 cache_free(ncp); 2405 return; 2406 } 2407 2408 static u_int 2409 cache_roundup_2(u_int val) 2410 { 2411 u_int res; 2412 2413 for (res = 1; res <= val; res <<= 1) 2414 continue; 2415 2416 return (res); 2417 } 2418 2419 static struct nchashhead * 2420 nchinittbl(u_long elements, u_long *hashmask) 2421 { 2422 struct nchashhead *hashtbl; 2423 u_long hashsize, i; 2424 2425 hashsize = cache_roundup_2(elements) / 2; 2426 2427 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK); 2428 for (i = 0; i < hashsize; i++) 2429 CK_SLIST_INIT(&hashtbl[i]); 2430 *hashmask = hashsize - 1; 2431 return (hashtbl); 2432 } 2433 2434 static void 2435 ncfreetbl(struct nchashhead *hashtbl) 2436 { 2437 2438 free(hashtbl, M_VFSCACHE); 2439 } 2440 2441 /* 2442 * Name cache initialization, from vfs_init() when we are booting 2443 */ 2444 static void 2445 nchinit(void *dummy __unused) 2446 { 2447 u_int i; 2448 2449 cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE, 2450 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2451 cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE, 2452 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2453 cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE, 2454 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2455 cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE, 2456 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2457 2458 VFS_SMR_ZONE_SET(cache_zone_small); 2459 VFS_SMR_ZONE_SET(cache_zone_small_ts); 2460 VFS_SMR_ZONE_SET(cache_zone_large); 2461 VFS_SMR_ZONE_SET(cache_zone_large_ts); 2462 2463 ncsize = desiredvnodes * ncsizefactor; 2464 cache_recalc_neg_min(ncnegminpct); 2465 nchashtbl = nchinittbl(desiredvnodes * 2, &nchash); 2466 ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1; 2467 if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */ 2468 ncbuckethash = 7; 2469 if (ncbuckethash > nchash) 2470 ncbuckethash = nchash; 2471 bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE, 2472 M_WAITOK | M_ZERO); 2473 for (i = 0; i < numbucketlocks; i++) 2474 mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE); 2475 ncvnodehash = ncbuckethash; 2476 vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE, 2477 M_WAITOK | M_ZERO); 2478 for (i = 0; i < numvnodelocks; i++) 2479 mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE); 2480 2481 for (i = 0; i < numneglists; i++) { 2482 mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF); 2483 mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF); 2484 TAILQ_INIT(&neglists[i].nl_list); 2485 TAILQ_INIT(&neglists[i].nl_hotlist); 2486 } 2487 } 2488 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL); 2489 2490 void 2491 cache_vnode_init(struct vnode *vp) 2492 { 2493 2494 LIST_INIT(&vp->v_cache_src); 2495 TAILQ_INIT(&vp->v_cache_dst); 2496 vp->v_cache_dd = NULL; 2497 cache_prehash(vp); 2498 } 2499 2500 void 2501 cache_changesize(u_long newmaxvnodes) 2502 { 2503 struct nchashhead *new_nchashtbl, *old_nchashtbl; 2504 u_long new_nchash, old_nchash; 2505 struct namecache *ncp; 2506 uint32_t hash; 2507 u_long newncsize; 2508 int i; 2509 2510 newncsize = newmaxvnodes * ncsizefactor; 2511 newmaxvnodes = cache_roundup_2(newmaxvnodes * 2); 2512 if (newmaxvnodes < numbucketlocks) 2513 newmaxvnodes = numbucketlocks; 2514 2515 new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash); 2516 /* If same hash table size, nothing to do */ 2517 if (nchash == new_nchash) { 2518 ncfreetbl(new_nchashtbl); 2519 return; 2520 } 2521 /* 2522 * Move everything from the old hash table to the new table. 2523 * None of the namecache entries in the table can be removed 2524 * because to do so, they have to be removed from the hash table. 2525 */ 2526 cache_lock_all_vnodes(); 2527 cache_lock_all_buckets(); 2528 old_nchashtbl = nchashtbl; 2529 old_nchash = nchash; 2530 nchashtbl = new_nchashtbl; 2531 nchash = new_nchash; 2532 for (i = 0; i <= old_nchash; i++) { 2533 while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) { 2534 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, 2535 ncp->nc_dvp); 2536 CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash); 2537 CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash); 2538 } 2539 } 2540 ncsize = newncsize; 2541 cache_recalc_neg_min(ncnegminpct); 2542 cache_unlock_all_buckets(); 2543 cache_unlock_all_vnodes(); 2544 ncfreetbl(old_nchashtbl); 2545 } 2546 2547 /* 2548 * Invalidate all entries from and to a particular vnode. 2549 */ 2550 static void 2551 cache_purge_impl(struct vnode *vp) 2552 { 2553 struct cache_freebatch batch; 2554 struct namecache *ncp; 2555 struct mtx *vlp, *vlp2; 2556 2557 TAILQ_INIT(&batch); 2558 vlp = VP2VNODELOCK(vp); 2559 vlp2 = NULL; 2560 mtx_lock(vlp); 2561 retry: 2562 while (!LIST_EMPTY(&vp->v_cache_src)) { 2563 ncp = LIST_FIRST(&vp->v_cache_src); 2564 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2565 goto retry; 2566 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2567 } 2568 while (!TAILQ_EMPTY(&vp->v_cache_dst)) { 2569 ncp = TAILQ_FIRST(&vp->v_cache_dst); 2570 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2571 goto retry; 2572 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2573 } 2574 ncp = vp->v_cache_dd; 2575 if (ncp != NULL) { 2576 KASSERT(ncp->nc_flag & NCF_ISDOTDOT, 2577 ("lost dotdot link")); 2578 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2579 goto retry; 2580 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2581 } 2582 KASSERT(vp->v_cache_dd == NULL, ("incomplete purge")); 2583 mtx_unlock(vlp); 2584 if (vlp2 != NULL) 2585 mtx_unlock(vlp2); 2586 cache_free_batch(&batch); 2587 } 2588 2589 /* 2590 * Opportunistic check to see if there is anything to do. 2591 */ 2592 static bool 2593 cache_has_entries(struct vnode *vp) 2594 { 2595 2596 if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) && 2597 vp->v_cache_dd == NULL) 2598 return (false); 2599 return (true); 2600 } 2601 2602 void 2603 cache_purge(struct vnode *vp) 2604 { 2605 2606 SDT_PROBE1(vfs, namecache, purge, done, vp); 2607 if (!cache_has_entries(vp)) 2608 return; 2609 cache_purge_impl(vp); 2610 } 2611 2612 /* 2613 * Only to be used by vgone. 2614 */ 2615 void 2616 cache_purge_vgone(struct vnode *vp) 2617 { 2618 struct mtx *vlp; 2619 2620 VNPASS(VN_IS_DOOMED(vp), vp); 2621 if (cache_has_entries(vp)) { 2622 cache_purge_impl(vp); 2623 return; 2624 } 2625 2626 /* 2627 * Serialize against a potential thread doing cache_purge. 2628 */ 2629 vlp = VP2VNODELOCK(vp); 2630 mtx_wait_unlocked(vlp); 2631 if (cache_has_entries(vp)) { 2632 cache_purge_impl(vp); 2633 return; 2634 } 2635 return; 2636 } 2637 2638 /* 2639 * Invalidate all negative entries for a particular directory vnode. 2640 */ 2641 void 2642 cache_purge_negative(struct vnode *vp) 2643 { 2644 struct cache_freebatch batch; 2645 struct namecache *ncp, *nnp; 2646 struct mtx *vlp; 2647 2648 SDT_PROBE1(vfs, namecache, purge_negative, done, vp); 2649 if (LIST_EMPTY(&vp->v_cache_src)) 2650 return; 2651 TAILQ_INIT(&batch); 2652 vlp = VP2VNODELOCK(vp); 2653 mtx_lock(vlp); 2654 LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) { 2655 if (!(ncp->nc_flag & NCF_NEGATIVE)) 2656 continue; 2657 cache_zap_negative_locked_vnode_kl(ncp, vp); 2658 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2659 } 2660 mtx_unlock(vlp); 2661 cache_free_batch(&batch); 2662 } 2663 2664 /* 2665 * Entry points for modifying VOP operations. 2666 */ 2667 void 2668 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, 2669 struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) 2670 { 2671 2672 ASSERT_VOP_IN_SEQC(fdvp); 2673 ASSERT_VOP_IN_SEQC(fvp); 2674 ASSERT_VOP_IN_SEQC(tdvp); 2675 if (tvp != NULL) 2676 ASSERT_VOP_IN_SEQC(tvp); 2677 2678 cache_purge(fvp); 2679 if (tvp != NULL) { 2680 cache_purge(tvp); 2681 KASSERT(!cache_remove_cnp(tdvp, tcnp), 2682 ("%s: lingering negative entry", __func__)); 2683 } else { 2684 cache_remove_cnp(tdvp, tcnp); 2685 } 2686 } 2687 2688 void 2689 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) 2690 { 2691 2692 ASSERT_VOP_IN_SEQC(dvp); 2693 ASSERT_VOP_IN_SEQC(vp); 2694 cache_purge(vp); 2695 } 2696 2697 #ifdef INVARIANTS 2698 /* 2699 * Validate that if an entry exists it matches. 2700 */ 2701 void 2702 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2703 { 2704 struct namecache *ncp; 2705 struct mtx *blp; 2706 uint32_t hash; 2707 2708 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2709 if (CK_SLIST_EMPTY(NCHHASH(hash))) 2710 return; 2711 blp = HASH2BUCKETLOCK(hash); 2712 mtx_lock(blp); 2713 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2714 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2715 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) { 2716 if (ncp->nc_vp != vp) 2717 panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p vp %p\n", 2718 __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp, 2719 ncp->nc_vp); 2720 } 2721 } 2722 mtx_unlock(blp); 2723 } 2724 #endif 2725 2726 /* 2727 * Flush all entries referencing a particular filesystem. 2728 */ 2729 void 2730 cache_purgevfs(struct mount *mp) 2731 { 2732 struct vnode *vp, *mvp; 2733 2734 SDT_PROBE1(vfs, namecache, purgevfs, done, mp); 2735 /* 2736 * Somewhat wasteful iteration over all vnodes. Would be better to 2737 * support filtering and avoid the interlock to begin with. 2738 */ 2739 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 2740 if (!cache_has_entries(vp)) { 2741 VI_UNLOCK(vp); 2742 continue; 2743 } 2744 vholdl(vp); 2745 VI_UNLOCK(vp); 2746 cache_purge(vp); 2747 vdrop(vp); 2748 } 2749 } 2750 2751 /* 2752 * Perform canonical checks and cache lookup and pass on to filesystem 2753 * through the vop_cachedlookup only if needed. 2754 */ 2755 2756 int 2757 vfs_cache_lookup(struct vop_lookup_args *ap) 2758 { 2759 struct vnode *dvp; 2760 int error; 2761 struct vnode **vpp = ap->a_vpp; 2762 struct componentname *cnp = ap->a_cnp; 2763 int flags = cnp->cn_flags; 2764 2765 *vpp = NULL; 2766 dvp = ap->a_dvp; 2767 2768 if (dvp->v_type != VDIR) 2769 return (ENOTDIR); 2770 2771 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 2772 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 2773 return (EROFS); 2774 2775 error = vn_dir_check_exec(dvp, cnp); 2776 if (error != 0) 2777 return (error); 2778 2779 error = cache_lookup(dvp, vpp, cnp, NULL, NULL); 2780 if (error == 0) 2781 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp)); 2782 if (error == -1) 2783 return (0); 2784 return (error); 2785 } 2786 2787 /* Implementation of the getcwd syscall. */ 2788 int 2789 sys___getcwd(struct thread *td, struct __getcwd_args *uap) 2790 { 2791 char *buf, *retbuf; 2792 size_t buflen; 2793 int error; 2794 2795 buflen = uap->buflen; 2796 if (__predict_false(buflen < 2)) 2797 return (EINVAL); 2798 if (buflen > MAXPATHLEN) 2799 buflen = MAXPATHLEN; 2800 2801 buf = uma_zalloc(namei_zone, M_WAITOK); 2802 error = vn_getcwd(buf, &retbuf, &buflen); 2803 if (error == 0) 2804 error = copyout(retbuf, uap->buf, buflen); 2805 uma_zfree(namei_zone, buf); 2806 return (error); 2807 } 2808 2809 int 2810 vn_getcwd(char *buf, char **retbuf, size_t *buflen) 2811 { 2812 struct pwd *pwd; 2813 int error; 2814 2815 vfs_smr_enter(); 2816 pwd = pwd_get_smr(); 2817 error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, 2818 buflen, 0); 2819 VFS_SMR_ASSERT_NOT_ENTERED(); 2820 if (error < 0) { 2821 pwd = pwd_hold(curthread); 2822 error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf, 2823 retbuf, buflen); 2824 pwd_drop(pwd); 2825 } 2826 2827 #ifdef KTRACE 2828 if (KTRPOINT(curthread, KTR_NAMEI) && error == 0) 2829 ktrnamei(*retbuf); 2830 #endif 2831 return (error); 2832 } 2833 2834 static int 2835 kern___realpathat(struct thread *td, int fd, const char *path, char *buf, 2836 size_t size, int flags, enum uio_seg pathseg) 2837 { 2838 struct nameidata nd; 2839 char *retbuf, *freebuf; 2840 int error; 2841 2842 if (flags != 0) 2843 return (EINVAL); 2844 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1, 2845 pathseg, path, fd, &cap_fstat_rights, td); 2846 if ((error = namei(&nd)) != 0) 2847 return (error); 2848 error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size); 2849 if (error == 0) { 2850 error = copyout(retbuf, buf, size); 2851 free(freebuf, M_TEMP); 2852 } 2853 NDFREE(&nd, 0); 2854 return (error); 2855 } 2856 2857 int 2858 sys___realpathat(struct thread *td, struct __realpathat_args *uap) 2859 { 2860 2861 return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size, 2862 uap->flags, UIO_USERSPACE)); 2863 } 2864 2865 /* 2866 * Retrieve the full filesystem path that correspond to a vnode from the name 2867 * cache (if available) 2868 */ 2869 int 2870 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf) 2871 { 2872 struct pwd *pwd; 2873 char *buf; 2874 size_t buflen; 2875 int error; 2876 2877 if (__predict_false(vp == NULL)) 2878 return (EINVAL); 2879 2880 buflen = MAXPATHLEN; 2881 buf = malloc(buflen, M_TEMP, M_WAITOK); 2882 vfs_smr_enter(); 2883 pwd = pwd_get_smr(); 2884 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0); 2885 VFS_SMR_ASSERT_NOT_ENTERED(); 2886 if (error < 0) { 2887 pwd = pwd_hold(curthread); 2888 error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen); 2889 pwd_drop(pwd); 2890 } 2891 if (error == 0) 2892 *freebuf = buf; 2893 else 2894 free(buf, M_TEMP); 2895 return (error); 2896 } 2897 2898 /* 2899 * This function is similar to vn_fullpath, but it attempts to lookup the 2900 * pathname relative to the global root mount point. This is required for the 2901 * auditing sub-system, as audited pathnames must be absolute, relative to the 2902 * global root mount point. 2903 */ 2904 int 2905 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf) 2906 { 2907 char *buf; 2908 size_t buflen; 2909 int error; 2910 2911 if (__predict_false(vp == NULL)) 2912 return (EINVAL); 2913 buflen = MAXPATHLEN; 2914 buf = malloc(buflen, M_TEMP, M_WAITOK); 2915 vfs_smr_enter(); 2916 error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0); 2917 VFS_SMR_ASSERT_NOT_ENTERED(); 2918 if (error < 0) { 2919 error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen); 2920 } 2921 if (error == 0) 2922 *freebuf = buf; 2923 else 2924 free(buf, M_TEMP); 2925 return (error); 2926 } 2927 2928 static struct namecache * 2929 vn_dd_from_dst(struct vnode *vp) 2930 { 2931 struct namecache *ncp; 2932 2933 cache_assert_vnode_locked(vp); 2934 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) { 2935 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 2936 return (ncp); 2937 } 2938 return (NULL); 2939 } 2940 2941 int 2942 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen) 2943 { 2944 struct vnode *dvp; 2945 struct namecache *ncp; 2946 struct mtx *vlp; 2947 int error; 2948 2949 vlp = VP2VNODELOCK(*vp); 2950 mtx_lock(vlp); 2951 ncp = (*vp)->v_cache_dd; 2952 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) { 2953 KASSERT(ncp == vn_dd_from_dst(*vp), 2954 ("%s: mismatch for dd entry (%p != %p)", __func__, 2955 ncp, vn_dd_from_dst(*vp))); 2956 } else { 2957 ncp = vn_dd_from_dst(*vp); 2958 } 2959 if (ncp != NULL) { 2960 if (*buflen < ncp->nc_nlen) { 2961 mtx_unlock(vlp); 2962 vrele(*vp); 2963 counter_u64_add(numfullpathfail4, 1); 2964 error = ENOMEM; 2965 SDT_PROBE3(vfs, namecache, fullpath, return, error, 2966 vp, NULL); 2967 return (error); 2968 } 2969 *buflen -= ncp->nc_nlen; 2970 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 2971 SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp, 2972 ncp->nc_name, vp); 2973 dvp = *vp; 2974 *vp = ncp->nc_dvp; 2975 vref(*vp); 2976 mtx_unlock(vlp); 2977 vrele(dvp); 2978 return (0); 2979 } 2980 SDT_PROBE1(vfs, namecache, fullpath, miss, vp); 2981 2982 mtx_unlock(vlp); 2983 vn_lock(*vp, LK_SHARED | LK_RETRY); 2984 error = VOP_VPTOCNP(*vp, &dvp, buf, buflen); 2985 vput(*vp); 2986 if (error) { 2987 counter_u64_add(numfullpathfail2, 1); 2988 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 2989 return (error); 2990 } 2991 2992 *vp = dvp; 2993 if (VN_IS_DOOMED(dvp)) { 2994 /* forced unmount */ 2995 vrele(dvp); 2996 error = ENOENT; 2997 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 2998 return (error); 2999 } 3000 /* 3001 * *vp has its use count incremented still. 3002 */ 3003 3004 return (0); 3005 } 3006 3007 /* 3008 * Resolve a directory to a pathname. 3009 * 3010 * The name of the directory can always be found in the namecache or fetched 3011 * from the filesystem. There is also guaranteed to be only one parent, meaning 3012 * we can just follow vnodes up until we find the root. 3013 * 3014 * The vnode must be referenced. 3015 */ 3016 static int 3017 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3018 size_t *len, size_t addend) 3019 { 3020 #ifdef KDTRACE_HOOKS 3021 struct vnode *startvp = vp; 3022 #endif 3023 struct vnode *vp1; 3024 size_t buflen; 3025 int error; 3026 bool slash_prefixed; 3027 3028 VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp); 3029 VNPASS(vp->v_usecount > 0, vp); 3030 3031 buflen = *len; 3032 3033 slash_prefixed = true; 3034 if (addend == 0) { 3035 MPASS(*len >= 2); 3036 buflen--; 3037 buf[buflen] = '\0'; 3038 slash_prefixed = false; 3039 } 3040 3041 error = 0; 3042 3043 SDT_PROBE1(vfs, namecache, fullpath, entry, vp); 3044 counter_u64_add(numfullpathcalls, 1); 3045 while (vp != rdir && vp != rootvnode) { 3046 /* 3047 * The vp vnode must be already fully constructed, 3048 * since it is either found in namecache or obtained 3049 * from VOP_VPTOCNP(). We may test for VV_ROOT safely 3050 * without obtaining the vnode lock. 3051 */ 3052 if ((vp->v_vflag & VV_ROOT) != 0) { 3053 vn_lock(vp, LK_RETRY | LK_SHARED); 3054 3055 /* 3056 * With the vnode locked, check for races with 3057 * unmount, forced or not. Note that we 3058 * already verified that vp is not equal to 3059 * the root vnode, which means that 3060 * mnt_vnodecovered can be NULL only for the 3061 * case of unmount. 3062 */ 3063 if (VN_IS_DOOMED(vp) || 3064 (vp1 = vp->v_mount->mnt_vnodecovered) == NULL || 3065 vp1->v_mountedhere != vp->v_mount) { 3066 vput(vp); 3067 error = ENOENT; 3068 SDT_PROBE3(vfs, namecache, fullpath, return, 3069 error, vp, NULL); 3070 break; 3071 } 3072 3073 vref(vp1); 3074 vput(vp); 3075 vp = vp1; 3076 continue; 3077 } 3078 if (vp->v_type != VDIR) { 3079 vrele(vp); 3080 counter_u64_add(numfullpathfail1, 1); 3081 error = ENOTDIR; 3082 SDT_PROBE3(vfs, namecache, fullpath, return, 3083 error, vp, NULL); 3084 break; 3085 } 3086 error = vn_vptocnp(&vp, buf, &buflen); 3087 if (error) 3088 break; 3089 if (buflen == 0) { 3090 vrele(vp); 3091 error = ENOMEM; 3092 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3093 startvp, NULL); 3094 break; 3095 } 3096 buf[--buflen] = '/'; 3097 slash_prefixed = true; 3098 } 3099 if (error) 3100 return (error); 3101 if (!slash_prefixed) { 3102 if (buflen == 0) { 3103 vrele(vp); 3104 counter_u64_add(numfullpathfail4, 1); 3105 SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM, 3106 startvp, NULL); 3107 return (ENOMEM); 3108 } 3109 buf[--buflen] = '/'; 3110 } 3111 counter_u64_add(numfullpathfound, 1); 3112 vrele(vp); 3113 3114 *retbuf = buf + buflen; 3115 SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf); 3116 *len -= buflen; 3117 *len += addend; 3118 return (0); 3119 } 3120 3121 /* 3122 * Resolve an arbitrary vnode to a pathname. 3123 * 3124 * Note 2 caveats: 3125 * - hardlinks are not tracked, thus if the vnode is not a directory this can 3126 * resolve to a different path than the one used to find it 3127 * - namecache is not mandatory, meaning names are not guaranteed to be added 3128 * (in which case resolving fails) 3129 */ 3130 static void __inline 3131 cache_rev_failed_impl(int *reason, int line) 3132 { 3133 3134 *reason = line; 3135 } 3136 #define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__) 3137 3138 static int 3139 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 3140 char **retbuf, size_t *buflen, size_t addend) 3141 { 3142 #ifdef KDTRACE_HOOKS 3143 struct vnode *startvp = vp; 3144 #endif 3145 struct vnode *tvp; 3146 struct mount *mp; 3147 struct namecache *ncp; 3148 size_t orig_buflen; 3149 int reason; 3150 int error; 3151 #ifdef KDTRACE_HOOKS 3152 int i; 3153 #endif 3154 seqc_t vp_seqc, tvp_seqc; 3155 u_char nc_flag; 3156 3157 VFS_SMR_ASSERT_ENTERED(); 3158 3159 if (!cache_fast_revlookup) { 3160 vfs_smr_exit(); 3161 return (-1); 3162 } 3163 3164 orig_buflen = *buflen; 3165 3166 if (addend == 0) { 3167 MPASS(*buflen >= 2); 3168 *buflen -= 1; 3169 buf[*buflen] = '\0'; 3170 } 3171 3172 if (vp == rdir || vp == rootvnode) { 3173 if (addend == 0) { 3174 *buflen -= 1; 3175 buf[*buflen] = '/'; 3176 } 3177 goto out_ok; 3178 } 3179 3180 #ifdef KDTRACE_HOOKS 3181 i = 0; 3182 #endif 3183 error = -1; 3184 ncp = NULL; /* for sdt probe down below */ 3185 vp_seqc = vn_seqc_read_any(vp); 3186 if (seqc_in_modify(vp_seqc)) { 3187 cache_rev_failed(&reason); 3188 goto out_abort; 3189 } 3190 3191 for (;;) { 3192 #ifdef KDTRACE_HOOKS 3193 i++; 3194 #endif 3195 if ((vp->v_vflag & VV_ROOT) != 0) { 3196 mp = atomic_load_ptr(&vp->v_mount); 3197 if (mp == NULL) { 3198 cache_rev_failed(&reason); 3199 goto out_abort; 3200 } 3201 tvp = atomic_load_ptr(&mp->mnt_vnodecovered); 3202 tvp_seqc = vn_seqc_read_any(tvp); 3203 if (seqc_in_modify(tvp_seqc)) { 3204 cache_rev_failed(&reason); 3205 goto out_abort; 3206 } 3207 if (!vn_seqc_consistent(vp, vp_seqc)) { 3208 cache_rev_failed(&reason); 3209 goto out_abort; 3210 } 3211 vp = tvp; 3212 vp_seqc = tvp_seqc; 3213 continue; 3214 } 3215 ncp = atomic_load_ptr(&vp->v_cache_dd); 3216 if (ncp == NULL) { 3217 cache_rev_failed(&reason); 3218 goto out_abort; 3219 } 3220 nc_flag = atomic_load_char(&ncp->nc_flag); 3221 if ((nc_flag & NCF_ISDOTDOT) != 0) { 3222 cache_rev_failed(&reason); 3223 goto out_abort; 3224 } 3225 if (!cache_ncp_canuse(ncp)) { 3226 cache_rev_failed(&reason); 3227 goto out_abort; 3228 } 3229 if (ncp->nc_nlen >= *buflen) { 3230 cache_rev_failed(&reason); 3231 error = ENOMEM; 3232 goto out_abort; 3233 } 3234 *buflen -= ncp->nc_nlen; 3235 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3236 *buflen -= 1; 3237 buf[*buflen] = '/'; 3238 tvp = ncp->nc_dvp; 3239 tvp_seqc = vn_seqc_read_any(tvp); 3240 if (seqc_in_modify(tvp_seqc)) { 3241 cache_rev_failed(&reason); 3242 goto out_abort; 3243 } 3244 if (!vn_seqc_consistent(vp, vp_seqc)) { 3245 cache_rev_failed(&reason); 3246 goto out_abort; 3247 } 3248 vp = tvp; 3249 vp_seqc = tvp_seqc; 3250 if (vp == rdir || vp == rootvnode) 3251 break; 3252 } 3253 out_ok: 3254 vfs_smr_exit(); 3255 *retbuf = buf + *buflen; 3256 *buflen = orig_buflen - *buflen + addend; 3257 SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf); 3258 return (0); 3259 3260 out_abort: 3261 *buflen = orig_buflen; 3262 SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i); 3263 vfs_smr_exit(); 3264 return (error); 3265 } 3266 3267 static int 3268 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3269 size_t *buflen) 3270 { 3271 size_t orig_buflen, addend; 3272 int error; 3273 3274 if (*buflen < 2) 3275 return (EINVAL); 3276 3277 orig_buflen = *buflen; 3278 3279 vref(vp); 3280 addend = 0; 3281 if (vp->v_type != VDIR) { 3282 *buflen -= 1; 3283 buf[*buflen] = '\0'; 3284 error = vn_vptocnp(&vp, buf, buflen); 3285 if (error) 3286 return (error); 3287 if (*buflen == 0) { 3288 vrele(vp); 3289 return (ENOMEM); 3290 } 3291 *buflen -= 1; 3292 buf[*buflen] = '/'; 3293 addend = orig_buflen - *buflen; 3294 } 3295 3296 return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend)); 3297 } 3298 3299 /* 3300 * Resolve an arbitrary vnode to a pathname (taking care of hardlinks). 3301 * 3302 * Since the namecache does not track hardlinks, the caller is expected to first 3303 * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei. 3304 * 3305 * Then we have 2 cases: 3306 * - if the found vnode is a directory, the path can be constructed just by 3307 * following names up the chain 3308 * - otherwise we populate the buffer with the saved name and start resolving 3309 * from the parent 3310 */ 3311 static int 3312 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf, 3313 size_t *buflen) 3314 { 3315 char *buf, *tmpbuf; 3316 struct pwd *pwd; 3317 struct componentname *cnp; 3318 struct vnode *vp; 3319 size_t addend; 3320 int error; 3321 enum vtype type; 3322 3323 if (*buflen < 2) 3324 return (EINVAL); 3325 if (*buflen > MAXPATHLEN) 3326 *buflen = MAXPATHLEN; 3327 3328 buf = malloc(*buflen, M_TEMP, M_WAITOK); 3329 3330 addend = 0; 3331 vp = ndp->ni_vp; 3332 /* 3333 * Check for VBAD to work around the vp_crossmp bug in lookup(). 3334 * 3335 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be 3336 * set to mount point's root vnode while ni_dvp will be vp_crossmp. 3337 * If the type is VDIR (like in this very case) we can skip looking 3338 * at ni_dvp in the first place. However, since vnodes get passed here 3339 * unlocked the target may transition to doomed state (type == VBAD) 3340 * before we get to evaluate the condition. If this happens, we will 3341 * populate part of the buffer and descend to vn_fullpath_dir with 3342 * vp == vp_crossmp. Prevent the problem by checking for VBAD. 3343 * 3344 * This should be atomic_load(&vp->v_type) but it is illegal to take 3345 * an address of a bit field, even if said field is sized to char. 3346 * Work around the problem by reading the value into a full-sized enum 3347 * and then re-reading it with atomic_load which will still prevent 3348 * the compiler from re-reading down the road. 3349 */ 3350 type = vp->v_type; 3351 type = atomic_load_int(&type); 3352 if (type == VBAD) { 3353 error = ENOENT; 3354 goto out_bad; 3355 } 3356 if (type != VDIR) { 3357 cnp = &ndp->ni_cnd; 3358 addend = cnp->cn_namelen + 2; 3359 if (*buflen < addend) { 3360 error = ENOMEM; 3361 goto out_bad; 3362 } 3363 *buflen -= addend; 3364 tmpbuf = buf + *buflen; 3365 tmpbuf[0] = '/'; 3366 memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen); 3367 tmpbuf[addend - 1] = '\0'; 3368 vp = ndp->ni_dvp; 3369 } 3370 3371 vfs_smr_enter(); 3372 pwd = pwd_get_smr(); 3373 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3374 addend); 3375 VFS_SMR_ASSERT_NOT_ENTERED(); 3376 if (error < 0) { 3377 pwd = pwd_hold(curthread); 3378 vref(vp); 3379 error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3380 addend); 3381 pwd_drop(pwd); 3382 if (error != 0) 3383 goto out_bad; 3384 } 3385 3386 *freebuf = buf; 3387 3388 return (0); 3389 out_bad: 3390 free(buf, M_TEMP); 3391 return (error); 3392 } 3393 3394 struct vnode * 3395 vn_dir_dd_ino(struct vnode *vp) 3396 { 3397 struct namecache *ncp; 3398 struct vnode *ddvp; 3399 struct mtx *vlp; 3400 enum vgetstate vs; 3401 3402 ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino"); 3403 vlp = VP2VNODELOCK(vp); 3404 mtx_lock(vlp); 3405 TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) { 3406 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) 3407 continue; 3408 ddvp = ncp->nc_dvp; 3409 vs = vget_prep(ddvp); 3410 mtx_unlock(vlp); 3411 if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs)) 3412 return (NULL); 3413 return (ddvp); 3414 } 3415 mtx_unlock(vlp); 3416 return (NULL); 3417 } 3418 3419 int 3420 vn_commname(struct vnode *vp, char *buf, u_int buflen) 3421 { 3422 struct namecache *ncp; 3423 struct mtx *vlp; 3424 int l; 3425 3426 vlp = VP2VNODELOCK(vp); 3427 mtx_lock(vlp); 3428 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) 3429 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3430 break; 3431 if (ncp == NULL) { 3432 mtx_unlock(vlp); 3433 return (ENOENT); 3434 } 3435 l = min(ncp->nc_nlen, buflen - 1); 3436 memcpy(buf, ncp->nc_name, l); 3437 mtx_unlock(vlp); 3438 buf[l] = '\0'; 3439 return (0); 3440 } 3441 3442 /* 3443 * This function updates path string to vnode's full global path 3444 * and checks the size of the new path string against the pathlen argument. 3445 * 3446 * Requires a locked, referenced vnode. 3447 * Vnode is re-locked on success or ENODEV, otherwise unlocked. 3448 * 3449 * If vp is a directory, the call to vn_fullpath_global() always succeeds 3450 * because it falls back to the ".." lookup if the namecache lookup fails. 3451 */ 3452 int 3453 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, 3454 u_int pathlen) 3455 { 3456 struct nameidata nd; 3457 struct vnode *vp1; 3458 char *rpath, *fbuf; 3459 int error; 3460 3461 ASSERT_VOP_ELOCKED(vp, __func__); 3462 3463 /* Construct global filesystem path from vp. */ 3464 VOP_UNLOCK(vp); 3465 error = vn_fullpath_global(vp, &rpath, &fbuf); 3466 3467 if (error != 0) { 3468 vrele(vp); 3469 return (error); 3470 } 3471 3472 if (strlen(rpath) >= pathlen) { 3473 vrele(vp); 3474 error = ENAMETOOLONG; 3475 goto out; 3476 } 3477 3478 /* 3479 * Re-lookup the vnode by path to detect a possible rename. 3480 * As a side effect, the vnode is relocked. 3481 * If vnode was renamed, return ENOENT. 3482 */ 3483 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 3484 UIO_SYSSPACE, path, td); 3485 error = namei(&nd); 3486 if (error != 0) { 3487 vrele(vp); 3488 goto out; 3489 } 3490 NDFREE(&nd, NDF_ONLY_PNBUF); 3491 vp1 = nd.ni_vp; 3492 vrele(vp); 3493 if (vp1 == vp) 3494 strcpy(path, rpath); 3495 else { 3496 vput(vp1); 3497 error = ENOENT; 3498 } 3499 3500 out: 3501 free(fbuf, M_TEMP); 3502 return (error); 3503 } 3504 3505 #ifdef DDB 3506 static void 3507 db_print_vpath(struct vnode *vp) 3508 { 3509 3510 while (vp != NULL) { 3511 db_printf("%p: ", vp); 3512 if (vp == rootvnode) { 3513 db_printf("/"); 3514 vp = NULL; 3515 } else { 3516 if (vp->v_vflag & VV_ROOT) { 3517 db_printf("<mount point>"); 3518 vp = vp->v_mount->mnt_vnodecovered; 3519 } else { 3520 struct namecache *ncp; 3521 char *ncn; 3522 int i; 3523 3524 ncp = TAILQ_FIRST(&vp->v_cache_dst); 3525 if (ncp != NULL) { 3526 ncn = ncp->nc_name; 3527 for (i = 0; i < ncp->nc_nlen; i++) 3528 db_printf("%c", *ncn++); 3529 vp = ncp->nc_dvp; 3530 } else { 3531 vp = NULL; 3532 } 3533 } 3534 } 3535 db_printf("\n"); 3536 } 3537 3538 return; 3539 } 3540 3541 DB_SHOW_COMMAND(vpath, db_show_vpath) 3542 { 3543 struct vnode *vp; 3544 3545 if (!have_addr) { 3546 db_printf("usage: show vpath <struct vnode *>\n"); 3547 return; 3548 } 3549 3550 vp = (struct vnode *)addr; 3551 db_print_vpath(vp); 3552 } 3553 3554 #endif 3555 3556 static bool __read_frequently cache_fast_lookup = true; 3557 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_lookup, CTLFLAG_RW, 3558 &cache_fast_lookup, 0, ""); 3559 3560 #define CACHE_FPL_FAILED -2020 3561 3562 static void 3563 cache_fpl_cleanup_cnp(struct componentname *cnp) 3564 { 3565 3566 uma_zfree(namei_zone, cnp->cn_pnbuf); 3567 #ifdef DIAGNOSTIC 3568 cnp->cn_pnbuf = NULL; 3569 cnp->cn_nameptr = NULL; 3570 #endif 3571 } 3572 3573 static void 3574 cache_fpl_handle_root(struct nameidata *ndp, struct vnode **dpp) 3575 { 3576 struct componentname *cnp; 3577 3578 cnp = &ndp->ni_cnd; 3579 while (*(cnp->cn_nameptr) == '/') { 3580 cnp->cn_nameptr++; 3581 ndp->ni_pathlen--; 3582 } 3583 3584 *dpp = ndp->ni_rootdir; 3585 } 3586 3587 /* 3588 * Components of nameidata (or objects it can point to) which may 3589 * need restoring in case fast path lookup fails. 3590 */ 3591 struct nameidata_saved { 3592 long cn_namelen; 3593 char *cn_nameptr; 3594 size_t ni_pathlen; 3595 int cn_flags; 3596 }; 3597 3598 struct cache_fpl { 3599 struct nameidata *ndp; 3600 struct componentname *cnp; 3601 struct pwd *pwd; 3602 struct vnode *dvp; 3603 struct vnode *tvp; 3604 seqc_t dvp_seqc; 3605 seqc_t tvp_seqc; 3606 struct nameidata_saved snd; 3607 int line; 3608 enum cache_fpl_status status:8; 3609 bool in_smr; 3610 bool fsearch; 3611 }; 3612 3613 static void 3614 cache_fpl_checkpoint(struct cache_fpl *fpl, struct nameidata_saved *snd) 3615 { 3616 3617 snd->cn_flags = fpl->ndp->ni_cnd.cn_flags; 3618 snd->cn_namelen = fpl->ndp->ni_cnd.cn_namelen; 3619 snd->cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr; 3620 snd->ni_pathlen = fpl->ndp->ni_pathlen; 3621 } 3622 3623 static void 3624 cache_fpl_restore_partial(struct cache_fpl *fpl, struct nameidata_saved *snd) 3625 { 3626 3627 fpl->ndp->ni_cnd.cn_flags = snd->cn_flags; 3628 fpl->ndp->ni_cnd.cn_namelen = snd->cn_namelen; 3629 fpl->ndp->ni_cnd.cn_nameptr = snd->cn_nameptr; 3630 fpl->ndp->ni_pathlen = snd->ni_pathlen; 3631 } 3632 3633 static void 3634 cache_fpl_restore_abort(struct cache_fpl *fpl, struct nameidata_saved *snd) 3635 { 3636 3637 cache_fpl_restore_partial(fpl, snd); 3638 /* 3639 * It is 0 on entry by API contract. 3640 */ 3641 fpl->ndp->ni_resflags = 0; 3642 } 3643 3644 #ifdef INVARIANTS 3645 #define cache_fpl_smr_assert_entered(fpl) ({ \ 3646 struct cache_fpl *_fpl = (fpl); \ 3647 MPASS(_fpl->in_smr == true); \ 3648 VFS_SMR_ASSERT_ENTERED(); \ 3649 }) 3650 #define cache_fpl_smr_assert_not_entered(fpl) ({ \ 3651 struct cache_fpl *_fpl = (fpl); \ 3652 MPASS(_fpl->in_smr == false); \ 3653 VFS_SMR_ASSERT_NOT_ENTERED(); \ 3654 }) 3655 #else 3656 #define cache_fpl_smr_assert_entered(fpl) do { } while (0) 3657 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0) 3658 #endif 3659 3660 #define cache_fpl_smr_enter_initial(fpl) ({ \ 3661 struct cache_fpl *_fpl = (fpl); \ 3662 vfs_smr_enter(); \ 3663 _fpl->in_smr = true; \ 3664 }) 3665 3666 #define cache_fpl_smr_enter(fpl) ({ \ 3667 struct cache_fpl *_fpl = (fpl); \ 3668 MPASS(_fpl->in_smr == false); \ 3669 vfs_smr_enter(); \ 3670 _fpl->in_smr = true; \ 3671 }) 3672 3673 #define cache_fpl_smr_exit(fpl) ({ \ 3674 struct cache_fpl *_fpl = (fpl); \ 3675 MPASS(_fpl->in_smr == true); \ 3676 vfs_smr_exit(); \ 3677 _fpl->in_smr = false; \ 3678 }) 3679 3680 static int 3681 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line) 3682 { 3683 3684 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 3685 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 3686 ("%s: converting to abort from %d at %d, set at %d\n", 3687 __func__, fpl->status, line, fpl->line)); 3688 } 3689 fpl->status = CACHE_FPL_STATUS_ABORTED; 3690 fpl->line = line; 3691 return (CACHE_FPL_FAILED); 3692 } 3693 3694 #define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__) 3695 3696 static int 3697 cache_fpl_partial_impl(struct cache_fpl *fpl, int line) 3698 { 3699 3700 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 3701 ("%s: setting to partial at %d, but already set to %d at %d\n", 3702 __func__, line, fpl->status, fpl->line)); 3703 cache_fpl_smr_assert_entered(fpl); 3704 fpl->status = CACHE_FPL_STATUS_PARTIAL; 3705 fpl->line = line; 3706 return (CACHE_FPL_FAILED); 3707 } 3708 3709 #define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__) 3710 3711 static int 3712 cache_fpl_handled_impl(struct cache_fpl *fpl, int error, int line) 3713 { 3714 3715 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 3716 ("%s: setting to handled at %d, but already set to %d at %d\n", 3717 __func__, line, fpl->status, fpl->line)); 3718 cache_fpl_smr_assert_not_entered(fpl); 3719 MPASS(error != CACHE_FPL_FAILED); 3720 fpl->status = CACHE_FPL_STATUS_HANDLED; 3721 fpl->line = line; 3722 return (error); 3723 } 3724 3725 #define cache_fpl_handled(x, e) cache_fpl_handled_impl((x), (e), __LINE__) 3726 3727 #define CACHE_FPL_SUPPORTED_CN_FLAGS \ 3728 (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \ 3729 FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | ISOPEN | \ 3730 NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK) 3731 3732 #define CACHE_FPL_INTERNAL_CN_FLAGS \ 3733 (ISDOTDOT | MAKEENTRY | ISLASTCN) 3734 3735 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 3736 "supported and internal flags overlap"); 3737 3738 static bool 3739 cache_fpl_islastcn(struct nameidata *ndp) 3740 { 3741 3742 return (*ndp->ni_next == 0); 3743 } 3744 3745 static bool 3746 cache_fpl_isdotdot(struct componentname *cnp) 3747 { 3748 3749 if (cnp->cn_namelen == 2 && 3750 cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') 3751 return (true); 3752 return (false); 3753 } 3754 3755 static bool 3756 cache_can_fplookup(struct cache_fpl *fpl) 3757 { 3758 struct nameidata *ndp; 3759 struct componentname *cnp; 3760 struct thread *td; 3761 3762 ndp = fpl->ndp; 3763 cnp = fpl->cnp; 3764 td = cnp->cn_thread; 3765 3766 if (!cache_fast_lookup) { 3767 cache_fpl_aborted(fpl); 3768 return (false); 3769 } 3770 #ifdef MAC 3771 if (mac_vnode_check_lookup_enabled()) { 3772 cache_fpl_aborted(fpl); 3773 return (false); 3774 } 3775 #endif 3776 if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) { 3777 cache_fpl_aborted(fpl); 3778 return (false); 3779 } 3780 if (IN_CAPABILITY_MODE(td)) { 3781 cache_fpl_aborted(fpl); 3782 return (false); 3783 } 3784 if (AUDITING_TD(td)) { 3785 cache_fpl_aborted(fpl); 3786 return (false); 3787 } 3788 if (ndp->ni_startdir != NULL) { 3789 cache_fpl_aborted(fpl); 3790 return (false); 3791 } 3792 return (true); 3793 } 3794 3795 static int 3796 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp) 3797 { 3798 struct nameidata *ndp; 3799 int error; 3800 bool fsearch; 3801 3802 ndp = fpl->ndp; 3803 error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch); 3804 if (__predict_false(error != 0)) { 3805 cache_fpl_smr_exit(fpl); 3806 return (cache_fpl_aborted(fpl)); 3807 } 3808 fpl->fsearch = fsearch; 3809 return (0); 3810 } 3811 3812 static bool 3813 cache_fplookup_vnode_supported(struct vnode *vp) 3814 { 3815 3816 return (vp->v_type != VLNK); 3817 } 3818 3819 static int __noinline 3820 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, 3821 uint32_t hash) 3822 { 3823 struct componentname *cnp; 3824 struct vnode *dvp; 3825 3826 cnp = fpl->cnp; 3827 dvp = fpl->dvp; 3828 3829 cache_fpl_smr_exit(fpl); 3830 if (cache_neg_promote_cond(dvp, cnp, oncp, hash)) 3831 return (cache_fpl_handled(fpl, ENOENT)); 3832 else 3833 return (cache_fpl_aborted(fpl)); 3834 } 3835 3836 /* 3837 * The target vnode is not supported, prepare for the slow path to take over. 3838 */ 3839 static int __noinline 3840 cache_fplookup_partial_setup(struct cache_fpl *fpl) 3841 { 3842 struct nameidata *ndp; 3843 struct componentname *cnp; 3844 enum vgetstate dvs; 3845 struct vnode *dvp; 3846 struct pwd *pwd; 3847 seqc_t dvp_seqc; 3848 3849 ndp = fpl->ndp; 3850 cnp = fpl->cnp; 3851 pwd = fpl->pwd; 3852 dvp = fpl->dvp; 3853 dvp_seqc = fpl->dvp_seqc; 3854 3855 if (!pwd_hold_smr(pwd)) { 3856 cache_fpl_smr_exit(fpl); 3857 return (cache_fpl_aborted(fpl)); 3858 } 3859 3860 dvs = vget_prep_smr(dvp); 3861 cache_fpl_smr_exit(fpl); 3862 if (__predict_false(dvs == VGET_NONE)) { 3863 pwd_drop(pwd); 3864 return (cache_fpl_aborted(fpl)); 3865 } 3866 3867 vget_finish_ref(dvp, dvs); 3868 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 3869 vrele(dvp); 3870 pwd_drop(pwd); 3871 return (cache_fpl_aborted(fpl)); 3872 } 3873 3874 cache_fpl_restore_partial(fpl, &fpl->snd); 3875 3876 ndp->ni_startdir = dvp; 3877 cnp->cn_flags |= MAKEENTRY; 3878 if (cache_fpl_islastcn(ndp)) 3879 cnp->cn_flags |= ISLASTCN; 3880 if (cache_fpl_isdotdot(cnp)) 3881 cnp->cn_flags |= ISDOTDOT; 3882 3883 return (0); 3884 } 3885 3886 static int 3887 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs) 3888 { 3889 struct componentname *cnp; 3890 struct vnode *tvp; 3891 seqc_t tvp_seqc; 3892 int error, lkflags; 3893 3894 cnp = fpl->cnp; 3895 tvp = fpl->tvp; 3896 tvp_seqc = fpl->tvp_seqc; 3897 3898 if ((cnp->cn_flags & LOCKLEAF) != 0) { 3899 lkflags = LK_SHARED; 3900 if ((cnp->cn_flags & LOCKSHARED) == 0) 3901 lkflags = LK_EXCLUSIVE; 3902 error = vget_finish(tvp, lkflags, tvs); 3903 if (__predict_false(error != 0)) { 3904 return (cache_fpl_aborted(fpl)); 3905 } 3906 } else { 3907 vget_finish_ref(tvp, tvs); 3908 } 3909 3910 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 3911 if ((cnp->cn_flags & LOCKLEAF) != 0) 3912 vput(tvp); 3913 else 3914 vrele(tvp); 3915 return (cache_fpl_aborted(fpl)); 3916 } 3917 3918 return (cache_fpl_handled(fpl, 0)); 3919 } 3920 3921 /* 3922 * They want to possibly modify the state of the namecache. 3923 * 3924 * Don't try to match the API contract, just leave. 3925 * TODO: this leaves scalability on the table 3926 */ 3927 static int 3928 cache_fplookup_final_modifying(struct cache_fpl *fpl) 3929 { 3930 struct componentname *cnp; 3931 3932 cnp = fpl->cnp; 3933 MPASS(cnp->cn_nameiop != LOOKUP); 3934 return (cache_fpl_partial(fpl)); 3935 } 3936 3937 static int __noinline 3938 cache_fplookup_final_withparent(struct cache_fpl *fpl) 3939 { 3940 struct componentname *cnp; 3941 enum vgetstate dvs, tvs; 3942 struct vnode *dvp, *tvp; 3943 seqc_t dvp_seqc; 3944 int error; 3945 3946 cnp = fpl->cnp; 3947 dvp = fpl->dvp; 3948 dvp_seqc = fpl->dvp_seqc; 3949 tvp = fpl->tvp; 3950 3951 MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0); 3952 3953 /* 3954 * This is less efficient than it can be for simplicity. 3955 */ 3956 dvs = vget_prep_smr(dvp); 3957 if (__predict_false(dvs == VGET_NONE)) { 3958 return (cache_fpl_aborted(fpl)); 3959 } 3960 tvs = vget_prep_smr(tvp); 3961 if (__predict_false(tvs == VGET_NONE)) { 3962 cache_fpl_smr_exit(fpl); 3963 vget_abort(dvp, dvs); 3964 return (cache_fpl_aborted(fpl)); 3965 } 3966 3967 cache_fpl_smr_exit(fpl); 3968 3969 if ((cnp->cn_flags & LOCKPARENT) != 0) { 3970 error = vget_finish(dvp, LK_EXCLUSIVE, dvs); 3971 if (__predict_false(error != 0)) { 3972 vget_abort(tvp, tvs); 3973 return (cache_fpl_aborted(fpl)); 3974 } 3975 } else { 3976 vget_finish_ref(dvp, dvs); 3977 } 3978 3979 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 3980 vget_abort(tvp, tvs); 3981 if ((cnp->cn_flags & LOCKPARENT) != 0) 3982 vput(dvp); 3983 else 3984 vrele(dvp); 3985 return (cache_fpl_aborted(fpl)); 3986 } 3987 3988 error = cache_fplookup_final_child(fpl, tvs); 3989 if (__predict_false(error != 0)) { 3990 MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED); 3991 if ((cnp->cn_flags & LOCKPARENT) != 0) 3992 vput(dvp); 3993 else 3994 vrele(dvp); 3995 return (error); 3996 } 3997 3998 MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED); 3999 return (0); 4000 } 4001 4002 static int 4003 cache_fplookup_final(struct cache_fpl *fpl) 4004 { 4005 struct componentname *cnp; 4006 enum vgetstate tvs; 4007 struct vnode *dvp, *tvp; 4008 seqc_t dvp_seqc; 4009 4010 cnp = fpl->cnp; 4011 dvp = fpl->dvp; 4012 dvp_seqc = fpl->dvp_seqc; 4013 tvp = fpl->tvp; 4014 4015 VNPASS(cache_fplookup_vnode_supported(dvp), dvp); 4016 4017 if (cnp->cn_nameiop != LOOKUP) { 4018 return (cache_fplookup_final_modifying(fpl)); 4019 } 4020 4021 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) 4022 return (cache_fplookup_final_withparent(fpl)); 4023 4024 tvs = vget_prep_smr(tvp); 4025 if (__predict_false(tvs == VGET_NONE)) { 4026 return (cache_fpl_partial(fpl)); 4027 } 4028 4029 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4030 cache_fpl_smr_exit(fpl); 4031 vget_abort(tvp, tvs); 4032 return (cache_fpl_aborted(fpl)); 4033 } 4034 4035 cache_fpl_smr_exit(fpl); 4036 return (cache_fplookup_final_child(fpl, tvs)); 4037 } 4038 4039 static int __noinline 4040 cache_fplookup_dot(struct cache_fpl *fpl) 4041 { 4042 struct vnode *dvp; 4043 4044 dvp = fpl->dvp; 4045 4046 fpl->tvp = dvp; 4047 fpl->tvp_seqc = vn_seqc_read_any(dvp); 4048 if (seqc_in_modify(fpl->tvp_seqc)) { 4049 return (cache_fpl_aborted(fpl)); 4050 } 4051 4052 counter_u64_add(dothits, 1); 4053 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", dvp); 4054 4055 return (0); 4056 } 4057 4058 static int __noinline 4059 cache_fplookup_dotdot(struct cache_fpl *fpl) 4060 { 4061 struct nameidata *ndp; 4062 struct componentname *cnp; 4063 struct namecache *ncp; 4064 struct vnode *dvp; 4065 struct prison *pr; 4066 u_char nc_flag; 4067 4068 ndp = fpl->ndp; 4069 cnp = fpl->cnp; 4070 dvp = fpl->dvp; 4071 4072 /* 4073 * XXX this is racy the same way regular lookup is 4074 */ 4075 for (pr = cnp->cn_cred->cr_prison; pr != NULL; 4076 pr = pr->pr_parent) 4077 if (dvp == pr->pr_root) 4078 break; 4079 4080 if (dvp == ndp->ni_rootdir || 4081 dvp == ndp->ni_topdir || 4082 dvp == rootvnode || 4083 pr != NULL) { 4084 fpl->tvp = dvp; 4085 fpl->tvp_seqc = vn_seqc_read_any(dvp); 4086 if (seqc_in_modify(fpl->tvp_seqc)) { 4087 return (cache_fpl_aborted(fpl)); 4088 } 4089 return (0); 4090 } 4091 4092 if ((dvp->v_vflag & VV_ROOT) != 0) { 4093 /* 4094 * TODO 4095 * The opposite of climb mount is needed here. 4096 */ 4097 return (cache_fpl_aborted(fpl)); 4098 } 4099 4100 ncp = atomic_load_ptr(&dvp->v_cache_dd); 4101 if (ncp == NULL) { 4102 return (cache_fpl_aborted(fpl)); 4103 } 4104 4105 nc_flag = atomic_load_char(&ncp->nc_flag); 4106 if ((nc_flag & NCF_ISDOTDOT) != 0) { 4107 if ((nc_flag & NCF_NEGATIVE) != 0) 4108 return (cache_fpl_aborted(fpl)); 4109 fpl->tvp = ncp->nc_vp; 4110 } else { 4111 fpl->tvp = ncp->nc_dvp; 4112 } 4113 4114 if (!cache_ncp_canuse(ncp)) { 4115 return (cache_fpl_aborted(fpl)); 4116 } 4117 4118 fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp); 4119 if (seqc_in_modify(fpl->tvp_seqc)) { 4120 return (cache_fpl_partial(fpl)); 4121 } 4122 4123 counter_u64_add(dotdothits, 1); 4124 return (0); 4125 } 4126 4127 static int __noinline 4128 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash) 4129 { 4130 u_char nc_flag; 4131 bool neg_promote; 4132 4133 nc_flag = atomic_load_char(&ncp->nc_flag); 4134 MPASS((nc_flag & NCF_NEGATIVE) != 0); 4135 /* 4136 * If they want to create an entry we need to replace this one. 4137 */ 4138 if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) { 4139 /* 4140 * TODO 4141 * This should call something similar to 4142 * cache_fplookup_final_modifying. 4143 */ 4144 return (cache_fpl_partial(fpl)); 4145 } 4146 neg_promote = cache_neg_hit_prep(ncp); 4147 if (!cache_ncp_canuse(ncp)) { 4148 cache_neg_hit_abort(ncp); 4149 return (cache_fpl_partial(fpl)); 4150 } 4151 if (__predict_false((nc_flag & NCF_WHITE) != 0)) { 4152 cache_neg_hit_abort(ncp); 4153 return (cache_fpl_partial(fpl)); 4154 } 4155 if (neg_promote) { 4156 return (cache_fplookup_negative_promote(fpl, ncp, hash)); 4157 } 4158 cache_neg_hit_finish(ncp); 4159 cache_fpl_smr_exit(fpl); 4160 return (cache_fpl_handled(fpl, ENOENT)); 4161 } 4162 4163 static int 4164 cache_fplookup_next(struct cache_fpl *fpl) 4165 { 4166 struct componentname *cnp; 4167 struct namecache *ncp; 4168 struct vnode *dvp, *tvp; 4169 u_char nc_flag; 4170 uint32_t hash; 4171 4172 cnp = fpl->cnp; 4173 dvp = fpl->dvp; 4174 4175 if (__predict_false(cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')) { 4176 return (cache_fplookup_dot(fpl)); 4177 } 4178 4179 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 4180 4181 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 4182 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 4183 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 4184 break; 4185 } 4186 4187 /* 4188 * If there is no entry we have to punt to the slow path to perform 4189 * actual lookup. Should there be nothing with this name a negative 4190 * entry will be created. 4191 */ 4192 if (__predict_false(ncp == NULL)) { 4193 return (cache_fpl_partial(fpl)); 4194 } 4195 4196 tvp = atomic_load_ptr(&ncp->nc_vp); 4197 nc_flag = atomic_load_char(&ncp->nc_flag); 4198 if ((nc_flag & NCF_NEGATIVE) != 0) { 4199 return (cache_fplookup_neg(fpl, ncp, hash)); 4200 } 4201 4202 if (!cache_ncp_canuse(ncp)) { 4203 return (cache_fpl_partial(fpl)); 4204 } 4205 4206 fpl->tvp = tvp; 4207 fpl->tvp_seqc = vn_seqc_read_any(tvp); 4208 if (seqc_in_modify(fpl->tvp_seqc)) { 4209 return (cache_fpl_partial(fpl)); 4210 } 4211 4212 if (!cache_fplookup_vnode_supported(tvp)) { 4213 return (cache_fpl_partial(fpl)); 4214 } 4215 4216 counter_u64_add(numposhits, 1); 4217 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp); 4218 return (0); 4219 } 4220 4221 static bool 4222 cache_fplookup_mp_supported(struct mount *mp) 4223 { 4224 4225 if (mp == NULL) 4226 return (false); 4227 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0) 4228 return (false); 4229 return (true); 4230 } 4231 4232 /* 4233 * Walk up the mount stack (if any). 4234 * 4235 * Correctness is provided in the following ways: 4236 * - all vnodes are protected from freeing with SMR 4237 * - struct mount objects are type stable making them always safe to access 4238 * - stability of the particular mount is provided by busying it 4239 * - relationship between the vnode which is mounted on and the mount is 4240 * verified with the vnode sequence counter after busying 4241 * - association between root vnode of the mount and the mount is protected 4242 * by busy 4243 * 4244 * From that point on we can read the sequence counter of the root vnode 4245 * and get the next mount on the stack (if any) using the same protection. 4246 * 4247 * By the end of successful walk we are guaranteed the reached state was 4248 * indeed present at least at some point which matches the regular lookup. 4249 */ 4250 static int __noinline 4251 cache_fplookup_climb_mount(struct cache_fpl *fpl) 4252 { 4253 struct mount *mp, *prev_mp; 4254 struct mount_pcpu *mpcpu, *prev_mpcpu; 4255 struct vnode *vp; 4256 seqc_t vp_seqc; 4257 4258 vp = fpl->tvp; 4259 vp_seqc = fpl->tvp_seqc; 4260 4261 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 4262 mp = atomic_load_ptr(&vp->v_mountedhere); 4263 if (mp == NULL) 4264 return (0); 4265 4266 prev_mp = NULL; 4267 for (;;) { 4268 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 4269 if (prev_mp != NULL) 4270 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4271 return (cache_fpl_partial(fpl)); 4272 } 4273 if (prev_mp != NULL) 4274 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4275 if (!vn_seqc_consistent(vp, vp_seqc)) { 4276 vfs_op_thread_exit_crit(mp, mpcpu); 4277 return (cache_fpl_partial(fpl)); 4278 } 4279 if (!cache_fplookup_mp_supported(mp)) { 4280 vfs_op_thread_exit_crit(mp, mpcpu); 4281 return (cache_fpl_partial(fpl)); 4282 } 4283 vp = atomic_load_ptr(&mp->mnt_rootvnode); 4284 if (vp == NULL || VN_IS_DOOMED(vp)) { 4285 vfs_op_thread_exit_crit(mp, mpcpu); 4286 return (cache_fpl_partial(fpl)); 4287 } 4288 vp_seqc = vn_seqc_read_any(vp); 4289 if (seqc_in_modify(vp_seqc)) { 4290 vfs_op_thread_exit_crit(mp, mpcpu); 4291 return (cache_fpl_partial(fpl)); 4292 } 4293 prev_mp = mp; 4294 prev_mpcpu = mpcpu; 4295 mp = atomic_load_ptr(&vp->v_mountedhere); 4296 if (mp == NULL) 4297 break; 4298 } 4299 4300 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 4301 fpl->tvp = vp; 4302 fpl->tvp_seqc = vp_seqc; 4303 return (0); 4304 } 4305 4306 static bool 4307 cache_fplookup_need_climb_mount(struct cache_fpl *fpl) 4308 { 4309 struct mount *mp; 4310 struct vnode *vp; 4311 4312 vp = fpl->tvp; 4313 4314 /* 4315 * Hack: while this is a union, the pointer tends to be NULL so save on 4316 * a branch. 4317 */ 4318 mp = atomic_load_ptr(&vp->v_mountedhere); 4319 if (mp == NULL) 4320 return (false); 4321 if (vp->v_type == VDIR) 4322 return (true); 4323 return (false); 4324 } 4325 4326 /* 4327 * Parse the path. 4328 * 4329 * The code was originally copy-pasted from regular lookup and despite 4330 * clean ups leaves performance on the table. Any modifications here 4331 * must take into account that in case off fallback the resulting 4332 * nameidata state has to be compatible with the original. 4333 */ 4334 static int 4335 cache_fplookup_parse(struct cache_fpl *fpl) 4336 { 4337 struct nameidata *ndp; 4338 struct componentname *cnp; 4339 char *cp; 4340 4341 ndp = fpl->ndp; 4342 cnp = fpl->cnp; 4343 4344 /* 4345 * Search a new directory. 4346 * 4347 * The last component of the filename is left accessible via 4348 * cnp->cn_nameptr for callers that need the name. Callers needing 4349 * the name set the SAVENAME flag. When done, they assume 4350 * responsibility for freeing the pathname buffer. 4351 */ 4352 for (cp = cnp->cn_nameptr; *cp != 0 && *cp != '/'; cp++) 4353 continue; 4354 cnp->cn_namelen = cp - cnp->cn_nameptr; 4355 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 4356 cache_fpl_smr_exit(fpl); 4357 return (cache_fpl_handled(fpl, ENAMETOOLONG)); 4358 } 4359 ndp->ni_pathlen -= cnp->cn_namelen; 4360 KASSERT(ndp->ni_pathlen <= PATH_MAX, 4361 ("%s: ni_pathlen underflow to %zd\n", __func__, ndp->ni_pathlen)); 4362 ndp->ni_next = cp; 4363 4364 /* 4365 * Replace multiple slashes by a single slash and trailing slashes 4366 * by a null. This must be done before VOP_LOOKUP() because some 4367 * fs's don't know about trailing slashes. Remember if there were 4368 * trailing slashes to handle symlinks, existing non-directories 4369 * and non-existing files that won't be directories specially later. 4370 */ 4371 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) { 4372 cp++; 4373 ndp->ni_pathlen--; 4374 if (*cp == '\0') { 4375 /* 4376 * TODO 4377 * Regular lookup performs the following: 4378 * *ndp->ni_next = '\0'; 4379 * cnp->cn_flags |= TRAILINGSLASH; 4380 * 4381 * Which is problematic since it modifies data read 4382 * from userspace. Then if fast path lookup was to 4383 * abort we would have to either restore it or convey 4384 * the flag. Since this is a corner case just ignore 4385 * it for simplicity. 4386 */ 4387 return (cache_fpl_partial(fpl)); 4388 } 4389 } 4390 ndp->ni_next = cp; 4391 4392 /* 4393 * Check for degenerate name (e.g. / or "") 4394 * which is a way of talking about a directory, 4395 * e.g. like "/." or ".". 4396 * 4397 * TODO 4398 * Another corner case handled by the regular lookup 4399 */ 4400 if (__predict_false(cnp->cn_nameptr[0] == '\0')) { 4401 return (cache_fpl_partial(fpl)); 4402 } 4403 return (0); 4404 } 4405 4406 static void 4407 cache_fplookup_parse_advance(struct cache_fpl *fpl) 4408 { 4409 struct nameidata *ndp; 4410 struct componentname *cnp; 4411 4412 ndp = fpl->ndp; 4413 cnp = fpl->cnp; 4414 4415 cnp->cn_nameptr = ndp->ni_next; 4416 while (*cnp->cn_nameptr == '/') { 4417 cnp->cn_nameptr++; 4418 ndp->ni_pathlen--; 4419 } 4420 } 4421 4422 /* 4423 * See the API contract for VOP_FPLOOKUP_VEXEC. 4424 */ 4425 static int __noinline 4426 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error) 4427 { 4428 struct vnode *dvp; 4429 seqc_t dvp_seqc; 4430 4431 dvp = fpl->dvp; 4432 dvp_seqc = fpl->dvp_seqc; 4433 4434 /* 4435 * Hack: they may be looking up foo/bar, where foo is a 4436 * regular file. In such a case we need to turn ENOTDIR, 4437 * but we may happen to get here with a different error. 4438 */ 4439 if (dvp->v_type != VDIR) { 4440 /* 4441 * The check here is predominantly to catch 4442 * EOPNOTSUPP from dead_vnodeops. If the vnode 4443 * gets doomed past this point it is going to 4444 * fail seqc verification. 4445 */ 4446 if (VN_IS_DOOMED(dvp)) { 4447 return (cache_fpl_aborted(fpl)); 4448 } 4449 error = ENOTDIR; 4450 } 4451 4452 /* 4453 * Hack: handle O_SEARCH. 4454 * 4455 * Open Group Base Specifications Issue 7, 2018 edition states: 4456 * If the access mode of the open file description associated with the 4457 * file descriptor is not O_SEARCH, the function shall check whether 4458 * directory searches are permitted using the current permissions of 4459 * the directory underlying the file descriptor. If the access mode is 4460 * O_SEARCH, the function shall not perform the check. 4461 * 4462 * Regular lookup tests for the NOEXECCHECK flag for every path 4463 * component to decide whether to do the permission check. However, 4464 * since most lookups never have the flag (and when they do it is only 4465 * present for the first path component), lockless lookup only acts on 4466 * it if there is a permission problem. Here the flag is represented 4467 * with a boolean so that we don't have to clear it on the way out. 4468 * 4469 * For simplicity this always aborts. 4470 * TODO: check if this is the first lookup and ignore the permission 4471 * problem. Note the flag has to survive fallback (if it happens to be 4472 * performed). 4473 */ 4474 if (fpl->fsearch) { 4475 return (cache_fpl_aborted(fpl)); 4476 } 4477 4478 switch (error) { 4479 case EAGAIN: 4480 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4481 error = cache_fpl_aborted(fpl); 4482 } else { 4483 cache_fpl_partial(fpl); 4484 } 4485 break; 4486 default: 4487 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4488 error = cache_fpl_aborted(fpl); 4489 } else { 4490 cache_fpl_smr_exit(fpl); 4491 cache_fpl_handled(fpl, error); 4492 } 4493 break; 4494 } 4495 return (error); 4496 } 4497 4498 static int 4499 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl) 4500 { 4501 struct nameidata *ndp; 4502 struct componentname *cnp; 4503 struct mount *mp; 4504 int error; 4505 4506 error = CACHE_FPL_FAILED; 4507 ndp = fpl->ndp; 4508 cnp = fpl->cnp; 4509 4510 cache_fpl_checkpoint(fpl, &fpl->snd); 4511 4512 fpl->dvp = dvp; 4513 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 4514 if (seqc_in_modify(fpl->dvp_seqc)) { 4515 cache_fpl_aborted(fpl); 4516 goto out; 4517 } 4518 mp = atomic_load_ptr(&fpl->dvp->v_mount); 4519 if (!cache_fplookup_mp_supported(mp)) { 4520 cache_fpl_aborted(fpl); 4521 goto out; 4522 } 4523 4524 VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp); 4525 4526 for (;;) { 4527 error = cache_fplookup_parse(fpl); 4528 if (__predict_false(error != 0)) { 4529 break; 4530 } 4531 4532 VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp); 4533 4534 error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred); 4535 if (__predict_false(error != 0)) { 4536 error = cache_fplookup_failed_vexec(fpl, error); 4537 break; 4538 } 4539 4540 if (__predict_false(cache_fpl_isdotdot(cnp))) { 4541 error = cache_fplookup_dotdot(fpl); 4542 if (__predict_false(error != 0)) { 4543 break; 4544 } 4545 } else { 4546 error = cache_fplookup_next(fpl); 4547 if (__predict_false(error != 0)) { 4548 break; 4549 } 4550 4551 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); 4552 4553 if (cache_fplookup_need_climb_mount(fpl)) { 4554 error = cache_fplookup_climb_mount(fpl); 4555 if (__predict_false(error != 0)) { 4556 break; 4557 } 4558 } 4559 } 4560 4561 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); 4562 4563 if (cache_fpl_islastcn(ndp)) { 4564 error = cache_fplookup_final(fpl); 4565 break; 4566 } 4567 4568 if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) { 4569 error = cache_fpl_aborted(fpl); 4570 break; 4571 } 4572 4573 fpl->dvp = fpl->tvp; 4574 fpl->dvp_seqc = fpl->tvp_seqc; 4575 4576 cache_fplookup_parse_advance(fpl); 4577 cache_fpl_checkpoint(fpl, &fpl->snd); 4578 } 4579 out: 4580 switch (fpl->status) { 4581 case CACHE_FPL_STATUS_UNSET: 4582 __assert_unreachable(); 4583 break; 4584 case CACHE_FPL_STATUS_PARTIAL: 4585 cache_fpl_smr_assert_entered(fpl); 4586 return (cache_fplookup_partial_setup(fpl)); 4587 case CACHE_FPL_STATUS_ABORTED: 4588 if (fpl->in_smr) 4589 cache_fpl_smr_exit(fpl); 4590 return (CACHE_FPL_FAILED); 4591 case CACHE_FPL_STATUS_HANDLED: 4592 MPASS(error != CACHE_FPL_FAILED); 4593 cache_fpl_smr_assert_not_entered(fpl); 4594 /* 4595 * A common error is ENOENT. 4596 */ 4597 if (error != 0) { 4598 ndp->ni_dvp = NULL; 4599 ndp->ni_vp = NULL; 4600 cache_fpl_cleanup_cnp(cnp); 4601 return (error); 4602 } 4603 ndp->ni_dvp = fpl->dvp; 4604 ndp->ni_vp = fpl->tvp; 4605 if (cnp->cn_flags & SAVENAME) 4606 cnp->cn_flags |= HASBUF; 4607 else 4608 cache_fpl_cleanup_cnp(cnp); 4609 return (error); 4610 } 4611 __assert_unreachable(); 4612 } 4613 4614 /* 4615 * Fast path lookup protected with SMR and sequence counters. 4616 * 4617 * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one. 4618 * 4619 * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria 4620 * outlined below. 4621 * 4622 * Traditional vnode lookup conceptually looks like this: 4623 * 4624 * vn_lock(current); 4625 * for (;;) { 4626 * next = find(); 4627 * vn_lock(next); 4628 * vn_unlock(current); 4629 * current = next; 4630 * if (last) 4631 * break; 4632 * } 4633 * return (current); 4634 * 4635 * Each jump to the next vnode is safe memory-wise and atomic with respect to 4636 * any modifications thanks to holding respective locks. 4637 * 4638 * The same guarantee can be provided with a combination of safe memory 4639 * reclamation and sequence counters instead. If all operations which affect 4640 * the relationship between the current vnode and the one we are looking for 4641 * also modify the counter, we can verify whether all the conditions held as 4642 * we made the jump. This includes things like permissions, mount points etc. 4643 * Counter modification is provided by enclosing relevant places in 4644 * vn_seqc_write_begin()/end() calls. 4645 * 4646 * Thus this translates to: 4647 * 4648 * vfs_smr_enter(); 4649 * dvp_seqc = seqc_read_any(dvp); 4650 * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode 4651 * abort(); 4652 * for (;;) { 4653 * tvp = find(); 4654 * tvp_seqc = seqc_read_any(tvp); 4655 * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode 4656 * abort(); 4657 * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode 4658 * abort(); 4659 * dvp = tvp; // we know nothing of importance has changed 4660 * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration 4661 * if (last) 4662 * break; 4663 * } 4664 * vget(); // secure the vnode 4665 * if (!seqc_consistent(tvp, tvp_seqc) // final check 4666 * abort(); 4667 * // at this point we know nothing has changed for any parent<->child pair 4668 * // as they were crossed during the lookup, meaning we matched the guarantee 4669 * // of the locked variant 4670 * return (tvp); 4671 * 4672 * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows: 4673 * - they are called while within vfs_smr protection which they must never exit 4674 * - EAGAIN can be returned to denote checking could not be performed, it is 4675 * always valid to return it 4676 * - if the sequence counter has not changed the result must be valid 4677 * - if the sequence counter has changed both false positives and false negatives 4678 * are permitted (since the result will be rejected later) 4679 * - for simple cases of unix permission checks vaccess_vexec_smr can be used 4680 * 4681 * Caveats to watch out for: 4682 * - vnodes are passed unlocked and unreferenced with nothing stopping 4683 * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised 4684 * to use atomic_load_ptr to fetch it. 4685 * - the aforementioned object can also get freed, meaning absent other means it 4686 * should be protected with vfs_smr 4687 * - either safely checking permissions as they are modified or guaranteeing 4688 * their stability is left to the routine 4689 */ 4690 int 4691 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, 4692 struct pwd **pwdp) 4693 { 4694 struct cache_fpl fpl; 4695 struct pwd *pwd; 4696 struct vnode *dvp; 4697 struct componentname *cnp; 4698 struct nameidata_saved orig; 4699 int error; 4700 4701 MPASS(ndp->ni_lcf == 0); 4702 4703 fpl.status = CACHE_FPL_STATUS_UNSET; 4704 fpl.ndp = ndp; 4705 fpl.cnp = &ndp->ni_cnd; 4706 MPASS(curthread == fpl.cnp->cn_thread); 4707 4708 if ((fpl.cnp->cn_flags & SAVESTART) != 0) 4709 MPASS(fpl.cnp->cn_nameiop != LOOKUP); 4710 4711 if (!cache_can_fplookup(&fpl)) { 4712 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 4713 *status = fpl.status; 4714 return (EOPNOTSUPP); 4715 } 4716 4717 cache_fpl_checkpoint(&fpl, &orig); 4718 4719 cache_fpl_smr_enter_initial(&fpl); 4720 fpl.fsearch = false; 4721 pwd = pwd_get_smr(); 4722 fpl.pwd = pwd; 4723 ndp->ni_rootdir = pwd->pwd_rdir; 4724 ndp->ni_topdir = pwd->pwd_jdir; 4725 4726 cnp = fpl.cnp; 4727 cnp->cn_nameptr = cnp->cn_pnbuf; 4728 if (cnp->cn_pnbuf[0] == '/') { 4729 cache_fpl_handle_root(ndp, &dvp); 4730 ndp->ni_resflags |= NIRES_ABS; 4731 } else { 4732 if (ndp->ni_dirfd == AT_FDCWD) { 4733 dvp = pwd->pwd_cdir; 4734 } else { 4735 error = cache_fplookup_dirfd(&fpl, &dvp); 4736 if (__predict_false(error != 0)) { 4737 goto out; 4738 } 4739 } 4740 } 4741 4742 SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true); 4743 4744 error = cache_fplookup_impl(dvp, &fpl); 4745 out: 4746 cache_fpl_smr_assert_not_entered(&fpl); 4747 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 4748 4749 *status = fpl.status; 4750 switch (fpl.status) { 4751 case CACHE_FPL_STATUS_UNSET: 4752 __assert_unreachable(); 4753 break; 4754 case CACHE_FPL_STATUS_HANDLED: 4755 SDT_PROBE3(vfs, namei, lookup, return, error, 4756 (error == 0 ? ndp->ni_vp : NULL), true); 4757 break; 4758 case CACHE_FPL_STATUS_PARTIAL: 4759 *pwdp = fpl.pwd; 4760 /* 4761 * Status restored by cache_fplookup_partial_setup. 4762 */ 4763 break; 4764 case CACHE_FPL_STATUS_ABORTED: 4765 cache_fpl_restore_abort(&fpl, &orig); 4766 break; 4767 } 4768 return (error); 4769 } 4770