xref: /freebsd/sys/kern/vfs_cache.c (revision 369d70ec9282cccf131ab0400b05dad13ba8116d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/seqc.h>
59 #include <sys/sdt.h>
60 #include <sys/smr.h>
61 #include <sys/smp.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/vnode.h>
66 #include <ck_queue.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 
71 #include <sys/capsicum.h>
72 
73 #include <security/audit/audit.h>
74 #include <security/mac/mac_framework.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/uma.h>
81 
82 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
83     "Name cache");
84 
85 SDT_PROVIDER_DECLARE(vfs);
86 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
87     "struct vnode *");
88 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
89     "struct vnode *");
90 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
91     "char *");
92 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
93     "const char *");
94 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
95     "struct namecache *", "int", "int");
96 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
97 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
98     "char *", "struct vnode *");
99 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
100 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
101     "struct vnode *", "char *");
102 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
103     "struct vnode *");
104 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
105     "struct vnode *", "char *");
106 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
107     "char *");
108 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
109     "struct componentname *");
110 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
111     "struct componentname *");
112 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *");
113 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
114 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
115 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
116 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
117     "struct vnode *");
118 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
119     "char *");
120 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
121     "char *");
122 
123 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
124 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
125 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
126 
127 /*
128  * This structure describes the elements in the cache of recent
129  * names looked up by namei.
130  */
131 struct negstate {
132 	u_char neg_flag;
133 	u_char neg_hit;
134 };
135 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
136     "the state must fit in a union with a pointer without growing it");
137 
138 struct	namecache {
139 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
140 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
141 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
142 	struct	vnode *nc_dvp;		/* vnode of parent of name */
143 	union {
144 		struct	vnode *nu_vp;	/* vnode the name refers to */
145 		struct	negstate nu_neg;/* negative entry state */
146 	} n_un;
147 	u_char	nc_flag;		/* flag bits */
148 	u_char	nc_nlen;		/* length of name */
149 	char	nc_name[0];		/* segment name + nul */
150 };
151 
152 /*
153  * struct namecache_ts repeats struct namecache layout up to the
154  * nc_nlen member.
155  * struct namecache_ts is used in place of struct namecache when time(s) need
156  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
157  * both a non-dotdot directory name plus dotdot for the directory's
158  * parent.
159  *
160  * See below for alignment requirement.
161  */
162 struct	namecache_ts {
163 	struct	timespec nc_time;	/* timespec provided by fs */
164 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
165 	int	nc_ticks;		/* ticks value when entry was added */
166 	int	nc_pad;
167 	struct namecache nc_nc;
168 };
169 
170 TAILQ_HEAD(cache_freebatch, namecache);
171 
172 /*
173  * At least mips n32 performs 64-bit accesses to timespec as found
174  * in namecache_ts and requires them to be aligned. Since others
175  * may be in the same spot suffer a little bit and enforce the
176  * alignment for everyone. Note this is a nop for 64-bit platforms.
177  */
178 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
179 
180 /*
181  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
182  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
183  * smaller and the value was bumped to retain the total size, but it
184  * was never re-evaluated for suitability. A simple test counting
185  * lengths during package building shows that the value of 45 covers
186  * about 86% of all added entries, reaching 99% at 65.
187  *
188  * Regardless of the above, use of dedicated zones instead of malloc may be
189  * inducing additional waste. This may be hard to address as said zones are
190  * tied to VFS SMR. Even if retaining them, the current split should be
191  * re-evaluated.
192  */
193 #ifdef __LP64__
194 #define	CACHE_PATH_CUTOFF	45
195 #define	CACHE_LARGE_PAD		6
196 #else
197 #define	CACHE_PATH_CUTOFF	41
198 #define	CACHE_LARGE_PAD		2
199 #endif
200 
201 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
202 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
203 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
204 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
205 
206 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
207 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
208 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
209 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
210 
211 #define	nc_vp		n_un.nu_vp
212 #define	nc_neg		n_un.nu_neg
213 
214 /*
215  * Flags in namecache.nc_flag
216  */
217 #define NCF_WHITE	0x01
218 #define NCF_ISDOTDOT	0x02
219 #define	NCF_TS		0x04
220 #define	NCF_DTS		0x08
221 #define	NCF_DVDROP	0x10
222 #define	NCF_NEGATIVE	0x20
223 #define	NCF_INVALID	0x40
224 #define	NCF_WIP		0x80
225 
226 /*
227  * Flags in negstate.neg_flag
228  */
229 #define NEG_HOT		0x01
230 
231 static bool	cache_neg_evict_cond(u_long lnumcache);
232 
233 /*
234  * Mark an entry as invalid.
235  *
236  * This is called before it starts getting deconstructed.
237  */
238 static void
239 cache_ncp_invalidate(struct namecache *ncp)
240 {
241 
242 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
243 	    ("%s: entry %p already invalid", __func__, ncp));
244 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
245 	atomic_thread_fence_rel();
246 }
247 
248 /*
249  * Check whether the entry can be safely used.
250  *
251  * All places which elide locks are supposed to call this after they are
252  * done with reading from an entry.
253  */
254 #define cache_ncp_canuse(ncp)	({					\
255 	struct namecache *_ncp = (ncp);					\
256 	u_char _nc_flag;						\
257 									\
258 	atomic_thread_fence_acq();					\
259 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
260 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
261 })
262 
263 /*
264  * Name caching works as follows:
265  *
266  * Names found by directory scans are retained in a cache
267  * for future reference.  It is managed LRU, so frequently
268  * used names will hang around.  Cache is indexed by hash value
269  * obtained from (dvp, name) where dvp refers to the directory
270  * containing name.
271  *
272  * If it is a "negative" entry, (i.e. for a name that is known NOT to
273  * exist) the vnode pointer will be NULL.
274  *
275  * Upon reaching the last segment of a path, if the reference
276  * is for DELETE, or NOCACHE is set (rewrite), and the
277  * name is located in the cache, it will be dropped.
278  *
279  * These locks are used (in the order in which they can be taken):
280  * NAME		TYPE	ROLE
281  * vnodelock	mtx	vnode lists and v_cache_dd field protection
282  * bucketlock	mtx	for access to given set of hash buckets
283  * neglist	mtx	negative entry LRU management
284  *
285  * It is legal to take multiple vnodelock and bucketlock locks. The locking
286  * order is lower address first. Both are recursive.
287  *
288  * "." lookups are lockless.
289  *
290  * ".." and vnode -> name lookups require vnodelock.
291  *
292  * name -> vnode lookup requires the relevant bucketlock to be held for reading.
293  *
294  * Insertions and removals of entries require involved vnodes and bucketlocks
295  * to be locked to provide safe operation against other threads modifying the
296  * cache.
297  *
298  * Some lookups result in removal of the found entry (e.g. getting rid of a
299  * negative entry with the intent to create a positive one), which poses a
300  * problem when multiple threads reach the state. Similarly, two different
301  * threads can purge two different vnodes and try to remove the same name.
302  *
303  * If the already held vnode lock is lower than the second required lock, we
304  * can just take the other lock. However, in the opposite case, this could
305  * deadlock. As such, this is resolved by trylocking and if that fails unlocking
306  * the first node, locking everything in order and revalidating the state.
307  */
308 
309 VFS_SMR_DECLARE;
310 
311 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
312     "Name cache parameters");
313 
314 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
315 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
316     "Total namecache capacity");
317 
318 u_int ncsizefactor = 2;
319 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
320     "Size factor for namecache");
321 
322 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
323 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
324     "Ratio of negative namecache entries");
325 
326 /*
327  * Negative entry % of namecache capacity above which automatic eviction is allowed.
328  *
329  * Check cache_neg_evict_cond for details.
330  */
331 static u_int ncnegminpct = 3;
332 
333 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
334 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
335     "Negative entry count above which automatic eviction is allowed");
336 
337 /*
338  * Structures associated with name caching.
339  */
340 #define NCHHASH(hash) \
341 	(&nchashtbl[(hash) & nchash])
342 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
343 static u_long __read_mostly	nchash;			/* size of hash table */
344 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
345     "Size of namecache hash table");
346 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
347 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
348 
349 struct nchstats	nchstats;		/* cache effectiveness statistics */
350 
351 static bool __read_frequently cache_fast_revlookup = true;
352 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW,
353     &cache_fast_revlookup, 0, "");
354 
355 static u_int __exclusive_cache_line neg_cycle;
356 
357 #define ncneghash	3
358 #define	numneglists	(ncneghash + 1)
359 
360 struct neglist {
361 	struct mtx		nl_evict_lock;
362 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
363 	TAILQ_HEAD(, namecache) nl_list;
364 	TAILQ_HEAD(, namecache) nl_hotlist;
365 	u_long			nl_hotnum;
366 } __aligned(CACHE_LINE_SIZE);
367 
368 static struct neglist neglists[numneglists];
369 
370 static inline struct neglist *
371 NCP2NEGLIST(struct namecache *ncp)
372 {
373 
374 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
375 }
376 
377 static inline struct negstate *
378 NCP2NEGSTATE(struct namecache *ncp)
379 {
380 
381 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
382 	return (&ncp->nc_neg);
383 }
384 
385 #define	numbucketlocks (ncbuckethash + 1)
386 static u_int __read_mostly  ncbuckethash;
387 static struct mtx_padalign __read_mostly  *bucketlocks;
388 #define	HASH2BUCKETLOCK(hash) \
389 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
390 
391 #define	numvnodelocks (ncvnodehash + 1)
392 static u_int __read_mostly  ncvnodehash;
393 static struct mtx __read_mostly *vnodelocks;
394 static inline struct mtx *
395 VP2VNODELOCK(struct vnode *vp)
396 {
397 
398 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
399 }
400 
401 static void
402 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
403 {
404 	struct namecache_ts *ncp_ts;
405 
406 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
407 	    (tsp == NULL && ticksp == NULL),
408 	    ("No NCF_TS"));
409 
410 	if (tsp == NULL)
411 		return;
412 
413 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
414 	*tsp = ncp_ts->nc_time;
415 	*ticksp = ncp_ts->nc_ticks;
416 }
417 
418 #ifdef DEBUG_CACHE
419 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
420 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
421     "VFS namecache enabled");
422 #endif
423 
424 /* Export size information to userland */
425 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
426     sizeof(struct namecache), "sizeof(struct namecache)");
427 
428 /*
429  * The new name cache statistics
430  */
431 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
432     "Name cache statistics");
433 
434 #define STATNODE_ULONG(name, varname, descr)					\
435 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
436 #define STATNODE_COUNTER(name, varname, descr)					\
437 	static COUNTER_U64_DEFINE_EARLY(varname);				\
438 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
439 	    descr);
440 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
441 STATNODE_ULONG(count, numcache, "Number of cache entries");
442 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
443 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
444 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
445 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits");
446 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
447 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
448 STATNODE_COUNTER(posszaps, numposzaps,
449     "Number of cache hits (positive) we do not want to cache");
450 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
451 STATNODE_COUNTER(negzaps, numnegzaps,
452     "Number of cache hits (negative) we do not want to cache");
453 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
454 /* These count for vn_getcwd(), too. */
455 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
456 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
457 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
458     "Number of fullpath search errors (VOP_VPTOCNP failures)");
459 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
460 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
461 
462 /*
463  * Debug or developer statistics.
464  */
465 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
466     "Name cache debugging");
467 #define DEBUGNODE_ULONG(name, varname, descr)					\
468 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
469 #define DEBUGNODE_COUNTER(name, varname, descr)					\
470 	static COUNTER_U64_DEFINE_EARLY(varname);				\
471 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
472 	    descr);
473 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
474     "Number of successful removals after relocking");
475 static long zap_bucket_fail;
476 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
477 static long zap_bucket_fail2;
478 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
479 static long cache_lock_vnodes_cel_3_failures;
480 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
481     "Number of times 3-way vnode locking failed");
482 
483 static void cache_zap_locked(struct namecache *ncp);
484 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf,
485     char **freebuf, size_t *buflen);
486 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
487     char **retbuf, size_t *buflen, size_t addend);
488 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
489     char **retbuf, size_t *buflen);
490 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
491     char **retbuf, size_t *len, size_t addend);
492 
493 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
494 
495 static inline void
496 cache_assert_vlp_locked(struct mtx *vlp)
497 {
498 
499 	if (vlp != NULL)
500 		mtx_assert(vlp, MA_OWNED);
501 }
502 
503 static inline void
504 cache_assert_vnode_locked(struct vnode *vp)
505 {
506 	struct mtx *vlp;
507 
508 	vlp = VP2VNODELOCK(vp);
509 	cache_assert_vlp_locked(vlp);
510 }
511 
512 /*
513  * Directory vnodes with entries are held for two reasons:
514  * 1. make them less of a target for reclamation in vnlru
515  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
516  *
517  * Note this preferably would not be done and it's a hold over from. It will be
518  * feasible to eliminate altogether if all filesystems start supporting
519  * lockless lookup.
520  */
521 static void
522 cache_hold_vnode(struct vnode *vp)
523 {
524 
525 	cache_assert_vnode_locked(vp);
526 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
527 	vhold(vp);
528 	counter_u64_add(numcachehv, 1);
529 }
530 
531 static void
532 cache_drop_vnode(struct vnode *vp)
533 {
534 
535 	/*
536 	 * Called after all locks are dropped, meaning we can't assert
537 	 * on the state of v_cache_src.
538 	 */
539 	vdrop(vp);
540 	counter_u64_add(numcachehv, -1);
541 }
542 
543 /*
544  * UMA zones.
545  */
546 static uma_zone_t __read_mostly cache_zone_small;
547 static uma_zone_t __read_mostly cache_zone_small_ts;
548 static uma_zone_t __read_mostly cache_zone_large;
549 static uma_zone_t __read_mostly cache_zone_large_ts;
550 
551 static struct namecache *
552 cache_alloc_uma(int len, bool ts)
553 {
554 	struct namecache_ts *ncp_ts;
555 	struct namecache *ncp;
556 
557 	if (__predict_false(ts)) {
558 		if (len <= CACHE_PATH_CUTOFF)
559 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
560 		else
561 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
562 		ncp = &ncp_ts->nc_nc;
563 	} else {
564 		if (len <= CACHE_PATH_CUTOFF)
565 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
566 		else
567 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
568 	}
569 	return (ncp);
570 }
571 
572 static void
573 cache_free_uma(struct namecache *ncp)
574 {
575 	struct namecache_ts *ncp_ts;
576 
577 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
578 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
579 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
580 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
581 		else
582 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
583 	} else {
584 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
585 			uma_zfree_smr(cache_zone_small, ncp);
586 		else
587 			uma_zfree_smr(cache_zone_large, ncp);
588 	}
589 }
590 
591 static struct namecache *
592 cache_alloc(int len, bool ts)
593 {
594 	u_long lnumcache;
595 
596 	/*
597 	 * Avoid blowout in namecache entries.
598 	 *
599 	 * Bugs:
600 	 * 1. filesystems may end up trying to add an already existing entry
601 	 * (for example this can happen after a cache miss during concurrent
602 	 * lookup), in which case we will call cache_neg_evict despite not
603 	 * adding anything.
604 	 * 2. the routine may fail to free anything and no provisions are made
605 	 * to make it try harder (see the inside for failure modes)
606 	 * 3. it only ever looks at negative entries.
607 	 */
608 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
609 	if (cache_neg_evict_cond(lnumcache)) {
610 		lnumcache = atomic_load_long(&numcache);
611 	}
612 	if (__predict_false(lnumcache >= ncsize)) {
613 		atomic_subtract_long(&numcache, 1);
614 		counter_u64_add(numdrops, 1);
615 		return (NULL);
616 	}
617 	return (cache_alloc_uma(len, ts));
618 }
619 
620 static void
621 cache_free(struct namecache *ncp)
622 {
623 
624 	MPASS(ncp != NULL);
625 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
626 		cache_drop_vnode(ncp->nc_dvp);
627 	}
628 	cache_free_uma(ncp);
629 	atomic_subtract_long(&numcache, 1);
630 }
631 
632 static void
633 cache_free_batch(struct cache_freebatch *batch)
634 {
635 	struct namecache *ncp, *nnp;
636 	int i;
637 
638 	i = 0;
639 	if (TAILQ_EMPTY(batch))
640 		goto out;
641 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
642 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
643 			cache_drop_vnode(ncp->nc_dvp);
644 		}
645 		cache_free_uma(ncp);
646 		i++;
647 	}
648 	atomic_subtract_long(&numcache, i);
649 out:
650 	SDT_PROBE1(vfs, namecache, purge, batch, i);
651 }
652 
653 /*
654  * TODO: With the value stored we can do better than computing the hash based
655  * on the address. The choice of FNV should also be revisited.
656  */
657 static void
658 cache_prehash(struct vnode *vp)
659 {
660 
661 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
662 }
663 
664 static uint32_t
665 cache_get_hash(char *name, u_char len, struct vnode *dvp)
666 {
667 
668 	return (fnv_32_buf(name, len, dvp->v_nchash));
669 }
670 
671 static inline struct nchashhead *
672 NCP2BUCKET(struct namecache *ncp)
673 {
674 	uint32_t hash;
675 
676 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
677 	return (NCHHASH(hash));
678 }
679 
680 static inline struct mtx *
681 NCP2BUCKETLOCK(struct namecache *ncp)
682 {
683 	uint32_t hash;
684 
685 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
686 	return (HASH2BUCKETLOCK(hash));
687 }
688 
689 #ifdef INVARIANTS
690 static void
691 cache_assert_bucket_locked(struct namecache *ncp)
692 {
693 	struct mtx *blp;
694 
695 	blp = NCP2BUCKETLOCK(ncp);
696 	mtx_assert(blp, MA_OWNED);
697 }
698 
699 static void
700 cache_assert_bucket_unlocked(struct namecache *ncp)
701 {
702 	struct mtx *blp;
703 
704 	blp = NCP2BUCKETLOCK(ncp);
705 	mtx_assert(blp, MA_NOTOWNED);
706 }
707 #else
708 #define cache_assert_bucket_locked(x) do { } while (0)
709 #define cache_assert_bucket_unlocked(x) do { } while (0)
710 #endif
711 
712 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
713 static void
714 _cache_sort_vnodes(void **p1, void **p2)
715 {
716 	void *tmp;
717 
718 	MPASS(*p1 != NULL || *p2 != NULL);
719 
720 	if (*p1 > *p2) {
721 		tmp = *p2;
722 		*p2 = *p1;
723 		*p1 = tmp;
724 	}
725 }
726 
727 static void
728 cache_lock_all_buckets(void)
729 {
730 	u_int i;
731 
732 	for (i = 0; i < numbucketlocks; i++)
733 		mtx_lock(&bucketlocks[i]);
734 }
735 
736 static void
737 cache_unlock_all_buckets(void)
738 {
739 	u_int i;
740 
741 	for (i = 0; i < numbucketlocks; i++)
742 		mtx_unlock(&bucketlocks[i]);
743 }
744 
745 static void
746 cache_lock_all_vnodes(void)
747 {
748 	u_int i;
749 
750 	for (i = 0; i < numvnodelocks; i++)
751 		mtx_lock(&vnodelocks[i]);
752 }
753 
754 static void
755 cache_unlock_all_vnodes(void)
756 {
757 	u_int i;
758 
759 	for (i = 0; i < numvnodelocks; i++)
760 		mtx_unlock(&vnodelocks[i]);
761 }
762 
763 static int
764 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
765 {
766 
767 	cache_sort_vnodes(&vlp1, &vlp2);
768 
769 	if (vlp1 != NULL) {
770 		if (!mtx_trylock(vlp1))
771 			return (EAGAIN);
772 	}
773 	if (!mtx_trylock(vlp2)) {
774 		if (vlp1 != NULL)
775 			mtx_unlock(vlp1);
776 		return (EAGAIN);
777 	}
778 
779 	return (0);
780 }
781 
782 static void
783 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
784 {
785 
786 	MPASS(vlp1 != NULL || vlp2 != NULL);
787 	MPASS(vlp1 <= vlp2);
788 
789 	if (vlp1 != NULL)
790 		mtx_lock(vlp1);
791 	if (vlp2 != NULL)
792 		mtx_lock(vlp2);
793 }
794 
795 static void
796 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
797 {
798 
799 	MPASS(vlp1 != NULL || vlp2 != NULL);
800 
801 	if (vlp1 != NULL)
802 		mtx_unlock(vlp1);
803 	if (vlp2 != NULL)
804 		mtx_unlock(vlp2);
805 }
806 
807 static int
808 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
809 {
810 	struct nchstats snap;
811 
812 	if (req->oldptr == NULL)
813 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
814 
815 	snap = nchstats;
816 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
817 	snap.ncs_neghits = counter_u64_fetch(numneghits);
818 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
819 	    counter_u64_fetch(numnegzaps);
820 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
821 	    counter_u64_fetch(nummiss);
822 
823 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
824 }
825 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
826     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
827     "VFS cache effectiveness statistics");
828 
829 static void
830 cache_recalc_neg_min(u_int val)
831 {
832 
833 	neg_min = (ncsize * val) / 100;
834 }
835 
836 static int
837 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
838 {
839 	u_int val;
840 	int error;
841 
842 	val = ncnegminpct;
843 	error = sysctl_handle_int(oidp, &val, 0, req);
844 	if (error != 0 || req->newptr == NULL)
845 		return (error);
846 
847 	if (val == ncnegminpct)
848 		return (0);
849 	if (val < 0 || val > 99)
850 		return (EINVAL);
851 	ncnegminpct = val;
852 	cache_recalc_neg_min(val);
853 	return (0);
854 }
855 
856 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
857     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
858     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
859 
860 #ifdef DIAGNOSTIC
861 /*
862  * Grab an atomic snapshot of the name cache hash chain lengths
863  */
864 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
865     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
866     "hash table stats");
867 
868 static int
869 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
870 {
871 	struct nchashhead *ncpp;
872 	struct namecache *ncp;
873 	int i, error, n_nchash, *cntbuf;
874 
875 retry:
876 	n_nchash = nchash + 1;	/* nchash is max index, not count */
877 	if (req->oldptr == NULL)
878 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
879 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
880 	cache_lock_all_buckets();
881 	if (n_nchash != nchash + 1) {
882 		cache_unlock_all_buckets();
883 		free(cntbuf, M_TEMP);
884 		goto retry;
885 	}
886 	/* Scan hash tables counting entries */
887 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
888 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
889 			cntbuf[i]++;
890 	cache_unlock_all_buckets();
891 	for (error = 0, i = 0; i < n_nchash; i++)
892 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
893 			break;
894 	free(cntbuf, M_TEMP);
895 	return (error);
896 }
897 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
898     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
899     "nchash chain lengths");
900 
901 static int
902 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
903 {
904 	int error;
905 	struct nchashhead *ncpp;
906 	struct namecache *ncp;
907 	int n_nchash;
908 	int count, maxlength, used, pct;
909 
910 	if (!req->oldptr)
911 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
912 
913 	cache_lock_all_buckets();
914 	n_nchash = nchash + 1;	/* nchash is max index, not count */
915 	used = 0;
916 	maxlength = 0;
917 
918 	/* Scan hash tables for applicable entries */
919 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
920 		count = 0;
921 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
922 			count++;
923 		}
924 		if (count)
925 			used++;
926 		if (maxlength < count)
927 			maxlength = count;
928 	}
929 	n_nchash = nchash + 1;
930 	cache_unlock_all_buckets();
931 	pct = (used * 100) / (n_nchash / 100);
932 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
933 	if (error)
934 		return (error);
935 	error = SYSCTL_OUT(req, &used, sizeof(used));
936 	if (error)
937 		return (error);
938 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
939 	if (error)
940 		return (error);
941 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
942 	if (error)
943 		return (error);
944 	return (0);
945 }
946 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
947     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
948     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
949 #endif
950 
951 /*
952  * Negative entries management
953  *
954  * Various workloads create plenty of negative entries and barely use them
955  * afterwards. Moreover malicious users can keep performing bogus lookups
956  * adding even more entries. For example "make tinderbox" as of writing this
957  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
958  * negative.
959  *
960  * As such, a rather aggressive eviction method is needed. The currently
961  * employed method is a placeholder.
962  *
963  * Entries are split over numneglists separate lists, each of which is further
964  * split into hot and cold entries. Entries get promoted after getting a hit.
965  * Eviction happens on addition of new entry.
966  */
967 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
968     "Name cache negative entry statistics");
969 
970 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
971     "Number of negative cache entries");
972 
973 static COUNTER_U64_DEFINE_EARLY(neg_created);
974 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
975     "Number of created negative entries");
976 
977 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
978 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
979     "Number of evicted negative entries");
980 
981 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
982 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
983     &neg_evict_skipped_empty,
984     "Number of times evicting failed due to lack of entries");
985 
986 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
987 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
988     &neg_evict_skipped_missed,
989     "Number of times evicting failed due to target entry disappearing");
990 
991 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
992 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
993     &neg_evict_skipped_contended,
994     "Number of times evicting failed due to contention");
995 
996 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
997     "Number of cache hits (negative)");
998 
999 static int
1000 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1001 {
1002 	int i, out;
1003 
1004 	out = 0;
1005 	for (i = 0; i < numneglists; i++)
1006 		out += neglists[i].nl_hotnum;
1007 
1008 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1009 }
1010 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1011     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1012     "Number of hot negative entries");
1013 
1014 static void
1015 cache_neg_init(struct namecache *ncp)
1016 {
1017 	struct negstate *ns;
1018 
1019 	ncp->nc_flag |= NCF_NEGATIVE;
1020 	ns = NCP2NEGSTATE(ncp);
1021 	ns->neg_flag = 0;
1022 	ns->neg_hit = 0;
1023 	counter_u64_add(neg_created, 1);
1024 }
1025 
1026 #define CACHE_NEG_PROMOTION_THRESH 2
1027 
1028 static bool
1029 cache_neg_hit_prep(struct namecache *ncp)
1030 {
1031 	struct negstate *ns;
1032 	u_char n;
1033 
1034 	ns = NCP2NEGSTATE(ncp);
1035 	n = atomic_load_char(&ns->neg_hit);
1036 	for (;;) {
1037 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1038 			return (false);
1039 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1040 			break;
1041 	}
1042 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1043 }
1044 
1045 /*
1046  * Nothing to do here but it is provided for completeness as some
1047  * cache_neg_hit_prep callers may end up returning without even
1048  * trying to promote.
1049  */
1050 #define cache_neg_hit_abort(ncp)	do { } while (0)
1051 
1052 static void
1053 cache_neg_hit_finish(struct namecache *ncp)
1054 {
1055 
1056 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1057 	counter_u64_add(numneghits, 1);
1058 }
1059 
1060 /*
1061  * Move a negative entry to the hot list.
1062  */
1063 static void
1064 cache_neg_promote_locked(struct namecache *ncp)
1065 {
1066 	struct neglist *nl;
1067 	struct negstate *ns;
1068 
1069 	ns = NCP2NEGSTATE(ncp);
1070 	nl = NCP2NEGLIST(ncp);
1071 	mtx_assert(&nl->nl_lock, MA_OWNED);
1072 	if ((ns->neg_flag & NEG_HOT) == 0) {
1073 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1074 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1075 		nl->nl_hotnum++;
1076 		ns->neg_flag |= NEG_HOT;
1077 	}
1078 }
1079 
1080 /*
1081  * Move a hot negative entry to the cold list.
1082  */
1083 static void
1084 cache_neg_demote_locked(struct namecache *ncp)
1085 {
1086 	struct neglist *nl;
1087 	struct negstate *ns;
1088 
1089 	ns = NCP2NEGSTATE(ncp);
1090 	nl = NCP2NEGLIST(ncp);
1091 	mtx_assert(&nl->nl_lock, MA_OWNED);
1092 	MPASS(ns->neg_flag & NEG_HOT);
1093 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1094 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1095 	nl->nl_hotnum--;
1096 	ns->neg_flag &= ~NEG_HOT;
1097 	atomic_store_char(&ns->neg_hit, 0);
1098 }
1099 
1100 /*
1101  * Move a negative entry to the hot list if it matches the lookup.
1102  *
1103  * We have to take locks, but they may be contended and in the worst
1104  * case we may need to go off CPU. We don't want to spin within the
1105  * smr section and we can't block with it. Exiting the section means
1106  * the found entry could have been evicted. We are going to look it
1107  * up again.
1108  */
1109 static bool
1110 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1111     struct namecache *oncp, uint32_t hash)
1112 {
1113 	struct namecache *ncp;
1114 	struct neglist *nl;
1115 	u_char nc_flag;
1116 
1117 	nl = NCP2NEGLIST(oncp);
1118 
1119 	mtx_lock(&nl->nl_lock);
1120 	/*
1121 	 * For hash iteration.
1122 	 */
1123 	vfs_smr_enter();
1124 
1125 	/*
1126 	 * Avoid all surprises by only succeeding if we got the same entry and
1127 	 * bailing completely otherwise.
1128 	 * XXX There are no provisions to keep the vnode around, meaning we may
1129 	 * end up promoting a negative entry for a *new* vnode and returning
1130 	 * ENOENT on its account. This is the error we want to return anyway
1131 	 * and promotion is harmless.
1132 	 *
1133 	 * In particular at this point there can be a new ncp which matches the
1134 	 * search but hashes to a different neglist.
1135 	 */
1136 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1137 		if (ncp == oncp)
1138 			break;
1139 	}
1140 
1141 	/*
1142 	 * No match to begin with.
1143 	 */
1144 	if (__predict_false(ncp == NULL)) {
1145 		goto out_abort;
1146 	}
1147 
1148 	/*
1149 	 * The newly found entry may be something different...
1150 	 */
1151 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1152 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1153 		goto out_abort;
1154 	}
1155 
1156 	/*
1157 	 * ... and not even negative.
1158 	 */
1159 	nc_flag = atomic_load_char(&ncp->nc_flag);
1160 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1161 		goto out_abort;
1162 	}
1163 
1164 	if (!cache_ncp_canuse(ncp)) {
1165 		goto out_abort;
1166 	}
1167 
1168 	cache_neg_promote_locked(ncp);
1169 	cache_neg_hit_finish(ncp);
1170 	vfs_smr_exit();
1171 	mtx_unlock(&nl->nl_lock);
1172 	return (true);
1173 out_abort:
1174 	vfs_smr_exit();
1175 	mtx_unlock(&nl->nl_lock);
1176 	return (false);
1177 }
1178 
1179 static void
1180 cache_neg_promote(struct namecache *ncp)
1181 {
1182 	struct neglist *nl;
1183 
1184 	nl = NCP2NEGLIST(ncp);
1185 	mtx_lock(&nl->nl_lock);
1186 	cache_neg_promote_locked(ncp);
1187 	mtx_unlock(&nl->nl_lock);
1188 }
1189 
1190 static void
1191 cache_neg_insert(struct namecache *ncp)
1192 {
1193 	struct neglist *nl;
1194 
1195 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1196 	cache_assert_bucket_locked(ncp);
1197 	nl = NCP2NEGLIST(ncp);
1198 	mtx_lock(&nl->nl_lock);
1199 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1200 	mtx_unlock(&nl->nl_lock);
1201 	atomic_add_long(&numneg, 1);
1202 }
1203 
1204 static void
1205 cache_neg_remove(struct namecache *ncp)
1206 {
1207 	struct neglist *nl;
1208 	struct negstate *ns;
1209 
1210 	cache_assert_bucket_locked(ncp);
1211 	nl = NCP2NEGLIST(ncp);
1212 	ns = NCP2NEGSTATE(ncp);
1213 	mtx_lock(&nl->nl_lock);
1214 	if ((ns->neg_flag & NEG_HOT) != 0) {
1215 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1216 		nl->nl_hotnum--;
1217 	} else {
1218 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1219 	}
1220 	mtx_unlock(&nl->nl_lock);
1221 	atomic_subtract_long(&numneg, 1);
1222 }
1223 
1224 static struct neglist *
1225 cache_neg_evict_select_list(void)
1226 {
1227 	struct neglist *nl;
1228 	u_int c;
1229 
1230 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1231 	nl = &neglists[c % numneglists];
1232 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1233 		counter_u64_add(neg_evict_skipped_contended, 1);
1234 		return (NULL);
1235 	}
1236 	return (nl);
1237 }
1238 
1239 static struct namecache *
1240 cache_neg_evict_select_entry(struct neglist *nl)
1241 {
1242 	struct namecache *ncp, *lncp;
1243 	struct negstate *ns, *lns;
1244 	int i;
1245 
1246 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1247 	mtx_assert(&nl->nl_lock, MA_OWNED);
1248 	ncp = TAILQ_FIRST(&nl->nl_list);
1249 	if (ncp == NULL)
1250 		return (NULL);
1251 	lncp = ncp;
1252 	lns = NCP2NEGSTATE(lncp);
1253 	for (i = 1; i < 4; i++) {
1254 		ncp = TAILQ_NEXT(ncp, nc_dst);
1255 		if (ncp == NULL)
1256 			break;
1257 		ns = NCP2NEGSTATE(ncp);
1258 		if (ns->neg_hit < lns->neg_hit) {
1259 			lncp = ncp;
1260 			lns = ns;
1261 		}
1262 	}
1263 	return (lncp);
1264 }
1265 
1266 static bool
1267 cache_neg_evict(void)
1268 {
1269 	struct namecache *ncp, *ncp2;
1270 	struct neglist *nl;
1271 	struct vnode *dvp;
1272 	struct mtx *dvlp;
1273 	struct mtx *blp;
1274 	uint32_t hash;
1275 	u_char nlen;
1276 	bool evicted;
1277 
1278 	nl = cache_neg_evict_select_list();
1279 	if (nl == NULL) {
1280 		return (false);
1281 	}
1282 
1283 	mtx_lock(&nl->nl_lock);
1284 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1285 	if (ncp != NULL) {
1286 		cache_neg_demote_locked(ncp);
1287 	}
1288 	ncp = cache_neg_evict_select_entry(nl);
1289 	if (ncp == NULL) {
1290 		counter_u64_add(neg_evict_skipped_empty, 1);
1291 		mtx_unlock(&nl->nl_lock);
1292 		mtx_unlock(&nl->nl_evict_lock);
1293 		return (false);
1294 	}
1295 	nlen = ncp->nc_nlen;
1296 	dvp = ncp->nc_dvp;
1297 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1298 	dvlp = VP2VNODELOCK(dvp);
1299 	blp = HASH2BUCKETLOCK(hash);
1300 	mtx_unlock(&nl->nl_lock);
1301 	mtx_unlock(&nl->nl_evict_lock);
1302 	mtx_lock(dvlp);
1303 	mtx_lock(blp);
1304 	/*
1305 	 * Note that since all locks were dropped above, the entry may be
1306 	 * gone or reallocated to be something else.
1307 	 */
1308 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1309 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1310 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1311 			break;
1312 	}
1313 	if (ncp2 == NULL) {
1314 		counter_u64_add(neg_evict_skipped_missed, 1);
1315 		ncp = NULL;
1316 		evicted = false;
1317 	} else {
1318 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1319 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1320 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1321 		    ncp->nc_name);
1322 		cache_zap_locked(ncp);
1323 		counter_u64_add(neg_evicted, 1);
1324 		evicted = true;
1325 	}
1326 	mtx_unlock(blp);
1327 	mtx_unlock(dvlp);
1328 	if (ncp != NULL)
1329 		cache_free(ncp);
1330 	return (evicted);
1331 }
1332 
1333 /*
1334  * Maybe evict a negative entry to create more room.
1335  *
1336  * The ncnegfactor parameter limits what fraction of the total count
1337  * can comprise of negative entries. However, if the cache is just
1338  * warming up this leads to excessive evictions.  As such, ncnegminpct
1339  * (recomputed to neg_min) dictates whether the above should be
1340  * applied.
1341  *
1342  * Try evicting if the cache is close to full capacity regardless of
1343  * other considerations.
1344  */
1345 static bool
1346 cache_neg_evict_cond(u_long lnumcache)
1347 {
1348 	u_long lnumneg;
1349 
1350 	if (ncsize - 1000 < lnumcache)
1351 		goto out_evict;
1352 	lnumneg = atomic_load_long(&numneg);
1353 	if (lnumneg < neg_min)
1354 		return (false);
1355 	if (lnumneg * ncnegfactor < lnumcache)
1356 		return (false);
1357 out_evict:
1358 	return (cache_neg_evict());
1359 }
1360 
1361 /*
1362  * cache_zap_locked():
1363  *
1364  *   Removes a namecache entry from cache, whether it contains an actual
1365  *   pointer to a vnode or if it is just a negative cache entry.
1366  */
1367 static void
1368 cache_zap_locked(struct namecache *ncp)
1369 {
1370 	struct nchashhead *ncpp;
1371 
1372 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1373 		cache_assert_vnode_locked(ncp->nc_vp);
1374 	cache_assert_vnode_locked(ncp->nc_dvp);
1375 	cache_assert_bucket_locked(ncp);
1376 
1377 	cache_ncp_invalidate(ncp);
1378 
1379 	ncpp = NCP2BUCKET(ncp);
1380 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1381 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1382 		SDT_PROBE3(vfs, namecache, zap, done, ncp->nc_dvp,
1383 		    ncp->nc_name, ncp->nc_vp);
1384 		TAILQ_REMOVE(&ncp->nc_vp->v_cache_dst, ncp, nc_dst);
1385 		if (ncp == ncp->nc_vp->v_cache_dd) {
1386 			vn_seqc_write_begin_unheld(ncp->nc_vp);
1387 			ncp->nc_vp->v_cache_dd = NULL;
1388 			vn_seqc_write_end(ncp->nc_vp);
1389 		}
1390 	} else {
1391 		SDT_PROBE2(vfs, namecache, zap_negative, done, ncp->nc_dvp,
1392 		    ncp->nc_name);
1393 		cache_neg_remove(ncp);
1394 	}
1395 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1396 		if (ncp == ncp->nc_dvp->v_cache_dd) {
1397 			vn_seqc_write_begin_unheld(ncp->nc_dvp);
1398 			ncp->nc_dvp->v_cache_dd = NULL;
1399 			vn_seqc_write_end(ncp->nc_dvp);
1400 		}
1401 	} else {
1402 		LIST_REMOVE(ncp, nc_src);
1403 		if (LIST_EMPTY(&ncp->nc_dvp->v_cache_src)) {
1404 			ncp->nc_flag |= NCF_DVDROP;
1405 		}
1406 	}
1407 }
1408 
1409 static void
1410 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1411 {
1412 	struct mtx *blp;
1413 
1414 	MPASS(ncp->nc_dvp == vp);
1415 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1416 	cache_assert_vnode_locked(vp);
1417 
1418 	blp = NCP2BUCKETLOCK(ncp);
1419 	mtx_lock(blp);
1420 	cache_zap_locked(ncp);
1421 	mtx_unlock(blp);
1422 }
1423 
1424 static bool
1425 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1426     struct mtx **vlpp)
1427 {
1428 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1429 	struct mtx *blp;
1430 
1431 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1432 	cache_assert_vnode_locked(vp);
1433 
1434 	if (ncp->nc_flag & NCF_NEGATIVE) {
1435 		if (*vlpp != NULL) {
1436 			mtx_unlock(*vlpp);
1437 			*vlpp = NULL;
1438 		}
1439 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1440 		return (true);
1441 	}
1442 
1443 	pvlp = VP2VNODELOCK(vp);
1444 	blp = NCP2BUCKETLOCK(ncp);
1445 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1446 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1447 
1448 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1449 		to_unlock = *vlpp;
1450 		*vlpp = NULL;
1451 	} else {
1452 		if (*vlpp != NULL) {
1453 			mtx_unlock(*vlpp);
1454 			*vlpp = NULL;
1455 		}
1456 		cache_sort_vnodes(&vlp1, &vlp2);
1457 		if (vlp1 == pvlp) {
1458 			mtx_lock(vlp2);
1459 			to_unlock = vlp2;
1460 		} else {
1461 			if (!mtx_trylock(vlp1))
1462 				goto out_relock;
1463 			to_unlock = vlp1;
1464 		}
1465 	}
1466 	mtx_lock(blp);
1467 	cache_zap_locked(ncp);
1468 	mtx_unlock(blp);
1469 	if (to_unlock != NULL)
1470 		mtx_unlock(to_unlock);
1471 	return (true);
1472 
1473 out_relock:
1474 	mtx_unlock(vlp2);
1475 	mtx_lock(vlp1);
1476 	mtx_lock(vlp2);
1477 	MPASS(*vlpp == NULL);
1478 	*vlpp = vlp1;
1479 	return (false);
1480 }
1481 
1482 /*
1483  * If trylocking failed we can get here. We know enough to take all needed locks
1484  * in the right order and re-lookup the entry.
1485  */
1486 static int
1487 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1488     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1489     struct mtx *blp)
1490 {
1491 	struct namecache *rncp;
1492 
1493 	cache_assert_bucket_unlocked(ncp);
1494 
1495 	cache_sort_vnodes(&dvlp, &vlp);
1496 	cache_lock_vnodes(dvlp, vlp);
1497 	mtx_lock(blp);
1498 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1499 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1500 		    rncp->nc_nlen == cnp->cn_namelen &&
1501 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1502 			break;
1503 	}
1504 	if (rncp != NULL) {
1505 		cache_zap_locked(rncp);
1506 		mtx_unlock(blp);
1507 		cache_unlock_vnodes(dvlp, vlp);
1508 		counter_u64_add(zap_bucket_relock_success, 1);
1509 		return (0);
1510 	}
1511 
1512 	mtx_unlock(blp);
1513 	cache_unlock_vnodes(dvlp, vlp);
1514 	return (EAGAIN);
1515 }
1516 
1517 static int __noinline
1518 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1519     uint32_t hash, struct mtx *blp)
1520 {
1521 	struct mtx *dvlp, *vlp;
1522 	struct vnode *dvp;
1523 
1524 	cache_assert_bucket_locked(ncp);
1525 
1526 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1527 	vlp = NULL;
1528 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1529 		vlp = VP2VNODELOCK(ncp->nc_vp);
1530 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1531 		cache_zap_locked(ncp);
1532 		mtx_unlock(blp);
1533 		cache_unlock_vnodes(dvlp, vlp);
1534 		return (0);
1535 	}
1536 
1537 	dvp = ncp->nc_dvp;
1538 	mtx_unlock(blp);
1539 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1540 }
1541 
1542 static __noinline int
1543 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1544 {
1545 	struct namecache *ncp;
1546 	struct mtx *blp;
1547 	struct mtx *dvlp, *dvlp2;
1548 	uint32_t hash;
1549 	int error;
1550 
1551 	if (cnp->cn_namelen == 2 &&
1552 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1553 		dvlp = VP2VNODELOCK(dvp);
1554 		dvlp2 = NULL;
1555 		mtx_lock(dvlp);
1556 retry_dotdot:
1557 		ncp = dvp->v_cache_dd;
1558 		if (ncp == NULL) {
1559 			mtx_unlock(dvlp);
1560 			if (dvlp2 != NULL)
1561 				mtx_unlock(dvlp2);
1562 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1563 			return (0);
1564 		}
1565 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1566 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1567 				goto retry_dotdot;
1568 			MPASS(dvp->v_cache_dd == NULL);
1569 			mtx_unlock(dvlp);
1570 			if (dvlp2 != NULL)
1571 				mtx_unlock(dvlp2);
1572 			cache_free(ncp);
1573 		} else {
1574 			vn_seqc_write_begin(dvp);
1575 			dvp->v_cache_dd = NULL;
1576 			vn_seqc_write_end(dvp);
1577 			mtx_unlock(dvlp);
1578 			if (dvlp2 != NULL)
1579 				mtx_unlock(dvlp2);
1580 		}
1581 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1582 		return (1);
1583 	}
1584 
1585 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1586 	blp = HASH2BUCKETLOCK(hash);
1587 retry:
1588 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1589 		goto out_no_entry;
1590 
1591 	mtx_lock(blp);
1592 
1593 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1594 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1595 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1596 			break;
1597 	}
1598 
1599 	if (ncp == NULL) {
1600 		mtx_unlock(blp);
1601 		goto out_no_entry;
1602 	}
1603 
1604 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1605 	if (__predict_false(error != 0)) {
1606 		zap_bucket_fail++;
1607 		goto retry;
1608 	}
1609 	counter_u64_add(numposzaps, 1);
1610 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1611 	cache_free(ncp);
1612 	return (1);
1613 out_no_entry:
1614 	counter_u64_add(nummisszap, 1);
1615 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1616 	return (0);
1617 }
1618 
1619 static int __noinline
1620 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1621     struct timespec *tsp, int *ticksp)
1622 {
1623 	int ltype;
1624 
1625 	*vpp = dvp;
1626 	counter_u64_add(dothits, 1);
1627 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1628 	if (tsp != NULL)
1629 		timespecclear(tsp);
1630 	if (ticksp != NULL)
1631 		*ticksp = ticks;
1632 	vrefact(*vpp);
1633 	/*
1634 	 * When we lookup "." we still can be asked to lock it
1635 	 * differently...
1636 	 */
1637 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1638 	if (ltype != VOP_ISLOCKED(*vpp)) {
1639 		if (ltype == LK_EXCLUSIVE) {
1640 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1641 			if (VN_IS_DOOMED((*vpp))) {
1642 				/* forced unmount */
1643 				vrele(*vpp);
1644 				*vpp = NULL;
1645 				return (ENOENT);
1646 			}
1647 		} else
1648 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1649 	}
1650 	return (-1);
1651 }
1652 
1653 static int __noinline
1654 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1655     struct timespec *tsp, int *ticksp)
1656 {
1657 	struct namecache_ts *ncp_ts;
1658 	struct namecache *ncp;
1659 	struct mtx *dvlp;
1660 	enum vgetstate vs;
1661 	int error, ltype;
1662 	bool whiteout;
1663 
1664 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1665 
1666 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1667 		cache_remove_cnp(dvp, cnp);
1668 		return (0);
1669 	}
1670 
1671 	counter_u64_add(dotdothits, 1);
1672 retry:
1673 	dvlp = VP2VNODELOCK(dvp);
1674 	mtx_lock(dvlp);
1675 	ncp = dvp->v_cache_dd;
1676 	if (ncp == NULL) {
1677 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, "..", NULL);
1678 		mtx_unlock(dvlp);
1679 		return (0);
1680 	}
1681 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1682 		if (ncp->nc_flag & NCF_NEGATIVE)
1683 			*vpp = NULL;
1684 		else
1685 			*vpp = ncp->nc_vp;
1686 	} else
1687 		*vpp = ncp->nc_dvp;
1688 	if (*vpp == NULL)
1689 		goto negative_success;
1690 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1691 	cache_out_ts(ncp, tsp, ticksp);
1692 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1693 	    NCF_DTS && tsp != NULL) {
1694 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1695 		*tsp = ncp_ts->nc_dotdottime;
1696 	}
1697 
1698 	MPASS(dvp != *vpp);
1699 	ltype = VOP_ISLOCKED(dvp);
1700 	VOP_UNLOCK(dvp);
1701 	vs = vget_prep(*vpp);
1702 	mtx_unlock(dvlp);
1703 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1704 	vn_lock(dvp, ltype | LK_RETRY);
1705 	if (VN_IS_DOOMED(dvp)) {
1706 		if (error == 0)
1707 			vput(*vpp);
1708 		*vpp = NULL;
1709 		return (ENOENT);
1710 	}
1711 	if (error) {
1712 		*vpp = NULL;
1713 		goto retry;
1714 	}
1715 	return (-1);
1716 negative_success:
1717 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1718 		if (cnp->cn_flags & ISLASTCN) {
1719 			counter_u64_add(numnegzaps, 1);
1720 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1721 			mtx_unlock(dvlp);
1722 			cache_free(ncp);
1723 			return (0);
1724 		}
1725 	}
1726 
1727 	whiteout = (ncp->nc_flag & NCF_WHITE);
1728 	cache_out_ts(ncp, tsp, ticksp);
1729 	if (cache_neg_hit_prep(ncp))
1730 		cache_neg_promote(ncp);
1731 	else
1732 		cache_neg_hit_finish(ncp);
1733 	mtx_unlock(dvlp);
1734 	if (whiteout)
1735 		cnp->cn_flags |= ISWHITEOUT;
1736 	return (ENOENT);
1737 }
1738 
1739 /**
1740  * Lookup a name in the name cache
1741  *
1742  * # Arguments
1743  *
1744  * - dvp:	Parent directory in which to search.
1745  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1746  * - cnp:	Parameters of the name search.  The most interesting bits of
1747  *   		the cn_flags field have the following meanings:
1748  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1749  *   			it up.
1750  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1751  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1752  *   		or negative) lookup, tsp will be filled with any timespec that
1753  *   		was stored when this cache entry was created.  However, it will
1754  *   		be clear for "." entries.
1755  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1756  *   		(positive or negative) lookup, it will contain the ticks value
1757  *   		that was current when the cache entry was created, unless cnp
1758  *   		was ".".
1759  *
1760  * Either both tsp and ticks have to be provided or neither of them.
1761  *
1762  * # Returns
1763  *
1764  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1765  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1766  *		to a forced unmount.  vpp will not be modified.  If the entry
1767  *		is a whiteout, then the ISWHITEOUT flag will be set in
1768  *		cnp->cn_flags.
1769  * - 0:		A cache miss.  vpp will not be modified.
1770  *
1771  * # Locking
1772  *
1773  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1774  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1775  * lock is not recursively acquired.
1776  */
1777 static int __noinline
1778 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1779     struct timespec *tsp, int *ticksp)
1780 {
1781 	struct namecache *ncp;
1782 	struct mtx *blp;
1783 	uint32_t hash;
1784 	enum vgetstate vs;
1785 	int error;
1786 	bool whiteout;
1787 
1788 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1789 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1790 
1791 retry:
1792 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1793 	blp = HASH2BUCKETLOCK(hash);
1794 	mtx_lock(blp);
1795 
1796 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1797 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1798 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1799 			break;
1800 	}
1801 
1802 	if (__predict_false(ncp == NULL)) {
1803 		mtx_unlock(blp);
1804 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1805 		    NULL);
1806 		counter_u64_add(nummiss, 1);
1807 		return (0);
1808 	}
1809 
1810 	if (ncp->nc_flag & NCF_NEGATIVE)
1811 		goto negative_success;
1812 
1813 	counter_u64_add(numposhits, 1);
1814 	*vpp = ncp->nc_vp;
1815 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1816 	cache_out_ts(ncp, tsp, ticksp);
1817 	MPASS(dvp != *vpp);
1818 	vs = vget_prep(*vpp);
1819 	mtx_unlock(blp);
1820 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1821 	if (error) {
1822 		*vpp = NULL;
1823 		goto retry;
1824 	}
1825 	return (-1);
1826 negative_success:
1827 	/*
1828 	 * We don't get here with regular lookup apart from corner cases.
1829 	 */
1830 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
1831 		if (cnp->cn_flags & ISLASTCN) {
1832 			counter_u64_add(numnegzaps, 1);
1833 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1834 			if (__predict_false(error != 0)) {
1835 				zap_bucket_fail2++;
1836 				goto retry;
1837 			}
1838 			cache_free(ncp);
1839 			return (0);
1840 		}
1841 	}
1842 
1843 	whiteout = (ncp->nc_flag & NCF_WHITE);
1844 	cache_out_ts(ncp, tsp, ticksp);
1845 	if (cache_neg_hit_prep(ncp))
1846 		cache_neg_promote(ncp);
1847 	else
1848 		cache_neg_hit_finish(ncp);
1849 	mtx_unlock(blp);
1850 	if (whiteout)
1851 		cnp->cn_flags |= ISWHITEOUT;
1852 	return (ENOENT);
1853 }
1854 
1855 int
1856 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1857     struct timespec *tsp, int *ticksp)
1858 {
1859 	struct namecache *ncp;
1860 	uint32_t hash;
1861 	enum vgetstate vs;
1862 	int error;
1863 	bool whiteout, neg_promote;
1864 	u_short nc_flag;
1865 
1866 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
1867 
1868 #ifdef DEBUG_CACHE
1869 	if (__predict_false(!doingcache)) {
1870 		cnp->cn_flags &= ~MAKEENTRY;
1871 		return (0);
1872 	}
1873 #endif
1874 
1875 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
1876 		if (cnp->cn_namelen == 1)
1877 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
1878 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
1879 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
1880 	}
1881 
1882 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1883 
1884 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
1885 		cache_remove_cnp(dvp, cnp);
1886 		return (0);
1887 	}
1888 
1889 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1890 	vfs_smr_enter();
1891 
1892 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1893 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1894 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1895 			break;
1896 	}
1897 
1898 	if (__predict_false(ncp == NULL)) {
1899 		vfs_smr_exit();
1900 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1901 		    NULL);
1902 		counter_u64_add(nummiss, 1);
1903 		return (0);
1904 	}
1905 
1906 	nc_flag = atomic_load_char(&ncp->nc_flag);
1907 	if (nc_flag & NCF_NEGATIVE)
1908 		goto negative_success;
1909 
1910 	counter_u64_add(numposhits, 1);
1911 	*vpp = ncp->nc_vp;
1912 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1913 	cache_out_ts(ncp, tsp, ticksp);
1914 	MPASS(dvp != *vpp);
1915 	if (!cache_ncp_canuse(ncp)) {
1916 		vfs_smr_exit();
1917 		*vpp = NULL;
1918 		goto out_fallback;
1919 	}
1920 	vs = vget_prep_smr(*vpp);
1921 	vfs_smr_exit();
1922 	if (__predict_false(vs == VGET_NONE)) {
1923 		*vpp = NULL;
1924 		goto out_fallback;
1925 	}
1926 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1927 	if (error) {
1928 		*vpp = NULL;
1929 		goto out_fallback;
1930 	}
1931 	return (-1);
1932 negative_success:
1933 	if (cnp->cn_nameiop == CREATE) {
1934 		if (cnp->cn_flags & ISLASTCN) {
1935 			vfs_smr_exit();
1936 			goto out_fallback;
1937 		}
1938 	}
1939 
1940 	cache_out_ts(ncp, tsp, ticksp);
1941 	whiteout = (ncp->nc_flag & NCF_WHITE);
1942 	neg_promote = cache_neg_hit_prep(ncp);
1943 	if (!cache_ncp_canuse(ncp)) {
1944 		cache_neg_hit_abort(ncp);
1945 		vfs_smr_exit();
1946 		goto out_fallback;
1947 	}
1948 	if (neg_promote) {
1949 		vfs_smr_exit();
1950 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
1951 			goto out_fallback;
1952 	} else {
1953 		cache_neg_hit_finish(ncp);
1954 		vfs_smr_exit();
1955 	}
1956 	if (whiteout)
1957 		cnp->cn_flags |= ISWHITEOUT;
1958 	return (ENOENT);
1959 out_fallback:
1960 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
1961 }
1962 
1963 struct celockstate {
1964 	struct mtx *vlp[3];
1965 	struct mtx *blp[2];
1966 };
1967 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
1968 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
1969 
1970 static inline void
1971 cache_celockstate_init(struct celockstate *cel)
1972 {
1973 
1974 	bzero(cel, sizeof(*cel));
1975 }
1976 
1977 static void
1978 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
1979     struct vnode *dvp)
1980 {
1981 	struct mtx *vlp1, *vlp2;
1982 
1983 	MPASS(cel->vlp[0] == NULL);
1984 	MPASS(cel->vlp[1] == NULL);
1985 	MPASS(cel->vlp[2] == NULL);
1986 
1987 	MPASS(vp != NULL || dvp != NULL);
1988 
1989 	vlp1 = VP2VNODELOCK(vp);
1990 	vlp2 = VP2VNODELOCK(dvp);
1991 	cache_sort_vnodes(&vlp1, &vlp2);
1992 
1993 	if (vlp1 != NULL) {
1994 		mtx_lock(vlp1);
1995 		cel->vlp[0] = vlp1;
1996 	}
1997 	mtx_lock(vlp2);
1998 	cel->vlp[1] = vlp2;
1999 }
2000 
2001 static void
2002 cache_unlock_vnodes_cel(struct celockstate *cel)
2003 {
2004 
2005 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2006 
2007 	if (cel->vlp[0] != NULL)
2008 		mtx_unlock(cel->vlp[0]);
2009 	if (cel->vlp[1] != NULL)
2010 		mtx_unlock(cel->vlp[1]);
2011 	if (cel->vlp[2] != NULL)
2012 		mtx_unlock(cel->vlp[2]);
2013 }
2014 
2015 static bool
2016 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2017 {
2018 	struct mtx *vlp;
2019 	bool ret;
2020 
2021 	cache_assert_vlp_locked(cel->vlp[0]);
2022 	cache_assert_vlp_locked(cel->vlp[1]);
2023 	MPASS(cel->vlp[2] == NULL);
2024 
2025 	MPASS(vp != NULL);
2026 	vlp = VP2VNODELOCK(vp);
2027 
2028 	ret = true;
2029 	if (vlp >= cel->vlp[1]) {
2030 		mtx_lock(vlp);
2031 	} else {
2032 		if (mtx_trylock(vlp))
2033 			goto out;
2034 		cache_lock_vnodes_cel_3_failures++;
2035 		cache_unlock_vnodes_cel(cel);
2036 		if (vlp < cel->vlp[0]) {
2037 			mtx_lock(vlp);
2038 			mtx_lock(cel->vlp[0]);
2039 			mtx_lock(cel->vlp[1]);
2040 		} else {
2041 			if (cel->vlp[0] != NULL)
2042 				mtx_lock(cel->vlp[0]);
2043 			mtx_lock(vlp);
2044 			mtx_lock(cel->vlp[1]);
2045 		}
2046 		ret = false;
2047 	}
2048 out:
2049 	cel->vlp[2] = vlp;
2050 	return (ret);
2051 }
2052 
2053 static void
2054 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2055     struct mtx *blp2)
2056 {
2057 
2058 	MPASS(cel->blp[0] == NULL);
2059 	MPASS(cel->blp[1] == NULL);
2060 
2061 	cache_sort_vnodes(&blp1, &blp2);
2062 
2063 	if (blp1 != NULL) {
2064 		mtx_lock(blp1);
2065 		cel->blp[0] = blp1;
2066 	}
2067 	mtx_lock(blp2);
2068 	cel->blp[1] = blp2;
2069 }
2070 
2071 static void
2072 cache_unlock_buckets_cel(struct celockstate *cel)
2073 {
2074 
2075 	if (cel->blp[0] != NULL)
2076 		mtx_unlock(cel->blp[0]);
2077 	mtx_unlock(cel->blp[1]);
2078 }
2079 
2080 /*
2081  * Lock part of the cache affected by the insertion.
2082  *
2083  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2084  * However, insertion can result in removal of an old entry. In this
2085  * case we have an additional vnode and bucketlock pair to lock.
2086  *
2087  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2088  * preserving the locking order (smaller address first).
2089  */
2090 static void
2091 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2092     uint32_t hash)
2093 {
2094 	struct namecache *ncp;
2095 	struct mtx *blps[2];
2096 
2097 	blps[0] = HASH2BUCKETLOCK(hash);
2098 	for (;;) {
2099 		blps[1] = NULL;
2100 		cache_lock_vnodes_cel(cel, dvp, vp);
2101 		if (vp == NULL || vp->v_type != VDIR)
2102 			break;
2103 		ncp = vp->v_cache_dd;
2104 		if (ncp == NULL)
2105 			break;
2106 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2107 			break;
2108 		MPASS(ncp->nc_dvp == vp);
2109 		blps[1] = NCP2BUCKETLOCK(ncp);
2110 		if (ncp->nc_flag & NCF_NEGATIVE)
2111 			break;
2112 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2113 			break;
2114 		/*
2115 		 * All vnodes got re-locked. Re-validate the state and if
2116 		 * nothing changed we are done. Otherwise restart.
2117 		 */
2118 		if (ncp == vp->v_cache_dd &&
2119 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2120 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2121 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2122 			break;
2123 		cache_unlock_vnodes_cel(cel);
2124 		cel->vlp[0] = NULL;
2125 		cel->vlp[1] = NULL;
2126 		cel->vlp[2] = NULL;
2127 	}
2128 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2129 }
2130 
2131 static void
2132 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2133     uint32_t hash)
2134 {
2135 	struct namecache *ncp;
2136 	struct mtx *blps[2];
2137 
2138 	blps[0] = HASH2BUCKETLOCK(hash);
2139 	for (;;) {
2140 		blps[1] = NULL;
2141 		cache_lock_vnodes_cel(cel, dvp, vp);
2142 		ncp = dvp->v_cache_dd;
2143 		if (ncp == NULL)
2144 			break;
2145 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2146 			break;
2147 		MPASS(ncp->nc_dvp == dvp);
2148 		blps[1] = NCP2BUCKETLOCK(ncp);
2149 		if (ncp->nc_flag & NCF_NEGATIVE)
2150 			break;
2151 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2152 			break;
2153 		if (ncp == dvp->v_cache_dd &&
2154 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2155 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2156 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2157 			break;
2158 		cache_unlock_vnodes_cel(cel);
2159 		cel->vlp[0] = NULL;
2160 		cel->vlp[1] = NULL;
2161 		cel->vlp[2] = NULL;
2162 	}
2163 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2164 }
2165 
2166 static void
2167 cache_enter_unlock(struct celockstate *cel)
2168 {
2169 
2170 	cache_unlock_buckets_cel(cel);
2171 	cache_unlock_vnodes_cel(cel);
2172 }
2173 
2174 static void __noinline
2175 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2176     struct componentname *cnp)
2177 {
2178 	struct celockstate cel;
2179 	struct namecache *ncp;
2180 	uint32_t hash;
2181 	int len;
2182 
2183 	if (dvp->v_cache_dd == NULL)
2184 		return;
2185 	len = cnp->cn_namelen;
2186 	cache_celockstate_init(&cel);
2187 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2188 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2189 	vn_seqc_write_begin(dvp);
2190 	ncp = dvp->v_cache_dd;
2191 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2192 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2193 		cache_zap_locked(ncp);
2194 	} else {
2195 		ncp = NULL;
2196 	}
2197 	dvp->v_cache_dd = NULL;
2198 	vn_seqc_write_end(dvp);
2199 	cache_enter_unlock(&cel);
2200 	if (ncp != NULL)
2201 		cache_free(ncp);
2202 }
2203 
2204 /*
2205  * Add an entry to the cache.
2206  */
2207 void
2208 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2209     struct timespec *tsp, struct timespec *dtsp)
2210 {
2211 	struct celockstate cel;
2212 	struct namecache *ncp, *n2, *ndd;
2213 	struct namecache_ts *ncp_ts;
2214 	struct nchashhead *ncpp;
2215 	uint32_t hash;
2216 	int flag;
2217 	int len;
2218 
2219 	VNPASS(dvp != vp, dvp);
2220 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2221 	VNPASS(dvp->v_type != VNON, dvp);
2222 	if (vp != NULL) {
2223 		VNPASS(!VN_IS_DOOMED(vp), vp);
2224 		VNPASS(vp->v_type != VNON, vp);
2225 	}
2226 
2227 #ifdef DEBUG_CACHE
2228 	if (__predict_false(!doingcache))
2229 		return;
2230 #endif
2231 
2232 	flag = 0;
2233 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2234 		if (cnp->cn_namelen == 1)
2235 			return;
2236 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2237 			cache_enter_dotdot_prep(dvp, vp, cnp);
2238 			flag = NCF_ISDOTDOT;
2239 		}
2240 	}
2241 
2242 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2243 	if (ncp == NULL)
2244 		return;
2245 
2246 	cache_celockstate_init(&cel);
2247 	ndd = NULL;
2248 	ncp_ts = NULL;
2249 
2250 	/*
2251 	 * Calculate the hash key and setup as much of the new
2252 	 * namecache entry as possible before acquiring the lock.
2253 	 */
2254 	ncp->nc_flag = flag | NCF_WIP;
2255 	ncp->nc_vp = vp;
2256 	if (vp == NULL)
2257 		cache_neg_init(ncp);
2258 	ncp->nc_dvp = dvp;
2259 	if (tsp != NULL) {
2260 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2261 		ncp_ts->nc_time = *tsp;
2262 		ncp_ts->nc_ticks = ticks;
2263 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2264 		if (dtsp != NULL) {
2265 			ncp_ts->nc_dotdottime = *dtsp;
2266 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2267 		}
2268 	}
2269 	len = ncp->nc_nlen = cnp->cn_namelen;
2270 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2271 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2272 	ncp->nc_name[len] = '\0';
2273 	cache_enter_lock(&cel, dvp, vp, hash);
2274 
2275 	/*
2276 	 * See if this vnode or negative entry is already in the cache
2277 	 * with this name.  This can happen with concurrent lookups of
2278 	 * the same path name.
2279 	 */
2280 	ncpp = NCHHASH(hash);
2281 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2282 		if (n2->nc_dvp == dvp &&
2283 		    n2->nc_nlen == cnp->cn_namelen &&
2284 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2285 			MPASS(cache_ncp_canuse(n2));
2286 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2287 				KASSERT(vp == NULL,
2288 				    ("%s: found entry pointing to a different vnode (%p != %p)",
2289 				    __func__, NULL, vp));
2290 			else
2291 				KASSERT(n2->nc_vp == vp,
2292 				    ("%s: found entry pointing to a different vnode (%p != %p)",
2293 				    __func__, n2->nc_vp, vp));
2294 			/*
2295 			 * Entries are supposed to be immutable unless in the
2296 			 * process of getting destroyed. Accommodating for
2297 			 * changing timestamps is possible but not worth it.
2298 			 * This should be harmless in terms of correctness, in
2299 			 * the worst case resulting in an earlier expiration.
2300 			 * Alternatively, the found entry can be replaced
2301 			 * altogether.
2302 			 */
2303 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2304 #if 0
2305 			if (tsp != NULL) {
2306 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2307 				    ("no NCF_TS"));
2308 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2309 				n2_ts->nc_time = ncp_ts->nc_time;
2310 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2311 				if (dtsp != NULL) {
2312 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2313 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2314 				}
2315 			}
2316 #endif
2317 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2318 			    vp);
2319 			goto out_unlock_free;
2320 		}
2321 	}
2322 
2323 	if (flag == NCF_ISDOTDOT) {
2324 		/*
2325 		 * See if we are trying to add .. entry, but some other lookup
2326 		 * has populated v_cache_dd pointer already.
2327 		 */
2328 		if (dvp->v_cache_dd != NULL)
2329 			goto out_unlock_free;
2330 		KASSERT(vp == NULL || vp->v_type == VDIR,
2331 		    ("wrong vnode type %p", vp));
2332 		vn_seqc_write_begin(dvp);
2333 		dvp->v_cache_dd = ncp;
2334 		vn_seqc_write_end(dvp);
2335 	}
2336 
2337 	if (vp != NULL) {
2338 		if (flag != NCF_ISDOTDOT) {
2339 			/*
2340 			 * For this case, the cache entry maps both the
2341 			 * directory name in it and the name ".." for the
2342 			 * directory's parent.
2343 			 */
2344 			vn_seqc_write_begin(vp);
2345 			if ((ndd = vp->v_cache_dd) != NULL) {
2346 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2347 					cache_zap_locked(ndd);
2348 				else
2349 					ndd = NULL;
2350 			}
2351 			vp->v_cache_dd = ncp;
2352 			vn_seqc_write_end(vp);
2353 		} else if (vp->v_type != VDIR) {
2354 			if (vp->v_cache_dd != NULL) {
2355 				vn_seqc_write_begin(vp);
2356 				vp->v_cache_dd = NULL;
2357 				vn_seqc_write_end(vp);
2358 			}
2359 		}
2360 	}
2361 
2362 	if (flag != NCF_ISDOTDOT) {
2363 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2364 			cache_hold_vnode(dvp);
2365 		}
2366 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2367 	}
2368 
2369 	/*
2370 	 * If the entry is "negative", we place it into the
2371 	 * "negative" cache queue, otherwise, we place it into the
2372 	 * destination vnode's cache entries queue.
2373 	 */
2374 	if (vp != NULL) {
2375 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2376 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2377 		    vp);
2378 	} else {
2379 		if (cnp->cn_flags & ISWHITEOUT)
2380 			ncp->nc_flag |= NCF_WHITE;
2381 		cache_neg_insert(ncp);
2382 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2383 		    ncp->nc_name);
2384 	}
2385 
2386 	/*
2387 	 * Insert the new namecache entry into the appropriate chain
2388 	 * within the cache entries table.
2389 	 */
2390 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2391 
2392 	atomic_thread_fence_rel();
2393 	/*
2394 	 * Mark the entry as fully constructed.
2395 	 * It is immutable past this point until its removal.
2396 	 */
2397 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2398 
2399 	cache_enter_unlock(&cel);
2400 	if (ndd != NULL)
2401 		cache_free(ndd);
2402 	return;
2403 out_unlock_free:
2404 	cache_enter_unlock(&cel);
2405 	cache_free(ncp);
2406 	return;
2407 }
2408 
2409 static u_int
2410 cache_roundup_2(u_int val)
2411 {
2412 	u_int res;
2413 
2414 	for (res = 1; res <= val; res <<= 1)
2415 		continue;
2416 
2417 	return (res);
2418 }
2419 
2420 static struct nchashhead *
2421 nchinittbl(u_long elements, u_long *hashmask)
2422 {
2423 	struct nchashhead *hashtbl;
2424 	u_long hashsize, i;
2425 
2426 	hashsize = cache_roundup_2(elements) / 2;
2427 
2428 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2429 	for (i = 0; i < hashsize; i++)
2430 		CK_SLIST_INIT(&hashtbl[i]);
2431 	*hashmask = hashsize - 1;
2432 	return (hashtbl);
2433 }
2434 
2435 static void
2436 ncfreetbl(struct nchashhead *hashtbl)
2437 {
2438 
2439 	free(hashtbl, M_VFSCACHE);
2440 }
2441 
2442 /*
2443  * Name cache initialization, from vfs_init() when we are booting
2444  */
2445 static void
2446 nchinit(void *dummy __unused)
2447 {
2448 	u_int i;
2449 
2450 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2451 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2452 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2453 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2454 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2455 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2456 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2457 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2458 
2459 	VFS_SMR_ZONE_SET(cache_zone_small);
2460 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2461 	VFS_SMR_ZONE_SET(cache_zone_large);
2462 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2463 
2464 	ncsize = desiredvnodes * ncsizefactor;
2465 	cache_recalc_neg_min(ncnegminpct);
2466 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2467 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2468 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2469 		ncbuckethash = 7;
2470 	if (ncbuckethash > nchash)
2471 		ncbuckethash = nchash;
2472 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2473 	    M_WAITOK | M_ZERO);
2474 	for (i = 0; i < numbucketlocks; i++)
2475 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2476 	ncvnodehash = ncbuckethash;
2477 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2478 	    M_WAITOK | M_ZERO);
2479 	for (i = 0; i < numvnodelocks; i++)
2480 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2481 
2482 	for (i = 0; i < numneglists; i++) {
2483 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2484 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2485 		TAILQ_INIT(&neglists[i].nl_list);
2486 		TAILQ_INIT(&neglists[i].nl_hotlist);
2487 	}
2488 }
2489 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2490 
2491 void
2492 cache_vnode_init(struct vnode *vp)
2493 {
2494 
2495 	LIST_INIT(&vp->v_cache_src);
2496 	TAILQ_INIT(&vp->v_cache_dst);
2497 	vp->v_cache_dd = NULL;
2498 	cache_prehash(vp);
2499 }
2500 
2501 void
2502 cache_changesize(u_long newmaxvnodes)
2503 {
2504 	struct nchashhead *new_nchashtbl, *old_nchashtbl;
2505 	u_long new_nchash, old_nchash;
2506 	struct namecache *ncp;
2507 	uint32_t hash;
2508 	u_long newncsize;
2509 	int i;
2510 
2511 	newncsize = newmaxvnodes * ncsizefactor;
2512 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2513 	if (newmaxvnodes < numbucketlocks)
2514 		newmaxvnodes = numbucketlocks;
2515 
2516 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2517 	/* If same hash table size, nothing to do */
2518 	if (nchash == new_nchash) {
2519 		ncfreetbl(new_nchashtbl);
2520 		return;
2521 	}
2522 	/*
2523 	 * Move everything from the old hash table to the new table.
2524 	 * None of the namecache entries in the table can be removed
2525 	 * because to do so, they have to be removed from the hash table.
2526 	 */
2527 	cache_lock_all_vnodes();
2528 	cache_lock_all_buckets();
2529 	old_nchashtbl = nchashtbl;
2530 	old_nchash = nchash;
2531 	nchashtbl = new_nchashtbl;
2532 	nchash = new_nchash;
2533 	for (i = 0; i <= old_nchash; i++) {
2534 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2535 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2536 			    ncp->nc_dvp);
2537 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2538 			CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2539 		}
2540 	}
2541 	ncsize = newncsize;
2542 	cache_recalc_neg_min(ncnegminpct);
2543 	cache_unlock_all_buckets();
2544 	cache_unlock_all_vnodes();
2545 	ncfreetbl(old_nchashtbl);
2546 }
2547 
2548 /*
2549  * Invalidate all entries from and to a particular vnode.
2550  */
2551 static void
2552 cache_purge_impl(struct vnode *vp)
2553 {
2554 	struct cache_freebatch batch;
2555 	struct namecache *ncp;
2556 	struct mtx *vlp, *vlp2;
2557 
2558 	TAILQ_INIT(&batch);
2559 	vlp = VP2VNODELOCK(vp);
2560 	vlp2 = NULL;
2561 	mtx_lock(vlp);
2562 retry:
2563 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2564 		ncp = LIST_FIRST(&vp->v_cache_src);
2565 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2566 			goto retry;
2567 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2568 	}
2569 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2570 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2571 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2572 			goto retry;
2573 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2574 	}
2575 	ncp = vp->v_cache_dd;
2576 	if (ncp != NULL) {
2577 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2578 		   ("lost dotdot link"));
2579 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2580 			goto retry;
2581 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2582 	}
2583 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2584 	mtx_unlock(vlp);
2585 	if (vlp2 != NULL)
2586 		mtx_unlock(vlp2);
2587 	cache_free_batch(&batch);
2588 }
2589 
2590 /*
2591  * Opportunistic check to see if there is anything to do.
2592  */
2593 static bool
2594 cache_has_entries(struct vnode *vp)
2595 {
2596 
2597 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2598 	    vp->v_cache_dd == NULL)
2599 		return (false);
2600 	return (true);
2601 }
2602 
2603 void
2604 cache_purge(struct vnode *vp)
2605 {
2606 
2607 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2608 	if (!cache_has_entries(vp))
2609 		return;
2610 	cache_purge_impl(vp);
2611 }
2612 
2613 /*
2614  * Only to be used by vgone.
2615  */
2616 void
2617 cache_purge_vgone(struct vnode *vp)
2618 {
2619 	struct mtx *vlp;
2620 
2621 	VNPASS(VN_IS_DOOMED(vp), vp);
2622 	if (cache_has_entries(vp)) {
2623 		cache_purge_impl(vp);
2624 		return;
2625 	}
2626 
2627 	/*
2628 	 * Serialize against a potential thread doing cache_purge.
2629 	 */
2630 	vlp = VP2VNODELOCK(vp);
2631 	mtx_wait_unlocked(vlp);
2632 	if (cache_has_entries(vp)) {
2633 		cache_purge_impl(vp);
2634 		return;
2635 	}
2636 	return;
2637 }
2638 
2639 /*
2640  * Invalidate all negative entries for a particular directory vnode.
2641  */
2642 void
2643 cache_purge_negative(struct vnode *vp)
2644 {
2645 	struct cache_freebatch batch;
2646 	struct namecache *ncp, *nnp;
2647 	struct mtx *vlp;
2648 
2649 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2650 	if (LIST_EMPTY(&vp->v_cache_src))
2651 		return;
2652 	TAILQ_INIT(&batch);
2653 	vlp = VP2VNODELOCK(vp);
2654 	mtx_lock(vlp);
2655 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2656 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2657 			continue;
2658 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2659 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2660 	}
2661 	mtx_unlock(vlp);
2662 	cache_free_batch(&batch);
2663 }
2664 
2665 /*
2666  * Entry points for modifying VOP operations.
2667  */
2668 void
2669 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2670     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2671 {
2672 
2673 	ASSERT_VOP_IN_SEQC(fdvp);
2674 	ASSERT_VOP_IN_SEQC(fvp);
2675 	ASSERT_VOP_IN_SEQC(tdvp);
2676 	if (tvp != NULL)
2677 		ASSERT_VOP_IN_SEQC(tvp);
2678 
2679 	cache_purge(fvp);
2680 	if (tvp != NULL) {
2681 		cache_purge(tvp);
2682 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2683 		    ("%s: lingering negative entry", __func__));
2684 	} else {
2685 		cache_remove_cnp(tdvp, tcnp);
2686 	}
2687 }
2688 
2689 void
2690 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2691 {
2692 
2693 	ASSERT_VOP_IN_SEQC(dvp);
2694 	ASSERT_VOP_IN_SEQC(vp);
2695 	cache_purge(vp);
2696 }
2697 
2698 #ifdef INVARIANTS
2699 /*
2700  * Validate that if an entry exists it matches.
2701  */
2702 void
2703 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2704 {
2705 	struct namecache *ncp;
2706 	struct mtx *blp;
2707 	uint32_t hash;
2708 
2709 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2710 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
2711 		return;
2712 	blp = HASH2BUCKETLOCK(hash);
2713 	mtx_lock(blp);
2714 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2715 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2716 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
2717 			if (ncp->nc_vp != vp)
2718 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p vp %p\n",
2719 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp,
2720 				    ncp->nc_vp);
2721 		}
2722 	}
2723 	mtx_unlock(blp);
2724 }
2725 #endif
2726 
2727 /*
2728  * Flush all entries referencing a particular filesystem.
2729  */
2730 void
2731 cache_purgevfs(struct mount *mp)
2732 {
2733 	struct vnode *vp, *mvp;
2734 
2735 	SDT_PROBE1(vfs, namecache, purgevfs, done, mp);
2736 	/*
2737 	 * Somewhat wasteful iteration over all vnodes. Would be better to
2738 	 * support filtering and avoid the interlock to begin with.
2739 	 */
2740 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2741 		if (!cache_has_entries(vp)) {
2742 			VI_UNLOCK(vp);
2743 			continue;
2744 		}
2745 		vholdl(vp);
2746 		VI_UNLOCK(vp);
2747 		cache_purge(vp);
2748 		vdrop(vp);
2749 	}
2750 }
2751 
2752 /*
2753  * Perform canonical checks and cache lookup and pass on to filesystem
2754  * through the vop_cachedlookup only if needed.
2755  */
2756 
2757 int
2758 vfs_cache_lookup(struct vop_lookup_args *ap)
2759 {
2760 	struct vnode *dvp;
2761 	int error;
2762 	struct vnode **vpp = ap->a_vpp;
2763 	struct componentname *cnp = ap->a_cnp;
2764 	int flags = cnp->cn_flags;
2765 
2766 	*vpp = NULL;
2767 	dvp = ap->a_dvp;
2768 
2769 	if (dvp->v_type != VDIR)
2770 		return (ENOTDIR);
2771 
2772 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
2773 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
2774 		return (EROFS);
2775 
2776 	error = vn_dir_check_exec(dvp, cnp);
2777 	if (error != 0)
2778 		return (error);
2779 
2780 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
2781 	if (error == 0)
2782 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
2783 	if (error == -1)
2784 		return (0);
2785 	return (error);
2786 }
2787 
2788 /* Implementation of the getcwd syscall. */
2789 int
2790 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
2791 {
2792 	char *buf, *retbuf;
2793 	size_t buflen;
2794 	int error;
2795 
2796 	buflen = uap->buflen;
2797 	if (__predict_false(buflen < 2))
2798 		return (EINVAL);
2799 	if (buflen > MAXPATHLEN)
2800 		buflen = MAXPATHLEN;
2801 
2802 	buf = uma_zalloc(namei_zone, M_WAITOK);
2803 	error = vn_getcwd(buf, &retbuf, &buflen);
2804 	if (error == 0)
2805 		error = copyout(retbuf, uap->buf, buflen);
2806 	uma_zfree(namei_zone, buf);
2807 	return (error);
2808 }
2809 
2810 int
2811 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
2812 {
2813 	struct pwd *pwd;
2814 	int error;
2815 
2816 	vfs_smr_enter();
2817 	pwd = pwd_get_smr();
2818 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
2819 	    buflen, 0);
2820 	VFS_SMR_ASSERT_NOT_ENTERED();
2821 	if (error < 0) {
2822 		pwd = pwd_hold(curthread);
2823 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
2824 		    retbuf, buflen);
2825 		pwd_drop(pwd);
2826 	}
2827 
2828 #ifdef KTRACE
2829 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
2830 		ktrnamei(*retbuf);
2831 #endif
2832 	return (error);
2833 }
2834 
2835 static int
2836 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
2837     size_t size, int flags, enum uio_seg pathseg)
2838 {
2839 	struct nameidata nd;
2840 	char *retbuf, *freebuf;
2841 	int error;
2842 
2843 	if (flags != 0)
2844 		return (EINVAL);
2845 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1,
2846 	    pathseg, path, fd, &cap_fstat_rights, td);
2847 	if ((error = namei(&nd)) != 0)
2848 		return (error);
2849 	error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size);
2850 	if (error == 0) {
2851 		error = copyout(retbuf, buf, size);
2852 		free(freebuf, M_TEMP);
2853 	}
2854 	NDFREE(&nd, 0);
2855 	return (error);
2856 }
2857 
2858 int
2859 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
2860 {
2861 
2862 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
2863 	    uap->flags, UIO_USERSPACE));
2864 }
2865 
2866 /*
2867  * Retrieve the full filesystem path that correspond to a vnode from the name
2868  * cache (if available)
2869  */
2870 int
2871 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
2872 {
2873 	struct pwd *pwd;
2874 	char *buf;
2875 	size_t buflen;
2876 	int error;
2877 
2878 	if (__predict_false(vp == NULL))
2879 		return (EINVAL);
2880 
2881 	buflen = MAXPATHLEN;
2882 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2883 	vfs_smr_enter();
2884 	pwd = pwd_get_smr();
2885 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
2886 	VFS_SMR_ASSERT_NOT_ENTERED();
2887 	if (error < 0) {
2888 		pwd = pwd_hold(curthread);
2889 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
2890 		pwd_drop(pwd);
2891 	}
2892 	if (error == 0)
2893 		*freebuf = buf;
2894 	else
2895 		free(buf, M_TEMP);
2896 	return (error);
2897 }
2898 
2899 /*
2900  * This function is similar to vn_fullpath, but it attempts to lookup the
2901  * pathname relative to the global root mount point.  This is required for the
2902  * auditing sub-system, as audited pathnames must be absolute, relative to the
2903  * global root mount point.
2904  */
2905 int
2906 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
2907 {
2908 	char *buf;
2909 	size_t buflen;
2910 	int error;
2911 
2912 	if (__predict_false(vp == NULL))
2913 		return (EINVAL);
2914 	buflen = MAXPATHLEN;
2915 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2916 	vfs_smr_enter();
2917 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
2918 	VFS_SMR_ASSERT_NOT_ENTERED();
2919 	if (error < 0) {
2920 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
2921 	}
2922 	if (error == 0)
2923 		*freebuf = buf;
2924 	else
2925 		free(buf, M_TEMP);
2926 	return (error);
2927 }
2928 
2929 static struct namecache *
2930 vn_dd_from_dst(struct vnode *vp)
2931 {
2932 	struct namecache *ncp;
2933 
2934 	cache_assert_vnode_locked(vp);
2935 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
2936 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2937 			return (ncp);
2938 	}
2939 	return (NULL);
2940 }
2941 
2942 int
2943 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
2944 {
2945 	struct vnode *dvp;
2946 	struct namecache *ncp;
2947 	struct mtx *vlp;
2948 	int error;
2949 
2950 	vlp = VP2VNODELOCK(*vp);
2951 	mtx_lock(vlp);
2952 	ncp = (*vp)->v_cache_dd;
2953 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
2954 		KASSERT(ncp == vn_dd_from_dst(*vp),
2955 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
2956 		    ncp, vn_dd_from_dst(*vp)));
2957 	} else {
2958 		ncp = vn_dd_from_dst(*vp);
2959 	}
2960 	if (ncp != NULL) {
2961 		if (*buflen < ncp->nc_nlen) {
2962 			mtx_unlock(vlp);
2963 			vrele(*vp);
2964 			counter_u64_add(numfullpathfail4, 1);
2965 			error = ENOMEM;
2966 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
2967 			    vp, NULL);
2968 			return (error);
2969 		}
2970 		*buflen -= ncp->nc_nlen;
2971 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
2972 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
2973 		    ncp->nc_name, vp);
2974 		dvp = *vp;
2975 		*vp = ncp->nc_dvp;
2976 		vref(*vp);
2977 		mtx_unlock(vlp);
2978 		vrele(dvp);
2979 		return (0);
2980 	}
2981 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
2982 
2983 	mtx_unlock(vlp);
2984 	vn_lock(*vp, LK_SHARED | LK_RETRY);
2985 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
2986 	vput(*vp);
2987 	if (error) {
2988 		counter_u64_add(numfullpathfail2, 1);
2989 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
2990 		return (error);
2991 	}
2992 
2993 	*vp = dvp;
2994 	if (VN_IS_DOOMED(dvp)) {
2995 		/* forced unmount */
2996 		vrele(dvp);
2997 		error = ENOENT;
2998 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
2999 		return (error);
3000 	}
3001 	/*
3002 	 * *vp has its use count incremented still.
3003 	 */
3004 
3005 	return (0);
3006 }
3007 
3008 /*
3009  * Resolve a directory to a pathname.
3010  *
3011  * The name of the directory can always be found in the namecache or fetched
3012  * from the filesystem. There is also guaranteed to be only one parent, meaning
3013  * we can just follow vnodes up until we find the root.
3014  *
3015  * The vnode must be referenced.
3016  */
3017 static int
3018 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3019     size_t *len, size_t addend)
3020 {
3021 #ifdef KDTRACE_HOOKS
3022 	struct vnode *startvp = vp;
3023 #endif
3024 	struct vnode *vp1;
3025 	size_t buflen;
3026 	int error;
3027 	bool slash_prefixed;
3028 
3029 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3030 	VNPASS(vp->v_usecount > 0, vp);
3031 
3032 	buflen = *len;
3033 
3034 	slash_prefixed = true;
3035 	if (addend == 0) {
3036 		MPASS(*len >= 2);
3037 		buflen--;
3038 		buf[buflen] = '\0';
3039 		slash_prefixed = false;
3040 	}
3041 
3042 	error = 0;
3043 
3044 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3045 	counter_u64_add(numfullpathcalls, 1);
3046 	while (vp != rdir && vp != rootvnode) {
3047 		/*
3048 		 * The vp vnode must be already fully constructed,
3049 		 * since it is either found in namecache or obtained
3050 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3051 		 * without obtaining the vnode lock.
3052 		 */
3053 		if ((vp->v_vflag & VV_ROOT) != 0) {
3054 			vn_lock(vp, LK_RETRY | LK_SHARED);
3055 
3056 			/*
3057 			 * With the vnode locked, check for races with
3058 			 * unmount, forced or not.  Note that we
3059 			 * already verified that vp is not equal to
3060 			 * the root vnode, which means that
3061 			 * mnt_vnodecovered can be NULL only for the
3062 			 * case of unmount.
3063 			 */
3064 			if (VN_IS_DOOMED(vp) ||
3065 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3066 			    vp1->v_mountedhere != vp->v_mount) {
3067 				vput(vp);
3068 				error = ENOENT;
3069 				SDT_PROBE3(vfs, namecache, fullpath, return,
3070 				    error, vp, NULL);
3071 				break;
3072 			}
3073 
3074 			vref(vp1);
3075 			vput(vp);
3076 			vp = vp1;
3077 			continue;
3078 		}
3079 		if (vp->v_type != VDIR) {
3080 			vrele(vp);
3081 			counter_u64_add(numfullpathfail1, 1);
3082 			error = ENOTDIR;
3083 			SDT_PROBE3(vfs, namecache, fullpath, return,
3084 			    error, vp, NULL);
3085 			break;
3086 		}
3087 		error = vn_vptocnp(&vp, buf, &buflen);
3088 		if (error)
3089 			break;
3090 		if (buflen == 0) {
3091 			vrele(vp);
3092 			error = ENOMEM;
3093 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3094 			    startvp, NULL);
3095 			break;
3096 		}
3097 		buf[--buflen] = '/';
3098 		slash_prefixed = true;
3099 	}
3100 	if (error)
3101 		return (error);
3102 	if (!slash_prefixed) {
3103 		if (buflen == 0) {
3104 			vrele(vp);
3105 			counter_u64_add(numfullpathfail4, 1);
3106 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3107 			    startvp, NULL);
3108 			return (ENOMEM);
3109 		}
3110 		buf[--buflen] = '/';
3111 	}
3112 	counter_u64_add(numfullpathfound, 1);
3113 	vrele(vp);
3114 
3115 	*retbuf = buf + buflen;
3116 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3117 	*len -= buflen;
3118 	*len += addend;
3119 	return (0);
3120 }
3121 
3122 /*
3123  * Resolve an arbitrary vnode to a pathname.
3124  *
3125  * Note 2 caveats:
3126  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3127  *   resolve to a different path than the one used to find it
3128  * - namecache is not mandatory, meaning names are not guaranteed to be added
3129  *   (in which case resolving fails)
3130  */
3131 static void __inline
3132 cache_rev_failed_impl(int *reason, int line)
3133 {
3134 
3135 	*reason = line;
3136 }
3137 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3138 
3139 static int
3140 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3141     char **retbuf, size_t *buflen, size_t addend)
3142 {
3143 #ifdef KDTRACE_HOOKS
3144 	struct vnode *startvp = vp;
3145 #endif
3146 	struct vnode *tvp;
3147 	struct mount *mp;
3148 	struct namecache *ncp;
3149 	size_t orig_buflen;
3150 	int reason;
3151 	int error;
3152 #ifdef KDTRACE_HOOKS
3153 	int i;
3154 #endif
3155 	seqc_t vp_seqc, tvp_seqc;
3156 	u_char nc_flag;
3157 
3158 	VFS_SMR_ASSERT_ENTERED();
3159 
3160 	if (!cache_fast_revlookup) {
3161 		vfs_smr_exit();
3162 		return (-1);
3163 	}
3164 
3165 	orig_buflen = *buflen;
3166 
3167 	if (addend == 0) {
3168 		MPASS(*buflen >= 2);
3169 		*buflen -= 1;
3170 		buf[*buflen] = '\0';
3171 	}
3172 
3173 	if (vp == rdir || vp == rootvnode) {
3174 		if (addend == 0) {
3175 			*buflen -= 1;
3176 			buf[*buflen] = '/';
3177 		}
3178 		goto out_ok;
3179 	}
3180 
3181 #ifdef KDTRACE_HOOKS
3182 	i = 0;
3183 #endif
3184 	error = -1;
3185 	ncp = NULL; /* for sdt probe down below */
3186 	vp_seqc = vn_seqc_read_any(vp);
3187 	if (seqc_in_modify(vp_seqc)) {
3188 		cache_rev_failed(&reason);
3189 		goto out_abort;
3190 	}
3191 
3192 	for (;;) {
3193 #ifdef KDTRACE_HOOKS
3194 		i++;
3195 #endif
3196 		if ((vp->v_vflag & VV_ROOT) != 0) {
3197 			mp = atomic_load_ptr(&vp->v_mount);
3198 			if (mp == NULL) {
3199 				cache_rev_failed(&reason);
3200 				goto out_abort;
3201 			}
3202 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3203 			tvp_seqc = vn_seqc_read_any(tvp);
3204 			if (seqc_in_modify(tvp_seqc)) {
3205 				cache_rev_failed(&reason);
3206 				goto out_abort;
3207 			}
3208 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3209 				cache_rev_failed(&reason);
3210 				goto out_abort;
3211 			}
3212 			vp = tvp;
3213 			vp_seqc = tvp_seqc;
3214 			continue;
3215 		}
3216 		ncp = atomic_load_ptr(&vp->v_cache_dd);
3217 		if (ncp == NULL) {
3218 			cache_rev_failed(&reason);
3219 			goto out_abort;
3220 		}
3221 		nc_flag = atomic_load_char(&ncp->nc_flag);
3222 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3223 			cache_rev_failed(&reason);
3224 			goto out_abort;
3225 		}
3226 		if (!cache_ncp_canuse(ncp)) {
3227 			cache_rev_failed(&reason);
3228 			goto out_abort;
3229 		}
3230 		if (ncp->nc_nlen >= *buflen) {
3231 			cache_rev_failed(&reason);
3232 			error = ENOMEM;
3233 			goto out_abort;
3234 		}
3235 		*buflen -= ncp->nc_nlen;
3236 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3237 		*buflen -= 1;
3238 		buf[*buflen] = '/';
3239 		tvp = ncp->nc_dvp;
3240 		tvp_seqc = vn_seqc_read_any(tvp);
3241 		if (seqc_in_modify(tvp_seqc)) {
3242 			cache_rev_failed(&reason);
3243 			goto out_abort;
3244 		}
3245 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3246 			cache_rev_failed(&reason);
3247 			goto out_abort;
3248 		}
3249 		vp = tvp;
3250 		vp_seqc = tvp_seqc;
3251 		if (vp == rdir || vp == rootvnode)
3252 			break;
3253 	}
3254 out_ok:
3255 	vfs_smr_exit();
3256 	*retbuf = buf + *buflen;
3257 	*buflen = orig_buflen - *buflen + addend;
3258 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3259 	return (0);
3260 
3261 out_abort:
3262 	*buflen = orig_buflen;
3263 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3264 	vfs_smr_exit();
3265 	return (error);
3266 }
3267 
3268 static int
3269 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3270     size_t *buflen)
3271 {
3272 	size_t orig_buflen, addend;
3273 	int error;
3274 
3275 	if (*buflen < 2)
3276 		return (EINVAL);
3277 
3278 	orig_buflen = *buflen;
3279 
3280 	vref(vp);
3281 	addend = 0;
3282 	if (vp->v_type != VDIR) {
3283 		*buflen -= 1;
3284 		buf[*buflen] = '\0';
3285 		error = vn_vptocnp(&vp, buf, buflen);
3286 		if (error)
3287 			return (error);
3288 		if (*buflen == 0) {
3289 			vrele(vp);
3290 			return (ENOMEM);
3291 		}
3292 		*buflen -= 1;
3293 		buf[*buflen] = '/';
3294 		addend = orig_buflen - *buflen;
3295 	}
3296 
3297 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3298 }
3299 
3300 /*
3301  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3302  *
3303  * Since the namecache does not track hardlinks, the caller is expected to first
3304  * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei.
3305  *
3306  * Then we have 2 cases:
3307  * - if the found vnode is a directory, the path can be constructed just by
3308  *   following names up the chain
3309  * - otherwise we populate the buffer with the saved name and start resolving
3310  *   from the parent
3311  */
3312 static int
3313 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf,
3314     size_t *buflen)
3315 {
3316 	char *buf, *tmpbuf;
3317 	struct pwd *pwd;
3318 	struct componentname *cnp;
3319 	struct vnode *vp;
3320 	size_t addend;
3321 	int error;
3322 	enum vtype type;
3323 
3324 	if (*buflen < 2)
3325 		return (EINVAL);
3326 	if (*buflen > MAXPATHLEN)
3327 		*buflen = MAXPATHLEN;
3328 
3329 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3330 
3331 	addend = 0;
3332 	vp = ndp->ni_vp;
3333 	/*
3334 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3335 	 *
3336 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3337 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3338 	 * If the type is VDIR (like in this very case) we can skip looking
3339 	 * at ni_dvp in the first place. However, since vnodes get passed here
3340 	 * unlocked the target may transition to doomed state (type == VBAD)
3341 	 * before we get to evaluate the condition. If this happens, we will
3342 	 * populate part of the buffer and descend to vn_fullpath_dir with
3343 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3344 	 *
3345 	 * This should be atomic_load(&vp->v_type) but it is illegal to take
3346 	 * an address of a bit field, even if said field is sized to char.
3347 	 * Work around the problem by reading the value into a full-sized enum
3348 	 * and then re-reading it with atomic_load which will still prevent
3349 	 * the compiler from re-reading down the road.
3350 	 */
3351 	type = vp->v_type;
3352 	type = atomic_load_int(&type);
3353 	if (type == VBAD) {
3354 		error = ENOENT;
3355 		goto out_bad;
3356 	}
3357 	if (type != VDIR) {
3358 		cnp = &ndp->ni_cnd;
3359 		addend = cnp->cn_namelen + 2;
3360 		if (*buflen < addend) {
3361 			error = ENOMEM;
3362 			goto out_bad;
3363 		}
3364 		*buflen -= addend;
3365 		tmpbuf = buf + *buflen;
3366 		tmpbuf[0] = '/';
3367 		memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen);
3368 		tmpbuf[addend - 1] = '\0';
3369 		vp = ndp->ni_dvp;
3370 	}
3371 
3372 	vfs_smr_enter();
3373 	pwd = pwd_get_smr();
3374 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3375 	    addend);
3376 	VFS_SMR_ASSERT_NOT_ENTERED();
3377 	if (error < 0) {
3378 		pwd = pwd_hold(curthread);
3379 		vref(vp);
3380 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3381 		    addend);
3382 		pwd_drop(pwd);
3383 		if (error != 0)
3384 			goto out_bad;
3385 	}
3386 
3387 	*freebuf = buf;
3388 
3389 	return (0);
3390 out_bad:
3391 	free(buf, M_TEMP);
3392 	return (error);
3393 }
3394 
3395 struct vnode *
3396 vn_dir_dd_ino(struct vnode *vp)
3397 {
3398 	struct namecache *ncp;
3399 	struct vnode *ddvp;
3400 	struct mtx *vlp;
3401 	enum vgetstate vs;
3402 
3403 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3404 	vlp = VP2VNODELOCK(vp);
3405 	mtx_lock(vlp);
3406 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3407 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3408 			continue;
3409 		ddvp = ncp->nc_dvp;
3410 		vs = vget_prep(ddvp);
3411 		mtx_unlock(vlp);
3412 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3413 			return (NULL);
3414 		return (ddvp);
3415 	}
3416 	mtx_unlock(vlp);
3417 	return (NULL);
3418 }
3419 
3420 int
3421 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3422 {
3423 	struct namecache *ncp;
3424 	struct mtx *vlp;
3425 	int l;
3426 
3427 	vlp = VP2VNODELOCK(vp);
3428 	mtx_lock(vlp);
3429 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3430 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3431 			break;
3432 	if (ncp == NULL) {
3433 		mtx_unlock(vlp);
3434 		return (ENOENT);
3435 	}
3436 	l = min(ncp->nc_nlen, buflen - 1);
3437 	memcpy(buf, ncp->nc_name, l);
3438 	mtx_unlock(vlp);
3439 	buf[l] = '\0';
3440 	return (0);
3441 }
3442 
3443 /*
3444  * This function updates path string to vnode's full global path
3445  * and checks the size of the new path string against the pathlen argument.
3446  *
3447  * Requires a locked, referenced vnode.
3448  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3449  *
3450  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3451  * because it falls back to the ".." lookup if the namecache lookup fails.
3452  */
3453 int
3454 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3455     u_int pathlen)
3456 {
3457 	struct nameidata nd;
3458 	struct vnode *vp1;
3459 	char *rpath, *fbuf;
3460 	int error;
3461 
3462 	ASSERT_VOP_ELOCKED(vp, __func__);
3463 
3464 	/* Construct global filesystem path from vp. */
3465 	VOP_UNLOCK(vp);
3466 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3467 
3468 	if (error != 0) {
3469 		vrele(vp);
3470 		return (error);
3471 	}
3472 
3473 	if (strlen(rpath) >= pathlen) {
3474 		vrele(vp);
3475 		error = ENAMETOOLONG;
3476 		goto out;
3477 	}
3478 
3479 	/*
3480 	 * Re-lookup the vnode by path to detect a possible rename.
3481 	 * As a side effect, the vnode is relocked.
3482 	 * If vnode was renamed, return ENOENT.
3483 	 */
3484 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
3485 	    UIO_SYSSPACE, path, td);
3486 	error = namei(&nd);
3487 	if (error != 0) {
3488 		vrele(vp);
3489 		goto out;
3490 	}
3491 	NDFREE(&nd, NDF_ONLY_PNBUF);
3492 	vp1 = nd.ni_vp;
3493 	vrele(vp);
3494 	if (vp1 == vp)
3495 		strcpy(path, rpath);
3496 	else {
3497 		vput(vp1);
3498 		error = ENOENT;
3499 	}
3500 
3501 out:
3502 	free(fbuf, M_TEMP);
3503 	return (error);
3504 }
3505 
3506 #ifdef DDB
3507 static void
3508 db_print_vpath(struct vnode *vp)
3509 {
3510 
3511 	while (vp != NULL) {
3512 		db_printf("%p: ", vp);
3513 		if (vp == rootvnode) {
3514 			db_printf("/");
3515 			vp = NULL;
3516 		} else {
3517 			if (vp->v_vflag & VV_ROOT) {
3518 				db_printf("<mount point>");
3519 				vp = vp->v_mount->mnt_vnodecovered;
3520 			} else {
3521 				struct namecache *ncp;
3522 				char *ncn;
3523 				int i;
3524 
3525 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3526 				if (ncp != NULL) {
3527 					ncn = ncp->nc_name;
3528 					for (i = 0; i < ncp->nc_nlen; i++)
3529 						db_printf("%c", *ncn++);
3530 					vp = ncp->nc_dvp;
3531 				} else {
3532 					vp = NULL;
3533 				}
3534 			}
3535 		}
3536 		db_printf("\n");
3537 	}
3538 
3539 	return;
3540 }
3541 
3542 DB_SHOW_COMMAND(vpath, db_show_vpath)
3543 {
3544 	struct vnode *vp;
3545 
3546 	if (!have_addr) {
3547 		db_printf("usage: show vpath <struct vnode *>\n");
3548 		return;
3549 	}
3550 
3551 	vp = (struct vnode *)addr;
3552 	db_print_vpath(vp);
3553 }
3554 
3555 #endif
3556 
3557 static bool __read_frequently cache_fast_lookup = true;
3558 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_lookup, CTLFLAG_RW,
3559     &cache_fast_lookup, 0, "");
3560 
3561 #define CACHE_FPL_FAILED	-2020
3562 
3563 static void
3564 cache_fpl_cleanup_cnp(struct componentname *cnp)
3565 {
3566 
3567 	uma_zfree(namei_zone, cnp->cn_pnbuf);
3568 #ifdef DIAGNOSTIC
3569 	cnp->cn_pnbuf = NULL;
3570 	cnp->cn_nameptr = NULL;
3571 #endif
3572 }
3573 
3574 static void
3575 cache_fpl_handle_root(struct nameidata *ndp, struct vnode **dpp)
3576 {
3577 	struct componentname *cnp;
3578 
3579 	cnp = &ndp->ni_cnd;
3580 	while (*(cnp->cn_nameptr) == '/') {
3581 		cnp->cn_nameptr++;
3582 		ndp->ni_pathlen--;
3583 	}
3584 
3585 	*dpp = ndp->ni_rootdir;
3586 }
3587 
3588 /*
3589  * Components of nameidata (or objects it can point to) which may
3590  * need restoring in case fast path lookup fails.
3591  */
3592 struct nameidata_saved {
3593 	long cn_namelen;
3594 	char *cn_nameptr;
3595 	size_t ni_pathlen;
3596 	int cn_flags;
3597 };
3598 
3599 struct cache_fpl {
3600 	struct nameidata *ndp;
3601 	struct componentname *cnp;
3602 	struct pwd *pwd;
3603 	struct vnode *dvp;
3604 	struct vnode *tvp;
3605 	seqc_t dvp_seqc;
3606 	seqc_t tvp_seqc;
3607 	struct nameidata_saved snd;
3608 	int line;
3609 	enum cache_fpl_status status:8;
3610 	bool in_smr;
3611 	bool fsearch;
3612 };
3613 
3614 static void
3615 cache_fpl_checkpoint(struct cache_fpl *fpl, struct nameidata_saved *snd)
3616 {
3617 
3618 	snd->cn_flags = fpl->ndp->ni_cnd.cn_flags;
3619 	snd->cn_namelen = fpl->ndp->ni_cnd.cn_namelen;
3620 	snd->cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
3621 	snd->ni_pathlen = fpl->ndp->ni_pathlen;
3622 }
3623 
3624 static void
3625 cache_fpl_restore_partial(struct cache_fpl *fpl, struct nameidata_saved *snd)
3626 {
3627 
3628 	fpl->ndp->ni_cnd.cn_flags = snd->cn_flags;
3629 	fpl->ndp->ni_cnd.cn_namelen = snd->cn_namelen;
3630 	fpl->ndp->ni_cnd.cn_nameptr = snd->cn_nameptr;
3631 	fpl->ndp->ni_pathlen = snd->ni_pathlen;
3632 }
3633 
3634 static void
3635 cache_fpl_restore_abort(struct cache_fpl *fpl, struct nameidata_saved *snd)
3636 {
3637 
3638 	cache_fpl_restore_partial(fpl, snd);
3639 	/*
3640 	 * It is 0 on entry by API contract.
3641 	 */
3642 	fpl->ndp->ni_resflags = 0;
3643 }
3644 
3645 #ifdef INVARIANTS
3646 #define cache_fpl_smr_assert_entered(fpl) ({			\
3647 	struct cache_fpl *_fpl = (fpl);				\
3648 	MPASS(_fpl->in_smr == true);				\
3649 	VFS_SMR_ASSERT_ENTERED();				\
3650 })
3651 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
3652 	struct cache_fpl *_fpl = (fpl);				\
3653 	MPASS(_fpl->in_smr == false);				\
3654 	VFS_SMR_ASSERT_NOT_ENTERED();				\
3655 })
3656 #else
3657 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
3658 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
3659 #endif
3660 
3661 #define cache_fpl_smr_enter_initial(fpl) ({			\
3662 	struct cache_fpl *_fpl = (fpl);				\
3663 	vfs_smr_enter();					\
3664 	_fpl->in_smr = true;					\
3665 })
3666 
3667 #define cache_fpl_smr_enter(fpl) ({				\
3668 	struct cache_fpl *_fpl = (fpl);				\
3669 	MPASS(_fpl->in_smr == false);				\
3670 	vfs_smr_enter();					\
3671 	_fpl->in_smr = true;					\
3672 })
3673 
3674 #define cache_fpl_smr_exit(fpl) ({				\
3675 	struct cache_fpl *_fpl = (fpl);				\
3676 	MPASS(_fpl->in_smr == true);				\
3677 	vfs_smr_exit();						\
3678 	_fpl->in_smr = false;					\
3679 })
3680 
3681 static int
3682 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
3683 {
3684 
3685 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
3686 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
3687 		    ("%s: converting to abort from %d at %d, set at %d\n",
3688 		    __func__, fpl->status, line, fpl->line));
3689 	}
3690 	fpl->status = CACHE_FPL_STATUS_ABORTED;
3691 	fpl->line = line;
3692 	return (CACHE_FPL_FAILED);
3693 }
3694 
3695 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
3696 
3697 static int
3698 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
3699 {
3700 
3701 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3702 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
3703 	    __func__, line, fpl->status, fpl->line));
3704 	cache_fpl_smr_assert_entered(fpl);
3705 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
3706 	fpl->line = line;
3707 	return (CACHE_FPL_FAILED);
3708 }
3709 
3710 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
3711 
3712 static int
3713 cache_fpl_handled_impl(struct cache_fpl *fpl, int error, int line)
3714 {
3715 
3716 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3717 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
3718 	    __func__, line, fpl->status, fpl->line));
3719 	cache_fpl_smr_assert_not_entered(fpl);
3720 	MPASS(error != CACHE_FPL_FAILED);
3721 	fpl->status = CACHE_FPL_STATUS_HANDLED;
3722 	fpl->line = line;
3723 	return (error);
3724 }
3725 
3726 #define cache_fpl_handled(x, e)	cache_fpl_handled_impl((x), (e), __LINE__)
3727 
3728 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
3729 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
3730 	 FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | ISOPEN | \
3731 	 NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK)
3732 
3733 #define CACHE_FPL_INTERNAL_CN_FLAGS \
3734 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
3735 
3736 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
3737     "supported and internal flags overlap");
3738 
3739 static bool
3740 cache_fpl_islastcn(struct nameidata *ndp)
3741 {
3742 
3743 	return (*ndp->ni_next == 0);
3744 }
3745 
3746 static bool
3747 cache_fpl_isdotdot(struct componentname *cnp)
3748 {
3749 
3750 	if (cnp->cn_namelen == 2 &&
3751 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
3752 		return (true);
3753 	return (false);
3754 }
3755 
3756 static bool
3757 cache_can_fplookup(struct cache_fpl *fpl)
3758 {
3759 	struct nameidata *ndp;
3760 	struct componentname *cnp;
3761 	struct thread *td;
3762 
3763 	ndp = fpl->ndp;
3764 	cnp = fpl->cnp;
3765 	td = cnp->cn_thread;
3766 
3767 	if (!cache_fast_lookup) {
3768 		cache_fpl_aborted(fpl);
3769 		return (false);
3770 	}
3771 #ifdef MAC
3772 	if (mac_vnode_check_lookup_enabled()) {
3773 		cache_fpl_aborted(fpl);
3774 		return (false);
3775 	}
3776 #endif
3777 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
3778 		cache_fpl_aborted(fpl);
3779 		return (false);
3780 	}
3781 	if (IN_CAPABILITY_MODE(td)) {
3782 		cache_fpl_aborted(fpl);
3783 		return (false);
3784 	}
3785 	if (AUDITING_TD(td)) {
3786 		cache_fpl_aborted(fpl);
3787 		return (false);
3788 	}
3789 	if (ndp->ni_startdir != NULL) {
3790 		cache_fpl_aborted(fpl);
3791 		return (false);
3792 	}
3793 	return (true);
3794 }
3795 
3796 static int
3797 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
3798 {
3799 	struct nameidata *ndp;
3800 	int error;
3801 	bool fsearch;
3802 
3803 	ndp = fpl->ndp;
3804 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
3805 	if (__predict_false(error != 0)) {
3806 		cache_fpl_smr_exit(fpl);
3807 		return (cache_fpl_aborted(fpl));
3808 	}
3809 	fpl->fsearch = fsearch;
3810 	return (0);
3811 }
3812 
3813 static bool
3814 cache_fplookup_vnode_supported(struct vnode *vp)
3815 {
3816 
3817 	return (vp->v_type != VLNK);
3818 }
3819 
3820 static int __noinline
3821 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
3822     uint32_t hash)
3823 {
3824 	struct componentname *cnp;
3825 	struct vnode *dvp;
3826 
3827 	cnp = fpl->cnp;
3828 	dvp = fpl->dvp;
3829 
3830 	cache_fpl_smr_exit(fpl);
3831 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
3832 		return (cache_fpl_handled(fpl, ENOENT));
3833 	else
3834 		return (cache_fpl_aborted(fpl));
3835 }
3836 
3837 /*
3838  * The target vnode is not supported, prepare for the slow path to take over.
3839  */
3840 static int __noinline
3841 cache_fplookup_partial_setup(struct cache_fpl *fpl)
3842 {
3843 	struct nameidata *ndp;
3844 	struct componentname *cnp;
3845 	enum vgetstate dvs;
3846 	struct vnode *dvp;
3847 	struct pwd *pwd;
3848 	seqc_t dvp_seqc;
3849 
3850 	ndp = fpl->ndp;
3851 	cnp = fpl->cnp;
3852 	pwd = fpl->pwd;
3853 	dvp = fpl->dvp;
3854 	dvp_seqc = fpl->dvp_seqc;
3855 
3856 	if (!pwd_hold_smr(pwd)) {
3857 		cache_fpl_smr_exit(fpl);
3858 		return (cache_fpl_aborted(fpl));
3859 	}
3860 
3861 	dvs = vget_prep_smr(dvp);
3862 	cache_fpl_smr_exit(fpl);
3863 	if (__predict_false(dvs == VGET_NONE)) {
3864 		pwd_drop(pwd);
3865 		return (cache_fpl_aborted(fpl));
3866 	}
3867 
3868 	vget_finish_ref(dvp, dvs);
3869 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3870 		vrele(dvp);
3871 		pwd_drop(pwd);
3872 		return (cache_fpl_aborted(fpl));
3873 	}
3874 
3875 	cache_fpl_restore_partial(fpl, &fpl->snd);
3876 
3877 	ndp->ni_startdir = dvp;
3878 	cnp->cn_flags |= MAKEENTRY;
3879 	if (cache_fpl_islastcn(ndp))
3880 		cnp->cn_flags |= ISLASTCN;
3881 	if (cache_fpl_isdotdot(cnp))
3882 		cnp->cn_flags |= ISDOTDOT;
3883 
3884 	return (0);
3885 }
3886 
3887 static int
3888 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
3889 {
3890 	struct componentname *cnp;
3891 	struct vnode *tvp;
3892 	seqc_t tvp_seqc;
3893 	int error, lkflags;
3894 
3895 	cnp = fpl->cnp;
3896 	tvp = fpl->tvp;
3897 	tvp_seqc = fpl->tvp_seqc;
3898 
3899 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
3900 		lkflags = LK_SHARED;
3901 		if ((cnp->cn_flags & LOCKSHARED) == 0)
3902 			lkflags = LK_EXCLUSIVE;
3903 		error = vget_finish(tvp, lkflags, tvs);
3904 		if (__predict_false(error != 0)) {
3905 			return (cache_fpl_aborted(fpl));
3906 		}
3907 	} else {
3908 		vget_finish_ref(tvp, tvs);
3909 	}
3910 
3911 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
3912 		if ((cnp->cn_flags & LOCKLEAF) != 0)
3913 			vput(tvp);
3914 		else
3915 			vrele(tvp);
3916 		return (cache_fpl_aborted(fpl));
3917 	}
3918 
3919 	return (cache_fpl_handled(fpl, 0));
3920 }
3921 
3922 /*
3923  * They want to possibly modify the state of the namecache.
3924  *
3925  * Don't try to match the API contract, just leave.
3926  * TODO: this leaves scalability on the table
3927  */
3928 static int
3929 cache_fplookup_final_modifying(struct cache_fpl *fpl)
3930 {
3931 	struct componentname *cnp;
3932 
3933 	cnp = fpl->cnp;
3934 	MPASS(cnp->cn_nameiop != LOOKUP);
3935 	return (cache_fpl_partial(fpl));
3936 }
3937 
3938 static int __noinline
3939 cache_fplookup_final_withparent(struct cache_fpl *fpl)
3940 {
3941 	struct componentname *cnp;
3942 	enum vgetstate dvs, tvs;
3943 	struct vnode *dvp, *tvp;
3944 	seqc_t dvp_seqc;
3945 	int error;
3946 
3947 	cnp = fpl->cnp;
3948 	dvp = fpl->dvp;
3949 	dvp_seqc = fpl->dvp_seqc;
3950 	tvp = fpl->tvp;
3951 
3952 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
3953 
3954 	/*
3955 	 * This is less efficient than it can be for simplicity.
3956 	 */
3957 	dvs = vget_prep_smr(dvp);
3958 	if (__predict_false(dvs == VGET_NONE)) {
3959 		return (cache_fpl_aborted(fpl));
3960 	}
3961 	tvs = vget_prep_smr(tvp);
3962 	if (__predict_false(tvs == VGET_NONE)) {
3963 		cache_fpl_smr_exit(fpl);
3964 		vget_abort(dvp, dvs);
3965 		return (cache_fpl_aborted(fpl));
3966 	}
3967 
3968 	cache_fpl_smr_exit(fpl);
3969 
3970 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
3971 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
3972 		if (__predict_false(error != 0)) {
3973 			vget_abort(tvp, tvs);
3974 			return (cache_fpl_aborted(fpl));
3975 		}
3976 	} else {
3977 		vget_finish_ref(dvp, dvs);
3978 	}
3979 
3980 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
3981 		vget_abort(tvp, tvs);
3982 		if ((cnp->cn_flags & LOCKPARENT) != 0)
3983 			vput(dvp);
3984 		else
3985 			vrele(dvp);
3986 		return (cache_fpl_aborted(fpl));
3987 	}
3988 
3989 	error = cache_fplookup_final_child(fpl, tvs);
3990 	if (__predict_false(error != 0)) {
3991 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED);
3992 		if ((cnp->cn_flags & LOCKPARENT) != 0)
3993 			vput(dvp);
3994 		else
3995 			vrele(dvp);
3996 		return (error);
3997 	}
3998 
3999 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4000 	return (0);
4001 }
4002 
4003 static int
4004 cache_fplookup_final(struct cache_fpl *fpl)
4005 {
4006 	struct componentname *cnp;
4007 	enum vgetstate tvs;
4008 	struct vnode *dvp, *tvp;
4009 	seqc_t dvp_seqc;
4010 
4011 	cnp = fpl->cnp;
4012 	dvp = fpl->dvp;
4013 	dvp_seqc = fpl->dvp_seqc;
4014 	tvp = fpl->tvp;
4015 
4016 	VNPASS(cache_fplookup_vnode_supported(dvp), dvp);
4017 
4018 	if (cnp->cn_nameiop != LOOKUP) {
4019 		return (cache_fplookup_final_modifying(fpl));
4020 	}
4021 
4022 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4023 		return (cache_fplookup_final_withparent(fpl));
4024 
4025 	tvs = vget_prep_smr(tvp);
4026 	if (__predict_false(tvs == VGET_NONE)) {
4027 		return (cache_fpl_partial(fpl));
4028 	}
4029 
4030 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4031 		cache_fpl_smr_exit(fpl);
4032 		vget_abort(tvp, tvs);
4033 		return (cache_fpl_aborted(fpl));
4034 	}
4035 
4036 	cache_fpl_smr_exit(fpl);
4037 	return (cache_fplookup_final_child(fpl, tvs));
4038 }
4039 
4040 static int __noinline
4041 cache_fplookup_dot(struct cache_fpl *fpl)
4042 {
4043 	struct vnode *dvp;
4044 
4045 	dvp = fpl->dvp;
4046 
4047 	fpl->tvp = dvp;
4048 	fpl->tvp_seqc = vn_seqc_read_any(dvp);
4049 	if (seqc_in_modify(fpl->tvp_seqc)) {
4050 		return (cache_fpl_aborted(fpl));
4051 	}
4052 
4053 	counter_u64_add(dothits, 1);
4054 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", dvp);
4055 
4056 	return (0);
4057 }
4058 
4059 static int __noinline
4060 cache_fplookup_dotdot(struct cache_fpl *fpl)
4061 {
4062 	struct nameidata *ndp;
4063 	struct componentname *cnp;
4064 	struct namecache *ncp;
4065 	struct vnode *dvp;
4066 	struct prison *pr;
4067 	u_char nc_flag;
4068 
4069 	ndp = fpl->ndp;
4070 	cnp = fpl->cnp;
4071 	dvp = fpl->dvp;
4072 
4073 	/*
4074 	 * XXX this is racy the same way regular lookup is
4075 	 */
4076 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
4077 	    pr = pr->pr_parent)
4078 		if (dvp == pr->pr_root)
4079 			break;
4080 
4081 	if (dvp == ndp->ni_rootdir ||
4082 	    dvp == ndp->ni_topdir ||
4083 	    dvp == rootvnode ||
4084 	    pr != NULL) {
4085 		fpl->tvp = dvp;
4086 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
4087 		if (seqc_in_modify(fpl->tvp_seqc)) {
4088 			return (cache_fpl_aborted(fpl));
4089 		}
4090 		return (0);
4091 	}
4092 
4093 	if ((dvp->v_vflag & VV_ROOT) != 0) {
4094 		/*
4095 		 * TODO
4096 		 * The opposite of climb mount is needed here.
4097 		 */
4098 		return (cache_fpl_aborted(fpl));
4099 	}
4100 
4101 	ncp = atomic_load_ptr(&dvp->v_cache_dd);
4102 	if (ncp == NULL) {
4103 		return (cache_fpl_aborted(fpl));
4104 	}
4105 
4106 	nc_flag = atomic_load_char(&ncp->nc_flag);
4107 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
4108 		if ((nc_flag & NCF_NEGATIVE) != 0)
4109 			return (cache_fpl_aborted(fpl));
4110 		fpl->tvp = ncp->nc_vp;
4111 	} else {
4112 		fpl->tvp = ncp->nc_dvp;
4113 	}
4114 
4115 	if (!cache_ncp_canuse(ncp)) {
4116 		return (cache_fpl_aborted(fpl));
4117 	}
4118 
4119 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
4120 	if (seqc_in_modify(fpl->tvp_seqc)) {
4121 		return (cache_fpl_partial(fpl));
4122 	}
4123 
4124 	counter_u64_add(dotdothits, 1);
4125 	return (0);
4126 }
4127 
4128 static int __noinline
4129 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
4130 {
4131 	u_char nc_flag;
4132 	bool neg_promote;
4133 
4134 	nc_flag = atomic_load_char(&ncp->nc_flag);
4135 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
4136 	/*
4137 	 * If they want to create an entry we need to replace this one.
4138 	 */
4139 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
4140 		/*
4141 		 * TODO
4142 		 * This should call something similar to
4143 		 * cache_fplookup_final_modifying.
4144 		 */
4145 		return (cache_fpl_partial(fpl));
4146 	}
4147 	neg_promote = cache_neg_hit_prep(ncp);
4148 	if (!cache_ncp_canuse(ncp)) {
4149 		cache_neg_hit_abort(ncp);
4150 		return (cache_fpl_partial(fpl));
4151 	}
4152 	if (__predict_false((nc_flag & NCF_WHITE) != 0)) {
4153 		cache_neg_hit_abort(ncp);
4154 		return (cache_fpl_partial(fpl));
4155 	}
4156 	if (neg_promote) {
4157 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
4158 	}
4159 	cache_neg_hit_finish(ncp);
4160 	cache_fpl_smr_exit(fpl);
4161 	return (cache_fpl_handled(fpl, ENOENT));
4162 }
4163 
4164 static int
4165 cache_fplookup_next(struct cache_fpl *fpl)
4166 {
4167 	struct componentname *cnp;
4168 	struct namecache *ncp;
4169 	struct vnode *dvp, *tvp;
4170 	u_char nc_flag;
4171 	uint32_t hash;
4172 
4173 	cnp = fpl->cnp;
4174 	dvp = fpl->dvp;
4175 
4176 	if (__predict_false(cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')) {
4177 		return (cache_fplookup_dot(fpl));
4178 	}
4179 
4180 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
4181 
4182 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
4183 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
4184 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
4185 			break;
4186 	}
4187 
4188 	/*
4189 	 * If there is no entry we have to punt to the slow path to perform
4190 	 * actual lookup. Should there be nothing with this name a negative
4191 	 * entry will be created.
4192 	 */
4193 	if (__predict_false(ncp == NULL)) {
4194 		return (cache_fpl_partial(fpl));
4195 	}
4196 
4197 	tvp = atomic_load_ptr(&ncp->nc_vp);
4198 	nc_flag = atomic_load_char(&ncp->nc_flag);
4199 	if ((nc_flag & NCF_NEGATIVE) != 0) {
4200 		return (cache_fplookup_neg(fpl, ncp, hash));
4201 	}
4202 
4203 	if (!cache_ncp_canuse(ncp)) {
4204 		return (cache_fpl_partial(fpl));
4205 	}
4206 
4207 	fpl->tvp = tvp;
4208 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
4209 	if (seqc_in_modify(fpl->tvp_seqc)) {
4210 		return (cache_fpl_partial(fpl));
4211 	}
4212 
4213 	if (!cache_fplookup_vnode_supported(tvp)) {
4214 		return (cache_fpl_partial(fpl));
4215 	}
4216 
4217 	counter_u64_add(numposhits, 1);
4218 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
4219 	return (0);
4220 }
4221 
4222 static bool
4223 cache_fplookup_mp_supported(struct mount *mp)
4224 {
4225 
4226 	if (mp == NULL)
4227 		return (false);
4228 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4229 		return (false);
4230 	return (true);
4231 }
4232 
4233 /*
4234  * Walk up the mount stack (if any).
4235  *
4236  * Correctness is provided in the following ways:
4237  * - all vnodes are protected from freeing with SMR
4238  * - struct mount objects are type stable making them always safe to access
4239  * - stability of the particular mount is provided by busying it
4240  * - relationship between the vnode which is mounted on and the mount is
4241  *   verified with the vnode sequence counter after busying
4242  * - association between root vnode of the mount and the mount is protected
4243  *   by busy
4244  *
4245  * From that point on we can read the sequence counter of the root vnode
4246  * and get the next mount on the stack (if any) using the same protection.
4247  *
4248  * By the end of successful walk we are guaranteed the reached state was
4249  * indeed present at least at some point which matches the regular lookup.
4250  */
4251 static int __noinline
4252 cache_fplookup_climb_mount(struct cache_fpl *fpl)
4253 {
4254 	struct mount *mp, *prev_mp;
4255 	struct mount_pcpu *mpcpu, *prev_mpcpu;
4256 	struct vnode *vp;
4257 	seqc_t vp_seqc;
4258 
4259 	vp = fpl->tvp;
4260 	vp_seqc = fpl->tvp_seqc;
4261 
4262 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
4263 	mp = atomic_load_ptr(&vp->v_mountedhere);
4264 	if (mp == NULL)
4265 		return (0);
4266 
4267 	prev_mp = NULL;
4268 	for (;;) {
4269 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
4270 			if (prev_mp != NULL)
4271 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4272 			return (cache_fpl_partial(fpl));
4273 		}
4274 		if (prev_mp != NULL)
4275 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4276 		if (!vn_seqc_consistent(vp, vp_seqc)) {
4277 			vfs_op_thread_exit_crit(mp, mpcpu);
4278 			return (cache_fpl_partial(fpl));
4279 		}
4280 		if (!cache_fplookup_mp_supported(mp)) {
4281 			vfs_op_thread_exit_crit(mp, mpcpu);
4282 			return (cache_fpl_partial(fpl));
4283 		}
4284 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
4285 		if (vp == NULL || VN_IS_DOOMED(vp)) {
4286 			vfs_op_thread_exit_crit(mp, mpcpu);
4287 			return (cache_fpl_partial(fpl));
4288 		}
4289 		vp_seqc = vn_seqc_read_any(vp);
4290 		if (seqc_in_modify(vp_seqc)) {
4291 			vfs_op_thread_exit_crit(mp, mpcpu);
4292 			return (cache_fpl_partial(fpl));
4293 		}
4294 		prev_mp = mp;
4295 		prev_mpcpu = mpcpu;
4296 		mp = atomic_load_ptr(&vp->v_mountedhere);
4297 		if (mp == NULL)
4298 			break;
4299 	}
4300 
4301 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4302 	fpl->tvp = vp;
4303 	fpl->tvp_seqc = vp_seqc;
4304 	return (0);
4305 }
4306 
4307 static bool
4308 cache_fplookup_need_climb_mount(struct cache_fpl *fpl)
4309 {
4310 	struct mount *mp;
4311 	struct vnode *vp;
4312 
4313 	vp = fpl->tvp;
4314 
4315 	/*
4316 	 * Hack: while this is a union, the pointer tends to be NULL so save on
4317 	 * a branch.
4318 	 */
4319 	mp = atomic_load_ptr(&vp->v_mountedhere);
4320 	if (mp == NULL)
4321 		return (false);
4322 	if (vp->v_type == VDIR)
4323 		return (true);
4324 	return (false);
4325 }
4326 
4327 /*
4328  * Parse the path.
4329  *
4330  * The code was originally copy-pasted from regular lookup and despite
4331  * clean ups leaves performance on the table. Any modifications here
4332  * must take into account that in case off fallback the resulting
4333  * nameidata state has to be compatible with the original.
4334  */
4335 static int
4336 cache_fplookup_parse(struct cache_fpl *fpl)
4337 {
4338 	struct nameidata *ndp;
4339 	struct componentname *cnp;
4340 	char *cp;
4341 
4342 	ndp = fpl->ndp;
4343 	cnp = fpl->cnp;
4344 
4345 	/*
4346 	 * Search a new directory.
4347 	 *
4348 	 * The last component of the filename is left accessible via
4349 	 * cnp->cn_nameptr for callers that need the name. Callers needing
4350 	 * the name set the SAVENAME flag. When done, they assume
4351 	 * responsibility for freeing the pathname buffer.
4352 	 */
4353 	for (cp = cnp->cn_nameptr; *cp != 0 && *cp != '/'; cp++)
4354 		continue;
4355 	cnp->cn_namelen = cp - cnp->cn_nameptr;
4356 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4357 		cache_fpl_smr_exit(fpl);
4358 		return (cache_fpl_handled(fpl, ENAMETOOLONG));
4359 	}
4360 	ndp->ni_pathlen -= cnp->cn_namelen;
4361 	KASSERT(ndp->ni_pathlen <= PATH_MAX,
4362 	    ("%s: ni_pathlen underflow to %zd\n", __func__, ndp->ni_pathlen));
4363 	ndp->ni_next = cp;
4364 
4365 	/*
4366 	 * Replace multiple slashes by a single slash and trailing slashes
4367 	 * by a null.  This must be done before VOP_LOOKUP() because some
4368 	 * fs's don't know about trailing slashes.  Remember if there were
4369 	 * trailing slashes to handle symlinks, existing non-directories
4370 	 * and non-existing files that won't be directories specially later.
4371 	 */
4372 	while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
4373 		cp++;
4374 		ndp->ni_pathlen--;
4375 		if (*cp == '\0') {
4376 			/*
4377 			 * TODO
4378 			 * Regular lookup performs the following:
4379 			 * *ndp->ni_next = '\0';
4380 			 * cnp->cn_flags |= TRAILINGSLASH;
4381 			 *
4382 			 * Which is problematic since it modifies data read
4383 			 * from userspace. Then if fast path lookup was to
4384 			 * abort we would have to either restore it or convey
4385 			 * the flag. Since this is a corner case just ignore
4386 			 * it for simplicity.
4387 			 */
4388 			return (cache_fpl_partial(fpl));
4389 		}
4390 	}
4391 	ndp->ni_next = cp;
4392 
4393 	/*
4394 	 * Check for degenerate name (e.g. / or "")
4395 	 * which is a way of talking about a directory,
4396 	 * e.g. like "/." or ".".
4397 	 *
4398 	 * TODO
4399 	 * Another corner case handled by the regular lookup
4400 	 */
4401 	if (__predict_false(cnp->cn_nameptr[0] == '\0')) {
4402 		return (cache_fpl_partial(fpl));
4403 	}
4404 	return (0);
4405 }
4406 
4407 static void
4408 cache_fplookup_parse_advance(struct cache_fpl *fpl)
4409 {
4410 	struct nameidata *ndp;
4411 	struct componentname *cnp;
4412 
4413 	ndp = fpl->ndp;
4414 	cnp = fpl->cnp;
4415 
4416 	cnp->cn_nameptr = ndp->ni_next;
4417 	while (*cnp->cn_nameptr == '/') {
4418 		cnp->cn_nameptr++;
4419 		ndp->ni_pathlen--;
4420 	}
4421 }
4422 
4423 /*
4424  * See the API contract for VOP_FPLOOKUP_VEXEC.
4425  */
4426 static int __noinline
4427 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
4428 {
4429 	struct vnode *dvp;
4430 	seqc_t dvp_seqc;
4431 
4432 	dvp = fpl->dvp;
4433 	dvp_seqc = fpl->dvp_seqc;
4434 
4435 	/*
4436 	 * Hack: they may be looking up foo/bar, where foo is a
4437 	 * regular file. In such a case we need to turn ENOTDIR,
4438 	 * but we may happen to get here with a different error.
4439 	 */
4440 	if (dvp->v_type != VDIR) {
4441 		/*
4442 		 * The check here is predominantly to catch
4443 		 * EOPNOTSUPP from dead_vnodeops. If the vnode
4444 		 * gets doomed past this point it is going to
4445 		 * fail seqc verification.
4446 		 */
4447 		if (VN_IS_DOOMED(dvp)) {
4448 			return (cache_fpl_aborted(fpl));
4449 		}
4450 		error = ENOTDIR;
4451 	}
4452 
4453 	/*
4454 	 * Hack: handle O_SEARCH.
4455 	 *
4456 	 * Open Group Base Specifications Issue 7, 2018 edition states:
4457 	 * If the access mode of the open file description associated with the
4458 	 * file descriptor is not O_SEARCH, the function shall check whether
4459 	 * directory searches are permitted using the current permissions of
4460 	 * the directory underlying the file descriptor. If the access mode is
4461 	 * O_SEARCH, the function shall not perform the check.
4462 	 *
4463 	 * Regular lookup tests for the NOEXECCHECK flag for every path
4464 	 * component to decide whether to do the permission check. However,
4465 	 * since most lookups never have the flag (and when they do it is only
4466 	 * present for the first path component), lockless lookup only acts on
4467 	 * it if there is a permission problem. Here the flag is represented
4468 	 * with a boolean so that we don't have to clear it on the way out.
4469 	 *
4470 	 * For simplicity this always aborts.
4471 	 * TODO: check if this is the first lookup and ignore the permission
4472 	 * problem. Note the flag has to survive fallback (if it happens to be
4473 	 * performed).
4474 	 */
4475 	if (fpl->fsearch) {
4476 		return (cache_fpl_aborted(fpl));
4477 	}
4478 
4479 	switch (error) {
4480 	case EAGAIN:
4481 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4482 			error = cache_fpl_aborted(fpl);
4483 		} else {
4484 			cache_fpl_partial(fpl);
4485 		}
4486 		break;
4487 	default:
4488 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4489 			error = cache_fpl_aborted(fpl);
4490 		} else {
4491 			cache_fpl_smr_exit(fpl);
4492 			cache_fpl_handled(fpl, error);
4493 		}
4494 		break;
4495 	}
4496 	return (error);
4497 }
4498 
4499 static int
4500 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
4501 {
4502 	struct nameidata *ndp;
4503 	struct componentname *cnp;
4504 	struct mount *mp;
4505 	int error;
4506 
4507 	error = CACHE_FPL_FAILED;
4508 	ndp = fpl->ndp;
4509 	cnp = fpl->cnp;
4510 
4511 	cache_fpl_checkpoint(fpl, &fpl->snd);
4512 
4513 	fpl->dvp = dvp;
4514 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
4515 	if (seqc_in_modify(fpl->dvp_seqc)) {
4516 		cache_fpl_aborted(fpl);
4517 		goto out;
4518 	}
4519 	mp = atomic_load_ptr(&fpl->dvp->v_mount);
4520 	if (!cache_fplookup_mp_supported(mp)) {
4521 		cache_fpl_aborted(fpl);
4522 		goto out;
4523 	}
4524 
4525 	VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
4526 
4527 	for (;;) {
4528 		error = cache_fplookup_parse(fpl);
4529 		if (__predict_false(error != 0)) {
4530 			break;
4531 		}
4532 
4533 		VNPASS(cache_fplookup_vnode_supported(fpl->dvp), fpl->dvp);
4534 
4535 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
4536 		if (__predict_false(error != 0)) {
4537 			error = cache_fplookup_failed_vexec(fpl, error);
4538 			break;
4539 		}
4540 
4541 		if (__predict_false(cache_fpl_isdotdot(cnp))) {
4542 			error = cache_fplookup_dotdot(fpl);
4543 			if (__predict_false(error != 0)) {
4544 				break;
4545 			}
4546 		} else {
4547 			error = cache_fplookup_next(fpl);
4548 			if (__predict_false(error != 0)) {
4549 				break;
4550 			}
4551 
4552 			VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
4553 
4554 			if (cache_fplookup_need_climb_mount(fpl)) {
4555 				error = cache_fplookup_climb_mount(fpl);
4556 				if (__predict_false(error != 0)) {
4557 					break;
4558 				}
4559 			}
4560 		}
4561 
4562 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
4563 
4564 		if (cache_fpl_islastcn(ndp)) {
4565 			error = cache_fplookup_final(fpl);
4566 			break;
4567 		}
4568 
4569 		if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
4570 			error = cache_fpl_aborted(fpl);
4571 			break;
4572 		}
4573 
4574 		fpl->dvp = fpl->tvp;
4575 		fpl->dvp_seqc = fpl->tvp_seqc;
4576 
4577 		cache_fplookup_parse_advance(fpl);
4578 		cache_fpl_checkpoint(fpl, &fpl->snd);
4579 	}
4580 out:
4581 	switch (fpl->status) {
4582 	case CACHE_FPL_STATUS_UNSET:
4583 		__assert_unreachable();
4584 		break;
4585 	case CACHE_FPL_STATUS_PARTIAL:
4586 		cache_fpl_smr_assert_entered(fpl);
4587 		return (cache_fplookup_partial_setup(fpl));
4588 	case CACHE_FPL_STATUS_ABORTED:
4589 		if (fpl->in_smr)
4590 			cache_fpl_smr_exit(fpl);
4591 		return (CACHE_FPL_FAILED);
4592 	case CACHE_FPL_STATUS_HANDLED:
4593 		MPASS(error != CACHE_FPL_FAILED);
4594 		cache_fpl_smr_assert_not_entered(fpl);
4595 		/*
4596 		 * A common error is ENOENT.
4597 		 */
4598 		if (error != 0) {
4599 			ndp->ni_dvp = NULL;
4600 			ndp->ni_vp = NULL;
4601 			cache_fpl_cleanup_cnp(cnp);
4602 			return (error);
4603 		}
4604 		ndp->ni_dvp = fpl->dvp;
4605 		ndp->ni_vp = fpl->tvp;
4606 		if (cnp->cn_flags & SAVENAME)
4607 			cnp->cn_flags |= HASBUF;
4608 		else
4609 			cache_fpl_cleanup_cnp(cnp);
4610 		return (error);
4611 	}
4612 	__assert_unreachable();
4613 }
4614 
4615 /*
4616  * Fast path lookup protected with SMR and sequence counters.
4617  *
4618  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
4619  *
4620  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
4621  * outlined below.
4622  *
4623  * Traditional vnode lookup conceptually looks like this:
4624  *
4625  * vn_lock(current);
4626  * for (;;) {
4627  *	next = find();
4628  *	vn_lock(next);
4629  *	vn_unlock(current);
4630  *	current = next;
4631  *	if (last)
4632  *	    break;
4633  * }
4634  * return (current);
4635  *
4636  * Each jump to the next vnode is safe memory-wise and atomic with respect to
4637  * any modifications thanks to holding respective locks.
4638  *
4639  * The same guarantee can be provided with a combination of safe memory
4640  * reclamation and sequence counters instead. If all operations which affect
4641  * the relationship between the current vnode and the one we are looking for
4642  * also modify the counter, we can verify whether all the conditions held as
4643  * we made the jump. This includes things like permissions, mount points etc.
4644  * Counter modification is provided by enclosing relevant places in
4645  * vn_seqc_write_begin()/end() calls.
4646  *
4647  * Thus this translates to:
4648  *
4649  * vfs_smr_enter();
4650  * dvp_seqc = seqc_read_any(dvp);
4651  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
4652  *     abort();
4653  * for (;;) {
4654  * 	tvp = find();
4655  * 	tvp_seqc = seqc_read_any(tvp);
4656  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
4657  * 	    abort();
4658  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
4659  * 	    abort();
4660  * 	dvp = tvp; // we know nothing of importance has changed
4661  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
4662  * 	if (last)
4663  * 	    break;
4664  * }
4665  * vget(); // secure the vnode
4666  * if (!seqc_consistent(tvp, tvp_seqc) // final check
4667  * 	    abort();
4668  * // at this point we know nothing has changed for any parent<->child pair
4669  * // as they were crossed during the lookup, meaning we matched the guarantee
4670  * // of the locked variant
4671  * return (tvp);
4672  *
4673  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
4674  * - they are called while within vfs_smr protection which they must never exit
4675  * - EAGAIN can be returned to denote checking could not be performed, it is
4676  *   always valid to return it
4677  * - if the sequence counter has not changed the result must be valid
4678  * - if the sequence counter has changed both false positives and false negatives
4679  *   are permitted (since the result will be rejected later)
4680  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
4681  *
4682  * Caveats to watch out for:
4683  * - vnodes are passed unlocked and unreferenced with nothing stopping
4684  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
4685  *   to use atomic_load_ptr to fetch it.
4686  * - the aforementioned object can also get freed, meaning absent other means it
4687  *   should be protected with vfs_smr
4688  * - either safely checking permissions as they are modified or guaranteeing
4689  *   their stability is left to the routine
4690  */
4691 int
4692 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
4693     struct pwd **pwdp)
4694 {
4695 	struct cache_fpl fpl;
4696 	struct pwd *pwd;
4697 	struct vnode *dvp;
4698 	struct componentname *cnp;
4699 	struct nameidata_saved orig;
4700 	int error;
4701 
4702 	MPASS(ndp->ni_lcf == 0);
4703 
4704 	fpl.status = CACHE_FPL_STATUS_UNSET;
4705 	fpl.ndp = ndp;
4706 	fpl.cnp = &ndp->ni_cnd;
4707 	MPASS(curthread == fpl.cnp->cn_thread);
4708 
4709 	if ((fpl.cnp->cn_flags & SAVESTART) != 0)
4710 		MPASS(fpl.cnp->cn_nameiop != LOOKUP);
4711 
4712 	if (!cache_can_fplookup(&fpl)) {
4713 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
4714 		*status = fpl.status;
4715 		return (EOPNOTSUPP);
4716 	}
4717 
4718 	cache_fpl_checkpoint(&fpl, &orig);
4719 
4720 	cache_fpl_smr_enter_initial(&fpl);
4721 	fpl.fsearch = false;
4722 	pwd = pwd_get_smr();
4723 	fpl.pwd = pwd;
4724 	ndp->ni_rootdir = pwd->pwd_rdir;
4725 	ndp->ni_topdir = pwd->pwd_jdir;
4726 
4727 	cnp = fpl.cnp;
4728 	cnp->cn_nameptr = cnp->cn_pnbuf;
4729 	if (cnp->cn_pnbuf[0] == '/') {
4730 		cache_fpl_handle_root(ndp, &dvp);
4731 		ndp->ni_resflags |= NIRES_ABS;
4732 	} else {
4733 		if (ndp->ni_dirfd == AT_FDCWD) {
4734 			dvp = pwd->pwd_cdir;
4735 		} else {
4736 			error = cache_fplookup_dirfd(&fpl, &dvp);
4737 			if (__predict_false(error != 0)) {
4738 				goto out;
4739 			}
4740 		}
4741 	}
4742 
4743 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
4744 
4745 	error = cache_fplookup_impl(dvp, &fpl);
4746 out:
4747 	cache_fpl_smr_assert_not_entered(&fpl);
4748 	SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
4749 
4750 	*status = fpl.status;
4751 	switch (fpl.status) {
4752 	case CACHE_FPL_STATUS_UNSET:
4753 		__assert_unreachable();
4754 		break;
4755 	case CACHE_FPL_STATUS_HANDLED:
4756 		SDT_PROBE3(vfs, namei, lookup, return, error,
4757 		    (error == 0 ? ndp->ni_vp : NULL), true);
4758 		break;
4759 	case CACHE_FPL_STATUS_PARTIAL:
4760 		*pwdp = fpl.pwd;
4761 		/*
4762 		 * Status restored by cache_fplookup_partial_setup.
4763 		 */
4764 		break;
4765 	case CACHE_FPL_STATUS_ABORTED:
4766 		cache_fpl_restore_abort(&fpl, &orig);
4767 		break;
4768 	}
4769 	return (error);
4770 }
4771