xref: /freebsd/sys/kern/vfs_cache.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/capsicum.h>
46 #include <sys/counter.h>
47 #include <sys/filedesc.h>
48 #include <sys/fnv_hash.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/fcntl.h>
54 #include <sys/jail.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/seqc.h>
59 #include <sys/sdt.h>
60 #include <sys/smr.h>
61 #include <sys/smp.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysproto.h>
65 #include <sys/vnode.h>
66 #include <ck_queue.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 #ifdef INVARIANTS
71 #include <machine/_inttypes.h>
72 #endif
73 
74 #include <sys/capsicum.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #ifdef DDB
80 #include <ddb/ddb.h>
81 #endif
82 
83 #include <vm/uma.h>
84 
85 /*
86  * High level overview of name caching in the VFS layer.
87  *
88  * Originally caching was implemented as part of UFS, later extracted to allow
89  * use by other filesystems. A decision was made to make it optional and
90  * completely detached from the rest of the kernel, which comes with limitations
91  * outlined near the end of this comment block.
92  *
93  * This fundamental choice needs to be revisited. In the meantime, the current
94  * state is described below. Significance of all notable routines is explained
95  * in comments placed above their implementation. Scattered thoroughout the
96  * file are TODO comments indicating shortcomings which can be fixed without
97  * reworking everything (most of the fixes will likely be reusable). Various
98  * details are omitted from this explanation to not clutter the overview, they
99  * have to be checked by reading the code and associated commentary.
100  *
101  * Keep in mind that it's individual path components which are cached, not full
102  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
103  * one for each name.
104  *
105  * I. Data organization
106  *
107  * Entries are described by "struct namecache" objects and stored in a hash
108  * table. See cache_get_hash for more information.
109  *
110  * "struct vnode" contains pointers to source entries (names which can be found
111  * when traversing through said vnode), destination entries (names of that
112  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
113  * the parent vnode.
114  *
115  * The (directory vnode; name) tuple reliably determines the target entry if
116  * it exists.
117  *
118  * Since there are no small locks at this time (all are 32 bytes in size on
119  * LP64), the code works around the problem by introducing lock arrays to
120  * protect hash buckets and vnode lists.
121  *
122  * II. Filesystem integration
123  *
124  * Filesystems participating in name caching do the following:
125  * - set vop_lookup routine to vfs_cache_lookup
126  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
127  * - if they support lockless lookup (see below), vop_fplookup_vexec and
128  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
129  *   mount point
130  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
131  *   applicable
132  * - call cache_enter to add entries depending on the MAKEENTRY flag
133  *
134  * With the above in mind, there are 2 entry points when doing lookups:
135  * - ... -> namei -> cache_fplookup -- this is the default
136  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
137  *   should the above fail
138  *
139  * Example code flow how an entry is added:
140  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
141  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
142  *
143  * III. Performance considerations
144  *
145  * For lockless case forward lookup avoids any writes to shared areas apart
146  * from the terminal path component. In other words non-modifying lookups of
147  * different files don't suffer any scalability problems in the namecache.
148  * Looking up the same file is limited by VFS and goes beyond the scope of this
149  * file.
150  *
151  * At least on amd64 the single-threaded bottleneck for long paths is hashing
152  * (see cache_get_hash). There are cases where the code issues acquire fence
153  * multiple times, they can be combined on architectures which suffer from it.
154  *
155  * For locked case each encountered vnode has to be referenced and locked in
156  * order to be handed out to the caller (normally that's namei). This
157  * introduces significant hit single-threaded and serialization multi-threaded.
158  *
159  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
160  * avoids any writes to shared areas to any components.
161  *
162  * Unrelated insertions are partially serialized on updating the global entry
163  * counter and possibly serialized on colliding bucket or vnode locks.
164  *
165  * IV. Observability
166  *
167  * Note not everything has an explicit dtrace probe nor it should have, thus
168  * some of the one-liners below depend on implementation details.
169  *
170  * Examples:
171  *
172  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
173  * # line number, column 2 is status code (see cache_fpl_status)
174  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
175  *
176  * # Lengths of names added by binary name
177  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
178  *
179  * # Same as above but only those which exceed 64 characters
180  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
181  *
182  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
183  * # path is it
184  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
185  *
186  * V. Limitations and implementation defects
187  *
188  * - since it is possible there is no entry for an open file, tools like
189  *   "procstat" may fail to resolve fd -> vnode -> path to anything
190  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
191  *   shortage) in which case the above problem applies
192  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
193  *   way, resolving a name may return a different path than the one used to
194  *   open it (even if said path is still valid)
195  * - by default entries are not added for newly created files
196  * - adding an entry may need to evict negative entry first, which happens in 2
197  *   distinct places (evicting on lookup, adding in a later VOP) making it
198  *   impossible to simply reuse it
199  * - there is a simple scheme to evict negative entries as the cache is approaching
200  *   its capacity, but it is very unclear if doing so is a good idea to begin with
201  * - vnodes are subject to being recycled even if target inode is left in memory,
202  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
203  *   names get duplicated -- kept by filesystem itself and namecache separately
204  * - struct namecache has a fixed size and comes in 2 variants, often wasting space.
205  *   now hard to replace with malloc due to dependence on SMR.
206  * - lack of better integration with the kernel also turns nullfs into a layered
207  *   filesystem instead of something which can take advantage of caching
208  */
209 
210 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
211     "Name cache");
212 
213 SDT_PROVIDER_DECLARE(vfs);
214 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
215     "struct vnode *");
216 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
217     "struct vnode *");
218 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
219     "char *");
220 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
221     "const char *");
222 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
223     "struct namecache *", "int", "int");
224 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
225 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
226     "char *", "struct vnode *");
227 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
228 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
229     "struct vnode *", "char *");
230 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
231     "struct vnode *");
232 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
233     "struct vnode *", "char *");
234 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
235     "char *");
236 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
237     "struct componentname *");
238 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
239     "struct componentname *");
240 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
241 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
242 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
243 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
244 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
245     "struct vnode *");
246 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
247     "char *");
248 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
249     "char *");
250 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
251 
252 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
253 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
254 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
255 
256 static char __read_frequently cache_fast_lookup_enabled = true;
257 
258 /*
259  * This structure describes the elements in the cache of recent
260  * names looked up by namei.
261  */
262 struct negstate {
263 	u_char neg_flag;
264 	u_char neg_hit;
265 };
266 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
267     "the state must fit in a union with a pointer without growing it");
268 
269 struct	namecache {
270 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
271 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
272 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
273 	struct	vnode *nc_dvp;		/* vnode of parent of name */
274 	union {
275 		struct	vnode *nu_vp;	/* vnode the name refers to */
276 		struct	negstate nu_neg;/* negative entry state */
277 	} n_un;
278 	u_char	nc_flag;		/* flag bits */
279 	u_char	nc_nlen;		/* length of name */
280 	char	nc_name[0];		/* segment name + nul */
281 };
282 
283 /*
284  * struct namecache_ts repeats struct namecache layout up to the
285  * nc_nlen member.
286  * struct namecache_ts is used in place of struct namecache when time(s) need
287  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
288  * both a non-dotdot directory name plus dotdot for the directory's
289  * parent.
290  *
291  * See below for alignment requirement.
292  */
293 struct	namecache_ts {
294 	struct	timespec nc_time;	/* timespec provided by fs */
295 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
296 	int	nc_ticks;		/* ticks value when entry was added */
297 	int	nc_pad;
298 	struct namecache nc_nc;
299 };
300 
301 TAILQ_HEAD(cache_freebatch, namecache);
302 
303 /*
304  * At least mips n32 performs 64-bit accesses to timespec as found
305  * in namecache_ts and requires them to be aligned. Since others
306  * may be in the same spot suffer a little bit and enforce the
307  * alignment for everyone. Note this is a nop for 64-bit platforms.
308  */
309 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
310 
311 /*
312  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
313  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
314  * smaller and the value was bumped to retain the total size, but it
315  * was never re-evaluated for suitability. A simple test counting
316  * lengths during package building shows that the value of 45 covers
317  * about 86% of all added entries, reaching 99% at 65.
318  *
319  * Regardless of the above, use of dedicated zones instead of malloc may be
320  * inducing additional waste. This may be hard to address as said zones are
321  * tied to VFS SMR. Even if retaining them, the current split should be
322  * re-evaluated.
323  */
324 #ifdef __LP64__
325 #define	CACHE_PATH_CUTOFF	45
326 #define	CACHE_LARGE_PAD		6
327 #else
328 #define	CACHE_PATH_CUTOFF	41
329 #define	CACHE_LARGE_PAD		2
330 #endif
331 
332 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
333 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
334 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
335 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
336 
337 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
338 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
339 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
340 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
341 
342 #define	nc_vp		n_un.nu_vp
343 #define	nc_neg		n_un.nu_neg
344 
345 /*
346  * Flags in namecache.nc_flag
347  */
348 #define NCF_WHITE	0x01
349 #define NCF_ISDOTDOT	0x02
350 #define	NCF_TS		0x04
351 #define	NCF_DTS		0x08
352 #define	NCF_DVDROP	0x10
353 #define	NCF_NEGATIVE	0x20
354 #define	NCF_INVALID	0x40
355 #define	NCF_WIP		0x80
356 
357 /*
358  * Flags in negstate.neg_flag
359  */
360 #define NEG_HOT		0x01
361 
362 static bool	cache_neg_evict_cond(u_long lnumcache);
363 
364 /*
365  * Mark an entry as invalid.
366  *
367  * This is called before it starts getting deconstructed.
368  */
369 static void
370 cache_ncp_invalidate(struct namecache *ncp)
371 {
372 
373 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
374 	    ("%s: entry %p already invalid", __func__, ncp));
375 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
376 	atomic_thread_fence_rel();
377 }
378 
379 /*
380  * Check whether the entry can be safely used.
381  *
382  * All places which elide locks are supposed to call this after they are
383  * done with reading from an entry.
384  */
385 #define cache_ncp_canuse(ncp)	({					\
386 	struct namecache *_ncp = (ncp);					\
387 	u_char _nc_flag;						\
388 									\
389 	atomic_thread_fence_acq();					\
390 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
391 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
392 })
393 
394 /*
395  * Like the above but also checks NCF_WHITE.
396  */
397 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
398 	struct namecache *_ncp = (ncp);					\
399 	u_char _nc_flag;						\
400 									\
401 	atomic_thread_fence_acq();					\
402 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
403 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
404 })
405 
406 VFS_SMR_DECLARE;
407 
408 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
409     "Name cache parameters");
410 
411 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
412 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
413     "Total namecache capacity");
414 
415 u_int ncsizefactor = 2;
416 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
417     "Size factor for namecache");
418 
419 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
420 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
421     "Ratio of negative namecache entries");
422 
423 /*
424  * Negative entry % of namecache capacity above which automatic eviction is allowed.
425  *
426  * Check cache_neg_evict_cond for details.
427  */
428 static u_int ncnegminpct = 3;
429 
430 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
431 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
432     "Negative entry count above which automatic eviction is allowed");
433 
434 /*
435  * Structures associated with name caching.
436  */
437 #define NCHHASH(hash) \
438 	(&nchashtbl[(hash) & nchash])
439 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
440 static u_long __read_mostly	nchash;			/* size of hash table */
441 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
442     "Size of namecache hash table");
443 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
444 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
445 
446 struct nchstats	nchstats;		/* cache effectiveness statistics */
447 
448 static bool __read_mostly cache_rename_add = true;
449 SYSCTL_BOOL(_vfs, OID_AUTO, cache_rename_add, CTLFLAG_RW,
450     &cache_rename_add, 0, "");
451 
452 static u_int __exclusive_cache_line neg_cycle;
453 
454 #define ncneghash	3
455 #define	numneglists	(ncneghash + 1)
456 
457 struct neglist {
458 	struct mtx		nl_evict_lock;
459 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
460 	TAILQ_HEAD(, namecache) nl_list;
461 	TAILQ_HEAD(, namecache) nl_hotlist;
462 	u_long			nl_hotnum;
463 } __aligned(CACHE_LINE_SIZE);
464 
465 static struct neglist neglists[numneglists];
466 
467 static inline struct neglist *
468 NCP2NEGLIST(struct namecache *ncp)
469 {
470 
471 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
472 }
473 
474 static inline struct negstate *
475 NCP2NEGSTATE(struct namecache *ncp)
476 {
477 
478 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
479 	return (&ncp->nc_neg);
480 }
481 
482 #define	numbucketlocks (ncbuckethash + 1)
483 static u_int __read_mostly  ncbuckethash;
484 static struct mtx_padalign __read_mostly  *bucketlocks;
485 #define	HASH2BUCKETLOCK(hash) \
486 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
487 
488 #define	numvnodelocks (ncvnodehash + 1)
489 static u_int __read_mostly  ncvnodehash;
490 static struct mtx __read_mostly *vnodelocks;
491 static inline struct mtx *
492 VP2VNODELOCK(struct vnode *vp)
493 {
494 
495 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
496 }
497 
498 static void
499 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
500 {
501 	struct namecache_ts *ncp_ts;
502 
503 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
504 	    (tsp == NULL && ticksp == NULL),
505 	    ("No NCF_TS"));
506 
507 	if (tsp == NULL)
508 		return;
509 
510 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
511 	*tsp = ncp_ts->nc_time;
512 	*ticksp = ncp_ts->nc_ticks;
513 }
514 
515 #ifdef DEBUG_CACHE
516 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
517 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
518     "VFS namecache enabled");
519 #endif
520 
521 /* Export size information to userland */
522 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
523     sizeof(struct namecache), "sizeof(struct namecache)");
524 
525 /*
526  * The new name cache statistics
527  */
528 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
529     "Name cache statistics");
530 
531 #define STATNODE_ULONG(name, varname, descr)					\
532 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
533 #define STATNODE_COUNTER(name, varname, descr)					\
534 	static COUNTER_U64_DEFINE_EARLY(varname);				\
535 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
536 	    descr);
537 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
538 STATNODE_ULONG(count, numcache, "Number of cache entries");
539 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
540 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
541 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
542 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits");
543 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
544 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
545 STATNODE_COUNTER(posszaps, numposzaps,
546     "Number of cache hits (positive) we do not want to cache");
547 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
548 STATNODE_COUNTER(negzaps, numnegzaps,
549     "Number of cache hits (negative) we do not want to cache");
550 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
551 /* These count for vn_getcwd(), too. */
552 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
553 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
554 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
555     "Number of fullpath search errors (VOP_VPTOCNP failures)");
556 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
557 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
558 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
559 
560 /*
561  * Debug or developer statistics.
562  */
563 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
564     "Name cache debugging");
565 #define DEBUGNODE_ULONG(name, varname, descr)					\
566 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
567 #define DEBUGNODE_COUNTER(name, varname, descr)					\
568 	static COUNTER_U64_DEFINE_EARLY(varname);				\
569 	SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
570 	    descr);
571 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
572     "Number of successful removals after relocking");
573 static long zap_bucket_fail;
574 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
575 static long zap_bucket_fail2;
576 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
577 static long cache_lock_vnodes_cel_3_failures;
578 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
579     "Number of times 3-way vnode locking failed");
580 
581 static void cache_zap_locked(struct namecache *ncp);
582 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
583     char **retbuf, size_t *buflen, size_t addend);
584 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
585     char **retbuf, size_t *buflen);
586 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
587     char **retbuf, size_t *len, size_t addend);
588 
589 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
590 
591 static inline void
592 cache_assert_vlp_locked(struct mtx *vlp)
593 {
594 
595 	if (vlp != NULL)
596 		mtx_assert(vlp, MA_OWNED);
597 }
598 
599 static inline void
600 cache_assert_vnode_locked(struct vnode *vp)
601 {
602 	struct mtx *vlp;
603 
604 	vlp = VP2VNODELOCK(vp);
605 	cache_assert_vlp_locked(vlp);
606 }
607 
608 /*
609  * Directory vnodes with entries are held for two reasons:
610  * 1. make them less of a target for reclamation in vnlru
611  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
612  *
613  * It will be feasible to stop doing it altogether if all filesystems start
614  * supporting lockless lookup.
615  */
616 static void
617 cache_hold_vnode(struct vnode *vp)
618 {
619 
620 	cache_assert_vnode_locked(vp);
621 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
622 	vhold(vp);
623 	counter_u64_add(numcachehv, 1);
624 }
625 
626 static void
627 cache_drop_vnode(struct vnode *vp)
628 {
629 
630 	/*
631 	 * Called after all locks are dropped, meaning we can't assert
632 	 * on the state of v_cache_src.
633 	 */
634 	vdrop(vp);
635 	counter_u64_add(numcachehv, -1);
636 }
637 
638 /*
639  * UMA zones.
640  */
641 static uma_zone_t __read_mostly cache_zone_small;
642 static uma_zone_t __read_mostly cache_zone_small_ts;
643 static uma_zone_t __read_mostly cache_zone_large;
644 static uma_zone_t __read_mostly cache_zone_large_ts;
645 
646 char *
647 cache_symlink_alloc(size_t size, int flags)
648 {
649 
650 	if (size < CACHE_ZONE_SMALL_SIZE) {
651 		return (uma_zalloc_smr(cache_zone_small, flags));
652 	}
653 	if (size < CACHE_ZONE_LARGE_SIZE) {
654 		return (uma_zalloc_smr(cache_zone_large, flags));
655 	}
656 	counter_u64_add(symlinktoobig, 1);
657 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
658 	return (NULL);
659 }
660 
661 void
662 cache_symlink_free(char *string, size_t size)
663 {
664 
665 	MPASS(string != NULL);
666 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
667 	    ("%s: size %zu too big", __func__, size));
668 
669 	if (size < CACHE_ZONE_SMALL_SIZE) {
670 		uma_zfree_smr(cache_zone_small, string);
671 		return;
672 	}
673 	if (size < CACHE_ZONE_LARGE_SIZE) {
674 		uma_zfree_smr(cache_zone_large, string);
675 		return;
676 	}
677 	__assert_unreachable();
678 }
679 
680 static struct namecache *
681 cache_alloc_uma(int len, bool ts)
682 {
683 	struct namecache_ts *ncp_ts;
684 	struct namecache *ncp;
685 
686 	if (__predict_false(ts)) {
687 		if (len <= CACHE_PATH_CUTOFF)
688 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
689 		else
690 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
691 		ncp = &ncp_ts->nc_nc;
692 	} else {
693 		if (len <= CACHE_PATH_CUTOFF)
694 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
695 		else
696 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
697 	}
698 	return (ncp);
699 }
700 
701 static void
702 cache_free_uma(struct namecache *ncp)
703 {
704 	struct namecache_ts *ncp_ts;
705 
706 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
707 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
708 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
709 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
710 		else
711 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
712 	} else {
713 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
714 			uma_zfree_smr(cache_zone_small, ncp);
715 		else
716 			uma_zfree_smr(cache_zone_large, ncp);
717 	}
718 }
719 
720 static struct namecache *
721 cache_alloc(int len, bool ts)
722 {
723 	u_long lnumcache;
724 
725 	/*
726 	 * Avoid blowout in namecache entries.
727 	 *
728 	 * Bugs:
729 	 * 1. filesystems may end up trying to add an already existing entry
730 	 * (for example this can happen after a cache miss during concurrent
731 	 * lookup), in which case we will call cache_neg_evict despite not
732 	 * adding anything.
733 	 * 2. the routine may fail to free anything and no provisions are made
734 	 * to make it try harder (see the inside for failure modes)
735 	 * 3. it only ever looks at negative entries.
736 	 */
737 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
738 	if (cache_neg_evict_cond(lnumcache)) {
739 		lnumcache = atomic_load_long(&numcache);
740 	}
741 	if (__predict_false(lnumcache >= ncsize)) {
742 		atomic_subtract_long(&numcache, 1);
743 		counter_u64_add(numdrops, 1);
744 		return (NULL);
745 	}
746 	return (cache_alloc_uma(len, ts));
747 }
748 
749 static void
750 cache_free(struct namecache *ncp)
751 {
752 
753 	MPASS(ncp != NULL);
754 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
755 		cache_drop_vnode(ncp->nc_dvp);
756 	}
757 	cache_free_uma(ncp);
758 	atomic_subtract_long(&numcache, 1);
759 }
760 
761 static void
762 cache_free_batch(struct cache_freebatch *batch)
763 {
764 	struct namecache *ncp, *nnp;
765 	int i;
766 
767 	i = 0;
768 	if (TAILQ_EMPTY(batch))
769 		goto out;
770 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
771 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
772 			cache_drop_vnode(ncp->nc_dvp);
773 		}
774 		cache_free_uma(ncp);
775 		i++;
776 	}
777 	atomic_subtract_long(&numcache, i);
778 out:
779 	SDT_PROBE1(vfs, namecache, purge, batch, i);
780 }
781 
782 /*
783  * Hashing.
784  *
785  * The code was made to use FNV in 2001 and this choice needs to be revisited.
786  *
787  * Short summary of the difficulty:
788  * The longest name which can be inserted is NAME_MAX characters in length (or
789  * 255 at the time of writing this comment), while majority of names used in
790  * practice are significantly shorter (mostly below 10). More importantly
791  * majority of lookups performed find names are even shorter than that.
792  *
793  * This poses a problem where hashes which do better than FNV past word size
794  * (or so) tend to come with additional overhead when finalizing the result,
795  * making them noticeably slower for the most commonly used range.
796  *
797  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
798  *
799  * When looking it up the most time consuming part by a large margin (at least
800  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
801  * input would make the slowest part stand out even more.
802  */
803 
804 /*
805  * TODO: With the value stored we can do better than computing the hash based
806  * on the address.
807  */
808 static void
809 cache_prehash(struct vnode *vp)
810 {
811 
812 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
813 }
814 
815 static uint32_t
816 cache_get_hash(char *name, u_char len, struct vnode *dvp)
817 {
818 
819 	return (fnv_32_buf(name, len, dvp->v_nchash));
820 }
821 
822 static uint32_t
823 cache_get_hash_iter_start(struct vnode *dvp)
824 {
825 
826 	return (dvp->v_nchash);
827 }
828 
829 static uint32_t
830 cache_get_hash_iter(char c, uint32_t hash)
831 {
832 
833 	return (fnv_32_buf(&c, 1, hash));
834 }
835 
836 static uint32_t
837 cache_get_hash_iter_finish(uint32_t hash)
838 {
839 
840 	return (hash);
841 }
842 
843 static inline struct nchashhead *
844 NCP2BUCKET(struct namecache *ncp)
845 {
846 	uint32_t hash;
847 
848 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
849 	return (NCHHASH(hash));
850 }
851 
852 static inline struct mtx *
853 NCP2BUCKETLOCK(struct namecache *ncp)
854 {
855 	uint32_t hash;
856 
857 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
858 	return (HASH2BUCKETLOCK(hash));
859 }
860 
861 #ifdef INVARIANTS
862 static void
863 cache_assert_bucket_locked(struct namecache *ncp)
864 {
865 	struct mtx *blp;
866 
867 	blp = NCP2BUCKETLOCK(ncp);
868 	mtx_assert(blp, MA_OWNED);
869 }
870 
871 static void
872 cache_assert_bucket_unlocked(struct namecache *ncp)
873 {
874 	struct mtx *blp;
875 
876 	blp = NCP2BUCKETLOCK(ncp);
877 	mtx_assert(blp, MA_NOTOWNED);
878 }
879 #else
880 #define cache_assert_bucket_locked(x) do { } while (0)
881 #define cache_assert_bucket_unlocked(x) do { } while (0)
882 #endif
883 
884 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
885 static void
886 _cache_sort_vnodes(void **p1, void **p2)
887 {
888 	void *tmp;
889 
890 	MPASS(*p1 != NULL || *p2 != NULL);
891 
892 	if (*p1 > *p2) {
893 		tmp = *p2;
894 		*p2 = *p1;
895 		*p1 = tmp;
896 	}
897 }
898 
899 static void
900 cache_lock_all_buckets(void)
901 {
902 	u_int i;
903 
904 	for (i = 0; i < numbucketlocks; i++)
905 		mtx_lock(&bucketlocks[i]);
906 }
907 
908 static void
909 cache_unlock_all_buckets(void)
910 {
911 	u_int i;
912 
913 	for (i = 0; i < numbucketlocks; i++)
914 		mtx_unlock(&bucketlocks[i]);
915 }
916 
917 static void
918 cache_lock_all_vnodes(void)
919 {
920 	u_int i;
921 
922 	for (i = 0; i < numvnodelocks; i++)
923 		mtx_lock(&vnodelocks[i]);
924 }
925 
926 static void
927 cache_unlock_all_vnodes(void)
928 {
929 	u_int i;
930 
931 	for (i = 0; i < numvnodelocks; i++)
932 		mtx_unlock(&vnodelocks[i]);
933 }
934 
935 static int
936 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
937 {
938 
939 	cache_sort_vnodes(&vlp1, &vlp2);
940 
941 	if (vlp1 != NULL) {
942 		if (!mtx_trylock(vlp1))
943 			return (EAGAIN);
944 	}
945 	if (!mtx_trylock(vlp2)) {
946 		if (vlp1 != NULL)
947 			mtx_unlock(vlp1);
948 		return (EAGAIN);
949 	}
950 
951 	return (0);
952 }
953 
954 static void
955 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
956 {
957 
958 	MPASS(vlp1 != NULL || vlp2 != NULL);
959 	MPASS(vlp1 <= vlp2);
960 
961 	if (vlp1 != NULL)
962 		mtx_lock(vlp1);
963 	if (vlp2 != NULL)
964 		mtx_lock(vlp2);
965 }
966 
967 static void
968 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
969 {
970 
971 	MPASS(vlp1 != NULL || vlp2 != NULL);
972 
973 	if (vlp1 != NULL)
974 		mtx_unlock(vlp1);
975 	if (vlp2 != NULL)
976 		mtx_unlock(vlp2);
977 }
978 
979 static int
980 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
981 {
982 	struct nchstats snap;
983 
984 	if (req->oldptr == NULL)
985 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
986 
987 	snap = nchstats;
988 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
989 	snap.ncs_neghits = counter_u64_fetch(numneghits);
990 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
991 	    counter_u64_fetch(numnegzaps);
992 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
993 	    counter_u64_fetch(nummiss);
994 
995 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
996 }
997 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
998     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
999     "VFS cache effectiveness statistics");
1000 
1001 static void
1002 cache_recalc_neg_min(u_int val)
1003 {
1004 
1005 	neg_min = (ncsize * val) / 100;
1006 }
1007 
1008 static int
1009 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1010 {
1011 	u_int val;
1012 	int error;
1013 
1014 	val = ncnegminpct;
1015 	error = sysctl_handle_int(oidp, &val, 0, req);
1016 	if (error != 0 || req->newptr == NULL)
1017 		return (error);
1018 
1019 	if (val == ncnegminpct)
1020 		return (0);
1021 	if (val < 0 || val > 99)
1022 		return (EINVAL);
1023 	ncnegminpct = val;
1024 	cache_recalc_neg_min(val);
1025 	return (0);
1026 }
1027 
1028 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1029     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1030     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1031 
1032 #ifdef DIAGNOSTIC
1033 /*
1034  * Grab an atomic snapshot of the name cache hash chain lengths
1035  */
1036 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1037     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1038     "hash table stats");
1039 
1040 static int
1041 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1042 {
1043 	struct nchashhead *ncpp;
1044 	struct namecache *ncp;
1045 	int i, error, n_nchash, *cntbuf;
1046 
1047 retry:
1048 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1049 	if (req->oldptr == NULL)
1050 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1051 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1052 	cache_lock_all_buckets();
1053 	if (n_nchash != nchash + 1) {
1054 		cache_unlock_all_buckets();
1055 		free(cntbuf, M_TEMP);
1056 		goto retry;
1057 	}
1058 	/* Scan hash tables counting entries */
1059 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1060 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1061 			cntbuf[i]++;
1062 	cache_unlock_all_buckets();
1063 	for (error = 0, i = 0; i < n_nchash; i++)
1064 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1065 			break;
1066 	free(cntbuf, M_TEMP);
1067 	return (error);
1068 }
1069 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1070     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1071     "nchash chain lengths");
1072 
1073 static int
1074 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1075 {
1076 	int error;
1077 	struct nchashhead *ncpp;
1078 	struct namecache *ncp;
1079 	int n_nchash;
1080 	int count, maxlength, used, pct;
1081 
1082 	if (!req->oldptr)
1083 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1084 
1085 	cache_lock_all_buckets();
1086 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1087 	used = 0;
1088 	maxlength = 0;
1089 
1090 	/* Scan hash tables for applicable entries */
1091 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1092 		count = 0;
1093 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1094 			count++;
1095 		}
1096 		if (count)
1097 			used++;
1098 		if (maxlength < count)
1099 			maxlength = count;
1100 	}
1101 	n_nchash = nchash + 1;
1102 	cache_unlock_all_buckets();
1103 	pct = (used * 100) / (n_nchash / 100);
1104 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1105 	if (error)
1106 		return (error);
1107 	error = SYSCTL_OUT(req, &used, sizeof(used));
1108 	if (error)
1109 		return (error);
1110 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1111 	if (error)
1112 		return (error);
1113 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1114 	if (error)
1115 		return (error);
1116 	return (0);
1117 }
1118 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1119     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1120     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1121 #endif
1122 
1123 /*
1124  * Negative entries management
1125  *
1126  * Various workloads create plenty of negative entries and barely use them
1127  * afterwards. Moreover malicious users can keep performing bogus lookups
1128  * adding even more entries. For example "make tinderbox" as of writing this
1129  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1130  * negative.
1131  *
1132  * As such, a rather aggressive eviction method is needed. The currently
1133  * employed method is a placeholder.
1134  *
1135  * Entries are split over numneglists separate lists, each of which is further
1136  * split into hot and cold entries. Entries get promoted after getting a hit.
1137  * Eviction happens on addition of new entry.
1138  */
1139 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1140     "Name cache negative entry statistics");
1141 
1142 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1143     "Number of negative cache entries");
1144 
1145 static COUNTER_U64_DEFINE_EARLY(neg_created);
1146 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1147     "Number of created negative entries");
1148 
1149 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1150 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1151     "Number of evicted negative entries");
1152 
1153 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1154 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1155     &neg_evict_skipped_empty,
1156     "Number of times evicting failed due to lack of entries");
1157 
1158 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1159 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1160     &neg_evict_skipped_missed,
1161     "Number of times evicting failed due to target entry disappearing");
1162 
1163 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1164 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1165     &neg_evict_skipped_contended,
1166     "Number of times evicting failed due to contention");
1167 
1168 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1169     "Number of cache hits (negative)");
1170 
1171 static int
1172 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1173 {
1174 	int i, out;
1175 
1176 	out = 0;
1177 	for (i = 0; i < numneglists; i++)
1178 		out += neglists[i].nl_hotnum;
1179 
1180 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1181 }
1182 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1183     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1184     "Number of hot negative entries");
1185 
1186 static void
1187 cache_neg_init(struct namecache *ncp)
1188 {
1189 	struct negstate *ns;
1190 
1191 	ncp->nc_flag |= NCF_NEGATIVE;
1192 	ns = NCP2NEGSTATE(ncp);
1193 	ns->neg_flag = 0;
1194 	ns->neg_hit = 0;
1195 	counter_u64_add(neg_created, 1);
1196 }
1197 
1198 #define CACHE_NEG_PROMOTION_THRESH 2
1199 
1200 static bool
1201 cache_neg_hit_prep(struct namecache *ncp)
1202 {
1203 	struct negstate *ns;
1204 	u_char n;
1205 
1206 	ns = NCP2NEGSTATE(ncp);
1207 	n = atomic_load_char(&ns->neg_hit);
1208 	for (;;) {
1209 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1210 			return (false);
1211 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1212 			break;
1213 	}
1214 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1215 }
1216 
1217 /*
1218  * Nothing to do here but it is provided for completeness as some
1219  * cache_neg_hit_prep callers may end up returning without even
1220  * trying to promote.
1221  */
1222 #define cache_neg_hit_abort(ncp)	do { } while (0)
1223 
1224 static void
1225 cache_neg_hit_finish(struct namecache *ncp)
1226 {
1227 
1228 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1229 	counter_u64_add(numneghits, 1);
1230 }
1231 
1232 /*
1233  * Move a negative entry to the hot list.
1234  */
1235 static void
1236 cache_neg_promote_locked(struct namecache *ncp)
1237 {
1238 	struct neglist *nl;
1239 	struct negstate *ns;
1240 
1241 	ns = NCP2NEGSTATE(ncp);
1242 	nl = NCP2NEGLIST(ncp);
1243 	mtx_assert(&nl->nl_lock, MA_OWNED);
1244 	if ((ns->neg_flag & NEG_HOT) == 0) {
1245 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1246 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1247 		nl->nl_hotnum++;
1248 		ns->neg_flag |= NEG_HOT;
1249 	}
1250 }
1251 
1252 /*
1253  * Move a hot negative entry to the cold list.
1254  */
1255 static void
1256 cache_neg_demote_locked(struct namecache *ncp)
1257 {
1258 	struct neglist *nl;
1259 	struct negstate *ns;
1260 
1261 	ns = NCP2NEGSTATE(ncp);
1262 	nl = NCP2NEGLIST(ncp);
1263 	mtx_assert(&nl->nl_lock, MA_OWNED);
1264 	MPASS(ns->neg_flag & NEG_HOT);
1265 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1266 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1267 	nl->nl_hotnum--;
1268 	ns->neg_flag &= ~NEG_HOT;
1269 	atomic_store_char(&ns->neg_hit, 0);
1270 }
1271 
1272 /*
1273  * Move a negative entry to the hot list if it matches the lookup.
1274  *
1275  * We have to take locks, but they may be contended and in the worst
1276  * case we may need to go off CPU. We don't want to spin within the
1277  * smr section and we can't block with it. Exiting the section means
1278  * the found entry could have been evicted. We are going to look it
1279  * up again.
1280  */
1281 static bool
1282 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1283     struct namecache *oncp, uint32_t hash)
1284 {
1285 	struct namecache *ncp;
1286 	struct neglist *nl;
1287 	u_char nc_flag;
1288 
1289 	nl = NCP2NEGLIST(oncp);
1290 
1291 	mtx_lock(&nl->nl_lock);
1292 	/*
1293 	 * For hash iteration.
1294 	 */
1295 	vfs_smr_enter();
1296 
1297 	/*
1298 	 * Avoid all surprises by only succeeding if we got the same entry and
1299 	 * bailing completely otherwise.
1300 	 * XXX There are no provisions to keep the vnode around, meaning we may
1301 	 * end up promoting a negative entry for a *new* vnode and returning
1302 	 * ENOENT on its account. This is the error we want to return anyway
1303 	 * and promotion is harmless.
1304 	 *
1305 	 * In particular at this point there can be a new ncp which matches the
1306 	 * search but hashes to a different neglist.
1307 	 */
1308 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1309 		if (ncp == oncp)
1310 			break;
1311 	}
1312 
1313 	/*
1314 	 * No match to begin with.
1315 	 */
1316 	if (__predict_false(ncp == NULL)) {
1317 		goto out_abort;
1318 	}
1319 
1320 	/*
1321 	 * The newly found entry may be something different...
1322 	 */
1323 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1324 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1325 		goto out_abort;
1326 	}
1327 
1328 	/*
1329 	 * ... and not even negative.
1330 	 */
1331 	nc_flag = atomic_load_char(&ncp->nc_flag);
1332 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1333 		goto out_abort;
1334 	}
1335 
1336 	if (!cache_ncp_canuse(ncp)) {
1337 		goto out_abort;
1338 	}
1339 
1340 	cache_neg_promote_locked(ncp);
1341 	cache_neg_hit_finish(ncp);
1342 	vfs_smr_exit();
1343 	mtx_unlock(&nl->nl_lock);
1344 	return (true);
1345 out_abort:
1346 	vfs_smr_exit();
1347 	mtx_unlock(&nl->nl_lock);
1348 	return (false);
1349 }
1350 
1351 static void
1352 cache_neg_promote(struct namecache *ncp)
1353 {
1354 	struct neglist *nl;
1355 
1356 	nl = NCP2NEGLIST(ncp);
1357 	mtx_lock(&nl->nl_lock);
1358 	cache_neg_promote_locked(ncp);
1359 	mtx_unlock(&nl->nl_lock);
1360 }
1361 
1362 static void
1363 cache_neg_insert(struct namecache *ncp)
1364 {
1365 	struct neglist *nl;
1366 
1367 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1368 	cache_assert_bucket_locked(ncp);
1369 	nl = NCP2NEGLIST(ncp);
1370 	mtx_lock(&nl->nl_lock);
1371 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1372 	mtx_unlock(&nl->nl_lock);
1373 	atomic_add_long(&numneg, 1);
1374 }
1375 
1376 static void
1377 cache_neg_remove(struct namecache *ncp)
1378 {
1379 	struct neglist *nl;
1380 	struct negstate *ns;
1381 
1382 	cache_assert_bucket_locked(ncp);
1383 	nl = NCP2NEGLIST(ncp);
1384 	ns = NCP2NEGSTATE(ncp);
1385 	mtx_lock(&nl->nl_lock);
1386 	if ((ns->neg_flag & NEG_HOT) != 0) {
1387 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1388 		nl->nl_hotnum--;
1389 	} else {
1390 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1391 	}
1392 	mtx_unlock(&nl->nl_lock);
1393 	atomic_subtract_long(&numneg, 1);
1394 }
1395 
1396 static struct neglist *
1397 cache_neg_evict_select_list(void)
1398 {
1399 	struct neglist *nl;
1400 	u_int c;
1401 
1402 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1403 	nl = &neglists[c % numneglists];
1404 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1405 		counter_u64_add(neg_evict_skipped_contended, 1);
1406 		return (NULL);
1407 	}
1408 	return (nl);
1409 }
1410 
1411 static struct namecache *
1412 cache_neg_evict_select_entry(struct neglist *nl)
1413 {
1414 	struct namecache *ncp, *lncp;
1415 	struct negstate *ns, *lns;
1416 	int i;
1417 
1418 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1419 	mtx_assert(&nl->nl_lock, MA_OWNED);
1420 	ncp = TAILQ_FIRST(&nl->nl_list);
1421 	if (ncp == NULL)
1422 		return (NULL);
1423 	lncp = ncp;
1424 	lns = NCP2NEGSTATE(lncp);
1425 	for (i = 1; i < 4; i++) {
1426 		ncp = TAILQ_NEXT(ncp, nc_dst);
1427 		if (ncp == NULL)
1428 			break;
1429 		ns = NCP2NEGSTATE(ncp);
1430 		if (ns->neg_hit < lns->neg_hit) {
1431 			lncp = ncp;
1432 			lns = ns;
1433 		}
1434 	}
1435 	return (lncp);
1436 }
1437 
1438 static bool
1439 cache_neg_evict(void)
1440 {
1441 	struct namecache *ncp, *ncp2;
1442 	struct neglist *nl;
1443 	struct vnode *dvp;
1444 	struct mtx *dvlp;
1445 	struct mtx *blp;
1446 	uint32_t hash;
1447 	u_char nlen;
1448 	bool evicted;
1449 
1450 	nl = cache_neg_evict_select_list();
1451 	if (nl == NULL) {
1452 		return (false);
1453 	}
1454 
1455 	mtx_lock(&nl->nl_lock);
1456 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1457 	if (ncp != NULL) {
1458 		cache_neg_demote_locked(ncp);
1459 	}
1460 	ncp = cache_neg_evict_select_entry(nl);
1461 	if (ncp == NULL) {
1462 		counter_u64_add(neg_evict_skipped_empty, 1);
1463 		mtx_unlock(&nl->nl_lock);
1464 		mtx_unlock(&nl->nl_evict_lock);
1465 		return (false);
1466 	}
1467 	nlen = ncp->nc_nlen;
1468 	dvp = ncp->nc_dvp;
1469 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1470 	dvlp = VP2VNODELOCK(dvp);
1471 	blp = HASH2BUCKETLOCK(hash);
1472 	mtx_unlock(&nl->nl_lock);
1473 	mtx_unlock(&nl->nl_evict_lock);
1474 	mtx_lock(dvlp);
1475 	mtx_lock(blp);
1476 	/*
1477 	 * Note that since all locks were dropped above, the entry may be
1478 	 * gone or reallocated to be something else.
1479 	 */
1480 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1481 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1482 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1483 			break;
1484 	}
1485 	if (ncp2 == NULL) {
1486 		counter_u64_add(neg_evict_skipped_missed, 1);
1487 		ncp = NULL;
1488 		evicted = false;
1489 	} else {
1490 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1491 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1492 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1493 		    ncp->nc_name);
1494 		cache_zap_locked(ncp);
1495 		counter_u64_add(neg_evicted, 1);
1496 		evicted = true;
1497 	}
1498 	mtx_unlock(blp);
1499 	mtx_unlock(dvlp);
1500 	if (ncp != NULL)
1501 		cache_free(ncp);
1502 	return (evicted);
1503 }
1504 
1505 /*
1506  * Maybe evict a negative entry to create more room.
1507  *
1508  * The ncnegfactor parameter limits what fraction of the total count
1509  * can comprise of negative entries. However, if the cache is just
1510  * warming up this leads to excessive evictions.  As such, ncnegminpct
1511  * (recomputed to neg_min) dictates whether the above should be
1512  * applied.
1513  *
1514  * Try evicting if the cache is close to full capacity regardless of
1515  * other considerations.
1516  */
1517 static bool
1518 cache_neg_evict_cond(u_long lnumcache)
1519 {
1520 	u_long lnumneg;
1521 
1522 	if (ncsize - 1000 < lnumcache)
1523 		goto out_evict;
1524 	lnumneg = atomic_load_long(&numneg);
1525 	if (lnumneg < neg_min)
1526 		return (false);
1527 	if (lnumneg * ncnegfactor < lnumcache)
1528 		return (false);
1529 out_evict:
1530 	return (cache_neg_evict());
1531 }
1532 
1533 /*
1534  * cache_zap_locked():
1535  *
1536  *   Removes a namecache entry from cache, whether it contains an actual
1537  *   pointer to a vnode or if it is just a negative cache entry.
1538  */
1539 static void
1540 cache_zap_locked(struct namecache *ncp)
1541 {
1542 	struct nchashhead *ncpp;
1543 	struct vnode *dvp, *vp;
1544 
1545 	dvp = ncp->nc_dvp;
1546 	vp = ncp->nc_vp;
1547 
1548 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1549 		cache_assert_vnode_locked(vp);
1550 	cache_assert_vnode_locked(dvp);
1551 	cache_assert_bucket_locked(ncp);
1552 
1553 	cache_ncp_invalidate(ncp);
1554 
1555 	ncpp = NCP2BUCKET(ncp);
1556 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1557 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1558 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1559 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1560 		if (ncp == vp->v_cache_dd) {
1561 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1562 		}
1563 	} else {
1564 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1565 		cache_neg_remove(ncp);
1566 	}
1567 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1568 		if (ncp == dvp->v_cache_dd) {
1569 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1570 		}
1571 	} else {
1572 		LIST_REMOVE(ncp, nc_src);
1573 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1574 			ncp->nc_flag |= NCF_DVDROP;
1575 		}
1576 	}
1577 }
1578 
1579 static void
1580 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1581 {
1582 	struct mtx *blp;
1583 
1584 	MPASS(ncp->nc_dvp == vp);
1585 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1586 	cache_assert_vnode_locked(vp);
1587 
1588 	blp = NCP2BUCKETLOCK(ncp);
1589 	mtx_lock(blp);
1590 	cache_zap_locked(ncp);
1591 	mtx_unlock(blp);
1592 }
1593 
1594 static bool
1595 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1596     struct mtx **vlpp)
1597 {
1598 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1599 	struct mtx *blp;
1600 
1601 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1602 	cache_assert_vnode_locked(vp);
1603 
1604 	if (ncp->nc_flag & NCF_NEGATIVE) {
1605 		if (*vlpp != NULL) {
1606 			mtx_unlock(*vlpp);
1607 			*vlpp = NULL;
1608 		}
1609 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1610 		return (true);
1611 	}
1612 
1613 	pvlp = VP2VNODELOCK(vp);
1614 	blp = NCP2BUCKETLOCK(ncp);
1615 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1616 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1617 
1618 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1619 		to_unlock = *vlpp;
1620 		*vlpp = NULL;
1621 	} else {
1622 		if (*vlpp != NULL) {
1623 			mtx_unlock(*vlpp);
1624 			*vlpp = NULL;
1625 		}
1626 		cache_sort_vnodes(&vlp1, &vlp2);
1627 		if (vlp1 == pvlp) {
1628 			mtx_lock(vlp2);
1629 			to_unlock = vlp2;
1630 		} else {
1631 			if (!mtx_trylock(vlp1))
1632 				goto out_relock;
1633 			to_unlock = vlp1;
1634 		}
1635 	}
1636 	mtx_lock(blp);
1637 	cache_zap_locked(ncp);
1638 	mtx_unlock(blp);
1639 	if (to_unlock != NULL)
1640 		mtx_unlock(to_unlock);
1641 	return (true);
1642 
1643 out_relock:
1644 	mtx_unlock(vlp2);
1645 	mtx_lock(vlp1);
1646 	mtx_lock(vlp2);
1647 	MPASS(*vlpp == NULL);
1648 	*vlpp = vlp1;
1649 	return (false);
1650 }
1651 
1652 /*
1653  * If trylocking failed we can get here. We know enough to take all needed locks
1654  * in the right order and re-lookup the entry.
1655  */
1656 static int
1657 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1658     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1659     struct mtx *blp)
1660 {
1661 	struct namecache *rncp;
1662 
1663 	cache_assert_bucket_unlocked(ncp);
1664 
1665 	cache_sort_vnodes(&dvlp, &vlp);
1666 	cache_lock_vnodes(dvlp, vlp);
1667 	mtx_lock(blp);
1668 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1669 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1670 		    rncp->nc_nlen == cnp->cn_namelen &&
1671 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1672 			break;
1673 	}
1674 	if (rncp != NULL) {
1675 		cache_zap_locked(rncp);
1676 		mtx_unlock(blp);
1677 		cache_unlock_vnodes(dvlp, vlp);
1678 		counter_u64_add(zap_bucket_relock_success, 1);
1679 		return (0);
1680 	}
1681 
1682 	mtx_unlock(blp);
1683 	cache_unlock_vnodes(dvlp, vlp);
1684 	return (EAGAIN);
1685 }
1686 
1687 static int __noinline
1688 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1689     uint32_t hash, struct mtx *blp)
1690 {
1691 	struct mtx *dvlp, *vlp;
1692 	struct vnode *dvp;
1693 
1694 	cache_assert_bucket_locked(ncp);
1695 
1696 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1697 	vlp = NULL;
1698 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1699 		vlp = VP2VNODELOCK(ncp->nc_vp);
1700 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1701 		cache_zap_locked(ncp);
1702 		mtx_unlock(blp);
1703 		cache_unlock_vnodes(dvlp, vlp);
1704 		return (0);
1705 	}
1706 
1707 	dvp = ncp->nc_dvp;
1708 	mtx_unlock(blp);
1709 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1710 }
1711 
1712 static __noinline int
1713 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1714 {
1715 	struct namecache *ncp;
1716 	struct mtx *blp;
1717 	struct mtx *dvlp, *dvlp2;
1718 	uint32_t hash;
1719 	int error;
1720 
1721 	if (cnp->cn_namelen == 2 &&
1722 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1723 		dvlp = VP2VNODELOCK(dvp);
1724 		dvlp2 = NULL;
1725 		mtx_lock(dvlp);
1726 retry_dotdot:
1727 		ncp = dvp->v_cache_dd;
1728 		if (ncp == NULL) {
1729 			mtx_unlock(dvlp);
1730 			if (dvlp2 != NULL)
1731 				mtx_unlock(dvlp2);
1732 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1733 			return (0);
1734 		}
1735 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1736 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1737 				goto retry_dotdot;
1738 			MPASS(dvp->v_cache_dd == NULL);
1739 			mtx_unlock(dvlp);
1740 			if (dvlp2 != NULL)
1741 				mtx_unlock(dvlp2);
1742 			cache_free(ncp);
1743 		} else {
1744 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1745 			mtx_unlock(dvlp);
1746 			if (dvlp2 != NULL)
1747 				mtx_unlock(dvlp2);
1748 		}
1749 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1750 		return (1);
1751 	}
1752 
1753 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1754 	blp = HASH2BUCKETLOCK(hash);
1755 retry:
1756 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1757 		goto out_no_entry;
1758 
1759 	mtx_lock(blp);
1760 
1761 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1762 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1763 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1764 			break;
1765 	}
1766 
1767 	if (ncp == NULL) {
1768 		mtx_unlock(blp);
1769 		goto out_no_entry;
1770 	}
1771 
1772 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1773 	if (__predict_false(error != 0)) {
1774 		zap_bucket_fail++;
1775 		goto retry;
1776 	}
1777 	counter_u64_add(numposzaps, 1);
1778 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1779 	cache_free(ncp);
1780 	return (1);
1781 out_no_entry:
1782 	counter_u64_add(nummisszap, 1);
1783 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1784 	return (0);
1785 }
1786 
1787 static int __noinline
1788 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1789     struct timespec *tsp, int *ticksp)
1790 {
1791 	int ltype;
1792 
1793 	*vpp = dvp;
1794 	counter_u64_add(dothits, 1);
1795 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1796 	if (tsp != NULL)
1797 		timespecclear(tsp);
1798 	if (ticksp != NULL)
1799 		*ticksp = ticks;
1800 	vrefact(*vpp);
1801 	/*
1802 	 * When we lookup "." we still can be asked to lock it
1803 	 * differently...
1804 	 */
1805 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1806 	if (ltype != VOP_ISLOCKED(*vpp)) {
1807 		if (ltype == LK_EXCLUSIVE) {
1808 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1809 			if (VN_IS_DOOMED((*vpp))) {
1810 				/* forced unmount */
1811 				vrele(*vpp);
1812 				*vpp = NULL;
1813 				return (ENOENT);
1814 			}
1815 		} else
1816 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1817 	}
1818 	return (-1);
1819 }
1820 
1821 static int __noinline
1822 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1823     struct timespec *tsp, int *ticksp)
1824 {
1825 	struct namecache_ts *ncp_ts;
1826 	struct namecache *ncp;
1827 	struct mtx *dvlp;
1828 	enum vgetstate vs;
1829 	int error, ltype;
1830 	bool whiteout;
1831 
1832 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1833 
1834 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1835 		cache_remove_cnp(dvp, cnp);
1836 		return (0);
1837 	}
1838 
1839 	counter_u64_add(dotdothits, 1);
1840 retry:
1841 	dvlp = VP2VNODELOCK(dvp);
1842 	mtx_lock(dvlp);
1843 	ncp = dvp->v_cache_dd;
1844 	if (ncp == NULL) {
1845 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1846 		mtx_unlock(dvlp);
1847 		return (0);
1848 	}
1849 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1850 		if (ncp->nc_flag & NCF_NEGATIVE)
1851 			*vpp = NULL;
1852 		else
1853 			*vpp = ncp->nc_vp;
1854 	} else
1855 		*vpp = ncp->nc_dvp;
1856 	if (*vpp == NULL)
1857 		goto negative_success;
1858 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1859 	cache_out_ts(ncp, tsp, ticksp);
1860 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1861 	    NCF_DTS && tsp != NULL) {
1862 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1863 		*tsp = ncp_ts->nc_dotdottime;
1864 	}
1865 
1866 	MPASS(dvp != *vpp);
1867 	ltype = VOP_ISLOCKED(dvp);
1868 	VOP_UNLOCK(dvp);
1869 	vs = vget_prep(*vpp);
1870 	mtx_unlock(dvlp);
1871 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1872 	vn_lock(dvp, ltype | LK_RETRY);
1873 	if (VN_IS_DOOMED(dvp)) {
1874 		if (error == 0)
1875 			vput(*vpp);
1876 		*vpp = NULL;
1877 		return (ENOENT);
1878 	}
1879 	if (error) {
1880 		*vpp = NULL;
1881 		goto retry;
1882 	}
1883 	return (-1);
1884 negative_success:
1885 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1886 		if (cnp->cn_flags & ISLASTCN) {
1887 			counter_u64_add(numnegzaps, 1);
1888 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1889 			mtx_unlock(dvlp);
1890 			cache_free(ncp);
1891 			return (0);
1892 		}
1893 	}
1894 
1895 	whiteout = (ncp->nc_flag & NCF_WHITE);
1896 	cache_out_ts(ncp, tsp, ticksp);
1897 	if (cache_neg_hit_prep(ncp))
1898 		cache_neg_promote(ncp);
1899 	else
1900 		cache_neg_hit_finish(ncp);
1901 	mtx_unlock(dvlp);
1902 	if (whiteout)
1903 		cnp->cn_flags |= ISWHITEOUT;
1904 	return (ENOENT);
1905 }
1906 
1907 /**
1908  * Lookup a name in the name cache
1909  *
1910  * # Arguments
1911  *
1912  * - dvp:	Parent directory in which to search.
1913  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1914  * - cnp:	Parameters of the name search.  The most interesting bits of
1915  *   		the cn_flags field have the following meanings:
1916  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1917  *   			it up.
1918  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1919  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1920  *   		or negative) lookup, tsp will be filled with any timespec that
1921  *   		was stored when this cache entry was created.  However, it will
1922  *   		be clear for "." entries.
1923  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1924  *   		(positive or negative) lookup, it will contain the ticks value
1925  *   		that was current when the cache entry was created, unless cnp
1926  *   		was ".".
1927  *
1928  * Either both tsp and ticks have to be provided or neither of them.
1929  *
1930  * # Returns
1931  *
1932  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1933  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1934  *		to a forced unmount.  vpp will not be modified.  If the entry
1935  *		is a whiteout, then the ISWHITEOUT flag will be set in
1936  *		cnp->cn_flags.
1937  * - 0:		A cache miss.  vpp will not be modified.
1938  *
1939  * # Locking
1940  *
1941  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1942  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1943  * lock is not recursively acquired.
1944  */
1945 static int __noinline
1946 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1947     struct timespec *tsp, int *ticksp)
1948 {
1949 	struct namecache *ncp;
1950 	struct mtx *blp;
1951 	uint32_t hash;
1952 	enum vgetstate vs;
1953 	int error;
1954 	bool whiteout;
1955 
1956 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1957 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1958 
1959 retry:
1960 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1961 	blp = HASH2BUCKETLOCK(hash);
1962 	mtx_lock(blp);
1963 
1964 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1965 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1966 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1967 			break;
1968 	}
1969 
1970 	if (__predict_false(ncp == NULL)) {
1971 		mtx_unlock(blp);
1972 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
1973 		counter_u64_add(nummiss, 1);
1974 		return (0);
1975 	}
1976 
1977 	if (ncp->nc_flag & NCF_NEGATIVE)
1978 		goto negative_success;
1979 
1980 	counter_u64_add(numposhits, 1);
1981 	*vpp = ncp->nc_vp;
1982 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1983 	cache_out_ts(ncp, tsp, ticksp);
1984 	MPASS(dvp != *vpp);
1985 	vs = vget_prep(*vpp);
1986 	mtx_unlock(blp);
1987 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1988 	if (error) {
1989 		*vpp = NULL;
1990 		goto retry;
1991 	}
1992 	return (-1);
1993 negative_success:
1994 	/*
1995 	 * We don't get here with regular lookup apart from corner cases.
1996 	 */
1997 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
1998 		if (cnp->cn_flags & ISLASTCN) {
1999 			counter_u64_add(numnegzaps, 1);
2000 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2001 			if (__predict_false(error != 0)) {
2002 				zap_bucket_fail2++;
2003 				goto retry;
2004 			}
2005 			cache_free(ncp);
2006 			return (0);
2007 		}
2008 	}
2009 
2010 	whiteout = (ncp->nc_flag & NCF_WHITE);
2011 	cache_out_ts(ncp, tsp, ticksp);
2012 	if (cache_neg_hit_prep(ncp))
2013 		cache_neg_promote(ncp);
2014 	else
2015 		cache_neg_hit_finish(ncp);
2016 	mtx_unlock(blp);
2017 	if (whiteout)
2018 		cnp->cn_flags |= ISWHITEOUT;
2019 	return (ENOENT);
2020 }
2021 
2022 int
2023 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2024     struct timespec *tsp, int *ticksp)
2025 {
2026 	struct namecache *ncp;
2027 	uint32_t hash;
2028 	enum vgetstate vs;
2029 	int error;
2030 	bool whiteout, neg_promote;
2031 	u_short nc_flag;
2032 
2033 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2034 
2035 #ifdef DEBUG_CACHE
2036 	if (__predict_false(!doingcache)) {
2037 		cnp->cn_flags &= ~MAKEENTRY;
2038 		return (0);
2039 	}
2040 #endif
2041 
2042 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2043 		if (cnp->cn_namelen == 1)
2044 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2045 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2046 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2047 	}
2048 
2049 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2050 
2051 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2052 		cache_remove_cnp(dvp, cnp);
2053 		return (0);
2054 	}
2055 
2056 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2057 	vfs_smr_enter();
2058 
2059 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2060 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2061 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2062 			break;
2063 	}
2064 
2065 	if (__predict_false(ncp == NULL)) {
2066 		vfs_smr_exit();
2067 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2068 		counter_u64_add(nummiss, 1);
2069 		return (0);
2070 	}
2071 
2072 	nc_flag = atomic_load_char(&ncp->nc_flag);
2073 	if (nc_flag & NCF_NEGATIVE)
2074 		goto negative_success;
2075 
2076 	counter_u64_add(numposhits, 1);
2077 	*vpp = ncp->nc_vp;
2078 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2079 	cache_out_ts(ncp, tsp, ticksp);
2080 	MPASS(dvp != *vpp);
2081 	if (!cache_ncp_canuse(ncp)) {
2082 		vfs_smr_exit();
2083 		*vpp = NULL;
2084 		goto out_fallback;
2085 	}
2086 	vs = vget_prep_smr(*vpp);
2087 	vfs_smr_exit();
2088 	if (__predict_false(vs == VGET_NONE)) {
2089 		*vpp = NULL;
2090 		goto out_fallback;
2091 	}
2092 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2093 	if (error) {
2094 		*vpp = NULL;
2095 		goto out_fallback;
2096 	}
2097 	return (-1);
2098 negative_success:
2099 	if (cnp->cn_nameiop == CREATE) {
2100 		if (cnp->cn_flags & ISLASTCN) {
2101 			vfs_smr_exit();
2102 			goto out_fallback;
2103 		}
2104 	}
2105 
2106 	cache_out_ts(ncp, tsp, ticksp);
2107 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2108 	neg_promote = cache_neg_hit_prep(ncp);
2109 	if (!cache_ncp_canuse(ncp)) {
2110 		cache_neg_hit_abort(ncp);
2111 		vfs_smr_exit();
2112 		goto out_fallback;
2113 	}
2114 	if (neg_promote) {
2115 		vfs_smr_exit();
2116 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2117 			goto out_fallback;
2118 	} else {
2119 		cache_neg_hit_finish(ncp);
2120 		vfs_smr_exit();
2121 	}
2122 	if (whiteout)
2123 		cnp->cn_flags |= ISWHITEOUT;
2124 	return (ENOENT);
2125 out_fallback:
2126 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2127 }
2128 
2129 struct celockstate {
2130 	struct mtx *vlp[3];
2131 	struct mtx *blp[2];
2132 };
2133 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2134 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2135 
2136 static inline void
2137 cache_celockstate_init(struct celockstate *cel)
2138 {
2139 
2140 	bzero(cel, sizeof(*cel));
2141 }
2142 
2143 static void
2144 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2145     struct vnode *dvp)
2146 {
2147 	struct mtx *vlp1, *vlp2;
2148 
2149 	MPASS(cel->vlp[0] == NULL);
2150 	MPASS(cel->vlp[1] == NULL);
2151 	MPASS(cel->vlp[2] == NULL);
2152 
2153 	MPASS(vp != NULL || dvp != NULL);
2154 
2155 	vlp1 = VP2VNODELOCK(vp);
2156 	vlp2 = VP2VNODELOCK(dvp);
2157 	cache_sort_vnodes(&vlp1, &vlp2);
2158 
2159 	if (vlp1 != NULL) {
2160 		mtx_lock(vlp1);
2161 		cel->vlp[0] = vlp1;
2162 	}
2163 	mtx_lock(vlp2);
2164 	cel->vlp[1] = vlp2;
2165 }
2166 
2167 static void
2168 cache_unlock_vnodes_cel(struct celockstate *cel)
2169 {
2170 
2171 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2172 
2173 	if (cel->vlp[0] != NULL)
2174 		mtx_unlock(cel->vlp[0]);
2175 	if (cel->vlp[1] != NULL)
2176 		mtx_unlock(cel->vlp[1]);
2177 	if (cel->vlp[2] != NULL)
2178 		mtx_unlock(cel->vlp[2]);
2179 }
2180 
2181 static bool
2182 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2183 {
2184 	struct mtx *vlp;
2185 	bool ret;
2186 
2187 	cache_assert_vlp_locked(cel->vlp[0]);
2188 	cache_assert_vlp_locked(cel->vlp[1]);
2189 	MPASS(cel->vlp[2] == NULL);
2190 
2191 	MPASS(vp != NULL);
2192 	vlp = VP2VNODELOCK(vp);
2193 
2194 	ret = true;
2195 	if (vlp >= cel->vlp[1]) {
2196 		mtx_lock(vlp);
2197 	} else {
2198 		if (mtx_trylock(vlp))
2199 			goto out;
2200 		cache_lock_vnodes_cel_3_failures++;
2201 		cache_unlock_vnodes_cel(cel);
2202 		if (vlp < cel->vlp[0]) {
2203 			mtx_lock(vlp);
2204 			mtx_lock(cel->vlp[0]);
2205 			mtx_lock(cel->vlp[1]);
2206 		} else {
2207 			if (cel->vlp[0] != NULL)
2208 				mtx_lock(cel->vlp[0]);
2209 			mtx_lock(vlp);
2210 			mtx_lock(cel->vlp[1]);
2211 		}
2212 		ret = false;
2213 	}
2214 out:
2215 	cel->vlp[2] = vlp;
2216 	return (ret);
2217 }
2218 
2219 static void
2220 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2221     struct mtx *blp2)
2222 {
2223 
2224 	MPASS(cel->blp[0] == NULL);
2225 	MPASS(cel->blp[1] == NULL);
2226 
2227 	cache_sort_vnodes(&blp1, &blp2);
2228 
2229 	if (blp1 != NULL) {
2230 		mtx_lock(blp1);
2231 		cel->blp[0] = blp1;
2232 	}
2233 	mtx_lock(blp2);
2234 	cel->blp[1] = blp2;
2235 }
2236 
2237 static void
2238 cache_unlock_buckets_cel(struct celockstate *cel)
2239 {
2240 
2241 	if (cel->blp[0] != NULL)
2242 		mtx_unlock(cel->blp[0]);
2243 	mtx_unlock(cel->blp[1]);
2244 }
2245 
2246 /*
2247  * Lock part of the cache affected by the insertion.
2248  *
2249  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2250  * However, insertion can result in removal of an old entry. In this
2251  * case we have an additional vnode and bucketlock pair to lock.
2252  *
2253  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2254  * preserving the locking order (smaller address first).
2255  */
2256 static void
2257 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2258     uint32_t hash)
2259 {
2260 	struct namecache *ncp;
2261 	struct mtx *blps[2];
2262 	u_char nc_flag;
2263 
2264 	blps[0] = HASH2BUCKETLOCK(hash);
2265 	for (;;) {
2266 		blps[1] = NULL;
2267 		cache_lock_vnodes_cel(cel, dvp, vp);
2268 		if (vp == NULL || vp->v_type != VDIR)
2269 			break;
2270 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2271 		if (ncp == NULL)
2272 			break;
2273 		nc_flag = atomic_load_char(&ncp->nc_flag);
2274 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2275 			break;
2276 		MPASS(ncp->nc_dvp == vp);
2277 		blps[1] = NCP2BUCKETLOCK(ncp);
2278 		if ((nc_flag & NCF_NEGATIVE) != 0)
2279 			break;
2280 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2281 			break;
2282 		/*
2283 		 * All vnodes got re-locked. Re-validate the state and if
2284 		 * nothing changed we are done. Otherwise restart.
2285 		 */
2286 		if (ncp == vp->v_cache_dd &&
2287 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2288 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2289 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2290 			break;
2291 		cache_unlock_vnodes_cel(cel);
2292 		cel->vlp[0] = NULL;
2293 		cel->vlp[1] = NULL;
2294 		cel->vlp[2] = NULL;
2295 	}
2296 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2297 }
2298 
2299 static void
2300 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2301     uint32_t hash)
2302 {
2303 	struct namecache *ncp;
2304 	struct mtx *blps[2];
2305 	u_char nc_flag;
2306 
2307 	blps[0] = HASH2BUCKETLOCK(hash);
2308 	for (;;) {
2309 		blps[1] = NULL;
2310 		cache_lock_vnodes_cel(cel, dvp, vp);
2311 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2312 		if (ncp == NULL)
2313 			break;
2314 		nc_flag = atomic_load_char(&ncp->nc_flag);
2315 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2316 			break;
2317 		MPASS(ncp->nc_dvp == dvp);
2318 		blps[1] = NCP2BUCKETLOCK(ncp);
2319 		if ((nc_flag & NCF_NEGATIVE) != 0)
2320 			break;
2321 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2322 			break;
2323 		if (ncp == dvp->v_cache_dd &&
2324 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2325 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2326 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2327 			break;
2328 		cache_unlock_vnodes_cel(cel);
2329 		cel->vlp[0] = NULL;
2330 		cel->vlp[1] = NULL;
2331 		cel->vlp[2] = NULL;
2332 	}
2333 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2334 }
2335 
2336 static void
2337 cache_enter_unlock(struct celockstate *cel)
2338 {
2339 
2340 	cache_unlock_buckets_cel(cel);
2341 	cache_unlock_vnodes_cel(cel);
2342 }
2343 
2344 static void __noinline
2345 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2346     struct componentname *cnp)
2347 {
2348 	struct celockstate cel;
2349 	struct namecache *ncp;
2350 	uint32_t hash;
2351 	int len;
2352 
2353 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2354 		return;
2355 	len = cnp->cn_namelen;
2356 	cache_celockstate_init(&cel);
2357 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2358 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2359 	ncp = dvp->v_cache_dd;
2360 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2361 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2362 		cache_zap_locked(ncp);
2363 	} else {
2364 		ncp = NULL;
2365 	}
2366 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2367 	cache_enter_unlock(&cel);
2368 	if (ncp != NULL)
2369 		cache_free(ncp);
2370 }
2371 
2372 /*
2373  * Add an entry to the cache.
2374  */
2375 void
2376 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2377     struct timespec *tsp, struct timespec *dtsp)
2378 {
2379 	struct celockstate cel;
2380 	struct namecache *ncp, *n2, *ndd;
2381 	struct namecache_ts *ncp_ts;
2382 	struct nchashhead *ncpp;
2383 	uint32_t hash;
2384 	int flag;
2385 	int len;
2386 
2387 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2388 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2389 	    NAME_MAX));
2390 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2391 	VNPASS(dvp->v_type != VNON, dvp);
2392 	if (vp != NULL) {
2393 		VNPASS(!VN_IS_DOOMED(vp), vp);
2394 		VNPASS(vp->v_type != VNON, vp);
2395 	}
2396 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2397 		KASSERT(dvp == vp,
2398 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2399 		    dvp, vp));
2400 	} else {
2401 		KASSERT(dvp != vp,
2402 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2403 		    cnp->cn_nameptr, dvp));
2404 	}
2405 
2406 #ifdef DEBUG_CACHE
2407 	if (__predict_false(!doingcache))
2408 		return;
2409 #endif
2410 
2411 	flag = 0;
2412 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2413 		if (cnp->cn_namelen == 1)
2414 			return;
2415 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2416 			cache_enter_dotdot_prep(dvp, vp, cnp);
2417 			flag = NCF_ISDOTDOT;
2418 		}
2419 	}
2420 
2421 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2422 	if (ncp == NULL)
2423 		return;
2424 
2425 	cache_celockstate_init(&cel);
2426 	ndd = NULL;
2427 	ncp_ts = NULL;
2428 
2429 	/*
2430 	 * Calculate the hash key and setup as much of the new
2431 	 * namecache entry as possible before acquiring the lock.
2432 	 */
2433 	ncp->nc_flag = flag | NCF_WIP;
2434 	ncp->nc_vp = vp;
2435 	if (vp == NULL)
2436 		cache_neg_init(ncp);
2437 	ncp->nc_dvp = dvp;
2438 	if (tsp != NULL) {
2439 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2440 		ncp_ts->nc_time = *tsp;
2441 		ncp_ts->nc_ticks = ticks;
2442 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2443 		if (dtsp != NULL) {
2444 			ncp_ts->nc_dotdottime = *dtsp;
2445 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2446 		}
2447 	}
2448 	len = ncp->nc_nlen = cnp->cn_namelen;
2449 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2450 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2451 	ncp->nc_name[len] = '\0';
2452 	cache_enter_lock(&cel, dvp, vp, hash);
2453 
2454 	/*
2455 	 * See if this vnode or negative entry is already in the cache
2456 	 * with this name.  This can happen with concurrent lookups of
2457 	 * the same path name.
2458 	 */
2459 	ncpp = NCHHASH(hash);
2460 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2461 		if (n2->nc_dvp == dvp &&
2462 		    n2->nc_nlen == cnp->cn_namelen &&
2463 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2464 			MPASS(cache_ncp_canuse(n2));
2465 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2466 				KASSERT(vp == NULL,
2467 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2468 				    __func__, NULL, vp, cnp->cn_nameptr));
2469 			else
2470 				KASSERT(n2->nc_vp == vp,
2471 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2472 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2473 			/*
2474 			 * Entries are supposed to be immutable unless in the
2475 			 * process of getting destroyed. Accommodating for
2476 			 * changing timestamps is possible but not worth it.
2477 			 * This should be harmless in terms of correctness, in
2478 			 * the worst case resulting in an earlier expiration.
2479 			 * Alternatively, the found entry can be replaced
2480 			 * altogether.
2481 			 */
2482 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2483 #if 0
2484 			if (tsp != NULL) {
2485 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2486 				    ("no NCF_TS"));
2487 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2488 				n2_ts->nc_time = ncp_ts->nc_time;
2489 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2490 				if (dtsp != NULL) {
2491 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2492 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2493 				}
2494 			}
2495 #endif
2496 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2497 			    vp);
2498 			goto out_unlock_free;
2499 		}
2500 	}
2501 
2502 	if (flag == NCF_ISDOTDOT) {
2503 		/*
2504 		 * See if we are trying to add .. entry, but some other lookup
2505 		 * has populated v_cache_dd pointer already.
2506 		 */
2507 		if (dvp->v_cache_dd != NULL)
2508 			goto out_unlock_free;
2509 		KASSERT(vp == NULL || vp->v_type == VDIR,
2510 		    ("wrong vnode type %p", vp));
2511 		atomic_thread_fence_rel();
2512 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2513 	}
2514 
2515 	if (vp != NULL) {
2516 		if (flag != NCF_ISDOTDOT) {
2517 			/*
2518 			 * For this case, the cache entry maps both the
2519 			 * directory name in it and the name ".." for the
2520 			 * directory's parent.
2521 			 */
2522 			if ((ndd = vp->v_cache_dd) != NULL) {
2523 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2524 					cache_zap_locked(ndd);
2525 				else
2526 					ndd = NULL;
2527 			}
2528 			atomic_thread_fence_rel();
2529 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2530 		} else if (vp->v_type != VDIR) {
2531 			if (vp->v_cache_dd != NULL) {
2532 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2533 			}
2534 		}
2535 	}
2536 
2537 	if (flag != NCF_ISDOTDOT) {
2538 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2539 			cache_hold_vnode(dvp);
2540 		}
2541 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2542 	}
2543 
2544 	/*
2545 	 * If the entry is "negative", we place it into the
2546 	 * "negative" cache queue, otherwise, we place it into the
2547 	 * destination vnode's cache entries queue.
2548 	 */
2549 	if (vp != NULL) {
2550 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2551 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2552 		    vp);
2553 	} else {
2554 		if (cnp->cn_flags & ISWHITEOUT)
2555 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2556 		cache_neg_insert(ncp);
2557 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2558 		    ncp->nc_name);
2559 	}
2560 
2561 	/*
2562 	 * Insert the new namecache entry into the appropriate chain
2563 	 * within the cache entries table.
2564 	 */
2565 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2566 
2567 	atomic_thread_fence_rel();
2568 	/*
2569 	 * Mark the entry as fully constructed.
2570 	 * It is immutable past this point until its removal.
2571 	 */
2572 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2573 
2574 	cache_enter_unlock(&cel);
2575 	if (ndd != NULL)
2576 		cache_free(ndd);
2577 	return;
2578 out_unlock_free:
2579 	cache_enter_unlock(&cel);
2580 	cache_free(ncp);
2581 	return;
2582 }
2583 
2584 /*
2585  * A variant of the above accepting flags.
2586  *
2587  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2588  *
2589  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2590  * happens to match and it is doing it in an inefficient manner. It was added
2591  * to accomodate NFS which runs into a case where the target for a given name
2592  * may change from under it. Note this does nothing to solve the following
2593  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2594  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2595  */
2596 void
2597 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2598     struct timespec *tsp, struct timespec *dtsp, int flags)
2599 {
2600 
2601 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2602 
2603 	if (flags & VFS_CACHE_DROPOLD)
2604 		cache_remove_cnp(dvp, cnp);
2605 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2606 }
2607 
2608 static u_int
2609 cache_roundup_2(u_int val)
2610 {
2611 	u_int res;
2612 
2613 	for (res = 1; res <= val; res <<= 1)
2614 		continue;
2615 
2616 	return (res);
2617 }
2618 
2619 static struct nchashhead *
2620 nchinittbl(u_long elements, u_long *hashmask)
2621 {
2622 	struct nchashhead *hashtbl;
2623 	u_long hashsize, i;
2624 
2625 	hashsize = cache_roundup_2(elements) / 2;
2626 
2627 	hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2628 	for (i = 0; i < hashsize; i++)
2629 		CK_SLIST_INIT(&hashtbl[i]);
2630 	*hashmask = hashsize - 1;
2631 	return (hashtbl);
2632 }
2633 
2634 static void
2635 ncfreetbl(struct nchashhead *hashtbl)
2636 {
2637 
2638 	free(hashtbl, M_VFSCACHE);
2639 }
2640 
2641 /*
2642  * Name cache initialization, from vfs_init() when we are booting
2643  */
2644 static void
2645 nchinit(void *dummy __unused)
2646 {
2647 	u_int i;
2648 
2649 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2650 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2651 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2652 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2653 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2654 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2655 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2656 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2657 
2658 	VFS_SMR_ZONE_SET(cache_zone_small);
2659 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2660 	VFS_SMR_ZONE_SET(cache_zone_large);
2661 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2662 
2663 	ncsize = desiredvnodes * ncsizefactor;
2664 	cache_recalc_neg_min(ncnegminpct);
2665 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2666 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2667 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2668 		ncbuckethash = 7;
2669 	if (ncbuckethash > nchash)
2670 		ncbuckethash = nchash;
2671 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2672 	    M_WAITOK | M_ZERO);
2673 	for (i = 0; i < numbucketlocks; i++)
2674 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2675 	ncvnodehash = ncbuckethash;
2676 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2677 	    M_WAITOK | M_ZERO);
2678 	for (i = 0; i < numvnodelocks; i++)
2679 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2680 
2681 	for (i = 0; i < numneglists; i++) {
2682 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2683 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2684 		TAILQ_INIT(&neglists[i].nl_list);
2685 		TAILQ_INIT(&neglists[i].nl_hotlist);
2686 	}
2687 }
2688 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2689 
2690 void
2691 cache_vnode_init(struct vnode *vp)
2692 {
2693 
2694 	LIST_INIT(&vp->v_cache_src);
2695 	TAILQ_INIT(&vp->v_cache_dst);
2696 	vp->v_cache_dd = NULL;
2697 	cache_prehash(vp);
2698 }
2699 
2700 /*
2701  * Induce transient cache misses for lockless operation in cache_lookup() by
2702  * using a temporary hash table.
2703  *
2704  * This will force a fs lookup.
2705  *
2706  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2707  * to observe all CPUs not performing the lookup.
2708  */
2709 static void
2710 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2711 {
2712 
2713 	MPASS(temphash < nchash);
2714 	/*
2715 	 * Change the size. The new size is smaller and can safely be used
2716 	 * against the existing table. All lookups which now hash wrong will
2717 	 * result in a cache miss, which all callers are supposed to know how
2718 	 * to handle.
2719 	 */
2720 	atomic_store_long(&nchash, temphash);
2721 	atomic_thread_fence_rel();
2722 	vfs_smr_synchronize();
2723 	/*
2724 	 * At this point everyone sees the updated hash value, but they still
2725 	 * see the old table.
2726 	 */
2727 	atomic_store_ptr(&nchashtbl, temptbl);
2728 	atomic_thread_fence_rel();
2729 	vfs_smr_synchronize();
2730 	/*
2731 	 * At this point everyone sees the updated table pointer and size pair.
2732 	 */
2733 }
2734 
2735 /*
2736  * Set the new hash table.
2737  *
2738  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2739  * lockless operation in cache_lookup().
2740  */
2741 static void
2742 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2743 {
2744 
2745 	MPASS(nchash < new_hash);
2746 	/*
2747 	 * Change the pointer first. This wont result in out of bounds access
2748 	 * since the temporary table is guaranteed to be smaller.
2749 	 */
2750 	atomic_store_ptr(&nchashtbl, new_tbl);
2751 	atomic_thread_fence_rel();
2752 	vfs_smr_synchronize();
2753 	/*
2754 	 * At this point everyone sees the updated pointer value, but they
2755 	 * still see the old size.
2756 	 */
2757 	atomic_store_long(&nchash, new_hash);
2758 	atomic_thread_fence_rel();
2759 	vfs_smr_synchronize();
2760 	/*
2761 	 * At this point everyone sees the updated table pointer and size pair.
2762 	 */
2763 }
2764 
2765 void
2766 cache_changesize(u_long newmaxvnodes)
2767 {
2768 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2769 	u_long new_nchash, old_nchash, temphash;
2770 	struct namecache *ncp;
2771 	uint32_t hash;
2772 	u_long newncsize;
2773 	int i;
2774 
2775 	newncsize = newmaxvnodes * ncsizefactor;
2776 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2777 	if (newmaxvnodes < numbucketlocks)
2778 		newmaxvnodes = numbucketlocks;
2779 
2780 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2781 	/* If same hash table size, nothing to do */
2782 	if (nchash == new_nchash) {
2783 		ncfreetbl(new_nchashtbl);
2784 		return;
2785 	}
2786 
2787 	temptbl = nchinittbl(1, &temphash);
2788 
2789 	/*
2790 	 * Move everything from the old hash table to the new table.
2791 	 * None of the namecache entries in the table can be removed
2792 	 * because to do so, they have to be removed from the hash table.
2793 	 */
2794 	cache_lock_all_vnodes();
2795 	cache_lock_all_buckets();
2796 	old_nchashtbl = nchashtbl;
2797 	old_nchash = nchash;
2798 	cache_changesize_set_temp(temptbl, temphash);
2799 	for (i = 0; i <= old_nchash; i++) {
2800 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2801 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2802 			    ncp->nc_dvp);
2803 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2804 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2805 		}
2806 	}
2807 	ncsize = newncsize;
2808 	cache_recalc_neg_min(ncnegminpct);
2809 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2810 	cache_unlock_all_buckets();
2811 	cache_unlock_all_vnodes();
2812 	ncfreetbl(old_nchashtbl);
2813 	ncfreetbl(temptbl);
2814 }
2815 
2816 /*
2817  * Remove all entries from and to a particular vnode.
2818  */
2819 static void
2820 cache_purge_impl(struct vnode *vp)
2821 {
2822 	struct cache_freebatch batch;
2823 	struct namecache *ncp;
2824 	struct mtx *vlp, *vlp2;
2825 
2826 	TAILQ_INIT(&batch);
2827 	vlp = VP2VNODELOCK(vp);
2828 	vlp2 = NULL;
2829 	mtx_lock(vlp);
2830 retry:
2831 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2832 		ncp = LIST_FIRST(&vp->v_cache_src);
2833 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2834 			goto retry;
2835 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2836 	}
2837 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2838 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2839 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2840 			goto retry;
2841 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2842 	}
2843 	ncp = vp->v_cache_dd;
2844 	if (ncp != NULL) {
2845 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2846 		   ("lost dotdot link"));
2847 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2848 			goto retry;
2849 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2850 	}
2851 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2852 	mtx_unlock(vlp);
2853 	if (vlp2 != NULL)
2854 		mtx_unlock(vlp2);
2855 	cache_free_batch(&batch);
2856 }
2857 
2858 /*
2859  * Opportunistic check to see if there is anything to do.
2860  */
2861 static bool
2862 cache_has_entries(struct vnode *vp)
2863 {
2864 
2865 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2866 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2867 		return (false);
2868 	return (true);
2869 }
2870 
2871 void
2872 cache_purge(struct vnode *vp)
2873 {
2874 
2875 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2876 	if (!cache_has_entries(vp))
2877 		return;
2878 	cache_purge_impl(vp);
2879 }
2880 
2881 /*
2882  * Only to be used by vgone.
2883  */
2884 void
2885 cache_purge_vgone(struct vnode *vp)
2886 {
2887 	struct mtx *vlp;
2888 
2889 	VNPASS(VN_IS_DOOMED(vp), vp);
2890 	if (cache_has_entries(vp)) {
2891 		cache_purge_impl(vp);
2892 		return;
2893 	}
2894 
2895 	/*
2896 	 * Serialize against a potential thread doing cache_purge.
2897 	 */
2898 	vlp = VP2VNODELOCK(vp);
2899 	mtx_wait_unlocked(vlp);
2900 	if (cache_has_entries(vp)) {
2901 		cache_purge_impl(vp);
2902 		return;
2903 	}
2904 	return;
2905 }
2906 
2907 /*
2908  * Remove all negative entries for a particular directory vnode.
2909  */
2910 void
2911 cache_purge_negative(struct vnode *vp)
2912 {
2913 	struct cache_freebatch batch;
2914 	struct namecache *ncp, *nnp;
2915 	struct mtx *vlp;
2916 
2917 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2918 	if (LIST_EMPTY(&vp->v_cache_src))
2919 		return;
2920 	TAILQ_INIT(&batch);
2921 	vlp = VP2VNODELOCK(vp);
2922 	mtx_lock(vlp);
2923 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2924 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2925 			continue;
2926 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2927 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2928 	}
2929 	mtx_unlock(vlp);
2930 	cache_free_batch(&batch);
2931 }
2932 
2933 /*
2934  * Entry points for modifying VOP operations.
2935  */
2936 void
2937 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2938     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2939 {
2940 
2941 	ASSERT_VOP_IN_SEQC(fdvp);
2942 	ASSERT_VOP_IN_SEQC(fvp);
2943 	ASSERT_VOP_IN_SEQC(tdvp);
2944 	if (tvp != NULL)
2945 		ASSERT_VOP_IN_SEQC(tvp);
2946 
2947 	cache_purge(fvp);
2948 	if (tvp != NULL) {
2949 		cache_purge(tvp);
2950 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2951 		    ("%s: lingering negative entry", __func__));
2952 	} else {
2953 		cache_remove_cnp(tdvp, tcnp);
2954 	}
2955 
2956 	/*
2957 	 * TODO
2958 	 *
2959 	 * Historically renaming was always purging all revelang entries,
2960 	 * but that's quite wasteful. In particular turns out that in many cases
2961 	 * the target file is immediately accessed after rename, inducing a cache
2962 	 * miss.
2963 	 *
2964 	 * Recode this to reduce relocking and reuse the existing entry (if any)
2965 	 * instead of just removing it above and allocating a new one here.
2966 	 */
2967 	if (cache_rename_add) {
2968 		cache_enter(tdvp, fvp, tcnp);
2969 	}
2970 }
2971 
2972 void
2973 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2974 {
2975 
2976 	ASSERT_VOP_IN_SEQC(dvp);
2977 	ASSERT_VOP_IN_SEQC(vp);
2978 	cache_purge(vp);
2979 }
2980 
2981 #ifdef INVARIANTS
2982 /*
2983  * Validate that if an entry exists it matches.
2984  */
2985 void
2986 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2987 {
2988 	struct namecache *ncp;
2989 	struct mtx *blp;
2990 	uint32_t hash;
2991 
2992 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2993 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
2994 		return;
2995 	blp = HASH2BUCKETLOCK(hash);
2996 	mtx_lock(blp);
2997 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2998 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2999 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
3000 			if (ncp->nc_vp != vp)
3001 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3002 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3003 		}
3004 	}
3005 	mtx_unlock(blp);
3006 }
3007 #endif
3008 
3009 /*
3010  * Flush all entries referencing a particular filesystem.
3011  */
3012 void
3013 cache_purgevfs(struct mount *mp)
3014 {
3015 	struct vnode *vp, *mvp;
3016 	size_t visited, purged;
3017 
3018 	visited = purged = 0;
3019 	/*
3020 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3021 	 * support filtering and avoid the interlock to begin with.
3022 	 */
3023 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3024 		visited++;
3025 		if (!cache_has_entries(vp)) {
3026 			VI_UNLOCK(vp);
3027 			continue;
3028 		}
3029 		vholdl(vp);
3030 		VI_UNLOCK(vp);
3031 		cache_purge(vp);
3032 		purged++;
3033 		vdrop(vp);
3034 	}
3035 
3036 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3037 }
3038 
3039 /*
3040  * Perform canonical checks and cache lookup and pass on to filesystem
3041  * through the vop_cachedlookup only if needed.
3042  */
3043 
3044 int
3045 vfs_cache_lookup(struct vop_lookup_args *ap)
3046 {
3047 	struct vnode *dvp;
3048 	int error;
3049 	struct vnode **vpp = ap->a_vpp;
3050 	struct componentname *cnp = ap->a_cnp;
3051 	int flags = cnp->cn_flags;
3052 
3053 	*vpp = NULL;
3054 	dvp = ap->a_dvp;
3055 
3056 	if (dvp->v_type != VDIR)
3057 		return (ENOTDIR);
3058 
3059 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3060 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3061 		return (EROFS);
3062 
3063 	error = vn_dir_check_exec(dvp, cnp);
3064 	if (error != 0)
3065 		return (error);
3066 
3067 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3068 	if (error == 0)
3069 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3070 	if (error == -1)
3071 		return (0);
3072 	return (error);
3073 }
3074 
3075 /* Implementation of the getcwd syscall. */
3076 int
3077 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3078 {
3079 	char *buf, *retbuf;
3080 	size_t buflen;
3081 	int error;
3082 
3083 	buflen = uap->buflen;
3084 	if (__predict_false(buflen < 2))
3085 		return (EINVAL);
3086 	if (buflen > MAXPATHLEN)
3087 		buflen = MAXPATHLEN;
3088 
3089 	buf = uma_zalloc(namei_zone, M_WAITOK);
3090 	error = vn_getcwd(buf, &retbuf, &buflen);
3091 	if (error == 0)
3092 		error = copyout(retbuf, uap->buf, buflen);
3093 	uma_zfree(namei_zone, buf);
3094 	return (error);
3095 }
3096 
3097 int
3098 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3099 {
3100 	struct pwd *pwd;
3101 	int error;
3102 
3103 	vfs_smr_enter();
3104 	pwd = pwd_get_smr();
3105 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3106 	    buflen, 0);
3107 	VFS_SMR_ASSERT_NOT_ENTERED();
3108 	if (error < 0) {
3109 		pwd = pwd_hold(curthread);
3110 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3111 		    retbuf, buflen);
3112 		pwd_drop(pwd);
3113 	}
3114 
3115 #ifdef KTRACE
3116 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3117 		ktrnamei(*retbuf);
3118 #endif
3119 	return (error);
3120 }
3121 
3122 static int
3123 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3124     size_t size, int flags, enum uio_seg pathseg)
3125 {
3126 	struct nameidata nd;
3127 	char *retbuf, *freebuf;
3128 	int error;
3129 
3130 	if (flags != 0)
3131 		return (EINVAL);
3132 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1,
3133 	    pathseg, path, fd, &cap_fstat_rights);
3134 	if ((error = namei(&nd)) != 0)
3135 		return (error);
3136 	error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3137 	    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3138 	if (error == 0) {
3139 		error = copyout(retbuf, buf, size);
3140 		free(freebuf, M_TEMP);
3141 	}
3142 	NDFREE(&nd, 0);
3143 	return (error);
3144 }
3145 
3146 int
3147 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3148 {
3149 
3150 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3151 	    uap->flags, UIO_USERSPACE));
3152 }
3153 
3154 /*
3155  * Retrieve the full filesystem path that correspond to a vnode from the name
3156  * cache (if available)
3157  */
3158 int
3159 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3160 {
3161 	struct pwd *pwd;
3162 	char *buf;
3163 	size_t buflen;
3164 	int error;
3165 
3166 	if (__predict_false(vp == NULL))
3167 		return (EINVAL);
3168 
3169 	buflen = MAXPATHLEN;
3170 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3171 	vfs_smr_enter();
3172 	pwd = pwd_get_smr();
3173 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3174 	VFS_SMR_ASSERT_NOT_ENTERED();
3175 	if (error < 0) {
3176 		pwd = pwd_hold(curthread);
3177 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3178 		pwd_drop(pwd);
3179 	}
3180 	if (error == 0)
3181 		*freebuf = buf;
3182 	else
3183 		free(buf, M_TEMP);
3184 	return (error);
3185 }
3186 
3187 /*
3188  * This function is similar to vn_fullpath, but it attempts to lookup the
3189  * pathname relative to the global root mount point.  This is required for the
3190  * auditing sub-system, as audited pathnames must be absolute, relative to the
3191  * global root mount point.
3192  */
3193 int
3194 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3195 {
3196 	char *buf;
3197 	size_t buflen;
3198 	int error;
3199 
3200 	if (__predict_false(vp == NULL))
3201 		return (EINVAL);
3202 	buflen = MAXPATHLEN;
3203 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3204 	vfs_smr_enter();
3205 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3206 	VFS_SMR_ASSERT_NOT_ENTERED();
3207 	if (error < 0) {
3208 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3209 	}
3210 	if (error == 0)
3211 		*freebuf = buf;
3212 	else
3213 		free(buf, M_TEMP);
3214 	return (error);
3215 }
3216 
3217 static struct namecache *
3218 vn_dd_from_dst(struct vnode *vp)
3219 {
3220 	struct namecache *ncp;
3221 
3222 	cache_assert_vnode_locked(vp);
3223 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3224 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3225 			return (ncp);
3226 	}
3227 	return (NULL);
3228 }
3229 
3230 int
3231 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3232 {
3233 	struct vnode *dvp;
3234 	struct namecache *ncp;
3235 	struct mtx *vlp;
3236 	int error;
3237 
3238 	vlp = VP2VNODELOCK(*vp);
3239 	mtx_lock(vlp);
3240 	ncp = (*vp)->v_cache_dd;
3241 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3242 		KASSERT(ncp == vn_dd_from_dst(*vp),
3243 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3244 		    ncp, vn_dd_from_dst(*vp)));
3245 	} else {
3246 		ncp = vn_dd_from_dst(*vp);
3247 	}
3248 	if (ncp != NULL) {
3249 		if (*buflen < ncp->nc_nlen) {
3250 			mtx_unlock(vlp);
3251 			vrele(*vp);
3252 			counter_u64_add(numfullpathfail4, 1);
3253 			error = ENOMEM;
3254 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3255 			    vp, NULL);
3256 			return (error);
3257 		}
3258 		*buflen -= ncp->nc_nlen;
3259 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3260 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3261 		    ncp->nc_name, vp);
3262 		dvp = *vp;
3263 		*vp = ncp->nc_dvp;
3264 		vref(*vp);
3265 		mtx_unlock(vlp);
3266 		vrele(dvp);
3267 		return (0);
3268 	}
3269 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3270 
3271 	mtx_unlock(vlp);
3272 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3273 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3274 	vput(*vp);
3275 	if (error) {
3276 		counter_u64_add(numfullpathfail2, 1);
3277 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3278 		return (error);
3279 	}
3280 
3281 	*vp = dvp;
3282 	if (VN_IS_DOOMED(dvp)) {
3283 		/* forced unmount */
3284 		vrele(dvp);
3285 		error = ENOENT;
3286 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3287 		return (error);
3288 	}
3289 	/*
3290 	 * *vp has its use count incremented still.
3291 	 */
3292 
3293 	return (0);
3294 }
3295 
3296 /*
3297  * Resolve a directory to a pathname.
3298  *
3299  * The name of the directory can always be found in the namecache or fetched
3300  * from the filesystem. There is also guaranteed to be only one parent, meaning
3301  * we can just follow vnodes up until we find the root.
3302  *
3303  * The vnode must be referenced.
3304  */
3305 static int
3306 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3307     size_t *len, size_t addend)
3308 {
3309 #ifdef KDTRACE_HOOKS
3310 	struct vnode *startvp = vp;
3311 #endif
3312 	struct vnode *vp1;
3313 	size_t buflen;
3314 	int error;
3315 	bool slash_prefixed;
3316 
3317 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3318 	VNPASS(vp->v_usecount > 0, vp);
3319 
3320 	buflen = *len;
3321 
3322 	slash_prefixed = true;
3323 	if (addend == 0) {
3324 		MPASS(*len >= 2);
3325 		buflen--;
3326 		buf[buflen] = '\0';
3327 		slash_prefixed = false;
3328 	}
3329 
3330 	error = 0;
3331 
3332 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3333 	counter_u64_add(numfullpathcalls, 1);
3334 	while (vp != rdir && vp != rootvnode) {
3335 		/*
3336 		 * The vp vnode must be already fully constructed,
3337 		 * since it is either found in namecache or obtained
3338 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3339 		 * without obtaining the vnode lock.
3340 		 */
3341 		if ((vp->v_vflag & VV_ROOT) != 0) {
3342 			vn_lock(vp, LK_RETRY | LK_SHARED);
3343 
3344 			/*
3345 			 * With the vnode locked, check for races with
3346 			 * unmount, forced or not.  Note that we
3347 			 * already verified that vp is not equal to
3348 			 * the root vnode, which means that
3349 			 * mnt_vnodecovered can be NULL only for the
3350 			 * case of unmount.
3351 			 */
3352 			if (VN_IS_DOOMED(vp) ||
3353 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3354 			    vp1->v_mountedhere != vp->v_mount) {
3355 				vput(vp);
3356 				error = ENOENT;
3357 				SDT_PROBE3(vfs, namecache, fullpath, return,
3358 				    error, vp, NULL);
3359 				break;
3360 			}
3361 
3362 			vref(vp1);
3363 			vput(vp);
3364 			vp = vp1;
3365 			continue;
3366 		}
3367 		if (vp->v_type != VDIR) {
3368 			vrele(vp);
3369 			counter_u64_add(numfullpathfail1, 1);
3370 			error = ENOTDIR;
3371 			SDT_PROBE3(vfs, namecache, fullpath, return,
3372 			    error, vp, NULL);
3373 			break;
3374 		}
3375 		error = vn_vptocnp(&vp, buf, &buflen);
3376 		if (error)
3377 			break;
3378 		if (buflen == 0) {
3379 			vrele(vp);
3380 			error = ENOMEM;
3381 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3382 			    startvp, NULL);
3383 			break;
3384 		}
3385 		buf[--buflen] = '/';
3386 		slash_prefixed = true;
3387 	}
3388 	if (error)
3389 		return (error);
3390 	if (!slash_prefixed) {
3391 		if (buflen == 0) {
3392 			vrele(vp);
3393 			counter_u64_add(numfullpathfail4, 1);
3394 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3395 			    startvp, NULL);
3396 			return (ENOMEM);
3397 		}
3398 		buf[--buflen] = '/';
3399 	}
3400 	counter_u64_add(numfullpathfound, 1);
3401 	vrele(vp);
3402 
3403 	*retbuf = buf + buflen;
3404 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3405 	*len -= buflen;
3406 	*len += addend;
3407 	return (0);
3408 }
3409 
3410 /*
3411  * Resolve an arbitrary vnode to a pathname.
3412  *
3413  * Note 2 caveats:
3414  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3415  *   resolve to a different path than the one used to find it
3416  * - namecache is not mandatory, meaning names are not guaranteed to be added
3417  *   (in which case resolving fails)
3418  */
3419 static void __inline
3420 cache_rev_failed_impl(int *reason, int line)
3421 {
3422 
3423 	*reason = line;
3424 }
3425 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3426 
3427 static int
3428 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3429     char **retbuf, size_t *buflen, size_t addend)
3430 {
3431 #ifdef KDTRACE_HOOKS
3432 	struct vnode *startvp = vp;
3433 #endif
3434 	struct vnode *tvp;
3435 	struct mount *mp;
3436 	struct namecache *ncp;
3437 	size_t orig_buflen;
3438 	int reason;
3439 	int error;
3440 #ifdef KDTRACE_HOOKS
3441 	int i;
3442 #endif
3443 	seqc_t vp_seqc, tvp_seqc;
3444 	u_char nc_flag;
3445 
3446 	VFS_SMR_ASSERT_ENTERED();
3447 
3448 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3449 		vfs_smr_exit();
3450 		return (-1);
3451 	}
3452 
3453 	orig_buflen = *buflen;
3454 
3455 	if (addend == 0) {
3456 		MPASS(*buflen >= 2);
3457 		*buflen -= 1;
3458 		buf[*buflen] = '\0';
3459 	}
3460 
3461 	if (vp == rdir || vp == rootvnode) {
3462 		if (addend == 0) {
3463 			*buflen -= 1;
3464 			buf[*buflen] = '/';
3465 		}
3466 		goto out_ok;
3467 	}
3468 
3469 #ifdef KDTRACE_HOOKS
3470 	i = 0;
3471 #endif
3472 	error = -1;
3473 	ncp = NULL; /* for sdt probe down below */
3474 	vp_seqc = vn_seqc_read_any(vp);
3475 	if (seqc_in_modify(vp_seqc)) {
3476 		cache_rev_failed(&reason);
3477 		goto out_abort;
3478 	}
3479 
3480 	for (;;) {
3481 #ifdef KDTRACE_HOOKS
3482 		i++;
3483 #endif
3484 		if ((vp->v_vflag & VV_ROOT) != 0) {
3485 			mp = atomic_load_ptr(&vp->v_mount);
3486 			if (mp == NULL) {
3487 				cache_rev_failed(&reason);
3488 				goto out_abort;
3489 			}
3490 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3491 			tvp_seqc = vn_seqc_read_any(tvp);
3492 			if (seqc_in_modify(tvp_seqc)) {
3493 				cache_rev_failed(&reason);
3494 				goto out_abort;
3495 			}
3496 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3497 				cache_rev_failed(&reason);
3498 				goto out_abort;
3499 			}
3500 			vp = tvp;
3501 			vp_seqc = tvp_seqc;
3502 			continue;
3503 		}
3504 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3505 		if (ncp == NULL) {
3506 			cache_rev_failed(&reason);
3507 			goto out_abort;
3508 		}
3509 		nc_flag = atomic_load_char(&ncp->nc_flag);
3510 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3511 			cache_rev_failed(&reason);
3512 			goto out_abort;
3513 		}
3514 		if (ncp->nc_nlen >= *buflen) {
3515 			cache_rev_failed(&reason);
3516 			error = ENOMEM;
3517 			goto out_abort;
3518 		}
3519 		*buflen -= ncp->nc_nlen;
3520 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3521 		*buflen -= 1;
3522 		buf[*buflen] = '/';
3523 		tvp = ncp->nc_dvp;
3524 		tvp_seqc = vn_seqc_read_any(tvp);
3525 		if (seqc_in_modify(tvp_seqc)) {
3526 			cache_rev_failed(&reason);
3527 			goto out_abort;
3528 		}
3529 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3530 			cache_rev_failed(&reason);
3531 			goto out_abort;
3532 		}
3533 		/*
3534 		 * Acquire fence provided by vn_seqc_read_any above.
3535 		 */
3536 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3537 			cache_rev_failed(&reason);
3538 			goto out_abort;
3539 		}
3540 		if (!cache_ncp_canuse(ncp)) {
3541 			cache_rev_failed(&reason);
3542 			goto out_abort;
3543 		}
3544 		vp = tvp;
3545 		vp_seqc = tvp_seqc;
3546 		if (vp == rdir || vp == rootvnode)
3547 			break;
3548 	}
3549 out_ok:
3550 	vfs_smr_exit();
3551 	*retbuf = buf + *buflen;
3552 	*buflen = orig_buflen - *buflen + addend;
3553 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3554 	return (0);
3555 
3556 out_abort:
3557 	*buflen = orig_buflen;
3558 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3559 	vfs_smr_exit();
3560 	return (error);
3561 }
3562 
3563 static int
3564 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3565     size_t *buflen)
3566 {
3567 	size_t orig_buflen, addend;
3568 	int error;
3569 
3570 	if (*buflen < 2)
3571 		return (EINVAL);
3572 
3573 	orig_buflen = *buflen;
3574 
3575 	vref(vp);
3576 	addend = 0;
3577 	if (vp->v_type != VDIR) {
3578 		*buflen -= 1;
3579 		buf[*buflen] = '\0';
3580 		error = vn_vptocnp(&vp, buf, buflen);
3581 		if (error)
3582 			return (error);
3583 		if (*buflen == 0) {
3584 			vrele(vp);
3585 			return (ENOMEM);
3586 		}
3587 		*buflen -= 1;
3588 		buf[*buflen] = '/';
3589 		addend = orig_buflen - *buflen;
3590 	}
3591 
3592 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3593 }
3594 
3595 /*
3596  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3597  *
3598  * Since the namecache does not track hardlinks, the caller is
3599  * expected to first look up the target vnode with SAVENAME |
3600  * WANTPARENT flags passed to namei to get dvp and vp.
3601  *
3602  * Then we have 2 cases:
3603  * - if the found vnode is a directory, the path can be constructed just by
3604  *   following names up the chain
3605  * - otherwise we populate the buffer with the saved name and start resolving
3606  *   from the parent
3607  */
3608 int
3609 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3610     const char *hrdl_name, size_t hrdl_name_length,
3611     char **retbuf, char **freebuf, size_t *buflen)
3612 {
3613 	char *buf, *tmpbuf;
3614 	struct pwd *pwd;
3615 	size_t addend;
3616 	int error;
3617 	enum vtype type;
3618 
3619 	if (*buflen < 2)
3620 		return (EINVAL);
3621 	if (*buflen > MAXPATHLEN)
3622 		*buflen = MAXPATHLEN;
3623 
3624 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3625 
3626 	addend = 0;
3627 
3628 	/*
3629 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3630 	 *
3631 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3632 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3633 	 * If the type is VDIR (like in this very case) we can skip looking
3634 	 * at ni_dvp in the first place. However, since vnodes get passed here
3635 	 * unlocked the target may transition to doomed state (type == VBAD)
3636 	 * before we get to evaluate the condition. If this happens, we will
3637 	 * populate part of the buffer and descend to vn_fullpath_dir with
3638 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3639 	 *
3640 	 * This should be atomic_load(&vp->v_type) but it is illegal to take
3641 	 * an address of a bit field, even if said field is sized to char.
3642 	 * Work around the problem by reading the value into a full-sized enum
3643 	 * and then re-reading it with atomic_load which will still prevent
3644 	 * the compiler from re-reading down the road.
3645 	 */
3646 	type = vp->v_type;
3647 	type = atomic_load_int(&type);
3648 	if (type == VBAD) {
3649 		error = ENOENT;
3650 		goto out_bad;
3651 	}
3652 	if (type != VDIR) {
3653 		addend = hrdl_name_length + 2;
3654 		if (*buflen < addend) {
3655 			error = ENOMEM;
3656 			goto out_bad;
3657 		}
3658 		*buflen -= addend;
3659 		tmpbuf = buf + *buflen;
3660 		tmpbuf[0] = '/';
3661 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3662 		tmpbuf[addend - 1] = '\0';
3663 		vp = dvp;
3664 	}
3665 
3666 	vfs_smr_enter();
3667 	pwd = pwd_get_smr();
3668 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3669 	    addend);
3670 	VFS_SMR_ASSERT_NOT_ENTERED();
3671 	if (error < 0) {
3672 		pwd = pwd_hold(curthread);
3673 		vref(vp);
3674 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3675 		    addend);
3676 		pwd_drop(pwd);
3677 	}
3678 	if (error != 0)
3679 		goto out_bad;
3680 
3681 	*freebuf = buf;
3682 
3683 	return (0);
3684 out_bad:
3685 	free(buf, M_TEMP);
3686 	return (error);
3687 }
3688 
3689 struct vnode *
3690 vn_dir_dd_ino(struct vnode *vp)
3691 {
3692 	struct namecache *ncp;
3693 	struct vnode *ddvp;
3694 	struct mtx *vlp;
3695 	enum vgetstate vs;
3696 
3697 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3698 	vlp = VP2VNODELOCK(vp);
3699 	mtx_lock(vlp);
3700 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3701 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3702 			continue;
3703 		ddvp = ncp->nc_dvp;
3704 		vs = vget_prep(ddvp);
3705 		mtx_unlock(vlp);
3706 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3707 			return (NULL);
3708 		return (ddvp);
3709 	}
3710 	mtx_unlock(vlp);
3711 	return (NULL);
3712 }
3713 
3714 int
3715 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3716 {
3717 	struct namecache *ncp;
3718 	struct mtx *vlp;
3719 	int l;
3720 
3721 	vlp = VP2VNODELOCK(vp);
3722 	mtx_lock(vlp);
3723 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3724 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3725 			break;
3726 	if (ncp == NULL) {
3727 		mtx_unlock(vlp);
3728 		return (ENOENT);
3729 	}
3730 	l = min(ncp->nc_nlen, buflen - 1);
3731 	memcpy(buf, ncp->nc_name, l);
3732 	mtx_unlock(vlp);
3733 	buf[l] = '\0';
3734 	return (0);
3735 }
3736 
3737 /*
3738  * This function updates path string to vnode's full global path
3739  * and checks the size of the new path string against the pathlen argument.
3740  *
3741  * Requires a locked, referenced vnode.
3742  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3743  *
3744  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3745  * because it falls back to the ".." lookup if the namecache lookup fails.
3746  */
3747 int
3748 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3749     u_int pathlen)
3750 {
3751 	struct nameidata nd;
3752 	struct vnode *vp1;
3753 	char *rpath, *fbuf;
3754 	int error;
3755 
3756 	ASSERT_VOP_ELOCKED(vp, __func__);
3757 
3758 	/* Construct global filesystem path from vp. */
3759 	VOP_UNLOCK(vp);
3760 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3761 
3762 	if (error != 0) {
3763 		vrele(vp);
3764 		return (error);
3765 	}
3766 
3767 	if (strlen(rpath) >= pathlen) {
3768 		vrele(vp);
3769 		error = ENAMETOOLONG;
3770 		goto out;
3771 	}
3772 
3773 	/*
3774 	 * Re-lookup the vnode by path to detect a possible rename.
3775 	 * As a side effect, the vnode is relocked.
3776 	 * If vnode was renamed, return ENOENT.
3777 	 */
3778 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3779 	error = namei(&nd);
3780 	if (error != 0) {
3781 		vrele(vp);
3782 		goto out;
3783 	}
3784 	NDFREE(&nd, NDF_ONLY_PNBUF);
3785 	vp1 = nd.ni_vp;
3786 	vrele(vp);
3787 	if (vp1 == vp)
3788 		strcpy(path, rpath);
3789 	else {
3790 		vput(vp1);
3791 		error = ENOENT;
3792 	}
3793 
3794 out:
3795 	free(fbuf, M_TEMP);
3796 	return (error);
3797 }
3798 
3799 #ifdef DDB
3800 static void
3801 db_print_vpath(struct vnode *vp)
3802 {
3803 
3804 	while (vp != NULL) {
3805 		db_printf("%p: ", vp);
3806 		if (vp == rootvnode) {
3807 			db_printf("/");
3808 			vp = NULL;
3809 		} else {
3810 			if (vp->v_vflag & VV_ROOT) {
3811 				db_printf("<mount point>");
3812 				vp = vp->v_mount->mnt_vnodecovered;
3813 			} else {
3814 				struct namecache *ncp;
3815 				char *ncn;
3816 				int i;
3817 
3818 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3819 				if (ncp != NULL) {
3820 					ncn = ncp->nc_name;
3821 					for (i = 0; i < ncp->nc_nlen; i++)
3822 						db_printf("%c", *ncn++);
3823 					vp = ncp->nc_dvp;
3824 				} else {
3825 					vp = NULL;
3826 				}
3827 			}
3828 		}
3829 		db_printf("\n");
3830 	}
3831 
3832 	return;
3833 }
3834 
3835 DB_SHOW_COMMAND(vpath, db_show_vpath)
3836 {
3837 	struct vnode *vp;
3838 
3839 	if (!have_addr) {
3840 		db_printf("usage: show vpath <struct vnode *>\n");
3841 		return;
3842 	}
3843 
3844 	vp = (struct vnode *)addr;
3845 	db_print_vpath(vp);
3846 }
3847 
3848 #endif
3849 
3850 static int cache_fast_lookup = 1;
3851 
3852 #define CACHE_FPL_FAILED	-2020
3853 
3854 void
3855 cache_fast_lookup_enabled_recalc(void)
3856 {
3857 	int lookup_flag;
3858 	int mac_on;
3859 
3860 #ifdef MAC
3861 	mac_on = mac_vnode_check_lookup_enabled();
3862 	mac_on |= mac_vnode_check_readlink_enabled();
3863 #else
3864 	mac_on = 0;
3865 #endif
3866 
3867 	lookup_flag = atomic_load_int(&cache_fast_lookup);
3868 	if (lookup_flag && !mac_on) {
3869 		atomic_store_char(&cache_fast_lookup_enabled, true);
3870 	} else {
3871 		atomic_store_char(&cache_fast_lookup_enabled, false);
3872 	}
3873 }
3874 
3875 static int
3876 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
3877 {
3878 	int error, old;
3879 
3880 	old = atomic_load_int(&cache_fast_lookup);
3881 	error = sysctl_handle_int(oidp, arg1, arg2, req);
3882 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
3883 		cache_fast_lookup_enabled_recalc();
3884 	return (error);
3885 }
3886 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
3887     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
3888 
3889 /*
3890  * Components of nameidata (or objects it can point to) which may
3891  * need restoring in case fast path lookup fails.
3892  */
3893 struct nameidata_outer {
3894 	size_t ni_pathlen;
3895 	int cn_flags;
3896 };
3897 
3898 struct nameidata_saved {
3899 #ifdef INVARIANTS
3900 	char *cn_nameptr;
3901 	size_t ni_pathlen;
3902 #endif
3903 };
3904 
3905 #ifdef INVARIANTS
3906 struct cache_fpl_debug {
3907 	size_t ni_pathlen;
3908 };
3909 #endif
3910 
3911 struct cache_fpl {
3912 	struct nameidata *ndp;
3913 	struct componentname *cnp;
3914 	char *nulchar;
3915 	struct vnode *dvp;
3916 	struct vnode *tvp;
3917 	seqc_t dvp_seqc;
3918 	seqc_t tvp_seqc;
3919 	uint32_t hash;
3920 	struct nameidata_saved snd;
3921 	struct nameidata_outer snd_outer;
3922 	int line;
3923 	enum cache_fpl_status status:8;
3924 	bool in_smr;
3925 	bool fsearch;
3926 	bool savename;
3927 	struct pwd **pwd;
3928 #ifdef INVARIANTS
3929 	struct cache_fpl_debug debug;
3930 #endif
3931 };
3932 
3933 static bool cache_fplookup_mp_supported(struct mount *mp);
3934 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
3935 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
3936 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
3937 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
3938 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
3939 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
3940 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
3941 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
3942 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
3943 
3944 static void
3945 cache_fpl_cleanup_cnp(struct componentname *cnp)
3946 {
3947 
3948 	uma_zfree(namei_zone, cnp->cn_pnbuf);
3949 #ifdef DIAGNOSTIC
3950 	cnp->cn_pnbuf = NULL;
3951 	cnp->cn_nameptr = NULL;
3952 #endif
3953 }
3954 
3955 static struct vnode *
3956 cache_fpl_handle_root(struct cache_fpl *fpl)
3957 {
3958 	struct nameidata *ndp;
3959 	struct componentname *cnp;
3960 
3961 	ndp = fpl->ndp;
3962 	cnp = fpl->cnp;
3963 
3964 	MPASS(*(cnp->cn_nameptr) == '/');
3965 	cnp->cn_nameptr++;
3966 	cache_fpl_pathlen_dec(fpl);
3967 
3968 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
3969 		do {
3970 			cnp->cn_nameptr++;
3971 			cache_fpl_pathlen_dec(fpl);
3972 		} while (*(cnp->cn_nameptr) == '/');
3973 	}
3974 
3975 	return (ndp->ni_rootdir);
3976 }
3977 
3978 static void
3979 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
3980 {
3981 
3982 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
3983 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
3984 }
3985 
3986 static void
3987 cache_fpl_checkpoint(struct cache_fpl *fpl)
3988 {
3989 
3990 #ifdef INVARIANTS
3991 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
3992 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
3993 #endif
3994 }
3995 
3996 static void
3997 cache_fpl_restore_partial(struct cache_fpl *fpl)
3998 {
3999 
4000 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4001 #ifdef INVARIANTS
4002 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4003 #endif
4004 }
4005 
4006 static void
4007 cache_fpl_restore_abort(struct cache_fpl *fpl)
4008 {
4009 
4010 	cache_fpl_restore_partial(fpl);
4011 	/*
4012 	 * It is 0 on entry by API contract.
4013 	 */
4014 	fpl->ndp->ni_resflags = 0;
4015 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4016 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4017 }
4018 
4019 #ifdef INVARIANTS
4020 #define cache_fpl_smr_assert_entered(fpl) ({			\
4021 	struct cache_fpl *_fpl = (fpl);				\
4022 	MPASS(_fpl->in_smr == true);				\
4023 	VFS_SMR_ASSERT_ENTERED();				\
4024 })
4025 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4026 	struct cache_fpl *_fpl = (fpl);				\
4027 	MPASS(_fpl->in_smr == false);				\
4028 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4029 })
4030 static void
4031 cache_fpl_assert_status(struct cache_fpl *fpl)
4032 {
4033 
4034 	switch (fpl->status) {
4035 	case CACHE_FPL_STATUS_UNSET:
4036 		__assert_unreachable();
4037 		break;
4038 	case CACHE_FPL_STATUS_DESTROYED:
4039 	case CACHE_FPL_STATUS_ABORTED:
4040 	case CACHE_FPL_STATUS_PARTIAL:
4041 	case CACHE_FPL_STATUS_HANDLED:
4042 		break;
4043 	}
4044 }
4045 #else
4046 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4047 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4048 #define cache_fpl_assert_status(fpl) do { } while (0)
4049 #endif
4050 
4051 #define cache_fpl_smr_enter_initial(fpl) ({			\
4052 	struct cache_fpl *_fpl = (fpl);				\
4053 	vfs_smr_enter();					\
4054 	_fpl->in_smr = true;					\
4055 })
4056 
4057 #define cache_fpl_smr_enter(fpl) ({				\
4058 	struct cache_fpl *_fpl = (fpl);				\
4059 	MPASS(_fpl->in_smr == false);				\
4060 	vfs_smr_enter();					\
4061 	_fpl->in_smr = true;					\
4062 })
4063 
4064 #define cache_fpl_smr_exit(fpl) ({				\
4065 	struct cache_fpl *_fpl = (fpl);				\
4066 	MPASS(_fpl->in_smr == true);				\
4067 	vfs_smr_exit();						\
4068 	_fpl->in_smr = false;					\
4069 })
4070 
4071 static int
4072 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4073 {
4074 
4075 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4076 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4077 		    ("%s: converting to abort from %d at %d, set at %d\n",
4078 		    __func__, fpl->status, line, fpl->line));
4079 	}
4080 	cache_fpl_smr_assert_not_entered(fpl);
4081 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4082 	fpl->line = line;
4083 	return (CACHE_FPL_FAILED);
4084 }
4085 
4086 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4087 
4088 static int __noinline
4089 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4090 {
4091 	struct nameidata *ndp;
4092 	struct componentname *cnp;
4093 
4094 	ndp = fpl->ndp;
4095 	cnp = fpl->cnp;
4096 
4097 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4098 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4099 		    ("%s: converting to abort from %d at %d, set at %d\n",
4100 		    __func__, fpl->status, line, fpl->line));
4101 	}
4102 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4103 	fpl->line = line;
4104 	if (fpl->in_smr)
4105 		cache_fpl_smr_exit(fpl);
4106 	cache_fpl_restore_abort(fpl);
4107 	/*
4108 	 * Resolving symlinks overwrites data passed by the caller.
4109 	 * Let namei know.
4110 	 */
4111 	if (ndp->ni_loopcnt > 0) {
4112 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4113 		cache_fpl_cleanup_cnp(cnp);
4114 	}
4115 	return (CACHE_FPL_FAILED);
4116 }
4117 
4118 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4119 
4120 static int __noinline
4121 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4122 {
4123 
4124 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4125 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4126 	    __func__, line, fpl->status, fpl->line));
4127 	cache_fpl_smr_assert_entered(fpl);
4128 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4129 	fpl->line = line;
4130 	return (cache_fplookup_partial_setup(fpl));
4131 }
4132 
4133 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4134 
4135 static int
4136 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4137 {
4138 
4139 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4140 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4141 	    __func__, line, fpl->status, fpl->line));
4142 	cache_fpl_smr_assert_not_entered(fpl);
4143 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4144 	fpl->line = line;
4145 	return (0);
4146 }
4147 
4148 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4149 
4150 static int
4151 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4152 {
4153 
4154 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4155 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4156 	    __func__, line, fpl->status, fpl->line));
4157 	MPASS(error != 0);
4158 	MPASS(error != CACHE_FPL_FAILED);
4159 	cache_fpl_smr_assert_not_entered(fpl);
4160 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4161 	fpl->line = line;
4162 	fpl->dvp = NULL;
4163 	fpl->tvp = NULL;
4164 	fpl->savename = false;
4165 	return (error);
4166 }
4167 
4168 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4169 
4170 static bool
4171 cache_fpl_terminated(struct cache_fpl *fpl)
4172 {
4173 
4174 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4175 }
4176 
4177 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4178 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4179 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | SAVENAME | SAVESTART | \
4180 	 WILLBEDIR | ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | \
4181 	 OPENREAD | OPENWRITE)
4182 
4183 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4184 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4185 
4186 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4187     "supported and internal flags overlap");
4188 
4189 static bool
4190 cache_fpl_islastcn(struct nameidata *ndp)
4191 {
4192 
4193 	return (*ndp->ni_next == 0);
4194 }
4195 
4196 static bool
4197 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4198 {
4199 
4200 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4201 	return (*(fpl->nulchar - 1) == '/');
4202 }
4203 
4204 static bool
4205 cache_fpl_isdotdot(struct componentname *cnp)
4206 {
4207 
4208 	if (cnp->cn_namelen == 2 &&
4209 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4210 		return (true);
4211 	return (false);
4212 }
4213 
4214 static bool
4215 cache_can_fplookup(struct cache_fpl *fpl)
4216 {
4217 	struct nameidata *ndp;
4218 	struct componentname *cnp;
4219 	struct thread *td;
4220 
4221 	ndp = fpl->ndp;
4222 	cnp = fpl->cnp;
4223 	td = curthread;
4224 
4225 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4226 		cache_fpl_aborted_early(fpl);
4227 		return (false);
4228 	}
4229 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4230 		cache_fpl_aborted_early(fpl);
4231 		return (false);
4232 	}
4233 	if (IN_CAPABILITY_MODE(td)) {
4234 		cache_fpl_aborted_early(fpl);
4235 		return (false);
4236 	}
4237 	if (AUDITING_TD(td)) {
4238 		cache_fpl_aborted_early(fpl);
4239 		return (false);
4240 	}
4241 	if (ndp->ni_startdir != NULL) {
4242 		cache_fpl_aborted_early(fpl);
4243 		return (false);
4244 	}
4245 	return (true);
4246 }
4247 
4248 static int __noinline
4249 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4250 {
4251 	struct nameidata *ndp;
4252 	struct componentname *cnp;
4253 	int error;
4254 	bool fsearch;
4255 
4256 	ndp = fpl->ndp;
4257 	cnp = fpl->cnp;
4258 
4259 	error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
4260 	if (__predict_false(error != 0)) {
4261 		return (cache_fpl_aborted(fpl));
4262 	}
4263 	fpl->fsearch = fsearch;
4264 	if ((*vpp)->v_type != VDIR) {
4265 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4266 			cache_fpl_smr_exit(fpl);
4267 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4268 		}
4269 	}
4270 	return (0);
4271 }
4272 
4273 static int __noinline
4274 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4275     uint32_t hash)
4276 {
4277 	struct componentname *cnp;
4278 	struct vnode *dvp;
4279 
4280 	cnp = fpl->cnp;
4281 	dvp = fpl->dvp;
4282 
4283 	cache_fpl_smr_exit(fpl);
4284 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4285 		return (cache_fpl_handled_error(fpl, ENOENT));
4286 	else
4287 		return (cache_fpl_aborted(fpl));
4288 }
4289 
4290 /*
4291  * The target vnode is not supported, prepare for the slow path to take over.
4292  */
4293 static int __noinline
4294 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4295 {
4296 	struct nameidata *ndp;
4297 	struct componentname *cnp;
4298 	enum vgetstate dvs;
4299 	struct vnode *dvp;
4300 	struct pwd *pwd;
4301 	seqc_t dvp_seqc;
4302 
4303 	ndp = fpl->ndp;
4304 	cnp = fpl->cnp;
4305 	pwd = *(fpl->pwd);
4306 	dvp = fpl->dvp;
4307 	dvp_seqc = fpl->dvp_seqc;
4308 
4309 	if (!pwd_hold_smr(pwd)) {
4310 		return (cache_fpl_aborted(fpl));
4311 	}
4312 
4313 	/*
4314 	 * Note that seqc is checked before the vnode is locked, so by
4315 	 * the time regular lookup gets to it it may have moved.
4316 	 *
4317 	 * Ultimately this does not affect correctness, any lookup errors
4318 	 * are userspace racing with itself. It is guaranteed that any
4319 	 * path which ultimately gets found could also have been found
4320 	 * by regular lookup going all the way in absence of concurrent
4321 	 * modifications.
4322 	 */
4323 	dvs = vget_prep_smr(dvp);
4324 	cache_fpl_smr_exit(fpl);
4325 	if (__predict_false(dvs == VGET_NONE)) {
4326 		pwd_drop(pwd);
4327 		return (cache_fpl_aborted(fpl));
4328 	}
4329 
4330 	vget_finish_ref(dvp, dvs);
4331 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4332 		vrele(dvp);
4333 		pwd_drop(pwd);
4334 		return (cache_fpl_aborted(fpl));
4335 	}
4336 
4337 	cache_fpl_restore_partial(fpl);
4338 #ifdef INVARIANTS
4339 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4340 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4341 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4342 	}
4343 #endif
4344 
4345 	ndp->ni_startdir = dvp;
4346 	cnp->cn_flags |= MAKEENTRY;
4347 	if (cache_fpl_islastcn(ndp))
4348 		cnp->cn_flags |= ISLASTCN;
4349 	if (cache_fpl_isdotdot(cnp))
4350 		cnp->cn_flags |= ISDOTDOT;
4351 
4352 	/*
4353 	 * Skip potential extra slashes parsing did not take care of.
4354 	 * cache_fplookup_skip_slashes explains the mechanism.
4355 	 */
4356 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4357 		do {
4358 			cnp->cn_nameptr++;
4359 			cache_fpl_pathlen_dec(fpl);
4360 		} while (*(cnp->cn_nameptr) == '/');
4361 	}
4362 
4363 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4364 #ifdef INVARIANTS
4365 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4366 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4367 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4368 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4369 	}
4370 #endif
4371 	return (0);
4372 }
4373 
4374 static int
4375 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4376 {
4377 	struct componentname *cnp;
4378 	struct vnode *tvp;
4379 	seqc_t tvp_seqc;
4380 	int error, lkflags;
4381 
4382 	cnp = fpl->cnp;
4383 	tvp = fpl->tvp;
4384 	tvp_seqc = fpl->tvp_seqc;
4385 
4386 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4387 		lkflags = LK_SHARED;
4388 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4389 			lkflags = LK_EXCLUSIVE;
4390 		error = vget_finish(tvp, lkflags, tvs);
4391 		if (__predict_false(error != 0)) {
4392 			return (cache_fpl_aborted(fpl));
4393 		}
4394 	} else {
4395 		vget_finish_ref(tvp, tvs);
4396 	}
4397 
4398 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4399 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4400 			vput(tvp);
4401 		else
4402 			vrele(tvp);
4403 		return (cache_fpl_aborted(fpl));
4404 	}
4405 
4406 	return (cache_fpl_handled(fpl));
4407 }
4408 
4409 /*
4410  * They want to possibly modify the state of the namecache.
4411  */
4412 static int __noinline
4413 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4414 {
4415 	struct nameidata *ndp;
4416 	struct componentname *cnp;
4417 	enum vgetstate dvs;
4418 	struct vnode *dvp, *tvp;
4419 	struct mount *mp;
4420 	seqc_t dvp_seqc;
4421 	int error;
4422 	bool docache;
4423 
4424 	ndp = fpl->ndp;
4425 	cnp = fpl->cnp;
4426 	dvp = fpl->dvp;
4427 	dvp_seqc = fpl->dvp_seqc;
4428 
4429 	MPASS(*(cnp->cn_nameptr) != '/');
4430 	MPASS(cache_fpl_islastcn(ndp));
4431 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4432 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4433 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4434 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4435 	    cnp->cn_nameiop == RENAME);
4436 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4437 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4438 
4439 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4440 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4441 		docache = false;
4442 
4443 	/*
4444 	 * Regular lookup nulifies the slash, which we don't do here.
4445 	 * Don't take chances with filesystem routines seeing it for
4446 	 * the last entry.
4447 	 */
4448 	if (cache_fpl_istrailingslash(fpl)) {
4449 		return (cache_fpl_partial(fpl));
4450 	}
4451 
4452 	mp = atomic_load_ptr(&dvp->v_mount);
4453 	if (__predict_false(mp == NULL)) {
4454 		return (cache_fpl_aborted(fpl));
4455 	}
4456 
4457 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4458 		cache_fpl_smr_exit(fpl);
4459 		/*
4460 		 * Original code keeps not checking for CREATE which
4461 		 * might be a bug. For now let the old lookup decide.
4462 		 */
4463 		if (cnp->cn_nameiop == CREATE) {
4464 			return (cache_fpl_aborted(fpl));
4465 		}
4466 		return (cache_fpl_handled_error(fpl, EROFS));
4467 	}
4468 
4469 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4470 		cache_fpl_smr_exit(fpl);
4471 		return (cache_fpl_handled_error(fpl, EEXIST));
4472 	}
4473 
4474 	/*
4475 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4476 	 * reasoning.
4477 	 *
4478 	 * XXX At least UFS requires its lookup routine to be called for
4479 	 * the last path component, which leads to some level of complication
4480 	 * and inefficiency:
4481 	 * - the target routine always locks the target vnode, but our caller
4482 	 *   may not need it locked
4483 	 * - some of the VOP machinery asserts that the parent is locked, which
4484 	 *   once more may be not required
4485 	 *
4486 	 * TODO: add a flag for filesystems which don't need this.
4487 	 */
4488 	dvs = vget_prep_smr(dvp);
4489 	cache_fpl_smr_exit(fpl);
4490 	if (__predict_false(dvs == VGET_NONE)) {
4491 		return (cache_fpl_aborted(fpl));
4492 	}
4493 
4494 	vget_finish_ref(dvp, dvs);
4495 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4496 		vrele(dvp);
4497 		return (cache_fpl_aborted(fpl));
4498 	}
4499 
4500 	error = vn_lock(dvp, LK_EXCLUSIVE);
4501 	if (__predict_false(error != 0)) {
4502 		vrele(dvp);
4503 		return (cache_fpl_aborted(fpl));
4504 	}
4505 
4506 	tvp = NULL;
4507 	cnp->cn_flags |= ISLASTCN;
4508 	if (docache)
4509 		cnp->cn_flags |= MAKEENTRY;
4510 	if (cache_fpl_isdotdot(cnp))
4511 		cnp->cn_flags |= ISDOTDOT;
4512 	cnp->cn_lkflags = LK_EXCLUSIVE;
4513 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4514 	switch (error) {
4515 	case EJUSTRETURN:
4516 	case 0:
4517 		break;
4518 	case ENOTDIR:
4519 	case ENOENT:
4520 		vput(dvp);
4521 		return (cache_fpl_handled_error(fpl, error));
4522 	default:
4523 		vput(dvp);
4524 		return (cache_fpl_aborted(fpl));
4525 	}
4526 
4527 	fpl->tvp = tvp;
4528 	fpl->savename = (cnp->cn_flags & SAVENAME) != 0;
4529 
4530 	if (tvp == NULL) {
4531 		if ((cnp->cn_flags & SAVESTART) != 0) {
4532 			ndp->ni_startdir = dvp;
4533 			vrefact(ndp->ni_startdir);
4534 			cnp->cn_flags |= SAVENAME;
4535 			fpl->savename = true;
4536 		}
4537 		MPASS(error == EJUSTRETURN);
4538 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4539 			VOP_UNLOCK(dvp);
4540 		}
4541 		return (cache_fpl_handled(fpl));
4542 	}
4543 
4544 	/*
4545 	 * There are very hairy corner cases concerning various flag combinations
4546 	 * and locking state. In particular here we only hold one lock instead of
4547 	 * two.
4548 	 *
4549 	 * Skip the complexity as it is of no significance for normal workloads.
4550 	 */
4551 	if (__predict_false(tvp == dvp)) {
4552 		vput(dvp);
4553 		vrele(tvp);
4554 		return (cache_fpl_aborted(fpl));
4555 	}
4556 
4557 	/*
4558 	 * If they want the symlink itself we are fine, but if they want to
4559 	 * follow it regular lookup has to be engaged.
4560 	 */
4561 	if (tvp->v_type == VLNK) {
4562 		if ((cnp->cn_flags & FOLLOW) != 0) {
4563 			vput(dvp);
4564 			vput(tvp);
4565 			return (cache_fpl_aborted(fpl));
4566 		}
4567 	}
4568 
4569 	/*
4570 	 * Since we expect this to be the terminal vnode it should almost never
4571 	 * be a mount point.
4572 	 */
4573 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4574 		vput(dvp);
4575 		vput(tvp);
4576 		return (cache_fpl_aborted(fpl));
4577 	}
4578 
4579 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4580 		vput(dvp);
4581 		vput(tvp);
4582 		return (cache_fpl_handled_error(fpl, EEXIST));
4583 	}
4584 
4585 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4586 		VOP_UNLOCK(tvp);
4587 	}
4588 
4589 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4590 		VOP_UNLOCK(dvp);
4591 	}
4592 
4593 	if ((cnp->cn_flags & SAVESTART) != 0) {
4594 		ndp->ni_startdir = dvp;
4595 		vrefact(ndp->ni_startdir);
4596 		cnp->cn_flags |= SAVENAME;
4597 		fpl->savename = true;
4598 	}
4599 
4600 	return (cache_fpl_handled(fpl));
4601 }
4602 
4603 static int __noinline
4604 cache_fplookup_modifying(struct cache_fpl *fpl)
4605 {
4606 	struct nameidata *ndp;
4607 
4608 	ndp = fpl->ndp;
4609 
4610 	if (!cache_fpl_islastcn(ndp)) {
4611 		return (cache_fpl_partial(fpl));
4612 	}
4613 	return (cache_fplookup_final_modifying(fpl));
4614 }
4615 
4616 static int __noinline
4617 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4618 {
4619 	struct componentname *cnp;
4620 	enum vgetstate dvs, tvs;
4621 	struct vnode *dvp, *tvp;
4622 	seqc_t dvp_seqc;
4623 	int error;
4624 
4625 	cnp = fpl->cnp;
4626 	dvp = fpl->dvp;
4627 	dvp_seqc = fpl->dvp_seqc;
4628 	tvp = fpl->tvp;
4629 
4630 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4631 
4632 	/*
4633 	 * This is less efficient than it can be for simplicity.
4634 	 */
4635 	dvs = vget_prep_smr(dvp);
4636 	if (__predict_false(dvs == VGET_NONE)) {
4637 		return (cache_fpl_aborted(fpl));
4638 	}
4639 	tvs = vget_prep_smr(tvp);
4640 	if (__predict_false(tvs == VGET_NONE)) {
4641 		cache_fpl_smr_exit(fpl);
4642 		vget_abort(dvp, dvs);
4643 		return (cache_fpl_aborted(fpl));
4644 	}
4645 
4646 	cache_fpl_smr_exit(fpl);
4647 
4648 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4649 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4650 		if (__predict_false(error != 0)) {
4651 			vget_abort(tvp, tvs);
4652 			return (cache_fpl_aborted(fpl));
4653 		}
4654 	} else {
4655 		vget_finish_ref(dvp, dvs);
4656 	}
4657 
4658 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4659 		vget_abort(tvp, tvs);
4660 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4661 			vput(dvp);
4662 		else
4663 			vrele(dvp);
4664 		return (cache_fpl_aborted(fpl));
4665 	}
4666 
4667 	error = cache_fplookup_final_child(fpl, tvs);
4668 	if (__predict_false(error != 0)) {
4669 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4670 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4671 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4672 			vput(dvp);
4673 		else
4674 			vrele(dvp);
4675 		return (error);
4676 	}
4677 
4678 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4679 	return (0);
4680 }
4681 
4682 static int
4683 cache_fplookup_final(struct cache_fpl *fpl)
4684 {
4685 	struct componentname *cnp;
4686 	enum vgetstate tvs;
4687 	struct vnode *dvp, *tvp;
4688 	seqc_t dvp_seqc;
4689 
4690 	cnp = fpl->cnp;
4691 	dvp = fpl->dvp;
4692 	dvp_seqc = fpl->dvp_seqc;
4693 	tvp = fpl->tvp;
4694 
4695 	MPASS(*(cnp->cn_nameptr) != '/');
4696 
4697 	if (cnp->cn_nameiop != LOOKUP) {
4698 		return (cache_fplookup_final_modifying(fpl));
4699 	}
4700 
4701 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4702 		return (cache_fplookup_final_withparent(fpl));
4703 
4704 	tvs = vget_prep_smr(tvp);
4705 	if (__predict_false(tvs == VGET_NONE)) {
4706 		return (cache_fpl_partial(fpl));
4707 	}
4708 
4709 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4710 		cache_fpl_smr_exit(fpl);
4711 		vget_abort(tvp, tvs);
4712 		return (cache_fpl_aborted(fpl));
4713 	}
4714 
4715 	cache_fpl_smr_exit(fpl);
4716 	return (cache_fplookup_final_child(fpl, tvs));
4717 }
4718 
4719 /*
4720  * Comment from locked lookup:
4721  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4722  * directory, e.g. like "/." or ".".
4723  */
4724 static int __noinline
4725 cache_fplookup_degenerate(struct cache_fpl *fpl)
4726 {
4727 	struct componentname *cnp;
4728 	struct vnode *dvp;
4729 	enum vgetstate dvs;
4730 	int error, lkflags;
4731 #ifdef INVARIANTS
4732 	char *cp;
4733 #endif
4734 
4735 	fpl->tvp = fpl->dvp;
4736 	fpl->tvp_seqc = fpl->dvp_seqc;
4737 
4738 	cnp = fpl->cnp;
4739 	dvp = fpl->dvp;
4740 
4741 #ifdef INVARIANTS
4742 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4743 		KASSERT(*cp == '/',
4744 		    ("%s: encountered non-slash; string [%s]\n", __func__,
4745 		    cnp->cn_pnbuf));
4746 	}
4747 #endif
4748 
4749 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4750 		cache_fpl_smr_exit(fpl);
4751 		return (cache_fpl_handled_error(fpl, EISDIR));
4752 	}
4753 
4754 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4755 
4756 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4757 		return (cache_fplookup_final_withparent(fpl));
4758 	}
4759 
4760 	dvs = vget_prep_smr(dvp);
4761 	cache_fpl_smr_exit(fpl);
4762 	if (__predict_false(dvs == VGET_NONE)) {
4763 		return (cache_fpl_aborted(fpl));
4764 	}
4765 
4766 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4767 		lkflags = LK_SHARED;
4768 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4769 			lkflags = LK_EXCLUSIVE;
4770 		error = vget_finish(dvp, lkflags, dvs);
4771 		if (__predict_false(error != 0)) {
4772 			return (cache_fpl_aborted(fpl));
4773 		}
4774 	} else {
4775 		vget_finish_ref(dvp, dvs);
4776 	}
4777 	return (cache_fpl_handled(fpl));
4778 }
4779 
4780 static int __noinline
4781 cache_fplookup_emptypath(struct cache_fpl *fpl)
4782 {
4783 	struct nameidata *ndp;
4784 	struct componentname *cnp;
4785 	enum vgetstate tvs;
4786 	struct vnode *tvp;
4787 	int error, lkflags;
4788 
4789 	fpl->tvp = fpl->dvp;
4790 	fpl->tvp_seqc = fpl->dvp_seqc;
4791 
4792 	ndp = fpl->ndp;
4793 	cnp = fpl->cnp;
4794 	tvp = fpl->tvp;
4795 
4796 	MPASS(*cnp->cn_pnbuf == '\0');
4797 
4798 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
4799 		cache_fpl_smr_exit(fpl);
4800 		return (cache_fpl_handled_error(fpl, ENOENT));
4801 	}
4802 
4803 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
4804 
4805 	tvs = vget_prep_smr(tvp);
4806 	cache_fpl_smr_exit(fpl);
4807 	if (__predict_false(tvs == VGET_NONE)) {
4808 		return (cache_fpl_aborted(fpl));
4809 	}
4810 
4811 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4812 		lkflags = LK_SHARED;
4813 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4814 			lkflags = LK_EXCLUSIVE;
4815 		error = vget_finish(tvp, lkflags, tvs);
4816 		if (__predict_false(error != 0)) {
4817 			return (cache_fpl_aborted(fpl));
4818 		}
4819 	} else {
4820 		vget_finish_ref(tvp, tvs);
4821 	}
4822 
4823 	ndp->ni_resflags |= NIRES_EMPTYPATH;
4824 	return (cache_fpl_handled(fpl));
4825 }
4826 
4827 static int __noinline
4828 cache_fplookup_noentry(struct cache_fpl *fpl)
4829 {
4830 	struct nameidata *ndp;
4831 	struct componentname *cnp;
4832 	enum vgetstate dvs;
4833 	struct vnode *dvp, *tvp;
4834 	seqc_t dvp_seqc;
4835 	int error;
4836 
4837 	ndp = fpl->ndp;
4838 	cnp = fpl->cnp;
4839 	dvp = fpl->dvp;
4840 	dvp_seqc = fpl->dvp_seqc;
4841 
4842 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4843 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4844 	if (cnp->cn_nameiop == LOOKUP)
4845 		MPASS((cnp->cn_flags & NOCACHE) == 0);
4846 	MPASS(!cache_fpl_isdotdot(cnp));
4847 
4848 	/*
4849 	 * Hack: delayed name len checking.
4850 	 */
4851 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4852 		cache_fpl_smr_exit(fpl);
4853 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
4854 	}
4855 
4856 	if (cnp->cn_nameptr[0] == '/') {
4857 		return (cache_fplookup_skip_slashes(fpl));
4858 	}
4859 
4860 	if (cnp->cn_pnbuf[0] == '\0') {
4861 		return (cache_fplookup_emptypath(fpl));
4862 	}
4863 
4864 	if (cnp->cn_nameptr[0] == '\0') {
4865 		if (fpl->tvp == NULL) {
4866 			return (cache_fplookup_degenerate(fpl));
4867 		}
4868 		return (cache_fplookup_trailingslash(fpl));
4869 	}
4870 
4871 	if (cnp->cn_nameiop != LOOKUP) {
4872 		fpl->tvp = NULL;
4873 		return (cache_fplookup_modifying(fpl));
4874 	}
4875 
4876 	MPASS((cnp->cn_flags & SAVESTART) == 0);
4877 
4878 	/*
4879 	 * Only try to fill in the component if it is the last one,
4880 	 * otherwise not only there may be several to handle but the
4881 	 * walk may be complicated.
4882 	 */
4883 	if (!cache_fpl_islastcn(ndp)) {
4884 		return (cache_fpl_partial(fpl));
4885 	}
4886 
4887 	/*
4888 	 * Regular lookup nulifies the slash, which we don't do here.
4889 	 * Don't take chances with filesystem routines seeing it for
4890 	 * the last entry.
4891 	 */
4892 	if (cache_fpl_istrailingslash(fpl)) {
4893 		return (cache_fpl_partial(fpl));
4894 	}
4895 
4896 	/*
4897 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4898 	 * reasoning.
4899 	 */
4900 	dvs = vget_prep_smr(dvp);
4901 	cache_fpl_smr_exit(fpl);
4902 	if (__predict_false(dvs == VGET_NONE)) {
4903 		return (cache_fpl_aborted(fpl));
4904 	}
4905 
4906 	vget_finish_ref(dvp, dvs);
4907 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4908 		vrele(dvp);
4909 		return (cache_fpl_aborted(fpl));
4910 	}
4911 
4912 	error = vn_lock(dvp, LK_SHARED);
4913 	if (__predict_false(error != 0)) {
4914 		vrele(dvp);
4915 		return (cache_fpl_aborted(fpl));
4916 	}
4917 
4918 	tvp = NULL;
4919 	/*
4920 	 * TODO: provide variants which don't require locking either vnode.
4921 	 */
4922 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
4923 	cnp->cn_lkflags = LK_SHARED;
4924 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
4925 		cnp->cn_lkflags = LK_EXCLUSIVE;
4926 	}
4927 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4928 	switch (error) {
4929 	case EJUSTRETURN:
4930 	case 0:
4931 		break;
4932 	case ENOTDIR:
4933 	case ENOENT:
4934 		vput(dvp);
4935 		return (cache_fpl_handled_error(fpl, error));
4936 	default:
4937 		vput(dvp);
4938 		return (cache_fpl_aborted(fpl));
4939 	}
4940 
4941 	fpl->tvp = tvp;
4942 	if (!fpl->savename) {
4943 		MPASS((cnp->cn_flags & SAVENAME) == 0);
4944 	}
4945 
4946 	if (tvp == NULL) {
4947 		MPASS(error == EJUSTRETURN);
4948 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4949 			vput(dvp);
4950 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4951 			VOP_UNLOCK(dvp);
4952 		}
4953 		return (cache_fpl_handled(fpl));
4954 	}
4955 
4956 	if (tvp->v_type == VLNK) {
4957 		if ((cnp->cn_flags & FOLLOW) != 0) {
4958 			vput(dvp);
4959 			vput(tvp);
4960 			return (cache_fpl_aborted(fpl));
4961 		}
4962 	}
4963 
4964 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4965 		vput(dvp);
4966 		vput(tvp);
4967 		return (cache_fpl_aborted(fpl));
4968 	}
4969 
4970 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4971 		VOP_UNLOCK(tvp);
4972 	}
4973 
4974 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4975 		vput(dvp);
4976 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4977 		VOP_UNLOCK(dvp);
4978 	}
4979 	return (cache_fpl_handled(fpl));
4980 }
4981 
4982 static int __noinline
4983 cache_fplookup_dot(struct cache_fpl *fpl)
4984 {
4985 	int error;
4986 
4987 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
4988 	/*
4989 	 * Just re-assign the value. seqc will be checked later for the first
4990 	 * non-dot path component in line and/or before deciding to return the
4991 	 * vnode.
4992 	 */
4993 	fpl->tvp = fpl->dvp;
4994 	fpl->tvp_seqc = fpl->dvp_seqc;
4995 
4996 	counter_u64_add(dothits, 1);
4997 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
4998 
4999 	error = 0;
5000 	if (cache_fplookup_is_mp(fpl)) {
5001 		error = cache_fplookup_cross_mount(fpl);
5002 	}
5003 	return (error);
5004 }
5005 
5006 static int __noinline
5007 cache_fplookup_dotdot(struct cache_fpl *fpl)
5008 {
5009 	struct nameidata *ndp;
5010 	struct componentname *cnp;
5011 	struct namecache *ncp;
5012 	struct vnode *dvp;
5013 	struct prison *pr;
5014 	u_char nc_flag;
5015 
5016 	ndp = fpl->ndp;
5017 	cnp = fpl->cnp;
5018 	dvp = fpl->dvp;
5019 
5020 	MPASS(cache_fpl_isdotdot(cnp));
5021 
5022 	/*
5023 	 * XXX this is racy the same way regular lookup is
5024 	 */
5025 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5026 	    pr = pr->pr_parent)
5027 		if (dvp == pr->pr_root)
5028 			break;
5029 
5030 	if (dvp == ndp->ni_rootdir ||
5031 	    dvp == ndp->ni_topdir ||
5032 	    dvp == rootvnode ||
5033 	    pr != NULL) {
5034 		fpl->tvp = dvp;
5035 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5036 		if (seqc_in_modify(fpl->tvp_seqc)) {
5037 			return (cache_fpl_aborted(fpl));
5038 		}
5039 		return (0);
5040 	}
5041 
5042 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5043 		/*
5044 		 * TODO
5045 		 * The opposite of climb mount is needed here.
5046 		 */
5047 		return (cache_fpl_partial(fpl));
5048 	}
5049 
5050 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5051 	if (ncp == NULL) {
5052 		return (cache_fpl_aborted(fpl));
5053 	}
5054 
5055 	nc_flag = atomic_load_char(&ncp->nc_flag);
5056 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5057 		if ((nc_flag & NCF_NEGATIVE) != 0)
5058 			return (cache_fpl_aborted(fpl));
5059 		fpl->tvp = ncp->nc_vp;
5060 	} else {
5061 		fpl->tvp = ncp->nc_dvp;
5062 	}
5063 
5064 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5065 	if (seqc_in_modify(fpl->tvp_seqc)) {
5066 		return (cache_fpl_partial(fpl));
5067 	}
5068 
5069 	/*
5070 	 * Acquire fence provided by vn_seqc_read_any above.
5071 	 */
5072 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5073 		return (cache_fpl_aborted(fpl));
5074 	}
5075 
5076 	if (!cache_ncp_canuse(ncp)) {
5077 		return (cache_fpl_aborted(fpl));
5078 	}
5079 
5080 	counter_u64_add(dotdothits, 1);
5081 	return (0);
5082 }
5083 
5084 static int __noinline
5085 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5086 {
5087 	u_char nc_flag __diagused;
5088 	bool neg_promote;
5089 
5090 #ifdef INVARIANTS
5091 	nc_flag = atomic_load_char(&ncp->nc_flag);
5092 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5093 #endif
5094 	/*
5095 	 * If they want to create an entry we need to replace this one.
5096 	 */
5097 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5098 		fpl->tvp = NULL;
5099 		return (cache_fplookup_modifying(fpl));
5100 	}
5101 	neg_promote = cache_neg_hit_prep(ncp);
5102 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5103 		cache_neg_hit_abort(ncp);
5104 		return (cache_fpl_partial(fpl));
5105 	}
5106 	if (neg_promote) {
5107 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5108 	}
5109 	cache_neg_hit_finish(ncp);
5110 	cache_fpl_smr_exit(fpl);
5111 	return (cache_fpl_handled_error(fpl, ENOENT));
5112 }
5113 
5114 /*
5115  * Resolve a symlink. Called by filesystem-specific routines.
5116  *
5117  * Code flow is:
5118  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5119  */
5120 int
5121 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5122 {
5123 	struct nameidata *ndp;
5124 	struct componentname *cnp;
5125 	size_t adjust;
5126 
5127 	ndp = fpl->ndp;
5128 	cnp = fpl->cnp;
5129 
5130 	if (__predict_false(len == 0)) {
5131 		return (ENOENT);
5132 	}
5133 
5134 	if (__predict_false(len > MAXPATHLEN - 2)) {
5135 		if (cache_fpl_istrailingslash(fpl)) {
5136 			return (EAGAIN);
5137 		}
5138 	}
5139 
5140 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5141 #ifdef INVARIANTS
5142 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5143 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5144 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5145 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5146 	}
5147 #endif
5148 
5149 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5150 		return (ENAMETOOLONG);
5151 	}
5152 
5153 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5154 		return (ELOOP);
5155 	}
5156 
5157 	adjust = len;
5158 	if (ndp->ni_pathlen > 1) {
5159 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5160 	} else {
5161 		if (cache_fpl_istrailingslash(fpl)) {
5162 			adjust = len + 1;
5163 			cnp->cn_pnbuf[len] = '/';
5164 			cnp->cn_pnbuf[len + 1] = '\0';
5165 		} else {
5166 			cnp->cn_pnbuf[len] = '\0';
5167 		}
5168 	}
5169 	bcopy(string, cnp->cn_pnbuf, len);
5170 
5171 	ndp->ni_pathlen += adjust;
5172 	cache_fpl_pathlen_add(fpl, adjust);
5173 	cnp->cn_nameptr = cnp->cn_pnbuf;
5174 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5175 	fpl->tvp = NULL;
5176 	return (0);
5177 }
5178 
5179 static int __noinline
5180 cache_fplookup_symlink(struct cache_fpl *fpl)
5181 {
5182 	struct mount *mp;
5183 	struct nameidata *ndp;
5184 	struct componentname *cnp;
5185 	struct vnode *dvp, *tvp;
5186 	int error;
5187 
5188 	ndp = fpl->ndp;
5189 	cnp = fpl->cnp;
5190 	dvp = fpl->dvp;
5191 	tvp = fpl->tvp;
5192 
5193 	if (cache_fpl_islastcn(ndp)) {
5194 		if ((cnp->cn_flags & FOLLOW) == 0) {
5195 			return (cache_fplookup_final(fpl));
5196 		}
5197 	}
5198 
5199 	mp = atomic_load_ptr(&dvp->v_mount);
5200 	if (__predict_false(mp == NULL)) {
5201 		return (cache_fpl_aborted(fpl));
5202 	}
5203 
5204 	/*
5205 	 * Note this check races against setting the flag just like regular
5206 	 * lookup.
5207 	 */
5208 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5209 		cache_fpl_smr_exit(fpl);
5210 		return (cache_fpl_handled_error(fpl, EACCES));
5211 	}
5212 
5213 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5214 	if (__predict_false(error != 0)) {
5215 		switch (error) {
5216 		case EAGAIN:
5217 			return (cache_fpl_partial(fpl));
5218 		case ENOENT:
5219 		case ENAMETOOLONG:
5220 		case ELOOP:
5221 			cache_fpl_smr_exit(fpl);
5222 			return (cache_fpl_handled_error(fpl, error));
5223 		default:
5224 			return (cache_fpl_aborted(fpl));
5225 		}
5226 	}
5227 
5228 	if (*(cnp->cn_nameptr) == '/') {
5229 		fpl->dvp = cache_fpl_handle_root(fpl);
5230 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5231 		if (seqc_in_modify(fpl->dvp_seqc)) {
5232 			return (cache_fpl_aborted(fpl));
5233 		}
5234 		/*
5235 		 * The main loop assumes that ->dvp points to a vnode belonging
5236 		 * to a filesystem which can do lockless lookup, but the absolute
5237 		 * symlink can be wandering off to one which does not.
5238 		 */
5239 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5240 		if (__predict_false(mp == NULL)) {
5241 			return (cache_fpl_aborted(fpl));
5242 		}
5243 		if (!cache_fplookup_mp_supported(mp)) {
5244 			cache_fpl_checkpoint(fpl);
5245 			return (cache_fpl_partial(fpl));
5246 		}
5247 	}
5248 	return (0);
5249 }
5250 
5251 static int
5252 cache_fplookup_next(struct cache_fpl *fpl)
5253 {
5254 	struct componentname *cnp;
5255 	struct namecache *ncp;
5256 	struct vnode *dvp, *tvp;
5257 	u_char nc_flag;
5258 	uint32_t hash;
5259 	int error;
5260 
5261 	cnp = fpl->cnp;
5262 	dvp = fpl->dvp;
5263 	hash = fpl->hash;
5264 
5265 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5266 		if (cnp->cn_namelen == 1) {
5267 			return (cache_fplookup_dot(fpl));
5268 		}
5269 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5270 			return (cache_fplookup_dotdot(fpl));
5271 		}
5272 	}
5273 
5274 	MPASS(!cache_fpl_isdotdot(cnp));
5275 
5276 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5277 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5278 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5279 			break;
5280 	}
5281 
5282 	if (__predict_false(ncp == NULL)) {
5283 		return (cache_fplookup_noentry(fpl));
5284 	}
5285 
5286 	tvp = atomic_load_ptr(&ncp->nc_vp);
5287 	nc_flag = atomic_load_char(&ncp->nc_flag);
5288 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5289 		return (cache_fplookup_neg(fpl, ncp, hash));
5290 	}
5291 
5292 	if (!cache_ncp_canuse(ncp)) {
5293 		return (cache_fpl_partial(fpl));
5294 	}
5295 
5296 	fpl->tvp = tvp;
5297 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5298 	if (seqc_in_modify(fpl->tvp_seqc)) {
5299 		return (cache_fpl_partial(fpl));
5300 	}
5301 
5302 	counter_u64_add(numposhits, 1);
5303 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5304 
5305 	error = 0;
5306 	if (cache_fplookup_is_mp(fpl)) {
5307 		error = cache_fplookup_cross_mount(fpl);
5308 	}
5309 	return (error);
5310 }
5311 
5312 static bool
5313 cache_fplookup_mp_supported(struct mount *mp)
5314 {
5315 
5316 	MPASS(mp != NULL);
5317 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5318 		return (false);
5319 	return (true);
5320 }
5321 
5322 /*
5323  * Walk up the mount stack (if any).
5324  *
5325  * Correctness is provided in the following ways:
5326  * - all vnodes are protected from freeing with SMR
5327  * - struct mount objects are type stable making them always safe to access
5328  * - stability of the particular mount is provided by busying it
5329  * - relationship between the vnode which is mounted on and the mount is
5330  *   verified with the vnode sequence counter after busying
5331  * - association between root vnode of the mount and the mount is protected
5332  *   by busy
5333  *
5334  * From that point on we can read the sequence counter of the root vnode
5335  * and get the next mount on the stack (if any) using the same protection.
5336  *
5337  * By the end of successful walk we are guaranteed the reached state was
5338  * indeed present at least at some point which matches the regular lookup.
5339  */
5340 static int __noinline
5341 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5342 {
5343 	struct mount *mp, *prev_mp;
5344 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5345 	struct vnode *vp;
5346 	seqc_t vp_seqc;
5347 
5348 	vp = fpl->tvp;
5349 	vp_seqc = fpl->tvp_seqc;
5350 
5351 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
5352 	mp = atomic_load_ptr(&vp->v_mountedhere);
5353 	if (__predict_false(mp == NULL)) {
5354 		return (0);
5355 	}
5356 
5357 	prev_mp = NULL;
5358 	for (;;) {
5359 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5360 			if (prev_mp != NULL)
5361 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5362 			return (cache_fpl_partial(fpl));
5363 		}
5364 		if (prev_mp != NULL)
5365 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5366 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5367 			vfs_op_thread_exit_crit(mp, mpcpu);
5368 			return (cache_fpl_partial(fpl));
5369 		}
5370 		if (!cache_fplookup_mp_supported(mp)) {
5371 			vfs_op_thread_exit_crit(mp, mpcpu);
5372 			return (cache_fpl_partial(fpl));
5373 		}
5374 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5375 		if (vp == NULL) {
5376 			vfs_op_thread_exit_crit(mp, mpcpu);
5377 			return (cache_fpl_partial(fpl));
5378 		}
5379 		vp_seqc = vn_seqc_read_any(vp);
5380 		if (seqc_in_modify(vp_seqc)) {
5381 			vfs_op_thread_exit_crit(mp, mpcpu);
5382 			return (cache_fpl_partial(fpl));
5383 		}
5384 		prev_mp = mp;
5385 		prev_mpcpu = mpcpu;
5386 		mp = atomic_load_ptr(&vp->v_mountedhere);
5387 		if (mp == NULL)
5388 			break;
5389 	}
5390 
5391 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5392 	fpl->tvp = vp;
5393 	fpl->tvp_seqc = vp_seqc;
5394 	return (0);
5395 }
5396 
5397 static int __noinline
5398 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5399 {
5400 	struct mount *mp;
5401 	struct mount_pcpu *mpcpu;
5402 	struct vnode *vp;
5403 	seqc_t vp_seqc;
5404 
5405 	vp = fpl->tvp;
5406 	vp_seqc = fpl->tvp_seqc;
5407 
5408 	VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
5409 	mp = atomic_load_ptr(&vp->v_mountedhere);
5410 	if (__predict_false(mp == NULL)) {
5411 		return (0);
5412 	}
5413 
5414 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5415 		return (cache_fpl_partial(fpl));
5416 	}
5417 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5418 		vfs_op_thread_exit_crit(mp, mpcpu);
5419 		return (cache_fpl_partial(fpl));
5420 	}
5421 	if (!cache_fplookup_mp_supported(mp)) {
5422 		vfs_op_thread_exit_crit(mp, mpcpu);
5423 		return (cache_fpl_partial(fpl));
5424 	}
5425 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5426 	if (__predict_false(vp == NULL)) {
5427 		vfs_op_thread_exit_crit(mp, mpcpu);
5428 		return (cache_fpl_partial(fpl));
5429 	}
5430 	vp_seqc = vn_seqc_read_any(vp);
5431 	vfs_op_thread_exit_crit(mp, mpcpu);
5432 	if (seqc_in_modify(vp_seqc)) {
5433 		return (cache_fpl_partial(fpl));
5434 	}
5435 	mp = atomic_load_ptr(&vp->v_mountedhere);
5436 	if (__predict_false(mp != NULL)) {
5437 		/*
5438 		 * There are possibly more mount points on top.
5439 		 * Normally this does not happen so for simplicity just start
5440 		 * over.
5441 		 */
5442 		return (cache_fplookup_climb_mount(fpl));
5443 	}
5444 
5445 	fpl->tvp = vp;
5446 	fpl->tvp_seqc = vp_seqc;
5447 	return (0);
5448 }
5449 
5450 /*
5451  * Check if a vnode is mounted on.
5452  */
5453 static bool
5454 cache_fplookup_is_mp(struct cache_fpl *fpl)
5455 {
5456 	struct vnode *vp;
5457 
5458 	vp = fpl->tvp;
5459 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5460 }
5461 
5462 /*
5463  * Parse the path.
5464  *
5465  * The code was originally copy-pasted from regular lookup and despite
5466  * clean ups leaves performance on the table. Any modifications here
5467  * must take into account that in case off fallback the resulting
5468  * nameidata state has to be compatible with the original.
5469  */
5470 
5471 /*
5472  * Debug ni_pathlen tracking.
5473  */
5474 #ifdef INVARIANTS
5475 static void
5476 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5477 {
5478 
5479 	fpl->debug.ni_pathlen += n;
5480 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5481 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5482 }
5483 
5484 static void
5485 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5486 {
5487 
5488 	fpl->debug.ni_pathlen -= n;
5489 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5490 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5491 }
5492 
5493 static void
5494 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5495 {
5496 
5497 	cache_fpl_pathlen_add(fpl, 1);
5498 }
5499 
5500 static void
5501 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5502 {
5503 
5504 	cache_fpl_pathlen_sub(fpl, 1);
5505 }
5506 #else
5507 static void
5508 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5509 {
5510 }
5511 
5512 static void
5513 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5514 {
5515 }
5516 
5517 static void
5518 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5519 {
5520 }
5521 
5522 static void
5523 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5524 {
5525 }
5526 #endif
5527 
5528 static void
5529 cache_fplookup_parse(struct cache_fpl *fpl)
5530 {
5531 	struct nameidata *ndp;
5532 	struct componentname *cnp;
5533 	struct vnode *dvp;
5534 	char *cp;
5535 	uint32_t hash;
5536 
5537 	ndp = fpl->ndp;
5538 	cnp = fpl->cnp;
5539 	dvp = fpl->dvp;
5540 
5541 	/*
5542 	 * Find the end of this path component, it is either / or nul.
5543 	 *
5544 	 * Store / as a temporary sentinel so that we only have one character
5545 	 * to test for. Pathnames tend to be short so this should not be
5546 	 * resulting in cache misses.
5547 	 *
5548 	 * TODO: fix this to be word-sized.
5549 	 */
5550 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5551 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5552 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5553 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5554 	    fpl->nulchar, cnp->cn_pnbuf));
5555 	KASSERT(*fpl->nulchar == '\0',
5556 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5557 	    cnp->cn_pnbuf));
5558 	hash = cache_get_hash_iter_start(dvp);
5559 	*fpl->nulchar = '/';
5560 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5561 		KASSERT(*cp != '\0',
5562 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5563 		    cnp->cn_nameptr));
5564 		hash = cache_get_hash_iter(*cp, hash);
5565 		continue;
5566 	}
5567 	*fpl->nulchar = '\0';
5568 	fpl->hash = cache_get_hash_iter_finish(hash);
5569 
5570 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5571 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5572 
5573 #ifdef INVARIANTS
5574 	/*
5575 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5576 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5577 	 */
5578 	if (cnp->cn_namelen <= NAME_MAX) {
5579 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5580 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5581 			    cnp->cn_nameptr, cnp->cn_namelen);
5582 		}
5583 	}
5584 #endif
5585 
5586 	/*
5587 	 * Hack: we have to check if the found path component's length exceeds
5588 	 * NAME_MAX. However, the condition is very rarely true and check can
5589 	 * be elided in the common case -- if an entry was found in the cache,
5590 	 * then it could not have been too long to begin with.
5591 	 */
5592 	ndp->ni_next = cp;
5593 }
5594 
5595 static void
5596 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5597 {
5598 	struct nameidata *ndp;
5599 	struct componentname *cnp;
5600 
5601 	ndp = fpl->ndp;
5602 	cnp = fpl->cnp;
5603 
5604 	cnp->cn_nameptr = ndp->ni_next;
5605 	KASSERT(*(cnp->cn_nameptr) == '/',
5606 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5607 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5608 	cnp->cn_nameptr++;
5609 	cache_fpl_pathlen_dec(fpl);
5610 }
5611 
5612 /*
5613  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5614  *
5615  * Lockless lookup tries to elide checking for spurious slashes and should they
5616  * be present is guaranteed to fail to find an entry. In this case the caller
5617  * must check if the name starts with a slash and call this routine.  It is
5618  * going to fast forward across the spurious slashes and set the state up for
5619  * retry.
5620  */
5621 static int __noinline
5622 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5623 {
5624 	struct nameidata *ndp;
5625 	struct componentname *cnp;
5626 
5627 	ndp = fpl->ndp;
5628 	cnp = fpl->cnp;
5629 
5630 	MPASS(*(cnp->cn_nameptr) == '/');
5631 	do {
5632 		cnp->cn_nameptr++;
5633 		cache_fpl_pathlen_dec(fpl);
5634 	} while (*(cnp->cn_nameptr) == '/');
5635 
5636 	/*
5637 	 * Go back to one slash so that cache_fplookup_parse_advance has
5638 	 * something to skip.
5639 	 */
5640 	cnp->cn_nameptr--;
5641 	cache_fpl_pathlen_inc(fpl);
5642 
5643 	/*
5644 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5645 	 */
5646 	ndp->ni_next = cnp->cn_nameptr;
5647 
5648 	/*
5649 	 * See cache_fplookup_dot.
5650 	 */
5651 	fpl->tvp = fpl->dvp;
5652 	fpl->tvp_seqc = fpl->dvp_seqc;
5653 
5654 	return (0);
5655 }
5656 
5657 /*
5658  * Handle trailing slashes (e.g., "foo/").
5659  *
5660  * If a trailing slash is found the terminal vnode must be a directory.
5661  * Regular lookup shortens the path by nulifying the first trailing slash and
5662  * sets the TRAILINGSLASH flag to denote this took place. There are several
5663  * checks on it performed later.
5664  *
5665  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5666  * manner relying on an invariant that a non-directory vnode will get a miss.
5667  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5668  *
5669  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5670  * and denotes this is the last path component, which avoids looping back.
5671  *
5672  * Only plain lookups are supported for now to restrict corner cases to handle.
5673  */
5674 static int __noinline
5675 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5676 {
5677 #ifdef INVARIANTS
5678 	size_t ni_pathlen;
5679 #endif
5680 	struct nameidata *ndp;
5681 	struct componentname *cnp;
5682 	struct namecache *ncp;
5683 	struct vnode *tvp;
5684 	char *cn_nameptr_orig, *cn_nameptr_slash;
5685 	seqc_t tvp_seqc;
5686 	u_char nc_flag;
5687 
5688 	ndp = fpl->ndp;
5689 	cnp = fpl->cnp;
5690 	tvp = fpl->tvp;
5691 	tvp_seqc = fpl->tvp_seqc;
5692 
5693 	MPASS(fpl->dvp == fpl->tvp);
5694 	KASSERT(cache_fpl_istrailingslash(fpl),
5695 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5696 	    cnp->cn_pnbuf));
5697 	KASSERT(cnp->cn_nameptr[0] == '\0',
5698 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5699 	    cnp->cn_pnbuf));
5700 	KASSERT(cnp->cn_namelen == 0,
5701 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5702 	    cnp->cn_pnbuf));
5703 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5704 
5705 	if (cnp->cn_nameiop != LOOKUP) {
5706 		return (cache_fpl_aborted(fpl));
5707 	}
5708 
5709 	if (__predict_false(tvp->v_type != VDIR)) {
5710 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5711 			return (cache_fpl_aborted(fpl));
5712 		}
5713 		cache_fpl_smr_exit(fpl);
5714 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5715 	}
5716 
5717 	/*
5718 	 * Denote the last component.
5719 	 */
5720 	ndp->ni_next = &cnp->cn_nameptr[0];
5721 	MPASS(cache_fpl_islastcn(ndp));
5722 
5723 	/*
5724 	 * Unwind trailing slashes.
5725 	 */
5726 	cn_nameptr_orig = cnp->cn_nameptr;
5727 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5728 		cnp->cn_nameptr--;
5729 		if (cnp->cn_nameptr[0] != '/') {
5730 			break;
5731 		}
5732 	}
5733 
5734 	/*
5735 	 * Unwind to the beginning of the path component.
5736 	 *
5737 	 * Note the path may or may not have started with a slash.
5738 	 */
5739 	cn_nameptr_slash = cnp->cn_nameptr;
5740 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5741 		cnp->cn_nameptr--;
5742 		if (cnp->cn_nameptr[0] == '/') {
5743 			break;
5744 		}
5745 	}
5746 	if (cnp->cn_nameptr[0] == '/') {
5747 		cnp->cn_nameptr++;
5748 	}
5749 
5750 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5751 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5752 	cache_fpl_checkpoint(fpl);
5753 
5754 #ifdef INVARIANTS
5755 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
5756 	if (ni_pathlen != fpl->debug.ni_pathlen) {
5757 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5758 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5759 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5760 	}
5761 #endif
5762 
5763 	/*
5764 	 * If this was a "./" lookup the parent directory is already correct.
5765 	 */
5766 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
5767 		return (0);
5768 	}
5769 
5770 	/*
5771 	 * Otherwise we need to look it up.
5772 	 */
5773 	tvp = fpl->tvp;
5774 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
5775 	if (__predict_false(ncp == NULL)) {
5776 		return (cache_fpl_aborted(fpl));
5777 	}
5778 	nc_flag = atomic_load_char(&ncp->nc_flag);
5779 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5780 		return (cache_fpl_aborted(fpl));
5781 	}
5782 	fpl->dvp = ncp->nc_dvp;
5783 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5784 	if (seqc_in_modify(fpl->dvp_seqc)) {
5785 		return (cache_fpl_aborted(fpl));
5786 	}
5787 	return (0);
5788 }
5789 
5790 /*
5791  * See the API contract for VOP_FPLOOKUP_VEXEC.
5792  */
5793 static int __noinline
5794 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
5795 {
5796 	struct componentname *cnp;
5797 	struct vnode *dvp;
5798 	seqc_t dvp_seqc;
5799 
5800 	cnp = fpl->cnp;
5801 	dvp = fpl->dvp;
5802 	dvp_seqc = fpl->dvp_seqc;
5803 
5804 	/*
5805 	 * Hack: delayed empty path checking.
5806 	 */
5807 	if (cnp->cn_pnbuf[0] == '\0') {
5808 		return (cache_fplookup_emptypath(fpl));
5809 	}
5810 
5811 	/*
5812 	 * TODO: Due to ignoring trailing slashes lookup will perform a
5813 	 * permission check on the last dir when it should not be doing it.  It
5814 	 * may fail, but said failure should be ignored. It is possible to fix
5815 	 * it up fully without resorting to regular lookup, but for now just
5816 	 * abort.
5817 	 */
5818 	if (cache_fpl_istrailingslash(fpl)) {
5819 		return (cache_fpl_aborted(fpl));
5820 	}
5821 
5822 	/*
5823 	 * Hack: delayed degenerate path checking.
5824 	 */
5825 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
5826 		return (cache_fplookup_degenerate(fpl));
5827 	}
5828 
5829 	/*
5830 	 * Hack: delayed name len checking.
5831 	 */
5832 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5833 		cache_fpl_smr_exit(fpl);
5834 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5835 	}
5836 
5837 	/*
5838 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
5839 	 * In such a case we need to return ENOTDIR, but we may happen to get
5840 	 * here with a different error.
5841 	 */
5842 	if (dvp->v_type != VDIR) {
5843 		error = ENOTDIR;
5844 	}
5845 
5846 	/*
5847 	 * Hack: handle O_SEARCH.
5848 	 *
5849 	 * Open Group Base Specifications Issue 7, 2018 edition states:
5850 	 * <quote>
5851 	 * If the access mode of the open file description associated with the
5852 	 * file descriptor is not O_SEARCH, the function shall check whether
5853 	 * directory searches are permitted using the current permissions of
5854 	 * the directory underlying the file descriptor. If the access mode is
5855 	 * O_SEARCH, the function shall not perform the check.
5856 	 * </quote>
5857 	 *
5858 	 * Regular lookup tests for the NOEXECCHECK flag for every path
5859 	 * component to decide whether to do the permission check. However,
5860 	 * since most lookups never have the flag (and when they do it is only
5861 	 * present for the first path component), lockless lookup only acts on
5862 	 * it if there is a permission problem. Here the flag is represented
5863 	 * with a boolean so that we don't have to clear it on the way out.
5864 	 *
5865 	 * For simplicity this always aborts.
5866 	 * TODO: check if this is the first lookup and ignore the permission
5867 	 * problem. Note the flag has to survive fallback (if it happens to be
5868 	 * performed).
5869 	 */
5870 	if (fpl->fsearch) {
5871 		return (cache_fpl_aborted(fpl));
5872 	}
5873 
5874 	switch (error) {
5875 	case EAGAIN:
5876 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5877 			error = cache_fpl_aborted(fpl);
5878 		} else {
5879 			cache_fpl_partial(fpl);
5880 		}
5881 		break;
5882 	default:
5883 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5884 			error = cache_fpl_aborted(fpl);
5885 		} else {
5886 			cache_fpl_smr_exit(fpl);
5887 			cache_fpl_handled_error(fpl, error);
5888 		}
5889 		break;
5890 	}
5891 	return (error);
5892 }
5893 
5894 static int
5895 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
5896 {
5897 	struct nameidata *ndp;
5898 	struct componentname *cnp;
5899 	struct mount *mp;
5900 	int error;
5901 
5902 	ndp = fpl->ndp;
5903 	cnp = fpl->cnp;
5904 
5905 	cache_fpl_checkpoint(fpl);
5906 
5907 	/*
5908 	 * The vnode at hand is almost always stable, skip checking for it.
5909 	 * Worst case this postpones the check towards the end of the iteration
5910 	 * of the main loop.
5911 	 */
5912 	fpl->dvp = dvp;
5913 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
5914 
5915 	mp = atomic_load_ptr(&dvp->v_mount);
5916 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
5917 		return (cache_fpl_aborted(fpl));
5918 	}
5919 
5920 	MPASS(fpl->tvp == NULL);
5921 
5922 	for (;;) {
5923 		cache_fplookup_parse(fpl);
5924 
5925 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
5926 		if (__predict_false(error != 0)) {
5927 			error = cache_fplookup_failed_vexec(fpl, error);
5928 			break;
5929 		}
5930 
5931 		error = cache_fplookup_next(fpl);
5932 		if (__predict_false(cache_fpl_terminated(fpl))) {
5933 			break;
5934 		}
5935 
5936 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
5937 
5938 		if (fpl->tvp->v_type == VLNK) {
5939 			error = cache_fplookup_symlink(fpl);
5940 			if (cache_fpl_terminated(fpl)) {
5941 				break;
5942 			}
5943 		} else {
5944 			if (cache_fpl_islastcn(ndp)) {
5945 				error = cache_fplookup_final(fpl);
5946 				break;
5947 			}
5948 
5949 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
5950 				error = cache_fpl_aborted(fpl);
5951 				break;
5952 			}
5953 
5954 			fpl->dvp = fpl->tvp;
5955 			fpl->dvp_seqc = fpl->tvp_seqc;
5956 			cache_fplookup_parse_advance(fpl);
5957 		}
5958 
5959 		cache_fpl_checkpoint(fpl);
5960 	}
5961 
5962 	return (error);
5963 }
5964 
5965 /*
5966  * Fast path lookup protected with SMR and sequence counters.
5967  *
5968  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
5969  *
5970  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
5971  * outlined below.
5972  *
5973  * Traditional vnode lookup conceptually looks like this:
5974  *
5975  * vn_lock(current);
5976  * for (;;) {
5977  *	next = find();
5978  *	vn_lock(next);
5979  *	vn_unlock(current);
5980  *	current = next;
5981  *	if (last)
5982  *	    break;
5983  * }
5984  * return (current);
5985  *
5986  * Each jump to the next vnode is safe memory-wise and atomic with respect to
5987  * any modifications thanks to holding respective locks.
5988  *
5989  * The same guarantee can be provided with a combination of safe memory
5990  * reclamation and sequence counters instead. If all operations which affect
5991  * the relationship between the current vnode and the one we are looking for
5992  * also modify the counter, we can verify whether all the conditions held as
5993  * we made the jump. This includes things like permissions, mount points etc.
5994  * Counter modification is provided by enclosing relevant places in
5995  * vn_seqc_write_begin()/end() calls.
5996  *
5997  * Thus this translates to:
5998  *
5999  * vfs_smr_enter();
6000  * dvp_seqc = seqc_read_any(dvp);
6001  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6002  *     abort();
6003  * for (;;) {
6004  * 	tvp = find();
6005  * 	tvp_seqc = seqc_read_any(tvp);
6006  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6007  * 	    abort();
6008  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6009  * 	    abort();
6010  * 	dvp = tvp; // we know nothing of importance has changed
6011  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6012  * 	if (last)
6013  * 	    break;
6014  * }
6015  * vget(); // secure the vnode
6016  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6017  * 	    abort();
6018  * // at this point we know nothing has changed for any parent<->child pair
6019  * // as they were crossed during the lookup, meaning we matched the guarantee
6020  * // of the locked variant
6021  * return (tvp);
6022  *
6023  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6024  * - they are called while within vfs_smr protection which they must never exit
6025  * - EAGAIN can be returned to denote checking could not be performed, it is
6026  *   always valid to return it
6027  * - if the sequence counter has not changed the result must be valid
6028  * - if the sequence counter has changed both false positives and false negatives
6029  *   are permitted (since the result will be rejected later)
6030  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6031  *
6032  * Caveats to watch out for:
6033  * - vnodes are passed unlocked and unreferenced with nothing stopping
6034  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6035  *   to use atomic_load_ptr to fetch it.
6036  * - the aforementioned object can also get freed, meaning absent other means it
6037  *   should be protected with vfs_smr
6038  * - either safely checking permissions as they are modified or guaranteeing
6039  *   their stability is left to the routine
6040  */
6041 int
6042 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6043     struct pwd **pwdp)
6044 {
6045 	struct cache_fpl fpl;
6046 	struct pwd *pwd;
6047 	struct vnode *dvp;
6048 	struct componentname *cnp;
6049 	int error;
6050 
6051 	fpl.status = CACHE_FPL_STATUS_UNSET;
6052 	fpl.in_smr = false;
6053 	fpl.ndp = ndp;
6054 	fpl.cnp = cnp = &ndp->ni_cnd;
6055 	MPASS(ndp->ni_lcf == 0);
6056 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6057 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6058 	    cnp->cn_flags));
6059 	if ((cnp->cn_flags & SAVESTART) != 0) {
6060 		MPASS(cnp->cn_nameiop != LOOKUP);
6061 	}
6062 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6063 
6064 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6065 		*status = fpl.status;
6066 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6067 		return (EOPNOTSUPP);
6068 	}
6069 
6070 	cache_fpl_checkpoint_outer(&fpl);
6071 
6072 	cache_fpl_smr_enter_initial(&fpl);
6073 #ifdef INVARIANTS
6074 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6075 #endif
6076 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6077 	fpl.fsearch = false;
6078 	fpl.savename = (cnp->cn_flags & SAVENAME) != 0;
6079 	fpl.tvp = NULL; /* for degenerate path handling */
6080 	fpl.pwd = pwdp;
6081 	pwd = pwd_get_smr();
6082 	*(fpl.pwd) = pwd;
6083 	ndp->ni_rootdir = pwd->pwd_rdir;
6084 	ndp->ni_topdir = pwd->pwd_jdir;
6085 
6086 	if (cnp->cn_pnbuf[0] == '/') {
6087 		dvp = cache_fpl_handle_root(&fpl);
6088 		MPASS(ndp->ni_resflags == 0);
6089 		ndp->ni_resflags = NIRES_ABS;
6090 	} else {
6091 		if (ndp->ni_dirfd == AT_FDCWD) {
6092 			dvp = pwd->pwd_cdir;
6093 		} else {
6094 			error = cache_fplookup_dirfd(&fpl, &dvp);
6095 			if (__predict_false(error != 0)) {
6096 				goto out;
6097 			}
6098 		}
6099 	}
6100 
6101 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6102 	error = cache_fplookup_impl(dvp, &fpl);
6103 out:
6104 	cache_fpl_smr_assert_not_entered(&fpl);
6105 	cache_fpl_assert_status(&fpl);
6106 	*status = fpl.status;
6107 	if (SDT_PROBES_ENABLED()) {
6108 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6109 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6110 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6111 			    ndp);
6112 	}
6113 
6114 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6115 		MPASS(error != CACHE_FPL_FAILED);
6116 		if (error != 0) {
6117 			MPASS(fpl.dvp == NULL);
6118 			MPASS(fpl.tvp == NULL);
6119 			MPASS(fpl.savename == false);
6120 		}
6121 		ndp->ni_dvp = fpl.dvp;
6122 		ndp->ni_vp = fpl.tvp;
6123 		if (fpl.savename) {
6124 			cnp->cn_flags |= HASBUF;
6125 		} else {
6126 			cache_fpl_cleanup_cnp(cnp);
6127 		}
6128 	}
6129 	return (error);
6130 }
6131