1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Poul-Henning Kamp of the FreeBSD Project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ddb.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/capsicum.h> 46 #include <sys/counter.h> 47 #include <sys/filedesc.h> 48 #include <sys/fnv_hash.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/fcntl.h> 54 #include <sys/jail.h> 55 #include <sys/mount.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/seqc.h> 59 #include <sys/sdt.h> 60 #include <sys/smr.h> 61 #include <sys/smp.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/vnode.h> 66 #include <ck_queue.h> 67 #ifdef KTRACE 68 #include <sys/ktrace.h> 69 #endif 70 #ifdef INVARIANTS 71 #include <machine/_inttypes.h> 72 #endif 73 74 #include <sys/capsicum.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #include <vm/uma.h> 84 85 /* 86 * High level overview of name caching in the VFS layer. 87 * 88 * Originally caching was implemented as part of UFS, later extracted to allow 89 * use by other filesystems. A decision was made to make it optional and 90 * completely detached from the rest of the kernel, which comes with limitations 91 * outlined near the end of this comment block. 92 * 93 * This fundamental choice needs to be revisited. In the meantime, the current 94 * state is described below. Significance of all notable routines is explained 95 * in comments placed above their implementation. Scattered thoroughout the 96 * file are TODO comments indicating shortcomings which can be fixed without 97 * reworking everything (most of the fixes will likely be reusable). Various 98 * details are omitted from this explanation to not clutter the overview, they 99 * have to be checked by reading the code and associated commentary. 100 * 101 * Keep in mind that it's individual path components which are cached, not full 102 * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries, 103 * one for each name. 104 * 105 * I. Data organization 106 * 107 * Entries are described by "struct namecache" objects and stored in a hash 108 * table. See cache_get_hash for more information. 109 * 110 * "struct vnode" contains pointers to source entries (names which can be found 111 * when traversing through said vnode), destination entries (names of that 112 * vnode (see "Limitations" for a breakdown on the subject) and a pointer to 113 * the parent vnode. 114 * 115 * The (directory vnode; name) tuple reliably determines the target entry if 116 * it exists. 117 * 118 * Since there are no small locks at this time (all are 32 bytes in size on 119 * LP64), the code works around the problem by introducing lock arrays to 120 * protect hash buckets and vnode lists. 121 * 122 * II. Filesystem integration 123 * 124 * Filesystems participating in name caching do the following: 125 * - set vop_lookup routine to vfs_cache_lookup 126 * - set vop_cachedlookup to whatever can perform the lookup if the above fails 127 * - if they support lockless lookup (see below), vop_fplookup_vexec and 128 * vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the 129 * mount point 130 * - call cache_purge or cache_vop_* routines to eliminate stale entries as 131 * applicable 132 * - call cache_enter to add entries depending on the MAKEENTRY flag 133 * 134 * With the above in mind, there are 2 entry points when doing lookups: 135 * - ... -> namei -> cache_fplookup -- this is the default 136 * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei 137 * should the above fail 138 * 139 * Example code flow how an entry is added: 140 * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP -> 141 * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter 142 * 143 * III. Performance considerations 144 * 145 * For lockless case forward lookup avoids any writes to shared areas apart 146 * from the terminal path component. In other words non-modifying lookups of 147 * different files don't suffer any scalability problems in the namecache. 148 * Looking up the same file is limited by VFS and goes beyond the scope of this 149 * file. 150 * 151 * At least on amd64 the single-threaded bottleneck for long paths is hashing 152 * (see cache_get_hash). There are cases where the code issues acquire fence 153 * multiple times, they can be combined on architectures which suffer from it. 154 * 155 * For locked case each encountered vnode has to be referenced and locked in 156 * order to be handed out to the caller (normally that's namei). This 157 * introduces significant hit single-threaded and serialization multi-threaded. 158 * 159 * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached -- 160 * avoids any writes to shared areas to any components. 161 * 162 * Unrelated insertions are partially serialized on updating the global entry 163 * counter and possibly serialized on colliding bucket or vnode locks. 164 * 165 * IV. Observability 166 * 167 * Note not everything has an explicit dtrace probe nor it should have, thus 168 * some of the one-liners below depend on implementation details. 169 * 170 * Examples: 171 * 172 * # Check what lookups failed to be handled in a lockless manner. Column 1 is 173 * # line number, column 2 is status code (see cache_fpl_status) 174 * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }' 175 * 176 * # Lengths of names added by binary name 177 * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }' 178 * 179 * # Same as above but only those which exceed 64 characters 180 * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }' 181 * 182 * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what 183 * # path is it 184 * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }' 185 * 186 * V. Limitations and implementation defects 187 * 188 * - since it is possible there is no entry for an open file, tools like 189 * "procstat" may fail to resolve fd -> vnode -> path to anything 190 * - even if a filesystem adds an entry, it may get purged (e.g., due to memory 191 * shortage) in which case the above problem applies 192 * - hardlinks are not tracked, thus if a vnode is reachable in more than one 193 * way, resolving a name may return a different path than the one used to 194 * open it (even if said path is still valid) 195 * - by default entries are not added for newly created files 196 * - adding an entry may need to evict negative entry first, which happens in 2 197 * distinct places (evicting on lookup, adding in a later VOP) making it 198 * impossible to simply reuse it 199 * - there is a simple scheme to evict negative entries as the cache is approaching 200 * its capacity, but it is very unclear if doing so is a good idea to begin with 201 * - vnodes are subject to being recycled even if target inode is left in memory, 202 * which loses the name cache entries when it perhaps should not. in case of tmpfs 203 * names get duplicated -- kept by filesystem itself and namecache separately 204 * - struct namecache has a fixed size and comes in 2 variants, often wasting space. 205 * now hard to replace with malloc due to dependence on SMR. 206 * - lack of better integration with the kernel also turns nullfs into a layered 207 * filesystem instead of something which can take advantage of caching 208 */ 209 210 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 211 "Name cache"); 212 213 SDT_PROVIDER_DECLARE(vfs); 214 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", 215 "struct vnode *"); 216 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *", 217 "struct vnode *"); 218 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", 219 "char *"); 220 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *", 221 "const char *"); 222 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", 223 "struct namecache *", "int", "int"); 224 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *"); 225 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *", 226 "char *", "struct vnode *"); 227 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *"); 228 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int", 229 "struct vnode *", "char *"); 230 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *", 231 "struct vnode *"); 232 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative, 233 "struct vnode *", "char *"); 234 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *", 235 "char *"); 236 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *", 237 "struct componentname *"); 238 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *", 239 "struct componentname *"); 240 SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *"); 241 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int"); 242 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *"); 243 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *"); 244 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *", 245 "struct vnode *"); 246 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *", 247 "char *"); 248 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *", 249 "char *"); 250 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t"); 251 252 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool"); 253 SDT_PROBE_DECLARE(vfs, namei, lookup, entry); 254 SDT_PROBE_DECLARE(vfs, namei, lookup, return); 255 256 /* 257 * This structure describes the elements in the cache of recent 258 * names looked up by namei. 259 */ 260 struct negstate { 261 u_char neg_flag; 262 u_char neg_hit; 263 }; 264 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *), 265 "the state must fit in a union with a pointer without growing it"); 266 267 struct namecache { 268 LIST_ENTRY(namecache) nc_src; /* source vnode list */ 269 TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */ 270 CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */ 271 struct vnode *nc_dvp; /* vnode of parent of name */ 272 union { 273 struct vnode *nu_vp; /* vnode the name refers to */ 274 struct negstate nu_neg;/* negative entry state */ 275 } n_un; 276 u_char nc_flag; /* flag bits */ 277 u_char nc_nlen; /* length of name */ 278 char nc_name[0]; /* segment name + nul */ 279 }; 280 281 /* 282 * struct namecache_ts repeats struct namecache layout up to the 283 * nc_nlen member. 284 * struct namecache_ts is used in place of struct namecache when time(s) need 285 * to be stored. The nc_dotdottime field is used when a cache entry is mapping 286 * both a non-dotdot directory name plus dotdot for the directory's 287 * parent. 288 * 289 * See below for alignment requirement. 290 */ 291 struct namecache_ts { 292 struct timespec nc_time; /* timespec provided by fs */ 293 struct timespec nc_dotdottime; /* dotdot timespec provided by fs */ 294 int nc_ticks; /* ticks value when entry was added */ 295 int nc_pad; 296 struct namecache nc_nc; 297 }; 298 299 TAILQ_HEAD(cache_freebatch, namecache); 300 301 /* 302 * At least mips n32 performs 64-bit accesses to timespec as found 303 * in namecache_ts and requires them to be aligned. Since others 304 * may be in the same spot suffer a little bit and enforce the 305 * alignment for everyone. Note this is a nop for 64-bit platforms. 306 */ 307 #define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t) 308 309 /* 310 * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the 311 * 4.4 BSD codebase. Later on struct namecache was tweaked to become 312 * smaller and the value was bumped to retain the total size, but it 313 * was never re-evaluated for suitability. A simple test counting 314 * lengths during package building shows that the value of 45 covers 315 * about 86% of all added entries, reaching 99% at 65. 316 * 317 * Regardless of the above, use of dedicated zones instead of malloc may be 318 * inducing additional waste. This may be hard to address as said zones are 319 * tied to VFS SMR. Even if retaining them, the current split should be 320 * re-evaluated. 321 */ 322 #ifdef __LP64__ 323 #define CACHE_PATH_CUTOFF 45 324 #define CACHE_LARGE_PAD 6 325 #else 326 #define CACHE_PATH_CUTOFF 41 327 #define CACHE_LARGE_PAD 2 328 #endif 329 330 #define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1) 331 #define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE) 332 #define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD) 333 #define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE) 334 335 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 336 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 337 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 338 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 339 340 #define nc_vp n_un.nu_vp 341 #define nc_neg n_un.nu_neg 342 343 /* 344 * Flags in namecache.nc_flag 345 */ 346 #define NCF_WHITE 0x01 347 #define NCF_ISDOTDOT 0x02 348 #define NCF_TS 0x04 349 #define NCF_DTS 0x08 350 #define NCF_DVDROP 0x10 351 #define NCF_NEGATIVE 0x20 352 #define NCF_INVALID 0x40 353 #define NCF_WIP 0x80 354 355 /* 356 * Flags in negstate.neg_flag 357 */ 358 #define NEG_HOT 0x01 359 360 static bool cache_neg_evict_cond(u_long lnumcache); 361 362 /* 363 * Mark an entry as invalid. 364 * 365 * This is called before it starts getting deconstructed. 366 */ 367 static void 368 cache_ncp_invalidate(struct namecache *ncp) 369 { 370 371 KASSERT((ncp->nc_flag & NCF_INVALID) == 0, 372 ("%s: entry %p already invalid", __func__, ncp)); 373 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID); 374 atomic_thread_fence_rel(); 375 } 376 377 /* 378 * Check whether the entry can be safely used. 379 * 380 * All places which elide locks are supposed to call this after they are 381 * done with reading from an entry. 382 */ 383 #define cache_ncp_canuse(ncp) ({ \ 384 struct namecache *_ncp = (ncp); \ 385 u_char _nc_flag; \ 386 \ 387 atomic_thread_fence_acq(); \ 388 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 389 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \ 390 }) 391 392 /* 393 * Like the above but also checks NCF_WHITE. 394 */ 395 #define cache_fpl_neg_ncp_canuse(ncp) ({ \ 396 struct namecache *_ncp = (ncp); \ 397 u_char _nc_flag; \ 398 \ 399 atomic_thread_fence_acq(); \ 400 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 401 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \ 402 }) 403 404 VFS_SMR_DECLARE; 405 406 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 407 "Name cache parameters"); 408 409 static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */ 410 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, 411 "Total namecache capacity"); 412 413 u_int ncsizefactor = 2; 414 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0, 415 "Size factor for namecache"); 416 417 static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */ 418 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, 419 "Ratio of negative namecache entries"); 420 421 /* 422 * Negative entry % of namecache capacity above which automatic eviction is allowed. 423 * 424 * Check cache_neg_evict_cond for details. 425 */ 426 static u_int ncnegminpct = 3; 427 428 static u_int __read_mostly neg_min; /* the above recomputed against ncsize */ 429 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0, 430 "Negative entry count above which automatic eviction is allowed"); 431 432 /* 433 * Structures associated with name caching. 434 */ 435 #define NCHHASH(hash) \ 436 (&nchashtbl[(hash) & nchash]) 437 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */ 438 static u_long __read_mostly nchash; /* size of hash table */ 439 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, 440 "Size of namecache hash table"); 441 static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */ 442 static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */ 443 444 struct nchstats nchstats; /* cache effectiveness statistics */ 445 446 static bool __read_frequently cache_fast_revlookup = true; 447 SYSCTL_BOOL(_vfs, OID_AUTO, cache_fast_revlookup, CTLFLAG_RW, 448 &cache_fast_revlookup, 0, ""); 449 450 static bool __read_mostly cache_rename_add = true; 451 SYSCTL_BOOL(_vfs, OID_AUTO, cache_rename_add, CTLFLAG_RW, 452 &cache_rename_add, 0, ""); 453 454 static u_int __exclusive_cache_line neg_cycle; 455 456 #define ncneghash 3 457 #define numneglists (ncneghash + 1) 458 459 struct neglist { 460 struct mtx nl_evict_lock; 461 struct mtx nl_lock __aligned(CACHE_LINE_SIZE); 462 TAILQ_HEAD(, namecache) nl_list; 463 TAILQ_HEAD(, namecache) nl_hotlist; 464 u_long nl_hotnum; 465 } __aligned(CACHE_LINE_SIZE); 466 467 static struct neglist neglists[numneglists]; 468 469 static inline struct neglist * 470 NCP2NEGLIST(struct namecache *ncp) 471 { 472 473 return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]); 474 } 475 476 static inline struct negstate * 477 NCP2NEGSTATE(struct namecache *ncp) 478 { 479 480 MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE); 481 return (&ncp->nc_neg); 482 } 483 484 #define numbucketlocks (ncbuckethash + 1) 485 static u_int __read_mostly ncbuckethash; 486 static struct mtx_padalign __read_mostly *bucketlocks; 487 #define HASH2BUCKETLOCK(hash) \ 488 ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)])) 489 490 #define numvnodelocks (ncvnodehash + 1) 491 static u_int __read_mostly ncvnodehash; 492 static struct mtx __read_mostly *vnodelocks; 493 static inline struct mtx * 494 VP2VNODELOCK(struct vnode *vp) 495 { 496 497 return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]); 498 } 499 500 static void 501 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp) 502 { 503 struct namecache_ts *ncp_ts; 504 505 KASSERT((ncp->nc_flag & NCF_TS) != 0 || 506 (tsp == NULL && ticksp == NULL), 507 ("No NCF_TS")); 508 509 if (tsp == NULL) 510 return; 511 512 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 513 *tsp = ncp_ts->nc_time; 514 *ticksp = ncp_ts->nc_ticks; 515 } 516 517 #ifdef DEBUG_CACHE 518 static int __read_mostly doingcache = 1; /* 1 => enable the cache */ 519 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, 520 "VFS namecache enabled"); 521 #endif 522 523 /* Export size information to userland */ 524 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, 525 sizeof(struct namecache), "sizeof(struct namecache)"); 526 527 /* 528 * The new name cache statistics 529 */ 530 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 531 "Name cache statistics"); 532 533 #define STATNODE_ULONG(name, varname, descr) \ 534 SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 535 #define STATNODE_COUNTER(name, varname, descr) \ 536 static COUNTER_U64_DEFINE_EARLY(varname); \ 537 SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \ 538 descr); 539 STATNODE_ULONG(neg, numneg, "Number of negative cache entries"); 540 STATNODE_ULONG(count, numcache, "Number of cache entries"); 541 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held"); 542 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit"); 543 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits"); 544 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits"); 545 STATNODE_COUNTER(miss, nummiss, "Number of cache misses"); 546 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache"); 547 STATNODE_COUNTER(posszaps, numposzaps, 548 "Number of cache hits (positive) we do not want to cache"); 549 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)"); 550 STATNODE_COUNTER(negzaps, numnegzaps, 551 "Number of cache hits (negative) we do not want to cache"); 552 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)"); 553 /* These count for vn_getcwd(), too. */ 554 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls"); 555 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)"); 556 STATNODE_COUNTER(fullpathfail2, numfullpathfail2, 557 "Number of fullpath search errors (VOP_VPTOCNP failures)"); 558 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)"); 559 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls"); 560 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache"); 561 562 /* 563 * Debug or developer statistics. 564 */ 565 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 566 "Name cache debugging"); 567 #define DEBUGNODE_ULONG(name, varname, descr) \ 568 SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 569 #define DEBUGNODE_COUNTER(name, varname, descr) \ 570 static COUNTER_U64_DEFINE_EARLY(varname); \ 571 SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \ 572 descr); 573 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success, 574 "Number of successful removals after relocking"); 575 static long zap_bucket_fail; 576 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, ""); 577 static long zap_bucket_fail2; 578 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, ""); 579 static long cache_lock_vnodes_cel_3_failures; 580 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures, 581 "Number of times 3-way vnode locking failed"); 582 583 static void cache_zap_locked(struct namecache *ncp); 584 static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, 585 char **freebuf, size_t *buflen); 586 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 587 char **retbuf, size_t *buflen, size_t addend); 588 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, 589 char **retbuf, size_t *buflen); 590 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, 591 char **retbuf, size_t *len, size_t addend); 592 593 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 594 595 static inline void 596 cache_assert_vlp_locked(struct mtx *vlp) 597 { 598 599 if (vlp != NULL) 600 mtx_assert(vlp, MA_OWNED); 601 } 602 603 static inline void 604 cache_assert_vnode_locked(struct vnode *vp) 605 { 606 struct mtx *vlp; 607 608 vlp = VP2VNODELOCK(vp); 609 cache_assert_vlp_locked(vlp); 610 } 611 612 /* 613 * Directory vnodes with entries are held for two reasons: 614 * 1. make them less of a target for reclamation in vnlru 615 * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided 616 * 617 * It will be feasible to stop doing it altogether if all filesystems start 618 * supporting lockless lookup. 619 */ 620 static void 621 cache_hold_vnode(struct vnode *vp) 622 { 623 624 cache_assert_vnode_locked(vp); 625 VNPASS(LIST_EMPTY(&vp->v_cache_src), vp); 626 vhold(vp); 627 counter_u64_add(numcachehv, 1); 628 } 629 630 static void 631 cache_drop_vnode(struct vnode *vp) 632 { 633 634 /* 635 * Called after all locks are dropped, meaning we can't assert 636 * on the state of v_cache_src. 637 */ 638 vdrop(vp); 639 counter_u64_add(numcachehv, -1); 640 } 641 642 /* 643 * UMA zones. 644 */ 645 static uma_zone_t __read_mostly cache_zone_small; 646 static uma_zone_t __read_mostly cache_zone_small_ts; 647 static uma_zone_t __read_mostly cache_zone_large; 648 static uma_zone_t __read_mostly cache_zone_large_ts; 649 650 char * 651 cache_symlink_alloc(size_t size, int flags) 652 { 653 654 if (size < CACHE_ZONE_SMALL_SIZE) { 655 return (uma_zalloc_smr(cache_zone_small, flags)); 656 } 657 if (size < CACHE_ZONE_LARGE_SIZE) { 658 return (uma_zalloc_smr(cache_zone_large, flags)); 659 } 660 counter_u64_add(symlinktoobig, 1); 661 SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size); 662 return (NULL); 663 } 664 665 void 666 cache_symlink_free(char *string, size_t size) 667 { 668 669 MPASS(string != NULL); 670 KASSERT(size < CACHE_ZONE_LARGE_SIZE, 671 ("%s: size %zu too big", __func__, size)); 672 673 if (size < CACHE_ZONE_SMALL_SIZE) { 674 uma_zfree_smr(cache_zone_small, string); 675 return; 676 } 677 if (size < CACHE_ZONE_LARGE_SIZE) { 678 uma_zfree_smr(cache_zone_large, string); 679 return; 680 } 681 __assert_unreachable(); 682 } 683 684 static struct namecache * 685 cache_alloc_uma(int len, bool ts) 686 { 687 struct namecache_ts *ncp_ts; 688 struct namecache *ncp; 689 690 if (__predict_false(ts)) { 691 if (len <= CACHE_PATH_CUTOFF) 692 ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK); 693 else 694 ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK); 695 ncp = &ncp_ts->nc_nc; 696 } else { 697 if (len <= CACHE_PATH_CUTOFF) 698 ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK); 699 else 700 ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK); 701 } 702 return (ncp); 703 } 704 705 static void 706 cache_free_uma(struct namecache *ncp) 707 { 708 struct namecache_ts *ncp_ts; 709 710 if (__predict_false(ncp->nc_flag & NCF_TS)) { 711 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 712 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 713 uma_zfree_smr(cache_zone_small_ts, ncp_ts); 714 else 715 uma_zfree_smr(cache_zone_large_ts, ncp_ts); 716 } else { 717 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 718 uma_zfree_smr(cache_zone_small, ncp); 719 else 720 uma_zfree_smr(cache_zone_large, ncp); 721 } 722 } 723 724 static struct namecache * 725 cache_alloc(int len, bool ts) 726 { 727 u_long lnumcache; 728 729 /* 730 * Avoid blowout in namecache entries. 731 * 732 * Bugs: 733 * 1. filesystems may end up trying to add an already existing entry 734 * (for example this can happen after a cache miss during concurrent 735 * lookup), in which case we will call cache_neg_evict despite not 736 * adding anything. 737 * 2. the routine may fail to free anything and no provisions are made 738 * to make it try harder (see the inside for failure modes) 739 * 3. it only ever looks at negative entries. 740 */ 741 lnumcache = atomic_fetchadd_long(&numcache, 1) + 1; 742 if (cache_neg_evict_cond(lnumcache)) { 743 lnumcache = atomic_load_long(&numcache); 744 } 745 if (__predict_false(lnumcache >= ncsize)) { 746 atomic_subtract_long(&numcache, 1); 747 counter_u64_add(numdrops, 1); 748 return (NULL); 749 } 750 return (cache_alloc_uma(len, ts)); 751 } 752 753 static void 754 cache_free(struct namecache *ncp) 755 { 756 757 MPASS(ncp != NULL); 758 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 759 cache_drop_vnode(ncp->nc_dvp); 760 } 761 cache_free_uma(ncp); 762 atomic_subtract_long(&numcache, 1); 763 } 764 765 static void 766 cache_free_batch(struct cache_freebatch *batch) 767 { 768 struct namecache *ncp, *nnp; 769 int i; 770 771 i = 0; 772 if (TAILQ_EMPTY(batch)) 773 goto out; 774 TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) { 775 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 776 cache_drop_vnode(ncp->nc_dvp); 777 } 778 cache_free_uma(ncp); 779 i++; 780 } 781 atomic_subtract_long(&numcache, i); 782 out: 783 SDT_PROBE1(vfs, namecache, purge, batch, i); 784 } 785 786 /* 787 * Hashing. 788 * 789 * The code was made to use FNV in 2001 and this choice needs to be revisited. 790 * 791 * Short summary of the difficulty: 792 * The longest name which can be inserted is NAME_MAX characters in length (or 793 * 255 at the time of writing this comment), while majority of names used in 794 * practice are significantly shorter (mostly below 10). More importantly 795 * majority of lookups performed find names are even shorter than that. 796 * 797 * This poses a problem where hashes which do better than FNV past word size 798 * (or so) tend to come with additional overhead when finalizing the result, 799 * making them noticeably slower for the most commonly used range. 800 * 801 * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c 802 * 803 * When looking it up the most time consuming part by a large margin (at least 804 * on amd64) is hashing. Replacing FNV with something which pessimizes short 805 * input would make the slowest part stand out even more. 806 */ 807 808 /* 809 * TODO: With the value stored we can do better than computing the hash based 810 * on the address. 811 */ 812 static void 813 cache_prehash(struct vnode *vp) 814 { 815 816 vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT); 817 } 818 819 static uint32_t 820 cache_get_hash(char *name, u_char len, struct vnode *dvp) 821 { 822 823 return (fnv_32_buf(name, len, dvp->v_nchash)); 824 } 825 826 static uint32_t 827 cache_get_hash_iter_start(struct vnode *dvp) 828 { 829 830 return (dvp->v_nchash); 831 } 832 833 static uint32_t 834 cache_get_hash_iter(char c, uint32_t hash) 835 { 836 837 return (fnv_32_buf(&c, 1, hash)); 838 } 839 840 static uint32_t 841 cache_get_hash_iter_finish(uint32_t hash) 842 { 843 844 return (hash); 845 } 846 847 static inline struct nchashhead * 848 NCP2BUCKET(struct namecache *ncp) 849 { 850 uint32_t hash; 851 852 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 853 return (NCHHASH(hash)); 854 } 855 856 static inline struct mtx * 857 NCP2BUCKETLOCK(struct namecache *ncp) 858 { 859 uint32_t hash; 860 861 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 862 return (HASH2BUCKETLOCK(hash)); 863 } 864 865 #ifdef INVARIANTS 866 static void 867 cache_assert_bucket_locked(struct namecache *ncp) 868 { 869 struct mtx *blp; 870 871 blp = NCP2BUCKETLOCK(ncp); 872 mtx_assert(blp, MA_OWNED); 873 } 874 875 static void 876 cache_assert_bucket_unlocked(struct namecache *ncp) 877 { 878 struct mtx *blp; 879 880 blp = NCP2BUCKETLOCK(ncp); 881 mtx_assert(blp, MA_NOTOWNED); 882 } 883 #else 884 #define cache_assert_bucket_locked(x) do { } while (0) 885 #define cache_assert_bucket_unlocked(x) do { } while (0) 886 #endif 887 888 #define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y)) 889 static void 890 _cache_sort_vnodes(void **p1, void **p2) 891 { 892 void *tmp; 893 894 MPASS(*p1 != NULL || *p2 != NULL); 895 896 if (*p1 > *p2) { 897 tmp = *p2; 898 *p2 = *p1; 899 *p1 = tmp; 900 } 901 } 902 903 static void 904 cache_lock_all_buckets(void) 905 { 906 u_int i; 907 908 for (i = 0; i < numbucketlocks; i++) 909 mtx_lock(&bucketlocks[i]); 910 } 911 912 static void 913 cache_unlock_all_buckets(void) 914 { 915 u_int i; 916 917 for (i = 0; i < numbucketlocks; i++) 918 mtx_unlock(&bucketlocks[i]); 919 } 920 921 static void 922 cache_lock_all_vnodes(void) 923 { 924 u_int i; 925 926 for (i = 0; i < numvnodelocks; i++) 927 mtx_lock(&vnodelocks[i]); 928 } 929 930 static void 931 cache_unlock_all_vnodes(void) 932 { 933 u_int i; 934 935 for (i = 0; i < numvnodelocks; i++) 936 mtx_unlock(&vnodelocks[i]); 937 } 938 939 static int 940 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 941 { 942 943 cache_sort_vnodes(&vlp1, &vlp2); 944 945 if (vlp1 != NULL) { 946 if (!mtx_trylock(vlp1)) 947 return (EAGAIN); 948 } 949 if (!mtx_trylock(vlp2)) { 950 if (vlp1 != NULL) 951 mtx_unlock(vlp1); 952 return (EAGAIN); 953 } 954 955 return (0); 956 } 957 958 static void 959 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 960 { 961 962 MPASS(vlp1 != NULL || vlp2 != NULL); 963 MPASS(vlp1 <= vlp2); 964 965 if (vlp1 != NULL) 966 mtx_lock(vlp1); 967 if (vlp2 != NULL) 968 mtx_lock(vlp2); 969 } 970 971 static void 972 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 973 { 974 975 MPASS(vlp1 != NULL || vlp2 != NULL); 976 977 if (vlp1 != NULL) 978 mtx_unlock(vlp1); 979 if (vlp2 != NULL) 980 mtx_unlock(vlp2); 981 } 982 983 static int 984 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 985 { 986 struct nchstats snap; 987 988 if (req->oldptr == NULL) 989 return (SYSCTL_OUT(req, 0, sizeof(snap))); 990 991 snap = nchstats; 992 snap.ncs_goodhits = counter_u64_fetch(numposhits); 993 snap.ncs_neghits = counter_u64_fetch(numneghits); 994 snap.ncs_badhits = counter_u64_fetch(numposzaps) + 995 counter_u64_fetch(numnegzaps); 996 snap.ncs_miss = counter_u64_fetch(nummisszap) + 997 counter_u64_fetch(nummiss); 998 999 return (SYSCTL_OUT(req, &snap, sizeof(snap))); 1000 } 1001 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD | 1002 CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", 1003 "VFS cache effectiveness statistics"); 1004 1005 static void 1006 cache_recalc_neg_min(u_int val) 1007 { 1008 1009 neg_min = (ncsize * val) / 100; 1010 } 1011 1012 static int 1013 sysctl_negminpct(SYSCTL_HANDLER_ARGS) 1014 { 1015 u_int val; 1016 int error; 1017 1018 val = ncnegminpct; 1019 error = sysctl_handle_int(oidp, &val, 0, req); 1020 if (error != 0 || req->newptr == NULL) 1021 return (error); 1022 1023 if (val == ncnegminpct) 1024 return (0); 1025 if (val < 0 || val > 99) 1026 return (EINVAL); 1027 ncnegminpct = val; 1028 cache_recalc_neg_min(val); 1029 return (0); 1030 } 1031 1032 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct, 1033 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct, 1034 "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed"); 1035 1036 #ifdef DIAGNOSTIC 1037 /* 1038 * Grab an atomic snapshot of the name cache hash chain lengths 1039 */ 1040 static SYSCTL_NODE(_debug, OID_AUTO, hashstat, 1041 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 1042 "hash table stats"); 1043 1044 static int 1045 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS) 1046 { 1047 struct nchashhead *ncpp; 1048 struct namecache *ncp; 1049 int i, error, n_nchash, *cntbuf; 1050 1051 retry: 1052 n_nchash = nchash + 1; /* nchash is max index, not count */ 1053 if (req->oldptr == NULL) 1054 return SYSCTL_OUT(req, 0, n_nchash * sizeof(int)); 1055 cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK); 1056 cache_lock_all_buckets(); 1057 if (n_nchash != nchash + 1) { 1058 cache_unlock_all_buckets(); 1059 free(cntbuf, M_TEMP); 1060 goto retry; 1061 } 1062 /* Scan hash tables counting entries */ 1063 for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++) 1064 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) 1065 cntbuf[i]++; 1066 cache_unlock_all_buckets(); 1067 for (error = 0, i = 0; i < n_nchash; i++) 1068 if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0) 1069 break; 1070 free(cntbuf, M_TEMP); 1071 return (error); 1072 } 1073 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD| 1074 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int", 1075 "nchash chain lengths"); 1076 1077 static int 1078 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS) 1079 { 1080 int error; 1081 struct nchashhead *ncpp; 1082 struct namecache *ncp; 1083 int n_nchash; 1084 int count, maxlength, used, pct; 1085 1086 if (!req->oldptr) 1087 return SYSCTL_OUT(req, 0, 4 * sizeof(int)); 1088 1089 cache_lock_all_buckets(); 1090 n_nchash = nchash + 1; /* nchash is max index, not count */ 1091 used = 0; 1092 maxlength = 0; 1093 1094 /* Scan hash tables for applicable entries */ 1095 for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) { 1096 count = 0; 1097 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) { 1098 count++; 1099 } 1100 if (count) 1101 used++; 1102 if (maxlength < count) 1103 maxlength = count; 1104 } 1105 n_nchash = nchash + 1; 1106 cache_unlock_all_buckets(); 1107 pct = (used * 100) / (n_nchash / 100); 1108 error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash)); 1109 if (error) 1110 return (error); 1111 error = SYSCTL_OUT(req, &used, sizeof(used)); 1112 if (error) 1113 return (error); 1114 error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength)); 1115 if (error) 1116 return (error); 1117 error = SYSCTL_OUT(req, &pct, sizeof(pct)); 1118 if (error) 1119 return (error); 1120 return (0); 1121 } 1122 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD| 1123 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I", 1124 "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)"); 1125 #endif 1126 1127 /* 1128 * Negative entries management 1129 * 1130 * Various workloads create plenty of negative entries and barely use them 1131 * afterwards. Moreover malicious users can keep performing bogus lookups 1132 * adding even more entries. For example "make tinderbox" as of writing this 1133 * comment ends up with 2.6M namecache entries in total, 1.2M of which are 1134 * negative. 1135 * 1136 * As such, a rather aggressive eviction method is needed. The currently 1137 * employed method is a placeholder. 1138 * 1139 * Entries are split over numneglists separate lists, each of which is further 1140 * split into hot and cold entries. Entries get promoted after getting a hit. 1141 * Eviction happens on addition of new entry. 1142 */ 1143 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1144 "Name cache negative entry statistics"); 1145 1146 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0, 1147 "Number of negative cache entries"); 1148 1149 static COUNTER_U64_DEFINE_EARLY(neg_created); 1150 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, 1151 "Number of created negative entries"); 1152 1153 static COUNTER_U64_DEFINE_EARLY(neg_evicted); 1154 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted, 1155 "Number of evicted negative entries"); 1156 1157 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty); 1158 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD, 1159 &neg_evict_skipped_empty, 1160 "Number of times evicting failed due to lack of entries"); 1161 1162 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed); 1163 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD, 1164 &neg_evict_skipped_missed, 1165 "Number of times evicting failed due to target entry disappearing"); 1166 1167 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended); 1168 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD, 1169 &neg_evict_skipped_contended, 1170 "Number of times evicting failed due to contention"); 1171 1172 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits, 1173 "Number of cache hits (negative)"); 1174 1175 static int 1176 sysctl_neg_hot(SYSCTL_HANDLER_ARGS) 1177 { 1178 int i, out; 1179 1180 out = 0; 1181 for (i = 0; i < numneglists; i++) 1182 out += neglists[i].nl_hotnum; 1183 1184 return (SYSCTL_OUT(req, &out, sizeof(out))); 1185 } 1186 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD | 1187 CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I", 1188 "Number of hot negative entries"); 1189 1190 static void 1191 cache_neg_init(struct namecache *ncp) 1192 { 1193 struct negstate *ns; 1194 1195 ncp->nc_flag |= NCF_NEGATIVE; 1196 ns = NCP2NEGSTATE(ncp); 1197 ns->neg_flag = 0; 1198 ns->neg_hit = 0; 1199 counter_u64_add(neg_created, 1); 1200 } 1201 1202 #define CACHE_NEG_PROMOTION_THRESH 2 1203 1204 static bool 1205 cache_neg_hit_prep(struct namecache *ncp) 1206 { 1207 struct negstate *ns; 1208 u_char n; 1209 1210 ns = NCP2NEGSTATE(ncp); 1211 n = atomic_load_char(&ns->neg_hit); 1212 for (;;) { 1213 if (n >= CACHE_NEG_PROMOTION_THRESH) 1214 return (false); 1215 if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1)) 1216 break; 1217 } 1218 return (n + 1 == CACHE_NEG_PROMOTION_THRESH); 1219 } 1220 1221 /* 1222 * Nothing to do here but it is provided for completeness as some 1223 * cache_neg_hit_prep callers may end up returning without even 1224 * trying to promote. 1225 */ 1226 #define cache_neg_hit_abort(ncp) do { } while (0) 1227 1228 static void 1229 cache_neg_hit_finish(struct namecache *ncp) 1230 { 1231 1232 SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name); 1233 counter_u64_add(numneghits, 1); 1234 } 1235 1236 /* 1237 * Move a negative entry to the hot list. 1238 */ 1239 static void 1240 cache_neg_promote_locked(struct namecache *ncp) 1241 { 1242 struct neglist *nl; 1243 struct negstate *ns; 1244 1245 ns = NCP2NEGSTATE(ncp); 1246 nl = NCP2NEGLIST(ncp); 1247 mtx_assert(&nl->nl_lock, MA_OWNED); 1248 if ((ns->neg_flag & NEG_HOT) == 0) { 1249 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1250 TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst); 1251 nl->nl_hotnum++; 1252 ns->neg_flag |= NEG_HOT; 1253 } 1254 } 1255 1256 /* 1257 * Move a hot negative entry to the cold list. 1258 */ 1259 static void 1260 cache_neg_demote_locked(struct namecache *ncp) 1261 { 1262 struct neglist *nl; 1263 struct negstate *ns; 1264 1265 ns = NCP2NEGSTATE(ncp); 1266 nl = NCP2NEGLIST(ncp); 1267 mtx_assert(&nl->nl_lock, MA_OWNED); 1268 MPASS(ns->neg_flag & NEG_HOT); 1269 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1270 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1271 nl->nl_hotnum--; 1272 ns->neg_flag &= ~NEG_HOT; 1273 atomic_store_char(&ns->neg_hit, 0); 1274 } 1275 1276 /* 1277 * Move a negative entry to the hot list if it matches the lookup. 1278 * 1279 * We have to take locks, but they may be contended and in the worst 1280 * case we may need to go off CPU. We don't want to spin within the 1281 * smr section and we can't block with it. Exiting the section means 1282 * the found entry could have been evicted. We are going to look it 1283 * up again. 1284 */ 1285 static bool 1286 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, 1287 struct namecache *oncp, uint32_t hash) 1288 { 1289 struct namecache *ncp; 1290 struct neglist *nl; 1291 u_char nc_flag; 1292 1293 nl = NCP2NEGLIST(oncp); 1294 1295 mtx_lock(&nl->nl_lock); 1296 /* 1297 * For hash iteration. 1298 */ 1299 vfs_smr_enter(); 1300 1301 /* 1302 * Avoid all surprises by only succeeding if we got the same entry and 1303 * bailing completely otherwise. 1304 * XXX There are no provisions to keep the vnode around, meaning we may 1305 * end up promoting a negative entry for a *new* vnode and returning 1306 * ENOENT on its account. This is the error we want to return anyway 1307 * and promotion is harmless. 1308 * 1309 * In particular at this point there can be a new ncp which matches the 1310 * search but hashes to a different neglist. 1311 */ 1312 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1313 if (ncp == oncp) 1314 break; 1315 } 1316 1317 /* 1318 * No match to begin with. 1319 */ 1320 if (__predict_false(ncp == NULL)) { 1321 goto out_abort; 1322 } 1323 1324 /* 1325 * The newly found entry may be something different... 1326 */ 1327 if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1328 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) { 1329 goto out_abort; 1330 } 1331 1332 /* 1333 * ... and not even negative. 1334 */ 1335 nc_flag = atomic_load_char(&ncp->nc_flag); 1336 if ((nc_flag & NCF_NEGATIVE) == 0) { 1337 goto out_abort; 1338 } 1339 1340 if (!cache_ncp_canuse(ncp)) { 1341 goto out_abort; 1342 } 1343 1344 cache_neg_promote_locked(ncp); 1345 cache_neg_hit_finish(ncp); 1346 vfs_smr_exit(); 1347 mtx_unlock(&nl->nl_lock); 1348 return (true); 1349 out_abort: 1350 vfs_smr_exit(); 1351 mtx_unlock(&nl->nl_lock); 1352 return (false); 1353 } 1354 1355 static void 1356 cache_neg_promote(struct namecache *ncp) 1357 { 1358 struct neglist *nl; 1359 1360 nl = NCP2NEGLIST(ncp); 1361 mtx_lock(&nl->nl_lock); 1362 cache_neg_promote_locked(ncp); 1363 mtx_unlock(&nl->nl_lock); 1364 } 1365 1366 static void 1367 cache_neg_insert(struct namecache *ncp) 1368 { 1369 struct neglist *nl; 1370 1371 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1372 cache_assert_bucket_locked(ncp); 1373 nl = NCP2NEGLIST(ncp); 1374 mtx_lock(&nl->nl_lock); 1375 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1376 mtx_unlock(&nl->nl_lock); 1377 atomic_add_long(&numneg, 1); 1378 } 1379 1380 static void 1381 cache_neg_remove(struct namecache *ncp) 1382 { 1383 struct neglist *nl; 1384 struct negstate *ns; 1385 1386 cache_assert_bucket_locked(ncp); 1387 nl = NCP2NEGLIST(ncp); 1388 ns = NCP2NEGSTATE(ncp); 1389 mtx_lock(&nl->nl_lock); 1390 if ((ns->neg_flag & NEG_HOT) != 0) { 1391 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1392 nl->nl_hotnum--; 1393 } else { 1394 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1395 } 1396 mtx_unlock(&nl->nl_lock); 1397 atomic_subtract_long(&numneg, 1); 1398 } 1399 1400 static struct neglist * 1401 cache_neg_evict_select_list(void) 1402 { 1403 struct neglist *nl; 1404 u_int c; 1405 1406 c = atomic_fetchadd_int(&neg_cycle, 1) + 1; 1407 nl = &neglists[c % numneglists]; 1408 if (!mtx_trylock(&nl->nl_evict_lock)) { 1409 counter_u64_add(neg_evict_skipped_contended, 1); 1410 return (NULL); 1411 } 1412 return (nl); 1413 } 1414 1415 static struct namecache * 1416 cache_neg_evict_select_entry(struct neglist *nl) 1417 { 1418 struct namecache *ncp, *lncp; 1419 struct negstate *ns, *lns; 1420 int i; 1421 1422 mtx_assert(&nl->nl_evict_lock, MA_OWNED); 1423 mtx_assert(&nl->nl_lock, MA_OWNED); 1424 ncp = TAILQ_FIRST(&nl->nl_list); 1425 if (ncp == NULL) 1426 return (NULL); 1427 lncp = ncp; 1428 lns = NCP2NEGSTATE(lncp); 1429 for (i = 1; i < 4; i++) { 1430 ncp = TAILQ_NEXT(ncp, nc_dst); 1431 if (ncp == NULL) 1432 break; 1433 ns = NCP2NEGSTATE(ncp); 1434 if (ns->neg_hit < lns->neg_hit) { 1435 lncp = ncp; 1436 lns = ns; 1437 } 1438 } 1439 return (lncp); 1440 } 1441 1442 static bool 1443 cache_neg_evict(void) 1444 { 1445 struct namecache *ncp, *ncp2; 1446 struct neglist *nl; 1447 struct vnode *dvp; 1448 struct mtx *dvlp; 1449 struct mtx *blp; 1450 uint32_t hash; 1451 u_char nlen; 1452 bool evicted; 1453 1454 nl = cache_neg_evict_select_list(); 1455 if (nl == NULL) { 1456 return (false); 1457 } 1458 1459 mtx_lock(&nl->nl_lock); 1460 ncp = TAILQ_FIRST(&nl->nl_hotlist); 1461 if (ncp != NULL) { 1462 cache_neg_demote_locked(ncp); 1463 } 1464 ncp = cache_neg_evict_select_entry(nl); 1465 if (ncp == NULL) { 1466 counter_u64_add(neg_evict_skipped_empty, 1); 1467 mtx_unlock(&nl->nl_lock); 1468 mtx_unlock(&nl->nl_evict_lock); 1469 return (false); 1470 } 1471 nlen = ncp->nc_nlen; 1472 dvp = ncp->nc_dvp; 1473 hash = cache_get_hash(ncp->nc_name, nlen, dvp); 1474 dvlp = VP2VNODELOCK(dvp); 1475 blp = HASH2BUCKETLOCK(hash); 1476 mtx_unlock(&nl->nl_lock); 1477 mtx_unlock(&nl->nl_evict_lock); 1478 mtx_lock(dvlp); 1479 mtx_lock(blp); 1480 /* 1481 * Note that since all locks were dropped above, the entry may be 1482 * gone or reallocated to be something else. 1483 */ 1484 CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) { 1485 if (ncp2 == ncp && ncp2->nc_dvp == dvp && 1486 ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0) 1487 break; 1488 } 1489 if (ncp2 == NULL) { 1490 counter_u64_add(neg_evict_skipped_missed, 1); 1491 ncp = NULL; 1492 evicted = false; 1493 } else { 1494 MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp)); 1495 MPASS(blp == NCP2BUCKETLOCK(ncp)); 1496 SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp, 1497 ncp->nc_name); 1498 cache_zap_locked(ncp); 1499 counter_u64_add(neg_evicted, 1); 1500 evicted = true; 1501 } 1502 mtx_unlock(blp); 1503 mtx_unlock(dvlp); 1504 if (ncp != NULL) 1505 cache_free(ncp); 1506 return (evicted); 1507 } 1508 1509 /* 1510 * Maybe evict a negative entry to create more room. 1511 * 1512 * The ncnegfactor parameter limits what fraction of the total count 1513 * can comprise of negative entries. However, if the cache is just 1514 * warming up this leads to excessive evictions. As such, ncnegminpct 1515 * (recomputed to neg_min) dictates whether the above should be 1516 * applied. 1517 * 1518 * Try evicting if the cache is close to full capacity regardless of 1519 * other considerations. 1520 */ 1521 static bool 1522 cache_neg_evict_cond(u_long lnumcache) 1523 { 1524 u_long lnumneg; 1525 1526 if (ncsize - 1000 < lnumcache) 1527 goto out_evict; 1528 lnumneg = atomic_load_long(&numneg); 1529 if (lnumneg < neg_min) 1530 return (false); 1531 if (lnumneg * ncnegfactor < lnumcache) 1532 return (false); 1533 out_evict: 1534 return (cache_neg_evict()); 1535 } 1536 1537 /* 1538 * cache_zap_locked(): 1539 * 1540 * Removes a namecache entry from cache, whether it contains an actual 1541 * pointer to a vnode or if it is just a negative cache entry. 1542 */ 1543 static void 1544 cache_zap_locked(struct namecache *ncp) 1545 { 1546 struct nchashhead *ncpp; 1547 struct vnode *dvp, *vp; 1548 1549 dvp = ncp->nc_dvp; 1550 vp = ncp->nc_vp; 1551 1552 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1553 cache_assert_vnode_locked(vp); 1554 cache_assert_vnode_locked(dvp); 1555 cache_assert_bucket_locked(ncp); 1556 1557 cache_ncp_invalidate(ncp); 1558 1559 ncpp = NCP2BUCKET(ncp); 1560 CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash); 1561 if (!(ncp->nc_flag & NCF_NEGATIVE)) { 1562 SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp); 1563 TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst); 1564 if (ncp == vp->v_cache_dd) { 1565 atomic_store_ptr(&vp->v_cache_dd, NULL); 1566 } 1567 } else { 1568 SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name); 1569 cache_neg_remove(ncp); 1570 } 1571 if (ncp->nc_flag & NCF_ISDOTDOT) { 1572 if (ncp == dvp->v_cache_dd) { 1573 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1574 } 1575 } else { 1576 LIST_REMOVE(ncp, nc_src); 1577 if (LIST_EMPTY(&dvp->v_cache_src)) { 1578 ncp->nc_flag |= NCF_DVDROP; 1579 } 1580 } 1581 } 1582 1583 static void 1584 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp) 1585 { 1586 struct mtx *blp; 1587 1588 MPASS(ncp->nc_dvp == vp); 1589 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1590 cache_assert_vnode_locked(vp); 1591 1592 blp = NCP2BUCKETLOCK(ncp); 1593 mtx_lock(blp); 1594 cache_zap_locked(ncp); 1595 mtx_unlock(blp); 1596 } 1597 1598 static bool 1599 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, 1600 struct mtx **vlpp) 1601 { 1602 struct mtx *pvlp, *vlp1, *vlp2, *to_unlock; 1603 struct mtx *blp; 1604 1605 MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp); 1606 cache_assert_vnode_locked(vp); 1607 1608 if (ncp->nc_flag & NCF_NEGATIVE) { 1609 if (*vlpp != NULL) { 1610 mtx_unlock(*vlpp); 1611 *vlpp = NULL; 1612 } 1613 cache_zap_negative_locked_vnode_kl(ncp, vp); 1614 return (true); 1615 } 1616 1617 pvlp = VP2VNODELOCK(vp); 1618 blp = NCP2BUCKETLOCK(ncp); 1619 vlp1 = VP2VNODELOCK(ncp->nc_dvp); 1620 vlp2 = VP2VNODELOCK(ncp->nc_vp); 1621 1622 if (*vlpp == vlp1 || *vlpp == vlp2) { 1623 to_unlock = *vlpp; 1624 *vlpp = NULL; 1625 } else { 1626 if (*vlpp != NULL) { 1627 mtx_unlock(*vlpp); 1628 *vlpp = NULL; 1629 } 1630 cache_sort_vnodes(&vlp1, &vlp2); 1631 if (vlp1 == pvlp) { 1632 mtx_lock(vlp2); 1633 to_unlock = vlp2; 1634 } else { 1635 if (!mtx_trylock(vlp1)) 1636 goto out_relock; 1637 to_unlock = vlp1; 1638 } 1639 } 1640 mtx_lock(blp); 1641 cache_zap_locked(ncp); 1642 mtx_unlock(blp); 1643 if (to_unlock != NULL) 1644 mtx_unlock(to_unlock); 1645 return (true); 1646 1647 out_relock: 1648 mtx_unlock(vlp2); 1649 mtx_lock(vlp1); 1650 mtx_lock(vlp2); 1651 MPASS(*vlpp == NULL); 1652 *vlpp = vlp1; 1653 return (false); 1654 } 1655 1656 /* 1657 * If trylocking failed we can get here. We know enough to take all needed locks 1658 * in the right order and re-lookup the entry. 1659 */ 1660 static int 1661 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, 1662 struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, 1663 struct mtx *blp) 1664 { 1665 struct namecache *rncp; 1666 1667 cache_assert_bucket_unlocked(ncp); 1668 1669 cache_sort_vnodes(&dvlp, &vlp); 1670 cache_lock_vnodes(dvlp, vlp); 1671 mtx_lock(blp); 1672 CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) { 1673 if (rncp == ncp && rncp->nc_dvp == dvp && 1674 rncp->nc_nlen == cnp->cn_namelen && 1675 !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen)) 1676 break; 1677 } 1678 if (rncp != NULL) { 1679 cache_zap_locked(rncp); 1680 mtx_unlock(blp); 1681 cache_unlock_vnodes(dvlp, vlp); 1682 counter_u64_add(zap_bucket_relock_success, 1); 1683 return (0); 1684 } 1685 1686 mtx_unlock(blp); 1687 cache_unlock_vnodes(dvlp, vlp); 1688 return (EAGAIN); 1689 } 1690 1691 static int __noinline 1692 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, 1693 uint32_t hash, struct mtx *blp) 1694 { 1695 struct mtx *dvlp, *vlp; 1696 struct vnode *dvp; 1697 1698 cache_assert_bucket_locked(ncp); 1699 1700 dvlp = VP2VNODELOCK(ncp->nc_dvp); 1701 vlp = NULL; 1702 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1703 vlp = VP2VNODELOCK(ncp->nc_vp); 1704 if (cache_trylock_vnodes(dvlp, vlp) == 0) { 1705 cache_zap_locked(ncp); 1706 mtx_unlock(blp); 1707 cache_unlock_vnodes(dvlp, vlp); 1708 return (0); 1709 } 1710 1711 dvp = ncp->nc_dvp; 1712 mtx_unlock(blp); 1713 return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp)); 1714 } 1715 1716 static __noinline int 1717 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp) 1718 { 1719 struct namecache *ncp; 1720 struct mtx *blp; 1721 struct mtx *dvlp, *dvlp2; 1722 uint32_t hash; 1723 int error; 1724 1725 if (cnp->cn_namelen == 2 && 1726 cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') { 1727 dvlp = VP2VNODELOCK(dvp); 1728 dvlp2 = NULL; 1729 mtx_lock(dvlp); 1730 retry_dotdot: 1731 ncp = dvp->v_cache_dd; 1732 if (ncp == NULL) { 1733 mtx_unlock(dvlp); 1734 if (dvlp2 != NULL) 1735 mtx_unlock(dvlp2); 1736 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1737 return (0); 1738 } 1739 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1740 if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2)) 1741 goto retry_dotdot; 1742 MPASS(dvp->v_cache_dd == NULL); 1743 mtx_unlock(dvlp); 1744 if (dvlp2 != NULL) 1745 mtx_unlock(dvlp2); 1746 cache_free(ncp); 1747 } else { 1748 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1749 mtx_unlock(dvlp); 1750 if (dvlp2 != NULL) 1751 mtx_unlock(dvlp2); 1752 } 1753 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1754 return (1); 1755 } 1756 1757 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1758 blp = HASH2BUCKETLOCK(hash); 1759 retry: 1760 if (CK_SLIST_EMPTY(NCHHASH(hash))) 1761 goto out_no_entry; 1762 1763 mtx_lock(blp); 1764 1765 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1766 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1767 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1768 break; 1769 } 1770 1771 if (ncp == NULL) { 1772 mtx_unlock(blp); 1773 goto out_no_entry; 1774 } 1775 1776 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1777 if (__predict_false(error != 0)) { 1778 zap_bucket_fail++; 1779 goto retry; 1780 } 1781 counter_u64_add(numposzaps, 1); 1782 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1783 cache_free(ncp); 1784 return (1); 1785 out_no_entry: 1786 counter_u64_add(nummisszap, 1); 1787 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1788 return (0); 1789 } 1790 1791 static int __noinline 1792 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1793 struct timespec *tsp, int *ticksp) 1794 { 1795 int ltype; 1796 1797 *vpp = dvp; 1798 counter_u64_add(dothits, 1); 1799 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp); 1800 if (tsp != NULL) 1801 timespecclear(tsp); 1802 if (ticksp != NULL) 1803 *ticksp = ticks; 1804 vrefact(*vpp); 1805 /* 1806 * When we lookup "." we still can be asked to lock it 1807 * differently... 1808 */ 1809 ltype = cnp->cn_lkflags & LK_TYPE_MASK; 1810 if (ltype != VOP_ISLOCKED(*vpp)) { 1811 if (ltype == LK_EXCLUSIVE) { 1812 vn_lock(*vpp, LK_UPGRADE | LK_RETRY); 1813 if (VN_IS_DOOMED((*vpp))) { 1814 /* forced unmount */ 1815 vrele(*vpp); 1816 *vpp = NULL; 1817 return (ENOENT); 1818 } 1819 } else 1820 vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY); 1821 } 1822 return (-1); 1823 } 1824 1825 static int __noinline 1826 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1827 struct timespec *tsp, int *ticksp) 1828 { 1829 struct namecache_ts *ncp_ts; 1830 struct namecache *ncp; 1831 struct mtx *dvlp; 1832 enum vgetstate vs; 1833 int error, ltype; 1834 bool whiteout; 1835 1836 MPASS((cnp->cn_flags & ISDOTDOT) != 0); 1837 1838 if ((cnp->cn_flags & MAKEENTRY) == 0) { 1839 cache_remove_cnp(dvp, cnp); 1840 return (0); 1841 } 1842 1843 counter_u64_add(dotdothits, 1); 1844 retry: 1845 dvlp = VP2VNODELOCK(dvp); 1846 mtx_lock(dvlp); 1847 ncp = dvp->v_cache_dd; 1848 if (ncp == NULL) { 1849 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, ".."); 1850 mtx_unlock(dvlp); 1851 return (0); 1852 } 1853 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1854 if (ncp->nc_flag & NCF_NEGATIVE) 1855 *vpp = NULL; 1856 else 1857 *vpp = ncp->nc_vp; 1858 } else 1859 *vpp = ncp->nc_dvp; 1860 if (*vpp == NULL) 1861 goto negative_success; 1862 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp); 1863 cache_out_ts(ncp, tsp, ticksp); 1864 if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) == 1865 NCF_DTS && tsp != NULL) { 1866 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 1867 *tsp = ncp_ts->nc_dotdottime; 1868 } 1869 1870 MPASS(dvp != *vpp); 1871 ltype = VOP_ISLOCKED(dvp); 1872 VOP_UNLOCK(dvp); 1873 vs = vget_prep(*vpp); 1874 mtx_unlock(dvlp); 1875 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1876 vn_lock(dvp, ltype | LK_RETRY); 1877 if (VN_IS_DOOMED(dvp)) { 1878 if (error == 0) 1879 vput(*vpp); 1880 *vpp = NULL; 1881 return (ENOENT); 1882 } 1883 if (error) { 1884 *vpp = NULL; 1885 goto retry; 1886 } 1887 return (-1); 1888 negative_success: 1889 if (__predict_false(cnp->cn_nameiop == CREATE)) { 1890 if (cnp->cn_flags & ISLASTCN) { 1891 counter_u64_add(numnegzaps, 1); 1892 cache_zap_negative_locked_vnode_kl(ncp, dvp); 1893 mtx_unlock(dvlp); 1894 cache_free(ncp); 1895 return (0); 1896 } 1897 } 1898 1899 whiteout = (ncp->nc_flag & NCF_WHITE); 1900 cache_out_ts(ncp, tsp, ticksp); 1901 if (cache_neg_hit_prep(ncp)) 1902 cache_neg_promote(ncp); 1903 else 1904 cache_neg_hit_finish(ncp); 1905 mtx_unlock(dvlp); 1906 if (whiteout) 1907 cnp->cn_flags |= ISWHITEOUT; 1908 return (ENOENT); 1909 } 1910 1911 /** 1912 * Lookup a name in the name cache 1913 * 1914 * # Arguments 1915 * 1916 * - dvp: Parent directory in which to search. 1917 * - vpp: Return argument. Will contain desired vnode on cache hit. 1918 * - cnp: Parameters of the name search. The most interesting bits of 1919 * the cn_flags field have the following meanings: 1920 * - MAKEENTRY: If clear, free an entry from the cache rather than look 1921 * it up. 1922 * - ISDOTDOT: Must be set if and only if cn_nameptr == ".." 1923 * - tsp: Return storage for cache timestamp. On a successful (positive 1924 * or negative) lookup, tsp will be filled with any timespec that 1925 * was stored when this cache entry was created. However, it will 1926 * be clear for "." entries. 1927 * - ticks: Return storage for alternate cache timestamp. On a successful 1928 * (positive or negative) lookup, it will contain the ticks value 1929 * that was current when the cache entry was created, unless cnp 1930 * was ".". 1931 * 1932 * Either both tsp and ticks have to be provided or neither of them. 1933 * 1934 * # Returns 1935 * 1936 * - -1: A positive cache hit. vpp will contain the desired vnode. 1937 * - ENOENT: A negative cache hit, or dvp was recycled out from under us due 1938 * to a forced unmount. vpp will not be modified. If the entry 1939 * is a whiteout, then the ISWHITEOUT flag will be set in 1940 * cnp->cn_flags. 1941 * - 0: A cache miss. vpp will not be modified. 1942 * 1943 * # Locking 1944 * 1945 * On a cache hit, vpp will be returned locked and ref'd. If we're looking up 1946 * .., dvp is unlocked. If we're looking up . an extra ref is taken, but the 1947 * lock is not recursively acquired. 1948 */ 1949 static int __noinline 1950 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1951 struct timespec *tsp, int *ticksp) 1952 { 1953 struct namecache *ncp; 1954 struct mtx *blp; 1955 uint32_t hash; 1956 enum vgetstate vs; 1957 int error; 1958 bool whiteout; 1959 1960 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1961 MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0); 1962 1963 retry: 1964 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1965 blp = HASH2BUCKETLOCK(hash); 1966 mtx_lock(blp); 1967 1968 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1969 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1970 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1971 break; 1972 } 1973 1974 if (__predict_false(ncp == NULL)) { 1975 mtx_unlock(blp); 1976 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); 1977 counter_u64_add(nummiss, 1); 1978 return (0); 1979 } 1980 1981 if (ncp->nc_flag & NCF_NEGATIVE) 1982 goto negative_success; 1983 1984 counter_u64_add(numposhits, 1); 1985 *vpp = ncp->nc_vp; 1986 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1987 cache_out_ts(ncp, tsp, ticksp); 1988 MPASS(dvp != *vpp); 1989 vs = vget_prep(*vpp); 1990 mtx_unlock(blp); 1991 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1992 if (error) { 1993 *vpp = NULL; 1994 goto retry; 1995 } 1996 return (-1); 1997 negative_success: 1998 /* 1999 * We don't get here with regular lookup apart from corner cases. 2000 */ 2001 if (__predict_true(cnp->cn_nameiop == CREATE)) { 2002 if (cnp->cn_flags & ISLASTCN) { 2003 counter_u64_add(numnegzaps, 1); 2004 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 2005 if (__predict_false(error != 0)) { 2006 zap_bucket_fail2++; 2007 goto retry; 2008 } 2009 cache_free(ncp); 2010 return (0); 2011 } 2012 } 2013 2014 whiteout = (ncp->nc_flag & NCF_WHITE); 2015 cache_out_ts(ncp, tsp, ticksp); 2016 if (cache_neg_hit_prep(ncp)) 2017 cache_neg_promote(ncp); 2018 else 2019 cache_neg_hit_finish(ncp); 2020 mtx_unlock(blp); 2021 if (whiteout) 2022 cnp->cn_flags |= ISWHITEOUT; 2023 return (ENOENT); 2024 } 2025 2026 int 2027 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 2028 struct timespec *tsp, int *ticksp) 2029 { 2030 struct namecache *ncp; 2031 uint32_t hash; 2032 enum vgetstate vs; 2033 int error; 2034 bool whiteout, neg_promote; 2035 u_short nc_flag; 2036 2037 MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL)); 2038 2039 #ifdef DEBUG_CACHE 2040 if (__predict_false(!doingcache)) { 2041 cnp->cn_flags &= ~MAKEENTRY; 2042 return (0); 2043 } 2044 #endif 2045 2046 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2047 if (cnp->cn_namelen == 1) 2048 return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp)); 2049 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') 2050 return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp)); 2051 } 2052 2053 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 2054 2055 if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) { 2056 cache_remove_cnp(dvp, cnp); 2057 return (0); 2058 } 2059 2060 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2061 vfs_smr_enter(); 2062 2063 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2064 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2065 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 2066 break; 2067 } 2068 2069 if (__predict_false(ncp == NULL)) { 2070 vfs_smr_exit(); 2071 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); 2072 counter_u64_add(nummiss, 1); 2073 return (0); 2074 } 2075 2076 nc_flag = atomic_load_char(&ncp->nc_flag); 2077 if (nc_flag & NCF_NEGATIVE) 2078 goto negative_success; 2079 2080 counter_u64_add(numposhits, 1); 2081 *vpp = ncp->nc_vp; 2082 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 2083 cache_out_ts(ncp, tsp, ticksp); 2084 MPASS(dvp != *vpp); 2085 if (!cache_ncp_canuse(ncp)) { 2086 vfs_smr_exit(); 2087 *vpp = NULL; 2088 goto out_fallback; 2089 } 2090 vs = vget_prep_smr(*vpp); 2091 vfs_smr_exit(); 2092 if (__predict_false(vs == VGET_NONE)) { 2093 *vpp = NULL; 2094 goto out_fallback; 2095 } 2096 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 2097 if (error) { 2098 *vpp = NULL; 2099 goto out_fallback; 2100 } 2101 return (-1); 2102 negative_success: 2103 if (cnp->cn_nameiop == CREATE) { 2104 if (cnp->cn_flags & ISLASTCN) { 2105 vfs_smr_exit(); 2106 goto out_fallback; 2107 } 2108 } 2109 2110 cache_out_ts(ncp, tsp, ticksp); 2111 whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE); 2112 neg_promote = cache_neg_hit_prep(ncp); 2113 if (!cache_ncp_canuse(ncp)) { 2114 cache_neg_hit_abort(ncp); 2115 vfs_smr_exit(); 2116 goto out_fallback; 2117 } 2118 if (neg_promote) { 2119 vfs_smr_exit(); 2120 if (!cache_neg_promote_cond(dvp, cnp, ncp, hash)) 2121 goto out_fallback; 2122 } else { 2123 cache_neg_hit_finish(ncp); 2124 vfs_smr_exit(); 2125 } 2126 if (whiteout) 2127 cnp->cn_flags |= ISWHITEOUT; 2128 return (ENOENT); 2129 out_fallback: 2130 return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp)); 2131 } 2132 2133 struct celockstate { 2134 struct mtx *vlp[3]; 2135 struct mtx *blp[2]; 2136 }; 2137 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3)); 2138 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2)); 2139 2140 static inline void 2141 cache_celockstate_init(struct celockstate *cel) 2142 { 2143 2144 bzero(cel, sizeof(*cel)); 2145 } 2146 2147 static void 2148 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, 2149 struct vnode *dvp) 2150 { 2151 struct mtx *vlp1, *vlp2; 2152 2153 MPASS(cel->vlp[0] == NULL); 2154 MPASS(cel->vlp[1] == NULL); 2155 MPASS(cel->vlp[2] == NULL); 2156 2157 MPASS(vp != NULL || dvp != NULL); 2158 2159 vlp1 = VP2VNODELOCK(vp); 2160 vlp2 = VP2VNODELOCK(dvp); 2161 cache_sort_vnodes(&vlp1, &vlp2); 2162 2163 if (vlp1 != NULL) { 2164 mtx_lock(vlp1); 2165 cel->vlp[0] = vlp1; 2166 } 2167 mtx_lock(vlp2); 2168 cel->vlp[1] = vlp2; 2169 } 2170 2171 static void 2172 cache_unlock_vnodes_cel(struct celockstate *cel) 2173 { 2174 2175 MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL); 2176 2177 if (cel->vlp[0] != NULL) 2178 mtx_unlock(cel->vlp[0]); 2179 if (cel->vlp[1] != NULL) 2180 mtx_unlock(cel->vlp[1]); 2181 if (cel->vlp[2] != NULL) 2182 mtx_unlock(cel->vlp[2]); 2183 } 2184 2185 static bool 2186 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp) 2187 { 2188 struct mtx *vlp; 2189 bool ret; 2190 2191 cache_assert_vlp_locked(cel->vlp[0]); 2192 cache_assert_vlp_locked(cel->vlp[1]); 2193 MPASS(cel->vlp[2] == NULL); 2194 2195 MPASS(vp != NULL); 2196 vlp = VP2VNODELOCK(vp); 2197 2198 ret = true; 2199 if (vlp >= cel->vlp[1]) { 2200 mtx_lock(vlp); 2201 } else { 2202 if (mtx_trylock(vlp)) 2203 goto out; 2204 cache_lock_vnodes_cel_3_failures++; 2205 cache_unlock_vnodes_cel(cel); 2206 if (vlp < cel->vlp[0]) { 2207 mtx_lock(vlp); 2208 mtx_lock(cel->vlp[0]); 2209 mtx_lock(cel->vlp[1]); 2210 } else { 2211 if (cel->vlp[0] != NULL) 2212 mtx_lock(cel->vlp[0]); 2213 mtx_lock(vlp); 2214 mtx_lock(cel->vlp[1]); 2215 } 2216 ret = false; 2217 } 2218 out: 2219 cel->vlp[2] = vlp; 2220 return (ret); 2221 } 2222 2223 static void 2224 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, 2225 struct mtx *blp2) 2226 { 2227 2228 MPASS(cel->blp[0] == NULL); 2229 MPASS(cel->blp[1] == NULL); 2230 2231 cache_sort_vnodes(&blp1, &blp2); 2232 2233 if (blp1 != NULL) { 2234 mtx_lock(blp1); 2235 cel->blp[0] = blp1; 2236 } 2237 mtx_lock(blp2); 2238 cel->blp[1] = blp2; 2239 } 2240 2241 static void 2242 cache_unlock_buckets_cel(struct celockstate *cel) 2243 { 2244 2245 if (cel->blp[0] != NULL) 2246 mtx_unlock(cel->blp[0]); 2247 mtx_unlock(cel->blp[1]); 2248 } 2249 2250 /* 2251 * Lock part of the cache affected by the insertion. 2252 * 2253 * This means vnodelocks for dvp, vp and the relevant bucketlock. 2254 * However, insertion can result in removal of an old entry. In this 2255 * case we have an additional vnode and bucketlock pair to lock. 2256 * 2257 * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while 2258 * preserving the locking order (smaller address first). 2259 */ 2260 static void 2261 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2262 uint32_t hash) 2263 { 2264 struct namecache *ncp; 2265 struct mtx *blps[2]; 2266 u_char nc_flag; 2267 2268 blps[0] = HASH2BUCKETLOCK(hash); 2269 for (;;) { 2270 blps[1] = NULL; 2271 cache_lock_vnodes_cel(cel, dvp, vp); 2272 if (vp == NULL || vp->v_type != VDIR) 2273 break; 2274 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 2275 if (ncp == NULL) 2276 break; 2277 nc_flag = atomic_load_char(&ncp->nc_flag); 2278 if ((nc_flag & NCF_ISDOTDOT) == 0) 2279 break; 2280 MPASS(ncp->nc_dvp == vp); 2281 blps[1] = NCP2BUCKETLOCK(ncp); 2282 if ((nc_flag & NCF_NEGATIVE) != 0) 2283 break; 2284 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2285 break; 2286 /* 2287 * All vnodes got re-locked. Re-validate the state and if 2288 * nothing changed we are done. Otherwise restart. 2289 */ 2290 if (ncp == vp->v_cache_dd && 2291 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2292 blps[1] == NCP2BUCKETLOCK(ncp) && 2293 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2294 break; 2295 cache_unlock_vnodes_cel(cel); 2296 cel->vlp[0] = NULL; 2297 cel->vlp[1] = NULL; 2298 cel->vlp[2] = NULL; 2299 } 2300 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2301 } 2302 2303 static void 2304 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2305 uint32_t hash) 2306 { 2307 struct namecache *ncp; 2308 struct mtx *blps[2]; 2309 u_char nc_flag; 2310 2311 blps[0] = HASH2BUCKETLOCK(hash); 2312 for (;;) { 2313 blps[1] = NULL; 2314 cache_lock_vnodes_cel(cel, dvp, vp); 2315 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 2316 if (ncp == NULL) 2317 break; 2318 nc_flag = atomic_load_char(&ncp->nc_flag); 2319 if ((nc_flag & NCF_ISDOTDOT) == 0) 2320 break; 2321 MPASS(ncp->nc_dvp == dvp); 2322 blps[1] = NCP2BUCKETLOCK(ncp); 2323 if ((nc_flag & NCF_NEGATIVE) != 0) 2324 break; 2325 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2326 break; 2327 if (ncp == dvp->v_cache_dd && 2328 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2329 blps[1] == NCP2BUCKETLOCK(ncp) && 2330 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2331 break; 2332 cache_unlock_vnodes_cel(cel); 2333 cel->vlp[0] = NULL; 2334 cel->vlp[1] = NULL; 2335 cel->vlp[2] = NULL; 2336 } 2337 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2338 } 2339 2340 static void 2341 cache_enter_unlock(struct celockstate *cel) 2342 { 2343 2344 cache_unlock_buckets_cel(cel); 2345 cache_unlock_vnodes_cel(cel); 2346 } 2347 2348 static void __noinline 2349 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, 2350 struct componentname *cnp) 2351 { 2352 struct celockstate cel; 2353 struct namecache *ncp; 2354 uint32_t hash; 2355 int len; 2356 2357 if (atomic_load_ptr(&dvp->v_cache_dd) == NULL) 2358 return; 2359 len = cnp->cn_namelen; 2360 cache_celockstate_init(&cel); 2361 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2362 cache_enter_lock_dd(&cel, dvp, vp, hash); 2363 ncp = dvp->v_cache_dd; 2364 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) { 2365 KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent")); 2366 cache_zap_locked(ncp); 2367 } else { 2368 ncp = NULL; 2369 } 2370 atomic_store_ptr(&dvp->v_cache_dd, NULL); 2371 cache_enter_unlock(&cel); 2372 if (ncp != NULL) 2373 cache_free(ncp); 2374 } 2375 2376 /* 2377 * Add an entry to the cache. 2378 */ 2379 void 2380 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2381 struct timespec *tsp, struct timespec *dtsp) 2382 { 2383 struct celockstate cel; 2384 struct namecache *ncp, *n2, *ndd; 2385 struct namecache_ts *ncp_ts; 2386 struct nchashhead *ncpp; 2387 uint32_t hash; 2388 int flag; 2389 int len; 2390 2391 KASSERT(cnp->cn_namelen <= NAME_MAX, 2392 ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen, 2393 NAME_MAX)); 2394 #ifdef notyet 2395 /* 2396 * Not everything doing this is weeded out yet. 2397 */ 2398 VNPASS(dvp != vp, dvp); 2399 #endif 2400 VNPASS(!VN_IS_DOOMED(dvp), dvp); 2401 VNPASS(dvp->v_type != VNON, dvp); 2402 if (vp != NULL) { 2403 VNPASS(!VN_IS_DOOMED(vp), vp); 2404 VNPASS(vp->v_type != VNON, vp); 2405 } 2406 2407 #ifdef DEBUG_CACHE 2408 if (__predict_false(!doingcache)) 2409 return; 2410 #endif 2411 2412 flag = 0; 2413 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2414 if (cnp->cn_namelen == 1) 2415 return; 2416 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 2417 cache_enter_dotdot_prep(dvp, vp, cnp); 2418 flag = NCF_ISDOTDOT; 2419 } 2420 } 2421 2422 ncp = cache_alloc(cnp->cn_namelen, tsp != NULL); 2423 if (ncp == NULL) 2424 return; 2425 2426 cache_celockstate_init(&cel); 2427 ndd = NULL; 2428 ncp_ts = NULL; 2429 2430 /* 2431 * Calculate the hash key and setup as much of the new 2432 * namecache entry as possible before acquiring the lock. 2433 */ 2434 ncp->nc_flag = flag | NCF_WIP; 2435 ncp->nc_vp = vp; 2436 if (vp == NULL) 2437 cache_neg_init(ncp); 2438 ncp->nc_dvp = dvp; 2439 if (tsp != NULL) { 2440 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 2441 ncp_ts->nc_time = *tsp; 2442 ncp_ts->nc_ticks = ticks; 2443 ncp_ts->nc_nc.nc_flag |= NCF_TS; 2444 if (dtsp != NULL) { 2445 ncp_ts->nc_dotdottime = *dtsp; 2446 ncp_ts->nc_nc.nc_flag |= NCF_DTS; 2447 } 2448 } 2449 len = ncp->nc_nlen = cnp->cn_namelen; 2450 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2451 memcpy(ncp->nc_name, cnp->cn_nameptr, len); 2452 ncp->nc_name[len] = '\0'; 2453 cache_enter_lock(&cel, dvp, vp, hash); 2454 2455 /* 2456 * See if this vnode or negative entry is already in the cache 2457 * with this name. This can happen with concurrent lookups of 2458 * the same path name. 2459 */ 2460 ncpp = NCHHASH(hash); 2461 CK_SLIST_FOREACH(n2, ncpp, nc_hash) { 2462 if (n2->nc_dvp == dvp && 2463 n2->nc_nlen == cnp->cn_namelen && 2464 !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) { 2465 MPASS(cache_ncp_canuse(n2)); 2466 if ((n2->nc_flag & NCF_NEGATIVE) != 0) 2467 KASSERT(vp == NULL, 2468 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", 2469 __func__, NULL, vp, cnp->cn_nameptr)); 2470 else 2471 KASSERT(n2->nc_vp == vp, 2472 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", 2473 __func__, n2->nc_vp, vp, cnp->cn_nameptr)); 2474 /* 2475 * Entries are supposed to be immutable unless in the 2476 * process of getting destroyed. Accommodating for 2477 * changing timestamps is possible but not worth it. 2478 * This should be harmless in terms of correctness, in 2479 * the worst case resulting in an earlier expiration. 2480 * Alternatively, the found entry can be replaced 2481 * altogether. 2482 */ 2483 MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS))); 2484 #if 0 2485 if (tsp != NULL) { 2486 KASSERT((n2->nc_flag & NCF_TS) != 0, 2487 ("no NCF_TS")); 2488 n2_ts = __containerof(n2, struct namecache_ts, nc_nc); 2489 n2_ts->nc_time = ncp_ts->nc_time; 2490 n2_ts->nc_ticks = ncp_ts->nc_ticks; 2491 if (dtsp != NULL) { 2492 n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime; 2493 n2_ts->nc_nc.nc_flag |= NCF_DTS; 2494 } 2495 } 2496 #endif 2497 SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name, 2498 vp); 2499 goto out_unlock_free; 2500 } 2501 } 2502 2503 if (flag == NCF_ISDOTDOT) { 2504 /* 2505 * See if we are trying to add .. entry, but some other lookup 2506 * has populated v_cache_dd pointer already. 2507 */ 2508 if (dvp->v_cache_dd != NULL) 2509 goto out_unlock_free; 2510 KASSERT(vp == NULL || vp->v_type == VDIR, 2511 ("wrong vnode type %p", vp)); 2512 atomic_thread_fence_rel(); 2513 atomic_store_ptr(&dvp->v_cache_dd, ncp); 2514 } 2515 2516 if (vp != NULL) { 2517 if (flag != NCF_ISDOTDOT) { 2518 /* 2519 * For this case, the cache entry maps both the 2520 * directory name in it and the name ".." for the 2521 * directory's parent. 2522 */ 2523 if ((ndd = vp->v_cache_dd) != NULL) { 2524 if ((ndd->nc_flag & NCF_ISDOTDOT) != 0) 2525 cache_zap_locked(ndd); 2526 else 2527 ndd = NULL; 2528 } 2529 atomic_thread_fence_rel(); 2530 atomic_store_ptr(&vp->v_cache_dd, ncp); 2531 } else if (vp->v_type != VDIR) { 2532 if (vp->v_cache_dd != NULL) { 2533 atomic_store_ptr(&vp->v_cache_dd, NULL); 2534 } 2535 } 2536 } 2537 2538 if (flag != NCF_ISDOTDOT) { 2539 if (LIST_EMPTY(&dvp->v_cache_src)) { 2540 cache_hold_vnode(dvp); 2541 } 2542 LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src); 2543 } 2544 2545 /* 2546 * If the entry is "negative", we place it into the 2547 * "negative" cache queue, otherwise, we place it into the 2548 * destination vnode's cache entries queue. 2549 */ 2550 if (vp != NULL) { 2551 TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst); 2552 SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name, 2553 vp); 2554 } else { 2555 if (cnp->cn_flags & ISWHITEOUT) 2556 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE); 2557 cache_neg_insert(ncp); 2558 SDT_PROBE2(vfs, namecache, enter_negative, done, dvp, 2559 ncp->nc_name); 2560 } 2561 2562 /* 2563 * Insert the new namecache entry into the appropriate chain 2564 * within the cache entries table. 2565 */ 2566 CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash); 2567 2568 atomic_thread_fence_rel(); 2569 /* 2570 * Mark the entry as fully constructed. 2571 * It is immutable past this point until its removal. 2572 */ 2573 atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP); 2574 2575 cache_enter_unlock(&cel); 2576 if (ndd != NULL) 2577 cache_free(ndd); 2578 return; 2579 out_unlock_free: 2580 cache_enter_unlock(&cel); 2581 cache_free(ncp); 2582 return; 2583 } 2584 2585 static u_int 2586 cache_roundup_2(u_int val) 2587 { 2588 u_int res; 2589 2590 for (res = 1; res <= val; res <<= 1) 2591 continue; 2592 2593 return (res); 2594 } 2595 2596 static struct nchashhead * 2597 nchinittbl(u_long elements, u_long *hashmask) 2598 { 2599 struct nchashhead *hashtbl; 2600 u_long hashsize, i; 2601 2602 hashsize = cache_roundup_2(elements) / 2; 2603 2604 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK); 2605 for (i = 0; i < hashsize; i++) 2606 CK_SLIST_INIT(&hashtbl[i]); 2607 *hashmask = hashsize - 1; 2608 return (hashtbl); 2609 } 2610 2611 static void 2612 ncfreetbl(struct nchashhead *hashtbl) 2613 { 2614 2615 free(hashtbl, M_VFSCACHE); 2616 } 2617 2618 /* 2619 * Name cache initialization, from vfs_init() when we are booting 2620 */ 2621 static void 2622 nchinit(void *dummy __unused) 2623 { 2624 u_int i; 2625 2626 cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE, 2627 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2628 cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE, 2629 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2630 cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE, 2631 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2632 cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE, 2633 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2634 2635 VFS_SMR_ZONE_SET(cache_zone_small); 2636 VFS_SMR_ZONE_SET(cache_zone_small_ts); 2637 VFS_SMR_ZONE_SET(cache_zone_large); 2638 VFS_SMR_ZONE_SET(cache_zone_large_ts); 2639 2640 ncsize = desiredvnodes * ncsizefactor; 2641 cache_recalc_neg_min(ncnegminpct); 2642 nchashtbl = nchinittbl(desiredvnodes * 2, &nchash); 2643 ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1; 2644 if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */ 2645 ncbuckethash = 7; 2646 if (ncbuckethash > nchash) 2647 ncbuckethash = nchash; 2648 bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE, 2649 M_WAITOK | M_ZERO); 2650 for (i = 0; i < numbucketlocks; i++) 2651 mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE); 2652 ncvnodehash = ncbuckethash; 2653 vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE, 2654 M_WAITOK | M_ZERO); 2655 for (i = 0; i < numvnodelocks; i++) 2656 mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE); 2657 2658 for (i = 0; i < numneglists; i++) { 2659 mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF); 2660 mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF); 2661 TAILQ_INIT(&neglists[i].nl_list); 2662 TAILQ_INIT(&neglists[i].nl_hotlist); 2663 } 2664 } 2665 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL); 2666 2667 void 2668 cache_vnode_init(struct vnode *vp) 2669 { 2670 2671 LIST_INIT(&vp->v_cache_src); 2672 TAILQ_INIT(&vp->v_cache_dst); 2673 vp->v_cache_dd = NULL; 2674 cache_prehash(vp); 2675 } 2676 2677 /* 2678 * Induce transient cache misses for lockless operation in cache_lookup() by 2679 * using a temporary hash table. 2680 * 2681 * This will force a fs lookup. 2682 * 2683 * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time 2684 * to observe all CPUs not performing the lookup. 2685 */ 2686 static void 2687 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash) 2688 { 2689 2690 MPASS(temphash < nchash); 2691 /* 2692 * Change the size. The new size is smaller and can safely be used 2693 * against the existing table. All lookups which now hash wrong will 2694 * result in a cache miss, which all callers are supposed to know how 2695 * to handle. 2696 */ 2697 atomic_store_long(&nchash, temphash); 2698 atomic_thread_fence_rel(); 2699 vfs_smr_synchronize(); 2700 /* 2701 * At this point everyone sees the updated hash value, but they still 2702 * see the old table. 2703 */ 2704 atomic_store_ptr(&nchashtbl, temptbl); 2705 atomic_thread_fence_rel(); 2706 vfs_smr_synchronize(); 2707 /* 2708 * At this point everyone sees the updated table pointer and size pair. 2709 */ 2710 } 2711 2712 /* 2713 * Set the new hash table. 2714 * 2715 * Similarly to cache_changesize_set_temp(), this has to synchronize against 2716 * lockless operation in cache_lookup(). 2717 */ 2718 static void 2719 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash) 2720 { 2721 2722 MPASS(nchash < new_hash); 2723 /* 2724 * Change the pointer first. This wont result in out of bounds access 2725 * since the temporary table is guaranteed to be smaller. 2726 */ 2727 atomic_store_ptr(&nchashtbl, new_tbl); 2728 atomic_thread_fence_rel(); 2729 vfs_smr_synchronize(); 2730 /* 2731 * At this point everyone sees the updated pointer value, but they 2732 * still see the old size. 2733 */ 2734 atomic_store_long(&nchash, new_hash); 2735 atomic_thread_fence_rel(); 2736 vfs_smr_synchronize(); 2737 /* 2738 * At this point everyone sees the updated table pointer and size pair. 2739 */ 2740 } 2741 2742 void 2743 cache_changesize(u_long newmaxvnodes) 2744 { 2745 struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl; 2746 u_long new_nchash, old_nchash, temphash; 2747 struct namecache *ncp; 2748 uint32_t hash; 2749 u_long newncsize; 2750 int i; 2751 2752 newncsize = newmaxvnodes * ncsizefactor; 2753 newmaxvnodes = cache_roundup_2(newmaxvnodes * 2); 2754 if (newmaxvnodes < numbucketlocks) 2755 newmaxvnodes = numbucketlocks; 2756 2757 new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash); 2758 /* If same hash table size, nothing to do */ 2759 if (nchash == new_nchash) { 2760 ncfreetbl(new_nchashtbl); 2761 return; 2762 } 2763 2764 temptbl = nchinittbl(1, &temphash); 2765 2766 /* 2767 * Move everything from the old hash table to the new table. 2768 * None of the namecache entries in the table can be removed 2769 * because to do so, they have to be removed from the hash table. 2770 */ 2771 cache_lock_all_vnodes(); 2772 cache_lock_all_buckets(); 2773 old_nchashtbl = nchashtbl; 2774 old_nchash = nchash; 2775 cache_changesize_set_temp(temptbl, temphash); 2776 for (i = 0; i <= old_nchash; i++) { 2777 while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) { 2778 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, 2779 ncp->nc_dvp); 2780 CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash); 2781 CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash); 2782 } 2783 } 2784 ncsize = newncsize; 2785 cache_recalc_neg_min(ncnegminpct); 2786 cache_changesize_set_new(new_nchashtbl, new_nchash); 2787 cache_unlock_all_buckets(); 2788 cache_unlock_all_vnodes(); 2789 ncfreetbl(old_nchashtbl); 2790 ncfreetbl(temptbl); 2791 } 2792 2793 /* 2794 * Remove all entries from and to a particular vnode. 2795 */ 2796 static void 2797 cache_purge_impl(struct vnode *vp) 2798 { 2799 struct cache_freebatch batch; 2800 struct namecache *ncp; 2801 struct mtx *vlp, *vlp2; 2802 2803 TAILQ_INIT(&batch); 2804 vlp = VP2VNODELOCK(vp); 2805 vlp2 = NULL; 2806 mtx_lock(vlp); 2807 retry: 2808 while (!LIST_EMPTY(&vp->v_cache_src)) { 2809 ncp = LIST_FIRST(&vp->v_cache_src); 2810 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2811 goto retry; 2812 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2813 } 2814 while (!TAILQ_EMPTY(&vp->v_cache_dst)) { 2815 ncp = TAILQ_FIRST(&vp->v_cache_dst); 2816 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2817 goto retry; 2818 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2819 } 2820 ncp = vp->v_cache_dd; 2821 if (ncp != NULL) { 2822 KASSERT(ncp->nc_flag & NCF_ISDOTDOT, 2823 ("lost dotdot link")); 2824 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2825 goto retry; 2826 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2827 } 2828 KASSERT(vp->v_cache_dd == NULL, ("incomplete purge")); 2829 mtx_unlock(vlp); 2830 if (vlp2 != NULL) 2831 mtx_unlock(vlp2); 2832 cache_free_batch(&batch); 2833 } 2834 2835 /* 2836 * Opportunistic check to see if there is anything to do. 2837 */ 2838 static bool 2839 cache_has_entries(struct vnode *vp) 2840 { 2841 2842 if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) && 2843 atomic_load_ptr(&vp->v_cache_dd) == NULL) 2844 return (false); 2845 return (true); 2846 } 2847 2848 void 2849 cache_purge(struct vnode *vp) 2850 { 2851 2852 SDT_PROBE1(vfs, namecache, purge, done, vp); 2853 if (!cache_has_entries(vp)) 2854 return; 2855 cache_purge_impl(vp); 2856 } 2857 2858 /* 2859 * Only to be used by vgone. 2860 */ 2861 void 2862 cache_purge_vgone(struct vnode *vp) 2863 { 2864 struct mtx *vlp; 2865 2866 VNPASS(VN_IS_DOOMED(vp), vp); 2867 if (cache_has_entries(vp)) { 2868 cache_purge_impl(vp); 2869 return; 2870 } 2871 2872 /* 2873 * Serialize against a potential thread doing cache_purge. 2874 */ 2875 vlp = VP2VNODELOCK(vp); 2876 mtx_wait_unlocked(vlp); 2877 if (cache_has_entries(vp)) { 2878 cache_purge_impl(vp); 2879 return; 2880 } 2881 return; 2882 } 2883 2884 /* 2885 * Remove all negative entries for a particular directory vnode. 2886 */ 2887 void 2888 cache_purge_negative(struct vnode *vp) 2889 { 2890 struct cache_freebatch batch; 2891 struct namecache *ncp, *nnp; 2892 struct mtx *vlp; 2893 2894 SDT_PROBE1(vfs, namecache, purge_negative, done, vp); 2895 if (LIST_EMPTY(&vp->v_cache_src)) 2896 return; 2897 TAILQ_INIT(&batch); 2898 vlp = VP2VNODELOCK(vp); 2899 mtx_lock(vlp); 2900 LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) { 2901 if (!(ncp->nc_flag & NCF_NEGATIVE)) 2902 continue; 2903 cache_zap_negative_locked_vnode_kl(ncp, vp); 2904 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2905 } 2906 mtx_unlock(vlp); 2907 cache_free_batch(&batch); 2908 } 2909 2910 /* 2911 * Entry points for modifying VOP operations. 2912 */ 2913 void 2914 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, 2915 struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) 2916 { 2917 2918 ASSERT_VOP_IN_SEQC(fdvp); 2919 ASSERT_VOP_IN_SEQC(fvp); 2920 ASSERT_VOP_IN_SEQC(tdvp); 2921 if (tvp != NULL) 2922 ASSERT_VOP_IN_SEQC(tvp); 2923 2924 cache_purge(fvp); 2925 if (tvp != NULL) { 2926 cache_purge(tvp); 2927 KASSERT(!cache_remove_cnp(tdvp, tcnp), 2928 ("%s: lingering negative entry", __func__)); 2929 } else { 2930 cache_remove_cnp(tdvp, tcnp); 2931 } 2932 2933 /* 2934 * TODO 2935 * 2936 * Historically renaming was always purging all revelang entries, 2937 * but that's quite wasteful. In particular turns out that in many cases 2938 * the target file is immediately accessed after rename, inducing a cache 2939 * miss. 2940 * 2941 * Recode this to reduce relocking and reuse the existing entry (if any) 2942 * instead of just removing it above and allocating a new one here. 2943 */ 2944 if (cache_rename_add) { 2945 cache_enter(tdvp, fvp, tcnp); 2946 } 2947 } 2948 2949 void 2950 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) 2951 { 2952 2953 ASSERT_VOP_IN_SEQC(dvp); 2954 ASSERT_VOP_IN_SEQC(vp); 2955 cache_purge(vp); 2956 } 2957 2958 #ifdef INVARIANTS 2959 /* 2960 * Validate that if an entry exists it matches. 2961 */ 2962 void 2963 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2964 { 2965 struct namecache *ncp; 2966 struct mtx *blp; 2967 uint32_t hash; 2968 2969 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2970 if (CK_SLIST_EMPTY(NCHHASH(hash))) 2971 return; 2972 blp = HASH2BUCKETLOCK(hash); 2973 mtx_lock(blp); 2974 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2975 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2976 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) { 2977 if (ncp->nc_vp != vp) 2978 panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n", 2979 __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp); 2980 } 2981 } 2982 mtx_unlock(blp); 2983 } 2984 #endif 2985 2986 /* 2987 * Flush all entries referencing a particular filesystem. 2988 */ 2989 void 2990 cache_purgevfs(struct mount *mp) 2991 { 2992 struct vnode *vp, *mvp; 2993 2994 SDT_PROBE1(vfs, namecache, purgevfs, done, mp); 2995 /* 2996 * Somewhat wasteful iteration over all vnodes. Would be better to 2997 * support filtering and avoid the interlock to begin with. 2998 */ 2999 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3000 if (!cache_has_entries(vp)) { 3001 VI_UNLOCK(vp); 3002 continue; 3003 } 3004 vholdl(vp); 3005 VI_UNLOCK(vp); 3006 cache_purge(vp); 3007 vdrop(vp); 3008 } 3009 } 3010 3011 /* 3012 * Perform canonical checks and cache lookup and pass on to filesystem 3013 * through the vop_cachedlookup only if needed. 3014 */ 3015 3016 int 3017 vfs_cache_lookup(struct vop_lookup_args *ap) 3018 { 3019 struct vnode *dvp; 3020 int error; 3021 struct vnode **vpp = ap->a_vpp; 3022 struct componentname *cnp = ap->a_cnp; 3023 int flags = cnp->cn_flags; 3024 3025 *vpp = NULL; 3026 dvp = ap->a_dvp; 3027 3028 if (dvp->v_type != VDIR) 3029 return (ENOTDIR); 3030 3031 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 3032 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 3033 return (EROFS); 3034 3035 error = vn_dir_check_exec(dvp, cnp); 3036 if (error != 0) 3037 return (error); 3038 3039 error = cache_lookup(dvp, vpp, cnp, NULL, NULL); 3040 if (error == 0) 3041 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp)); 3042 if (error == -1) 3043 return (0); 3044 return (error); 3045 } 3046 3047 /* Implementation of the getcwd syscall. */ 3048 int 3049 sys___getcwd(struct thread *td, struct __getcwd_args *uap) 3050 { 3051 char *buf, *retbuf; 3052 size_t buflen; 3053 int error; 3054 3055 buflen = uap->buflen; 3056 if (__predict_false(buflen < 2)) 3057 return (EINVAL); 3058 if (buflen > MAXPATHLEN) 3059 buflen = MAXPATHLEN; 3060 3061 buf = uma_zalloc(namei_zone, M_WAITOK); 3062 error = vn_getcwd(buf, &retbuf, &buflen); 3063 if (error == 0) 3064 error = copyout(retbuf, uap->buf, buflen); 3065 uma_zfree(namei_zone, buf); 3066 return (error); 3067 } 3068 3069 int 3070 vn_getcwd(char *buf, char **retbuf, size_t *buflen) 3071 { 3072 struct pwd *pwd; 3073 int error; 3074 3075 vfs_smr_enter(); 3076 pwd = pwd_get_smr(); 3077 error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, 3078 buflen, 0); 3079 VFS_SMR_ASSERT_NOT_ENTERED(); 3080 if (error < 0) { 3081 pwd = pwd_hold(curthread); 3082 error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf, 3083 retbuf, buflen); 3084 pwd_drop(pwd); 3085 } 3086 3087 #ifdef KTRACE 3088 if (KTRPOINT(curthread, KTR_NAMEI) && error == 0) 3089 ktrnamei(*retbuf); 3090 #endif 3091 return (error); 3092 } 3093 3094 static int 3095 kern___realpathat(struct thread *td, int fd, const char *path, char *buf, 3096 size_t size, int flags, enum uio_seg pathseg) 3097 { 3098 struct nameidata nd; 3099 char *retbuf, *freebuf; 3100 int error; 3101 3102 if (flags != 0) 3103 return (EINVAL); 3104 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1, 3105 pathseg, path, fd, &cap_fstat_rights, td); 3106 if ((error = namei(&nd)) != 0) 3107 return (error); 3108 error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size); 3109 if (error == 0) { 3110 error = copyout(retbuf, buf, size); 3111 free(freebuf, M_TEMP); 3112 } 3113 NDFREE(&nd, 0); 3114 return (error); 3115 } 3116 3117 int 3118 sys___realpathat(struct thread *td, struct __realpathat_args *uap) 3119 { 3120 3121 return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size, 3122 uap->flags, UIO_USERSPACE)); 3123 } 3124 3125 /* 3126 * Retrieve the full filesystem path that correspond to a vnode from the name 3127 * cache (if available) 3128 */ 3129 int 3130 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf) 3131 { 3132 struct pwd *pwd; 3133 char *buf; 3134 size_t buflen; 3135 int error; 3136 3137 if (__predict_false(vp == NULL)) 3138 return (EINVAL); 3139 3140 buflen = MAXPATHLEN; 3141 buf = malloc(buflen, M_TEMP, M_WAITOK); 3142 vfs_smr_enter(); 3143 pwd = pwd_get_smr(); 3144 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0); 3145 VFS_SMR_ASSERT_NOT_ENTERED(); 3146 if (error < 0) { 3147 pwd = pwd_hold(curthread); 3148 error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen); 3149 pwd_drop(pwd); 3150 } 3151 if (error == 0) 3152 *freebuf = buf; 3153 else 3154 free(buf, M_TEMP); 3155 return (error); 3156 } 3157 3158 /* 3159 * This function is similar to vn_fullpath, but it attempts to lookup the 3160 * pathname relative to the global root mount point. This is required for the 3161 * auditing sub-system, as audited pathnames must be absolute, relative to the 3162 * global root mount point. 3163 */ 3164 int 3165 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf) 3166 { 3167 char *buf; 3168 size_t buflen; 3169 int error; 3170 3171 if (__predict_false(vp == NULL)) 3172 return (EINVAL); 3173 buflen = MAXPATHLEN; 3174 buf = malloc(buflen, M_TEMP, M_WAITOK); 3175 vfs_smr_enter(); 3176 error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0); 3177 VFS_SMR_ASSERT_NOT_ENTERED(); 3178 if (error < 0) { 3179 error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen); 3180 } 3181 if (error == 0) 3182 *freebuf = buf; 3183 else 3184 free(buf, M_TEMP); 3185 return (error); 3186 } 3187 3188 static struct namecache * 3189 vn_dd_from_dst(struct vnode *vp) 3190 { 3191 struct namecache *ncp; 3192 3193 cache_assert_vnode_locked(vp); 3194 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) { 3195 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3196 return (ncp); 3197 } 3198 return (NULL); 3199 } 3200 3201 int 3202 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen) 3203 { 3204 struct vnode *dvp; 3205 struct namecache *ncp; 3206 struct mtx *vlp; 3207 int error; 3208 3209 vlp = VP2VNODELOCK(*vp); 3210 mtx_lock(vlp); 3211 ncp = (*vp)->v_cache_dd; 3212 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) { 3213 KASSERT(ncp == vn_dd_from_dst(*vp), 3214 ("%s: mismatch for dd entry (%p != %p)", __func__, 3215 ncp, vn_dd_from_dst(*vp))); 3216 } else { 3217 ncp = vn_dd_from_dst(*vp); 3218 } 3219 if (ncp != NULL) { 3220 if (*buflen < ncp->nc_nlen) { 3221 mtx_unlock(vlp); 3222 vrele(*vp); 3223 counter_u64_add(numfullpathfail4, 1); 3224 error = ENOMEM; 3225 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3226 vp, NULL); 3227 return (error); 3228 } 3229 *buflen -= ncp->nc_nlen; 3230 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3231 SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp, 3232 ncp->nc_name, vp); 3233 dvp = *vp; 3234 *vp = ncp->nc_dvp; 3235 vref(*vp); 3236 mtx_unlock(vlp); 3237 vrele(dvp); 3238 return (0); 3239 } 3240 SDT_PROBE1(vfs, namecache, fullpath, miss, vp); 3241 3242 mtx_unlock(vlp); 3243 vn_lock(*vp, LK_SHARED | LK_RETRY); 3244 error = VOP_VPTOCNP(*vp, &dvp, buf, buflen); 3245 vput(*vp); 3246 if (error) { 3247 counter_u64_add(numfullpathfail2, 1); 3248 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3249 return (error); 3250 } 3251 3252 *vp = dvp; 3253 if (VN_IS_DOOMED(dvp)) { 3254 /* forced unmount */ 3255 vrele(dvp); 3256 error = ENOENT; 3257 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3258 return (error); 3259 } 3260 /* 3261 * *vp has its use count incremented still. 3262 */ 3263 3264 return (0); 3265 } 3266 3267 /* 3268 * Resolve a directory to a pathname. 3269 * 3270 * The name of the directory can always be found in the namecache or fetched 3271 * from the filesystem. There is also guaranteed to be only one parent, meaning 3272 * we can just follow vnodes up until we find the root. 3273 * 3274 * The vnode must be referenced. 3275 */ 3276 static int 3277 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3278 size_t *len, size_t addend) 3279 { 3280 #ifdef KDTRACE_HOOKS 3281 struct vnode *startvp = vp; 3282 #endif 3283 struct vnode *vp1; 3284 size_t buflen; 3285 int error; 3286 bool slash_prefixed; 3287 3288 VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp); 3289 VNPASS(vp->v_usecount > 0, vp); 3290 3291 buflen = *len; 3292 3293 slash_prefixed = true; 3294 if (addend == 0) { 3295 MPASS(*len >= 2); 3296 buflen--; 3297 buf[buflen] = '\0'; 3298 slash_prefixed = false; 3299 } 3300 3301 error = 0; 3302 3303 SDT_PROBE1(vfs, namecache, fullpath, entry, vp); 3304 counter_u64_add(numfullpathcalls, 1); 3305 while (vp != rdir && vp != rootvnode) { 3306 /* 3307 * The vp vnode must be already fully constructed, 3308 * since it is either found in namecache or obtained 3309 * from VOP_VPTOCNP(). We may test for VV_ROOT safely 3310 * without obtaining the vnode lock. 3311 */ 3312 if ((vp->v_vflag & VV_ROOT) != 0) { 3313 vn_lock(vp, LK_RETRY | LK_SHARED); 3314 3315 /* 3316 * With the vnode locked, check for races with 3317 * unmount, forced or not. Note that we 3318 * already verified that vp is not equal to 3319 * the root vnode, which means that 3320 * mnt_vnodecovered can be NULL only for the 3321 * case of unmount. 3322 */ 3323 if (VN_IS_DOOMED(vp) || 3324 (vp1 = vp->v_mount->mnt_vnodecovered) == NULL || 3325 vp1->v_mountedhere != vp->v_mount) { 3326 vput(vp); 3327 error = ENOENT; 3328 SDT_PROBE3(vfs, namecache, fullpath, return, 3329 error, vp, NULL); 3330 break; 3331 } 3332 3333 vref(vp1); 3334 vput(vp); 3335 vp = vp1; 3336 continue; 3337 } 3338 if (vp->v_type != VDIR) { 3339 vrele(vp); 3340 counter_u64_add(numfullpathfail1, 1); 3341 error = ENOTDIR; 3342 SDT_PROBE3(vfs, namecache, fullpath, return, 3343 error, vp, NULL); 3344 break; 3345 } 3346 error = vn_vptocnp(&vp, buf, &buflen); 3347 if (error) 3348 break; 3349 if (buflen == 0) { 3350 vrele(vp); 3351 error = ENOMEM; 3352 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3353 startvp, NULL); 3354 break; 3355 } 3356 buf[--buflen] = '/'; 3357 slash_prefixed = true; 3358 } 3359 if (error) 3360 return (error); 3361 if (!slash_prefixed) { 3362 if (buflen == 0) { 3363 vrele(vp); 3364 counter_u64_add(numfullpathfail4, 1); 3365 SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM, 3366 startvp, NULL); 3367 return (ENOMEM); 3368 } 3369 buf[--buflen] = '/'; 3370 } 3371 counter_u64_add(numfullpathfound, 1); 3372 vrele(vp); 3373 3374 *retbuf = buf + buflen; 3375 SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf); 3376 *len -= buflen; 3377 *len += addend; 3378 return (0); 3379 } 3380 3381 /* 3382 * Resolve an arbitrary vnode to a pathname. 3383 * 3384 * Note 2 caveats: 3385 * - hardlinks are not tracked, thus if the vnode is not a directory this can 3386 * resolve to a different path than the one used to find it 3387 * - namecache is not mandatory, meaning names are not guaranteed to be added 3388 * (in which case resolving fails) 3389 */ 3390 static void __inline 3391 cache_rev_failed_impl(int *reason, int line) 3392 { 3393 3394 *reason = line; 3395 } 3396 #define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__) 3397 3398 static int 3399 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 3400 char **retbuf, size_t *buflen, size_t addend) 3401 { 3402 #ifdef KDTRACE_HOOKS 3403 struct vnode *startvp = vp; 3404 #endif 3405 struct vnode *tvp; 3406 struct mount *mp; 3407 struct namecache *ncp; 3408 size_t orig_buflen; 3409 int reason; 3410 int error; 3411 #ifdef KDTRACE_HOOKS 3412 int i; 3413 #endif 3414 seqc_t vp_seqc, tvp_seqc; 3415 u_char nc_flag; 3416 3417 VFS_SMR_ASSERT_ENTERED(); 3418 3419 if (!cache_fast_revlookup) { 3420 vfs_smr_exit(); 3421 return (-1); 3422 } 3423 3424 orig_buflen = *buflen; 3425 3426 if (addend == 0) { 3427 MPASS(*buflen >= 2); 3428 *buflen -= 1; 3429 buf[*buflen] = '\0'; 3430 } 3431 3432 if (vp == rdir || vp == rootvnode) { 3433 if (addend == 0) { 3434 *buflen -= 1; 3435 buf[*buflen] = '/'; 3436 } 3437 goto out_ok; 3438 } 3439 3440 #ifdef KDTRACE_HOOKS 3441 i = 0; 3442 #endif 3443 error = -1; 3444 ncp = NULL; /* for sdt probe down below */ 3445 vp_seqc = vn_seqc_read_any(vp); 3446 if (seqc_in_modify(vp_seqc)) { 3447 cache_rev_failed(&reason); 3448 goto out_abort; 3449 } 3450 3451 for (;;) { 3452 #ifdef KDTRACE_HOOKS 3453 i++; 3454 #endif 3455 if ((vp->v_vflag & VV_ROOT) != 0) { 3456 mp = atomic_load_ptr(&vp->v_mount); 3457 if (mp == NULL) { 3458 cache_rev_failed(&reason); 3459 goto out_abort; 3460 } 3461 tvp = atomic_load_ptr(&mp->mnt_vnodecovered); 3462 tvp_seqc = vn_seqc_read_any(tvp); 3463 if (seqc_in_modify(tvp_seqc)) { 3464 cache_rev_failed(&reason); 3465 goto out_abort; 3466 } 3467 if (!vn_seqc_consistent(vp, vp_seqc)) { 3468 cache_rev_failed(&reason); 3469 goto out_abort; 3470 } 3471 vp = tvp; 3472 vp_seqc = tvp_seqc; 3473 continue; 3474 } 3475 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 3476 if (ncp == NULL) { 3477 cache_rev_failed(&reason); 3478 goto out_abort; 3479 } 3480 nc_flag = atomic_load_char(&ncp->nc_flag); 3481 if ((nc_flag & NCF_ISDOTDOT) != 0) { 3482 cache_rev_failed(&reason); 3483 goto out_abort; 3484 } 3485 if (ncp->nc_nlen >= *buflen) { 3486 cache_rev_failed(&reason); 3487 error = ENOMEM; 3488 goto out_abort; 3489 } 3490 *buflen -= ncp->nc_nlen; 3491 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3492 *buflen -= 1; 3493 buf[*buflen] = '/'; 3494 tvp = ncp->nc_dvp; 3495 tvp_seqc = vn_seqc_read_any(tvp); 3496 if (seqc_in_modify(tvp_seqc)) { 3497 cache_rev_failed(&reason); 3498 goto out_abort; 3499 } 3500 if (!vn_seqc_consistent(vp, vp_seqc)) { 3501 cache_rev_failed(&reason); 3502 goto out_abort; 3503 } 3504 /* 3505 * Acquire fence provided by vn_seqc_read_any above. 3506 */ 3507 if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) { 3508 cache_rev_failed(&reason); 3509 goto out_abort; 3510 } 3511 if (!cache_ncp_canuse(ncp)) { 3512 cache_rev_failed(&reason); 3513 goto out_abort; 3514 } 3515 vp = tvp; 3516 vp_seqc = tvp_seqc; 3517 if (vp == rdir || vp == rootvnode) 3518 break; 3519 } 3520 out_ok: 3521 vfs_smr_exit(); 3522 *retbuf = buf + *buflen; 3523 *buflen = orig_buflen - *buflen + addend; 3524 SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf); 3525 return (0); 3526 3527 out_abort: 3528 *buflen = orig_buflen; 3529 SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i); 3530 vfs_smr_exit(); 3531 return (error); 3532 } 3533 3534 static int 3535 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3536 size_t *buflen) 3537 { 3538 size_t orig_buflen, addend; 3539 int error; 3540 3541 if (*buflen < 2) 3542 return (EINVAL); 3543 3544 orig_buflen = *buflen; 3545 3546 vref(vp); 3547 addend = 0; 3548 if (vp->v_type != VDIR) { 3549 *buflen -= 1; 3550 buf[*buflen] = '\0'; 3551 error = vn_vptocnp(&vp, buf, buflen); 3552 if (error) 3553 return (error); 3554 if (*buflen == 0) { 3555 vrele(vp); 3556 return (ENOMEM); 3557 } 3558 *buflen -= 1; 3559 buf[*buflen] = '/'; 3560 addend = orig_buflen - *buflen; 3561 } 3562 3563 return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend)); 3564 } 3565 3566 /* 3567 * Resolve an arbitrary vnode to a pathname (taking care of hardlinks). 3568 * 3569 * Since the namecache does not track hardlinks, the caller is expected to first 3570 * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei. 3571 * 3572 * Then we have 2 cases: 3573 * - if the found vnode is a directory, the path can be constructed just by 3574 * following names up the chain 3575 * - otherwise we populate the buffer with the saved name and start resolving 3576 * from the parent 3577 */ 3578 static int 3579 vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf, 3580 size_t *buflen) 3581 { 3582 char *buf, *tmpbuf; 3583 struct pwd *pwd; 3584 struct componentname *cnp; 3585 struct vnode *vp; 3586 size_t addend; 3587 int error; 3588 enum vtype type; 3589 3590 if (*buflen < 2) 3591 return (EINVAL); 3592 if (*buflen > MAXPATHLEN) 3593 *buflen = MAXPATHLEN; 3594 3595 buf = malloc(*buflen, M_TEMP, M_WAITOK); 3596 3597 addend = 0; 3598 vp = ndp->ni_vp; 3599 /* 3600 * Check for VBAD to work around the vp_crossmp bug in lookup(). 3601 * 3602 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be 3603 * set to mount point's root vnode while ni_dvp will be vp_crossmp. 3604 * If the type is VDIR (like in this very case) we can skip looking 3605 * at ni_dvp in the first place. However, since vnodes get passed here 3606 * unlocked the target may transition to doomed state (type == VBAD) 3607 * before we get to evaluate the condition. If this happens, we will 3608 * populate part of the buffer and descend to vn_fullpath_dir with 3609 * vp == vp_crossmp. Prevent the problem by checking for VBAD. 3610 * 3611 * This should be atomic_load(&vp->v_type) but it is illegal to take 3612 * an address of a bit field, even if said field is sized to char. 3613 * Work around the problem by reading the value into a full-sized enum 3614 * and then re-reading it with atomic_load which will still prevent 3615 * the compiler from re-reading down the road. 3616 */ 3617 type = vp->v_type; 3618 type = atomic_load_int(&type); 3619 if (type == VBAD) { 3620 error = ENOENT; 3621 goto out_bad; 3622 } 3623 if (type != VDIR) { 3624 cnp = &ndp->ni_cnd; 3625 addend = cnp->cn_namelen + 2; 3626 if (*buflen < addend) { 3627 error = ENOMEM; 3628 goto out_bad; 3629 } 3630 *buflen -= addend; 3631 tmpbuf = buf + *buflen; 3632 tmpbuf[0] = '/'; 3633 memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen); 3634 tmpbuf[addend - 1] = '\0'; 3635 vp = ndp->ni_dvp; 3636 } 3637 3638 vfs_smr_enter(); 3639 pwd = pwd_get_smr(); 3640 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3641 addend); 3642 VFS_SMR_ASSERT_NOT_ENTERED(); 3643 if (error < 0) { 3644 pwd = pwd_hold(curthread); 3645 vref(vp); 3646 error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3647 addend); 3648 pwd_drop(pwd); 3649 } 3650 if (error != 0) 3651 goto out_bad; 3652 3653 *freebuf = buf; 3654 3655 return (0); 3656 out_bad: 3657 free(buf, M_TEMP); 3658 return (error); 3659 } 3660 3661 struct vnode * 3662 vn_dir_dd_ino(struct vnode *vp) 3663 { 3664 struct namecache *ncp; 3665 struct vnode *ddvp; 3666 struct mtx *vlp; 3667 enum vgetstate vs; 3668 3669 ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino"); 3670 vlp = VP2VNODELOCK(vp); 3671 mtx_lock(vlp); 3672 TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) { 3673 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) 3674 continue; 3675 ddvp = ncp->nc_dvp; 3676 vs = vget_prep(ddvp); 3677 mtx_unlock(vlp); 3678 if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs)) 3679 return (NULL); 3680 return (ddvp); 3681 } 3682 mtx_unlock(vlp); 3683 return (NULL); 3684 } 3685 3686 int 3687 vn_commname(struct vnode *vp, char *buf, u_int buflen) 3688 { 3689 struct namecache *ncp; 3690 struct mtx *vlp; 3691 int l; 3692 3693 vlp = VP2VNODELOCK(vp); 3694 mtx_lock(vlp); 3695 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) 3696 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3697 break; 3698 if (ncp == NULL) { 3699 mtx_unlock(vlp); 3700 return (ENOENT); 3701 } 3702 l = min(ncp->nc_nlen, buflen - 1); 3703 memcpy(buf, ncp->nc_name, l); 3704 mtx_unlock(vlp); 3705 buf[l] = '\0'; 3706 return (0); 3707 } 3708 3709 /* 3710 * This function updates path string to vnode's full global path 3711 * and checks the size of the new path string against the pathlen argument. 3712 * 3713 * Requires a locked, referenced vnode. 3714 * Vnode is re-locked on success or ENODEV, otherwise unlocked. 3715 * 3716 * If vp is a directory, the call to vn_fullpath_global() always succeeds 3717 * because it falls back to the ".." lookup if the namecache lookup fails. 3718 */ 3719 int 3720 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, 3721 u_int pathlen) 3722 { 3723 struct nameidata nd; 3724 struct vnode *vp1; 3725 char *rpath, *fbuf; 3726 int error; 3727 3728 ASSERT_VOP_ELOCKED(vp, __func__); 3729 3730 /* Construct global filesystem path from vp. */ 3731 VOP_UNLOCK(vp); 3732 error = vn_fullpath_global(vp, &rpath, &fbuf); 3733 3734 if (error != 0) { 3735 vrele(vp); 3736 return (error); 3737 } 3738 3739 if (strlen(rpath) >= pathlen) { 3740 vrele(vp); 3741 error = ENAMETOOLONG; 3742 goto out; 3743 } 3744 3745 /* 3746 * Re-lookup the vnode by path to detect a possible rename. 3747 * As a side effect, the vnode is relocked. 3748 * If vnode was renamed, return ENOENT. 3749 */ 3750 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 3751 UIO_SYSSPACE, path, td); 3752 error = namei(&nd); 3753 if (error != 0) { 3754 vrele(vp); 3755 goto out; 3756 } 3757 NDFREE(&nd, NDF_ONLY_PNBUF); 3758 vp1 = nd.ni_vp; 3759 vrele(vp); 3760 if (vp1 == vp) 3761 strcpy(path, rpath); 3762 else { 3763 vput(vp1); 3764 error = ENOENT; 3765 } 3766 3767 out: 3768 free(fbuf, M_TEMP); 3769 return (error); 3770 } 3771 3772 #ifdef DDB 3773 static void 3774 db_print_vpath(struct vnode *vp) 3775 { 3776 3777 while (vp != NULL) { 3778 db_printf("%p: ", vp); 3779 if (vp == rootvnode) { 3780 db_printf("/"); 3781 vp = NULL; 3782 } else { 3783 if (vp->v_vflag & VV_ROOT) { 3784 db_printf("<mount point>"); 3785 vp = vp->v_mount->mnt_vnodecovered; 3786 } else { 3787 struct namecache *ncp; 3788 char *ncn; 3789 int i; 3790 3791 ncp = TAILQ_FIRST(&vp->v_cache_dst); 3792 if (ncp != NULL) { 3793 ncn = ncp->nc_name; 3794 for (i = 0; i < ncp->nc_nlen; i++) 3795 db_printf("%c", *ncn++); 3796 vp = ncp->nc_dvp; 3797 } else { 3798 vp = NULL; 3799 } 3800 } 3801 } 3802 db_printf("\n"); 3803 } 3804 3805 return; 3806 } 3807 3808 DB_SHOW_COMMAND(vpath, db_show_vpath) 3809 { 3810 struct vnode *vp; 3811 3812 if (!have_addr) { 3813 db_printf("usage: show vpath <struct vnode *>\n"); 3814 return; 3815 } 3816 3817 vp = (struct vnode *)addr; 3818 db_print_vpath(vp); 3819 } 3820 3821 #endif 3822 3823 static int cache_fast_lookup = 1; 3824 static char __read_frequently cache_fast_lookup_enabled = true; 3825 3826 #define CACHE_FPL_FAILED -2020 3827 3828 void 3829 cache_fast_lookup_enabled_recalc(void) 3830 { 3831 int lookup_flag; 3832 int mac_on; 3833 3834 #ifdef MAC 3835 mac_on = mac_vnode_check_lookup_enabled(); 3836 mac_on |= mac_vnode_check_readlink_enabled(); 3837 #else 3838 mac_on = 0; 3839 #endif 3840 3841 lookup_flag = atomic_load_int(&cache_fast_lookup); 3842 if (lookup_flag && !mac_on) { 3843 atomic_store_char(&cache_fast_lookup_enabled, true); 3844 } else { 3845 atomic_store_char(&cache_fast_lookup_enabled, false); 3846 } 3847 } 3848 3849 static int 3850 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS) 3851 { 3852 int error, old; 3853 3854 old = atomic_load_int(&cache_fast_lookup); 3855 error = sysctl_handle_int(oidp, arg1, arg2, req); 3856 if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup)) 3857 cache_fast_lookup_enabled_recalc(); 3858 return (error); 3859 } 3860 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, 3861 &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", ""); 3862 3863 /* 3864 * Components of nameidata (or objects it can point to) which may 3865 * need restoring in case fast path lookup fails. 3866 */ 3867 struct nameidata_outer { 3868 size_t ni_pathlen; 3869 int cn_flags; 3870 }; 3871 3872 struct nameidata_saved { 3873 #ifdef INVARIANTS 3874 char *cn_nameptr; 3875 size_t ni_pathlen; 3876 #endif 3877 }; 3878 3879 #ifdef INVARIANTS 3880 struct cache_fpl_debug { 3881 size_t ni_pathlen; 3882 }; 3883 #endif 3884 3885 struct cache_fpl { 3886 struct nameidata *ndp; 3887 struct componentname *cnp; 3888 char *nulchar; 3889 struct vnode *dvp; 3890 struct vnode *tvp; 3891 seqc_t dvp_seqc; 3892 seqc_t tvp_seqc; 3893 uint32_t hash; 3894 struct nameidata_saved snd; 3895 struct nameidata_outer snd_outer; 3896 int line; 3897 enum cache_fpl_status status:8; 3898 bool in_smr; 3899 bool fsearch; 3900 bool savename; 3901 struct pwd **pwd; 3902 #ifdef INVARIANTS 3903 struct cache_fpl_debug debug; 3904 #endif 3905 }; 3906 3907 static bool cache_fplookup_mp_supported(struct mount *mp); 3908 static bool cache_fplookup_is_mp(struct cache_fpl *fpl); 3909 static int cache_fplookup_cross_mount(struct cache_fpl *fpl); 3910 static int cache_fplookup_partial_setup(struct cache_fpl *fpl); 3911 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl); 3912 static int cache_fplookup_trailingslash(struct cache_fpl *fpl); 3913 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl); 3914 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl); 3915 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n); 3916 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n); 3917 3918 static void 3919 cache_fpl_cleanup_cnp(struct componentname *cnp) 3920 { 3921 3922 uma_zfree(namei_zone, cnp->cn_pnbuf); 3923 #ifdef DIAGNOSTIC 3924 cnp->cn_pnbuf = NULL; 3925 cnp->cn_nameptr = NULL; 3926 #endif 3927 } 3928 3929 static struct vnode * 3930 cache_fpl_handle_root(struct cache_fpl *fpl) 3931 { 3932 struct nameidata *ndp; 3933 struct componentname *cnp; 3934 3935 ndp = fpl->ndp; 3936 cnp = fpl->cnp; 3937 3938 MPASS(*(cnp->cn_nameptr) == '/'); 3939 cnp->cn_nameptr++; 3940 cache_fpl_pathlen_dec(fpl); 3941 3942 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 3943 do { 3944 cnp->cn_nameptr++; 3945 cache_fpl_pathlen_dec(fpl); 3946 } while (*(cnp->cn_nameptr) == '/'); 3947 } 3948 3949 return (ndp->ni_rootdir); 3950 } 3951 3952 static void 3953 cache_fpl_checkpoint_outer(struct cache_fpl *fpl) 3954 { 3955 3956 fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen; 3957 fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags; 3958 } 3959 3960 static void 3961 cache_fpl_checkpoint(struct cache_fpl *fpl) 3962 { 3963 3964 #ifdef INVARIANTS 3965 fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr; 3966 fpl->snd.ni_pathlen = fpl->debug.ni_pathlen; 3967 #endif 3968 } 3969 3970 static void 3971 cache_fpl_restore_partial(struct cache_fpl *fpl) 3972 { 3973 3974 fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags; 3975 #ifdef INVARIANTS 3976 fpl->debug.ni_pathlen = fpl->snd.ni_pathlen; 3977 #endif 3978 } 3979 3980 static void 3981 cache_fpl_restore_abort(struct cache_fpl *fpl) 3982 { 3983 3984 cache_fpl_restore_partial(fpl); 3985 /* 3986 * It is 0 on entry by API contract. 3987 */ 3988 fpl->ndp->ni_resflags = 0; 3989 fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf; 3990 fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen; 3991 } 3992 3993 #ifdef INVARIANTS 3994 #define cache_fpl_smr_assert_entered(fpl) ({ \ 3995 struct cache_fpl *_fpl = (fpl); \ 3996 MPASS(_fpl->in_smr == true); \ 3997 VFS_SMR_ASSERT_ENTERED(); \ 3998 }) 3999 #define cache_fpl_smr_assert_not_entered(fpl) ({ \ 4000 struct cache_fpl *_fpl = (fpl); \ 4001 MPASS(_fpl->in_smr == false); \ 4002 VFS_SMR_ASSERT_NOT_ENTERED(); \ 4003 }) 4004 static void 4005 cache_fpl_assert_status(struct cache_fpl *fpl) 4006 { 4007 4008 switch (fpl->status) { 4009 case CACHE_FPL_STATUS_UNSET: 4010 __assert_unreachable(); 4011 break; 4012 case CACHE_FPL_STATUS_DESTROYED: 4013 case CACHE_FPL_STATUS_ABORTED: 4014 case CACHE_FPL_STATUS_PARTIAL: 4015 case CACHE_FPL_STATUS_HANDLED: 4016 break; 4017 } 4018 } 4019 #else 4020 #define cache_fpl_smr_assert_entered(fpl) do { } while (0) 4021 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0) 4022 #define cache_fpl_assert_status(fpl) do { } while (0) 4023 #endif 4024 4025 #define cache_fpl_smr_enter_initial(fpl) ({ \ 4026 struct cache_fpl *_fpl = (fpl); \ 4027 vfs_smr_enter(); \ 4028 _fpl->in_smr = true; \ 4029 }) 4030 4031 #define cache_fpl_smr_enter(fpl) ({ \ 4032 struct cache_fpl *_fpl = (fpl); \ 4033 MPASS(_fpl->in_smr == false); \ 4034 vfs_smr_enter(); \ 4035 _fpl->in_smr = true; \ 4036 }) 4037 4038 #define cache_fpl_smr_exit(fpl) ({ \ 4039 struct cache_fpl *_fpl = (fpl); \ 4040 MPASS(_fpl->in_smr == true); \ 4041 vfs_smr_exit(); \ 4042 _fpl->in_smr = false; \ 4043 }) 4044 4045 static int 4046 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line) 4047 { 4048 4049 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 4050 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 4051 ("%s: converting to abort from %d at %d, set at %d\n", 4052 __func__, fpl->status, line, fpl->line)); 4053 } 4054 cache_fpl_smr_assert_not_entered(fpl); 4055 fpl->status = CACHE_FPL_STATUS_ABORTED; 4056 fpl->line = line; 4057 return (CACHE_FPL_FAILED); 4058 } 4059 4060 #define cache_fpl_aborted_early(x) cache_fpl_aborted_early_impl((x), __LINE__) 4061 4062 static int __noinline 4063 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line) 4064 { 4065 struct nameidata *ndp; 4066 struct componentname *cnp; 4067 4068 ndp = fpl->ndp; 4069 cnp = fpl->cnp; 4070 4071 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 4072 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 4073 ("%s: converting to abort from %d at %d, set at %d\n", 4074 __func__, fpl->status, line, fpl->line)); 4075 } 4076 fpl->status = CACHE_FPL_STATUS_ABORTED; 4077 fpl->line = line; 4078 if (fpl->in_smr) 4079 cache_fpl_smr_exit(fpl); 4080 cache_fpl_restore_abort(fpl); 4081 /* 4082 * Resolving symlinks overwrites data passed by the caller. 4083 * Let namei know. 4084 */ 4085 if (ndp->ni_loopcnt > 0) { 4086 fpl->status = CACHE_FPL_STATUS_DESTROYED; 4087 cache_fpl_cleanup_cnp(cnp); 4088 } 4089 return (CACHE_FPL_FAILED); 4090 } 4091 4092 #define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__) 4093 4094 static int __noinline 4095 cache_fpl_partial_impl(struct cache_fpl *fpl, int line) 4096 { 4097 4098 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4099 ("%s: setting to partial at %d, but already set to %d at %d\n", 4100 __func__, line, fpl->status, fpl->line)); 4101 cache_fpl_smr_assert_entered(fpl); 4102 fpl->status = CACHE_FPL_STATUS_PARTIAL; 4103 fpl->line = line; 4104 return (cache_fplookup_partial_setup(fpl)); 4105 } 4106 4107 #define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__) 4108 4109 static int 4110 cache_fpl_handled_impl(struct cache_fpl *fpl, int line) 4111 { 4112 4113 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4114 ("%s: setting to handled at %d, but already set to %d at %d\n", 4115 __func__, line, fpl->status, fpl->line)); 4116 cache_fpl_smr_assert_not_entered(fpl); 4117 fpl->status = CACHE_FPL_STATUS_HANDLED; 4118 fpl->line = line; 4119 return (0); 4120 } 4121 4122 #define cache_fpl_handled(x) cache_fpl_handled_impl((x), __LINE__) 4123 4124 static int 4125 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line) 4126 { 4127 4128 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4129 ("%s: setting to handled at %d, but already set to %d at %d\n", 4130 __func__, line, fpl->status, fpl->line)); 4131 MPASS(error != 0); 4132 MPASS(error != CACHE_FPL_FAILED); 4133 cache_fpl_smr_assert_not_entered(fpl); 4134 fpl->status = CACHE_FPL_STATUS_HANDLED; 4135 fpl->line = line; 4136 fpl->dvp = NULL; 4137 fpl->tvp = NULL; 4138 fpl->savename = false; 4139 return (error); 4140 } 4141 4142 #define cache_fpl_handled_error(x, e) cache_fpl_handled_error_impl((x), (e), __LINE__) 4143 4144 static bool 4145 cache_fpl_terminated(struct cache_fpl *fpl) 4146 { 4147 4148 return (fpl->status != CACHE_FPL_STATUS_UNSET); 4149 } 4150 4151 #define CACHE_FPL_SUPPORTED_CN_FLAGS \ 4152 (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \ 4153 FAILIFEXISTS | FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | \ 4154 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK) 4155 4156 #define CACHE_FPL_INTERNAL_CN_FLAGS \ 4157 (ISDOTDOT | MAKEENTRY | ISLASTCN) 4158 4159 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 4160 "supported and internal flags overlap"); 4161 4162 static bool 4163 cache_fpl_islastcn(struct nameidata *ndp) 4164 { 4165 4166 return (*ndp->ni_next == 0); 4167 } 4168 4169 static bool 4170 cache_fpl_istrailingslash(struct cache_fpl *fpl) 4171 { 4172 4173 return (*(fpl->nulchar - 1) == '/'); 4174 } 4175 4176 static bool 4177 cache_fpl_isdotdot(struct componentname *cnp) 4178 { 4179 4180 if (cnp->cn_namelen == 2 && 4181 cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') 4182 return (true); 4183 return (false); 4184 } 4185 4186 static bool 4187 cache_can_fplookup(struct cache_fpl *fpl) 4188 { 4189 struct nameidata *ndp; 4190 struct componentname *cnp; 4191 struct thread *td; 4192 4193 ndp = fpl->ndp; 4194 cnp = fpl->cnp; 4195 td = cnp->cn_thread; 4196 4197 if (!atomic_load_char(&cache_fast_lookup_enabled)) { 4198 cache_fpl_aborted_early(fpl); 4199 return (false); 4200 } 4201 if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) { 4202 cache_fpl_aborted_early(fpl); 4203 return (false); 4204 } 4205 if (IN_CAPABILITY_MODE(td)) { 4206 cache_fpl_aborted_early(fpl); 4207 return (false); 4208 } 4209 if (AUDITING_TD(td)) { 4210 cache_fpl_aborted_early(fpl); 4211 return (false); 4212 } 4213 if (ndp->ni_startdir != NULL) { 4214 cache_fpl_aborted_early(fpl); 4215 return (false); 4216 } 4217 return (true); 4218 } 4219 4220 static int 4221 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp) 4222 { 4223 struct nameidata *ndp; 4224 int error; 4225 bool fsearch; 4226 4227 ndp = fpl->ndp; 4228 error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch); 4229 if (__predict_false(error != 0)) { 4230 return (cache_fpl_aborted(fpl)); 4231 } 4232 fpl->fsearch = fsearch; 4233 return (0); 4234 } 4235 4236 static int __noinline 4237 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, 4238 uint32_t hash) 4239 { 4240 struct componentname *cnp; 4241 struct vnode *dvp; 4242 4243 cnp = fpl->cnp; 4244 dvp = fpl->dvp; 4245 4246 cache_fpl_smr_exit(fpl); 4247 if (cache_neg_promote_cond(dvp, cnp, oncp, hash)) 4248 return (cache_fpl_handled_error(fpl, ENOENT)); 4249 else 4250 return (cache_fpl_aborted(fpl)); 4251 } 4252 4253 /* 4254 * The target vnode is not supported, prepare for the slow path to take over. 4255 */ 4256 static int __noinline 4257 cache_fplookup_partial_setup(struct cache_fpl *fpl) 4258 { 4259 struct nameidata *ndp; 4260 struct componentname *cnp; 4261 enum vgetstate dvs; 4262 struct vnode *dvp; 4263 struct pwd *pwd; 4264 seqc_t dvp_seqc; 4265 4266 ndp = fpl->ndp; 4267 cnp = fpl->cnp; 4268 pwd = *(fpl->pwd); 4269 dvp = fpl->dvp; 4270 dvp_seqc = fpl->dvp_seqc; 4271 4272 if (!pwd_hold_smr(pwd)) { 4273 return (cache_fpl_aborted(fpl)); 4274 } 4275 4276 /* 4277 * Note that seqc is checked before the vnode is locked, so by 4278 * the time regular lookup gets to it it may have moved. 4279 * 4280 * Ultimately this does not affect correctness, any lookup errors 4281 * are userspace racing with itself. It is guaranteed that any 4282 * path which ultimately gets found could also have been found 4283 * by regular lookup going all the way in absence of concurrent 4284 * modifications. 4285 */ 4286 dvs = vget_prep_smr(dvp); 4287 cache_fpl_smr_exit(fpl); 4288 if (__predict_false(dvs == VGET_NONE)) { 4289 pwd_drop(pwd); 4290 return (cache_fpl_aborted(fpl)); 4291 } 4292 4293 vget_finish_ref(dvp, dvs); 4294 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4295 vrele(dvp); 4296 pwd_drop(pwd); 4297 return (cache_fpl_aborted(fpl)); 4298 } 4299 4300 cache_fpl_restore_partial(fpl); 4301 #ifdef INVARIANTS 4302 if (cnp->cn_nameptr != fpl->snd.cn_nameptr) { 4303 panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__, 4304 cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf); 4305 } 4306 #endif 4307 4308 ndp->ni_startdir = dvp; 4309 cnp->cn_flags |= MAKEENTRY; 4310 if (cache_fpl_islastcn(ndp)) 4311 cnp->cn_flags |= ISLASTCN; 4312 if (cache_fpl_isdotdot(cnp)) 4313 cnp->cn_flags |= ISDOTDOT; 4314 4315 /* 4316 * Skip potential extra slashes parsing did not take care of. 4317 * cache_fplookup_skip_slashes explains the mechanism. 4318 */ 4319 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 4320 do { 4321 cnp->cn_nameptr++; 4322 cache_fpl_pathlen_dec(fpl); 4323 } while (*(cnp->cn_nameptr) == '/'); 4324 } 4325 4326 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; 4327 #ifdef INVARIANTS 4328 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 4329 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 4330 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 4331 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 4332 } 4333 #endif 4334 return (0); 4335 } 4336 4337 static int 4338 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs) 4339 { 4340 struct componentname *cnp; 4341 struct vnode *tvp; 4342 seqc_t tvp_seqc; 4343 int error, lkflags; 4344 4345 cnp = fpl->cnp; 4346 tvp = fpl->tvp; 4347 tvp_seqc = fpl->tvp_seqc; 4348 4349 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4350 lkflags = LK_SHARED; 4351 if ((cnp->cn_flags & LOCKSHARED) == 0) 4352 lkflags = LK_EXCLUSIVE; 4353 error = vget_finish(tvp, lkflags, tvs); 4354 if (__predict_false(error != 0)) { 4355 return (cache_fpl_aborted(fpl)); 4356 } 4357 } else { 4358 vget_finish_ref(tvp, tvs); 4359 } 4360 4361 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 4362 if ((cnp->cn_flags & LOCKLEAF) != 0) 4363 vput(tvp); 4364 else 4365 vrele(tvp); 4366 return (cache_fpl_aborted(fpl)); 4367 } 4368 4369 return (cache_fpl_handled(fpl)); 4370 } 4371 4372 /* 4373 * They want to possibly modify the state of the namecache. 4374 */ 4375 static int __noinline 4376 cache_fplookup_final_modifying(struct cache_fpl *fpl) 4377 { 4378 struct nameidata *ndp; 4379 struct componentname *cnp; 4380 enum vgetstate dvs; 4381 struct vnode *dvp, *tvp; 4382 struct mount *mp; 4383 seqc_t dvp_seqc; 4384 int error; 4385 bool docache; 4386 4387 ndp = fpl->ndp; 4388 cnp = fpl->cnp; 4389 dvp = fpl->dvp; 4390 dvp_seqc = fpl->dvp_seqc; 4391 4392 MPASS(*(cnp->cn_nameptr) != '/'); 4393 MPASS(cache_fpl_islastcn(ndp)); 4394 if ((cnp->cn_flags & LOCKPARENT) == 0) 4395 MPASS((cnp->cn_flags & WANTPARENT) != 0); 4396 MPASS((cnp->cn_flags & TRAILINGSLASH) == 0); 4397 MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE || 4398 cnp->cn_nameiop == RENAME); 4399 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4400 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4401 4402 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4403 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 4404 docache = false; 4405 4406 /* 4407 * Regular lookup nulifies the slash, which we don't do here. 4408 * Don't take chances with filesystem routines seeing it for 4409 * the last entry. 4410 */ 4411 if (cache_fpl_istrailingslash(fpl)) { 4412 return (cache_fpl_partial(fpl)); 4413 } 4414 4415 mp = atomic_load_ptr(&dvp->v_mount); 4416 if (__predict_false(mp == NULL)) { 4417 return (cache_fpl_aborted(fpl)); 4418 } 4419 4420 if (__predict_false(mp->mnt_flag & MNT_RDONLY)) { 4421 cache_fpl_smr_exit(fpl); 4422 /* 4423 * Original code keeps not checking for CREATE which 4424 * might be a bug. For now let the old lookup decide. 4425 */ 4426 if (cnp->cn_nameiop == CREATE) { 4427 return (cache_fpl_aborted(fpl)); 4428 } 4429 return (cache_fpl_handled_error(fpl, EROFS)); 4430 } 4431 4432 if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) { 4433 cache_fpl_smr_exit(fpl); 4434 return (cache_fpl_handled_error(fpl, EEXIST)); 4435 } 4436 4437 /* 4438 * Secure access to dvp; check cache_fplookup_partial_setup for 4439 * reasoning. 4440 * 4441 * XXX At least UFS requires its lookup routine to be called for 4442 * the last path component, which leads to some level of complication 4443 * and inefficiency: 4444 * - the target routine always locks the target vnode, but our caller 4445 * may not need it locked 4446 * - some of the VOP machinery asserts that the parent is locked, which 4447 * once more may be not required 4448 * 4449 * TODO: add a flag for filesystems which don't need this. 4450 */ 4451 dvs = vget_prep_smr(dvp); 4452 cache_fpl_smr_exit(fpl); 4453 if (__predict_false(dvs == VGET_NONE)) { 4454 return (cache_fpl_aborted(fpl)); 4455 } 4456 4457 vget_finish_ref(dvp, dvs); 4458 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4459 vrele(dvp); 4460 return (cache_fpl_aborted(fpl)); 4461 } 4462 4463 error = vn_lock(dvp, LK_EXCLUSIVE); 4464 if (__predict_false(error != 0)) { 4465 vrele(dvp); 4466 return (cache_fpl_aborted(fpl)); 4467 } 4468 4469 tvp = NULL; 4470 cnp->cn_flags |= ISLASTCN; 4471 if (docache) 4472 cnp->cn_flags |= MAKEENTRY; 4473 if (cache_fpl_isdotdot(cnp)) 4474 cnp->cn_flags |= ISDOTDOT; 4475 cnp->cn_lkflags = LK_EXCLUSIVE; 4476 error = VOP_LOOKUP(dvp, &tvp, cnp); 4477 switch (error) { 4478 case EJUSTRETURN: 4479 case 0: 4480 break; 4481 case ENOTDIR: 4482 case ENOENT: 4483 vput(dvp); 4484 return (cache_fpl_handled_error(fpl, error)); 4485 default: 4486 vput(dvp); 4487 return (cache_fpl_aborted(fpl)); 4488 } 4489 4490 fpl->tvp = tvp; 4491 fpl->savename = (cnp->cn_flags & SAVENAME) != 0; 4492 4493 if (tvp == NULL) { 4494 if ((cnp->cn_flags & SAVESTART) != 0) { 4495 ndp->ni_startdir = dvp; 4496 vrefact(ndp->ni_startdir); 4497 cnp->cn_flags |= SAVENAME; 4498 fpl->savename = true; 4499 } 4500 MPASS(error == EJUSTRETURN); 4501 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4502 VOP_UNLOCK(dvp); 4503 } 4504 return (cache_fpl_handled(fpl)); 4505 } 4506 4507 /* 4508 * There are very hairy corner cases concerning various flag combinations 4509 * and locking state. In particular here we only hold one lock instead of 4510 * two. 4511 * 4512 * Skip the complexity as it is of no significance for normal workloads. 4513 */ 4514 if (__predict_false(tvp == dvp)) { 4515 vput(dvp); 4516 vrele(tvp); 4517 return (cache_fpl_aborted(fpl)); 4518 } 4519 4520 /* 4521 * If they want the symlink itself we are fine, but if they want to 4522 * follow it regular lookup has to be engaged. 4523 */ 4524 if (tvp->v_type == VLNK) { 4525 if ((cnp->cn_flags & FOLLOW) != 0) { 4526 vput(dvp); 4527 vput(tvp); 4528 return (cache_fpl_aborted(fpl)); 4529 } 4530 } 4531 4532 /* 4533 * Since we expect this to be the terminal vnode it should almost never 4534 * be a mount point. 4535 */ 4536 if (__predict_false(cache_fplookup_is_mp(fpl))) { 4537 vput(dvp); 4538 vput(tvp); 4539 return (cache_fpl_aborted(fpl)); 4540 } 4541 4542 if ((cnp->cn_flags & FAILIFEXISTS) != 0) { 4543 vput(dvp); 4544 vput(tvp); 4545 return (cache_fpl_handled_error(fpl, EEXIST)); 4546 } 4547 4548 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4549 VOP_UNLOCK(tvp); 4550 } 4551 4552 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4553 VOP_UNLOCK(dvp); 4554 } 4555 4556 if ((cnp->cn_flags & SAVESTART) != 0) { 4557 ndp->ni_startdir = dvp; 4558 vrefact(ndp->ni_startdir); 4559 cnp->cn_flags |= SAVENAME; 4560 fpl->savename = true; 4561 } 4562 4563 return (cache_fpl_handled(fpl)); 4564 } 4565 4566 static int __noinline 4567 cache_fplookup_modifying(struct cache_fpl *fpl) 4568 { 4569 struct nameidata *ndp; 4570 4571 ndp = fpl->ndp; 4572 4573 if (!cache_fpl_islastcn(ndp)) { 4574 return (cache_fpl_partial(fpl)); 4575 } 4576 return (cache_fplookup_final_modifying(fpl)); 4577 } 4578 4579 static int __noinline 4580 cache_fplookup_final_withparent(struct cache_fpl *fpl) 4581 { 4582 struct componentname *cnp; 4583 enum vgetstate dvs, tvs; 4584 struct vnode *dvp, *tvp; 4585 seqc_t dvp_seqc; 4586 int error; 4587 4588 cnp = fpl->cnp; 4589 dvp = fpl->dvp; 4590 dvp_seqc = fpl->dvp_seqc; 4591 tvp = fpl->tvp; 4592 4593 MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0); 4594 4595 /* 4596 * This is less efficient than it can be for simplicity. 4597 */ 4598 dvs = vget_prep_smr(dvp); 4599 if (__predict_false(dvs == VGET_NONE)) { 4600 return (cache_fpl_aborted(fpl)); 4601 } 4602 tvs = vget_prep_smr(tvp); 4603 if (__predict_false(tvs == VGET_NONE)) { 4604 cache_fpl_smr_exit(fpl); 4605 vget_abort(dvp, dvs); 4606 return (cache_fpl_aborted(fpl)); 4607 } 4608 4609 cache_fpl_smr_exit(fpl); 4610 4611 if ((cnp->cn_flags & LOCKPARENT) != 0) { 4612 error = vget_finish(dvp, LK_EXCLUSIVE, dvs); 4613 if (__predict_false(error != 0)) { 4614 vget_abort(tvp, tvs); 4615 return (cache_fpl_aborted(fpl)); 4616 } 4617 } else { 4618 vget_finish_ref(dvp, dvs); 4619 } 4620 4621 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4622 vget_abort(tvp, tvs); 4623 if ((cnp->cn_flags & LOCKPARENT) != 0) 4624 vput(dvp); 4625 else 4626 vrele(dvp); 4627 return (cache_fpl_aborted(fpl)); 4628 } 4629 4630 error = cache_fplookup_final_child(fpl, tvs); 4631 if (__predict_false(error != 0)) { 4632 MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED || 4633 fpl->status == CACHE_FPL_STATUS_DESTROYED); 4634 if ((cnp->cn_flags & LOCKPARENT) != 0) 4635 vput(dvp); 4636 else 4637 vrele(dvp); 4638 return (error); 4639 } 4640 4641 MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED); 4642 return (0); 4643 } 4644 4645 static int 4646 cache_fplookup_final(struct cache_fpl *fpl) 4647 { 4648 struct componentname *cnp; 4649 enum vgetstate tvs; 4650 struct vnode *dvp, *tvp; 4651 seqc_t dvp_seqc; 4652 4653 cnp = fpl->cnp; 4654 dvp = fpl->dvp; 4655 dvp_seqc = fpl->dvp_seqc; 4656 tvp = fpl->tvp; 4657 4658 MPASS(*(cnp->cn_nameptr) != '/'); 4659 4660 if (cnp->cn_nameiop != LOOKUP) { 4661 return (cache_fplookup_final_modifying(fpl)); 4662 } 4663 4664 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) 4665 return (cache_fplookup_final_withparent(fpl)); 4666 4667 tvs = vget_prep_smr(tvp); 4668 if (__predict_false(tvs == VGET_NONE)) { 4669 return (cache_fpl_partial(fpl)); 4670 } 4671 4672 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4673 cache_fpl_smr_exit(fpl); 4674 vget_abort(tvp, tvs); 4675 return (cache_fpl_aborted(fpl)); 4676 } 4677 4678 cache_fpl_smr_exit(fpl); 4679 return (cache_fplookup_final_child(fpl, tvs)); 4680 } 4681 4682 /* 4683 * Comment from locked lookup: 4684 * Check for degenerate name (e.g. / or "") which is a way of talking about a 4685 * directory, e.g. like "/." or ".". 4686 */ 4687 static int __noinline 4688 cache_fplookup_degenerate(struct cache_fpl *fpl) 4689 { 4690 struct componentname *cnp; 4691 struct vnode *dvp; 4692 enum vgetstate dvs; 4693 int error, lkflags; 4694 #ifdef INVARIANTS 4695 char *cp; 4696 #endif 4697 4698 fpl->tvp = fpl->dvp; 4699 fpl->tvp_seqc = fpl->dvp_seqc; 4700 4701 cnp = fpl->cnp; 4702 dvp = fpl->dvp; 4703 4704 #ifdef INVARIANTS 4705 for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) { 4706 KASSERT(*cp == '/', 4707 ("%s: encountered non-slash; string [%s]\n", __func__, 4708 cnp->cn_pnbuf)); 4709 } 4710 #endif 4711 4712 if (__predict_false(cnp->cn_nameiop != LOOKUP)) { 4713 cache_fpl_smr_exit(fpl); 4714 return (cache_fpl_handled_error(fpl, EISDIR)); 4715 } 4716 4717 MPASS((cnp->cn_flags & SAVESTART) == 0); 4718 4719 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) { 4720 return (cache_fplookup_final_withparent(fpl)); 4721 } 4722 4723 dvs = vget_prep_smr(dvp); 4724 cache_fpl_smr_exit(fpl); 4725 if (__predict_false(dvs == VGET_NONE)) { 4726 return (cache_fpl_aborted(fpl)); 4727 } 4728 4729 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4730 lkflags = LK_SHARED; 4731 if ((cnp->cn_flags & LOCKSHARED) == 0) 4732 lkflags = LK_EXCLUSIVE; 4733 error = vget_finish(dvp, lkflags, dvs); 4734 if (__predict_false(error != 0)) { 4735 return (cache_fpl_aborted(fpl)); 4736 } 4737 } else { 4738 vget_finish_ref(dvp, dvs); 4739 } 4740 return (cache_fpl_handled(fpl)); 4741 } 4742 4743 static int __noinline 4744 cache_fplookup_noentry(struct cache_fpl *fpl) 4745 { 4746 struct nameidata *ndp; 4747 struct componentname *cnp; 4748 enum vgetstate dvs; 4749 struct vnode *dvp, *tvp; 4750 seqc_t dvp_seqc; 4751 int error; 4752 bool docache; 4753 4754 ndp = fpl->ndp; 4755 cnp = fpl->cnp; 4756 dvp = fpl->dvp; 4757 dvp_seqc = fpl->dvp_seqc; 4758 4759 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4760 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4761 MPASS(!cache_fpl_isdotdot(cnp)); 4762 4763 /* 4764 * Hack: delayed name len checking. 4765 */ 4766 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 4767 cache_fpl_smr_exit(fpl); 4768 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 4769 } 4770 4771 if (cnp->cn_nameptr[0] == '/') { 4772 return (cache_fplookup_skip_slashes(fpl)); 4773 } 4774 4775 if (cnp->cn_nameptr[0] == '\0') { 4776 if (fpl->tvp == NULL) { 4777 return (cache_fplookup_degenerate(fpl)); 4778 } 4779 return (cache_fplookup_trailingslash(fpl)); 4780 } 4781 4782 if (cnp->cn_nameiop != LOOKUP) { 4783 fpl->tvp = NULL; 4784 return (cache_fplookup_modifying(fpl)); 4785 } 4786 4787 MPASS((cnp->cn_flags & SAVESTART) == 0); 4788 4789 /* 4790 * Only try to fill in the component if it is the last one, 4791 * otherwise not only there may be several to handle but the 4792 * walk may be complicated. 4793 */ 4794 if (!cache_fpl_islastcn(ndp)) { 4795 return (cache_fpl_partial(fpl)); 4796 } 4797 4798 /* 4799 * Regular lookup nulifies the slash, which we don't do here. 4800 * Don't take chances with filesystem routines seeing it for 4801 * the last entry. 4802 */ 4803 if (cache_fpl_istrailingslash(fpl)) { 4804 return (cache_fpl_partial(fpl)); 4805 } 4806 4807 /* 4808 * Secure access to dvp; check cache_fplookup_partial_setup for 4809 * reasoning. 4810 */ 4811 dvs = vget_prep_smr(dvp); 4812 cache_fpl_smr_exit(fpl); 4813 if (__predict_false(dvs == VGET_NONE)) { 4814 return (cache_fpl_aborted(fpl)); 4815 } 4816 4817 vget_finish_ref(dvp, dvs); 4818 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4819 vrele(dvp); 4820 return (cache_fpl_aborted(fpl)); 4821 } 4822 4823 error = vn_lock(dvp, LK_SHARED); 4824 if (__predict_false(error != 0)) { 4825 vrele(dvp); 4826 return (cache_fpl_aborted(fpl)); 4827 } 4828 4829 tvp = NULL; 4830 /* 4831 * TODO: provide variants which don't require locking either vnode. 4832 */ 4833 cnp->cn_flags |= ISLASTCN; 4834 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4835 if (docache) 4836 cnp->cn_flags |= MAKEENTRY; 4837 cnp->cn_lkflags = LK_SHARED; 4838 if ((cnp->cn_flags & LOCKSHARED) == 0) { 4839 cnp->cn_lkflags = LK_EXCLUSIVE; 4840 } 4841 error = VOP_LOOKUP(dvp, &tvp, cnp); 4842 switch (error) { 4843 case EJUSTRETURN: 4844 case 0: 4845 break; 4846 case ENOTDIR: 4847 case ENOENT: 4848 vput(dvp); 4849 return (cache_fpl_handled_error(fpl, error)); 4850 default: 4851 vput(dvp); 4852 return (cache_fpl_aborted(fpl)); 4853 } 4854 4855 fpl->tvp = tvp; 4856 if (!fpl->savename) { 4857 MPASS((cnp->cn_flags & SAVENAME) == 0); 4858 } 4859 4860 if (tvp == NULL) { 4861 MPASS(error == EJUSTRETURN); 4862 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4863 vput(dvp); 4864 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4865 VOP_UNLOCK(dvp); 4866 } 4867 return (cache_fpl_handled(fpl)); 4868 } 4869 4870 if (tvp->v_type == VLNK) { 4871 if ((cnp->cn_flags & FOLLOW) != 0) { 4872 vput(dvp); 4873 vput(tvp); 4874 return (cache_fpl_aborted(fpl)); 4875 } 4876 } 4877 4878 if (__predict_false(cache_fplookup_is_mp(fpl))) { 4879 vput(dvp); 4880 vput(tvp); 4881 return (cache_fpl_aborted(fpl)); 4882 } 4883 4884 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4885 VOP_UNLOCK(tvp); 4886 } 4887 4888 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4889 vput(dvp); 4890 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4891 VOP_UNLOCK(dvp); 4892 } 4893 return (cache_fpl_handled(fpl)); 4894 } 4895 4896 static int __noinline 4897 cache_fplookup_dot(struct cache_fpl *fpl) 4898 { 4899 int error; 4900 4901 MPASS(!seqc_in_modify(fpl->dvp_seqc)); 4902 /* 4903 * Just re-assign the value. seqc will be checked later for the first 4904 * non-dot path component in line and/or before deciding to return the 4905 * vnode. 4906 */ 4907 fpl->tvp = fpl->dvp; 4908 fpl->tvp_seqc = fpl->dvp_seqc; 4909 4910 counter_u64_add(dothits, 1); 4911 SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp); 4912 4913 error = 0; 4914 if (cache_fplookup_is_mp(fpl)) { 4915 error = cache_fplookup_cross_mount(fpl); 4916 } 4917 return (error); 4918 } 4919 4920 static int __noinline 4921 cache_fplookup_dotdot(struct cache_fpl *fpl) 4922 { 4923 struct nameidata *ndp; 4924 struct componentname *cnp; 4925 struct namecache *ncp; 4926 struct vnode *dvp; 4927 struct prison *pr; 4928 u_char nc_flag; 4929 4930 ndp = fpl->ndp; 4931 cnp = fpl->cnp; 4932 dvp = fpl->dvp; 4933 4934 MPASS(cache_fpl_isdotdot(cnp)); 4935 4936 /* 4937 * XXX this is racy the same way regular lookup is 4938 */ 4939 for (pr = cnp->cn_cred->cr_prison; pr != NULL; 4940 pr = pr->pr_parent) 4941 if (dvp == pr->pr_root) 4942 break; 4943 4944 if (dvp == ndp->ni_rootdir || 4945 dvp == ndp->ni_topdir || 4946 dvp == rootvnode || 4947 pr != NULL) { 4948 fpl->tvp = dvp; 4949 fpl->tvp_seqc = vn_seqc_read_any(dvp); 4950 if (seqc_in_modify(fpl->tvp_seqc)) { 4951 return (cache_fpl_aborted(fpl)); 4952 } 4953 return (0); 4954 } 4955 4956 if ((dvp->v_vflag & VV_ROOT) != 0) { 4957 /* 4958 * TODO 4959 * The opposite of climb mount is needed here. 4960 */ 4961 return (cache_fpl_partial(fpl)); 4962 } 4963 4964 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 4965 if (ncp == NULL) { 4966 return (cache_fpl_aborted(fpl)); 4967 } 4968 4969 nc_flag = atomic_load_char(&ncp->nc_flag); 4970 if ((nc_flag & NCF_ISDOTDOT) != 0) { 4971 if ((nc_flag & NCF_NEGATIVE) != 0) 4972 return (cache_fpl_aborted(fpl)); 4973 fpl->tvp = ncp->nc_vp; 4974 } else { 4975 fpl->tvp = ncp->nc_dvp; 4976 } 4977 4978 fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp); 4979 if (seqc_in_modify(fpl->tvp_seqc)) { 4980 return (cache_fpl_partial(fpl)); 4981 } 4982 4983 /* 4984 * Acquire fence provided by vn_seqc_read_any above. 4985 */ 4986 if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) { 4987 return (cache_fpl_aborted(fpl)); 4988 } 4989 4990 if (!cache_ncp_canuse(ncp)) { 4991 return (cache_fpl_aborted(fpl)); 4992 } 4993 4994 counter_u64_add(dotdothits, 1); 4995 return (0); 4996 } 4997 4998 static int __noinline 4999 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash) 5000 { 5001 u_char nc_flag; 5002 bool neg_promote; 5003 5004 nc_flag = atomic_load_char(&ncp->nc_flag); 5005 MPASS((nc_flag & NCF_NEGATIVE) != 0); 5006 /* 5007 * If they want to create an entry we need to replace this one. 5008 */ 5009 if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) { 5010 fpl->tvp = NULL; 5011 return (cache_fplookup_modifying(fpl)); 5012 } 5013 neg_promote = cache_neg_hit_prep(ncp); 5014 if (!cache_fpl_neg_ncp_canuse(ncp)) { 5015 cache_neg_hit_abort(ncp); 5016 return (cache_fpl_partial(fpl)); 5017 } 5018 if (neg_promote) { 5019 return (cache_fplookup_negative_promote(fpl, ncp, hash)); 5020 } 5021 cache_neg_hit_finish(ncp); 5022 cache_fpl_smr_exit(fpl); 5023 return (cache_fpl_handled_error(fpl, ENOENT)); 5024 } 5025 5026 /* 5027 * Resolve a symlink. Called by filesystem-specific routines. 5028 * 5029 * Code flow is: 5030 * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve 5031 */ 5032 int 5033 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len) 5034 { 5035 struct nameidata *ndp; 5036 struct componentname *cnp; 5037 size_t adjust; 5038 5039 ndp = fpl->ndp; 5040 cnp = fpl->cnp; 5041 5042 if (__predict_false(len == 0)) { 5043 return (ENOENT); 5044 } 5045 5046 if (__predict_false(len > MAXPATHLEN - 2)) { 5047 if (cache_fpl_istrailingslash(fpl)) { 5048 return (EAGAIN); 5049 } 5050 } 5051 5052 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1; 5053 #ifdef INVARIANTS 5054 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 5055 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 5056 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 5057 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 5058 } 5059 #endif 5060 5061 if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) { 5062 return (ENAMETOOLONG); 5063 } 5064 5065 if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) { 5066 return (ELOOP); 5067 } 5068 5069 adjust = len; 5070 if (ndp->ni_pathlen > 1) { 5071 bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen); 5072 } else { 5073 if (cache_fpl_istrailingslash(fpl)) { 5074 adjust = len + 1; 5075 cnp->cn_pnbuf[len] = '/'; 5076 cnp->cn_pnbuf[len + 1] = '\0'; 5077 } else { 5078 cnp->cn_pnbuf[len] = '\0'; 5079 } 5080 } 5081 bcopy(string, cnp->cn_pnbuf, len); 5082 5083 ndp->ni_pathlen += adjust; 5084 cache_fpl_pathlen_add(fpl, adjust); 5085 cnp->cn_nameptr = cnp->cn_pnbuf; 5086 fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 5087 fpl->tvp = NULL; 5088 return (0); 5089 } 5090 5091 static int __noinline 5092 cache_fplookup_symlink(struct cache_fpl *fpl) 5093 { 5094 struct mount *mp; 5095 struct nameidata *ndp; 5096 struct componentname *cnp; 5097 struct vnode *dvp, *tvp; 5098 int error; 5099 5100 ndp = fpl->ndp; 5101 cnp = fpl->cnp; 5102 dvp = fpl->dvp; 5103 tvp = fpl->tvp; 5104 5105 if (cache_fpl_islastcn(ndp)) { 5106 if ((cnp->cn_flags & FOLLOW) == 0) { 5107 return (cache_fplookup_final(fpl)); 5108 } 5109 } 5110 5111 mp = atomic_load_ptr(&dvp->v_mount); 5112 if (__predict_false(mp == NULL)) { 5113 return (cache_fpl_aborted(fpl)); 5114 } 5115 5116 /* 5117 * Note this check races against setting the flag just like regular 5118 * lookup. 5119 */ 5120 if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) { 5121 cache_fpl_smr_exit(fpl); 5122 return (cache_fpl_handled_error(fpl, EACCES)); 5123 } 5124 5125 error = VOP_FPLOOKUP_SYMLINK(tvp, fpl); 5126 if (__predict_false(error != 0)) { 5127 switch (error) { 5128 case EAGAIN: 5129 return (cache_fpl_partial(fpl)); 5130 case ENOENT: 5131 case ENAMETOOLONG: 5132 case ELOOP: 5133 cache_fpl_smr_exit(fpl); 5134 return (cache_fpl_handled_error(fpl, error)); 5135 default: 5136 return (cache_fpl_aborted(fpl)); 5137 } 5138 } 5139 5140 if (*(cnp->cn_nameptr) == '/') { 5141 fpl->dvp = cache_fpl_handle_root(fpl); 5142 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 5143 if (seqc_in_modify(fpl->dvp_seqc)) { 5144 return (cache_fpl_aborted(fpl)); 5145 } 5146 /* 5147 * The main loop assumes that ->dvp points to a vnode belonging 5148 * to a filesystem which can do lockless lookup, but the absolute 5149 * symlink can be wandering off to one which does not. 5150 */ 5151 mp = atomic_load_ptr(&fpl->dvp->v_mount); 5152 if (__predict_false(mp == NULL)) { 5153 return (cache_fpl_aborted(fpl)); 5154 } 5155 if (!cache_fplookup_mp_supported(mp)) { 5156 cache_fpl_checkpoint(fpl); 5157 return (cache_fpl_partial(fpl)); 5158 } 5159 } 5160 return (0); 5161 } 5162 5163 static int 5164 cache_fplookup_next(struct cache_fpl *fpl) 5165 { 5166 struct componentname *cnp; 5167 struct namecache *ncp; 5168 struct vnode *dvp, *tvp; 5169 u_char nc_flag; 5170 uint32_t hash; 5171 int error; 5172 5173 cnp = fpl->cnp; 5174 dvp = fpl->dvp; 5175 hash = fpl->hash; 5176 5177 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 5178 if (cnp->cn_namelen == 1) { 5179 return (cache_fplookup_dot(fpl)); 5180 } 5181 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 5182 return (cache_fplookup_dotdot(fpl)); 5183 } 5184 } 5185 5186 MPASS(!cache_fpl_isdotdot(cnp)); 5187 5188 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 5189 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 5190 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 5191 break; 5192 } 5193 5194 if (__predict_false(ncp == NULL)) { 5195 return (cache_fplookup_noentry(fpl)); 5196 } 5197 5198 tvp = atomic_load_ptr(&ncp->nc_vp); 5199 nc_flag = atomic_load_char(&ncp->nc_flag); 5200 if ((nc_flag & NCF_NEGATIVE) != 0) { 5201 return (cache_fplookup_neg(fpl, ncp, hash)); 5202 } 5203 5204 if (!cache_ncp_canuse(ncp)) { 5205 return (cache_fpl_partial(fpl)); 5206 } 5207 5208 fpl->tvp = tvp; 5209 fpl->tvp_seqc = vn_seqc_read_any(tvp); 5210 if (seqc_in_modify(fpl->tvp_seqc)) { 5211 return (cache_fpl_partial(fpl)); 5212 } 5213 5214 counter_u64_add(numposhits, 1); 5215 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp); 5216 5217 error = 0; 5218 if (cache_fplookup_is_mp(fpl)) { 5219 error = cache_fplookup_cross_mount(fpl); 5220 } 5221 return (error); 5222 } 5223 5224 static bool 5225 cache_fplookup_mp_supported(struct mount *mp) 5226 { 5227 5228 MPASS(mp != NULL); 5229 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0) 5230 return (false); 5231 return (true); 5232 } 5233 5234 /* 5235 * Walk up the mount stack (if any). 5236 * 5237 * Correctness is provided in the following ways: 5238 * - all vnodes are protected from freeing with SMR 5239 * - struct mount objects are type stable making them always safe to access 5240 * - stability of the particular mount is provided by busying it 5241 * - relationship between the vnode which is mounted on and the mount is 5242 * verified with the vnode sequence counter after busying 5243 * - association between root vnode of the mount and the mount is protected 5244 * by busy 5245 * 5246 * From that point on we can read the sequence counter of the root vnode 5247 * and get the next mount on the stack (if any) using the same protection. 5248 * 5249 * By the end of successful walk we are guaranteed the reached state was 5250 * indeed present at least at some point which matches the regular lookup. 5251 */ 5252 static int __noinline 5253 cache_fplookup_climb_mount(struct cache_fpl *fpl) 5254 { 5255 struct mount *mp, *prev_mp; 5256 struct mount_pcpu *mpcpu, *prev_mpcpu; 5257 struct vnode *vp; 5258 seqc_t vp_seqc; 5259 5260 vp = fpl->tvp; 5261 vp_seqc = fpl->tvp_seqc; 5262 5263 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 5264 mp = atomic_load_ptr(&vp->v_mountedhere); 5265 if (__predict_false(mp == NULL)) { 5266 return (0); 5267 } 5268 5269 prev_mp = NULL; 5270 for (;;) { 5271 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 5272 if (prev_mp != NULL) 5273 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5274 return (cache_fpl_partial(fpl)); 5275 } 5276 if (prev_mp != NULL) 5277 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5278 if (!vn_seqc_consistent(vp, vp_seqc)) { 5279 vfs_op_thread_exit_crit(mp, mpcpu); 5280 return (cache_fpl_partial(fpl)); 5281 } 5282 if (!cache_fplookup_mp_supported(mp)) { 5283 vfs_op_thread_exit_crit(mp, mpcpu); 5284 return (cache_fpl_partial(fpl)); 5285 } 5286 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5287 if (vp == NULL) { 5288 vfs_op_thread_exit_crit(mp, mpcpu); 5289 return (cache_fpl_partial(fpl)); 5290 } 5291 vp_seqc = vn_seqc_read_any(vp); 5292 if (seqc_in_modify(vp_seqc)) { 5293 vfs_op_thread_exit_crit(mp, mpcpu); 5294 return (cache_fpl_partial(fpl)); 5295 } 5296 prev_mp = mp; 5297 prev_mpcpu = mpcpu; 5298 mp = atomic_load_ptr(&vp->v_mountedhere); 5299 if (mp == NULL) 5300 break; 5301 } 5302 5303 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5304 fpl->tvp = vp; 5305 fpl->tvp_seqc = vp_seqc; 5306 return (0); 5307 } 5308 5309 static int __noinline 5310 cache_fplookup_cross_mount(struct cache_fpl *fpl) 5311 { 5312 struct mount *mp; 5313 struct mount_pcpu *mpcpu; 5314 struct vnode *vp; 5315 seqc_t vp_seqc; 5316 5317 vp = fpl->tvp; 5318 vp_seqc = fpl->tvp_seqc; 5319 5320 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 5321 mp = atomic_load_ptr(&vp->v_mountedhere); 5322 if (__predict_false(mp == NULL)) { 5323 return (0); 5324 } 5325 5326 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 5327 return (cache_fpl_partial(fpl)); 5328 } 5329 if (!vn_seqc_consistent(vp, vp_seqc)) { 5330 vfs_op_thread_exit_crit(mp, mpcpu); 5331 return (cache_fpl_partial(fpl)); 5332 } 5333 if (!cache_fplookup_mp_supported(mp)) { 5334 vfs_op_thread_exit_crit(mp, mpcpu); 5335 return (cache_fpl_partial(fpl)); 5336 } 5337 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5338 if (__predict_false(vp == NULL)) { 5339 vfs_op_thread_exit_crit(mp, mpcpu); 5340 return (cache_fpl_partial(fpl)); 5341 } 5342 vp_seqc = vn_seqc_read_any(vp); 5343 vfs_op_thread_exit_crit(mp, mpcpu); 5344 if (seqc_in_modify(vp_seqc)) { 5345 return (cache_fpl_partial(fpl)); 5346 } 5347 mp = atomic_load_ptr(&vp->v_mountedhere); 5348 if (__predict_false(mp != NULL)) { 5349 /* 5350 * There are possibly more mount points on top. 5351 * Normally this does not happen so for simplicity just start 5352 * over. 5353 */ 5354 return (cache_fplookup_climb_mount(fpl)); 5355 } 5356 5357 fpl->tvp = vp; 5358 fpl->tvp_seqc = vp_seqc; 5359 return (0); 5360 } 5361 5362 /* 5363 * Check if a vnode is mounted on. 5364 */ 5365 static bool 5366 cache_fplookup_is_mp(struct cache_fpl *fpl) 5367 { 5368 struct vnode *vp; 5369 5370 vp = fpl->tvp; 5371 return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0); 5372 } 5373 5374 /* 5375 * Parse the path. 5376 * 5377 * The code was originally copy-pasted from regular lookup and despite 5378 * clean ups leaves performance on the table. Any modifications here 5379 * must take into account that in case off fallback the resulting 5380 * nameidata state has to be compatible with the original. 5381 */ 5382 5383 /* 5384 * Debug ni_pathlen tracking. 5385 */ 5386 #ifdef INVARIANTS 5387 static void 5388 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5389 { 5390 5391 fpl->debug.ni_pathlen += n; 5392 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5393 ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5394 } 5395 5396 static void 5397 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5398 { 5399 5400 fpl->debug.ni_pathlen -= n; 5401 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5402 ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5403 } 5404 5405 static void 5406 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5407 { 5408 5409 cache_fpl_pathlen_add(fpl, 1); 5410 } 5411 5412 static void 5413 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5414 { 5415 5416 cache_fpl_pathlen_sub(fpl, 1); 5417 } 5418 #else 5419 static void 5420 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5421 { 5422 } 5423 5424 static void 5425 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5426 { 5427 } 5428 5429 static void 5430 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5431 { 5432 } 5433 5434 static void 5435 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5436 { 5437 } 5438 #endif 5439 5440 static void 5441 cache_fplookup_parse(struct cache_fpl *fpl) 5442 { 5443 struct nameidata *ndp; 5444 struct componentname *cnp; 5445 struct vnode *dvp; 5446 char *cp; 5447 uint32_t hash; 5448 5449 ndp = fpl->ndp; 5450 cnp = fpl->cnp; 5451 dvp = fpl->dvp; 5452 5453 /* 5454 * Find the end of this path component, it is either / or nul. 5455 * 5456 * Store / as a temporary sentinel so that we only have one character 5457 * to test for. Pathnames tend to be short so this should not be 5458 * resulting in cache misses. 5459 * 5460 * TODO: fix this to be word-sized. 5461 */ 5462 KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar, 5463 ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n", 5464 __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1], 5465 fpl->nulchar, cnp->cn_pnbuf)); 5466 KASSERT(*fpl->nulchar == '\0', 5467 ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar, 5468 cnp->cn_pnbuf)); 5469 hash = cache_get_hash_iter_start(dvp); 5470 *fpl->nulchar = '/'; 5471 for (cp = cnp->cn_nameptr; *cp != '/'; cp++) { 5472 KASSERT(*cp != '\0', 5473 ("%s: encountered unexpected nul; string [%s]\n", __func__, 5474 cnp->cn_nameptr)); 5475 hash = cache_get_hash_iter(*cp, hash); 5476 continue; 5477 } 5478 *fpl->nulchar = '\0'; 5479 fpl->hash = cache_get_hash_iter_finish(hash); 5480 5481 cnp->cn_namelen = cp - cnp->cn_nameptr; 5482 cache_fpl_pathlen_sub(fpl, cnp->cn_namelen); 5483 5484 #ifdef INVARIANTS 5485 /* 5486 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since 5487 * we are going to fail this lookup with ENAMETOOLONG (see below). 5488 */ 5489 if (cnp->cn_namelen <= NAME_MAX) { 5490 if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) { 5491 panic("%s: mismatched hash for [%s] len %ld", __func__, 5492 cnp->cn_nameptr, cnp->cn_namelen); 5493 } 5494 } 5495 #endif 5496 5497 /* 5498 * Hack: we have to check if the found path component's length exceeds 5499 * NAME_MAX. However, the condition is very rarely true and check can 5500 * be elided in the common case -- if an entry was found in the cache, 5501 * then it could not have been too long to begin with. 5502 */ 5503 ndp->ni_next = cp; 5504 } 5505 5506 static void 5507 cache_fplookup_parse_advance(struct cache_fpl *fpl) 5508 { 5509 struct nameidata *ndp; 5510 struct componentname *cnp; 5511 5512 ndp = fpl->ndp; 5513 cnp = fpl->cnp; 5514 5515 cnp->cn_nameptr = ndp->ni_next; 5516 KASSERT(*(cnp->cn_nameptr) == '/', 5517 ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__, 5518 cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf)); 5519 cnp->cn_nameptr++; 5520 cache_fpl_pathlen_dec(fpl); 5521 } 5522 5523 /* 5524 * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry. 5525 * 5526 * Lockless lookup tries to elide checking for spurious slashes and should they 5527 * be present is guaranteed to fail to find an entry. In this case the caller 5528 * must check if the name starts with a slash and call this routine. It is 5529 * going to fast forward across the spurious slashes and set the state up for 5530 * retry. 5531 */ 5532 static int __noinline 5533 cache_fplookup_skip_slashes(struct cache_fpl *fpl) 5534 { 5535 struct nameidata *ndp; 5536 struct componentname *cnp; 5537 5538 ndp = fpl->ndp; 5539 cnp = fpl->cnp; 5540 5541 MPASS(*(cnp->cn_nameptr) == '/'); 5542 do { 5543 cnp->cn_nameptr++; 5544 cache_fpl_pathlen_dec(fpl); 5545 } while (*(cnp->cn_nameptr) == '/'); 5546 5547 /* 5548 * Go back to one slash so that cache_fplookup_parse_advance has 5549 * something to skip. 5550 */ 5551 cnp->cn_nameptr--; 5552 cache_fpl_pathlen_inc(fpl); 5553 5554 /* 5555 * cache_fplookup_parse_advance starts from ndp->ni_next 5556 */ 5557 ndp->ni_next = cnp->cn_nameptr; 5558 5559 /* 5560 * See cache_fplookup_dot. 5561 */ 5562 fpl->tvp = fpl->dvp; 5563 fpl->tvp_seqc = fpl->dvp_seqc; 5564 5565 return (0); 5566 } 5567 5568 /* 5569 * Handle trailing slashes (e.g., "foo/"). 5570 * 5571 * If a trailing slash is found the terminal vnode must be a directory. 5572 * Regular lookup shortens the path by nulifying the first trailing slash and 5573 * sets the TRAILINGSLASH flag to denote this took place. There are several 5574 * checks on it performed later. 5575 * 5576 * Similarly to spurious slashes, lockless lookup handles this in a speculative 5577 * manner relying on an invariant that a non-directory vnode will get a miss. 5578 * In this case cn_nameptr[0] == '\0' and cn_namelen == 0. 5579 * 5580 * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/" 5581 * and denotes this is the last path component, which avoids looping back. 5582 * 5583 * Only plain lookups are supported for now to restrict corner cases to handle. 5584 */ 5585 static int __noinline 5586 cache_fplookup_trailingslash(struct cache_fpl *fpl) 5587 { 5588 #ifdef INVARIANTS 5589 size_t ni_pathlen; 5590 #endif 5591 struct nameidata *ndp; 5592 struct componentname *cnp; 5593 struct namecache *ncp; 5594 struct vnode *tvp; 5595 char *cn_nameptr_orig, *cn_nameptr_slash; 5596 seqc_t tvp_seqc; 5597 u_char nc_flag; 5598 5599 ndp = fpl->ndp; 5600 cnp = fpl->cnp; 5601 tvp = fpl->tvp; 5602 tvp_seqc = fpl->tvp_seqc; 5603 5604 MPASS(fpl->dvp == fpl->tvp); 5605 KASSERT(cache_fpl_istrailingslash(fpl), 5606 ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1, 5607 cnp->cn_pnbuf)); 5608 KASSERT(cnp->cn_nameptr[0] == '\0', 5609 ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0], 5610 cnp->cn_pnbuf)); 5611 KASSERT(cnp->cn_namelen == 0, 5612 ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen, 5613 cnp->cn_pnbuf)); 5614 MPASS(cnp->cn_nameptr > cnp->cn_pnbuf); 5615 5616 if (cnp->cn_nameiop != LOOKUP) { 5617 return (cache_fpl_aborted(fpl)); 5618 } 5619 5620 if (__predict_false(tvp->v_type != VDIR)) { 5621 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 5622 return (cache_fpl_aborted(fpl)); 5623 } 5624 cache_fpl_smr_exit(fpl); 5625 return (cache_fpl_handled_error(fpl, ENOTDIR)); 5626 } 5627 5628 /* 5629 * Denote the last component. 5630 */ 5631 ndp->ni_next = &cnp->cn_nameptr[0]; 5632 MPASS(cache_fpl_islastcn(ndp)); 5633 5634 /* 5635 * Unwind trailing slashes. 5636 */ 5637 cn_nameptr_orig = cnp->cn_nameptr; 5638 while (cnp->cn_nameptr >= cnp->cn_pnbuf) { 5639 cnp->cn_nameptr--; 5640 if (cnp->cn_nameptr[0] != '/') { 5641 break; 5642 } 5643 } 5644 5645 /* 5646 * Unwind to the beginning of the path component. 5647 * 5648 * Note the path may or may not have started with a slash. 5649 */ 5650 cn_nameptr_slash = cnp->cn_nameptr; 5651 while (cnp->cn_nameptr > cnp->cn_pnbuf) { 5652 cnp->cn_nameptr--; 5653 if (cnp->cn_nameptr[0] == '/') { 5654 break; 5655 } 5656 } 5657 if (cnp->cn_nameptr[0] == '/') { 5658 cnp->cn_nameptr++; 5659 } 5660 5661 cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1; 5662 cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr); 5663 cache_fpl_checkpoint(fpl); 5664 5665 #ifdef INVARIANTS 5666 ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; 5667 if (ni_pathlen != fpl->debug.ni_pathlen) { 5668 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 5669 __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 5670 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 5671 } 5672 #endif 5673 5674 /* 5675 * If this was a "./" lookup the parent directory is already correct. 5676 */ 5677 if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) { 5678 return (0); 5679 } 5680 5681 /* 5682 * Otherwise we need to look it up. 5683 */ 5684 tvp = fpl->tvp; 5685 ncp = atomic_load_consume_ptr(&tvp->v_cache_dd); 5686 if (__predict_false(ncp == NULL)) { 5687 return (cache_fpl_aborted(fpl)); 5688 } 5689 nc_flag = atomic_load_char(&ncp->nc_flag); 5690 if ((nc_flag & NCF_ISDOTDOT) != 0) { 5691 return (cache_fpl_aborted(fpl)); 5692 } 5693 fpl->dvp = ncp->nc_dvp; 5694 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 5695 if (seqc_in_modify(fpl->dvp_seqc)) { 5696 return (cache_fpl_aborted(fpl)); 5697 } 5698 return (0); 5699 } 5700 5701 /* 5702 * See the API contract for VOP_FPLOOKUP_VEXEC. 5703 */ 5704 static int __noinline 5705 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error) 5706 { 5707 struct componentname *cnp; 5708 struct vnode *dvp; 5709 seqc_t dvp_seqc; 5710 5711 cnp = fpl->cnp; 5712 dvp = fpl->dvp; 5713 dvp_seqc = fpl->dvp_seqc; 5714 5715 /* 5716 * TODO: Due to ignoring trailing slashes lookup will perform a 5717 * permission check on the last dir when it should not be doing it. It 5718 * may fail, but said failure should be ignored. It is possible to fix 5719 * it up fully without resorting to regular lookup, but for now just 5720 * abort. 5721 */ 5722 if (cache_fpl_istrailingslash(fpl)) { 5723 return (cache_fpl_aborted(fpl)); 5724 } 5725 5726 /* 5727 * Hack: delayed degenerate path checking. 5728 */ 5729 if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) { 5730 return (cache_fplookup_degenerate(fpl)); 5731 } 5732 5733 /* 5734 * Hack: delayed name len checking. 5735 */ 5736 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 5737 cache_fpl_smr_exit(fpl); 5738 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 5739 } 5740 5741 /* 5742 * Hack: they may be looking up foo/bar, where foo is not a directory. 5743 * In such a case we need to return ENOTDIR, but we may happen to get 5744 * here with a different error. 5745 */ 5746 if (dvp->v_type != VDIR) { 5747 error = ENOTDIR; 5748 } 5749 5750 /* 5751 * Hack: handle O_SEARCH. 5752 * 5753 * Open Group Base Specifications Issue 7, 2018 edition states: 5754 * <quote> 5755 * If the access mode of the open file description associated with the 5756 * file descriptor is not O_SEARCH, the function shall check whether 5757 * directory searches are permitted using the current permissions of 5758 * the directory underlying the file descriptor. If the access mode is 5759 * O_SEARCH, the function shall not perform the check. 5760 * </quote> 5761 * 5762 * Regular lookup tests for the NOEXECCHECK flag for every path 5763 * component to decide whether to do the permission check. However, 5764 * since most lookups never have the flag (and when they do it is only 5765 * present for the first path component), lockless lookup only acts on 5766 * it if there is a permission problem. Here the flag is represented 5767 * with a boolean so that we don't have to clear it on the way out. 5768 * 5769 * For simplicity this always aborts. 5770 * TODO: check if this is the first lookup and ignore the permission 5771 * problem. Note the flag has to survive fallback (if it happens to be 5772 * performed). 5773 */ 5774 if (fpl->fsearch) { 5775 return (cache_fpl_aborted(fpl)); 5776 } 5777 5778 switch (error) { 5779 case EAGAIN: 5780 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5781 error = cache_fpl_aborted(fpl); 5782 } else { 5783 cache_fpl_partial(fpl); 5784 } 5785 break; 5786 default: 5787 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5788 error = cache_fpl_aborted(fpl); 5789 } else { 5790 cache_fpl_smr_exit(fpl); 5791 cache_fpl_handled_error(fpl, error); 5792 } 5793 break; 5794 } 5795 return (error); 5796 } 5797 5798 static int 5799 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl) 5800 { 5801 struct nameidata *ndp; 5802 struct componentname *cnp; 5803 struct mount *mp; 5804 int error; 5805 5806 ndp = fpl->ndp; 5807 cnp = fpl->cnp; 5808 5809 cache_fpl_checkpoint(fpl); 5810 5811 /* 5812 * The vnode at hand is almost always stable, skip checking for it. 5813 * Worst case this postpones the check towards the end of the iteration 5814 * of the main loop. 5815 */ 5816 fpl->dvp = dvp; 5817 fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp); 5818 5819 mp = atomic_load_ptr(&dvp->v_mount); 5820 if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) { 5821 return (cache_fpl_aborted(fpl)); 5822 } 5823 5824 MPASS(fpl->tvp == NULL); 5825 5826 for (;;) { 5827 cache_fplookup_parse(fpl); 5828 5829 error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred); 5830 if (__predict_false(error != 0)) { 5831 error = cache_fplookup_failed_vexec(fpl, error); 5832 break; 5833 } 5834 5835 error = cache_fplookup_next(fpl); 5836 if (__predict_false(cache_fpl_terminated(fpl))) { 5837 break; 5838 } 5839 5840 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); 5841 5842 if (fpl->tvp->v_type == VLNK) { 5843 error = cache_fplookup_symlink(fpl); 5844 if (cache_fpl_terminated(fpl)) { 5845 break; 5846 } 5847 } else { 5848 if (cache_fpl_islastcn(ndp)) { 5849 error = cache_fplookup_final(fpl); 5850 break; 5851 } 5852 5853 if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) { 5854 error = cache_fpl_aborted(fpl); 5855 break; 5856 } 5857 5858 fpl->dvp = fpl->tvp; 5859 fpl->dvp_seqc = fpl->tvp_seqc; 5860 cache_fplookup_parse_advance(fpl); 5861 } 5862 5863 cache_fpl_checkpoint(fpl); 5864 } 5865 5866 return (error); 5867 } 5868 5869 /* 5870 * Fast path lookup protected with SMR and sequence counters. 5871 * 5872 * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one. 5873 * 5874 * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria 5875 * outlined below. 5876 * 5877 * Traditional vnode lookup conceptually looks like this: 5878 * 5879 * vn_lock(current); 5880 * for (;;) { 5881 * next = find(); 5882 * vn_lock(next); 5883 * vn_unlock(current); 5884 * current = next; 5885 * if (last) 5886 * break; 5887 * } 5888 * return (current); 5889 * 5890 * Each jump to the next vnode is safe memory-wise and atomic with respect to 5891 * any modifications thanks to holding respective locks. 5892 * 5893 * The same guarantee can be provided with a combination of safe memory 5894 * reclamation and sequence counters instead. If all operations which affect 5895 * the relationship between the current vnode and the one we are looking for 5896 * also modify the counter, we can verify whether all the conditions held as 5897 * we made the jump. This includes things like permissions, mount points etc. 5898 * Counter modification is provided by enclosing relevant places in 5899 * vn_seqc_write_begin()/end() calls. 5900 * 5901 * Thus this translates to: 5902 * 5903 * vfs_smr_enter(); 5904 * dvp_seqc = seqc_read_any(dvp); 5905 * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode 5906 * abort(); 5907 * for (;;) { 5908 * tvp = find(); 5909 * tvp_seqc = seqc_read_any(tvp); 5910 * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode 5911 * abort(); 5912 * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode 5913 * abort(); 5914 * dvp = tvp; // we know nothing of importance has changed 5915 * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration 5916 * if (last) 5917 * break; 5918 * } 5919 * vget(); // secure the vnode 5920 * if (!seqc_consistent(tvp, tvp_seqc) // final check 5921 * abort(); 5922 * // at this point we know nothing has changed for any parent<->child pair 5923 * // as they were crossed during the lookup, meaning we matched the guarantee 5924 * // of the locked variant 5925 * return (tvp); 5926 * 5927 * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows: 5928 * - they are called while within vfs_smr protection which they must never exit 5929 * - EAGAIN can be returned to denote checking could not be performed, it is 5930 * always valid to return it 5931 * - if the sequence counter has not changed the result must be valid 5932 * - if the sequence counter has changed both false positives and false negatives 5933 * are permitted (since the result will be rejected later) 5934 * - for simple cases of unix permission checks vaccess_vexec_smr can be used 5935 * 5936 * Caveats to watch out for: 5937 * - vnodes are passed unlocked and unreferenced with nothing stopping 5938 * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised 5939 * to use atomic_load_ptr to fetch it. 5940 * - the aforementioned object can also get freed, meaning absent other means it 5941 * should be protected with vfs_smr 5942 * - either safely checking permissions as they are modified or guaranteeing 5943 * their stability is left to the routine 5944 */ 5945 int 5946 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, 5947 struct pwd **pwdp) 5948 { 5949 struct cache_fpl fpl; 5950 struct pwd *pwd; 5951 struct vnode *dvp; 5952 struct componentname *cnp; 5953 int error; 5954 5955 fpl.status = CACHE_FPL_STATUS_UNSET; 5956 fpl.in_smr = false; 5957 fpl.ndp = ndp; 5958 fpl.cnp = cnp = &ndp->ni_cnd; 5959 MPASS(ndp->ni_lcf == 0); 5960 MPASS(curthread == cnp->cn_thread); 5961 KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 5962 ("%s: internal flags found in cn_flags %" PRIx64, __func__, 5963 cnp->cn_flags)); 5964 if ((cnp->cn_flags & SAVESTART) != 0) { 5965 MPASS(cnp->cn_nameiop != LOOKUP); 5966 } 5967 MPASS(cnp->cn_nameptr == cnp->cn_pnbuf); 5968 5969 if (__predict_false(!cache_can_fplookup(&fpl))) { 5970 *status = fpl.status; 5971 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 5972 return (EOPNOTSUPP); 5973 } 5974 5975 cache_fpl_checkpoint_outer(&fpl); 5976 5977 cache_fpl_smr_enter_initial(&fpl); 5978 #ifdef INVARIANTS 5979 fpl.debug.ni_pathlen = ndp->ni_pathlen; 5980 #endif 5981 fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 5982 fpl.fsearch = false; 5983 fpl.savename = (cnp->cn_flags & SAVENAME) != 0; 5984 fpl.tvp = NULL; /* for degenerate path handling */ 5985 fpl.pwd = pwdp; 5986 pwd = pwd_get_smr(); 5987 *(fpl.pwd) = pwd; 5988 ndp->ni_rootdir = pwd->pwd_rdir; 5989 ndp->ni_topdir = pwd->pwd_jdir; 5990 5991 if (cnp->cn_pnbuf[0] == '/') { 5992 dvp = cache_fpl_handle_root(&fpl); 5993 MPASS(ndp->ni_resflags == 0); 5994 ndp->ni_resflags = NIRES_ABS; 5995 } else { 5996 if (ndp->ni_dirfd == AT_FDCWD) { 5997 dvp = pwd->pwd_cdir; 5998 } else { 5999 error = cache_fplookup_dirfd(&fpl, &dvp); 6000 if (__predict_false(error != 0)) { 6001 goto out; 6002 } 6003 } 6004 } 6005 6006 SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true); 6007 error = cache_fplookup_impl(dvp, &fpl); 6008 out: 6009 cache_fpl_smr_assert_not_entered(&fpl); 6010 cache_fpl_assert_status(&fpl); 6011 *status = fpl.status; 6012 if (SDT_PROBES_ENABLED()) { 6013 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 6014 if (fpl.status == CACHE_FPL_STATUS_HANDLED) 6015 SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true, 6016 ndp); 6017 } 6018 6019 if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) { 6020 MPASS(error != CACHE_FPL_FAILED); 6021 if (error != 0) { 6022 MPASS(fpl.dvp == NULL); 6023 MPASS(fpl.tvp == NULL); 6024 MPASS(fpl.savename == false); 6025 } 6026 ndp->ni_dvp = fpl.dvp; 6027 ndp->ni_vp = fpl.tvp; 6028 if (fpl.savename) { 6029 cnp->cn_flags |= HASBUF; 6030 } else { 6031 cache_fpl_cleanup_cnp(cnp); 6032 } 6033 } 6034 return (error); 6035 } 6036