xref: /freebsd/sys/kern/vfs_cache.c (revision 3110d4ebd6c0848cf5e25890d01791bb407e2a9b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/seqc.h>
59 #include <sys/sdt.h>
60 #include <sys/smr.h>
61 #include <sys/smp.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/vnode.h>
66 #include <ck_queue.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 #ifdef INVARIANTS
71 #include <machine/_inttypes.h>
72 #endif
73 
74 #include <sys/capsicum.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #ifdef DDB
80 #include <ddb/ddb.h>
81 #endif
82 
83 #include <vm/uma.h>
84 
85 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
86     "Name cache");
87 
88 SDT_PROVIDER_DECLARE(vfs);
89 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
90     "struct vnode *");
91 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
92     "struct vnode *");
93 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
94     "char *");
95 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
96     "const char *");
97 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
98     "struct namecache *", "int", "int");
99 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
100 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
101     "char *", "struct vnode *");
102 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
103 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
104     "struct vnode *", "char *");
105 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
106     "struct vnode *");
107 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
108     "struct vnode *", "char *");
109 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
110     "char *");
111 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
112     "struct componentname *");
113 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
114     "struct componentname *");
115 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *");
116 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
117 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
118 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
119 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
120     "struct vnode *");
121 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
122     "char *");
123 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
124     "char *");
125 
126 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
127 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
128 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
129 
130 /*
131  * This structure describes the elements in the cache of recent
132  * names looked up by namei.
133  */
134 struct negstate {
135 	u_char neg_flag;
136 	u_char neg_hit;
137 };
138 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
139     "the state must fit in a union with a pointer without growing it");
140 
141 struct	namecache {
142 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
143 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
144 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
145 	struct	vnode *nc_dvp;		/* vnode of parent of name */
146 	union {
147 		struct	vnode *nu_vp;	/* vnode the name refers to */
148 		struct	negstate nu_neg;/* negative entry state */
149 	} n_un;
150 	u_char	nc_flag;		/* flag bits */
151 	u_char	nc_nlen;		/* length of name */
152 	char	nc_name[0];		/* segment name + nul */
153 };
154 
155 /*
156  * struct namecache_ts repeats struct namecache layout up to the
157  * nc_nlen member.
158  * struct namecache_ts is used in place of struct namecache when time(s) need
159  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
160  * both a non-dotdot directory name plus dotdot for the directory's
161  * parent.
162  *
163  * See below for alignment requirement.
164  */
165 struct	namecache_ts {
166 	struct	timespec nc_time;	/* timespec provided by fs */
167 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
168 	int	nc_ticks;		/* ticks value when entry was added */
169 	int	nc_pad;
170 	struct namecache nc_nc;
171 };
172 
173 TAILQ_HEAD(cache_freebatch, namecache);
174 
175 /*
176  * At least mips n32 performs 64-bit accesses to timespec as found
177  * in namecache_ts and requires them to be aligned. Since others
178  * may be in the same spot suffer a little bit and enforce the
179  * alignment for everyone. Note this is a nop for 64-bit platforms.
180  */
181 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
182 
183 /*
184  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
185  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
186  * smaller and the value was bumped to retain the total size, but it
187  * was never re-evaluated for suitability. A simple test counting
188  * lengths during package building shows that the value of 45 covers
189  * about 86% of all added entries, reaching 99% at 65.
190  *
191  * Regardless of the above, use of dedicated zones instead of malloc may be
192  * inducing additional waste. This may be hard to address as said zones are
193  * tied to VFS SMR. Even if retaining them, the current split should be
194  * re-evaluated.
195  */
196 #ifdef __LP64__
197 #define	CACHE_PATH_CUTOFF	45
198 #define	CACHE_LARGE_PAD		6
199 #else
200 #define	CACHE_PATH_CUTOFF	41
201 #define	CACHE_LARGE_PAD		2
202 #endif
203 
204 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
205 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
206 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
207 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
208 
209 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
210 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
211 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
212 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
213 
214 #define	nc_vp		n_un.nu_vp
215 #define	nc_neg		n_un.nu_neg
216 
217 /*
218  * Flags in namecache.nc_flag
219  */
220 #define NCF_WHITE	0x01
221 #define NCF_ISDOTDOT	0x02
222 #define	NCF_TS		0x04
223 #define	NCF_DTS		0x08
224 #define	NCF_DVDROP	0x10
225 #define	NCF_NEGATIVE	0x20
226 #define	NCF_INVALID	0x40
227 #define	NCF_WIP		0x80
228 
229 /*
230  * Flags in negstate.neg_flag
231  */
232 #define NEG_HOT		0x01
233 
234 static bool	cache_neg_evict_cond(u_long lnumcache);
235 
236 /*
237  * Mark an entry as invalid.
238  *
239  * This is called before it starts getting deconstructed.
240  */
241 static void
242 cache_ncp_invalidate(struct namecache *ncp)
243 {
244 
245 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
246 	    ("%s: entry %p already invalid", __func__, ncp));
247 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
248 	atomic_thread_fence_rel();
249 }
250 
251 /*
252  * Check whether the entry can be safely used.
253  *
254  * All places which elide locks are supposed to call this after they are
255  * done with reading from an entry.
256  */
257 #define cache_ncp_canuse(ncp)	({					\
258 	struct namecache *_ncp = (ncp);					\
259 	u_char _nc_flag;						\
260 									\
261 	atomic_thread_fence_acq();					\
262 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
263 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
264 })
265 
266 /*
267  * Like the above but also checks NCF_WHITE.
268  */
269 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
270 	struct namecache *_ncp = (ncp);					\
271 	u_char _nc_flag;						\
272 									\
273 	atomic_thread_fence_acq();					\
274 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
275 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
276 })
277 
278 /*
279  * Name caching works as follows:
280  *
281  * Names found by directory scans are retained in a cache
282  * for future reference.  It is managed LRU, so frequently
283  * used names will hang around.  Cache is indexed by hash value
284  * obtained from (dvp, name) where dvp refers to the directory
285  * containing name.
286  *
287  * If it is a "negative" entry, (i.e. for a name that is known NOT to
288  * exist) the vnode pointer will be NULL.
289  *
290  * Upon reaching the last segment of a path, if the reference
291  * is for DELETE, or NOCACHE is set (rewrite), and the
292  * name is located in the cache, it will be dropped.
293  *
294  * These locks are used (in the order in which they can be taken):
295  * NAME		TYPE	ROLE
296  * vnodelock	mtx	vnode lists and v_cache_dd field protection
297  * bucketlock	mtx	for access to given set of hash buckets
298  * neglist	mtx	negative entry LRU management
299  *
300  * It is legal to take multiple vnodelock and bucketlock locks. The locking
301  * order is lower address first. Both are recursive.
302  *
303  * "." lookups are lockless.
304  *
305  * ".." and vnode -> name lookups require vnodelock.
306  *
307  * name -> vnode lookup requires the relevant bucketlock to be held for reading.
308  *
309  * Insertions and removals of entries require involved vnodes and bucketlocks
310  * to be locked to provide safe operation against other threads modifying the
311  * cache.
312  *
313  * Some lookups result in removal of the found entry (e.g. getting rid of a
314  * negative entry with the intent to create a positive one), which poses a
315  * problem when multiple threads reach the state. Similarly, two different
316  * threads can purge two different vnodes and try to remove the same name.
317  *
318  * If the already held vnode lock is lower than the second required lock, we
319  * can just take the other lock. However, in the opposite case, this could
320  * deadlock. As such, this is resolved by trylocking and if that fails unlocking
321  * the first node, locking everything in order and revalidating the state.
322  */
323 
324 VFS_SMR_DECLARE;
325 
326 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
327     "Name cache parameters");
328 
329 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
330 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
331     "Total namecache capacity");
332 
333 u_int ncsizefactor = 2;
334 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
335     "Size factor for namecache");
336 
337 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
338 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
339     "Ratio of negative namecache entries");
340 
341 /*
342  * Negative entry % of namecache capacity above which automatic eviction is allowed.
343  *
344  * Check cache_neg_evict_cond for details.
345  */
346 static u_int ncnegminpct = 3;
347 
348 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
349 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
350     "Negative entry count above which automatic eviction is allowed");
351 
352 /*
353  * Structures associated with name caching.
354  */
355 #define NCHHASH(hash) \
356 	(&nchashtbl[(hash) & nchash])
357 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
358 static u_long __read_mostly	nchash;			/* size of hash table */
359 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
360     "Size of namecache hash table");
361 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
362 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
363 
364 struct nchstats	nchstats;		/* cache effectiveness statistics */
365 
366 static bool __read_frequently cache_fast_revlookup = true;
367 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW,
368     &cache_fast_revlookup, 0, "");
369 
370 static u_int __exclusive_cache_line neg_cycle;
371 
372 #define ncneghash	3
373 #define	numneglists	(ncneghash + 1)
374 
375 struct neglist {
376 	struct mtx		nl_evict_lock;
377 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
378 	TAILQ_HEAD(, namecache) nl_list;
379 	TAILQ_HEAD(, namecache) nl_hotlist;
380 	u_long			nl_hotnum;
381 } __aligned(CACHE_LINE_SIZE);
382 
383 static struct neglist neglists[numneglists];
384 
385 static inline struct neglist *
386 NCP2NEGLIST(struct namecache *ncp)
387 {
388 
389 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
390 }
391 
392 static inline struct negstate *
393 NCP2NEGSTATE(struct namecache *ncp)
394 {
395 
396 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
397 	return (&ncp->nc_neg);
398 }
399 
400 #define	numbucketlocks (ncbuckethash + 1)
401 static u_int __read_mostly  ncbuckethash;
402 static struct mtx_padalign __read_mostly  *bucketlocks;
403 #define	HASH2BUCKETLOCK(hash) \
404 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
405 
406 #define	numvnodelocks (ncvnodehash + 1)
407 static u_int __read_mostly  ncvnodehash;
408 static struct mtx __read_mostly *vnodelocks;
409 static inline struct mtx *
410 VP2VNODELOCK(struct vnode *vp)
411 {
412 
413 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
414 }
415 
416 static void
417 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
418 {
419 	struct namecache_ts *ncp_ts;
420 
421 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
422 	    (tsp == NULL && ticksp == NULL),
423 	    ("No NCF_TS"));
424 
425 	if (tsp == NULL)
426 		return;
427 
428 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
429 	*tsp = ncp_ts->nc_time;
430 	*ticksp = ncp_ts->nc_ticks;
431 }
432 
433 #ifdef DEBUG_CACHE
434 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
435 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
436     "VFS namecache enabled");
437 #endif
438 
439 /* Export size information to userland */
440 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
441     sizeof(struct namecache), "sizeof(struct namecache)");
442 
443 /*
444  * The new name cache statistics
445  */
446 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
447     "Name cache statistics");
448 
449 #define STATNODE_ULONG(name, varname, descr)					\
450 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
451 #define STATNODE_COUNTER(name, varname, descr)					\
452 	static COUNTER_U64_DEFINE_EARLY(varname);				\
453 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
454 	    descr);
455 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
456 STATNODE_ULONG(count, numcache, "Number of cache entries");
457 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
458 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
459 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
460 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits");
461 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
462 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
463 STATNODE_COUNTER(posszaps, numposzaps,
464     "Number of cache hits (positive) we do not want to cache");
465 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
466 STATNODE_COUNTER(negzaps, numnegzaps,
467     "Number of cache hits (negative) we do not want to cache");
468 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
469 /* These count for vn_getcwd(), too. */
470 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
471 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
472 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
473     "Number of fullpath search errors (VOP_VPTOCNP failures)");
474 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
475 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
476 
477 /*
478  * Debug or developer statistics.
479  */
480 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
481     "Name cache debugging");
482 #define DEBUGNODE_ULONG(name, varname, descr)					\
483 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
484 #define DEBUGNODE_COUNTER(name, varname, descr)					\
485 	static COUNTER_U64_DEFINE_EARLY(varname);				\
486 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
487 	    descr);
488 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
489     "Number of successful removals after relocking");
490 static long zap_bucket_fail;
491 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
492 static long zap_bucket_fail2;
493 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
494 static long cache_lock_vnodes_cel_3_failures;
495 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
496     "Number of times 3-way vnode locking failed");
497 
498 static void cache_zap_locked(struct namecache *ncp);
499 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf,
500     char **freebuf, size_t *buflen);
501 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
502     char **retbuf, size_t *buflen, size_t addend);
503 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
504     char **retbuf, size_t *buflen);
505 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
506     char **retbuf, size_t *len, size_t addend);
507 
508 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
509 
510 static inline void
511 cache_assert_vlp_locked(struct mtx *vlp)
512 {
513 
514 	if (vlp != NULL)
515 		mtx_assert(vlp, MA_OWNED);
516 }
517 
518 static inline void
519 cache_assert_vnode_locked(struct vnode *vp)
520 {
521 	struct mtx *vlp;
522 
523 	vlp = VP2VNODELOCK(vp);
524 	cache_assert_vlp_locked(vlp);
525 }
526 
527 /*
528  * Directory vnodes with entries are held for two reasons:
529  * 1. make them less of a target for reclamation in vnlru
530  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
531  *
532  * It will be feasible to stop doing it altogether if all filesystems start
533  * supporting lockless lookup.
534  */
535 static void
536 cache_hold_vnode(struct vnode *vp)
537 {
538 
539 	cache_assert_vnode_locked(vp);
540 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
541 	vhold(vp);
542 	counter_u64_add(numcachehv, 1);
543 }
544 
545 static void
546 cache_drop_vnode(struct vnode *vp)
547 {
548 
549 	/*
550 	 * Called after all locks are dropped, meaning we can't assert
551 	 * on the state of v_cache_src.
552 	 */
553 	vdrop(vp);
554 	counter_u64_add(numcachehv, -1);
555 }
556 
557 /*
558  * UMA zones.
559  */
560 static uma_zone_t __read_mostly cache_zone_small;
561 static uma_zone_t __read_mostly cache_zone_small_ts;
562 static uma_zone_t __read_mostly cache_zone_large;
563 static uma_zone_t __read_mostly cache_zone_large_ts;
564 
565 char *
566 cache_symlink_alloc(size_t size, int flags)
567 {
568 
569 	if (size < CACHE_ZONE_SMALL_SIZE) {
570 		return (uma_zalloc_smr(cache_zone_small, flags));
571 	}
572 	if (size < CACHE_ZONE_LARGE_SIZE) {
573 		return (uma_zalloc_smr(cache_zone_large, flags));
574 	}
575 	return (NULL);
576 }
577 
578 void
579 cache_symlink_free(char *string, size_t size)
580 {
581 
582 	MPASS(string != NULL);
583 
584 	if (size < CACHE_ZONE_SMALL_SIZE) {
585 		uma_zfree_smr(cache_zone_small, string);
586 		return;
587 	}
588 	if (size < CACHE_ZONE_LARGE_SIZE) {
589 		uma_zfree_smr(cache_zone_large, string);
590 		return;
591 	}
592 	__assert_unreachable();
593 }
594 
595 static struct namecache *
596 cache_alloc_uma(int len, bool ts)
597 {
598 	struct namecache_ts *ncp_ts;
599 	struct namecache *ncp;
600 
601 	if (__predict_false(ts)) {
602 		if (len <= CACHE_PATH_CUTOFF)
603 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
604 		else
605 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
606 		ncp = &ncp_ts->nc_nc;
607 	} else {
608 		if (len <= CACHE_PATH_CUTOFF)
609 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
610 		else
611 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
612 	}
613 	return (ncp);
614 }
615 
616 static void
617 cache_free_uma(struct namecache *ncp)
618 {
619 	struct namecache_ts *ncp_ts;
620 
621 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
622 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
623 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
624 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
625 		else
626 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
627 	} else {
628 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
629 			uma_zfree_smr(cache_zone_small, ncp);
630 		else
631 			uma_zfree_smr(cache_zone_large, ncp);
632 	}
633 }
634 
635 static struct namecache *
636 cache_alloc(int len, bool ts)
637 {
638 	u_long lnumcache;
639 
640 	/*
641 	 * Avoid blowout in namecache entries.
642 	 *
643 	 * Bugs:
644 	 * 1. filesystems may end up trying to add an already existing entry
645 	 * (for example this can happen after a cache miss during concurrent
646 	 * lookup), in which case we will call cache_neg_evict despite not
647 	 * adding anything.
648 	 * 2. the routine may fail to free anything and no provisions are made
649 	 * to make it try harder (see the inside for failure modes)
650 	 * 3. it only ever looks at negative entries.
651 	 */
652 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
653 	if (cache_neg_evict_cond(lnumcache)) {
654 		lnumcache = atomic_load_long(&numcache);
655 	}
656 	if (__predict_false(lnumcache >= ncsize)) {
657 		atomic_subtract_long(&numcache, 1);
658 		counter_u64_add(numdrops, 1);
659 		return (NULL);
660 	}
661 	return (cache_alloc_uma(len, ts));
662 }
663 
664 static void
665 cache_free(struct namecache *ncp)
666 {
667 
668 	MPASS(ncp != NULL);
669 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
670 		cache_drop_vnode(ncp->nc_dvp);
671 	}
672 	cache_free_uma(ncp);
673 	atomic_subtract_long(&numcache, 1);
674 }
675 
676 static void
677 cache_free_batch(struct cache_freebatch *batch)
678 {
679 	struct namecache *ncp, *nnp;
680 	int i;
681 
682 	i = 0;
683 	if (TAILQ_EMPTY(batch))
684 		goto out;
685 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
686 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
687 			cache_drop_vnode(ncp->nc_dvp);
688 		}
689 		cache_free_uma(ncp);
690 		i++;
691 	}
692 	atomic_subtract_long(&numcache, i);
693 out:
694 	SDT_PROBE1(vfs, namecache, purge, batch, i);
695 }
696 
697 /*
698  * TODO: With the value stored we can do better than computing the hash based
699  * on the address. The choice of FNV should also be revisited.
700  */
701 static void
702 cache_prehash(struct vnode *vp)
703 {
704 
705 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
706 }
707 
708 static uint32_t
709 cache_get_hash(char *name, u_char len, struct vnode *dvp)
710 {
711 
712 	return (fnv_32_buf(name, len, dvp->v_nchash));
713 }
714 
715 static inline struct nchashhead *
716 NCP2BUCKET(struct namecache *ncp)
717 {
718 	uint32_t hash;
719 
720 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
721 	return (NCHHASH(hash));
722 }
723 
724 static inline struct mtx *
725 NCP2BUCKETLOCK(struct namecache *ncp)
726 {
727 	uint32_t hash;
728 
729 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
730 	return (HASH2BUCKETLOCK(hash));
731 }
732 
733 #ifdef INVARIANTS
734 static void
735 cache_assert_bucket_locked(struct namecache *ncp)
736 {
737 	struct mtx *blp;
738 
739 	blp = NCP2BUCKETLOCK(ncp);
740 	mtx_assert(blp, MA_OWNED);
741 }
742 
743 static void
744 cache_assert_bucket_unlocked(struct namecache *ncp)
745 {
746 	struct mtx *blp;
747 
748 	blp = NCP2BUCKETLOCK(ncp);
749 	mtx_assert(blp, MA_NOTOWNED);
750 }
751 #else
752 #define cache_assert_bucket_locked(x) do { } while (0)
753 #define cache_assert_bucket_unlocked(x) do { } while (0)
754 #endif
755 
756 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
757 static void
758 _cache_sort_vnodes(void **p1, void **p2)
759 {
760 	void *tmp;
761 
762 	MPASS(*p1 != NULL || *p2 != NULL);
763 
764 	if (*p1 > *p2) {
765 		tmp = *p2;
766 		*p2 = *p1;
767 		*p1 = tmp;
768 	}
769 }
770 
771 static void
772 cache_lock_all_buckets(void)
773 {
774 	u_int i;
775 
776 	for (i = 0; i < numbucketlocks; i++)
777 		mtx_lock(&bucketlocks[i]);
778 }
779 
780 static void
781 cache_unlock_all_buckets(void)
782 {
783 	u_int i;
784 
785 	for (i = 0; i < numbucketlocks; i++)
786 		mtx_unlock(&bucketlocks[i]);
787 }
788 
789 static void
790 cache_lock_all_vnodes(void)
791 {
792 	u_int i;
793 
794 	for (i = 0; i < numvnodelocks; i++)
795 		mtx_lock(&vnodelocks[i]);
796 }
797 
798 static void
799 cache_unlock_all_vnodes(void)
800 {
801 	u_int i;
802 
803 	for (i = 0; i < numvnodelocks; i++)
804 		mtx_unlock(&vnodelocks[i]);
805 }
806 
807 static int
808 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
809 {
810 
811 	cache_sort_vnodes(&vlp1, &vlp2);
812 
813 	if (vlp1 != NULL) {
814 		if (!mtx_trylock(vlp1))
815 			return (EAGAIN);
816 	}
817 	if (!mtx_trylock(vlp2)) {
818 		if (vlp1 != NULL)
819 			mtx_unlock(vlp1);
820 		return (EAGAIN);
821 	}
822 
823 	return (0);
824 }
825 
826 static void
827 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
828 {
829 
830 	MPASS(vlp1 != NULL || vlp2 != NULL);
831 	MPASS(vlp1 <= vlp2);
832 
833 	if (vlp1 != NULL)
834 		mtx_lock(vlp1);
835 	if (vlp2 != NULL)
836 		mtx_lock(vlp2);
837 }
838 
839 static void
840 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
841 {
842 
843 	MPASS(vlp1 != NULL || vlp2 != NULL);
844 
845 	if (vlp1 != NULL)
846 		mtx_unlock(vlp1);
847 	if (vlp2 != NULL)
848 		mtx_unlock(vlp2);
849 }
850 
851 static int
852 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
853 {
854 	struct nchstats snap;
855 
856 	if (req->oldptr == NULL)
857 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
858 
859 	snap = nchstats;
860 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
861 	snap.ncs_neghits = counter_u64_fetch(numneghits);
862 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
863 	    counter_u64_fetch(numnegzaps);
864 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
865 	    counter_u64_fetch(nummiss);
866 
867 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
868 }
869 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
870     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
871     "VFS cache effectiveness statistics");
872 
873 static void
874 cache_recalc_neg_min(u_int val)
875 {
876 
877 	neg_min = (ncsize * val) / 100;
878 }
879 
880 static int
881 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
882 {
883 	u_int val;
884 	int error;
885 
886 	val = ncnegminpct;
887 	error = sysctl_handle_int(oidp, &val, 0, req);
888 	if (error != 0 || req->newptr == NULL)
889 		return (error);
890 
891 	if (val == ncnegminpct)
892 		return (0);
893 	if (val < 0 || val > 99)
894 		return (EINVAL);
895 	ncnegminpct = val;
896 	cache_recalc_neg_min(val);
897 	return (0);
898 }
899 
900 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
901     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
902     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
903 
904 #ifdef DIAGNOSTIC
905 /*
906  * Grab an atomic snapshot of the name cache hash chain lengths
907  */
908 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
909     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
910     "hash table stats");
911 
912 static int
913 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
914 {
915 	struct nchashhead *ncpp;
916 	struct namecache *ncp;
917 	int i, error, n_nchash, *cntbuf;
918 
919 retry:
920 	n_nchash = nchash + 1;	/* nchash is max index, not count */
921 	if (req->oldptr == NULL)
922 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
923 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
924 	cache_lock_all_buckets();
925 	if (n_nchash != nchash + 1) {
926 		cache_unlock_all_buckets();
927 		free(cntbuf, M_TEMP);
928 		goto retry;
929 	}
930 	/* Scan hash tables counting entries */
931 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
932 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
933 			cntbuf[i]++;
934 	cache_unlock_all_buckets();
935 	for (error = 0, i = 0; i < n_nchash; i++)
936 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
937 			break;
938 	free(cntbuf, M_TEMP);
939 	return (error);
940 }
941 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
942     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
943     "nchash chain lengths");
944 
945 static int
946 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
947 {
948 	int error;
949 	struct nchashhead *ncpp;
950 	struct namecache *ncp;
951 	int n_nchash;
952 	int count, maxlength, used, pct;
953 
954 	if (!req->oldptr)
955 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
956 
957 	cache_lock_all_buckets();
958 	n_nchash = nchash + 1;	/* nchash is max index, not count */
959 	used = 0;
960 	maxlength = 0;
961 
962 	/* Scan hash tables for applicable entries */
963 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
964 		count = 0;
965 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
966 			count++;
967 		}
968 		if (count)
969 			used++;
970 		if (maxlength < count)
971 			maxlength = count;
972 	}
973 	n_nchash = nchash + 1;
974 	cache_unlock_all_buckets();
975 	pct = (used * 100) / (n_nchash / 100);
976 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
977 	if (error)
978 		return (error);
979 	error = SYSCTL_OUT(req, &used, sizeof(used));
980 	if (error)
981 		return (error);
982 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
983 	if (error)
984 		return (error);
985 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
986 	if (error)
987 		return (error);
988 	return (0);
989 }
990 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
991     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
992     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
993 #endif
994 
995 /*
996  * Negative entries management
997  *
998  * Various workloads create plenty of negative entries and barely use them
999  * afterwards. Moreover malicious users can keep performing bogus lookups
1000  * adding even more entries. For example "make tinderbox" as of writing this
1001  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1002  * negative.
1003  *
1004  * As such, a rather aggressive eviction method is needed. The currently
1005  * employed method is a placeholder.
1006  *
1007  * Entries are split over numneglists separate lists, each of which is further
1008  * split into hot and cold entries. Entries get promoted after getting a hit.
1009  * Eviction happens on addition of new entry.
1010  */
1011 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1012     "Name cache negative entry statistics");
1013 
1014 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1015     "Number of negative cache entries");
1016 
1017 static COUNTER_U64_DEFINE_EARLY(neg_created);
1018 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1019     "Number of created negative entries");
1020 
1021 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1022 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1023     "Number of evicted negative entries");
1024 
1025 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1026 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1027     &neg_evict_skipped_empty,
1028     "Number of times evicting failed due to lack of entries");
1029 
1030 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1031 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1032     &neg_evict_skipped_missed,
1033     "Number of times evicting failed due to target entry disappearing");
1034 
1035 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1036 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1037     &neg_evict_skipped_contended,
1038     "Number of times evicting failed due to contention");
1039 
1040 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1041     "Number of cache hits (negative)");
1042 
1043 static int
1044 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1045 {
1046 	int i, out;
1047 
1048 	out = 0;
1049 	for (i = 0; i < numneglists; i++)
1050 		out += neglists[i].nl_hotnum;
1051 
1052 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1053 }
1054 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1055     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1056     "Number of hot negative entries");
1057 
1058 static void
1059 cache_neg_init(struct namecache *ncp)
1060 {
1061 	struct negstate *ns;
1062 
1063 	ncp->nc_flag |= NCF_NEGATIVE;
1064 	ns = NCP2NEGSTATE(ncp);
1065 	ns->neg_flag = 0;
1066 	ns->neg_hit = 0;
1067 	counter_u64_add(neg_created, 1);
1068 }
1069 
1070 #define CACHE_NEG_PROMOTION_THRESH 2
1071 
1072 static bool
1073 cache_neg_hit_prep(struct namecache *ncp)
1074 {
1075 	struct negstate *ns;
1076 	u_char n;
1077 
1078 	ns = NCP2NEGSTATE(ncp);
1079 	n = atomic_load_char(&ns->neg_hit);
1080 	for (;;) {
1081 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1082 			return (false);
1083 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1084 			break;
1085 	}
1086 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1087 }
1088 
1089 /*
1090  * Nothing to do here but it is provided for completeness as some
1091  * cache_neg_hit_prep callers may end up returning without even
1092  * trying to promote.
1093  */
1094 #define cache_neg_hit_abort(ncp)	do { } while (0)
1095 
1096 static void
1097 cache_neg_hit_finish(struct namecache *ncp)
1098 {
1099 
1100 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1101 	counter_u64_add(numneghits, 1);
1102 }
1103 
1104 /*
1105  * Move a negative entry to the hot list.
1106  */
1107 static void
1108 cache_neg_promote_locked(struct namecache *ncp)
1109 {
1110 	struct neglist *nl;
1111 	struct negstate *ns;
1112 
1113 	ns = NCP2NEGSTATE(ncp);
1114 	nl = NCP2NEGLIST(ncp);
1115 	mtx_assert(&nl->nl_lock, MA_OWNED);
1116 	if ((ns->neg_flag & NEG_HOT) == 0) {
1117 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1118 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1119 		nl->nl_hotnum++;
1120 		ns->neg_flag |= NEG_HOT;
1121 	}
1122 }
1123 
1124 /*
1125  * Move a hot negative entry to the cold list.
1126  */
1127 static void
1128 cache_neg_demote_locked(struct namecache *ncp)
1129 {
1130 	struct neglist *nl;
1131 	struct negstate *ns;
1132 
1133 	ns = NCP2NEGSTATE(ncp);
1134 	nl = NCP2NEGLIST(ncp);
1135 	mtx_assert(&nl->nl_lock, MA_OWNED);
1136 	MPASS(ns->neg_flag & NEG_HOT);
1137 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1138 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1139 	nl->nl_hotnum--;
1140 	ns->neg_flag &= ~NEG_HOT;
1141 	atomic_store_char(&ns->neg_hit, 0);
1142 }
1143 
1144 /*
1145  * Move a negative entry to the hot list if it matches the lookup.
1146  *
1147  * We have to take locks, but they may be contended and in the worst
1148  * case we may need to go off CPU. We don't want to spin within the
1149  * smr section and we can't block with it. Exiting the section means
1150  * the found entry could have been evicted. We are going to look it
1151  * up again.
1152  */
1153 static bool
1154 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1155     struct namecache *oncp, uint32_t hash)
1156 {
1157 	struct namecache *ncp;
1158 	struct neglist *nl;
1159 	u_char nc_flag;
1160 
1161 	nl = NCP2NEGLIST(oncp);
1162 
1163 	mtx_lock(&nl->nl_lock);
1164 	/*
1165 	 * For hash iteration.
1166 	 */
1167 	vfs_smr_enter();
1168 
1169 	/*
1170 	 * Avoid all surprises by only succeeding if we got the same entry and
1171 	 * bailing completely otherwise.
1172 	 * XXX There are no provisions to keep the vnode around, meaning we may
1173 	 * end up promoting a negative entry for a *new* vnode and returning
1174 	 * ENOENT on its account. This is the error we want to return anyway
1175 	 * and promotion is harmless.
1176 	 *
1177 	 * In particular at this point there can be a new ncp which matches the
1178 	 * search but hashes to a different neglist.
1179 	 */
1180 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1181 		if (ncp == oncp)
1182 			break;
1183 	}
1184 
1185 	/*
1186 	 * No match to begin with.
1187 	 */
1188 	if (__predict_false(ncp == NULL)) {
1189 		goto out_abort;
1190 	}
1191 
1192 	/*
1193 	 * The newly found entry may be something different...
1194 	 */
1195 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1196 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1197 		goto out_abort;
1198 	}
1199 
1200 	/*
1201 	 * ... and not even negative.
1202 	 */
1203 	nc_flag = atomic_load_char(&ncp->nc_flag);
1204 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1205 		goto out_abort;
1206 	}
1207 
1208 	if (!cache_ncp_canuse(ncp)) {
1209 		goto out_abort;
1210 	}
1211 
1212 	cache_neg_promote_locked(ncp);
1213 	cache_neg_hit_finish(ncp);
1214 	vfs_smr_exit();
1215 	mtx_unlock(&nl->nl_lock);
1216 	return (true);
1217 out_abort:
1218 	vfs_smr_exit();
1219 	mtx_unlock(&nl->nl_lock);
1220 	return (false);
1221 }
1222 
1223 static void
1224 cache_neg_promote(struct namecache *ncp)
1225 {
1226 	struct neglist *nl;
1227 
1228 	nl = NCP2NEGLIST(ncp);
1229 	mtx_lock(&nl->nl_lock);
1230 	cache_neg_promote_locked(ncp);
1231 	mtx_unlock(&nl->nl_lock);
1232 }
1233 
1234 static void
1235 cache_neg_insert(struct namecache *ncp)
1236 {
1237 	struct neglist *nl;
1238 
1239 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1240 	cache_assert_bucket_locked(ncp);
1241 	nl = NCP2NEGLIST(ncp);
1242 	mtx_lock(&nl->nl_lock);
1243 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1244 	mtx_unlock(&nl->nl_lock);
1245 	atomic_add_long(&numneg, 1);
1246 }
1247 
1248 static void
1249 cache_neg_remove(struct namecache *ncp)
1250 {
1251 	struct neglist *nl;
1252 	struct negstate *ns;
1253 
1254 	cache_assert_bucket_locked(ncp);
1255 	nl = NCP2NEGLIST(ncp);
1256 	ns = NCP2NEGSTATE(ncp);
1257 	mtx_lock(&nl->nl_lock);
1258 	if ((ns->neg_flag & NEG_HOT) != 0) {
1259 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1260 		nl->nl_hotnum--;
1261 	} else {
1262 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1263 	}
1264 	mtx_unlock(&nl->nl_lock);
1265 	atomic_subtract_long(&numneg, 1);
1266 }
1267 
1268 static struct neglist *
1269 cache_neg_evict_select_list(void)
1270 {
1271 	struct neglist *nl;
1272 	u_int c;
1273 
1274 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1275 	nl = &neglists[c % numneglists];
1276 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1277 		counter_u64_add(neg_evict_skipped_contended, 1);
1278 		return (NULL);
1279 	}
1280 	return (nl);
1281 }
1282 
1283 static struct namecache *
1284 cache_neg_evict_select_entry(struct neglist *nl)
1285 {
1286 	struct namecache *ncp, *lncp;
1287 	struct negstate *ns, *lns;
1288 	int i;
1289 
1290 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1291 	mtx_assert(&nl->nl_lock, MA_OWNED);
1292 	ncp = TAILQ_FIRST(&nl->nl_list);
1293 	if (ncp == NULL)
1294 		return (NULL);
1295 	lncp = ncp;
1296 	lns = NCP2NEGSTATE(lncp);
1297 	for (i = 1; i < 4; i++) {
1298 		ncp = TAILQ_NEXT(ncp, nc_dst);
1299 		if (ncp == NULL)
1300 			break;
1301 		ns = NCP2NEGSTATE(ncp);
1302 		if (ns->neg_hit < lns->neg_hit) {
1303 			lncp = ncp;
1304 			lns = ns;
1305 		}
1306 	}
1307 	return (lncp);
1308 }
1309 
1310 static bool
1311 cache_neg_evict(void)
1312 {
1313 	struct namecache *ncp, *ncp2;
1314 	struct neglist *nl;
1315 	struct vnode *dvp;
1316 	struct mtx *dvlp;
1317 	struct mtx *blp;
1318 	uint32_t hash;
1319 	u_char nlen;
1320 	bool evicted;
1321 
1322 	nl = cache_neg_evict_select_list();
1323 	if (nl == NULL) {
1324 		return (false);
1325 	}
1326 
1327 	mtx_lock(&nl->nl_lock);
1328 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1329 	if (ncp != NULL) {
1330 		cache_neg_demote_locked(ncp);
1331 	}
1332 	ncp = cache_neg_evict_select_entry(nl);
1333 	if (ncp == NULL) {
1334 		counter_u64_add(neg_evict_skipped_empty, 1);
1335 		mtx_unlock(&nl->nl_lock);
1336 		mtx_unlock(&nl->nl_evict_lock);
1337 		return (false);
1338 	}
1339 	nlen = ncp->nc_nlen;
1340 	dvp = ncp->nc_dvp;
1341 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1342 	dvlp = VP2VNODELOCK(dvp);
1343 	blp = HASH2BUCKETLOCK(hash);
1344 	mtx_unlock(&nl->nl_lock);
1345 	mtx_unlock(&nl->nl_evict_lock);
1346 	mtx_lock(dvlp);
1347 	mtx_lock(blp);
1348 	/*
1349 	 * Note that since all locks were dropped above, the entry may be
1350 	 * gone or reallocated to be something else.
1351 	 */
1352 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1353 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1354 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1355 			break;
1356 	}
1357 	if (ncp2 == NULL) {
1358 		counter_u64_add(neg_evict_skipped_missed, 1);
1359 		ncp = NULL;
1360 		evicted = false;
1361 	} else {
1362 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1363 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1364 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1365 		    ncp->nc_name);
1366 		cache_zap_locked(ncp);
1367 		counter_u64_add(neg_evicted, 1);
1368 		evicted = true;
1369 	}
1370 	mtx_unlock(blp);
1371 	mtx_unlock(dvlp);
1372 	if (ncp != NULL)
1373 		cache_free(ncp);
1374 	return (evicted);
1375 }
1376 
1377 /*
1378  * Maybe evict a negative entry to create more room.
1379  *
1380  * The ncnegfactor parameter limits what fraction of the total count
1381  * can comprise of negative entries. However, if the cache is just
1382  * warming up this leads to excessive evictions.  As such, ncnegminpct
1383  * (recomputed to neg_min) dictates whether the above should be
1384  * applied.
1385  *
1386  * Try evicting if the cache is close to full capacity regardless of
1387  * other considerations.
1388  */
1389 static bool
1390 cache_neg_evict_cond(u_long lnumcache)
1391 {
1392 	u_long lnumneg;
1393 
1394 	if (ncsize - 1000 < lnumcache)
1395 		goto out_evict;
1396 	lnumneg = atomic_load_long(&numneg);
1397 	if (lnumneg < neg_min)
1398 		return (false);
1399 	if (lnumneg * ncnegfactor < lnumcache)
1400 		return (false);
1401 out_evict:
1402 	return (cache_neg_evict());
1403 }
1404 
1405 /*
1406  * cache_zap_locked():
1407  *
1408  *   Removes a namecache entry from cache, whether it contains an actual
1409  *   pointer to a vnode or if it is just a negative cache entry.
1410  */
1411 static void
1412 cache_zap_locked(struct namecache *ncp)
1413 {
1414 	struct nchashhead *ncpp;
1415 
1416 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1417 		cache_assert_vnode_locked(ncp->nc_vp);
1418 	cache_assert_vnode_locked(ncp->nc_dvp);
1419 	cache_assert_bucket_locked(ncp);
1420 
1421 	cache_ncp_invalidate(ncp);
1422 
1423 	ncpp = NCP2BUCKET(ncp);
1424 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1425 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1426 		SDT_PROBE3(vfs, namecache, zap, done, ncp->nc_dvp,
1427 		    ncp->nc_name, ncp->nc_vp);
1428 		TAILQ_REMOVE(&ncp->nc_vp->v_cache_dst, ncp, nc_dst);
1429 		if (ncp == ncp->nc_vp->v_cache_dd) {
1430 			vn_seqc_write_begin_unheld(ncp->nc_vp);
1431 			ncp->nc_vp->v_cache_dd = NULL;
1432 			vn_seqc_write_end(ncp->nc_vp);
1433 		}
1434 	} else {
1435 		SDT_PROBE2(vfs, namecache, zap_negative, done, ncp->nc_dvp,
1436 		    ncp->nc_name);
1437 		cache_neg_remove(ncp);
1438 	}
1439 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1440 		if (ncp == ncp->nc_dvp->v_cache_dd) {
1441 			vn_seqc_write_begin_unheld(ncp->nc_dvp);
1442 			ncp->nc_dvp->v_cache_dd = NULL;
1443 			vn_seqc_write_end(ncp->nc_dvp);
1444 		}
1445 	} else {
1446 		LIST_REMOVE(ncp, nc_src);
1447 		if (LIST_EMPTY(&ncp->nc_dvp->v_cache_src)) {
1448 			ncp->nc_flag |= NCF_DVDROP;
1449 		}
1450 	}
1451 }
1452 
1453 static void
1454 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1455 {
1456 	struct mtx *blp;
1457 
1458 	MPASS(ncp->nc_dvp == vp);
1459 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1460 	cache_assert_vnode_locked(vp);
1461 
1462 	blp = NCP2BUCKETLOCK(ncp);
1463 	mtx_lock(blp);
1464 	cache_zap_locked(ncp);
1465 	mtx_unlock(blp);
1466 }
1467 
1468 static bool
1469 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1470     struct mtx **vlpp)
1471 {
1472 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1473 	struct mtx *blp;
1474 
1475 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1476 	cache_assert_vnode_locked(vp);
1477 
1478 	if (ncp->nc_flag & NCF_NEGATIVE) {
1479 		if (*vlpp != NULL) {
1480 			mtx_unlock(*vlpp);
1481 			*vlpp = NULL;
1482 		}
1483 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1484 		return (true);
1485 	}
1486 
1487 	pvlp = VP2VNODELOCK(vp);
1488 	blp = NCP2BUCKETLOCK(ncp);
1489 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1490 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1491 
1492 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1493 		to_unlock = *vlpp;
1494 		*vlpp = NULL;
1495 	} else {
1496 		if (*vlpp != NULL) {
1497 			mtx_unlock(*vlpp);
1498 			*vlpp = NULL;
1499 		}
1500 		cache_sort_vnodes(&vlp1, &vlp2);
1501 		if (vlp1 == pvlp) {
1502 			mtx_lock(vlp2);
1503 			to_unlock = vlp2;
1504 		} else {
1505 			if (!mtx_trylock(vlp1))
1506 				goto out_relock;
1507 			to_unlock = vlp1;
1508 		}
1509 	}
1510 	mtx_lock(blp);
1511 	cache_zap_locked(ncp);
1512 	mtx_unlock(blp);
1513 	if (to_unlock != NULL)
1514 		mtx_unlock(to_unlock);
1515 	return (true);
1516 
1517 out_relock:
1518 	mtx_unlock(vlp2);
1519 	mtx_lock(vlp1);
1520 	mtx_lock(vlp2);
1521 	MPASS(*vlpp == NULL);
1522 	*vlpp = vlp1;
1523 	return (false);
1524 }
1525 
1526 /*
1527  * If trylocking failed we can get here. We know enough to take all needed locks
1528  * in the right order and re-lookup the entry.
1529  */
1530 static int
1531 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1532     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1533     struct mtx *blp)
1534 {
1535 	struct namecache *rncp;
1536 
1537 	cache_assert_bucket_unlocked(ncp);
1538 
1539 	cache_sort_vnodes(&dvlp, &vlp);
1540 	cache_lock_vnodes(dvlp, vlp);
1541 	mtx_lock(blp);
1542 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1543 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1544 		    rncp->nc_nlen == cnp->cn_namelen &&
1545 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1546 			break;
1547 	}
1548 	if (rncp != NULL) {
1549 		cache_zap_locked(rncp);
1550 		mtx_unlock(blp);
1551 		cache_unlock_vnodes(dvlp, vlp);
1552 		counter_u64_add(zap_bucket_relock_success, 1);
1553 		return (0);
1554 	}
1555 
1556 	mtx_unlock(blp);
1557 	cache_unlock_vnodes(dvlp, vlp);
1558 	return (EAGAIN);
1559 }
1560 
1561 static int __noinline
1562 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1563     uint32_t hash, struct mtx *blp)
1564 {
1565 	struct mtx *dvlp, *vlp;
1566 	struct vnode *dvp;
1567 
1568 	cache_assert_bucket_locked(ncp);
1569 
1570 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1571 	vlp = NULL;
1572 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1573 		vlp = VP2VNODELOCK(ncp->nc_vp);
1574 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1575 		cache_zap_locked(ncp);
1576 		mtx_unlock(blp);
1577 		cache_unlock_vnodes(dvlp, vlp);
1578 		return (0);
1579 	}
1580 
1581 	dvp = ncp->nc_dvp;
1582 	mtx_unlock(blp);
1583 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1584 }
1585 
1586 static __noinline int
1587 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1588 {
1589 	struct namecache *ncp;
1590 	struct mtx *blp;
1591 	struct mtx *dvlp, *dvlp2;
1592 	uint32_t hash;
1593 	int error;
1594 
1595 	if (cnp->cn_namelen == 2 &&
1596 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1597 		dvlp = VP2VNODELOCK(dvp);
1598 		dvlp2 = NULL;
1599 		mtx_lock(dvlp);
1600 retry_dotdot:
1601 		ncp = dvp->v_cache_dd;
1602 		if (ncp == NULL) {
1603 			mtx_unlock(dvlp);
1604 			if (dvlp2 != NULL)
1605 				mtx_unlock(dvlp2);
1606 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1607 			return (0);
1608 		}
1609 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1610 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1611 				goto retry_dotdot;
1612 			MPASS(dvp->v_cache_dd == NULL);
1613 			mtx_unlock(dvlp);
1614 			if (dvlp2 != NULL)
1615 				mtx_unlock(dvlp2);
1616 			cache_free(ncp);
1617 		} else {
1618 			vn_seqc_write_begin(dvp);
1619 			dvp->v_cache_dd = NULL;
1620 			vn_seqc_write_end(dvp);
1621 			mtx_unlock(dvlp);
1622 			if (dvlp2 != NULL)
1623 				mtx_unlock(dvlp2);
1624 		}
1625 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1626 		return (1);
1627 	}
1628 
1629 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1630 	blp = HASH2BUCKETLOCK(hash);
1631 retry:
1632 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1633 		goto out_no_entry;
1634 
1635 	mtx_lock(blp);
1636 
1637 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1638 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1639 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1640 			break;
1641 	}
1642 
1643 	if (ncp == NULL) {
1644 		mtx_unlock(blp);
1645 		goto out_no_entry;
1646 	}
1647 
1648 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1649 	if (__predict_false(error != 0)) {
1650 		zap_bucket_fail++;
1651 		goto retry;
1652 	}
1653 	counter_u64_add(numposzaps, 1);
1654 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1655 	cache_free(ncp);
1656 	return (1);
1657 out_no_entry:
1658 	counter_u64_add(nummisszap, 1);
1659 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1660 	return (0);
1661 }
1662 
1663 static int __noinline
1664 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1665     struct timespec *tsp, int *ticksp)
1666 {
1667 	int ltype;
1668 
1669 	*vpp = dvp;
1670 	counter_u64_add(dothits, 1);
1671 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1672 	if (tsp != NULL)
1673 		timespecclear(tsp);
1674 	if (ticksp != NULL)
1675 		*ticksp = ticks;
1676 	vrefact(*vpp);
1677 	/*
1678 	 * When we lookup "." we still can be asked to lock it
1679 	 * differently...
1680 	 */
1681 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1682 	if (ltype != VOP_ISLOCKED(*vpp)) {
1683 		if (ltype == LK_EXCLUSIVE) {
1684 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1685 			if (VN_IS_DOOMED((*vpp))) {
1686 				/* forced unmount */
1687 				vrele(*vpp);
1688 				*vpp = NULL;
1689 				return (ENOENT);
1690 			}
1691 		} else
1692 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1693 	}
1694 	return (-1);
1695 }
1696 
1697 static int __noinline
1698 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1699     struct timespec *tsp, int *ticksp)
1700 {
1701 	struct namecache_ts *ncp_ts;
1702 	struct namecache *ncp;
1703 	struct mtx *dvlp;
1704 	enum vgetstate vs;
1705 	int error, ltype;
1706 	bool whiteout;
1707 
1708 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1709 
1710 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1711 		cache_remove_cnp(dvp, cnp);
1712 		return (0);
1713 	}
1714 
1715 	counter_u64_add(dotdothits, 1);
1716 retry:
1717 	dvlp = VP2VNODELOCK(dvp);
1718 	mtx_lock(dvlp);
1719 	ncp = dvp->v_cache_dd;
1720 	if (ncp == NULL) {
1721 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, "..", NULL);
1722 		mtx_unlock(dvlp);
1723 		return (0);
1724 	}
1725 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1726 		if (ncp->nc_flag & NCF_NEGATIVE)
1727 			*vpp = NULL;
1728 		else
1729 			*vpp = ncp->nc_vp;
1730 	} else
1731 		*vpp = ncp->nc_dvp;
1732 	if (*vpp == NULL)
1733 		goto negative_success;
1734 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1735 	cache_out_ts(ncp, tsp, ticksp);
1736 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1737 	    NCF_DTS && tsp != NULL) {
1738 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1739 		*tsp = ncp_ts->nc_dotdottime;
1740 	}
1741 
1742 	MPASS(dvp != *vpp);
1743 	ltype = VOP_ISLOCKED(dvp);
1744 	VOP_UNLOCK(dvp);
1745 	vs = vget_prep(*vpp);
1746 	mtx_unlock(dvlp);
1747 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1748 	vn_lock(dvp, ltype | LK_RETRY);
1749 	if (VN_IS_DOOMED(dvp)) {
1750 		if (error == 0)
1751 			vput(*vpp);
1752 		*vpp = NULL;
1753 		return (ENOENT);
1754 	}
1755 	if (error) {
1756 		*vpp = NULL;
1757 		goto retry;
1758 	}
1759 	return (-1);
1760 negative_success:
1761 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1762 		if (cnp->cn_flags & ISLASTCN) {
1763 			counter_u64_add(numnegzaps, 1);
1764 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1765 			mtx_unlock(dvlp);
1766 			cache_free(ncp);
1767 			return (0);
1768 		}
1769 	}
1770 
1771 	whiteout = (ncp->nc_flag & NCF_WHITE);
1772 	cache_out_ts(ncp, tsp, ticksp);
1773 	if (cache_neg_hit_prep(ncp))
1774 		cache_neg_promote(ncp);
1775 	else
1776 		cache_neg_hit_finish(ncp);
1777 	mtx_unlock(dvlp);
1778 	if (whiteout)
1779 		cnp->cn_flags |= ISWHITEOUT;
1780 	return (ENOENT);
1781 }
1782 
1783 /**
1784  * Lookup a name in the name cache
1785  *
1786  * # Arguments
1787  *
1788  * - dvp:	Parent directory in which to search.
1789  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1790  * - cnp:	Parameters of the name search.  The most interesting bits of
1791  *   		the cn_flags field have the following meanings:
1792  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1793  *   			it up.
1794  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1795  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1796  *   		or negative) lookup, tsp will be filled with any timespec that
1797  *   		was stored when this cache entry was created.  However, it will
1798  *   		be clear for "." entries.
1799  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1800  *   		(positive or negative) lookup, it will contain the ticks value
1801  *   		that was current when the cache entry was created, unless cnp
1802  *   		was ".".
1803  *
1804  * Either both tsp and ticks have to be provided or neither of them.
1805  *
1806  * # Returns
1807  *
1808  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1809  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1810  *		to a forced unmount.  vpp will not be modified.  If the entry
1811  *		is a whiteout, then the ISWHITEOUT flag will be set in
1812  *		cnp->cn_flags.
1813  * - 0:		A cache miss.  vpp will not be modified.
1814  *
1815  * # Locking
1816  *
1817  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1818  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1819  * lock is not recursively acquired.
1820  */
1821 static int __noinline
1822 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1823     struct timespec *tsp, int *ticksp)
1824 {
1825 	struct namecache *ncp;
1826 	struct mtx *blp;
1827 	uint32_t hash;
1828 	enum vgetstate vs;
1829 	int error;
1830 	bool whiteout;
1831 
1832 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1833 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1834 
1835 retry:
1836 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1837 	blp = HASH2BUCKETLOCK(hash);
1838 	mtx_lock(blp);
1839 
1840 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1841 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1842 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1843 			break;
1844 	}
1845 
1846 	if (__predict_false(ncp == NULL)) {
1847 		mtx_unlock(blp);
1848 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1849 		    NULL);
1850 		counter_u64_add(nummiss, 1);
1851 		return (0);
1852 	}
1853 
1854 	if (ncp->nc_flag & NCF_NEGATIVE)
1855 		goto negative_success;
1856 
1857 	counter_u64_add(numposhits, 1);
1858 	*vpp = ncp->nc_vp;
1859 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1860 	cache_out_ts(ncp, tsp, ticksp);
1861 	MPASS(dvp != *vpp);
1862 	vs = vget_prep(*vpp);
1863 	mtx_unlock(blp);
1864 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1865 	if (error) {
1866 		*vpp = NULL;
1867 		goto retry;
1868 	}
1869 	return (-1);
1870 negative_success:
1871 	/*
1872 	 * We don't get here with regular lookup apart from corner cases.
1873 	 */
1874 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
1875 		if (cnp->cn_flags & ISLASTCN) {
1876 			counter_u64_add(numnegzaps, 1);
1877 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1878 			if (__predict_false(error != 0)) {
1879 				zap_bucket_fail2++;
1880 				goto retry;
1881 			}
1882 			cache_free(ncp);
1883 			return (0);
1884 		}
1885 	}
1886 
1887 	whiteout = (ncp->nc_flag & NCF_WHITE);
1888 	cache_out_ts(ncp, tsp, ticksp);
1889 	if (cache_neg_hit_prep(ncp))
1890 		cache_neg_promote(ncp);
1891 	else
1892 		cache_neg_hit_finish(ncp);
1893 	mtx_unlock(blp);
1894 	if (whiteout)
1895 		cnp->cn_flags |= ISWHITEOUT;
1896 	return (ENOENT);
1897 }
1898 
1899 int
1900 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1901     struct timespec *tsp, int *ticksp)
1902 {
1903 	struct namecache *ncp;
1904 	uint32_t hash;
1905 	enum vgetstate vs;
1906 	int error;
1907 	bool whiteout, neg_promote;
1908 	u_short nc_flag;
1909 
1910 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
1911 
1912 #ifdef DEBUG_CACHE
1913 	if (__predict_false(!doingcache)) {
1914 		cnp->cn_flags &= ~MAKEENTRY;
1915 		return (0);
1916 	}
1917 #endif
1918 
1919 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
1920 		if (cnp->cn_namelen == 1)
1921 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
1922 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
1923 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
1924 	}
1925 
1926 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1927 
1928 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
1929 		cache_remove_cnp(dvp, cnp);
1930 		return (0);
1931 	}
1932 
1933 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1934 	vfs_smr_enter();
1935 
1936 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1937 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1938 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1939 			break;
1940 	}
1941 
1942 	if (__predict_false(ncp == NULL)) {
1943 		vfs_smr_exit();
1944 		SDT_PROBE3(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr,
1945 		    NULL);
1946 		counter_u64_add(nummiss, 1);
1947 		return (0);
1948 	}
1949 
1950 	nc_flag = atomic_load_char(&ncp->nc_flag);
1951 	if (nc_flag & NCF_NEGATIVE)
1952 		goto negative_success;
1953 
1954 	counter_u64_add(numposhits, 1);
1955 	*vpp = ncp->nc_vp;
1956 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1957 	cache_out_ts(ncp, tsp, ticksp);
1958 	MPASS(dvp != *vpp);
1959 	if (!cache_ncp_canuse(ncp)) {
1960 		vfs_smr_exit();
1961 		*vpp = NULL;
1962 		goto out_fallback;
1963 	}
1964 	vs = vget_prep_smr(*vpp);
1965 	vfs_smr_exit();
1966 	if (__predict_false(vs == VGET_NONE)) {
1967 		*vpp = NULL;
1968 		goto out_fallback;
1969 	}
1970 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1971 	if (error) {
1972 		*vpp = NULL;
1973 		goto out_fallback;
1974 	}
1975 	return (-1);
1976 negative_success:
1977 	if (cnp->cn_nameiop == CREATE) {
1978 		if (cnp->cn_flags & ISLASTCN) {
1979 			vfs_smr_exit();
1980 			goto out_fallback;
1981 		}
1982 	}
1983 
1984 	cache_out_ts(ncp, tsp, ticksp);
1985 	whiteout = (ncp->nc_flag & NCF_WHITE);
1986 	neg_promote = cache_neg_hit_prep(ncp);
1987 	if (!cache_ncp_canuse(ncp)) {
1988 		cache_neg_hit_abort(ncp);
1989 		vfs_smr_exit();
1990 		goto out_fallback;
1991 	}
1992 	if (neg_promote) {
1993 		vfs_smr_exit();
1994 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
1995 			goto out_fallback;
1996 	} else {
1997 		cache_neg_hit_finish(ncp);
1998 		vfs_smr_exit();
1999 	}
2000 	if (whiteout)
2001 		cnp->cn_flags |= ISWHITEOUT;
2002 	return (ENOENT);
2003 out_fallback:
2004 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2005 }
2006 
2007 struct celockstate {
2008 	struct mtx *vlp[3];
2009 	struct mtx *blp[2];
2010 };
2011 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2012 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2013 
2014 static inline void
2015 cache_celockstate_init(struct celockstate *cel)
2016 {
2017 
2018 	bzero(cel, sizeof(*cel));
2019 }
2020 
2021 static void
2022 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2023     struct vnode *dvp)
2024 {
2025 	struct mtx *vlp1, *vlp2;
2026 
2027 	MPASS(cel->vlp[0] == NULL);
2028 	MPASS(cel->vlp[1] == NULL);
2029 	MPASS(cel->vlp[2] == NULL);
2030 
2031 	MPASS(vp != NULL || dvp != NULL);
2032 
2033 	vlp1 = VP2VNODELOCK(vp);
2034 	vlp2 = VP2VNODELOCK(dvp);
2035 	cache_sort_vnodes(&vlp1, &vlp2);
2036 
2037 	if (vlp1 != NULL) {
2038 		mtx_lock(vlp1);
2039 		cel->vlp[0] = vlp1;
2040 	}
2041 	mtx_lock(vlp2);
2042 	cel->vlp[1] = vlp2;
2043 }
2044 
2045 static void
2046 cache_unlock_vnodes_cel(struct celockstate *cel)
2047 {
2048 
2049 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2050 
2051 	if (cel->vlp[0] != NULL)
2052 		mtx_unlock(cel->vlp[0]);
2053 	if (cel->vlp[1] != NULL)
2054 		mtx_unlock(cel->vlp[1]);
2055 	if (cel->vlp[2] != NULL)
2056 		mtx_unlock(cel->vlp[2]);
2057 }
2058 
2059 static bool
2060 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2061 {
2062 	struct mtx *vlp;
2063 	bool ret;
2064 
2065 	cache_assert_vlp_locked(cel->vlp[0]);
2066 	cache_assert_vlp_locked(cel->vlp[1]);
2067 	MPASS(cel->vlp[2] == NULL);
2068 
2069 	MPASS(vp != NULL);
2070 	vlp = VP2VNODELOCK(vp);
2071 
2072 	ret = true;
2073 	if (vlp >= cel->vlp[1]) {
2074 		mtx_lock(vlp);
2075 	} else {
2076 		if (mtx_trylock(vlp))
2077 			goto out;
2078 		cache_lock_vnodes_cel_3_failures++;
2079 		cache_unlock_vnodes_cel(cel);
2080 		if (vlp < cel->vlp[0]) {
2081 			mtx_lock(vlp);
2082 			mtx_lock(cel->vlp[0]);
2083 			mtx_lock(cel->vlp[1]);
2084 		} else {
2085 			if (cel->vlp[0] != NULL)
2086 				mtx_lock(cel->vlp[0]);
2087 			mtx_lock(vlp);
2088 			mtx_lock(cel->vlp[1]);
2089 		}
2090 		ret = false;
2091 	}
2092 out:
2093 	cel->vlp[2] = vlp;
2094 	return (ret);
2095 }
2096 
2097 static void
2098 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2099     struct mtx *blp2)
2100 {
2101 
2102 	MPASS(cel->blp[0] == NULL);
2103 	MPASS(cel->blp[1] == NULL);
2104 
2105 	cache_sort_vnodes(&blp1, &blp2);
2106 
2107 	if (blp1 != NULL) {
2108 		mtx_lock(blp1);
2109 		cel->blp[0] = blp1;
2110 	}
2111 	mtx_lock(blp2);
2112 	cel->blp[1] = blp2;
2113 }
2114 
2115 static void
2116 cache_unlock_buckets_cel(struct celockstate *cel)
2117 {
2118 
2119 	if (cel->blp[0] != NULL)
2120 		mtx_unlock(cel->blp[0]);
2121 	mtx_unlock(cel->blp[1]);
2122 }
2123 
2124 /*
2125  * Lock part of the cache affected by the insertion.
2126  *
2127  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2128  * However, insertion can result in removal of an old entry. In this
2129  * case we have an additional vnode and bucketlock pair to lock.
2130  *
2131  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2132  * preserving the locking order (smaller address first).
2133  */
2134 static void
2135 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2136     uint32_t hash)
2137 {
2138 	struct namecache *ncp;
2139 	struct mtx *blps[2];
2140 
2141 	blps[0] = HASH2BUCKETLOCK(hash);
2142 	for (;;) {
2143 		blps[1] = NULL;
2144 		cache_lock_vnodes_cel(cel, dvp, vp);
2145 		if (vp == NULL || vp->v_type != VDIR)
2146 			break;
2147 		ncp = vp->v_cache_dd;
2148 		if (ncp == NULL)
2149 			break;
2150 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2151 			break;
2152 		MPASS(ncp->nc_dvp == vp);
2153 		blps[1] = NCP2BUCKETLOCK(ncp);
2154 		if (ncp->nc_flag & NCF_NEGATIVE)
2155 			break;
2156 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2157 			break;
2158 		/*
2159 		 * All vnodes got re-locked. Re-validate the state and if
2160 		 * nothing changed we are done. Otherwise restart.
2161 		 */
2162 		if (ncp == vp->v_cache_dd &&
2163 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2164 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2165 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2166 			break;
2167 		cache_unlock_vnodes_cel(cel);
2168 		cel->vlp[0] = NULL;
2169 		cel->vlp[1] = NULL;
2170 		cel->vlp[2] = NULL;
2171 	}
2172 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2173 }
2174 
2175 static void
2176 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2177     uint32_t hash)
2178 {
2179 	struct namecache *ncp;
2180 	struct mtx *blps[2];
2181 
2182 	blps[0] = HASH2BUCKETLOCK(hash);
2183 	for (;;) {
2184 		blps[1] = NULL;
2185 		cache_lock_vnodes_cel(cel, dvp, vp);
2186 		ncp = dvp->v_cache_dd;
2187 		if (ncp == NULL)
2188 			break;
2189 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2190 			break;
2191 		MPASS(ncp->nc_dvp == dvp);
2192 		blps[1] = NCP2BUCKETLOCK(ncp);
2193 		if (ncp->nc_flag & NCF_NEGATIVE)
2194 			break;
2195 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2196 			break;
2197 		if (ncp == dvp->v_cache_dd &&
2198 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2199 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2200 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2201 			break;
2202 		cache_unlock_vnodes_cel(cel);
2203 		cel->vlp[0] = NULL;
2204 		cel->vlp[1] = NULL;
2205 		cel->vlp[2] = NULL;
2206 	}
2207 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2208 }
2209 
2210 static void
2211 cache_enter_unlock(struct celockstate *cel)
2212 {
2213 
2214 	cache_unlock_buckets_cel(cel);
2215 	cache_unlock_vnodes_cel(cel);
2216 }
2217 
2218 static void __noinline
2219 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2220     struct componentname *cnp)
2221 {
2222 	struct celockstate cel;
2223 	struct namecache *ncp;
2224 	uint32_t hash;
2225 	int len;
2226 
2227 	if (dvp->v_cache_dd == NULL)
2228 		return;
2229 	len = cnp->cn_namelen;
2230 	cache_celockstate_init(&cel);
2231 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2232 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2233 	vn_seqc_write_begin(dvp);
2234 	ncp = dvp->v_cache_dd;
2235 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2236 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2237 		cache_zap_locked(ncp);
2238 	} else {
2239 		ncp = NULL;
2240 	}
2241 	dvp->v_cache_dd = NULL;
2242 	vn_seqc_write_end(dvp);
2243 	cache_enter_unlock(&cel);
2244 	if (ncp != NULL)
2245 		cache_free(ncp);
2246 }
2247 
2248 /*
2249  * Add an entry to the cache.
2250  */
2251 void
2252 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2253     struct timespec *tsp, struct timespec *dtsp)
2254 {
2255 	struct celockstate cel;
2256 	struct namecache *ncp, *n2, *ndd;
2257 	struct namecache_ts *ncp_ts;
2258 	struct nchashhead *ncpp;
2259 	uint32_t hash;
2260 	int flag;
2261 	int len;
2262 
2263 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2264 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2265 	    NAME_MAX));
2266 	VNPASS(dvp != vp, dvp);
2267 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2268 	VNPASS(dvp->v_type != VNON, dvp);
2269 	if (vp != NULL) {
2270 		VNPASS(!VN_IS_DOOMED(vp), vp);
2271 		VNPASS(vp->v_type != VNON, vp);
2272 	}
2273 
2274 #ifdef DEBUG_CACHE
2275 	if (__predict_false(!doingcache))
2276 		return;
2277 #endif
2278 
2279 	flag = 0;
2280 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2281 		if (cnp->cn_namelen == 1)
2282 			return;
2283 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2284 			cache_enter_dotdot_prep(dvp, vp, cnp);
2285 			flag = NCF_ISDOTDOT;
2286 		}
2287 	}
2288 
2289 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2290 	if (ncp == NULL)
2291 		return;
2292 
2293 	cache_celockstate_init(&cel);
2294 	ndd = NULL;
2295 	ncp_ts = NULL;
2296 
2297 	/*
2298 	 * Calculate the hash key and setup as much of the new
2299 	 * namecache entry as possible before acquiring the lock.
2300 	 */
2301 	ncp->nc_flag = flag | NCF_WIP;
2302 	ncp->nc_vp = vp;
2303 	if (vp == NULL)
2304 		cache_neg_init(ncp);
2305 	ncp->nc_dvp = dvp;
2306 	if (tsp != NULL) {
2307 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2308 		ncp_ts->nc_time = *tsp;
2309 		ncp_ts->nc_ticks = ticks;
2310 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2311 		if (dtsp != NULL) {
2312 			ncp_ts->nc_dotdottime = *dtsp;
2313 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2314 		}
2315 	}
2316 	len = ncp->nc_nlen = cnp->cn_namelen;
2317 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2318 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2319 	ncp->nc_name[len] = '\0';
2320 	cache_enter_lock(&cel, dvp, vp, hash);
2321 
2322 	/*
2323 	 * See if this vnode or negative entry is already in the cache
2324 	 * with this name.  This can happen with concurrent lookups of
2325 	 * the same path name.
2326 	 */
2327 	ncpp = NCHHASH(hash);
2328 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2329 		if (n2->nc_dvp == dvp &&
2330 		    n2->nc_nlen == cnp->cn_namelen &&
2331 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2332 			MPASS(cache_ncp_canuse(n2));
2333 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2334 				KASSERT(vp == NULL,
2335 				    ("%s: found entry pointing to a different vnode (%p != %p)",
2336 				    __func__, NULL, vp));
2337 			else
2338 				KASSERT(n2->nc_vp == vp,
2339 				    ("%s: found entry pointing to a different vnode (%p != %p)",
2340 				    __func__, n2->nc_vp, vp));
2341 			/*
2342 			 * Entries are supposed to be immutable unless in the
2343 			 * process of getting destroyed. Accommodating for
2344 			 * changing timestamps is possible but not worth it.
2345 			 * This should be harmless in terms of correctness, in
2346 			 * the worst case resulting in an earlier expiration.
2347 			 * Alternatively, the found entry can be replaced
2348 			 * altogether.
2349 			 */
2350 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2351 #if 0
2352 			if (tsp != NULL) {
2353 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2354 				    ("no NCF_TS"));
2355 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2356 				n2_ts->nc_time = ncp_ts->nc_time;
2357 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2358 				if (dtsp != NULL) {
2359 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2360 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2361 				}
2362 			}
2363 #endif
2364 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2365 			    vp);
2366 			goto out_unlock_free;
2367 		}
2368 	}
2369 
2370 	if (flag == NCF_ISDOTDOT) {
2371 		/*
2372 		 * See if we are trying to add .. entry, but some other lookup
2373 		 * has populated v_cache_dd pointer already.
2374 		 */
2375 		if (dvp->v_cache_dd != NULL)
2376 			goto out_unlock_free;
2377 		KASSERT(vp == NULL || vp->v_type == VDIR,
2378 		    ("wrong vnode type %p", vp));
2379 		vn_seqc_write_begin(dvp);
2380 		dvp->v_cache_dd = ncp;
2381 		vn_seqc_write_end(dvp);
2382 	}
2383 
2384 	if (vp != NULL) {
2385 		if (flag != NCF_ISDOTDOT) {
2386 			/*
2387 			 * For this case, the cache entry maps both the
2388 			 * directory name in it and the name ".." for the
2389 			 * directory's parent.
2390 			 */
2391 			vn_seqc_write_begin(vp);
2392 			if ((ndd = vp->v_cache_dd) != NULL) {
2393 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2394 					cache_zap_locked(ndd);
2395 				else
2396 					ndd = NULL;
2397 			}
2398 			vp->v_cache_dd = ncp;
2399 			vn_seqc_write_end(vp);
2400 		} else if (vp->v_type != VDIR) {
2401 			if (vp->v_cache_dd != NULL) {
2402 				vn_seqc_write_begin(vp);
2403 				vp->v_cache_dd = NULL;
2404 				vn_seqc_write_end(vp);
2405 			}
2406 		}
2407 	}
2408 
2409 	if (flag != NCF_ISDOTDOT) {
2410 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2411 			cache_hold_vnode(dvp);
2412 		}
2413 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2414 	}
2415 
2416 	/*
2417 	 * If the entry is "negative", we place it into the
2418 	 * "negative" cache queue, otherwise, we place it into the
2419 	 * destination vnode's cache entries queue.
2420 	 */
2421 	if (vp != NULL) {
2422 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2423 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2424 		    vp);
2425 	} else {
2426 		if (cnp->cn_flags & ISWHITEOUT)
2427 			ncp->nc_flag |= NCF_WHITE;
2428 		cache_neg_insert(ncp);
2429 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2430 		    ncp->nc_name);
2431 	}
2432 
2433 	/*
2434 	 * Insert the new namecache entry into the appropriate chain
2435 	 * within the cache entries table.
2436 	 */
2437 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2438 
2439 	atomic_thread_fence_rel();
2440 	/*
2441 	 * Mark the entry as fully constructed.
2442 	 * It is immutable past this point until its removal.
2443 	 */
2444 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2445 
2446 	cache_enter_unlock(&cel);
2447 	if (ndd != NULL)
2448 		cache_free(ndd);
2449 	return;
2450 out_unlock_free:
2451 	cache_enter_unlock(&cel);
2452 	cache_free(ncp);
2453 	return;
2454 }
2455 
2456 static u_int
2457 cache_roundup_2(u_int val)
2458 {
2459 	u_int res;
2460 
2461 	for (res = 1; res <= val; res <<= 1)
2462 		continue;
2463 
2464 	return (res);
2465 }
2466 
2467 static struct nchashhead *
2468 nchinittbl(u_long elements, u_long *hashmask)
2469 {
2470 	struct nchashhead *hashtbl;
2471 	u_long hashsize, i;
2472 
2473 	hashsize = cache_roundup_2(elements) / 2;
2474 
2475 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2476 	for (i = 0; i < hashsize; i++)
2477 		CK_SLIST_INIT(&hashtbl[i]);
2478 	*hashmask = hashsize - 1;
2479 	return (hashtbl);
2480 }
2481 
2482 static void
2483 ncfreetbl(struct nchashhead *hashtbl)
2484 {
2485 
2486 	free(hashtbl, M_VFSCACHE);
2487 }
2488 
2489 /*
2490  * Name cache initialization, from vfs_init() when we are booting
2491  */
2492 static void
2493 nchinit(void *dummy __unused)
2494 {
2495 	u_int i;
2496 
2497 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2498 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2499 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2500 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2501 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2502 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2503 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2504 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2505 
2506 	VFS_SMR_ZONE_SET(cache_zone_small);
2507 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2508 	VFS_SMR_ZONE_SET(cache_zone_large);
2509 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2510 
2511 	ncsize = desiredvnodes * ncsizefactor;
2512 	cache_recalc_neg_min(ncnegminpct);
2513 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2514 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2515 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2516 		ncbuckethash = 7;
2517 	if (ncbuckethash > nchash)
2518 		ncbuckethash = nchash;
2519 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2520 	    M_WAITOK | M_ZERO);
2521 	for (i = 0; i < numbucketlocks; i++)
2522 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2523 	ncvnodehash = ncbuckethash;
2524 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2525 	    M_WAITOK | M_ZERO);
2526 	for (i = 0; i < numvnodelocks; i++)
2527 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2528 
2529 	for (i = 0; i < numneglists; i++) {
2530 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2531 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2532 		TAILQ_INIT(&neglists[i].nl_list);
2533 		TAILQ_INIT(&neglists[i].nl_hotlist);
2534 	}
2535 }
2536 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2537 
2538 void
2539 cache_vnode_init(struct vnode *vp)
2540 {
2541 
2542 	LIST_INIT(&vp->v_cache_src);
2543 	TAILQ_INIT(&vp->v_cache_dst);
2544 	vp->v_cache_dd = NULL;
2545 	cache_prehash(vp);
2546 }
2547 
2548 void
2549 cache_changesize(u_long newmaxvnodes)
2550 {
2551 	struct nchashhead *new_nchashtbl, *old_nchashtbl;
2552 	u_long new_nchash, old_nchash;
2553 	struct namecache *ncp;
2554 	uint32_t hash;
2555 	u_long newncsize;
2556 	int i;
2557 
2558 	newncsize = newmaxvnodes * ncsizefactor;
2559 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2560 	if (newmaxvnodes < numbucketlocks)
2561 		newmaxvnodes = numbucketlocks;
2562 
2563 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2564 	/* If same hash table size, nothing to do */
2565 	if (nchash == new_nchash) {
2566 		ncfreetbl(new_nchashtbl);
2567 		return;
2568 	}
2569 	/*
2570 	 * Move everything from the old hash table to the new table.
2571 	 * None of the namecache entries in the table can be removed
2572 	 * because to do so, they have to be removed from the hash table.
2573 	 */
2574 	cache_lock_all_vnodes();
2575 	cache_lock_all_buckets();
2576 	old_nchashtbl = nchashtbl;
2577 	old_nchash = nchash;
2578 	nchashtbl = new_nchashtbl;
2579 	nchash = new_nchash;
2580 	for (i = 0; i <= old_nchash; i++) {
2581 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2582 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2583 			    ncp->nc_dvp);
2584 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2585 			CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2586 		}
2587 	}
2588 	ncsize = newncsize;
2589 	cache_recalc_neg_min(ncnegminpct);
2590 	cache_unlock_all_buckets();
2591 	cache_unlock_all_vnodes();
2592 	ncfreetbl(old_nchashtbl);
2593 }
2594 
2595 /*
2596  * Invalidate all entries from and to a particular vnode.
2597  */
2598 static void
2599 cache_purge_impl(struct vnode *vp)
2600 {
2601 	struct cache_freebatch batch;
2602 	struct namecache *ncp;
2603 	struct mtx *vlp, *vlp2;
2604 
2605 	TAILQ_INIT(&batch);
2606 	vlp = VP2VNODELOCK(vp);
2607 	vlp2 = NULL;
2608 	mtx_lock(vlp);
2609 retry:
2610 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2611 		ncp = LIST_FIRST(&vp->v_cache_src);
2612 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2613 			goto retry;
2614 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2615 	}
2616 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2617 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2618 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2619 			goto retry;
2620 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2621 	}
2622 	ncp = vp->v_cache_dd;
2623 	if (ncp != NULL) {
2624 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2625 		   ("lost dotdot link"));
2626 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2627 			goto retry;
2628 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2629 	}
2630 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2631 	mtx_unlock(vlp);
2632 	if (vlp2 != NULL)
2633 		mtx_unlock(vlp2);
2634 	cache_free_batch(&batch);
2635 }
2636 
2637 /*
2638  * Opportunistic check to see if there is anything to do.
2639  */
2640 static bool
2641 cache_has_entries(struct vnode *vp)
2642 {
2643 
2644 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2645 	    vp->v_cache_dd == NULL)
2646 		return (false);
2647 	return (true);
2648 }
2649 
2650 void
2651 cache_purge(struct vnode *vp)
2652 {
2653 
2654 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2655 	if (!cache_has_entries(vp))
2656 		return;
2657 	cache_purge_impl(vp);
2658 }
2659 
2660 /*
2661  * Only to be used by vgone.
2662  */
2663 void
2664 cache_purge_vgone(struct vnode *vp)
2665 {
2666 	struct mtx *vlp;
2667 
2668 	VNPASS(VN_IS_DOOMED(vp), vp);
2669 	if (cache_has_entries(vp)) {
2670 		cache_purge_impl(vp);
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Serialize against a potential thread doing cache_purge.
2676 	 */
2677 	vlp = VP2VNODELOCK(vp);
2678 	mtx_wait_unlocked(vlp);
2679 	if (cache_has_entries(vp)) {
2680 		cache_purge_impl(vp);
2681 		return;
2682 	}
2683 	return;
2684 }
2685 
2686 /*
2687  * Invalidate all negative entries for a particular directory vnode.
2688  */
2689 void
2690 cache_purge_negative(struct vnode *vp)
2691 {
2692 	struct cache_freebatch batch;
2693 	struct namecache *ncp, *nnp;
2694 	struct mtx *vlp;
2695 
2696 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2697 	if (LIST_EMPTY(&vp->v_cache_src))
2698 		return;
2699 	TAILQ_INIT(&batch);
2700 	vlp = VP2VNODELOCK(vp);
2701 	mtx_lock(vlp);
2702 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2703 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2704 			continue;
2705 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2706 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2707 	}
2708 	mtx_unlock(vlp);
2709 	cache_free_batch(&batch);
2710 }
2711 
2712 /*
2713  * Entry points for modifying VOP operations.
2714  */
2715 void
2716 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2717     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2718 {
2719 
2720 	ASSERT_VOP_IN_SEQC(fdvp);
2721 	ASSERT_VOP_IN_SEQC(fvp);
2722 	ASSERT_VOP_IN_SEQC(tdvp);
2723 	if (tvp != NULL)
2724 		ASSERT_VOP_IN_SEQC(tvp);
2725 
2726 	cache_purge(fvp);
2727 	if (tvp != NULL) {
2728 		cache_purge(tvp);
2729 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2730 		    ("%s: lingering negative entry", __func__));
2731 	} else {
2732 		cache_remove_cnp(tdvp, tcnp);
2733 	}
2734 }
2735 
2736 void
2737 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2738 {
2739 
2740 	ASSERT_VOP_IN_SEQC(dvp);
2741 	ASSERT_VOP_IN_SEQC(vp);
2742 	cache_purge(vp);
2743 }
2744 
2745 #ifdef INVARIANTS
2746 /*
2747  * Validate that if an entry exists it matches.
2748  */
2749 void
2750 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2751 {
2752 	struct namecache *ncp;
2753 	struct mtx *blp;
2754 	uint32_t hash;
2755 
2756 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2757 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
2758 		return;
2759 	blp = HASH2BUCKETLOCK(hash);
2760 	mtx_lock(blp);
2761 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2762 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2763 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
2764 			if (ncp->nc_vp != vp)
2765 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p vp %p\n",
2766 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp,
2767 				    ncp->nc_vp);
2768 		}
2769 	}
2770 	mtx_unlock(blp);
2771 }
2772 #endif
2773 
2774 /*
2775  * Flush all entries referencing a particular filesystem.
2776  */
2777 void
2778 cache_purgevfs(struct mount *mp)
2779 {
2780 	struct vnode *vp, *mvp;
2781 
2782 	SDT_PROBE1(vfs, namecache, purgevfs, done, mp);
2783 	/*
2784 	 * Somewhat wasteful iteration over all vnodes. Would be better to
2785 	 * support filtering and avoid the interlock to begin with.
2786 	 */
2787 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2788 		if (!cache_has_entries(vp)) {
2789 			VI_UNLOCK(vp);
2790 			continue;
2791 		}
2792 		vholdl(vp);
2793 		VI_UNLOCK(vp);
2794 		cache_purge(vp);
2795 		vdrop(vp);
2796 	}
2797 }
2798 
2799 /*
2800  * Perform canonical checks and cache lookup and pass on to filesystem
2801  * through the vop_cachedlookup only if needed.
2802  */
2803 
2804 int
2805 vfs_cache_lookup(struct vop_lookup_args *ap)
2806 {
2807 	struct vnode *dvp;
2808 	int error;
2809 	struct vnode **vpp = ap->a_vpp;
2810 	struct componentname *cnp = ap->a_cnp;
2811 	int flags = cnp->cn_flags;
2812 
2813 	*vpp = NULL;
2814 	dvp = ap->a_dvp;
2815 
2816 	if (dvp->v_type != VDIR)
2817 		return (ENOTDIR);
2818 
2819 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
2820 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
2821 		return (EROFS);
2822 
2823 	error = vn_dir_check_exec(dvp, cnp);
2824 	if (error != 0)
2825 		return (error);
2826 
2827 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
2828 	if (error == 0)
2829 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
2830 	if (error == -1)
2831 		return (0);
2832 	return (error);
2833 }
2834 
2835 /* Implementation of the getcwd syscall. */
2836 int
2837 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
2838 {
2839 	char *buf, *retbuf;
2840 	size_t buflen;
2841 	int error;
2842 
2843 	buflen = uap->buflen;
2844 	if (__predict_false(buflen < 2))
2845 		return (EINVAL);
2846 	if (buflen > MAXPATHLEN)
2847 		buflen = MAXPATHLEN;
2848 
2849 	buf = uma_zalloc(namei_zone, M_WAITOK);
2850 	error = vn_getcwd(buf, &retbuf, &buflen);
2851 	if (error == 0)
2852 		error = copyout(retbuf, uap->buf, buflen);
2853 	uma_zfree(namei_zone, buf);
2854 	return (error);
2855 }
2856 
2857 int
2858 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
2859 {
2860 	struct pwd *pwd;
2861 	int error;
2862 
2863 	vfs_smr_enter();
2864 	pwd = pwd_get_smr();
2865 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
2866 	    buflen, 0);
2867 	VFS_SMR_ASSERT_NOT_ENTERED();
2868 	if (error < 0) {
2869 		pwd = pwd_hold(curthread);
2870 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
2871 		    retbuf, buflen);
2872 		pwd_drop(pwd);
2873 	}
2874 
2875 #ifdef KTRACE
2876 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
2877 		ktrnamei(*retbuf);
2878 #endif
2879 	return (error);
2880 }
2881 
2882 static int
2883 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
2884     size_t size, int flags, enum uio_seg pathseg)
2885 {
2886 	struct nameidata nd;
2887 	char *retbuf, *freebuf;
2888 	int error;
2889 
2890 	if (flags != 0)
2891 		return (EINVAL);
2892 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1,
2893 	    pathseg, path, fd, &cap_fstat_rights, td);
2894 	if ((error = namei(&nd)) != 0)
2895 		return (error);
2896 	error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size);
2897 	if (error == 0) {
2898 		error = copyout(retbuf, buf, size);
2899 		free(freebuf, M_TEMP);
2900 	}
2901 	NDFREE(&nd, 0);
2902 	return (error);
2903 }
2904 
2905 int
2906 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
2907 {
2908 
2909 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
2910 	    uap->flags, UIO_USERSPACE));
2911 }
2912 
2913 /*
2914  * Retrieve the full filesystem path that correspond to a vnode from the name
2915  * cache (if available)
2916  */
2917 int
2918 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
2919 {
2920 	struct pwd *pwd;
2921 	char *buf;
2922 	size_t buflen;
2923 	int error;
2924 
2925 	if (__predict_false(vp == NULL))
2926 		return (EINVAL);
2927 
2928 	buflen = MAXPATHLEN;
2929 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2930 	vfs_smr_enter();
2931 	pwd = pwd_get_smr();
2932 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
2933 	VFS_SMR_ASSERT_NOT_ENTERED();
2934 	if (error < 0) {
2935 		pwd = pwd_hold(curthread);
2936 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
2937 		pwd_drop(pwd);
2938 	}
2939 	if (error == 0)
2940 		*freebuf = buf;
2941 	else
2942 		free(buf, M_TEMP);
2943 	return (error);
2944 }
2945 
2946 /*
2947  * This function is similar to vn_fullpath, but it attempts to lookup the
2948  * pathname relative to the global root mount point.  This is required for the
2949  * auditing sub-system, as audited pathnames must be absolute, relative to the
2950  * global root mount point.
2951  */
2952 int
2953 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
2954 {
2955 	char *buf;
2956 	size_t buflen;
2957 	int error;
2958 
2959 	if (__predict_false(vp == NULL))
2960 		return (EINVAL);
2961 	buflen = MAXPATHLEN;
2962 	buf = malloc(buflen, M_TEMP, M_WAITOK);
2963 	vfs_smr_enter();
2964 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
2965 	VFS_SMR_ASSERT_NOT_ENTERED();
2966 	if (error < 0) {
2967 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
2968 	}
2969 	if (error == 0)
2970 		*freebuf = buf;
2971 	else
2972 		free(buf, M_TEMP);
2973 	return (error);
2974 }
2975 
2976 static struct namecache *
2977 vn_dd_from_dst(struct vnode *vp)
2978 {
2979 	struct namecache *ncp;
2980 
2981 	cache_assert_vnode_locked(vp);
2982 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
2983 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
2984 			return (ncp);
2985 	}
2986 	return (NULL);
2987 }
2988 
2989 int
2990 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
2991 {
2992 	struct vnode *dvp;
2993 	struct namecache *ncp;
2994 	struct mtx *vlp;
2995 	int error;
2996 
2997 	vlp = VP2VNODELOCK(*vp);
2998 	mtx_lock(vlp);
2999 	ncp = (*vp)->v_cache_dd;
3000 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3001 		KASSERT(ncp == vn_dd_from_dst(*vp),
3002 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3003 		    ncp, vn_dd_from_dst(*vp)));
3004 	} else {
3005 		ncp = vn_dd_from_dst(*vp);
3006 	}
3007 	if (ncp != NULL) {
3008 		if (*buflen < ncp->nc_nlen) {
3009 			mtx_unlock(vlp);
3010 			vrele(*vp);
3011 			counter_u64_add(numfullpathfail4, 1);
3012 			error = ENOMEM;
3013 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3014 			    vp, NULL);
3015 			return (error);
3016 		}
3017 		*buflen -= ncp->nc_nlen;
3018 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3019 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3020 		    ncp->nc_name, vp);
3021 		dvp = *vp;
3022 		*vp = ncp->nc_dvp;
3023 		vref(*vp);
3024 		mtx_unlock(vlp);
3025 		vrele(dvp);
3026 		return (0);
3027 	}
3028 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3029 
3030 	mtx_unlock(vlp);
3031 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3032 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3033 	vput(*vp);
3034 	if (error) {
3035 		counter_u64_add(numfullpathfail2, 1);
3036 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3037 		return (error);
3038 	}
3039 
3040 	*vp = dvp;
3041 	if (VN_IS_DOOMED(dvp)) {
3042 		/* forced unmount */
3043 		vrele(dvp);
3044 		error = ENOENT;
3045 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3046 		return (error);
3047 	}
3048 	/*
3049 	 * *vp has its use count incremented still.
3050 	 */
3051 
3052 	return (0);
3053 }
3054 
3055 /*
3056  * Resolve a directory to a pathname.
3057  *
3058  * The name of the directory can always be found in the namecache or fetched
3059  * from the filesystem. There is also guaranteed to be only one parent, meaning
3060  * we can just follow vnodes up until we find the root.
3061  *
3062  * The vnode must be referenced.
3063  */
3064 static int
3065 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3066     size_t *len, size_t addend)
3067 {
3068 #ifdef KDTRACE_HOOKS
3069 	struct vnode *startvp = vp;
3070 #endif
3071 	struct vnode *vp1;
3072 	size_t buflen;
3073 	int error;
3074 	bool slash_prefixed;
3075 
3076 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3077 	VNPASS(vp->v_usecount > 0, vp);
3078 
3079 	buflen = *len;
3080 
3081 	slash_prefixed = true;
3082 	if (addend == 0) {
3083 		MPASS(*len >= 2);
3084 		buflen--;
3085 		buf[buflen] = '\0';
3086 		slash_prefixed = false;
3087 	}
3088 
3089 	error = 0;
3090 
3091 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3092 	counter_u64_add(numfullpathcalls, 1);
3093 	while (vp != rdir && vp != rootvnode) {
3094 		/*
3095 		 * The vp vnode must be already fully constructed,
3096 		 * since it is either found in namecache or obtained
3097 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3098 		 * without obtaining the vnode lock.
3099 		 */
3100 		if ((vp->v_vflag & VV_ROOT) != 0) {
3101 			vn_lock(vp, LK_RETRY | LK_SHARED);
3102 
3103 			/*
3104 			 * With the vnode locked, check for races with
3105 			 * unmount, forced or not.  Note that we
3106 			 * already verified that vp is not equal to
3107 			 * the root vnode, which means that
3108 			 * mnt_vnodecovered can be NULL only for the
3109 			 * case of unmount.
3110 			 */
3111 			if (VN_IS_DOOMED(vp) ||
3112 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3113 			    vp1->v_mountedhere != vp->v_mount) {
3114 				vput(vp);
3115 				error = ENOENT;
3116 				SDT_PROBE3(vfs, namecache, fullpath, return,
3117 				    error, vp, NULL);
3118 				break;
3119 			}
3120 
3121 			vref(vp1);
3122 			vput(vp);
3123 			vp = vp1;
3124 			continue;
3125 		}
3126 		if (vp->v_type != VDIR) {
3127 			vrele(vp);
3128 			counter_u64_add(numfullpathfail1, 1);
3129 			error = ENOTDIR;
3130 			SDT_PROBE3(vfs, namecache, fullpath, return,
3131 			    error, vp, NULL);
3132 			break;
3133 		}
3134 		error = vn_vptocnp(&vp, buf, &buflen);
3135 		if (error)
3136 			break;
3137 		if (buflen == 0) {
3138 			vrele(vp);
3139 			error = ENOMEM;
3140 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3141 			    startvp, NULL);
3142 			break;
3143 		}
3144 		buf[--buflen] = '/';
3145 		slash_prefixed = true;
3146 	}
3147 	if (error)
3148 		return (error);
3149 	if (!slash_prefixed) {
3150 		if (buflen == 0) {
3151 			vrele(vp);
3152 			counter_u64_add(numfullpathfail4, 1);
3153 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3154 			    startvp, NULL);
3155 			return (ENOMEM);
3156 		}
3157 		buf[--buflen] = '/';
3158 	}
3159 	counter_u64_add(numfullpathfound, 1);
3160 	vrele(vp);
3161 
3162 	*retbuf = buf + buflen;
3163 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3164 	*len -= buflen;
3165 	*len += addend;
3166 	return (0);
3167 }
3168 
3169 /*
3170  * Resolve an arbitrary vnode to a pathname.
3171  *
3172  * Note 2 caveats:
3173  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3174  *   resolve to a different path than the one used to find it
3175  * - namecache is not mandatory, meaning names are not guaranteed to be added
3176  *   (in which case resolving fails)
3177  */
3178 static void __inline
3179 cache_rev_failed_impl(int *reason, int line)
3180 {
3181 
3182 	*reason = line;
3183 }
3184 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3185 
3186 static int
3187 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3188     char **retbuf, size_t *buflen, size_t addend)
3189 {
3190 #ifdef KDTRACE_HOOKS
3191 	struct vnode *startvp = vp;
3192 #endif
3193 	struct vnode *tvp;
3194 	struct mount *mp;
3195 	struct namecache *ncp;
3196 	size_t orig_buflen;
3197 	int reason;
3198 	int error;
3199 #ifdef KDTRACE_HOOKS
3200 	int i;
3201 #endif
3202 	seqc_t vp_seqc, tvp_seqc;
3203 	u_char nc_flag;
3204 
3205 	VFS_SMR_ASSERT_ENTERED();
3206 
3207 	if (!cache_fast_revlookup) {
3208 		vfs_smr_exit();
3209 		return (-1);
3210 	}
3211 
3212 	orig_buflen = *buflen;
3213 
3214 	if (addend == 0) {
3215 		MPASS(*buflen >= 2);
3216 		*buflen -= 1;
3217 		buf[*buflen] = '\0';
3218 	}
3219 
3220 	if (vp == rdir || vp == rootvnode) {
3221 		if (addend == 0) {
3222 			*buflen -= 1;
3223 			buf[*buflen] = '/';
3224 		}
3225 		goto out_ok;
3226 	}
3227 
3228 #ifdef KDTRACE_HOOKS
3229 	i = 0;
3230 #endif
3231 	error = -1;
3232 	ncp = NULL; /* for sdt probe down below */
3233 	vp_seqc = vn_seqc_read_any(vp);
3234 	if (seqc_in_modify(vp_seqc)) {
3235 		cache_rev_failed(&reason);
3236 		goto out_abort;
3237 	}
3238 
3239 	for (;;) {
3240 #ifdef KDTRACE_HOOKS
3241 		i++;
3242 #endif
3243 		if ((vp->v_vflag & VV_ROOT) != 0) {
3244 			mp = atomic_load_ptr(&vp->v_mount);
3245 			if (mp == NULL) {
3246 				cache_rev_failed(&reason);
3247 				goto out_abort;
3248 			}
3249 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3250 			tvp_seqc = vn_seqc_read_any(tvp);
3251 			if (seqc_in_modify(tvp_seqc)) {
3252 				cache_rev_failed(&reason);
3253 				goto out_abort;
3254 			}
3255 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3256 				cache_rev_failed(&reason);
3257 				goto out_abort;
3258 			}
3259 			vp = tvp;
3260 			vp_seqc = tvp_seqc;
3261 			continue;
3262 		}
3263 		ncp = atomic_load_ptr(&vp->v_cache_dd);
3264 		if (ncp == NULL) {
3265 			cache_rev_failed(&reason);
3266 			goto out_abort;
3267 		}
3268 		nc_flag = atomic_load_char(&ncp->nc_flag);
3269 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3270 			cache_rev_failed(&reason);
3271 			goto out_abort;
3272 		}
3273 		if (!cache_ncp_canuse(ncp)) {
3274 			cache_rev_failed(&reason);
3275 			goto out_abort;
3276 		}
3277 		if (ncp->nc_nlen >= *buflen) {
3278 			cache_rev_failed(&reason);
3279 			error = ENOMEM;
3280 			goto out_abort;
3281 		}
3282 		*buflen -= ncp->nc_nlen;
3283 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3284 		*buflen -= 1;
3285 		buf[*buflen] = '/';
3286 		tvp = ncp->nc_dvp;
3287 		tvp_seqc = vn_seqc_read_any(tvp);
3288 		if (seqc_in_modify(tvp_seqc)) {
3289 			cache_rev_failed(&reason);
3290 			goto out_abort;
3291 		}
3292 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3293 			cache_rev_failed(&reason);
3294 			goto out_abort;
3295 		}
3296 		vp = tvp;
3297 		vp_seqc = tvp_seqc;
3298 		if (vp == rdir || vp == rootvnode)
3299 			break;
3300 	}
3301 out_ok:
3302 	vfs_smr_exit();
3303 	*retbuf = buf + *buflen;
3304 	*buflen = orig_buflen - *buflen + addend;
3305 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3306 	return (0);
3307 
3308 out_abort:
3309 	*buflen = orig_buflen;
3310 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3311 	vfs_smr_exit();
3312 	return (error);
3313 }
3314 
3315 static int
3316 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3317     size_t *buflen)
3318 {
3319 	size_t orig_buflen, addend;
3320 	int error;
3321 
3322 	if (*buflen < 2)
3323 		return (EINVAL);
3324 
3325 	orig_buflen = *buflen;
3326 
3327 	vref(vp);
3328 	addend = 0;
3329 	if (vp->v_type != VDIR) {
3330 		*buflen -= 1;
3331 		buf[*buflen] = '\0';
3332 		error = vn_vptocnp(&vp, buf, buflen);
3333 		if (error)
3334 			return (error);
3335 		if (*buflen == 0) {
3336 			vrele(vp);
3337 			return (ENOMEM);
3338 		}
3339 		*buflen -= 1;
3340 		buf[*buflen] = '/';
3341 		addend = orig_buflen - *buflen;
3342 	}
3343 
3344 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3345 }
3346 
3347 /*
3348  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3349  *
3350  * Since the namecache does not track hardlinks, the caller is expected to first
3351  * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei.
3352  *
3353  * Then we have 2 cases:
3354  * - if the found vnode is a directory, the path can be constructed just by
3355  *   following names up the chain
3356  * - otherwise we populate the buffer with the saved name and start resolving
3357  *   from the parent
3358  */
3359 static int
3360 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf,
3361     size_t *buflen)
3362 {
3363 	char *buf, *tmpbuf;
3364 	struct pwd *pwd;
3365 	struct componentname *cnp;
3366 	struct vnode *vp;
3367 	size_t addend;
3368 	int error;
3369 	enum vtype type;
3370 
3371 	if (*buflen < 2)
3372 		return (EINVAL);
3373 	if (*buflen > MAXPATHLEN)
3374 		*buflen = MAXPATHLEN;
3375 
3376 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3377 
3378 	addend = 0;
3379 	vp = ndp->ni_vp;
3380 	/*
3381 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3382 	 *
3383 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3384 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3385 	 * If the type is VDIR (like in this very case) we can skip looking
3386 	 * at ni_dvp in the first place. However, since vnodes get passed here
3387 	 * unlocked the target may transition to doomed state (type == VBAD)
3388 	 * before we get to evaluate the condition. If this happens, we will
3389 	 * populate part of the buffer and descend to vn_fullpath_dir with
3390 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3391 	 *
3392 	 * This should be atomic_load(&vp->v_type) but it is illegal to take
3393 	 * an address of a bit field, even if said field is sized to char.
3394 	 * Work around the problem by reading the value into a full-sized enum
3395 	 * and then re-reading it with atomic_load which will still prevent
3396 	 * the compiler from re-reading down the road.
3397 	 */
3398 	type = vp->v_type;
3399 	type = atomic_load_int(&type);
3400 	if (type == VBAD) {
3401 		error = ENOENT;
3402 		goto out_bad;
3403 	}
3404 	if (type != VDIR) {
3405 		cnp = &ndp->ni_cnd;
3406 		addend = cnp->cn_namelen + 2;
3407 		if (*buflen < addend) {
3408 			error = ENOMEM;
3409 			goto out_bad;
3410 		}
3411 		*buflen -= addend;
3412 		tmpbuf = buf + *buflen;
3413 		tmpbuf[0] = '/';
3414 		memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen);
3415 		tmpbuf[addend - 1] = '\0';
3416 		vp = ndp->ni_dvp;
3417 	}
3418 
3419 	vfs_smr_enter();
3420 	pwd = pwd_get_smr();
3421 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3422 	    addend);
3423 	VFS_SMR_ASSERT_NOT_ENTERED();
3424 	if (error < 0) {
3425 		pwd = pwd_hold(curthread);
3426 		vref(vp);
3427 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3428 		    addend);
3429 		pwd_drop(pwd);
3430 		if (error != 0)
3431 			goto out_bad;
3432 	}
3433 
3434 	*freebuf = buf;
3435 
3436 	return (0);
3437 out_bad:
3438 	free(buf, M_TEMP);
3439 	return (error);
3440 }
3441 
3442 struct vnode *
3443 vn_dir_dd_ino(struct vnode *vp)
3444 {
3445 	struct namecache *ncp;
3446 	struct vnode *ddvp;
3447 	struct mtx *vlp;
3448 	enum vgetstate vs;
3449 
3450 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3451 	vlp = VP2VNODELOCK(vp);
3452 	mtx_lock(vlp);
3453 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3454 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3455 			continue;
3456 		ddvp = ncp->nc_dvp;
3457 		vs = vget_prep(ddvp);
3458 		mtx_unlock(vlp);
3459 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3460 			return (NULL);
3461 		return (ddvp);
3462 	}
3463 	mtx_unlock(vlp);
3464 	return (NULL);
3465 }
3466 
3467 int
3468 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3469 {
3470 	struct namecache *ncp;
3471 	struct mtx *vlp;
3472 	int l;
3473 
3474 	vlp = VP2VNODELOCK(vp);
3475 	mtx_lock(vlp);
3476 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3477 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3478 			break;
3479 	if (ncp == NULL) {
3480 		mtx_unlock(vlp);
3481 		return (ENOENT);
3482 	}
3483 	l = min(ncp->nc_nlen, buflen - 1);
3484 	memcpy(buf, ncp->nc_name, l);
3485 	mtx_unlock(vlp);
3486 	buf[l] = '\0';
3487 	return (0);
3488 }
3489 
3490 /*
3491  * This function updates path string to vnode's full global path
3492  * and checks the size of the new path string against the pathlen argument.
3493  *
3494  * Requires a locked, referenced vnode.
3495  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3496  *
3497  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3498  * because it falls back to the ".." lookup if the namecache lookup fails.
3499  */
3500 int
3501 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3502     u_int pathlen)
3503 {
3504 	struct nameidata nd;
3505 	struct vnode *vp1;
3506 	char *rpath, *fbuf;
3507 	int error;
3508 
3509 	ASSERT_VOP_ELOCKED(vp, __func__);
3510 
3511 	/* Construct global filesystem path from vp. */
3512 	VOP_UNLOCK(vp);
3513 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3514 
3515 	if (error != 0) {
3516 		vrele(vp);
3517 		return (error);
3518 	}
3519 
3520 	if (strlen(rpath) >= pathlen) {
3521 		vrele(vp);
3522 		error = ENAMETOOLONG;
3523 		goto out;
3524 	}
3525 
3526 	/*
3527 	 * Re-lookup the vnode by path to detect a possible rename.
3528 	 * As a side effect, the vnode is relocked.
3529 	 * If vnode was renamed, return ENOENT.
3530 	 */
3531 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
3532 	    UIO_SYSSPACE, path, td);
3533 	error = namei(&nd);
3534 	if (error != 0) {
3535 		vrele(vp);
3536 		goto out;
3537 	}
3538 	NDFREE(&nd, NDF_ONLY_PNBUF);
3539 	vp1 = nd.ni_vp;
3540 	vrele(vp);
3541 	if (vp1 == vp)
3542 		strcpy(path, rpath);
3543 	else {
3544 		vput(vp1);
3545 		error = ENOENT;
3546 	}
3547 
3548 out:
3549 	free(fbuf, M_TEMP);
3550 	return (error);
3551 }
3552 
3553 #ifdef DDB
3554 static void
3555 db_print_vpath(struct vnode *vp)
3556 {
3557 
3558 	while (vp != NULL) {
3559 		db_printf("%p: ", vp);
3560 		if (vp == rootvnode) {
3561 			db_printf("/");
3562 			vp = NULL;
3563 		} else {
3564 			if (vp->v_vflag & VV_ROOT) {
3565 				db_printf("<mount point>");
3566 				vp = vp->v_mount->mnt_vnodecovered;
3567 			} else {
3568 				struct namecache *ncp;
3569 				char *ncn;
3570 				int i;
3571 
3572 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3573 				if (ncp != NULL) {
3574 					ncn = ncp->nc_name;
3575 					for (i = 0; i < ncp->nc_nlen; i++)
3576 						db_printf("%c", *ncn++);
3577 					vp = ncp->nc_dvp;
3578 				} else {
3579 					vp = NULL;
3580 				}
3581 			}
3582 		}
3583 		db_printf("\n");
3584 	}
3585 
3586 	return;
3587 }
3588 
3589 DB_SHOW_COMMAND(vpath, db_show_vpath)
3590 {
3591 	struct vnode *vp;
3592 
3593 	if (!have_addr) {
3594 		db_printf("usage: show vpath <struct vnode *>\n");
3595 		return;
3596 	}
3597 
3598 	vp = (struct vnode *)addr;
3599 	db_print_vpath(vp);
3600 }
3601 
3602 #endif
3603 
3604 static int cache_fast_lookup = 1;
3605 static char __read_frequently cache_fast_lookup_enabled = true;
3606 
3607 #define CACHE_FPL_FAILED	-2020
3608 
3609 void
3610 cache_fast_lookup_enabled_recalc(void)
3611 {
3612 	int lookup_flag;
3613 	int mac_on;
3614 
3615 #ifdef MAC
3616 	mac_on = mac_vnode_check_lookup_enabled();
3617 	mac_on |= mac_vnode_check_readlink_enabled();
3618 #else
3619 	mac_on = 0;
3620 #endif
3621 
3622 	lookup_flag = atomic_load_int(&cache_fast_lookup);
3623 	if (lookup_flag && !mac_on) {
3624 		atomic_store_char(&cache_fast_lookup_enabled, true);
3625 	} else {
3626 		atomic_store_char(&cache_fast_lookup_enabled, false);
3627 	}
3628 }
3629 
3630 static int
3631 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
3632 {
3633 	int error, old;
3634 
3635 	old = atomic_load_int(&cache_fast_lookup);
3636 	error = sysctl_handle_int(oidp, arg1, arg2, req);
3637 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
3638 		cache_fast_lookup_enabled_recalc();
3639 	return (error);
3640 }
3641 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
3642     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
3643 
3644 /*
3645  * Components of nameidata (or objects it can point to) which may
3646  * need restoring in case fast path lookup fails.
3647  */
3648 struct nameidata_outer {
3649 	size_t ni_pathlen;
3650 	int cn_flags;
3651 };
3652 
3653 struct nameidata_saved {
3654 #ifdef INVARIANTS
3655 	char *cn_nameptr;
3656 	size_t ni_pathlen;
3657 #endif
3658 };
3659 
3660 #ifdef INVARIANTS
3661 struct cache_fpl_debug {
3662 	size_t ni_pathlen;
3663 };
3664 #endif
3665 
3666 struct cache_fpl {
3667 	struct nameidata *ndp;
3668 	struct componentname *cnp;
3669 	char *nulchar;
3670 	struct pwd **pwd;
3671 	struct vnode *dvp;
3672 	struct vnode *tvp;
3673 	seqc_t dvp_seqc;
3674 	seqc_t tvp_seqc;
3675 	struct nameidata_saved snd;
3676 	struct nameidata_outer snd_outer;
3677 	int line;
3678 	enum cache_fpl_status status:8;
3679 	bool in_smr;
3680 	bool fsearch;
3681 	bool savename;
3682 #ifdef INVARIANTS
3683 	struct cache_fpl_debug debug;
3684 #endif
3685 };
3686 
3687 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
3688 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
3689 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
3690 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
3691 static int cache_fplookup_preparse(struct cache_fpl *fpl);
3692 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
3693 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
3694 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
3695 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
3696 
3697 static void
3698 cache_fpl_cleanup_cnp(struct componentname *cnp)
3699 {
3700 
3701 	uma_zfree(namei_zone, cnp->cn_pnbuf);
3702 #ifdef DIAGNOSTIC
3703 	cnp->cn_pnbuf = NULL;
3704 	cnp->cn_nameptr = NULL;
3705 #endif
3706 }
3707 
3708 static struct vnode *
3709 cache_fpl_handle_root(struct cache_fpl *fpl)
3710 {
3711 	struct nameidata *ndp;
3712 	struct componentname *cnp;
3713 
3714 	ndp = fpl->ndp;
3715 	cnp = fpl->cnp;
3716 
3717 	MPASS(*(cnp->cn_nameptr) == '/');
3718 	cnp->cn_nameptr++;
3719 	cache_fpl_pathlen_dec(fpl);
3720 
3721 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
3722 		do {
3723 			cnp->cn_nameptr++;
3724 			cache_fpl_pathlen_dec(fpl);
3725 		} while (*(cnp->cn_nameptr) == '/');
3726 	}
3727 
3728 	return (ndp->ni_rootdir);
3729 }
3730 
3731 static void
3732 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
3733 {
3734 
3735 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
3736 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
3737 }
3738 
3739 static void
3740 cache_fpl_checkpoint(struct cache_fpl *fpl)
3741 {
3742 
3743 #ifdef INVARIANTS
3744 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
3745 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
3746 #endif
3747 }
3748 
3749 static void
3750 cache_fpl_restore_partial(struct cache_fpl *fpl)
3751 {
3752 
3753 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
3754 #ifdef INVARIANTS
3755 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
3756 #endif
3757 }
3758 
3759 static void
3760 cache_fpl_restore_abort(struct cache_fpl *fpl)
3761 {
3762 
3763 	cache_fpl_restore_partial(fpl);
3764 	/*
3765 	 * It is 0 on entry by API contract.
3766 	 */
3767 	fpl->ndp->ni_resflags = 0;
3768 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
3769 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
3770 }
3771 
3772 #ifdef INVARIANTS
3773 #define cache_fpl_smr_assert_entered(fpl) ({			\
3774 	struct cache_fpl *_fpl = (fpl);				\
3775 	MPASS(_fpl->in_smr == true);				\
3776 	VFS_SMR_ASSERT_ENTERED();				\
3777 })
3778 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
3779 	struct cache_fpl *_fpl = (fpl);				\
3780 	MPASS(_fpl->in_smr == false);				\
3781 	VFS_SMR_ASSERT_NOT_ENTERED();				\
3782 })
3783 static void
3784 cache_fpl_assert_status(struct cache_fpl *fpl)
3785 {
3786 
3787 	switch (fpl->status) {
3788 	case CACHE_FPL_STATUS_UNSET:
3789 		__assert_unreachable();
3790 		break;
3791 	case CACHE_FPL_STATUS_DESTROYED:
3792 	case CACHE_FPL_STATUS_ABORTED:
3793 	case CACHE_FPL_STATUS_PARTIAL:
3794 	case CACHE_FPL_STATUS_HANDLED:
3795 		break;
3796 	}
3797 }
3798 #else
3799 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
3800 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
3801 #define cache_fpl_assert_status(fpl) do { } while (0)
3802 #endif
3803 
3804 #define cache_fpl_smr_enter_initial(fpl) ({			\
3805 	struct cache_fpl *_fpl = (fpl);				\
3806 	vfs_smr_enter();					\
3807 	_fpl->in_smr = true;					\
3808 })
3809 
3810 #define cache_fpl_smr_enter(fpl) ({				\
3811 	struct cache_fpl *_fpl = (fpl);				\
3812 	MPASS(_fpl->in_smr == false);				\
3813 	vfs_smr_enter();					\
3814 	_fpl->in_smr = true;					\
3815 })
3816 
3817 #define cache_fpl_smr_exit(fpl) ({				\
3818 	struct cache_fpl *_fpl = (fpl);				\
3819 	MPASS(_fpl->in_smr == true);				\
3820 	vfs_smr_exit();						\
3821 	_fpl->in_smr = false;					\
3822 })
3823 
3824 static int
3825 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
3826 {
3827 
3828 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
3829 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
3830 		    ("%s: converting to abort from %d at %d, set at %d\n",
3831 		    __func__, fpl->status, line, fpl->line));
3832 	}
3833 	cache_fpl_smr_assert_not_entered(fpl);
3834 	fpl->status = CACHE_FPL_STATUS_ABORTED;
3835 	fpl->line = line;
3836 	return (CACHE_FPL_FAILED);
3837 }
3838 
3839 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
3840 
3841 static int __noinline
3842 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
3843 {
3844 	struct nameidata *ndp;
3845 	struct componentname *cnp;
3846 
3847 	ndp = fpl->ndp;
3848 	cnp = fpl->cnp;
3849 
3850 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
3851 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
3852 		    ("%s: converting to abort from %d at %d, set at %d\n",
3853 		    __func__, fpl->status, line, fpl->line));
3854 	}
3855 	fpl->status = CACHE_FPL_STATUS_ABORTED;
3856 	fpl->line = line;
3857 	if (fpl->in_smr)
3858 		cache_fpl_smr_exit(fpl);
3859 	cache_fpl_restore_abort(fpl);
3860 	/*
3861 	 * Resolving symlinks overwrites data passed by the caller.
3862 	 * Let namei know.
3863 	 */
3864 	if (ndp->ni_loopcnt > 0) {
3865 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
3866 		cache_fpl_cleanup_cnp(cnp);
3867 	}
3868 	return (CACHE_FPL_FAILED);
3869 }
3870 
3871 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
3872 
3873 static int __noinline
3874 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
3875 {
3876 
3877 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3878 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
3879 	    __func__, line, fpl->status, fpl->line));
3880 	cache_fpl_smr_assert_entered(fpl);
3881 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
3882 	fpl->line = line;
3883 	return (cache_fplookup_partial_setup(fpl));
3884 }
3885 
3886 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
3887 
3888 static int
3889 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
3890 {
3891 
3892 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3893 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
3894 	    __func__, line, fpl->status, fpl->line));
3895 	cache_fpl_smr_assert_not_entered(fpl);
3896 	fpl->status = CACHE_FPL_STATUS_HANDLED;
3897 	fpl->line = line;
3898 	return (0);
3899 }
3900 
3901 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
3902 
3903 static int
3904 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
3905 {
3906 
3907 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
3908 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
3909 	    __func__, line, fpl->status, fpl->line));
3910 	MPASS(error != 0);
3911 	MPASS(error != CACHE_FPL_FAILED);
3912 	cache_fpl_smr_assert_not_entered(fpl);
3913 	fpl->status = CACHE_FPL_STATUS_HANDLED;
3914 	fpl->line = line;
3915 	fpl->dvp = NULL;
3916 	fpl->tvp = NULL;
3917 	fpl->savename = false;
3918 	return (error);
3919 }
3920 
3921 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
3922 
3923 static bool
3924 cache_fpl_terminated(struct cache_fpl *fpl)
3925 {
3926 
3927 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
3928 }
3929 
3930 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
3931 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
3932 	 FAILIFEXISTS | FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | \
3933 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK)
3934 
3935 #define CACHE_FPL_INTERNAL_CN_FLAGS \
3936 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
3937 
3938 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
3939     "supported and internal flags overlap");
3940 
3941 static bool
3942 cache_fpl_islastcn(struct nameidata *ndp)
3943 {
3944 
3945 	return (*ndp->ni_next == 0);
3946 }
3947 
3948 static bool
3949 cache_fpl_isdotdot(struct componentname *cnp)
3950 {
3951 
3952 	if (cnp->cn_namelen == 2 &&
3953 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
3954 		return (true);
3955 	return (false);
3956 }
3957 
3958 static bool
3959 cache_can_fplookup(struct cache_fpl *fpl)
3960 {
3961 	struct nameidata *ndp;
3962 	struct componentname *cnp;
3963 	struct thread *td;
3964 
3965 	ndp = fpl->ndp;
3966 	cnp = fpl->cnp;
3967 	td = cnp->cn_thread;
3968 
3969 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3970 		cache_fpl_aborted_early(fpl);
3971 		return (false);
3972 	}
3973 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
3974 		cache_fpl_aborted_early(fpl);
3975 		return (false);
3976 	}
3977 	if (IN_CAPABILITY_MODE(td)) {
3978 		cache_fpl_aborted_early(fpl);
3979 		return (false);
3980 	}
3981 	if (AUDITING_TD(td)) {
3982 		cache_fpl_aborted_early(fpl);
3983 		return (false);
3984 	}
3985 	if (ndp->ni_startdir != NULL) {
3986 		cache_fpl_aborted_early(fpl);
3987 		return (false);
3988 	}
3989 	return (true);
3990 }
3991 
3992 static int
3993 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
3994 {
3995 	struct nameidata *ndp;
3996 	int error;
3997 	bool fsearch;
3998 
3999 	ndp = fpl->ndp;
4000 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
4001 	if (__predict_false(error != 0)) {
4002 		return (cache_fpl_aborted(fpl));
4003 	}
4004 	fpl->fsearch = fsearch;
4005 	return (0);
4006 }
4007 
4008 static int __noinline
4009 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4010     uint32_t hash)
4011 {
4012 	struct componentname *cnp;
4013 	struct vnode *dvp;
4014 
4015 	cnp = fpl->cnp;
4016 	dvp = fpl->dvp;
4017 
4018 	cache_fpl_smr_exit(fpl);
4019 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4020 		return (cache_fpl_handled_error(fpl, ENOENT));
4021 	else
4022 		return (cache_fpl_aborted(fpl));
4023 }
4024 
4025 /*
4026  * The target vnode is not supported, prepare for the slow path to take over.
4027  */
4028 static int __noinline
4029 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4030 {
4031 	struct nameidata *ndp;
4032 	struct componentname *cnp;
4033 	enum vgetstate dvs;
4034 	struct vnode *dvp;
4035 	struct pwd *pwd;
4036 	seqc_t dvp_seqc;
4037 
4038 	ndp = fpl->ndp;
4039 	cnp = fpl->cnp;
4040 	pwd = *(fpl->pwd);
4041 	dvp = fpl->dvp;
4042 	dvp_seqc = fpl->dvp_seqc;
4043 
4044 	if (!pwd_hold_smr(pwd)) {
4045 		return (cache_fpl_aborted(fpl));
4046 	}
4047 
4048 	/*
4049 	 * Note that seqc is checked before the vnode is locked, so by
4050 	 * the time regular lookup gets to it it may have moved.
4051 	 *
4052 	 * Ultimately this does not affect correctness, any lookup errors
4053 	 * are userspace racing with itself. It is guaranteed that any
4054 	 * path which ultimately gets found could also have been found
4055 	 * by regular lookup going all the way in absence of concurrent
4056 	 * modifications.
4057 	 */
4058 	dvs = vget_prep_smr(dvp);
4059 	cache_fpl_smr_exit(fpl);
4060 	if (__predict_false(dvs == VGET_NONE)) {
4061 		pwd_drop(pwd);
4062 		return (cache_fpl_aborted(fpl));
4063 	}
4064 
4065 	vget_finish_ref(dvp, dvs);
4066 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4067 		vrele(dvp);
4068 		pwd_drop(pwd);
4069 		return (cache_fpl_aborted(fpl));
4070 	}
4071 
4072 	cache_fpl_restore_partial(fpl);
4073 #ifdef INVARIANTS
4074 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4075 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4076 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4077 	}
4078 #endif
4079 
4080 	ndp->ni_startdir = dvp;
4081 	cnp->cn_flags |= MAKEENTRY;
4082 	if (cache_fpl_islastcn(ndp))
4083 		cnp->cn_flags |= ISLASTCN;
4084 	if (cache_fpl_isdotdot(cnp))
4085 		cnp->cn_flags |= ISDOTDOT;
4086 
4087 	/*
4088 	 * Skip potential extra slashes parsing did not take care of.
4089 	 * cache_fplookup_skip_slashes explains the mechanism.
4090 	 */
4091 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4092 		do {
4093 			cnp->cn_nameptr++;
4094 			cache_fpl_pathlen_dec(fpl);
4095 		} while (*(cnp->cn_nameptr) == '/');
4096 	}
4097 
4098 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4099 #ifdef INVARIANTS
4100 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4101 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4102 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4103 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4104 	}
4105 #endif
4106 	return (0);
4107 }
4108 
4109 static int
4110 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4111 {
4112 	struct componentname *cnp;
4113 	struct vnode *tvp;
4114 	seqc_t tvp_seqc;
4115 	int error, lkflags;
4116 
4117 	cnp = fpl->cnp;
4118 	tvp = fpl->tvp;
4119 	tvp_seqc = fpl->tvp_seqc;
4120 
4121 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4122 		lkflags = LK_SHARED;
4123 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4124 			lkflags = LK_EXCLUSIVE;
4125 		error = vget_finish(tvp, lkflags, tvs);
4126 		if (__predict_false(error != 0)) {
4127 			return (cache_fpl_aborted(fpl));
4128 		}
4129 	} else {
4130 		vget_finish_ref(tvp, tvs);
4131 	}
4132 
4133 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4134 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4135 			vput(tvp);
4136 		else
4137 			vrele(tvp);
4138 		return (cache_fpl_aborted(fpl));
4139 	}
4140 
4141 	return (cache_fpl_handled(fpl));
4142 }
4143 
4144 /*
4145  * They want to possibly modify the state of the namecache.
4146  */
4147 static int __noinline
4148 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4149 {
4150 	struct nameidata *ndp;
4151 	struct componentname *cnp;
4152 	enum vgetstate dvs;
4153 	struct vnode *dvp, *tvp;
4154 	struct mount *mp;
4155 	seqc_t dvp_seqc;
4156 	int error;
4157 	bool docache;
4158 
4159 	ndp = fpl->ndp;
4160 	cnp = fpl->cnp;
4161 	dvp = fpl->dvp;
4162 	dvp_seqc = fpl->dvp_seqc;
4163 
4164 	MPASS(*(cnp->cn_nameptr) != '/');
4165 	MPASS(cache_fpl_islastcn(ndp));
4166 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4167 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4168 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4169 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4170 	    cnp->cn_nameiop == RENAME);
4171 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4172 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4173 
4174 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4175 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4176 		docache = false;
4177 
4178 	mp = atomic_load_ptr(&dvp->v_mount);
4179 	if (__predict_false(mp == NULL)) {
4180 		return (cache_fpl_aborted(fpl));
4181 	}
4182 
4183 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4184 		cache_fpl_smr_exit(fpl);
4185 		/*
4186 		 * Original code keeps not checking for CREATE which
4187 		 * might be a bug. For now let the old lookup decide.
4188 		 */
4189 		if (cnp->cn_nameiop == CREATE) {
4190 			return (cache_fpl_aborted(fpl));
4191 		}
4192 		return (cache_fpl_handled_error(fpl, EROFS));
4193 	}
4194 
4195 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4196 		cache_fpl_smr_exit(fpl);
4197 		return (cache_fpl_handled_error(fpl, EEXIST));
4198 	}
4199 
4200 	/*
4201 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4202 	 * reasoning.
4203 	 *
4204 	 * XXX At least UFS requires its lookup routine to be called for
4205 	 * the last path component, which leads to some level of complication
4206 	 * and inefficiency:
4207 	 * - the target routine always locks the target vnode, but our caller
4208 	 *   may not need it locked
4209 	 * - some of the VOP machinery asserts that the parent is locked, which
4210 	 *   once more may be not required
4211 	 *
4212 	 * TODO: add a flag for filesystems which don't need this.
4213 	 */
4214 	dvs = vget_prep_smr(dvp);
4215 	cache_fpl_smr_exit(fpl);
4216 	if (__predict_false(dvs == VGET_NONE)) {
4217 		return (cache_fpl_aborted(fpl));
4218 	}
4219 
4220 	vget_finish_ref(dvp, dvs);
4221 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4222 		vrele(dvp);
4223 		return (cache_fpl_aborted(fpl));
4224 	}
4225 
4226 	error = vn_lock(dvp, LK_EXCLUSIVE);
4227 	if (__predict_false(error != 0)) {
4228 		vrele(dvp);
4229 		return (cache_fpl_aborted(fpl));
4230 	}
4231 
4232 	tvp = NULL;
4233 	cnp->cn_flags |= ISLASTCN;
4234 	if (docache)
4235 		cnp->cn_flags |= MAKEENTRY;
4236 	if (cache_fpl_isdotdot(cnp))
4237 		cnp->cn_flags |= ISDOTDOT;
4238 	cnp->cn_lkflags = LK_EXCLUSIVE;
4239 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4240 	switch (error) {
4241 	case EJUSTRETURN:
4242 	case 0:
4243 		break;
4244 	case ENOTDIR:
4245 	case ENOENT:
4246 		vput(dvp);
4247 		return (cache_fpl_handled_error(fpl, error));
4248 	default:
4249 		vput(dvp);
4250 		return (cache_fpl_aborted(fpl));
4251 	}
4252 
4253 	fpl->tvp = tvp;
4254 	fpl->savename = (cnp->cn_flags & SAVENAME) != 0;
4255 
4256 	if (tvp == NULL) {
4257 		if ((cnp->cn_flags & SAVESTART) != 0) {
4258 			ndp->ni_startdir = dvp;
4259 			vrefact(ndp->ni_startdir);
4260 			cnp->cn_flags |= SAVENAME;
4261 			fpl->savename = true;
4262 		}
4263 		MPASS(error == EJUSTRETURN);
4264 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4265 			VOP_UNLOCK(dvp);
4266 		}
4267 		return (cache_fpl_handled(fpl));
4268 	}
4269 
4270 	/*
4271 	 * There are very hairy corner cases concerning various flag combinations
4272 	 * and locking state. In particular here we only hold one lock instead of
4273 	 * two.
4274 	 *
4275 	 * Skip the complexity as it is of no significance for normal workloads.
4276 	 */
4277 	if (__predict_false(tvp == dvp)) {
4278 		vput(dvp);
4279 		vrele(tvp);
4280 		return (cache_fpl_aborted(fpl));
4281 	}
4282 
4283 	/*
4284 	 * Check if the target is either a symlink or a mount point.
4285 	 * Since we expect this to be the terminal vnode it should
4286 	 * almost never be true.
4287 	 */
4288 	if (__predict_false(tvp->v_type == VLNK || cache_fplookup_is_mp(fpl))) {
4289 		vput(dvp);
4290 		vput(tvp);
4291 		return (cache_fpl_aborted(fpl));
4292 	}
4293 
4294 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4295 		vput(dvp);
4296 		vput(tvp);
4297 		return (cache_fpl_handled_error(fpl, EEXIST));
4298 	}
4299 
4300 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4301 		VOP_UNLOCK(tvp);
4302 	}
4303 
4304 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4305 		VOP_UNLOCK(dvp);
4306 	}
4307 
4308 	if ((cnp->cn_flags & SAVESTART) != 0) {
4309 		ndp->ni_startdir = dvp;
4310 		vrefact(ndp->ni_startdir);
4311 		cnp->cn_flags |= SAVENAME;
4312 		fpl->savename = true;
4313 	}
4314 
4315 	return (cache_fpl_handled(fpl));
4316 }
4317 
4318 static int __noinline
4319 cache_fplookup_modifying(struct cache_fpl *fpl)
4320 {
4321 	struct nameidata *ndp;
4322 
4323 	ndp = fpl->ndp;
4324 
4325 	if (!cache_fpl_islastcn(ndp)) {
4326 		return (cache_fpl_partial(fpl));
4327 	}
4328 	return (cache_fplookup_final_modifying(fpl));
4329 }
4330 
4331 static int __noinline
4332 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4333 {
4334 	struct componentname *cnp;
4335 	enum vgetstate dvs, tvs;
4336 	struct vnode *dvp, *tvp;
4337 	seqc_t dvp_seqc;
4338 	int error;
4339 
4340 	cnp = fpl->cnp;
4341 	dvp = fpl->dvp;
4342 	dvp_seqc = fpl->dvp_seqc;
4343 	tvp = fpl->tvp;
4344 
4345 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4346 
4347 	/*
4348 	 * This is less efficient than it can be for simplicity.
4349 	 */
4350 	dvs = vget_prep_smr(dvp);
4351 	if (__predict_false(dvs == VGET_NONE)) {
4352 		return (cache_fpl_aborted(fpl));
4353 	}
4354 	tvs = vget_prep_smr(tvp);
4355 	if (__predict_false(tvs == VGET_NONE)) {
4356 		cache_fpl_smr_exit(fpl);
4357 		vget_abort(dvp, dvs);
4358 		return (cache_fpl_aborted(fpl));
4359 	}
4360 
4361 	cache_fpl_smr_exit(fpl);
4362 
4363 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4364 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4365 		if (__predict_false(error != 0)) {
4366 			vget_abort(tvp, tvs);
4367 			return (cache_fpl_aborted(fpl));
4368 		}
4369 	} else {
4370 		vget_finish_ref(dvp, dvs);
4371 	}
4372 
4373 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4374 		vget_abort(tvp, tvs);
4375 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4376 			vput(dvp);
4377 		else
4378 			vrele(dvp);
4379 		return (cache_fpl_aborted(fpl));
4380 	}
4381 
4382 	error = cache_fplookup_final_child(fpl, tvs);
4383 	if (__predict_false(error != 0)) {
4384 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED);
4385 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4386 			vput(dvp);
4387 		else
4388 			vrele(dvp);
4389 		return (error);
4390 	}
4391 
4392 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4393 	return (0);
4394 }
4395 
4396 static int
4397 cache_fplookup_final(struct cache_fpl *fpl)
4398 {
4399 	struct componentname *cnp;
4400 	enum vgetstate tvs;
4401 	struct vnode *dvp, *tvp;
4402 	seqc_t dvp_seqc;
4403 
4404 	cnp = fpl->cnp;
4405 	dvp = fpl->dvp;
4406 	dvp_seqc = fpl->dvp_seqc;
4407 	tvp = fpl->tvp;
4408 
4409 	MPASS(*(cnp->cn_nameptr) != '/');
4410 
4411 	if (cnp->cn_nameiop != LOOKUP) {
4412 		return (cache_fplookup_final_modifying(fpl));
4413 	}
4414 
4415 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4416 		return (cache_fplookup_final_withparent(fpl));
4417 
4418 	tvs = vget_prep_smr(tvp);
4419 	if (__predict_false(tvs == VGET_NONE)) {
4420 		return (cache_fpl_partial(fpl));
4421 	}
4422 
4423 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4424 		cache_fpl_smr_exit(fpl);
4425 		vget_abort(tvp, tvs);
4426 		return (cache_fpl_aborted(fpl));
4427 	}
4428 
4429 	cache_fpl_smr_exit(fpl);
4430 	return (cache_fplookup_final_child(fpl, tvs));
4431 }
4432 
4433 /*
4434  * Comment from locked lookup:
4435  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4436  * directory, e.g. like "/." or ".".
4437  */
4438 static int __noinline
4439 cache_fplookup_degenerate(struct cache_fpl *fpl)
4440 {
4441 	struct componentname *cnp;
4442 	struct vnode *dvp;
4443 	enum vgetstate dvs;
4444 	int error, lkflags;
4445 
4446 	fpl->tvp = fpl->dvp;
4447 	fpl->tvp_seqc = fpl->dvp_seqc;
4448 
4449 	cnp = fpl->cnp;
4450 	dvp = fpl->dvp;
4451 
4452 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4453 		cache_fpl_smr_exit(fpl);
4454 		return (cache_fpl_handled_error(fpl, EISDIR));
4455 	}
4456 
4457 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4458 
4459 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4460 		return (cache_fplookup_final_withparent(fpl));
4461 	}
4462 
4463 	dvs = vget_prep_smr(dvp);
4464 	cache_fpl_smr_exit(fpl);
4465 	if (__predict_false(dvs == VGET_NONE)) {
4466 		return (cache_fpl_aborted(fpl));
4467 	}
4468 
4469 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4470 		lkflags = LK_SHARED;
4471 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4472 			lkflags = LK_EXCLUSIVE;
4473 		error = vget_finish(dvp, lkflags, dvs);
4474 		if (__predict_false(error != 0)) {
4475 			return (cache_fpl_aborted(fpl));
4476 		}
4477 	} else {
4478 		vget_finish_ref(dvp, dvs);
4479 	}
4480 	return (cache_fpl_handled(fpl));
4481 }
4482 
4483 static int __noinline
4484 cache_fplookup_noentry(struct cache_fpl *fpl)
4485 {
4486 	struct nameidata *ndp;
4487 	struct componentname *cnp;
4488 	enum vgetstate dvs;
4489 	struct vnode *dvp, *tvp;
4490 	seqc_t dvp_seqc;
4491 	int error;
4492 	bool docache;
4493 
4494 	ndp = fpl->ndp;
4495 	cnp = fpl->cnp;
4496 	dvp = fpl->dvp;
4497 	dvp_seqc = fpl->dvp_seqc;
4498 
4499 	MPASS(*(cnp->cn_nameptr) != '/');
4500 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4501 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4502 	MPASS(!cache_fpl_isdotdot(cnp));
4503 
4504 	/*
4505 	 * Hack: delayed name len checking.
4506 	 */
4507 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4508 		cache_fpl_smr_exit(fpl);
4509 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
4510 	}
4511 
4512 	if (cnp->cn_nameiop != LOOKUP) {
4513 		fpl->tvp = NULL;
4514 		return (cache_fplookup_modifying(fpl));
4515 	}
4516 
4517 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4518 
4519 	/*
4520 	 * Only try to fill in the component if it is the last one,
4521 	 * otherwise not only there may be several to handle but the
4522 	 * walk may be complicated.
4523 	 */
4524 	if (!cache_fpl_islastcn(ndp)) {
4525 		return (cache_fpl_partial(fpl));
4526 	}
4527 
4528 	/*
4529 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4530 	 * reasoning.
4531 	 */
4532 	dvs = vget_prep_smr(dvp);
4533 	cache_fpl_smr_exit(fpl);
4534 	if (__predict_false(dvs == VGET_NONE)) {
4535 		return (cache_fpl_aborted(fpl));
4536 	}
4537 
4538 	vget_finish_ref(dvp, dvs);
4539 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4540 		vrele(dvp);
4541 		return (cache_fpl_aborted(fpl));
4542 	}
4543 
4544 	error = vn_lock(dvp, LK_SHARED);
4545 	if (__predict_false(error != 0)) {
4546 		vrele(dvp);
4547 		return (cache_fpl_aborted(fpl));
4548 	}
4549 
4550 	tvp = NULL;
4551 	/*
4552 	 * TODO: provide variants which don't require locking either vnode.
4553 	 */
4554 	cnp->cn_flags |= ISLASTCN;
4555 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4556 	if (docache)
4557 		cnp->cn_flags |= MAKEENTRY;
4558 	cnp->cn_lkflags = LK_SHARED;
4559 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
4560 		cnp->cn_lkflags = LK_EXCLUSIVE;
4561 	}
4562 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4563 	switch (error) {
4564 	case EJUSTRETURN:
4565 	case 0:
4566 		break;
4567 	case ENOTDIR:
4568 	case ENOENT:
4569 		vput(dvp);
4570 		return (cache_fpl_handled_error(fpl, error));
4571 	default:
4572 		vput(dvp);
4573 		return (cache_fpl_aborted(fpl));
4574 	}
4575 
4576 	fpl->tvp = tvp;
4577 	if (!fpl->savename) {
4578 		MPASS((cnp->cn_flags & SAVENAME) == 0);
4579 	}
4580 
4581 	if (tvp == NULL) {
4582 		MPASS(error == EJUSTRETURN);
4583 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4584 			vput(dvp);
4585 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4586 			VOP_UNLOCK(dvp);
4587 		}
4588 		return (cache_fpl_handled(fpl));
4589 	}
4590 
4591 	if (__predict_false(tvp->v_type == VLNK || cache_fplookup_is_mp(fpl))) {
4592 		vput(dvp);
4593 		vput(tvp);
4594 		return (cache_fpl_aborted(fpl));
4595 	}
4596 
4597 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4598 		VOP_UNLOCK(tvp);
4599 	}
4600 
4601 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4602 		vput(dvp);
4603 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4604 		VOP_UNLOCK(dvp);
4605 	}
4606 	return (cache_fpl_handled(fpl));
4607 }
4608 
4609 static int __noinline
4610 cache_fplookup_dot(struct cache_fpl *fpl)
4611 {
4612 	int error;
4613 
4614 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
4615 	/*
4616 	 * Just re-assign the value. seqc will be checked later for the first
4617 	 * non-dot path component in line and/or before deciding to return the
4618 	 * vnode.
4619 	 */
4620 	fpl->tvp = fpl->dvp;
4621 	fpl->tvp_seqc = fpl->dvp_seqc;
4622 
4623 	counter_u64_add(dothits, 1);
4624 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
4625 
4626 	error = 0;
4627 	if (cache_fplookup_is_mp(fpl)) {
4628 		error = cache_fplookup_cross_mount(fpl);
4629 	}
4630 	return (error);
4631 }
4632 
4633 static int __noinline
4634 cache_fplookup_dotdot(struct cache_fpl *fpl)
4635 {
4636 	struct nameidata *ndp;
4637 	struct componentname *cnp;
4638 	struct namecache *ncp;
4639 	struct vnode *dvp;
4640 	struct prison *pr;
4641 	u_char nc_flag;
4642 
4643 	ndp = fpl->ndp;
4644 	cnp = fpl->cnp;
4645 	dvp = fpl->dvp;
4646 
4647 	MPASS(cache_fpl_isdotdot(cnp));
4648 
4649 	/*
4650 	 * XXX this is racy the same way regular lookup is
4651 	 */
4652 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
4653 	    pr = pr->pr_parent)
4654 		if (dvp == pr->pr_root)
4655 			break;
4656 
4657 	if (dvp == ndp->ni_rootdir ||
4658 	    dvp == ndp->ni_topdir ||
4659 	    dvp == rootvnode ||
4660 	    pr != NULL) {
4661 		fpl->tvp = dvp;
4662 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
4663 		if (seqc_in_modify(fpl->tvp_seqc)) {
4664 			return (cache_fpl_aborted(fpl));
4665 		}
4666 		return (0);
4667 	}
4668 
4669 	if ((dvp->v_vflag & VV_ROOT) != 0) {
4670 		/*
4671 		 * TODO
4672 		 * The opposite of climb mount is needed here.
4673 		 */
4674 		return (cache_fpl_aborted(fpl));
4675 	}
4676 
4677 	ncp = atomic_load_ptr(&dvp->v_cache_dd);
4678 	if (ncp == NULL) {
4679 		return (cache_fpl_aborted(fpl));
4680 	}
4681 
4682 	nc_flag = atomic_load_char(&ncp->nc_flag);
4683 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
4684 		if ((nc_flag & NCF_NEGATIVE) != 0)
4685 			return (cache_fpl_aborted(fpl));
4686 		fpl->tvp = ncp->nc_vp;
4687 	} else {
4688 		fpl->tvp = ncp->nc_dvp;
4689 	}
4690 
4691 	if (!cache_ncp_canuse(ncp)) {
4692 		return (cache_fpl_aborted(fpl));
4693 	}
4694 
4695 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
4696 	if (seqc_in_modify(fpl->tvp_seqc)) {
4697 		return (cache_fpl_partial(fpl));
4698 	}
4699 
4700 	counter_u64_add(dotdothits, 1);
4701 	return (0);
4702 }
4703 
4704 static int __noinline
4705 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
4706 {
4707 	u_char nc_flag;
4708 	bool neg_promote;
4709 
4710 	nc_flag = atomic_load_char(&ncp->nc_flag);
4711 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
4712 	/*
4713 	 * If they want to create an entry we need to replace this one.
4714 	 */
4715 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
4716 		fpl->tvp = NULL;
4717 		return (cache_fplookup_modifying(fpl));
4718 	}
4719 	neg_promote = cache_neg_hit_prep(ncp);
4720 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
4721 		cache_neg_hit_abort(ncp);
4722 		return (cache_fpl_partial(fpl));
4723 	}
4724 	if (neg_promote) {
4725 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
4726 	}
4727 	cache_neg_hit_finish(ncp);
4728 	cache_fpl_smr_exit(fpl);
4729 	return (cache_fpl_handled_error(fpl, ENOENT));
4730 }
4731 
4732 /*
4733  * Resolve a symlink. Called by filesystem-specific routines.
4734  *
4735  * Code flow is:
4736  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
4737  */
4738 int
4739 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
4740 {
4741 	struct nameidata *ndp;
4742 	struct componentname *cnp;
4743 
4744 	ndp = fpl->ndp;
4745 	cnp = fpl->cnp;
4746 
4747 	if (__predict_false(len == 0)) {
4748 		return (ENOENT);
4749 	}
4750 
4751 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
4752 #ifdef INVARIANTS
4753 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4754 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4755 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4756 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4757 	}
4758 #endif
4759 
4760 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
4761 		return (ENAMETOOLONG);
4762 	}
4763 
4764 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
4765 		return (ELOOP);
4766 	}
4767 
4768 	if (ndp->ni_pathlen > 1) {
4769 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
4770 	} else {
4771 		cnp->cn_pnbuf[len] = '\0';
4772 	}
4773 	bcopy(string, cnp->cn_pnbuf, len);
4774 
4775 	ndp->ni_pathlen += len;
4776 	cache_fpl_pathlen_add(fpl, len);
4777 	cnp->cn_nameptr = cnp->cn_pnbuf;
4778 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
4779 
4780 	return (0);
4781 }
4782 
4783 static int __noinline
4784 cache_fplookup_symlink(struct cache_fpl *fpl)
4785 {
4786 	struct nameidata *ndp;
4787 	struct componentname *cnp;
4788 	struct vnode *dvp, *tvp;
4789 	int error;
4790 
4791 	ndp = fpl->ndp;
4792 	cnp = fpl->cnp;
4793 	dvp = fpl->dvp;
4794 	tvp = fpl->tvp;
4795 
4796 	if (cache_fpl_islastcn(ndp)) {
4797 		if ((cnp->cn_flags & FOLLOW) == 0) {
4798 			return (cache_fplookup_final(fpl));
4799 		}
4800 	}
4801 
4802 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
4803 	if (__predict_false(error != 0)) {
4804 		switch (error) {
4805 		case EAGAIN:
4806 			return (cache_fpl_partial(fpl));
4807 		case ENOENT:
4808 		case ENAMETOOLONG:
4809 		case ELOOP:
4810 			cache_fpl_smr_exit(fpl);
4811 			return (cache_fpl_handled_error(fpl, error));
4812 		default:
4813 			return (cache_fpl_aborted(fpl));
4814 		}
4815 	}
4816 
4817 	if (*(cnp->cn_nameptr) == '/') {
4818 		fpl->dvp = cache_fpl_handle_root(fpl);
4819 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
4820 		if (seqc_in_modify(fpl->dvp_seqc)) {
4821 			return (cache_fpl_aborted(fpl));
4822 		}
4823 	}
4824 
4825 	return (cache_fplookup_preparse(fpl));
4826 }
4827 
4828 static int
4829 cache_fplookup_next(struct cache_fpl *fpl)
4830 {
4831 	struct componentname *cnp;
4832 	struct namecache *ncp;
4833 	struct vnode *dvp, *tvp;
4834 	u_char nc_flag;
4835 	uint32_t hash;
4836 	int error;
4837 
4838 	cnp = fpl->cnp;
4839 	dvp = fpl->dvp;
4840 
4841 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
4842 		if (cnp->cn_namelen == 1) {
4843 			return (cache_fplookup_dot(fpl));
4844 		}
4845 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
4846 			return (cache_fplookup_dotdot(fpl));
4847 		}
4848 	}
4849 
4850 	MPASS(!cache_fpl_isdotdot(cnp));
4851 
4852 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
4853 
4854 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
4855 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
4856 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
4857 			break;
4858 	}
4859 
4860 	if (__predict_false(ncp == NULL)) {
4861 		if (cnp->cn_nameptr[0] == '/') {
4862 			return (cache_fplookup_skip_slashes(fpl));
4863 		}
4864 		return (cache_fplookup_noentry(fpl));
4865 	}
4866 
4867 	tvp = atomic_load_ptr(&ncp->nc_vp);
4868 	nc_flag = atomic_load_char(&ncp->nc_flag);
4869 	if ((nc_flag & NCF_NEGATIVE) != 0) {
4870 		return (cache_fplookup_neg(fpl, ncp, hash));
4871 	}
4872 
4873 	if (!cache_ncp_canuse(ncp)) {
4874 		return (cache_fpl_partial(fpl));
4875 	}
4876 
4877 	fpl->tvp = tvp;
4878 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
4879 	if (seqc_in_modify(fpl->tvp_seqc)) {
4880 		return (cache_fpl_partial(fpl));
4881 	}
4882 
4883 	counter_u64_add(numposhits, 1);
4884 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
4885 
4886 	error = 0;
4887 	if (cache_fplookup_is_mp(fpl)) {
4888 		error = cache_fplookup_cross_mount(fpl);
4889 	}
4890 	return (error);
4891 }
4892 
4893 static bool
4894 cache_fplookup_mp_supported(struct mount *mp)
4895 {
4896 
4897 	MPASS(mp != NULL);
4898 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4899 		return (false);
4900 	return (true);
4901 }
4902 
4903 /*
4904  * Walk up the mount stack (if any).
4905  *
4906  * Correctness is provided in the following ways:
4907  * - all vnodes are protected from freeing with SMR
4908  * - struct mount objects are type stable making them always safe to access
4909  * - stability of the particular mount is provided by busying it
4910  * - relationship between the vnode which is mounted on and the mount is
4911  *   verified with the vnode sequence counter after busying
4912  * - association between root vnode of the mount and the mount is protected
4913  *   by busy
4914  *
4915  * From that point on we can read the sequence counter of the root vnode
4916  * and get the next mount on the stack (if any) using the same protection.
4917  *
4918  * By the end of successful walk we are guaranteed the reached state was
4919  * indeed present at least at some point which matches the regular lookup.
4920  */
4921 static int __noinline
4922 cache_fplookup_climb_mount(struct cache_fpl *fpl)
4923 {
4924 	struct mount *mp, *prev_mp;
4925 	struct mount_pcpu *mpcpu, *prev_mpcpu;
4926 	struct vnode *vp;
4927 	seqc_t vp_seqc;
4928 
4929 	vp = fpl->tvp;
4930 	vp_seqc = fpl->tvp_seqc;
4931 
4932 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
4933 	mp = atomic_load_ptr(&vp->v_mountedhere);
4934 	if (__predict_false(mp == NULL)) {
4935 		return (0);
4936 	}
4937 
4938 	prev_mp = NULL;
4939 	for (;;) {
4940 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
4941 			if (prev_mp != NULL)
4942 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4943 			return (cache_fpl_partial(fpl));
4944 		}
4945 		if (prev_mp != NULL)
4946 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4947 		if (!vn_seqc_consistent(vp, vp_seqc)) {
4948 			vfs_op_thread_exit_crit(mp, mpcpu);
4949 			return (cache_fpl_partial(fpl));
4950 		}
4951 		if (!cache_fplookup_mp_supported(mp)) {
4952 			vfs_op_thread_exit_crit(mp, mpcpu);
4953 			return (cache_fpl_partial(fpl));
4954 		}
4955 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
4956 		if (vp == NULL) {
4957 			vfs_op_thread_exit_crit(mp, mpcpu);
4958 			return (cache_fpl_partial(fpl));
4959 		}
4960 		vp_seqc = vn_seqc_read_any(vp);
4961 		if (seqc_in_modify(vp_seqc)) {
4962 			vfs_op_thread_exit_crit(mp, mpcpu);
4963 			return (cache_fpl_partial(fpl));
4964 		}
4965 		prev_mp = mp;
4966 		prev_mpcpu = mpcpu;
4967 		mp = atomic_load_ptr(&vp->v_mountedhere);
4968 		if (mp == NULL)
4969 			break;
4970 	}
4971 
4972 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
4973 	fpl->tvp = vp;
4974 	fpl->tvp_seqc = vp_seqc;
4975 	return (0);
4976 }
4977 
4978 static int __noinline
4979 cache_fplookup_cross_mount(struct cache_fpl *fpl)
4980 {
4981 	struct mount *mp;
4982 	struct mount_pcpu *mpcpu;
4983 	struct vnode *vp;
4984 	seqc_t vp_seqc;
4985 
4986 	vp = fpl->tvp;
4987 	vp_seqc = fpl->tvp_seqc;
4988 
4989 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
4990 	mp = atomic_load_ptr(&vp->v_mountedhere);
4991 	if (__predict_false(mp == NULL)) {
4992 		return (0);
4993 	}
4994 
4995 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
4996 		return (cache_fpl_partial(fpl));
4997 	}
4998 	if (!vn_seqc_consistent(vp, vp_seqc)) {
4999 		vfs_op_thread_exit_crit(mp, mpcpu);
5000 		return (cache_fpl_partial(fpl));
5001 	}
5002 	if (!cache_fplookup_mp_supported(mp)) {
5003 		vfs_op_thread_exit_crit(mp, mpcpu);
5004 		return (cache_fpl_partial(fpl));
5005 	}
5006 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5007 	if (__predict_false(vp == NULL)) {
5008 		vfs_op_thread_exit_crit(mp, mpcpu);
5009 		return (cache_fpl_partial(fpl));
5010 	}
5011 	vp_seqc = vn_seqc_read_any(vp);
5012 	vfs_op_thread_exit_crit(mp, mpcpu);
5013 	if (seqc_in_modify(vp_seqc)) {
5014 		return (cache_fpl_partial(fpl));
5015 	}
5016 	mp = atomic_load_ptr(&vp->v_mountedhere);
5017 	if (__predict_false(mp != NULL)) {
5018 		/*
5019 		 * There are possibly more mount points on top.
5020 		 * Normally this does not happen so for simplicity just start
5021 		 * over.
5022 		 */
5023 		return (cache_fplookup_climb_mount(fpl));
5024 	}
5025 
5026 	fpl->tvp = vp;
5027 	fpl->tvp_seqc = vp_seqc;
5028 	return (0);
5029 }
5030 
5031 /*
5032  * Check if a vnode is mounted on.
5033  */
5034 static bool
5035 cache_fplookup_is_mp(struct cache_fpl *fpl)
5036 {
5037 	struct vnode *vp;
5038 
5039 	vp = fpl->tvp;
5040 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5041 }
5042 
5043 /*
5044  * Parse the path.
5045  *
5046  * The code was originally copy-pasted from regular lookup and despite
5047  * clean ups leaves performance on the table. Any modifications here
5048  * must take into account that in case off fallback the resulting
5049  * nameidata state has to be compatible with the original.
5050  */
5051 
5052 /*
5053  * Debug ni_pathlen tracking.
5054  */
5055 #ifdef INVARIANTS
5056 static void
5057 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5058 {
5059 
5060 	cache_fpl_pathlen_sub(fpl, 1);
5061 }
5062 
5063 static void
5064 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5065 {
5066 
5067 	cache_fpl_pathlen_add(fpl, 1);
5068 }
5069 
5070 static void
5071 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5072 {
5073 
5074 	fpl->debug.ni_pathlen += n;
5075 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5076 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5077 }
5078 
5079 static void
5080 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5081 {
5082 
5083 	fpl->debug.ni_pathlen -= n;
5084 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5085 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5086 }
5087 #else
5088 static void __always_inline
5089 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5090 {
5091 }
5092 
5093 static void __always_inline
5094 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5095 {
5096 }
5097 
5098 static void
5099 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5100 {
5101 }
5102 
5103 static void
5104 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5105 {
5106 }
5107 #endif
5108 
5109 static int __always_inline
5110 cache_fplookup_preparse(struct cache_fpl *fpl)
5111 {
5112 	struct componentname *cnp;
5113 
5114 	cnp = fpl->cnp;
5115 
5116 	if (__predict_false(cnp->cn_nameptr[0] == '\0')) {
5117 		return (cache_fplookup_degenerate(fpl));
5118 	}
5119 
5120 	/*
5121 	 * By this point the shortest possible pathname is one character + nul
5122 	 * terminator, hence 2.
5123 	 */
5124 	KASSERT(fpl->debug.ni_pathlen >= 2, ("%s: pathlen %zu\n", __func__,
5125 	    fpl->debug.ni_pathlen));
5126 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 2] == fpl->nulchar - 1,
5127 	    ("%s: mismatch on string (%p != %p) [%s]\n", __func__,
5128 	    &cnp->cn_nameptr[fpl->debug.ni_pathlen - 2], fpl->nulchar - 1,
5129 	    cnp->cn_pnbuf));
5130 	if (__predict_false(*(fpl->nulchar - 1) == '/')) {
5131 		/*
5132 		 * TODO
5133 		 * Regular lookup performs the following:
5134 		 * *ndp->ni_next = '\0';
5135 		 * cnp->cn_flags |= TRAILINGSLASH;
5136 		 *
5137 		 * Which is problematic since it modifies data read
5138 		 * from userspace. Then if fast path lookup was to
5139 		 * abort we would have to either restore it or convey
5140 		 * the flag. Since this is a corner case just ignore
5141 		 * it for simplicity.
5142 		 */
5143 		return (cache_fpl_aborted(fpl));
5144 	}
5145 	return (0);
5146 }
5147 
5148 static int
5149 cache_fplookup_parse(struct cache_fpl *fpl)
5150 {
5151 	struct nameidata *ndp;
5152 	struct componentname *cnp;
5153 	char *cp;
5154 
5155 	ndp = fpl->ndp;
5156 	cnp = fpl->cnp;
5157 
5158 	/*
5159 	 * Find the end of this path component, it is either / or nul.
5160 	 *
5161 	 * Store / as a temporary sentinel so that we only have one character
5162 	 * to test for. Pathnames tend to be short so this should not be
5163 	 * resulting in cache misses.
5164 	 */
5165 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5166 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5167 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5168 	    fpl->nulchar, cnp->cn_pnbuf));
5169 	KASSERT(*fpl->nulchar == '\0',
5170 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5171 	    cnp->cn_pnbuf));
5172 	*fpl->nulchar = '/';
5173 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5174 		KASSERT(*cp != '\0',
5175 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5176 		    cnp->cn_nameptr));
5177 		continue;
5178 	}
5179 	*fpl->nulchar = '\0';
5180 
5181 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5182 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5183 	/*
5184 	 * Hack: we have to check if the found path component's length exceeds
5185 	 * NAME_MAX. However, the condition is very rarely true and check can
5186 	 * be elided in the common case -- if an entry was found in the cache,
5187 	 * then it could not have been too long to begin with.
5188 	 */
5189 	ndp->ni_next = cp;
5190 
5191 #ifdef INVARIANTS
5192 	/*
5193 	 * Code below is only here to assure compatibility with regular lookup.
5194 	 * It covers handling of trailing slashes and names like "/", both of
5195 	 * which of can be taken care of upfront which lockless lookup does
5196 	 * in cache_fplookup_preparse. Regular lookup performs these for each
5197 	 * path component.
5198 	 */
5199 	while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
5200 		cp++;
5201 		if (*cp == '\0') {
5202 			panic("%s: ran into TRAILINGSLASH handling from [%s]\n",
5203 			    __func__, cnp->cn_pnbuf);
5204 		}
5205 	}
5206 
5207 	if (cnp->cn_nameptr[0] == '\0') {
5208 		panic("%s: ran into degenerate name from [%s]\n", __func__, cnp->cn_pnbuf);
5209 	}
5210 #endif
5211 	return (0);
5212 }
5213 
5214 static void
5215 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5216 {
5217 	struct nameidata *ndp;
5218 	struct componentname *cnp;
5219 
5220 	ndp = fpl->ndp;
5221 	cnp = fpl->cnp;
5222 
5223 	cnp->cn_nameptr = ndp->ni_next;
5224 	KASSERT(*(cnp->cn_nameptr) == '/',
5225 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5226 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5227 	cnp->cn_nameptr++;
5228 	cache_fpl_pathlen_dec(fpl);
5229 }
5230 
5231 /*
5232  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5233  *
5234  * Lockless lookup tries to elide checking for spurious slashes and should they
5235  * be present is guaranteed to fail to find an entry. In this case the caller
5236  * must check if the name starts with a slash and this call routine.  It is
5237  * going to fast forward across the spurious slashes and set the state up for
5238  * retry.
5239  */
5240 static int __noinline
5241 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5242 {
5243 	struct nameidata *ndp;
5244 	struct componentname *cnp;
5245 
5246 	ndp = fpl->ndp;
5247 	cnp = fpl->cnp;
5248 
5249 	MPASS(*(cnp->cn_nameptr) == '/');
5250 	do {
5251 		cnp->cn_nameptr++;
5252 		cache_fpl_pathlen_dec(fpl);
5253 	} while (*(cnp->cn_nameptr) == '/');
5254 
5255 	/*
5256 	 * Go back to one slash so that cache_fplookup_parse_advance has
5257 	 * something to skip.
5258 	 */
5259 	cnp->cn_nameptr--;
5260 	cache_fpl_pathlen_inc(fpl);
5261 
5262 	/*
5263 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5264 	 */
5265 	ndp->ni_next = cnp->cn_nameptr;
5266 
5267 	/*
5268 	 * See cache_fplookup_dot.
5269 	 */
5270 	fpl->tvp = fpl->dvp;
5271 	fpl->tvp_seqc = fpl->dvp_seqc;
5272 
5273 	return (0);
5274 }
5275 
5276 /*
5277  * See the API contract for VOP_FPLOOKUP_VEXEC.
5278  */
5279 static int __noinline
5280 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
5281 {
5282 	struct componentname *cnp;
5283 	struct vnode *dvp;
5284 	seqc_t dvp_seqc;
5285 
5286 	cnp = fpl->cnp;
5287 	dvp = fpl->dvp;
5288 	dvp_seqc = fpl->dvp_seqc;
5289 
5290 	/*
5291 	 * Hack: delayed name len checking.
5292 	 */
5293 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5294 		cache_fpl_smr_exit(fpl);
5295 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5296 	}
5297 
5298 	/*
5299 	 * Hack: they may be looking up foo/bar, where foo is a
5300 	 * regular file. In such a case we need to turn ENOTDIR,
5301 	 * but we may happen to get here with a different error.
5302 	 */
5303 	if (dvp->v_type != VDIR) {
5304 		/*
5305 		 * The check here is predominantly to catch
5306 		 * EOPNOTSUPP from dead_vnodeops. If the vnode
5307 		 * gets doomed past this point it is going to
5308 		 * fail seqc verification.
5309 		 */
5310 		if (VN_IS_DOOMED(dvp)) {
5311 			return (cache_fpl_aborted(fpl));
5312 		}
5313 		error = ENOTDIR;
5314 	}
5315 
5316 	/*
5317 	 * Hack: handle O_SEARCH.
5318 	 *
5319 	 * Open Group Base Specifications Issue 7, 2018 edition states:
5320 	 * If the access mode of the open file description associated with the
5321 	 * file descriptor is not O_SEARCH, the function shall check whether
5322 	 * directory searches are permitted using the current permissions of
5323 	 * the directory underlying the file descriptor. If the access mode is
5324 	 * O_SEARCH, the function shall not perform the check.
5325 	 *
5326 	 * Regular lookup tests for the NOEXECCHECK flag for every path
5327 	 * component to decide whether to do the permission check. However,
5328 	 * since most lookups never have the flag (and when they do it is only
5329 	 * present for the first path component), lockless lookup only acts on
5330 	 * it if there is a permission problem. Here the flag is represented
5331 	 * with a boolean so that we don't have to clear it on the way out.
5332 	 *
5333 	 * For simplicity this always aborts.
5334 	 * TODO: check if this is the first lookup and ignore the permission
5335 	 * problem. Note the flag has to survive fallback (if it happens to be
5336 	 * performed).
5337 	 */
5338 	if (fpl->fsearch) {
5339 		return (cache_fpl_aborted(fpl));
5340 	}
5341 
5342 	switch (error) {
5343 	case EAGAIN:
5344 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5345 			error = cache_fpl_aborted(fpl);
5346 		} else {
5347 			cache_fpl_partial(fpl);
5348 		}
5349 		break;
5350 	default:
5351 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5352 			error = cache_fpl_aborted(fpl);
5353 		} else {
5354 			cache_fpl_smr_exit(fpl);
5355 			cache_fpl_handled_error(fpl, error);
5356 		}
5357 		break;
5358 	}
5359 	return (error);
5360 }
5361 
5362 static int
5363 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
5364 {
5365 	struct nameidata *ndp;
5366 	struct componentname *cnp;
5367 	struct mount *mp;
5368 	int error;
5369 
5370 	ndp = fpl->ndp;
5371 	cnp = fpl->cnp;
5372 
5373 	cache_fpl_checkpoint(fpl);
5374 
5375 	/*
5376 	 * The vnode at hand is almost always stable, skip checking for it.
5377 	 * Worst case this postpones the check towards the end of the iteration
5378 	 * of the main loop.
5379 	 */
5380 	fpl->dvp = dvp;
5381 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
5382 
5383 	mp = atomic_load_ptr(&dvp->v_mount);
5384 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
5385 		return (cache_fpl_aborted(fpl));
5386 	}
5387 
5388 	error = cache_fplookup_preparse(fpl);
5389 	if (__predict_false(cache_fpl_terminated(fpl))) {
5390 		return (error);
5391 	}
5392 
5393 	for (;;) {
5394 		error = cache_fplookup_parse(fpl);
5395 		if (__predict_false(error != 0)) {
5396 			break;
5397 		}
5398 
5399 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
5400 		if (__predict_false(error != 0)) {
5401 			error = cache_fplookup_failed_vexec(fpl, error);
5402 			break;
5403 		}
5404 
5405 		error = cache_fplookup_next(fpl);
5406 		if (__predict_false(cache_fpl_terminated(fpl))) {
5407 			break;
5408 		}
5409 
5410 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
5411 
5412 		if (fpl->tvp->v_type == VLNK) {
5413 			error = cache_fplookup_symlink(fpl);
5414 			if (cache_fpl_terminated(fpl)) {
5415 				break;
5416 			}
5417 		} else {
5418 			if (cache_fpl_islastcn(ndp)) {
5419 				error = cache_fplookup_final(fpl);
5420 				break;
5421 			}
5422 
5423 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
5424 				error = cache_fpl_aborted(fpl);
5425 				break;
5426 			}
5427 
5428 			fpl->dvp = fpl->tvp;
5429 			fpl->dvp_seqc = fpl->tvp_seqc;
5430 			cache_fplookup_parse_advance(fpl);
5431 		}
5432 
5433 		cache_fpl_checkpoint(fpl);
5434 	}
5435 
5436 	return (error);
5437 }
5438 
5439 /*
5440  * Fast path lookup protected with SMR and sequence counters.
5441  *
5442  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
5443  *
5444  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
5445  * outlined below.
5446  *
5447  * Traditional vnode lookup conceptually looks like this:
5448  *
5449  * vn_lock(current);
5450  * for (;;) {
5451  *	next = find();
5452  *	vn_lock(next);
5453  *	vn_unlock(current);
5454  *	current = next;
5455  *	if (last)
5456  *	    break;
5457  * }
5458  * return (current);
5459  *
5460  * Each jump to the next vnode is safe memory-wise and atomic with respect to
5461  * any modifications thanks to holding respective locks.
5462  *
5463  * The same guarantee can be provided with a combination of safe memory
5464  * reclamation and sequence counters instead. If all operations which affect
5465  * the relationship between the current vnode and the one we are looking for
5466  * also modify the counter, we can verify whether all the conditions held as
5467  * we made the jump. This includes things like permissions, mount points etc.
5468  * Counter modification is provided by enclosing relevant places in
5469  * vn_seqc_write_begin()/end() calls.
5470  *
5471  * Thus this translates to:
5472  *
5473  * vfs_smr_enter();
5474  * dvp_seqc = seqc_read_any(dvp);
5475  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
5476  *     abort();
5477  * for (;;) {
5478  * 	tvp = find();
5479  * 	tvp_seqc = seqc_read_any(tvp);
5480  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
5481  * 	    abort();
5482  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
5483  * 	    abort();
5484  * 	dvp = tvp; // we know nothing of importance has changed
5485  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
5486  * 	if (last)
5487  * 	    break;
5488  * }
5489  * vget(); // secure the vnode
5490  * if (!seqc_consistent(tvp, tvp_seqc) // final check
5491  * 	    abort();
5492  * // at this point we know nothing has changed for any parent<->child pair
5493  * // as they were crossed during the lookup, meaning we matched the guarantee
5494  * // of the locked variant
5495  * return (tvp);
5496  *
5497  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
5498  * - they are called while within vfs_smr protection which they must never exit
5499  * - EAGAIN can be returned to denote checking could not be performed, it is
5500  *   always valid to return it
5501  * - if the sequence counter has not changed the result must be valid
5502  * - if the sequence counter has changed both false positives and false negatives
5503  *   are permitted (since the result will be rejected later)
5504  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
5505  *
5506  * Caveats to watch out for:
5507  * - vnodes are passed unlocked and unreferenced with nothing stopping
5508  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
5509  *   to use atomic_load_ptr to fetch it.
5510  * - the aforementioned object can also get freed, meaning absent other means it
5511  *   should be protected with vfs_smr
5512  * - either safely checking permissions as they are modified or guaranteeing
5513  *   their stability is left to the routine
5514  */
5515 int
5516 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
5517     struct pwd **pwdp)
5518 {
5519 	struct cache_fpl fpl;
5520 	struct pwd *pwd;
5521 	struct vnode *dvp;
5522 	struct componentname *cnp;
5523 	int error;
5524 
5525 	fpl.status = CACHE_FPL_STATUS_UNSET;
5526 	fpl.in_smr = false;
5527 	fpl.ndp = ndp;
5528 	fpl.cnp = cnp = &ndp->ni_cnd;
5529 	MPASS(ndp->ni_lcf == 0);
5530 	MPASS(curthread == cnp->cn_thread);
5531 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
5532 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
5533 	    cnp->cn_flags));
5534 	if ((cnp->cn_flags & SAVESTART) != 0) {
5535 		MPASS(cnp->cn_nameiop != LOOKUP);
5536 	}
5537 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
5538 
5539 	if (__predict_false(!cache_can_fplookup(&fpl))) {
5540 		*status = fpl.status;
5541 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
5542 		return (EOPNOTSUPP);
5543 	}
5544 
5545 	cache_fpl_checkpoint_outer(&fpl);
5546 
5547 	cache_fpl_smr_enter_initial(&fpl);
5548 #ifdef INVARIANTS
5549 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
5550 #endif
5551 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5552 	fpl.fsearch = false;
5553 	fpl.savename = (cnp->cn_flags & SAVENAME) != 0;
5554 	fpl.pwd = pwdp;
5555 	pwd = pwd_get_smr();
5556 	*(fpl.pwd) = pwd;
5557 	ndp->ni_rootdir = pwd->pwd_rdir;
5558 	ndp->ni_topdir = pwd->pwd_jdir;
5559 
5560 	if (cnp->cn_pnbuf[0] == '/') {
5561 		dvp = cache_fpl_handle_root(&fpl);
5562 		MPASS(ndp->ni_resflags == 0);
5563 		ndp->ni_resflags = NIRES_ABS;
5564 	} else {
5565 		if (ndp->ni_dirfd == AT_FDCWD) {
5566 			dvp = pwd->pwd_cdir;
5567 		} else {
5568 			error = cache_fplookup_dirfd(&fpl, &dvp);
5569 			if (__predict_false(error != 0)) {
5570 				goto out;
5571 			}
5572 		}
5573 	}
5574 
5575 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
5576 	error = cache_fplookup_impl(dvp, &fpl);
5577 out:
5578 	cache_fpl_smr_assert_not_entered(&fpl);
5579 	cache_fpl_assert_status(&fpl);
5580 	*status = fpl.status;
5581 	if (SDT_PROBES_ENABLED()) {
5582 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
5583 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
5584 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
5585 			    ndp);
5586 	}
5587 
5588 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
5589 		MPASS(error != CACHE_FPL_FAILED);
5590 		if (error != 0) {
5591 			MPASS(fpl.dvp == NULL);
5592 			MPASS(fpl.tvp == NULL);
5593 			MPASS(fpl.savename == false);
5594 		}
5595 		ndp->ni_dvp = fpl.dvp;
5596 		ndp->ni_vp = fpl.tvp;
5597 		if (fpl.savename) {
5598 			cnp->cn_flags |= HASBUF;
5599 		} else {
5600 			cache_fpl_cleanup_cnp(cnp);
5601 		}
5602 	}
5603 	return (error);
5604 }
5605