xref: /freebsd/sys/kern/vfs_bio.c (revision fba3cde907930eed2adb8a320524bc250338c729)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * Copyright (c) 2013 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * this file contains a new buffer I/O scheme implementing a coherent
34  * VM object and buffer cache scheme.  Pains have been taken to make
35  * sure that the performance degradation associated with schemes such
36  * as this is not realized.
37  *
38  * Author:  John S. Dyson
39  * Significant help during the development and debugging phases
40  * had been provided by David Greenman, also of the FreeBSD core team.
41  *
42  * see man buf(9) for more info.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/conf.h>
52 #include <sys/buf.h>
53 #include <sys/devicestat.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fail.h>
56 #include <sys/limits.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/kthread.h>
63 #include <sys/proc.h>
64 #include <sys/resourcevar.h>
65 #include <sys/rwlock.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmem.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <geom/geom.h>
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_pageout.h>
75 #include <vm/vm_page.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_map.h>
79 #include "opt_compat.h"
80 #include "opt_directio.h"
81 #include "opt_swap.h"
82 
83 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
84 
85 struct	bio_ops bioops;		/* I/O operation notification */
86 
87 struct	buf_ops buf_ops_bio = {
88 	.bop_name	=	"buf_ops_bio",
89 	.bop_write	=	bufwrite,
90 	.bop_strategy	=	bufstrategy,
91 	.bop_sync	=	bufsync,
92 	.bop_bdflush	=	bufbdflush,
93 };
94 
95 /*
96  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
97  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
98  */
99 struct buf *buf;		/* buffer header pool */
100 caddr_t unmapped_buf;
101 
102 static struct proc *bufdaemonproc;
103 
104 static int inmem(struct vnode *vp, daddr_t blkno);
105 static void vm_hold_free_pages(struct buf *bp, int newbsize);
106 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
107 		vm_offset_t to);
108 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
109 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
110 		vm_page_t m);
111 static void vfs_clean_pages_dirty_buf(struct buf *bp);
112 static void vfs_setdirty_locked_object(struct buf *bp);
113 static void vfs_vmio_release(struct buf *bp);
114 static int vfs_bio_clcheck(struct vnode *vp, int size,
115 		daddr_t lblkno, daddr_t blkno);
116 static int buf_flush(int);
117 static int flushbufqueues(int, int);
118 static void buf_daemon(void);
119 static void bremfreel(struct buf *bp);
120 static __inline void bd_wakeup(void);
121 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
122     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
123 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
124 #endif
125 
126 int vmiodirenable = TRUE;
127 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
128     "Use the VM system for directory writes");
129 long runningbufspace;
130 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
131     "Amount of presently outstanding async buffer io");
132 static long bufspace;
133 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
134     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
135 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
136     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
137 #else
138 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
139     "Virtual memory used for buffers");
140 #endif
141 static long unmapped_bufspace;
142 SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
143     &unmapped_bufspace, 0,
144     "Amount of unmapped buffers, inclusive in the bufspace");
145 static long maxbufspace;
146 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
147     "Maximum allowed value of bufspace (including buf_daemon)");
148 static long bufmallocspace;
149 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
150     "Amount of malloced memory for buffers");
151 static long maxbufmallocspace;
152 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
153     "Maximum amount of malloced memory for buffers");
154 static long lobufspace;
155 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
156     "Minimum amount of buffers we want to have");
157 long hibufspace;
158 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
159     "Maximum allowed value of bufspace (excluding buf_daemon)");
160 static int bufreusecnt;
161 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
162     "Number of times we have reused a buffer");
163 static int buffreekvacnt;
164 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
165     "Number of times we have freed the KVA space from some buffer");
166 static int bufdefragcnt;
167 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
168     "Number of times we have had to repeat buffer allocation to defragment");
169 static long lorunningspace;
170 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
171     "Minimum preferred space used for in-progress I/O");
172 static long hirunningspace;
173 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
174     "Maximum amount of space to use for in-progress I/O");
175 int dirtybufferflushes;
176 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
177     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
178 int bdwriteskip;
179 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
180     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
181 int altbufferflushes;
182 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
183     0, "Number of fsync flushes to limit dirty buffers");
184 static int recursiveflushes;
185 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
186     0, "Number of flushes skipped due to being recursive");
187 static int numdirtybuffers;
188 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
189     "Number of buffers that are dirty (has unwritten changes) at the moment");
190 static int lodirtybuffers;
191 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
192     "How many buffers we want to have free before bufdaemon can sleep");
193 static int hidirtybuffers;
194 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
195     "When the number of dirty buffers is considered severe");
196 int dirtybufthresh;
197 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
198     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
199 static int numfreebuffers;
200 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
201     "Number of free buffers");
202 static int lofreebuffers;
203 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
204    "XXX Unused");
205 static int hifreebuffers;
206 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
207    "XXX Complicatedly unused");
208 static int getnewbufcalls;
209 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
210    "Number of calls to getnewbuf");
211 static int getnewbufrestarts;
212 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
213     "Number of times getnewbuf has had to restart a buffer aquisition");
214 static int mappingrestarts;
215 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
216     "Number of times getblk has had to restart a buffer mapping for "
217     "unmapped buffer");
218 static int flushbufqtarget = 100;
219 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
220     "Amount of work to do in flushbufqueues when helping bufdaemon");
221 static long notbufdflushes;
222 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
223     "Number of dirty buffer flushes done by the bufdaemon helpers");
224 static long barrierwrites;
225 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
226     "Number of barrier writes");
227 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
228     &unmapped_buf_allowed, 0,
229     "Permit the use of the unmapped i/o");
230 
231 /*
232  * Lock for the non-dirty bufqueues
233  */
234 static struct mtx_padalign bqclean;
235 
236 /*
237  * Lock for the dirty queue.
238  */
239 static struct mtx_padalign bqdirty;
240 
241 /*
242  * This lock synchronizes access to bd_request.
243  */
244 static struct mtx_padalign bdlock;
245 
246 /*
247  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
248  * waitrunningbufspace().
249  */
250 static struct mtx_padalign rbreqlock;
251 
252 /*
253  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
254  */
255 static struct mtx_padalign nblock;
256 
257 /*
258  * Lock that protects bdirtywait.
259  */
260 static struct mtx_padalign bdirtylock;
261 
262 /*
263  * Wakeup point for bufdaemon, as well as indicator of whether it is already
264  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
265  * is idling.
266  */
267 static int bd_request;
268 
269 /*
270  * Request for the buf daemon to write more buffers than is indicated by
271  * lodirtybuf.  This may be necessary to push out excess dependencies or
272  * defragment the address space where a simple count of the number of dirty
273  * buffers is insufficient to characterize the demand for flushing them.
274  */
275 static int bd_speedupreq;
276 
277 /*
278  * bogus page -- for I/O to/from partially complete buffers
279  * this is a temporary solution to the problem, but it is not
280  * really that bad.  it would be better to split the buffer
281  * for input in the case of buffers partially already in memory,
282  * but the code is intricate enough already.
283  */
284 vm_page_t bogus_page;
285 
286 /*
287  * Synchronization (sleep/wakeup) variable for active buffer space requests.
288  * Set when wait starts, cleared prior to wakeup().
289  * Used in runningbufwakeup() and waitrunningbufspace().
290  */
291 static int runningbufreq;
292 
293 /*
294  * Synchronization (sleep/wakeup) variable for buffer requests.
295  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
296  * by and/or.
297  * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(),
298  * getnewbuf(), and getblk().
299  */
300 static int needsbuffer;
301 
302 /*
303  * Synchronization for bwillwrite() waiters.
304  */
305 static int bdirtywait;
306 
307 /*
308  * Definitions for the buffer free lists.
309  */
310 #define BUFFER_QUEUES	5	/* number of free buffer queues */
311 
312 #define QUEUE_NONE	0	/* on no queue */
313 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
314 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
315 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
316 #define QUEUE_EMPTY	4	/* empty buffer headers */
317 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
318 
319 /* Queues for free buffers with various properties */
320 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
321 #ifdef INVARIANTS
322 static int bq_len[BUFFER_QUEUES];
323 #endif
324 
325 /*
326  * Single global constant for BUF_WMESG, to avoid getting multiple references.
327  * buf_wmesg is referred from macros.
328  */
329 const char *buf_wmesg = BUF_WMESG;
330 
331 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
332 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
333 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
334 
335 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
336     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
337 static int
338 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
339 {
340 	long lvalue;
341 	int ivalue;
342 
343 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
344 		return (sysctl_handle_long(oidp, arg1, arg2, req));
345 	lvalue = *(long *)arg1;
346 	if (lvalue > INT_MAX)
347 		/* On overflow, still write out a long to trigger ENOMEM. */
348 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
349 	ivalue = lvalue;
350 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
351 }
352 #endif
353 
354 #ifdef DIRECTIO
355 extern void ffs_rawread_setup(void);
356 #endif /* DIRECTIO */
357 
358 /*
359  *	bqlock:
360  *
361  *	Return the appropriate queue lock based on the index.
362  */
363 static inline struct mtx *
364 bqlock(int qindex)
365 {
366 
367 	if (qindex == QUEUE_DIRTY)
368 		return (struct mtx *)(&bqdirty);
369 	return (struct mtx *)(&bqclean);
370 }
371 
372 /*
373  *	bdirtywakeup:
374  *
375  *	Wakeup any bwillwrite() waiters.
376  */
377 static void
378 bdirtywakeup(void)
379 {
380 	mtx_lock(&bdirtylock);
381 	if (bdirtywait) {
382 		bdirtywait = 0;
383 		wakeup(&bdirtywait);
384 	}
385 	mtx_unlock(&bdirtylock);
386 }
387 
388 /*
389  *	bdirtysub:
390  *
391  *	Decrement the numdirtybuffers count by one and wakeup any
392  *	threads blocked in bwillwrite().
393  */
394 static void
395 bdirtysub(void)
396 {
397 
398 	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
399 	    (lodirtybuffers + hidirtybuffers) / 2)
400 		bdirtywakeup();
401 }
402 
403 /*
404  *	bdirtyadd:
405  *
406  *	Increment the numdirtybuffers count by one and wakeup the buf
407  *	daemon if needed.
408  */
409 static void
410 bdirtyadd(void)
411 {
412 
413 	/*
414 	 * Only do the wakeup once as we cross the boundary.  The
415 	 * buf daemon will keep running until the condition clears.
416 	 */
417 	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
418 	    (lodirtybuffers + hidirtybuffers) / 2)
419 		bd_wakeup();
420 }
421 
422 /*
423  *	bufspacewakeup:
424  *
425  *	Called when buffer space is potentially available for recovery.
426  *	getnewbuf() will block on this flag when it is unable to free
427  *	sufficient buffer space.  Buffer space becomes recoverable when
428  *	bp's get placed back in the queues.
429  */
430 
431 static __inline void
432 bufspacewakeup(void)
433 {
434 
435 	/*
436 	 * If someone is waiting for BUF space, wake them up.  Even
437 	 * though we haven't freed the kva space yet, the waiting
438 	 * process will be able to now.
439 	 */
440 	mtx_lock(&nblock);
441 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
442 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
443 		wakeup(&needsbuffer);
444 	}
445 	mtx_unlock(&nblock);
446 }
447 
448 /*
449  *	runningwakeup:
450  *
451  *	Wake up processes that are waiting on asynchronous writes to fall
452  *	below lorunningspace.
453  */
454 static void
455 runningwakeup(void)
456 {
457 
458 	mtx_lock(&rbreqlock);
459 	if (runningbufreq) {
460 		runningbufreq = 0;
461 		wakeup(&runningbufreq);
462 	}
463 	mtx_unlock(&rbreqlock);
464 }
465 
466 /*
467  *	runningbufwakeup:
468  *
469  *	Decrement the outstanding write count according.
470  */
471 void
472 runningbufwakeup(struct buf *bp)
473 {
474 	long space, bspace;
475 
476 	bspace = bp->b_runningbufspace;
477 	if (bspace == 0)
478 		return;
479 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
480 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
481 	    space, bspace));
482 	bp->b_runningbufspace = 0;
483 	/*
484 	 * Only acquire the lock and wakeup on the transition from exceeding
485 	 * the threshold to falling below it.
486 	 */
487 	if (space < lorunningspace)
488 		return;
489 	if (space - bspace > lorunningspace)
490 		return;
491 	runningwakeup();
492 }
493 
494 /*
495  *	bufcountadd:
496  *
497  *	Called when a buffer has been added to one of the free queues to
498  *	account for the buffer and to wakeup anyone waiting for free buffers.
499  *	This typically occurs when large amounts of metadata are being handled
500  *	by the buffer cache ( else buffer space runs out first, usually ).
501  */
502 static __inline void
503 bufcountadd(struct buf *bp)
504 {
505 	int old;
506 
507 	KASSERT((bp->b_flags & B_INFREECNT) == 0,
508 	    ("buf %p already counted as free", bp));
509 	bp->b_flags |= B_INFREECNT;
510 	old = atomic_fetchadd_int(&numfreebuffers, 1);
511 	KASSERT(old >= 0 && old < nbuf,
512 	    ("numfreebuffers climbed to %d", old + 1));
513 	mtx_lock(&nblock);
514 	if (needsbuffer) {
515 		needsbuffer &= ~VFS_BIO_NEED_ANY;
516 		if (numfreebuffers >= hifreebuffers)
517 			needsbuffer &= ~VFS_BIO_NEED_FREE;
518 		wakeup(&needsbuffer);
519 	}
520 	mtx_unlock(&nblock);
521 }
522 
523 /*
524  *	bufcountsub:
525  *
526  *	Decrement the numfreebuffers count as needed.
527  */
528 static void
529 bufcountsub(struct buf *bp)
530 {
531 	int old;
532 
533 	/*
534 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
535 	 * delayed-write, the buffer was free and we must decrement
536 	 * numfreebuffers.
537 	 */
538 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
539 		KASSERT((bp->b_flags & B_INFREECNT) != 0,
540 		    ("buf %p not counted in numfreebuffers", bp));
541 		bp->b_flags &= ~B_INFREECNT;
542 		old = atomic_fetchadd_int(&numfreebuffers, -1);
543 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
544 	}
545 }
546 
547 /*
548  *	waitrunningbufspace()
549  *
550  *	runningbufspace is a measure of the amount of I/O currently
551  *	running.  This routine is used in async-write situations to
552  *	prevent creating huge backups of pending writes to a device.
553  *	Only asynchronous writes are governed by this function.
554  *
555  *	This does NOT turn an async write into a sync write.  It waits
556  *	for earlier writes to complete and generally returns before the
557  *	caller's write has reached the device.
558  */
559 void
560 waitrunningbufspace(void)
561 {
562 
563 	mtx_lock(&rbreqlock);
564 	while (runningbufspace > hirunningspace) {
565 		runningbufreq = 1;
566 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
567 	}
568 	mtx_unlock(&rbreqlock);
569 }
570 
571 
572 /*
573  *	vfs_buf_test_cache:
574  *
575  *	Called when a buffer is extended.  This function clears the B_CACHE
576  *	bit if the newly extended portion of the buffer does not contain
577  *	valid data.
578  */
579 static __inline
580 void
581 vfs_buf_test_cache(struct buf *bp,
582 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
583 		  vm_page_t m)
584 {
585 
586 	VM_OBJECT_ASSERT_LOCKED(m->object);
587 	if (bp->b_flags & B_CACHE) {
588 		int base = (foff + off) & PAGE_MASK;
589 		if (vm_page_is_valid(m, base, size) == 0)
590 			bp->b_flags &= ~B_CACHE;
591 	}
592 }
593 
594 /* Wake up the buffer daemon if necessary */
595 static __inline void
596 bd_wakeup(void)
597 {
598 
599 	mtx_lock(&bdlock);
600 	if (bd_request == 0) {
601 		bd_request = 1;
602 		wakeup(&bd_request);
603 	}
604 	mtx_unlock(&bdlock);
605 }
606 
607 /*
608  * bd_speedup - speedup the buffer cache flushing code
609  */
610 void
611 bd_speedup(void)
612 {
613 	int needwake;
614 
615 	mtx_lock(&bdlock);
616 	needwake = 0;
617 	if (bd_speedupreq == 0 || bd_request == 0)
618 		needwake = 1;
619 	bd_speedupreq = 1;
620 	bd_request = 1;
621 	if (needwake)
622 		wakeup(&bd_request);
623 	mtx_unlock(&bdlock);
624 }
625 
626 #ifdef __i386__
627 #define	TRANSIENT_DENOM	5
628 #else
629 #define	TRANSIENT_DENOM 10
630 #endif
631 
632 /*
633  * Calculating buffer cache scaling values and reserve space for buffer
634  * headers.  This is called during low level kernel initialization and
635  * may be called more then once.  We CANNOT write to the memory area
636  * being reserved at this time.
637  */
638 caddr_t
639 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
640 {
641 	int tuned_nbuf;
642 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
643 
644 	/*
645 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
646 	 * PAGE_SIZE is >= 1K)
647 	 */
648 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
649 
650 	/*
651 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
652 	 * For the first 64MB of ram nominally allocate sufficient buffers to
653 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
654 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
655 	 * the buffer cache we limit the eventual kva reservation to
656 	 * maxbcache bytes.
657 	 *
658 	 * factor represents the 1/4 x ram conversion.
659 	 */
660 	if (nbuf == 0) {
661 		int factor = 4 * BKVASIZE / 1024;
662 
663 		nbuf = 50;
664 		if (physmem_est > 4096)
665 			nbuf += min((physmem_est - 4096) / factor,
666 			    65536 / factor);
667 		if (physmem_est > 65536)
668 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
669 			    32 * 1024 * 1024 / (factor * 5));
670 
671 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
672 			nbuf = maxbcache / BKVASIZE;
673 		tuned_nbuf = 1;
674 	} else
675 		tuned_nbuf = 0;
676 
677 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
678 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
679 	if (nbuf > maxbuf) {
680 		if (!tuned_nbuf)
681 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
682 			    maxbuf);
683 		nbuf = maxbuf;
684 	}
685 
686 	/*
687 	 * Ideal allocation size for the transient bio submap if 10%
688 	 * of the maximal space buffer map.  This roughly corresponds
689 	 * to the amount of the buffer mapped for typical UFS load.
690 	 *
691 	 * Clip the buffer map to reserve space for the transient
692 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
693 	 * maximum buffer map extent on the platform.
694 	 *
695 	 * The fall-back to the maxbuf in case of maxbcache unset,
696 	 * allows to not trim the buffer KVA for the architectures
697 	 * with ample KVA space.
698 	 */
699 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
700 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
701 		buf_sz = (long)nbuf * BKVASIZE;
702 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
703 		    (TRANSIENT_DENOM - 1)) {
704 			/*
705 			 * There is more KVA than memory.  Do not
706 			 * adjust buffer map size, and assign the rest
707 			 * of maxbuf to transient map.
708 			 */
709 			biotmap_sz = maxbuf_sz - buf_sz;
710 		} else {
711 			/*
712 			 * Buffer map spans all KVA we could afford on
713 			 * this platform.  Give 10% (20% on i386) of
714 			 * the buffer map to the transient bio map.
715 			 */
716 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
717 			buf_sz -= biotmap_sz;
718 		}
719 		if (biotmap_sz / INT_MAX > MAXPHYS)
720 			bio_transient_maxcnt = INT_MAX;
721 		else
722 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
723 		/*
724 		 * Artifically limit to 1024 simultaneous in-flight I/Os
725 		 * using the transient mapping.
726 		 */
727 		if (bio_transient_maxcnt > 1024)
728 			bio_transient_maxcnt = 1024;
729 		if (tuned_nbuf)
730 			nbuf = buf_sz / BKVASIZE;
731 	}
732 
733 	/*
734 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
735 	 * We have no less then 16 and no more then 256.
736 	 */
737 	nswbuf = max(min(nbuf/4, 256), 16);
738 #ifdef NSWBUF_MIN
739 	if (nswbuf < NSWBUF_MIN)
740 		nswbuf = NSWBUF_MIN;
741 #endif
742 #ifdef DIRECTIO
743 	ffs_rawread_setup();
744 #endif
745 
746 	/*
747 	 * Reserve space for the buffer cache buffers
748 	 */
749 	swbuf = (void *)v;
750 	v = (caddr_t)(swbuf + nswbuf);
751 	buf = (void *)v;
752 	v = (caddr_t)(buf + nbuf);
753 
754 	return(v);
755 }
756 
757 /* Initialize the buffer subsystem.  Called before use of any buffers. */
758 void
759 bufinit(void)
760 {
761 	struct buf *bp;
762 	int i;
763 
764 	mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF);
765 	mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF);
766 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
767 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
768 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
769 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
770 
771 	/* next, make a null set of free lists */
772 	for (i = 0; i < BUFFER_QUEUES; i++)
773 		TAILQ_INIT(&bufqueues[i]);
774 
775 	/* finally, initialize each buffer header and stick on empty q */
776 	for (i = 0; i < nbuf; i++) {
777 		bp = &buf[i];
778 		bzero(bp, sizeof *bp);
779 		bp->b_flags = B_INVAL | B_INFREECNT;
780 		bp->b_rcred = NOCRED;
781 		bp->b_wcred = NOCRED;
782 		bp->b_qindex = QUEUE_EMPTY;
783 		bp->b_xflags = 0;
784 		LIST_INIT(&bp->b_dep);
785 		BUF_LOCKINIT(bp);
786 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
787 #ifdef INVARIANTS
788 		bq_len[QUEUE_EMPTY]++;
789 #endif
790 	}
791 
792 	/*
793 	 * maxbufspace is the absolute maximum amount of buffer space we are
794 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
795 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
796 	 * used by most other processes.  The differential is required to
797 	 * ensure that buf_daemon is able to run when other processes might
798 	 * be blocked waiting for buffer space.
799 	 *
800 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
801 	 * this may result in KVM fragmentation which is not handled optimally
802 	 * by the system.
803 	 */
804 	maxbufspace = (long)nbuf * BKVASIZE;
805 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
806 	lobufspace = hibufspace - MAXBSIZE;
807 
808 	/*
809 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
810 	 * arbitrarily and may need further tuning. It corresponds to
811 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
812 	 * which fits with many RAID controllers' tagged queuing limits.
813 	 * The lower 1 MiB limit is the historical upper limit for
814 	 * hirunningspace.
815 	 */
816 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
817 	    16 * 1024 * 1024), 1024 * 1024);
818 	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
819 
820 /*
821  * Limit the amount of malloc memory since it is wired permanently into
822  * the kernel space.  Even though this is accounted for in the buffer
823  * allocation, we don't want the malloced region to grow uncontrolled.
824  * The malloc scheme improves memory utilization significantly on average
825  * (small) directories.
826  */
827 	maxbufmallocspace = hibufspace / 20;
828 
829 /*
830  * Reduce the chance of a deadlock occuring by limiting the number
831  * of delayed-write dirty buffers we allow to stack up.
832  */
833 	hidirtybuffers = nbuf / 4 + 20;
834 	dirtybufthresh = hidirtybuffers * 9 / 10;
835 	numdirtybuffers = 0;
836 /*
837  * To support extreme low-memory systems, make sure hidirtybuffers cannot
838  * eat up all available buffer space.  This occurs when our minimum cannot
839  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
840  * BKVASIZE'd buffers.
841  */
842 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
843 		hidirtybuffers >>= 1;
844 	}
845 	lodirtybuffers = hidirtybuffers / 2;
846 
847 /*
848  * Try to keep the number of free buffers in the specified range,
849  * and give special processes (e.g. like buf_daemon) access to an
850  * emergency reserve.
851  */
852 	lofreebuffers = nbuf / 18 + 5;
853 	hifreebuffers = 2 * lofreebuffers;
854 	numfreebuffers = nbuf;
855 
856 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
857 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
858 	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
859 }
860 
861 #ifdef INVARIANTS
862 static inline void
863 vfs_buf_check_mapped(struct buf *bp)
864 {
865 
866 	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
867 	    ("mapped buf %p %x", bp, bp->b_flags));
868 	KASSERT(bp->b_kvabase != unmapped_buf,
869 	    ("mapped buf: b_kvabase was not updated %p", bp));
870 	KASSERT(bp->b_data != unmapped_buf,
871 	    ("mapped buf: b_data was not updated %p", bp));
872 }
873 
874 static inline void
875 vfs_buf_check_unmapped(struct buf *bp)
876 {
877 
878 	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
879 	    ("unmapped buf %p %x", bp, bp->b_flags));
880 	KASSERT(bp->b_kvabase == unmapped_buf,
881 	    ("unmapped buf: corrupted b_kvabase %p", bp));
882 	KASSERT(bp->b_data == unmapped_buf,
883 	    ("unmapped buf: corrupted b_data %p", bp));
884 }
885 
886 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
887 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
888 #else
889 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
890 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
891 #endif
892 
893 static void
894 bpmap_qenter(struct buf *bp)
895 {
896 
897 	BUF_CHECK_MAPPED(bp);
898 
899 	/*
900 	 * bp->b_data is relative to bp->b_offset, but
901 	 * bp->b_offset may be offset into the first page.
902 	 */
903 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
904 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
905 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
906 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
907 }
908 
909 /*
910  * bfreekva() - free the kva allocation for a buffer.
911  *
912  *	Since this call frees up buffer space, we call bufspacewakeup().
913  */
914 static void
915 bfreekva(struct buf *bp)
916 {
917 
918 	if (bp->b_kvasize == 0)
919 		return;
920 
921 	atomic_add_int(&buffreekvacnt, 1);
922 	atomic_subtract_long(&bufspace, bp->b_kvasize);
923 	if ((bp->b_flags & B_UNMAPPED) == 0) {
924 		BUF_CHECK_MAPPED(bp);
925 		vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase,
926 		    bp->b_kvasize);
927 	} else {
928 		BUF_CHECK_UNMAPPED(bp);
929 		if ((bp->b_flags & B_KVAALLOC) != 0) {
930 			vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc,
931 			    bp->b_kvasize);
932 		}
933 		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
934 		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
935 	}
936 	bp->b_kvasize = 0;
937 	bufspacewakeup();
938 }
939 
940 /*
941  *	binsfree:
942  *
943  *	Insert the buffer into the appropriate free list.
944  */
945 static void
946 binsfree(struct buf *bp, int qindex)
947 {
948 	struct mtx *olock, *nlock;
949 
950 	BUF_ASSERT_XLOCKED(bp);
951 
952 	olock = bqlock(bp->b_qindex);
953 	nlock = bqlock(qindex);
954 	mtx_lock(olock);
955 	/* Handle delayed bremfree() processing. */
956 	if (bp->b_flags & B_REMFREE)
957 		bremfreel(bp);
958 
959 	if (bp->b_qindex != QUEUE_NONE)
960 		panic("binsfree: free buffer onto another queue???");
961 
962 	bp->b_qindex = qindex;
963 	if (olock != nlock) {
964 		mtx_unlock(olock);
965 		mtx_lock(nlock);
966 	}
967 	if (bp->b_flags & B_AGE)
968 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
969 	else
970 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
971 #ifdef INVARIANTS
972 	bq_len[bp->b_qindex]++;
973 #endif
974 	mtx_unlock(nlock);
975 
976 	/*
977 	 * Something we can maybe free or reuse.
978 	 */
979 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
980 		bufspacewakeup();
981 
982 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
983 		bufcountadd(bp);
984 }
985 
986 /*
987  *	bremfree:
988  *
989  *	Mark the buffer for removal from the appropriate free list.
990  *
991  */
992 void
993 bremfree(struct buf *bp)
994 {
995 
996 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
997 	KASSERT((bp->b_flags & B_REMFREE) == 0,
998 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
999 	KASSERT(bp->b_qindex != QUEUE_NONE,
1000 	    ("bremfree: buffer %p not on a queue.", bp));
1001 	BUF_ASSERT_XLOCKED(bp);
1002 
1003 	bp->b_flags |= B_REMFREE;
1004 	bufcountsub(bp);
1005 }
1006 
1007 /*
1008  *	bremfreef:
1009  *
1010  *	Force an immediate removal from a free list.  Used only in nfs when
1011  *	it abuses the b_freelist pointer.
1012  */
1013 void
1014 bremfreef(struct buf *bp)
1015 {
1016 	struct mtx *qlock;
1017 
1018 	qlock = bqlock(bp->b_qindex);
1019 	mtx_lock(qlock);
1020 	bremfreel(bp);
1021 	mtx_unlock(qlock);
1022 }
1023 
1024 /*
1025  *	bremfreel:
1026  *
1027  *	Removes a buffer from the free list, must be called with the
1028  *	correct qlock held.
1029  */
1030 static void
1031 bremfreel(struct buf *bp)
1032 {
1033 
1034 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1035 	    bp, bp->b_vp, bp->b_flags);
1036 	KASSERT(bp->b_qindex != QUEUE_NONE,
1037 	    ("bremfreel: buffer %p not on a queue.", bp));
1038 	BUF_ASSERT_XLOCKED(bp);
1039 	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1040 
1041 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1042 #ifdef INVARIANTS
1043 	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1044 	    bp->b_qindex));
1045 	bq_len[bp->b_qindex]--;
1046 #endif
1047 	bp->b_qindex = QUEUE_NONE;
1048 	/*
1049 	 * If this was a delayed bremfree() we only need to remove the buffer
1050 	 * from the queue and return the stats are already done.
1051 	 */
1052 	if (bp->b_flags & B_REMFREE) {
1053 		bp->b_flags &= ~B_REMFREE;
1054 		return;
1055 	}
1056 	bufcountsub(bp);
1057 }
1058 
1059 /*
1060  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1061  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1062  * the buffer is valid and we do not have to do anything.
1063  */
1064 void
1065 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1066     int cnt, struct ucred * cred)
1067 {
1068 	struct buf *rabp;
1069 	int i;
1070 
1071 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1072 		if (inmem(vp, *rablkno))
1073 			continue;
1074 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1075 
1076 		if ((rabp->b_flags & B_CACHE) == 0) {
1077 			if (!TD_IS_IDLETHREAD(curthread))
1078 				curthread->td_ru.ru_inblock++;
1079 			rabp->b_flags |= B_ASYNC;
1080 			rabp->b_flags &= ~B_INVAL;
1081 			rabp->b_ioflags &= ~BIO_ERROR;
1082 			rabp->b_iocmd = BIO_READ;
1083 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1084 				rabp->b_rcred = crhold(cred);
1085 			vfs_busy_pages(rabp, 0);
1086 			BUF_KERNPROC(rabp);
1087 			rabp->b_iooffset = dbtob(rabp->b_blkno);
1088 			bstrategy(rabp);
1089 		} else {
1090 			brelse(rabp);
1091 		}
1092 	}
1093 }
1094 
1095 /*
1096  * Entry point for bread() and breadn() via #defines in sys/buf.h.
1097  *
1098  * Get a buffer with the specified data.  Look in the cache first.  We
1099  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1100  * is set, the buffer is valid and we do not have to do anything, see
1101  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1102  */
1103 int
1104 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1105     int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1106 {
1107 	struct buf *bp;
1108 	int rv = 0, readwait = 0;
1109 
1110 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1111 	/*
1112 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1113 	 */
1114 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1115 	if (bp == NULL)
1116 		return (EBUSY);
1117 
1118 	/* if not found in cache, do some I/O */
1119 	if ((bp->b_flags & B_CACHE) == 0) {
1120 		if (!TD_IS_IDLETHREAD(curthread))
1121 			curthread->td_ru.ru_inblock++;
1122 		bp->b_iocmd = BIO_READ;
1123 		bp->b_flags &= ~B_INVAL;
1124 		bp->b_ioflags &= ~BIO_ERROR;
1125 		if (bp->b_rcred == NOCRED && cred != NOCRED)
1126 			bp->b_rcred = crhold(cred);
1127 		vfs_busy_pages(bp, 0);
1128 		bp->b_iooffset = dbtob(bp->b_blkno);
1129 		bstrategy(bp);
1130 		++readwait;
1131 	}
1132 
1133 	breada(vp, rablkno, rabsize, cnt, cred);
1134 
1135 	if (readwait) {
1136 		rv = bufwait(bp);
1137 	}
1138 	return (rv);
1139 }
1140 
1141 /*
1142  * Write, release buffer on completion.  (Done by iodone
1143  * if async).  Do not bother writing anything if the buffer
1144  * is invalid.
1145  *
1146  * Note that we set B_CACHE here, indicating that buffer is
1147  * fully valid and thus cacheable.  This is true even of NFS
1148  * now so we set it generally.  This could be set either here
1149  * or in biodone() since the I/O is synchronous.  We put it
1150  * here.
1151  */
1152 int
1153 bufwrite(struct buf *bp)
1154 {
1155 	int oldflags;
1156 	struct vnode *vp;
1157 	long space;
1158 	int vp_md;
1159 
1160 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1161 	if (bp->b_flags & B_INVAL) {
1162 		brelse(bp);
1163 		return (0);
1164 	}
1165 
1166 	if (bp->b_flags & B_BARRIER)
1167 		barrierwrites++;
1168 
1169 	oldflags = bp->b_flags;
1170 
1171 	BUF_ASSERT_HELD(bp);
1172 
1173 	if (bp->b_pin_count > 0)
1174 		bunpin_wait(bp);
1175 
1176 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1177 	    ("FFS background buffer should not get here %p", bp));
1178 
1179 	vp = bp->b_vp;
1180 	if (vp)
1181 		vp_md = vp->v_vflag & VV_MD;
1182 	else
1183 		vp_md = 0;
1184 
1185 	/*
1186 	 * Mark the buffer clean.  Increment the bufobj write count
1187 	 * before bundirty() call, to prevent other thread from seeing
1188 	 * empty dirty list and zero counter for writes in progress,
1189 	 * falsely indicating that the bufobj is clean.
1190 	 */
1191 	bufobj_wref(bp->b_bufobj);
1192 	bundirty(bp);
1193 
1194 	bp->b_flags &= ~B_DONE;
1195 	bp->b_ioflags &= ~BIO_ERROR;
1196 	bp->b_flags |= B_CACHE;
1197 	bp->b_iocmd = BIO_WRITE;
1198 
1199 	vfs_busy_pages(bp, 1);
1200 
1201 	/*
1202 	 * Normal bwrites pipeline writes
1203 	 */
1204 	bp->b_runningbufspace = bp->b_bufsize;
1205 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1206 
1207 	if (!TD_IS_IDLETHREAD(curthread))
1208 		curthread->td_ru.ru_oublock++;
1209 	if (oldflags & B_ASYNC)
1210 		BUF_KERNPROC(bp);
1211 	bp->b_iooffset = dbtob(bp->b_blkno);
1212 	bstrategy(bp);
1213 
1214 	if ((oldflags & B_ASYNC) == 0) {
1215 		int rtval = bufwait(bp);
1216 		brelse(bp);
1217 		return (rtval);
1218 	} else if (space > hirunningspace) {
1219 		/*
1220 		 * don't allow the async write to saturate the I/O
1221 		 * system.  We will not deadlock here because
1222 		 * we are blocking waiting for I/O that is already in-progress
1223 		 * to complete. We do not block here if it is the update
1224 		 * or syncer daemon trying to clean up as that can lead
1225 		 * to deadlock.
1226 		 */
1227 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1228 			waitrunningbufspace();
1229 	}
1230 
1231 	return (0);
1232 }
1233 
1234 void
1235 bufbdflush(struct bufobj *bo, struct buf *bp)
1236 {
1237 	struct buf *nbp;
1238 
1239 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1240 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1241 		altbufferflushes++;
1242 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1243 		BO_LOCK(bo);
1244 		/*
1245 		 * Try to find a buffer to flush.
1246 		 */
1247 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1248 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1249 			    BUF_LOCK(nbp,
1250 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1251 				continue;
1252 			if (bp == nbp)
1253 				panic("bdwrite: found ourselves");
1254 			BO_UNLOCK(bo);
1255 			/* Don't countdeps with the bo lock held. */
1256 			if (buf_countdeps(nbp, 0)) {
1257 				BO_LOCK(bo);
1258 				BUF_UNLOCK(nbp);
1259 				continue;
1260 			}
1261 			if (nbp->b_flags & B_CLUSTEROK) {
1262 				vfs_bio_awrite(nbp);
1263 			} else {
1264 				bremfree(nbp);
1265 				bawrite(nbp);
1266 			}
1267 			dirtybufferflushes++;
1268 			break;
1269 		}
1270 		if (nbp == NULL)
1271 			BO_UNLOCK(bo);
1272 	}
1273 }
1274 
1275 /*
1276  * Delayed write. (Buffer is marked dirty).  Do not bother writing
1277  * anything if the buffer is marked invalid.
1278  *
1279  * Note that since the buffer must be completely valid, we can safely
1280  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1281  * biodone() in order to prevent getblk from writing the buffer
1282  * out synchronously.
1283  */
1284 void
1285 bdwrite(struct buf *bp)
1286 {
1287 	struct thread *td = curthread;
1288 	struct vnode *vp;
1289 	struct bufobj *bo;
1290 
1291 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1292 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1293 	KASSERT((bp->b_flags & B_BARRIER) == 0,
1294 	    ("Barrier request in delayed write %p", bp));
1295 	BUF_ASSERT_HELD(bp);
1296 
1297 	if (bp->b_flags & B_INVAL) {
1298 		brelse(bp);
1299 		return;
1300 	}
1301 
1302 	/*
1303 	 * If we have too many dirty buffers, don't create any more.
1304 	 * If we are wildly over our limit, then force a complete
1305 	 * cleanup. Otherwise, just keep the situation from getting
1306 	 * out of control. Note that we have to avoid a recursive
1307 	 * disaster and not try to clean up after our own cleanup!
1308 	 */
1309 	vp = bp->b_vp;
1310 	bo = bp->b_bufobj;
1311 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1312 		td->td_pflags |= TDP_INBDFLUSH;
1313 		BO_BDFLUSH(bo, bp);
1314 		td->td_pflags &= ~TDP_INBDFLUSH;
1315 	} else
1316 		recursiveflushes++;
1317 
1318 	bdirty(bp);
1319 	/*
1320 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1321 	 * true even of NFS now.
1322 	 */
1323 	bp->b_flags |= B_CACHE;
1324 
1325 	/*
1326 	 * This bmap keeps the system from needing to do the bmap later,
1327 	 * perhaps when the system is attempting to do a sync.  Since it
1328 	 * is likely that the indirect block -- or whatever other datastructure
1329 	 * that the filesystem needs is still in memory now, it is a good
1330 	 * thing to do this.  Note also, that if the pageout daemon is
1331 	 * requesting a sync -- there might not be enough memory to do
1332 	 * the bmap then...  So, this is important to do.
1333 	 */
1334 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1335 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1336 	}
1337 
1338 	/*
1339 	 * Set the *dirty* buffer range based upon the VM system dirty
1340 	 * pages.
1341 	 *
1342 	 * Mark the buffer pages as clean.  We need to do this here to
1343 	 * satisfy the vnode_pager and the pageout daemon, so that it
1344 	 * thinks that the pages have been "cleaned".  Note that since
1345 	 * the pages are in a delayed write buffer -- the VFS layer
1346 	 * "will" see that the pages get written out on the next sync,
1347 	 * or perhaps the cluster will be completed.
1348 	 */
1349 	vfs_clean_pages_dirty_buf(bp);
1350 	bqrelse(bp);
1351 
1352 	/*
1353 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1354 	 * due to the softdep code.
1355 	 */
1356 }
1357 
1358 /*
1359  *	bdirty:
1360  *
1361  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1362  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1363  *	itself to properly update it in the dirty/clean lists.  We mark it
1364  *	B_DONE to ensure that any asynchronization of the buffer properly
1365  *	clears B_DONE ( else a panic will occur later ).
1366  *
1367  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1368  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1369  *	should only be called if the buffer is known-good.
1370  *
1371  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1372  *	count.
1373  *
1374  *	The buffer must be on QUEUE_NONE.
1375  */
1376 void
1377 bdirty(struct buf *bp)
1378 {
1379 
1380 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1381 	    bp, bp->b_vp, bp->b_flags);
1382 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1383 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1384 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1385 	BUF_ASSERT_HELD(bp);
1386 	bp->b_flags &= ~(B_RELBUF);
1387 	bp->b_iocmd = BIO_WRITE;
1388 
1389 	if ((bp->b_flags & B_DELWRI) == 0) {
1390 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1391 		reassignbuf(bp);
1392 		bdirtyadd();
1393 	}
1394 }
1395 
1396 /*
1397  *	bundirty:
1398  *
1399  *	Clear B_DELWRI for buffer.
1400  *
1401  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1402  *	count.
1403  *
1404  *	The buffer must be on QUEUE_NONE.
1405  */
1406 
1407 void
1408 bundirty(struct buf *bp)
1409 {
1410 
1411 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1412 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1413 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1414 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1415 	BUF_ASSERT_HELD(bp);
1416 
1417 	if (bp->b_flags & B_DELWRI) {
1418 		bp->b_flags &= ~B_DELWRI;
1419 		reassignbuf(bp);
1420 		bdirtysub();
1421 	}
1422 	/*
1423 	 * Since it is now being written, we can clear its deferred write flag.
1424 	 */
1425 	bp->b_flags &= ~B_DEFERRED;
1426 }
1427 
1428 /*
1429  *	bawrite:
1430  *
1431  *	Asynchronous write.  Start output on a buffer, but do not wait for
1432  *	it to complete.  The buffer is released when the output completes.
1433  *
1434  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1435  *	B_INVAL buffers.  Not us.
1436  */
1437 void
1438 bawrite(struct buf *bp)
1439 {
1440 
1441 	bp->b_flags |= B_ASYNC;
1442 	(void) bwrite(bp);
1443 }
1444 
1445 /*
1446  *	babarrierwrite:
1447  *
1448  *	Asynchronous barrier write.  Start output on a buffer, but do not
1449  *	wait for it to complete.  Place a write barrier after this write so
1450  *	that this buffer and all buffers written before it are committed to
1451  *	the disk before any buffers written after this write are committed
1452  *	to the disk.  The buffer is released when the output completes.
1453  */
1454 void
1455 babarrierwrite(struct buf *bp)
1456 {
1457 
1458 	bp->b_flags |= B_ASYNC | B_BARRIER;
1459 	(void) bwrite(bp);
1460 }
1461 
1462 /*
1463  *	bbarrierwrite:
1464  *
1465  *	Synchronous barrier write.  Start output on a buffer and wait for
1466  *	it to complete.  Place a write barrier after this write so that
1467  *	this buffer and all buffers written before it are committed to
1468  *	the disk before any buffers written after this write are committed
1469  *	to the disk.  The buffer is released when the output completes.
1470  */
1471 int
1472 bbarrierwrite(struct buf *bp)
1473 {
1474 
1475 	bp->b_flags |= B_BARRIER;
1476 	return (bwrite(bp));
1477 }
1478 
1479 /*
1480  *	bwillwrite:
1481  *
1482  *	Called prior to the locking of any vnodes when we are expecting to
1483  *	write.  We do not want to starve the buffer cache with too many
1484  *	dirty buffers so we block here.  By blocking prior to the locking
1485  *	of any vnodes we attempt to avoid the situation where a locked vnode
1486  *	prevents the various system daemons from flushing related buffers.
1487  */
1488 void
1489 bwillwrite(void)
1490 {
1491 
1492 	if (numdirtybuffers >= hidirtybuffers) {
1493 		mtx_lock(&bdirtylock);
1494 		while (numdirtybuffers >= hidirtybuffers) {
1495 			bdirtywait = 1;
1496 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
1497 			    "flswai", 0);
1498 		}
1499 		mtx_unlock(&bdirtylock);
1500 	}
1501 }
1502 
1503 /*
1504  * Return true if we have too many dirty buffers.
1505  */
1506 int
1507 buf_dirty_count_severe(void)
1508 {
1509 
1510 	return(numdirtybuffers >= hidirtybuffers);
1511 }
1512 
1513 static __noinline int
1514 buf_vm_page_count_severe(void)
1515 {
1516 
1517 	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1518 
1519 	return vm_page_count_severe();
1520 }
1521 
1522 /*
1523  *	brelse:
1524  *
1525  *	Release a busy buffer and, if requested, free its resources.  The
1526  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1527  *	to be accessed later as a cache entity or reused for other purposes.
1528  */
1529 void
1530 brelse(struct buf *bp)
1531 {
1532 	int qindex;
1533 
1534 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1535 	    bp, bp->b_vp, bp->b_flags);
1536 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1537 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1538 
1539 	if (BUF_LOCKRECURSED(bp)) {
1540 		/*
1541 		 * Do not process, in particular, do not handle the
1542 		 * B_INVAL/B_RELBUF and do not release to free list.
1543 		 */
1544 		BUF_UNLOCK(bp);
1545 		return;
1546 	}
1547 
1548 	if (bp->b_flags & B_MANAGED) {
1549 		bqrelse(bp);
1550 		return;
1551 	}
1552 
1553 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1554 	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1555 		/*
1556 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1557 		 * pages from being scrapped.  If the error is anything
1558 		 * other than an I/O error (EIO), assume that retrying
1559 		 * is futile.
1560 		 */
1561 		bp->b_ioflags &= ~BIO_ERROR;
1562 		bdirty(bp);
1563 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1564 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1565 		/*
1566 		 * Either a failed I/O or we were asked to free or not
1567 		 * cache the buffer.
1568 		 */
1569 		bp->b_flags |= B_INVAL;
1570 		if (!LIST_EMPTY(&bp->b_dep))
1571 			buf_deallocate(bp);
1572 		if (bp->b_flags & B_DELWRI)
1573 			bdirtysub();
1574 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1575 		if ((bp->b_flags & B_VMIO) == 0) {
1576 			if (bp->b_bufsize)
1577 				allocbuf(bp, 0);
1578 			if (bp->b_vp)
1579 				brelvp(bp);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1585 	 * is called with B_DELWRI set, the underlying pages may wind up
1586 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1587 	 * because pages associated with a B_DELWRI bp are marked clean.
1588 	 *
1589 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1590 	 * if B_DELWRI is set.
1591 	 *
1592 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1593 	 * on pages to return pages to the VM page queues.
1594 	 */
1595 	if (bp->b_flags & B_DELWRI)
1596 		bp->b_flags &= ~B_RELBUF;
1597 	else if (buf_vm_page_count_severe()) {
1598 		/*
1599 		 * BKGRDINPROG can only be set with the buf and bufobj
1600 		 * locks both held.  We tolerate a race to clear it here.
1601 		 */
1602 		if (!(bp->b_vflags & BV_BKGRDINPROG))
1603 			bp->b_flags |= B_RELBUF;
1604 	}
1605 
1606 	/*
1607 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1608 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1609 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1610 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1611 	 *
1612 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1613 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1614 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1615 	 *
1616 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1617 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1618 	 * the commit state and we cannot afford to lose the buffer. If the
1619 	 * buffer has a background write in progress, we need to keep it
1620 	 * around to prevent it from being reconstituted and starting a second
1621 	 * background write.
1622 	 */
1623 	if ((bp->b_flags & B_VMIO)
1624 	    && !(bp->b_vp->v_mount != NULL &&
1625 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1626 		 !vn_isdisk(bp->b_vp, NULL) &&
1627 		 (bp->b_flags & B_DELWRI))
1628 	    ) {
1629 
1630 		int i, j, resid;
1631 		vm_page_t m;
1632 		off_t foff;
1633 		vm_pindex_t poff;
1634 		vm_object_t obj;
1635 
1636 		obj = bp->b_bufobj->bo_object;
1637 
1638 		/*
1639 		 * Get the base offset and length of the buffer.  Note that
1640 		 * in the VMIO case if the buffer block size is not
1641 		 * page-aligned then b_data pointer may not be page-aligned.
1642 		 * But our b_pages[] array *IS* page aligned.
1643 		 *
1644 		 * block sizes less then DEV_BSIZE (usually 512) are not
1645 		 * supported due to the page granularity bits (m->valid,
1646 		 * m->dirty, etc...).
1647 		 *
1648 		 * See man buf(9) for more information
1649 		 */
1650 		resid = bp->b_bufsize;
1651 		foff = bp->b_offset;
1652 		for (i = 0; i < bp->b_npages; i++) {
1653 			int had_bogus = 0;
1654 
1655 			m = bp->b_pages[i];
1656 
1657 			/*
1658 			 * If we hit a bogus page, fixup *all* the bogus pages
1659 			 * now.
1660 			 */
1661 			if (m == bogus_page) {
1662 				poff = OFF_TO_IDX(bp->b_offset);
1663 				had_bogus = 1;
1664 
1665 				VM_OBJECT_RLOCK(obj);
1666 				for (j = i; j < bp->b_npages; j++) {
1667 					vm_page_t mtmp;
1668 					mtmp = bp->b_pages[j];
1669 					if (mtmp == bogus_page) {
1670 						mtmp = vm_page_lookup(obj, poff + j);
1671 						if (!mtmp) {
1672 							panic("brelse: page missing\n");
1673 						}
1674 						bp->b_pages[j] = mtmp;
1675 					}
1676 				}
1677 				VM_OBJECT_RUNLOCK(obj);
1678 
1679 				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1680 					BUF_CHECK_MAPPED(bp);
1681 					pmap_qenter(
1682 					    trunc_page((vm_offset_t)bp->b_data),
1683 					    bp->b_pages, bp->b_npages);
1684 				}
1685 				m = bp->b_pages[i];
1686 			}
1687 			if ((bp->b_flags & B_NOCACHE) ||
1688 			    (bp->b_ioflags & BIO_ERROR &&
1689 			     bp->b_iocmd == BIO_READ)) {
1690 				int poffset = foff & PAGE_MASK;
1691 				int presid = resid > (PAGE_SIZE - poffset) ?
1692 					(PAGE_SIZE - poffset) : resid;
1693 
1694 				KASSERT(presid >= 0, ("brelse: extra page"));
1695 				VM_OBJECT_WLOCK(obj);
1696 				while (vm_page_xbusied(m)) {
1697 					vm_page_lock(m);
1698 					VM_OBJECT_WUNLOCK(obj);
1699 					vm_page_busy_sleep(m, "mbncsh");
1700 					VM_OBJECT_WLOCK(obj);
1701 				}
1702 				if (pmap_page_wired_mappings(m) == 0)
1703 					vm_page_set_invalid(m, poffset, presid);
1704 				VM_OBJECT_WUNLOCK(obj);
1705 				if (had_bogus)
1706 					printf("avoided corruption bug in bogus_page/brelse code\n");
1707 			}
1708 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1709 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1710 		}
1711 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1712 			vfs_vmio_release(bp);
1713 
1714 	} else if (bp->b_flags & B_VMIO) {
1715 
1716 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1717 			vfs_vmio_release(bp);
1718 		}
1719 
1720 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1721 		if (bp->b_bufsize != 0)
1722 			allocbuf(bp, 0);
1723 		if (bp->b_vp != NULL)
1724 			brelvp(bp);
1725 	}
1726 
1727 	/*
1728 	 * If the buffer has junk contents signal it and eventually
1729 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1730 	 * doesn't find it.
1731 	 */
1732 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1733 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1734 		bp->b_flags |= B_INVAL;
1735 	if (bp->b_flags & B_INVAL) {
1736 		if (bp->b_flags & B_DELWRI)
1737 			bundirty(bp);
1738 		if (bp->b_vp)
1739 			brelvp(bp);
1740 	}
1741 
1742 	/* buffers with no memory */
1743 	if (bp->b_bufsize == 0) {
1744 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1745 		if (bp->b_vflags & BV_BKGRDINPROG)
1746 			panic("losing buffer 1");
1747 		if (bp->b_kvasize)
1748 			qindex = QUEUE_EMPTYKVA;
1749 		else
1750 			qindex = QUEUE_EMPTY;
1751 		bp->b_flags |= B_AGE;
1752 	/* buffers with junk contents */
1753 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1754 	    (bp->b_ioflags & BIO_ERROR)) {
1755 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1756 		if (bp->b_vflags & BV_BKGRDINPROG)
1757 			panic("losing buffer 2");
1758 		qindex = QUEUE_CLEAN;
1759 		bp->b_flags |= B_AGE;
1760 	/* remaining buffers */
1761 	} else if (bp->b_flags & B_DELWRI)
1762 		qindex = QUEUE_DIRTY;
1763 	else
1764 		qindex = QUEUE_CLEAN;
1765 
1766 	binsfree(bp, qindex);
1767 
1768 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1769 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1770 		panic("brelse: not dirty");
1771 	/* unlock */
1772 	BUF_UNLOCK(bp);
1773 }
1774 
1775 /*
1776  * Release a buffer back to the appropriate queue but do not try to free
1777  * it.  The buffer is expected to be used again soon.
1778  *
1779  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1780  * biodone() to requeue an async I/O on completion.  It is also used when
1781  * known good buffers need to be requeued but we think we may need the data
1782  * again soon.
1783  *
1784  * XXX we should be able to leave the B_RELBUF hint set on completion.
1785  */
1786 void
1787 bqrelse(struct buf *bp)
1788 {
1789 	int qindex;
1790 
1791 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1792 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1793 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1794 
1795 	if (BUF_LOCKRECURSED(bp)) {
1796 		/* do not release to free list */
1797 		BUF_UNLOCK(bp);
1798 		return;
1799 	}
1800 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1801 
1802 	if (bp->b_flags & B_MANAGED) {
1803 		if (bp->b_flags & B_REMFREE)
1804 			bremfreef(bp);
1805 		goto out;
1806 	}
1807 
1808 	/* buffers with stale but valid contents */
1809 	if (bp->b_flags & B_DELWRI) {
1810 		qindex = QUEUE_DIRTY;
1811 	} else {
1812 		if ((bp->b_flags & B_DELWRI) == 0 &&
1813 		    (bp->b_xflags & BX_VNDIRTY))
1814 			panic("bqrelse: not dirty");
1815 		/*
1816 		 * BKGRDINPROG can only be set with the buf and bufobj
1817 		 * locks both held.  We tolerate a race to clear it here.
1818 		 */
1819 		if (buf_vm_page_count_severe() &&
1820 		    (bp->b_vflags & BV_BKGRDINPROG) == 0) {
1821 			/*
1822 			 * We are too low on memory, we have to try to free
1823 			 * the buffer (most importantly: the wired pages
1824 			 * making up its backing store) *now*.
1825 			 */
1826 			brelse(bp);
1827 			return;
1828 		}
1829 		qindex = QUEUE_CLEAN;
1830 	}
1831 	binsfree(bp, qindex);
1832 
1833 out:
1834 	/* unlock */
1835 	BUF_UNLOCK(bp);
1836 }
1837 
1838 /* Give pages used by the bp back to the VM system (where possible) */
1839 static void
1840 vfs_vmio_release(struct buf *bp)
1841 {
1842 	int i;
1843 	vm_page_t m;
1844 
1845 	if ((bp->b_flags & B_UNMAPPED) == 0) {
1846 		BUF_CHECK_MAPPED(bp);
1847 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1848 	} else
1849 		BUF_CHECK_UNMAPPED(bp);
1850 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
1851 	for (i = 0; i < bp->b_npages; i++) {
1852 		m = bp->b_pages[i];
1853 		bp->b_pages[i] = NULL;
1854 		/*
1855 		 * In order to keep page LRU ordering consistent, put
1856 		 * everything on the inactive queue.
1857 		 */
1858 		vm_page_lock(m);
1859 		vm_page_unwire(m, 0);
1860 
1861 		/*
1862 		 * Might as well free the page if we can and it has
1863 		 * no valid data.  We also free the page if the
1864 		 * buffer was used for direct I/O
1865 		 */
1866 		if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1867 			if (m->wire_count == 0 && !vm_page_busied(m))
1868 				vm_page_free(m);
1869 		} else if (bp->b_flags & B_DIRECT)
1870 			vm_page_try_to_free(m);
1871 		else if (buf_vm_page_count_severe())
1872 			vm_page_try_to_cache(m);
1873 		vm_page_unlock(m);
1874 	}
1875 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
1876 
1877 	if (bp->b_bufsize) {
1878 		bufspacewakeup();
1879 		bp->b_bufsize = 0;
1880 	}
1881 	bp->b_npages = 0;
1882 	bp->b_flags &= ~B_VMIO;
1883 	if (bp->b_vp)
1884 		brelvp(bp);
1885 }
1886 
1887 /*
1888  * Check to see if a block at a particular lbn is available for a clustered
1889  * write.
1890  */
1891 static int
1892 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1893 {
1894 	struct buf *bpa;
1895 	int match;
1896 
1897 	match = 0;
1898 
1899 	/* If the buf isn't in core skip it */
1900 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1901 		return (0);
1902 
1903 	/* If the buf is busy we don't want to wait for it */
1904 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1905 		return (0);
1906 
1907 	/* Only cluster with valid clusterable delayed write buffers */
1908 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1909 	    (B_DELWRI | B_CLUSTEROK))
1910 		goto done;
1911 
1912 	if (bpa->b_bufsize != size)
1913 		goto done;
1914 
1915 	/*
1916 	 * Check to see if it is in the expected place on disk and that the
1917 	 * block has been mapped.
1918 	 */
1919 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1920 		match = 1;
1921 done:
1922 	BUF_UNLOCK(bpa);
1923 	return (match);
1924 }
1925 
1926 /*
1927  *	vfs_bio_awrite:
1928  *
1929  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1930  *	This is much better then the old way of writing only one buffer at
1931  *	a time.  Note that we may not be presented with the buffers in the
1932  *	correct order, so we search for the cluster in both directions.
1933  */
1934 int
1935 vfs_bio_awrite(struct buf *bp)
1936 {
1937 	struct bufobj *bo;
1938 	int i;
1939 	int j;
1940 	daddr_t lblkno = bp->b_lblkno;
1941 	struct vnode *vp = bp->b_vp;
1942 	int ncl;
1943 	int nwritten;
1944 	int size;
1945 	int maxcl;
1946 	int gbflags;
1947 
1948 	bo = &vp->v_bufobj;
1949 	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1950 	/*
1951 	 * right now we support clustered writing only to regular files.  If
1952 	 * we find a clusterable block we could be in the middle of a cluster
1953 	 * rather then at the beginning.
1954 	 */
1955 	if ((vp->v_type == VREG) &&
1956 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1957 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1958 
1959 		size = vp->v_mount->mnt_stat.f_iosize;
1960 		maxcl = MAXPHYS / size;
1961 
1962 		BO_RLOCK(bo);
1963 		for (i = 1; i < maxcl; i++)
1964 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1965 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1966 				break;
1967 
1968 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1969 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1970 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1971 				break;
1972 		BO_RUNLOCK(bo);
1973 		--j;
1974 		ncl = i + j;
1975 		/*
1976 		 * this is a possible cluster write
1977 		 */
1978 		if (ncl != 1) {
1979 			BUF_UNLOCK(bp);
1980 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
1981 			    gbflags);
1982 			return (nwritten);
1983 		}
1984 	}
1985 	bremfree(bp);
1986 	bp->b_flags |= B_ASYNC;
1987 	/*
1988 	 * default (old) behavior, writing out only one block
1989 	 *
1990 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1991 	 */
1992 	nwritten = bp->b_bufsize;
1993 	(void) bwrite(bp);
1994 
1995 	return (nwritten);
1996 }
1997 
1998 static void
1999 setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
2000 {
2001 
2002 	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2003 	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
2004 	if ((gbflags & GB_UNMAPPED) == 0) {
2005 		bp->b_kvabase = (caddr_t)addr;
2006 	} else if ((gbflags & GB_KVAALLOC) != 0) {
2007 		KASSERT((gbflags & GB_UNMAPPED) != 0,
2008 		    ("GB_KVAALLOC without GB_UNMAPPED"));
2009 		bp->b_kvaalloc = (caddr_t)addr;
2010 		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2011 		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2012 	}
2013 	bp->b_kvasize = maxsize;
2014 }
2015 
2016 /*
2017  * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
2018  * needed.
2019  */
2020 static int
2021 allocbufkva(struct buf *bp, int maxsize, int gbflags)
2022 {
2023 	vm_offset_t addr;
2024 
2025 	bfreekva(bp);
2026 	addr = 0;
2027 
2028 	if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) {
2029 		/*
2030 		 * Buffer map is too fragmented.  Request the caller
2031 		 * to defragment the map.
2032 		 */
2033 		atomic_add_int(&bufdefragcnt, 1);
2034 		return (1);
2035 	}
2036 	setbufkva(bp, addr, maxsize, gbflags);
2037 	atomic_add_long(&bufspace, bp->b_kvasize);
2038 	return (0);
2039 }
2040 
2041 /*
2042  * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2043  * locked vnode is supplied.
2044  */
2045 static void
2046 getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2047     int defrag)
2048 {
2049 	struct thread *td;
2050 	char *waitmsg;
2051 	int cnt, error, flags, norunbuf, wait;
2052 
2053 	mtx_assert(&bqclean, MA_OWNED);
2054 
2055 	if (defrag) {
2056 		flags = VFS_BIO_NEED_BUFSPACE;
2057 		waitmsg = "nbufkv";
2058 	} else if (bufspace >= hibufspace) {
2059 		waitmsg = "nbufbs";
2060 		flags = VFS_BIO_NEED_BUFSPACE;
2061 	} else {
2062 		waitmsg = "newbuf";
2063 		flags = VFS_BIO_NEED_ANY;
2064 	}
2065 	mtx_lock(&nblock);
2066 	needsbuffer |= flags;
2067 	mtx_unlock(&nblock);
2068 	mtx_unlock(&bqclean);
2069 
2070 	bd_speedup();	/* heeeelp */
2071 	if ((gbflags & GB_NOWAIT_BD) != 0)
2072 		return;
2073 
2074 	td = curthread;
2075 	cnt = 0;
2076 	wait = MNT_NOWAIT;
2077 	mtx_lock(&nblock);
2078 	while (needsbuffer & flags) {
2079 		if (vp != NULL && vp->v_type != VCHR &&
2080 		    (td->td_pflags & TDP_BUFNEED) == 0) {
2081 			mtx_unlock(&nblock);
2082 
2083 			/*
2084 			 * getblk() is called with a vnode locked, and
2085 			 * some majority of the dirty buffers may as
2086 			 * well belong to the vnode.  Flushing the
2087 			 * buffers there would make a progress that
2088 			 * cannot be achieved by the buf_daemon, that
2089 			 * cannot lock the vnode.
2090 			 */
2091 			if (cnt++ > 2)
2092 				wait = MNT_WAIT;
2093 			ASSERT_VOP_LOCKED(vp, "bufd_helper");
2094 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
2095 			    vn_lock(vp, LK_TRYUPGRADE);
2096 			if (error == 0) {
2097 				/* play bufdaemon */
2098 				norunbuf = curthread_pflags_set(TDP_BUFNEED |
2099 				    TDP_NORUNNINGBUF);
2100 				VOP_FSYNC(vp, wait, td);
2101 				atomic_add_long(&notbufdflushes, 1);
2102 				curthread_pflags_restore(norunbuf);
2103 			}
2104 			mtx_lock(&nblock);
2105 			if ((needsbuffer & flags) == 0)
2106 				break;
2107 		}
2108 		if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag,
2109 		    waitmsg, slptimeo))
2110 			break;
2111 	}
2112 	mtx_unlock(&nblock);
2113 }
2114 
2115 static void
2116 getnewbuf_reuse_bp(struct buf *bp, int qindex)
2117 {
2118 
2119 	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2120 	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2121 	     bp->b_kvasize, bp->b_bufsize, qindex);
2122 	mtx_assert(&bqclean, MA_NOTOWNED);
2123 
2124 	/*
2125 	 * Note: we no longer distinguish between VMIO and non-VMIO
2126 	 * buffers.
2127 	 */
2128 	KASSERT((bp->b_flags & B_DELWRI) == 0,
2129 	    ("delwri buffer %p found in queue %d", bp, qindex));
2130 
2131 	if (qindex == QUEUE_CLEAN) {
2132 		if (bp->b_flags & B_VMIO) {
2133 			bp->b_flags &= ~B_ASYNC;
2134 			vfs_vmio_release(bp);
2135 		}
2136 		if (bp->b_vp != NULL)
2137 			brelvp(bp);
2138 	}
2139 
2140 	/*
2141 	 * Get the rest of the buffer freed up.  b_kva* is still valid
2142 	 * after this operation.
2143 	 */
2144 
2145 	if (bp->b_rcred != NOCRED) {
2146 		crfree(bp->b_rcred);
2147 		bp->b_rcred = NOCRED;
2148 	}
2149 	if (bp->b_wcred != NOCRED) {
2150 		crfree(bp->b_wcred);
2151 		bp->b_wcred = NOCRED;
2152 	}
2153 	if (!LIST_EMPTY(&bp->b_dep))
2154 		buf_deallocate(bp);
2155 	if (bp->b_vflags & BV_BKGRDINPROG)
2156 		panic("losing buffer 3");
2157 	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2158 	    bp, bp->b_vp, qindex));
2159 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2160 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2161 
2162 	if (bp->b_bufsize)
2163 		allocbuf(bp, 0);
2164 
2165 	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2166 	bp->b_ioflags = 0;
2167 	bp->b_xflags = 0;
2168 	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2169 	    ("buf %p still counted as free?", bp));
2170 	bp->b_vflags = 0;
2171 	bp->b_vp = NULL;
2172 	bp->b_blkno = bp->b_lblkno = 0;
2173 	bp->b_offset = NOOFFSET;
2174 	bp->b_iodone = 0;
2175 	bp->b_error = 0;
2176 	bp->b_resid = 0;
2177 	bp->b_bcount = 0;
2178 	bp->b_npages = 0;
2179 	bp->b_dirtyoff = bp->b_dirtyend = 0;
2180 	bp->b_bufobj = NULL;
2181 	bp->b_pin_count = 0;
2182 	bp->b_fsprivate1 = NULL;
2183 	bp->b_fsprivate2 = NULL;
2184 	bp->b_fsprivate3 = NULL;
2185 
2186 	LIST_INIT(&bp->b_dep);
2187 }
2188 
2189 static int flushingbufs;
2190 
2191 static struct buf *
2192 getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2193 {
2194 	struct buf *bp, *nbp;
2195 	int nqindex, qindex, pass;
2196 
2197 	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2198 
2199 	pass = 1;
2200 restart:
2201 	atomic_add_int(&getnewbufrestarts, 1);
2202 
2203 	/*
2204 	 * Setup for scan.  If we do not have enough free buffers,
2205 	 * we setup a degenerate case that immediately fails.  Note
2206 	 * that if we are specially marked process, we are allowed to
2207 	 * dip into our reserves.
2208 	 *
2209 	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2210 	 * for the allocation of the mapped buffer.  For unmapped, the
2211 	 * easiest is to start with EMPTY outright.
2212 	 *
2213 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2214 	 * However, there are a number of cases (defragging, reusing, ...)
2215 	 * where we cannot backup.
2216 	 */
2217 	nbp = NULL;
2218 	mtx_lock(&bqclean);
2219 	if (!defrag && unmapped) {
2220 		nqindex = QUEUE_EMPTY;
2221 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2222 	}
2223 	if (nbp == NULL) {
2224 		nqindex = QUEUE_EMPTYKVA;
2225 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2226 	}
2227 
2228 	/*
2229 	 * If no EMPTYKVA buffers and we are either defragging or
2230 	 * reusing, locate a CLEAN buffer to free or reuse.  If
2231 	 * bufspace useage is low skip this step so we can allocate a
2232 	 * new buffer.
2233 	 */
2234 	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2235 		nqindex = QUEUE_CLEAN;
2236 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2237 	}
2238 
2239 	/*
2240 	 * If we could not find or were not allowed to reuse a CLEAN
2241 	 * buffer, check to see if it is ok to use an EMPTY buffer.
2242 	 * We can only use an EMPTY buffer if allocating its KVA would
2243 	 * not otherwise run us out of buffer space.  No KVA is needed
2244 	 * for the unmapped allocation.
2245 	 */
2246 	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2247 	    metadata)) {
2248 		nqindex = QUEUE_EMPTY;
2249 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2250 	}
2251 
2252 	/*
2253 	 * All available buffers might be clean, retry ignoring the
2254 	 * lobufspace as the last resort.
2255 	 */
2256 	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2257 		nqindex = QUEUE_CLEAN;
2258 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2259 	}
2260 
2261 	/*
2262 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2263 	 * depending.
2264 	 */
2265 	while ((bp = nbp) != NULL) {
2266 		qindex = nqindex;
2267 
2268 		/*
2269 		 * Calculate next bp (we can only use it if we do not
2270 		 * block or do other fancy things).
2271 		 */
2272 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2273 			switch (qindex) {
2274 			case QUEUE_EMPTY:
2275 				nqindex = QUEUE_EMPTYKVA;
2276 				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2277 				if (nbp != NULL)
2278 					break;
2279 				/* FALLTHROUGH */
2280 			case QUEUE_EMPTYKVA:
2281 				nqindex = QUEUE_CLEAN;
2282 				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2283 				if (nbp != NULL)
2284 					break;
2285 				/* FALLTHROUGH */
2286 			case QUEUE_CLEAN:
2287 				if (metadata && pass == 1) {
2288 					pass = 2;
2289 					nqindex = QUEUE_EMPTY;
2290 					nbp = TAILQ_FIRST(
2291 					    &bufqueues[QUEUE_EMPTY]);
2292 				}
2293 				/*
2294 				 * nbp is NULL.
2295 				 */
2296 				break;
2297 			}
2298 		}
2299 		/*
2300 		 * If we are defragging then we need a buffer with
2301 		 * b_kvasize != 0.  XXX this situation should no longer
2302 		 * occur, if defrag is non-zero the buffer's b_kvasize
2303 		 * should also be non-zero at this point.  XXX
2304 		 */
2305 		if (defrag && bp->b_kvasize == 0) {
2306 			printf("Warning: defrag empty buffer %p\n", bp);
2307 			continue;
2308 		}
2309 
2310 		/*
2311 		 * Start freeing the bp.  This is somewhat involved.  nbp
2312 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2313 		 */
2314 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2315 			continue;
2316 		/*
2317 		 * BKGRDINPROG can only be set with the buf and bufobj
2318 		 * locks both held.  We tolerate a race to clear it here.
2319 		 */
2320 		if (bp->b_vflags & BV_BKGRDINPROG) {
2321 			BUF_UNLOCK(bp);
2322 			continue;
2323 		}
2324 
2325 		KASSERT(bp->b_qindex == qindex,
2326 		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2327 
2328 		bremfreel(bp);
2329 		mtx_unlock(&bqclean);
2330 		/*
2331 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2332 		 * the scan from this point on.
2333 		 */
2334 
2335 		getnewbuf_reuse_bp(bp, qindex);
2336 		mtx_assert(&bqclean, MA_NOTOWNED);
2337 
2338 		/*
2339 		 * If we are defragging then free the buffer.
2340 		 */
2341 		if (defrag) {
2342 			bp->b_flags |= B_INVAL;
2343 			bfreekva(bp);
2344 			brelse(bp);
2345 			defrag = 0;
2346 			goto restart;
2347 		}
2348 
2349 		/*
2350 		 * Notify any waiters for the buffer lock about
2351 		 * identity change by freeing the buffer.
2352 		 */
2353 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2354 			bp->b_flags |= B_INVAL;
2355 			bfreekva(bp);
2356 			brelse(bp);
2357 			goto restart;
2358 		}
2359 
2360 		if (metadata)
2361 			break;
2362 
2363 		/*
2364 		 * If we are overcomitted then recover the buffer and its
2365 		 * KVM space.  This occurs in rare situations when multiple
2366 		 * processes are blocked in getnewbuf() or allocbuf().
2367 		 */
2368 		if (bufspace >= hibufspace)
2369 			flushingbufs = 1;
2370 		if (flushingbufs && bp->b_kvasize != 0) {
2371 			bp->b_flags |= B_INVAL;
2372 			bfreekva(bp);
2373 			brelse(bp);
2374 			goto restart;
2375 		}
2376 		if (bufspace < lobufspace)
2377 			flushingbufs = 0;
2378 		break;
2379 	}
2380 	return (bp);
2381 }
2382 
2383 /*
2384  *	getnewbuf:
2385  *
2386  *	Find and initialize a new buffer header, freeing up existing buffers
2387  *	in the bufqueues as necessary.  The new buffer is returned locked.
2388  *
2389  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2390  *	buffer away, the caller must set B_INVAL prior to calling brelse().
2391  *
2392  *	We block if:
2393  *		We have insufficient buffer headers
2394  *		We have insufficient buffer space
2395  *		buffer_arena is too fragmented ( space reservation fails )
2396  *		If we have to flush dirty buffers ( but we try to avoid this )
2397  */
2398 static struct buf *
2399 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2400     int gbflags)
2401 {
2402 	struct buf *bp;
2403 	int defrag, metadata;
2404 
2405 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2406 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2407 	if (!unmapped_buf_allowed)
2408 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2409 
2410 	defrag = 0;
2411 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2412 	    vp->v_type == VCHR)
2413 		metadata = 1;
2414 	else
2415 		metadata = 0;
2416 	/*
2417 	 * We can't afford to block since we might be holding a vnode lock,
2418 	 * which may prevent system daemons from running.  We deal with
2419 	 * low-memory situations by proactively returning memory and running
2420 	 * async I/O rather then sync I/O.
2421 	 */
2422 	atomic_add_int(&getnewbufcalls, 1);
2423 	atomic_subtract_int(&getnewbufrestarts, 1);
2424 restart:
2425 	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2426 	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2427 	if (bp != NULL)
2428 		defrag = 0;
2429 
2430 	/*
2431 	 * If we exhausted our list, sleep as appropriate.  We may have to
2432 	 * wakeup various daemons and write out some dirty buffers.
2433 	 *
2434 	 * Generally we are sleeping due to insufficient buffer space.
2435 	 */
2436 	if (bp == NULL) {
2437 		mtx_assert(&bqclean, MA_OWNED);
2438 		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2439 		mtx_assert(&bqclean, MA_NOTOWNED);
2440 	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2441 		mtx_assert(&bqclean, MA_NOTOWNED);
2442 
2443 		bfreekva(bp);
2444 		bp->b_flags |= B_UNMAPPED;
2445 		bp->b_kvabase = bp->b_data = unmapped_buf;
2446 		bp->b_kvasize = maxsize;
2447 		atomic_add_long(&bufspace, bp->b_kvasize);
2448 		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2449 		atomic_add_int(&bufreusecnt, 1);
2450 	} else {
2451 		mtx_assert(&bqclean, MA_NOTOWNED);
2452 
2453 		/*
2454 		 * We finally have a valid bp.  We aren't quite out of the
2455 		 * woods, we still have to reserve kva space.  In order
2456 		 * to keep fragmentation sane we only allocate kva in
2457 		 * BKVASIZE chunks.
2458 		 */
2459 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2460 
2461 		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2462 		    B_KVAALLOC)) == B_UNMAPPED) {
2463 			if (allocbufkva(bp, maxsize, gbflags)) {
2464 				defrag = 1;
2465 				bp->b_flags |= B_INVAL;
2466 				brelse(bp);
2467 				goto restart;
2468 			}
2469 			atomic_add_int(&bufreusecnt, 1);
2470 		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2471 		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2472 			/*
2473 			 * If the reused buffer has KVA allocated,
2474 			 * reassign b_kvaalloc to b_kvabase.
2475 			 */
2476 			bp->b_kvabase = bp->b_kvaalloc;
2477 			bp->b_flags &= ~B_KVAALLOC;
2478 			atomic_subtract_long(&unmapped_bufspace,
2479 			    bp->b_kvasize);
2480 			atomic_add_int(&bufreusecnt, 1);
2481 		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2482 		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2483 		    GB_KVAALLOC)) {
2484 			/*
2485 			 * The case of reused buffer already have KVA
2486 			 * mapped, but the request is for unmapped
2487 			 * buffer with KVA allocated.
2488 			 */
2489 			bp->b_kvaalloc = bp->b_kvabase;
2490 			bp->b_data = bp->b_kvabase = unmapped_buf;
2491 			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2492 			atomic_add_long(&unmapped_bufspace,
2493 			    bp->b_kvasize);
2494 			atomic_add_int(&bufreusecnt, 1);
2495 		}
2496 		if ((gbflags & GB_UNMAPPED) == 0) {
2497 			bp->b_saveaddr = bp->b_kvabase;
2498 			bp->b_data = bp->b_saveaddr;
2499 			bp->b_flags &= ~B_UNMAPPED;
2500 			BUF_CHECK_MAPPED(bp);
2501 		}
2502 	}
2503 	return (bp);
2504 }
2505 
2506 /*
2507  *	buf_daemon:
2508  *
2509  *	buffer flushing daemon.  Buffers are normally flushed by the
2510  *	update daemon but if it cannot keep up this process starts to
2511  *	take the load in an attempt to prevent getnewbuf() from blocking.
2512  */
2513 
2514 static struct kproc_desc buf_kp = {
2515 	"bufdaemon",
2516 	buf_daemon,
2517 	&bufdaemonproc
2518 };
2519 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2520 
2521 static int
2522 buf_flush(int target)
2523 {
2524 	int flushed;
2525 
2526 	flushed = flushbufqueues(target, 0);
2527 	if (flushed == 0) {
2528 		/*
2529 		 * Could not find any buffers without rollback
2530 		 * dependencies, so just write the first one
2531 		 * in the hopes of eventually making progress.
2532 		 */
2533 		flushed = flushbufqueues(target, 1);
2534 	}
2535 	return (flushed);
2536 }
2537 
2538 static void
2539 buf_daemon()
2540 {
2541 	int lodirty;
2542 
2543 	/*
2544 	 * This process needs to be suspended prior to shutdown sync.
2545 	 */
2546 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2547 	    SHUTDOWN_PRI_LAST);
2548 
2549 	/*
2550 	 * This process is allowed to take the buffer cache to the limit
2551 	 */
2552 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2553 	mtx_lock(&bdlock);
2554 	for (;;) {
2555 		bd_request = 0;
2556 		mtx_unlock(&bdlock);
2557 
2558 		kproc_suspend_check(bufdaemonproc);
2559 		lodirty = lodirtybuffers;
2560 		if (bd_speedupreq) {
2561 			lodirty = numdirtybuffers / 2;
2562 			bd_speedupreq = 0;
2563 		}
2564 		/*
2565 		 * Do the flush.  Limit the amount of in-transit I/O we
2566 		 * allow to build up, otherwise we would completely saturate
2567 		 * the I/O system.
2568 		 */
2569 		while (numdirtybuffers > lodirty) {
2570 			if (buf_flush(numdirtybuffers - lodirty) == 0)
2571 				break;
2572 			kern_yield(PRI_USER);
2573 		}
2574 
2575 		/*
2576 		 * Only clear bd_request if we have reached our low water
2577 		 * mark.  The buf_daemon normally waits 1 second and
2578 		 * then incrementally flushes any dirty buffers that have
2579 		 * built up, within reason.
2580 		 *
2581 		 * If we were unable to hit our low water mark and couldn't
2582 		 * find any flushable buffers, we sleep for a short period
2583 		 * to avoid endless loops on unlockable buffers.
2584 		 */
2585 		mtx_lock(&bdlock);
2586 		if (numdirtybuffers <= lodirtybuffers) {
2587 			/*
2588 			 * We reached our low water mark, reset the
2589 			 * request and sleep until we are needed again.
2590 			 * The sleep is just so the suspend code works.
2591 			 */
2592 			bd_request = 0;
2593 			/*
2594 			 * Do an extra wakeup in case dirty threshold
2595 			 * changed via sysctl and the explicit transition
2596 			 * out of shortfall was missed.
2597 			 */
2598 			bdirtywakeup();
2599 			if (runningbufspace <= lorunningspace)
2600 				runningwakeup();
2601 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2602 		} else {
2603 			/*
2604 			 * We couldn't find any flushable dirty buffers but
2605 			 * still have too many dirty buffers, we
2606 			 * have to sleep and try again.  (rare)
2607 			 */
2608 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2609 		}
2610 	}
2611 }
2612 
2613 /*
2614  *	flushbufqueues:
2615  *
2616  *	Try to flush a buffer in the dirty queue.  We must be careful to
2617  *	free up B_INVAL buffers instead of write them, which NFS is
2618  *	particularly sensitive to.
2619  */
2620 static int flushwithdeps = 0;
2621 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2622     0, "Number of buffers flushed with dependecies that require rollbacks");
2623 
2624 static int
2625 flushbufqueues(int target, int flushdeps)
2626 {
2627 	struct buf *sentinel;
2628 	struct vnode *vp;
2629 	struct mount *mp;
2630 	struct buf *bp;
2631 	int hasdeps;
2632 	int flushed;
2633 	int queue;
2634 	int error;
2635 
2636 	flushed = 0;
2637 	queue = QUEUE_DIRTY;
2638 	bp = NULL;
2639 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2640 	sentinel->b_qindex = QUEUE_SENTINEL;
2641 	mtx_lock(&bqdirty);
2642 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2643 	mtx_unlock(&bqdirty);
2644 	while (flushed != target) {
2645 		maybe_yield();
2646 		mtx_lock(&bqdirty);
2647 		bp = TAILQ_NEXT(sentinel, b_freelist);
2648 		if (bp != NULL) {
2649 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2650 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2651 			    b_freelist);
2652 		} else {
2653 			mtx_unlock(&bqdirty);
2654 			break;
2655 		}
2656 		KASSERT(bp->b_qindex != QUEUE_SENTINEL,
2657 		    ("parallel calls to flushbufqueues() bp %p", bp));
2658 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
2659 		mtx_unlock(&bqdirty);
2660 		if (error != 0)
2661 			continue;
2662 		if (bp->b_pin_count > 0) {
2663 			BUF_UNLOCK(bp);
2664 			continue;
2665 		}
2666 		/*
2667 		 * BKGRDINPROG can only be set with the buf and bufobj
2668 		 * locks both held.  We tolerate a race to clear it here.
2669 		 */
2670 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2671 		    (bp->b_flags & B_DELWRI) == 0) {
2672 			BUF_UNLOCK(bp);
2673 			continue;
2674 		}
2675 		if (bp->b_flags & B_INVAL) {
2676 			bremfreef(bp);
2677 			brelse(bp);
2678 			flushed++;
2679 			continue;
2680 		}
2681 
2682 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2683 			if (flushdeps == 0) {
2684 				BUF_UNLOCK(bp);
2685 				continue;
2686 			}
2687 			hasdeps = 1;
2688 		} else
2689 			hasdeps = 0;
2690 		/*
2691 		 * We must hold the lock on a vnode before writing
2692 		 * one of its buffers. Otherwise we may confuse, or
2693 		 * in the case of a snapshot vnode, deadlock the
2694 		 * system.
2695 		 *
2696 		 * The lock order here is the reverse of the normal
2697 		 * of vnode followed by buf lock.  This is ok because
2698 		 * the NOWAIT will prevent deadlock.
2699 		 */
2700 		vp = bp->b_vp;
2701 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2702 			BUF_UNLOCK(bp);
2703 			continue;
2704 		}
2705 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
2706 		if (error == 0) {
2707 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2708 			    bp, bp->b_vp, bp->b_flags);
2709 			vfs_bio_awrite(bp);
2710 			vn_finished_write(mp);
2711 			VOP_UNLOCK(vp, 0);
2712 			flushwithdeps += hasdeps;
2713 			flushed++;
2714 			if (runningbufspace > hirunningspace)
2715 				waitrunningbufspace();
2716 			continue;
2717 		}
2718 		vn_finished_write(mp);
2719 		BUF_UNLOCK(bp);
2720 	}
2721 	mtx_lock(&bqdirty);
2722 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2723 	mtx_unlock(&bqdirty);
2724 	free(sentinel, M_TEMP);
2725 	return (flushed);
2726 }
2727 
2728 /*
2729  * Check to see if a block is currently memory resident.
2730  */
2731 struct buf *
2732 incore(struct bufobj *bo, daddr_t blkno)
2733 {
2734 	struct buf *bp;
2735 
2736 	BO_RLOCK(bo);
2737 	bp = gbincore(bo, blkno);
2738 	BO_RUNLOCK(bo);
2739 	return (bp);
2740 }
2741 
2742 /*
2743  * Returns true if no I/O is needed to access the
2744  * associated VM object.  This is like incore except
2745  * it also hunts around in the VM system for the data.
2746  */
2747 
2748 static int
2749 inmem(struct vnode * vp, daddr_t blkno)
2750 {
2751 	vm_object_t obj;
2752 	vm_offset_t toff, tinc, size;
2753 	vm_page_t m;
2754 	vm_ooffset_t off;
2755 
2756 	ASSERT_VOP_LOCKED(vp, "inmem");
2757 
2758 	if (incore(&vp->v_bufobj, blkno))
2759 		return 1;
2760 	if (vp->v_mount == NULL)
2761 		return 0;
2762 	obj = vp->v_object;
2763 	if (obj == NULL)
2764 		return (0);
2765 
2766 	size = PAGE_SIZE;
2767 	if (size > vp->v_mount->mnt_stat.f_iosize)
2768 		size = vp->v_mount->mnt_stat.f_iosize;
2769 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2770 
2771 	VM_OBJECT_RLOCK(obj);
2772 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2773 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2774 		if (!m)
2775 			goto notinmem;
2776 		tinc = size;
2777 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2778 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2779 		if (vm_page_is_valid(m,
2780 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2781 			goto notinmem;
2782 	}
2783 	VM_OBJECT_RUNLOCK(obj);
2784 	return 1;
2785 
2786 notinmem:
2787 	VM_OBJECT_RUNLOCK(obj);
2788 	return (0);
2789 }
2790 
2791 /*
2792  * Set the dirty range for a buffer based on the status of the dirty
2793  * bits in the pages comprising the buffer.  The range is limited
2794  * to the size of the buffer.
2795  *
2796  * Tell the VM system that the pages associated with this buffer
2797  * are clean.  This is used for delayed writes where the data is
2798  * going to go to disk eventually without additional VM intevention.
2799  *
2800  * Note that while we only really need to clean through to b_bcount, we
2801  * just go ahead and clean through to b_bufsize.
2802  */
2803 static void
2804 vfs_clean_pages_dirty_buf(struct buf *bp)
2805 {
2806 	vm_ooffset_t foff, noff, eoff;
2807 	vm_page_t m;
2808 	int i;
2809 
2810 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2811 		return;
2812 
2813 	foff = bp->b_offset;
2814 	KASSERT(bp->b_offset != NOOFFSET,
2815 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2816 
2817 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2818 	vfs_drain_busy_pages(bp);
2819 	vfs_setdirty_locked_object(bp);
2820 	for (i = 0; i < bp->b_npages; i++) {
2821 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2822 		eoff = noff;
2823 		if (eoff > bp->b_offset + bp->b_bufsize)
2824 			eoff = bp->b_offset + bp->b_bufsize;
2825 		m = bp->b_pages[i];
2826 		vfs_page_set_validclean(bp, foff, m);
2827 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2828 		foff = noff;
2829 	}
2830 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2831 }
2832 
2833 static void
2834 vfs_setdirty_locked_object(struct buf *bp)
2835 {
2836 	vm_object_t object;
2837 	int i;
2838 
2839 	object = bp->b_bufobj->bo_object;
2840 	VM_OBJECT_ASSERT_WLOCKED(object);
2841 
2842 	/*
2843 	 * We qualify the scan for modified pages on whether the
2844 	 * object has been flushed yet.
2845 	 */
2846 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2847 		vm_offset_t boffset;
2848 		vm_offset_t eoffset;
2849 
2850 		/*
2851 		 * test the pages to see if they have been modified directly
2852 		 * by users through the VM system.
2853 		 */
2854 		for (i = 0; i < bp->b_npages; i++)
2855 			vm_page_test_dirty(bp->b_pages[i]);
2856 
2857 		/*
2858 		 * Calculate the encompassing dirty range, boffset and eoffset,
2859 		 * (eoffset - boffset) bytes.
2860 		 */
2861 
2862 		for (i = 0; i < bp->b_npages; i++) {
2863 			if (bp->b_pages[i]->dirty)
2864 				break;
2865 		}
2866 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2867 
2868 		for (i = bp->b_npages - 1; i >= 0; --i) {
2869 			if (bp->b_pages[i]->dirty) {
2870 				break;
2871 			}
2872 		}
2873 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2874 
2875 		/*
2876 		 * Fit it to the buffer.
2877 		 */
2878 
2879 		if (eoffset > bp->b_bcount)
2880 			eoffset = bp->b_bcount;
2881 
2882 		/*
2883 		 * If we have a good dirty range, merge with the existing
2884 		 * dirty range.
2885 		 */
2886 
2887 		if (boffset < eoffset) {
2888 			if (bp->b_dirtyoff > boffset)
2889 				bp->b_dirtyoff = boffset;
2890 			if (bp->b_dirtyend < eoffset)
2891 				bp->b_dirtyend = eoffset;
2892 		}
2893 	}
2894 }
2895 
2896 /*
2897  * Allocate the KVA mapping for an existing buffer. It handles the
2898  * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2899  * KVA which is not mapped (B_KVAALLOC).
2900  */
2901 static void
2902 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2903 {
2904 	struct buf *scratch_bp;
2905 	int bsize, maxsize, need_mapping, need_kva;
2906 	off_t offset;
2907 
2908 	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2909 	    (gbflags & GB_UNMAPPED) == 0;
2910 	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2911 	    (gbflags & GB_KVAALLOC) != 0;
2912 	if (!need_mapping && !need_kva)
2913 		return;
2914 
2915 	BUF_CHECK_UNMAPPED(bp);
2916 
2917 	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2918 		/*
2919 		 * Buffer is not mapped, but the KVA was already
2920 		 * reserved at the time of the instantiation.  Use the
2921 		 * allocated space.
2922 		 */
2923 		bp->b_flags &= ~B_KVAALLOC;
2924 		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2925 		bp->b_kvabase = bp->b_kvaalloc;
2926 		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
2927 		goto has_addr;
2928 	}
2929 
2930 	/*
2931 	 * Calculate the amount of the address space we would reserve
2932 	 * if the buffer was mapped.
2933 	 */
2934 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
2935 	offset = blkno * bsize;
2936 	maxsize = size + (offset & PAGE_MASK);
2937 	maxsize = imax(maxsize, bsize);
2938 
2939 mapping_loop:
2940 	if (allocbufkva(bp, maxsize, gbflags)) {
2941 		/*
2942 		 * Request defragmentation. getnewbuf() returns us the
2943 		 * allocated space by the scratch buffer KVA.
2944 		 */
2945 		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
2946 		    (GB_UNMAPPED | GB_KVAALLOC));
2947 		if (scratch_bp == NULL) {
2948 			if ((gbflags & GB_NOWAIT_BD) != 0) {
2949 				/*
2950 				 * XXXKIB: defragmentation cannot
2951 				 * succeed, not sure what else to do.
2952 				 */
2953 				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
2954 			}
2955 			atomic_add_int(&mappingrestarts, 1);
2956 			goto mapping_loop;
2957 		}
2958 		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
2959 		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
2960 		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
2961 		    scratch_bp->b_kvasize, gbflags);
2962 
2963 		/* Get rid of the scratch buffer. */
2964 		scratch_bp->b_kvasize = 0;
2965 		scratch_bp->b_flags |= B_INVAL;
2966 		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
2967 		brelse(scratch_bp);
2968 	}
2969 	if (!need_mapping)
2970 		return;
2971 
2972 has_addr:
2973 	bp->b_saveaddr = bp->b_kvabase;
2974 	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
2975 	bp->b_flags &= ~B_UNMAPPED;
2976 	BUF_CHECK_MAPPED(bp);
2977 	bpmap_qenter(bp);
2978 }
2979 
2980 /*
2981  *	getblk:
2982  *
2983  *	Get a block given a specified block and offset into a file/device.
2984  *	The buffers B_DONE bit will be cleared on return, making it almost
2985  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2986  *	return.  The caller should clear B_INVAL prior to initiating a
2987  *	READ.
2988  *
2989  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2990  *	an existing buffer.
2991  *
2992  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2993  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2994  *	and then cleared based on the backing VM.  If the previous buffer is
2995  *	non-0-sized but invalid, B_CACHE will be cleared.
2996  *
2997  *	If getblk() must create a new buffer, the new buffer is returned with
2998  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2999  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3000  *	backing VM.
3001  *
3002  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3003  *	B_CACHE bit is clear.
3004  *
3005  *	What this means, basically, is that the caller should use B_CACHE to
3006  *	determine whether the buffer is fully valid or not and should clear
3007  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3008  *	the buffer by loading its data area with something, the caller needs
3009  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3010  *	the caller should set B_CACHE ( as an optimization ), else the caller
3011  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3012  *	a write attempt or if it was a successfull read.  If the caller
3013  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3014  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3015  */
3016 struct buf *
3017 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3018     int flags)
3019 {
3020 	struct buf *bp;
3021 	struct bufobj *bo;
3022 	int bsize, error, maxsize, vmio;
3023 	off_t offset;
3024 
3025 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3026 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3027 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3028 	ASSERT_VOP_LOCKED(vp, "getblk");
3029 	if (size > MAXBSIZE)
3030 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
3031 	if (!unmapped_buf_allowed)
3032 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3033 
3034 	bo = &vp->v_bufobj;
3035 loop:
3036 	BO_RLOCK(bo);
3037 	bp = gbincore(bo, blkno);
3038 	if (bp != NULL) {
3039 		int lockflags;
3040 		/*
3041 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3042 		 * it must be on a queue.
3043 		 */
3044 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3045 
3046 		if (flags & GB_LOCK_NOWAIT)
3047 			lockflags |= LK_NOWAIT;
3048 
3049 		error = BUF_TIMELOCK(bp, lockflags,
3050 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3051 
3052 		/*
3053 		 * If we slept and got the lock we have to restart in case
3054 		 * the buffer changed identities.
3055 		 */
3056 		if (error == ENOLCK)
3057 			goto loop;
3058 		/* We timed out or were interrupted. */
3059 		else if (error)
3060 			return (NULL);
3061 		/* If recursed, assume caller knows the rules. */
3062 		else if (BUF_LOCKRECURSED(bp))
3063 			goto end;
3064 
3065 		/*
3066 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3067 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3068 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3069 		 * backing VM cache.
3070 		 */
3071 		if (bp->b_flags & B_INVAL)
3072 			bp->b_flags &= ~B_CACHE;
3073 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3074 			bp->b_flags |= B_CACHE;
3075 		if (bp->b_flags & B_MANAGED)
3076 			MPASS(bp->b_qindex == QUEUE_NONE);
3077 		else
3078 			bremfree(bp);
3079 
3080 		/*
3081 		 * check for size inconsistencies for non-VMIO case.
3082 		 */
3083 		if (bp->b_bcount != size) {
3084 			if ((bp->b_flags & B_VMIO) == 0 ||
3085 			    (size > bp->b_kvasize)) {
3086 				if (bp->b_flags & B_DELWRI) {
3087 					/*
3088 					 * If buffer is pinned and caller does
3089 					 * not want sleep  waiting for it to be
3090 					 * unpinned, bail out
3091 					 * */
3092 					if (bp->b_pin_count > 0) {
3093 						if (flags & GB_LOCK_NOWAIT) {
3094 							bqrelse(bp);
3095 							return (NULL);
3096 						} else {
3097 							bunpin_wait(bp);
3098 						}
3099 					}
3100 					bp->b_flags |= B_NOCACHE;
3101 					bwrite(bp);
3102 				} else {
3103 					if (LIST_EMPTY(&bp->b_dep)) {
3104 						bp->b_flags |= B_RELBUF;
3105 						brelse(bp);
3106 					} else {
3107 						bp->b_flags |= B_NOCACHE;
3108 						bwrite(bp);
3109 					}
3110 				}
3111 				goto loop;
3112 			}
3113 		}
3114 
3115 		/*
3116 		 * Handle the case of unmapped buffer which should
3117 		 * become mapped, or the buffer for which KVA
3118 		 * reservation is requested.
3119 		 */
3120 		bp_unmapped_get_kva(bp, blkno, size, flags);
3121 
3122 		/*
3123 		 * If the size is inconsistant in the VMIO case, we can resize
3124 		 * the buffer.  This might lead to B_CACHE getting set or
3125 		 * cleared.  If the size has not changed, B_CACHE remains
3126 		 * unchanged from its previous state.
3127 		 */
3128 		if (bp->b_bcount != size)
3129 			allocbuf(bp, size);
3130 
3131 		KASSERT(bp->b_offset != NOOFFSET,
3132 		    ("getblk: no buffer offset"));
3133 
3134 		/*
3135 		 * A buffer with B_DELWRI set and B_CACHE clear must
3136 		 * be committed before we can return the buffer in
3137 		 * order to prevent the caller from issuing a read
3138 		 * ( due to B_CACHE not being set ) and overwriting
3139 		 * it.
3140 		 *
3141 		 * Most callers, including NFS and FFS, need this to
3142 		 * operate properly either because they assume they
3143 		 * can issue a read if B_CACHE is not set, or because
3144 		 * ( for example ) an uncached B_DELWRI might loop due
3145 		 * to softupdates re-dirtying the buffer.  In the latter
3146 		 * case, B_CACHE is set after the first write completes,
3147 		 * preventing further loops.
3148 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3149 		 * above while extending the buffer, we cannot allow the
3150 		 * buffer to remain with B_CACHE set after the write
3151 		 * completes or it will represent a corrupt state.  To
3152 		 * deal with this we set B_NOCACHE to scrap the buffer
3153 		 * after the write.
3154 		 *
3155 		 * We might be able to do something fancy, like setting
3156 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3157 		 * so the below call doesn't set B_CACHE, but that gets real
3158 		 * confusing.  This is much easier.
3159 		 */
3160 
3161 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3162 			bp->b_flags |= B_NOCACHE;
3163 			bwrite(bp);
3164 			goto loop;
3165 		}
3166 		bp->b_flags &= ~B_DONE;
3167 	} else {
3168 		/*
3169 		 * Buffer is not in-core, create new buffer.  The buffer
3170 		 * returned by getnewbuf() is locked.  Note that the returned
3171 		 * buffer is also considered valid (not marked B_INVAL).
3172 		 */
3173 		BO_RUNLOCK(bo);
3174 		/*
3175 		 * If the user does not want us to create the buffer, bail out
3176 		 * here.
3177 		 */
3178 		if (flags & GB_NOCREAT)
3179 			return NULL;
3180 		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3181 			return NULL;
3182 
3183 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3184 		offset = blkno * bsize;
3185 		vmio = vp->v_object != NULL;
3186 		if (vmio) {
3187 			maxsize = size + (offset & PAGE_MASK);
3188 		} else {
3189 			maxsize = size;
3190 			/* Do not allow non-VMIO notmapped buffers. */
3191 			flags &= ~GB_UNMAPPED;
3192 		}
3193 		maxsize = imax(maxsize, bsize);
3194 
3195 		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3196 		if (bp == NULL) {
3197 			if (slpflag || slptimeo)
3198 				return NULL;
3199 			goto loop;
3200 		}
3201 
3202 		/*
3203 		 * This code is used to make sure that a buffer is not
3204 		 * created while the getnewbuf routine is blocked.
3205 		 * This can be a problem whether the vnode is locked or not.
3206 		 * If the buffer is created out from under us, we have to
3207 		 * throw away the one we just created.
3208 		 *
3209 		 * Note: this must occur before we associate the buffer
3210 		 * with the vp especially considering limitations in
3211 		 * the splay tree implementation when dealing with duplicate
3212 		 * lblkno's.
3213 		 */
3214 		BO_LOCK(bo);
3215 		if (gbincore(bo, blkno)) {
3216 			BO_UNLOCK(bo);
3217 			bp->b_flags |= B_INVAL;
3218 			brelse(bp);
3219 			goto loop;
3220 		}
3221 
3222 		/*
3223 		 * Insert the buffer into the hash, so that it can
3224 		 * be found by incore.
3225 		 */
3226 		bp->b_blkno = bp->b_lblkno = blkno;
3227 		bp->b_offset = offset;
3228 		bgetvp(vp, bp);
3229 		BO_UNLOCK(bo);
3230 
3231 		/*
3232 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3233 		 * buffer size starts out as 0, B_CACHE will be set by
3234 		 * allocbuf() for the VMIO case prior to it testing the
3235 		 * backing store for validity.
3236 		 */
3237 
3238 		if (vmio) {
3239 			bp->b_flags |= B_VMIO;
3240 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3241 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3242 			    bp, vp->v_object, bp->b_bufobj->bo_object));
3243 		} else {
3244 			bp->b_flags &= ~B_VMIO;
3245 			KASSERT(bp->b_bufobj->bo_object == NULL,
3246 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3247 			    bp, bp->b_bufobj->bo_object));
3248 			BUF_CHECK_MAPPED(bp);
3249 		}
3250 
3251 		allocbuf(bp, size);
3252 		bp->b_flags &= ~B_DONE;
3253 	}
3254 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3255 	BUF_ASSERT_HELD(bp);
3256 end:
3257 	KASSERT(bp->b_bufobj == bo,
3258 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3259 	return (bp);
3260 }
3261 
3262 /*
3263  * Get an empty, disassociated buffer of given size.  The buffer is initially
3264  * set to B_INVAL.
3265  */
3266 struct buf *
3267 geteblk(int size, int flags)
3268 {
3269 	struct buf *bp;
3270 	int maxsize;
3271 
3272 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3273 	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3274 		if ((flags & GB_NOWAIT_BD) &&
3275 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3276 			return (NULL);
3277 	}
3278 	allocbuf(bp, size);
3279 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3280 	BUF_ASSERT_HELD(bp);
3281 	return (bp);
3282 }
3283 
3284 
3285 /*
3286  * This code constitutes the buffer memory from either anonymous system
3287  * memory (in the case of non-VMIO operations) or from an associated
3288  * VM object (in the case of VMIO operations).  This code is able to
3289  * resize a buffer up or down.
3290  *
3291  * Note that this code is tricky, and has many complications to resolve
3292  * deadlock or inconsistant data situations.  Tread lightly!!!
3293  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3294  * the caller.  Calling this code willy nilly can result in the loss of data.
3295  *
3296  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3297  * B_CACHE for the non-VMIO case.
3298  */
3299 
3300 int
3301 allocbuf(struct buf *bp, int size)
3302 {
3303 	int newbsize, mbsize;
3304 	int i;
3305 
3306 	BUF_ASSERT_HELD(bp);
3307 
3308 	if (bp->b_kvasize < size)
3309 		panic("allocbuf: buffer too small");
3310 
3311 	if ((bp->b_flags & B_VMIO) == 0) {
3312 		caddr_t origbuf;
3313 		int origbufsize;
3314 		/*
3315 		 * Just get anonymous memory from the kernel.  Don't
3316 		 * mess with B_CACHE.
3317 		 */
3318 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3319 		if (bp->b_flags & B_MALLOC)
3320 			newbsize = mbsize;
3321 		else
3322 			newbsize = round_page(size);
3323 
3324 		if (newbsize < bp->b_bufsize) {
3325 			/*
3326 			 * malloced buffers are not shrunk
3327 			 */
3328 			if (bp->b_flags & B_MALLOC) {
3329 				if (newbsize) {
3330 					bp->b_bcount = size;
3331 				} else {
3332 					free(bp->b_data, M_BIOBUF);
3333 					if (bp->b_bufsize) {
3334 						atomic_subtract_long(
3335 						    &bufmallocspace,
3336 						    bp->b_bufsize);
3337 						bufspacewakeup();
3338 						bp->b_bufsize = 0;
3339 					}
3340 					bp->b_saveaddr = bp->b_kvabase;
3341 					bp->b_data = bp->b_saveaddr;
3342 					bp->b_bcount = 0;
3343 					bp->b_flags &= ~B_MALLOC;
3344 				}
3345 				return 1;
3346 			}
3347 			vm_hold_free_pages(bp, newbsize);
3348 		} else if (newbsize > bp->b_bufsize) {
3349 			/*
3350 			 * We only use malloced memory on the first allocation.
3351 			 * and revert to page-allocated memory when the buffer
3352 			 * grows.
3353 			 */
3354 			/*
3355 			 * There is a potential smp race here that could lead
3356 			 * to bufmallocspace slightly passing the max.  It
3357 			 * is probably extremely rare and not worth worrying
3358 			 * over.
3359 			 */
3360 			if ( (bufmallocspace < maxbufmallocspace) &&
3361 				(bp->b_bufsize == 0) &&
3362 				(mbsize <= PAGE_SIZE/2)) {
3363 
3364 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3365 				bp->b_bufsize = mbsize;
3366 				bp->b_bcount = size;
3367 				bp->b_flags |= B_MALLOC;
3368 				atomic_add_long(&bufmallocspace, mbsize);
3369 				return 1;
3370 			}
3371 			origbuf = NULL;
3372 			origbufsize = 0;
3373 			/*
3374 			 * If the buffer is growing on its other-than-first allocation,
3375 			 * then we revert to the page-allocation scheme.
3376 			 */
3377 			if (bp->b_flags & B_MALLOC) {
3378 				origbuf = bp->b_data;
3379 				origbufsize = bp->b_bufsize;
3380 				bp->b_data = bp->b_kvabase;
3381 				if (bp->b_bufsize) {
3382 					atomic_subtract_long(&bufmallocspace,
3383 					    bp->b_bufsize);
3384 					bufspacewakeup();
3385 					bp->b_bufsize = 0;
3386 				}
3387 				bp->b_flags &= ~B_MALLOC;
3388 				newbsize = round_page(newbsize);
3389 			}
3390 			vm_hold_load_pages(
3391 			    bp,
3392 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3393 			    (vm_offset_t) bp->b_data + newbsize);
3394 			if (origbuf) {
3395 				bcopy(origbuf, bp->b_data, origbufsize);
3396 				free(origbuf, M_BIOBUF);
3397 			}
3398 		}
3399 	} else {
3400 		int desiredpages;
3401 
3402 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3403 		desiredpages = (size == 0) ? 0 :
3404 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3405 
3406 		if (bp->b_flags & B_MALLOC)
3407 			panic("allocbuf: VMIO buffer can't be malloced");
3408 		/*
3409 		 * Set B_CACHE initially if buffer is 0 length or will become
3410 		 * 0-length.
3411 		 */
3412 		if (size == 0 || bp->b_bufsize == 0)
3413 			bp->b_flags |= B_CACHE;
3414 
3415 		if (newbsize < bp->b_bufsize) {
3416 			/*
3417 			 * DEV_BSIZE aligned new buffer size is less then the
3418 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3419 			 * if we have to remove any pages.
3420 			 */
3421 			if (desiredpages < bp->b_npages) {
3422 				vm_page_t m;
3423 
3424 				if ((bp->b_flags & B_UNMAPPED) == 0) {
3425 					BUF_CHECK_MAPPED(bp);
3426 					pmap_qremove((vm_offset_t)trunc_page(
3427 					    (vm_offset_t)bp->b_data) +
3428 					    (desiredpages << PAGE_SHIFT),
3429 					    (bp->b_npages - desiredpages));
3430 				} else
3431 					BUF_CHECK_UNMAPPED(bp);
3432 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3433 				for (i = desiredpages; i < bp->b_npages; i++) {
3434 					/*
3435 					 * the page is not freed here -- it
3436 					 * is the responsibility of
3437 					 * vnode_pager_setsize
3438 					 */
3439 					m = bp->b_pages[i];
3440 					KASSERT(m != bogus_page,
3441 					    ("allocbuf: bogus page found"));
3442 					while (vm_page_sleep_if_busy(m,
3443 					    "biodep"))
3444 						continue;
3445 
3446 					bp->b_pages[i] = NULL;
3447 					vm_page_lock(m);
3448 					vm_page_unwire(m, 0);
3449 					vm_page_unlock(m);
3450 				}
3451 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3452 				bp->b_npages = desiredpages;
3453 			}
3454 		} else if (size > bp->b_bcount) {
3455 			/*
3456 			 * We are growing the buffer, possibly in a
3457 			 * byte-granular fashion.
3458 			 */
3459 			vm_object_t obj;
3460 			vm_offset_t toff;
3461 			vm_offset_t tinc;
3462 
3463 			/*
3464 			 * Step 1, bring in the VM pages from the object,
3465 			 * allocating them if necessary.  We must clear
3466 			 * B_CACHE if these pages are not valid for the
3467 			 * range covered by the buffer.
3468 			 */
3469 
3470 			obj = bp->b_bufobj->bo_object;
3471 
3472 			VM_OBJECT_WLOCK(obj);
3473 			while (bp->b_npages < desiredpages) {
3474 				vm_page_t m;
3475 
3476 				/*
3477 				 * We must allocate system pages since blocking
3478 				 * here could interfere with paging I/O, no
3479 				 * matter which process we are.
3480 				 *
3481 				 * Only exclusive busy can be tested here.
3482 				 * Blocking on shared busy might lead to
3483 				 * deadlocks once allocbuf() is called after
3484 				 * pages are vfs_busy_pages().
3485 				 */
3486 				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3487 				    bp->b_npages, VM_ALLOC_NOBUSY |
3488 				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3489 				    VM_ALLOC_IGN_SBUSY |
3490 				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3491 				if (m->valid == 0)
3492 					bp->b_flags &= ~B_CACHE;
3493 				bp->b_pages[bp->b_npages] = m;
3494 				++bp->b_npages;
3495 			}
3496 
3497 			/*
3498 			 * Step 2.  We've loaded the pages into the buffer,
3499 			 * we have to figure out if we can still have B_CACHE
3500 			 * set.  Note that B_CACHE is set according to the
3501 			 * byte-granular range ( bcount and size ), new the
3502 			 * aligned range ( newbsize ).
3503 			 *
3504 			 * The VM test is against m->valid, which is DEV_BSIZE
3505 			 * aligned.  Needless to say, the validity of the data
3506 			 * needs to also be DEV_BSIZE aligned.  Note that this
3507 			 * fails with NFS if the server or some other client
3508 			 * extends the file's EOF.  If our buffer is resized,
3509 			 * B_CACHE may remain set! XXX
3510 			 */
3511 
3512 			toff = bp->b_bcount;
3513 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3514 
3515 			while ((bp->b_flags & B_CACHE) && toff < size) {
3516 				vm_pindex_t pi;
3517 
3518 				if (tinc > (size - toff))
3519 					tinc = size - toff;
3520 
3521 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3522 				    PAGE_SHIFT;
3523 
3524 				vfs_buf_test_cache(
3525 				    bp,
3526 				    bp->b_offset,
3527 				    toff,
3528 				    tinc,
3529 				    bp->b_pages[pi]
3530 				);
3531 				toff += tinc;
3532 				tinc = PAGE_SIZE;
3533 			}
3534 			VM_OBJECT_WUNLOCK(obj);
3535 
3536 			/*
3537 			 * Step 3, fixup the KVM pmap.
3538 			 */
3539 			if ((bp->b_flags & B_UNMAPPED) == 0)
3540 				bpmap_qenter(bp);
3541 			else
3542 				BUF_CHECK_UNMAPPED(bp);
3543 		}
3544 	}
3545 	if (newbsize < bp->b_bufsize)
3546 		bufspacewakeup();
3547 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3548 	bp->b_bcount = size;		/* requested buffer size	*/
3549 	return 1;
3550 }
3551 
3552 extern int inflight_transient_maps;
3553 
3554 void
3555 biodone(struct bio *bp)
3556 {
3557 	struct mtx *mtxp;
3558 	void (*done)(struct bio *);
3559 	vm_offset_t start, end;
3560 
3561 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3562 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3563 		bp->bio_flags |= BIO_UNMAPPED;
3564 		start = trunc_page((vm_offset_t)bp->bio_data);
3565 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3566 		pmap_qremove(start, OFF_TO_IDX(end - start));
3567 		vmem_free(transient_arena, start, end - start);
3568 		atomic_add_int(&inflight_transient_maps, -1);
3569 	}
3570 	done = bp->bio_done;
3571 	if (done == NULL) {
3572 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3573 		mtx_lock(mtxp);
3574 		bp->bio_flags |= BIO_DONE;
3575 		wakeup(bp);
3576 		mtx_unlock(mtxp);
3577 	} else {
3578 		bp->bio_flags |= BIO_DONE;
3579 		done(bp);
3580 	}
3581 }
3582 
3583 /*
3584  * Wait for a BIO to finish.
3585  */
3586 int
3587 biowait(struct bio *bp, const char *wchan)
3588 {
3589 	struct mtx *mtxp;
3590 
3591 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3592 	mtx_lock(mtxp);
3593 	while ((bp->bio_flags & BIO_DONE) == 0)
3594 		msleep(bp, mtxp, PRIBIO, wchan, 0);
3595 	mtx_unlock(mtxp);
3596 	if (bp->bio_error != 0)
3597 		return (bp->bio_error);
3598 	if (!(bp->bio_flags & BIO_ERROR))
3599 		return (0);
3600 	return (EIO);
3601 }
3602 
3603 void
3604 biofinish(struct bio *bp, struct devstat *stat, int error)
3605 {
3606 
3607 	if (error) {
3608 		bp->bio_error = error;
3609 		bp->bio_flags |= BIO_ERROR;
3610 	}
3611 	if (stat != NULL)
3612 		devstat_end_transaction_bio(stat, bp);
3613 	biodone(bp);
3614 }
3615 
3616 /*
3617  *	bufwait:
3618  *
3619  *	Wait for buffer I/O completion, returning error status.  The buffer
3620  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3621  *	error and cleared.
3622  */
3623 int
3624 bufwait(struct buf *bp)
3625 {
3626 	if (bp->b_iocmd == BIO_READ)
3627 		bwait(bp, PRIBIO, "biord");
3628 	else
3629 		bwait(bp, PRIBIO, "biowr");
3630 	if (bp->b_flags & B_EINTR) {
3631 		bp->b_flags &= ~B_EINTR;
3632 		return (EINTR);
3633 	}
3634 	if (bp->b_ioflags & BIO_ERROR) {
3635 		return (bp->b_error ? bp->b_error : EIO);
3636 	} else {
3637 		return (0);
3638 	}
3639 }
3640 
3641  /*
3642   * Call back function from struct bio back up to struct buf.
3643   */
3644 static void
3645 bufdonebio(struct bio *bip)
3646 {
3647 	struct buf *bp;
3648 
3649 	bp = bip->bio_caller2;
3650 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3651 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3652 	bp->b_ioflags = bip->bio_flags;
3653 	bp->b_error = bip->bio_error;
3654 	if (bp->b_error)
3655 		bp->b_ioflags |= BIO_ERROR;
3656 	bufdone(bp);
3657 	g_destroy_bio(bip);
3658 }
3659 
3660 void
3661 dev_strategy(struct cdev *dev, struct buf *bp)
3662 {
3663 	struct cdevsw *csw;
3664 	int ref;
3665 
3666 	KASSERT(dev->si_refcount > 0,
3667 	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3668 	    devtoname(dev), dev));
3669 
3670 	csw = dev_refthread(dev, &ref);
3671 	dev_strategy_csw(dev, csw, bp);
3672 	dev_relthread(dev, ref);
3673 }
3674 
3675 void
3676 dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3677 {
3678 	struct bio *bip;
3679 
3680 	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3681 	    ("b_iocmd botch"));
3682 	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3683 	    dev->si_threadcount > 0,
3684 	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3685 	    dev));
3686 	if (csw == NULL) {
3687 		bp->b_error = ENXIO;
3688 		bp->b_ioflags = BIO_ERROR;
3689 		bufdone(bp);
3690 		return;
3691 	}
3692 	for (;;) {
3693 		bip = g_new_bio();
3694 		if (bip != NULL)
3695 			break;
3696 		/* Try again later */
3697 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3698 	}
3699 	bip->bio_cmd = bp->b_iocmd;
3700 	bip->bio_offset = bp->b_iooffset;
3701 	bip->bio_length = bp->b_bcount;
3702 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3703 	bdata2bio(bp, bip);
3704 	bip->bio_done = bufdonebio;
3705 	bip->bio_caller2 = bp;
3706 	bip->bio_dev = dev;
3707 	(*csw->d_strategy)(bip);
3708 }
3709 
3710 /*
3711  *	bufdone:
3712  *
3713  *	Finish I/O on a buffer, optionally calling a completion function.
3714  *	This is usually called from an interrupt so process blocking is
3715  *	not allowed.
3716  *
3717  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3718  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3719  *	assuming B_INVAL is clear.
3720  *
3721  *	For the VMIO case, we set B_CACHE if the op was a read and no
3722  *	read error occured, or if the op was a write.  B_CACHE is never
3723  *	set if the buffer is invalid or otherwise uncacheable.
3724  *
3725  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3726  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3727  *	in the biodone routine.
3728  */
3729 void
3730 bufdone(struct buf *bp)
3731 {
3732 	struct bufobj *dropobj;
3733 	void    (*biodone)(struct buf *);
3734 
3735 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3736 	dropobj = NULL;
3737 
3738 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3739 	BUF_ASSERT_HELD(bp);
3740 
3741 	runningbufwakeup(bp);
3742 	if (bp->b_iocmd == BIO_WRITE)
3743 		dropobj = bp->b_bufobj;
3744 	/* call optional completion function if requested */
3745 	if (bp->b_iodone != NULL) {
3746 		biodone = bp->b_iodone;
3747 		bp->b_iodone = NULL;
3748 		(*biodone) (bp);
3749 		if (dropobj)
3750 			bufobj_wdrop(dropobj);
3751 		return;
3752 	}
3753 
3754 	bufdone_finish(bp);
3755 
3756 	if (dropobj)
3757 		bufobj_wdrop(dropobj);
3758 }
3759 
3760 void
3761 bufdone_finish(struct buf *bp)
3762 {
3763 	BUF_ASSERT_HELD(bp);
3764 
3765 	if (!LIST_EMPTY(&bp->b_dep))
3766 		buf_complete(bp);
3767 
3768 	if (bp->b_flags & B_VMIO) {
3769 		vm_ooffset_t foff;
3770 		vm_page_t m;
3771 		vm_object_t obj;
3772 		struct vnode *vp;
3773 		int bogus, i, iosize;
3774 
3775 		obj = bp->b_bufobj->bo_object;
3776 		KASSERT(obj->paging_in_progress >= bp->b_npages,
3777 		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3778 		    obj->paging_in_progress, bp->b_npages));
3779 
3780 		vp = bp->b_vp;
3781 		KASSERT(vp->v_holdcnt > 0,
3782 		    ("biodone_finish: vnode %p has zero hold count", vp));
3783 		KASSERT(vp->v_object != NULL,
3784 		    ("biodone_finish: vnode %p has no vm_object", vp));
3785 
3786 		foff = bp->b_offset;
3787 		KASSERT(bp->b_offset != NOOFFSET,
3788 		    ("biodone_finish: bp %p has no buffer offset", bp));
3789 
3790 		/*
3791 		 * Set B_CACHE if the op was a normal read and no error
3792 		 * occured.  B_CACHE is set for writes in the b*write()
3793 		 * routines.
3794 		 */
3795 		iosize = bp->b_bcount - bp->b_resid;
3796 		if (bp->b_iocmd == BIO_READ &&
3797 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3798 		    !(bp->b_ioflags & BIO_ERROR)) {
3799 			bp->b_flags |= B_CACHE;
3800 		}
3801 		bogus = 0;
3802 		VM_OBJECT_WLOCK(obj);
3803 		for (i = 0; i < bp->b_npages; i++) {
3804 			int bogusflag = 0;
3805 			int resid;
3806 
3807 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3808 			if (resid > iosize)
3809 				resid = iosize;
3810 
3811 			/*
3812 			 * cleanup bogus pages, restoring the originals
3813 			 */
3814 			m = bp->b_pages[i];
3815 			if (m == bogus_page) {
3816 				bogus = bogusflag = 1;
3817 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3818 				if (m == NULL)
3819 					panic("biodone: page disappeared!");
3820 				bp->b_pages[i] = m;
3821 			}
3822 			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3823 			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3824 			    (intmax_t)foff, (uintmax_t)m->pindex));
3825 
3826 			/*
3827 			 * In the write case, the valid and clean bits are
3828 			 * already changed correctly ( see bdwrite() ), so we
3829 			 * only need to do this here in the read case.
3830 			 */
3831 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3832 				KASSERT((m->dirty & vm_page_bits(foff &
3833 				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3834 				    " page %p has unexpected dirty bits", m));
3835 				vfs_page_set_valid(bp, foff, m);
3836 			}
3837 
3838 			vm_page_sunbusy(m);
3839 			vm_object_pip_subtract(obj, 1);
3840 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3841 			iosize -= resid;
3842 		}
3843 		vm_object_pip_wakeupn(obj, 0);
3844 		VM_OBJECT_WUNLOCK(obj);
3845 		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3846 			BUF_CHECK_MAPPED(bp);
3847 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3848 			    bp->b_pages, bp->b_npages);
3849 		}
3850 	}
3851 
3852 	/*
3853 	 * For asynchronous completions, release the buffer now. The brelse
3854 	 * will do a wakeup there if necessary - so no need to do a wakeup
3855 	 * here in the async case. The sync case always needs to do a wakeup.
3856 	 */
3857 
3858 	if (bp->b_flags & B_ASYNC) {
3859 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3860 			brelse(bp);
3861 		else
3862 			bqrelse(bp);
3863 	} else
3864 		bdone(bp);
3865 }
3866 
3867 /*
3868  * This routine is called in lieu of iodone in the case of
3869  * incomplete I/O.  This keeps the busy status for pages
3870  * consistant.
3871  */
3872 void
3873 vfs_unbusy_pages(struct buf *bp)
3874 {
3875 	int i;
3876 	vm_object_t obj;
3877 	vm_page_t m;
3878 
3879 	runningbufwakeup(bp);
3880 	if (!(bp->b_flags & B_VMIO))
3881 		return;
3882 
3883 	obj = bp->b_bufobj->bo_object;
3884 	VM_OBJECT_WLOCK(obj);
3885 	for (i = 0; i < bp->b_npages; i++) {
3886 		m = bp->b_pages[i];
3887 		if (m == bogus_page) {
3888 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3889 			if (!m)
3890 				panic("vfs_unbusy_pages: page missing\n");
3891 			bp->b_pages[i] = m;
3892 			if ((bp->b_flags & B_UNMAPPED) == 0) {
3893 				BUF_CHECK_MAPPED(bp);
3894 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3895 				    bp->b_pages, bp->b_npages);
3896 			} else
3897 				BUF_CHECK_UNMAPPED(bp);
3898 		}
3899 		vm_object_pip_subtract(obj, 1);
3900 		vm_page_sunbusy(m);
3901 	}
3902 	vm_object_pip_wakeupn(obj, 0);
3903 	VM_OBJECT_WUNLOCK(obj);
3904 }
3905 
3906 /*
3907  * vfs_page_set_valid:
3908  *
3909  *	Set the valid bits in a page based on the supplied offset.   The
3910  *	range is restricted to the buffer's size.
3911  *
3912  *	This routine is typically called after a read completes.
3913  */
3914 static void
3915 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3916 {
3917 	vm_ooffset_t eoff;
3918 
3919 	/*
3920 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3921 	 * page boundary and eoff is not greater than the end of the buffer.
3922 	 * The end of the buffer, in this case, is our file EOF, not the
3923 	 * allocation size of the buffer.
3924 	 */
3925 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3926 	if (eoff > bp->b_offset + bp->b_bcount)
3927 		eoff = bp->b_offset + bp->b_bcount;
3928 
3929 	/*
3930 	 * Set valid range.  This is typically the entire buffer and thus the
3931 	 * entire page.
3932 	 */
3933 	if (eoff > off)
3934 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3935 }
3936 
3937 /*
3938  * vfs_page_set_validclean:
3939  *
3940  *	Set the valid bits and clear the dirty bits in a page based on the
3941  *	supplied offset.   The range is restricted to the buffer's size.
3942  */
3943 static void
3944 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3945 {
3946 	vm_ooffset_t soff, eoff;
3947 
3948 	/*
3949 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3950 	 * page boundry or cross the end of the buffer.  The end of the
3951 	 * buffer, in this case, is our file EOF, not the allocation size
3952 	 * of the buffer.
3953 	 */
3954 	soff = off;
3955 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3956 	if (eoff > bp->b_offset + bp->b_bcount)
3957 		eoff = bp->b_offset + bp->b_bcount;
3958 
3959 	/*
3960 	 * Set valid range.  This is typically the entire buffer and thus the
3961 	 * entire page.
3962 	 */
3963 	if (eoff > soff) {
3964 		vm_page_set_validclean(
3965 		    m,
3966 		   (vm_offset_t) (soff & PAGE_MASK),
3967 		   (vm_offset_t) (eoff - soff)
3968 		);
3969 	}
3970 }
3971 
3972 /*
3973  * Ensure that all buffer pages are not exclusive busied.  If any page is
3974  * exclusive busy, drain it.
3975  */
3976 void
3977 vfs_drain_busy_pages(struct buf *bp)
3978 {
3979 	vm_page_t m;
3980 	int i, last_busied;
3981 
3982 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
3983 	last_busied = 0;
3984 	for (i = 0; i < bp->b_npages; i++) {
3985 		m = bp->b_pages[i];
3986 		if (vm_page_xbusied(m)) {
3987 			for (; last_busied < i; last_busied++)
3988 				vm_page_sbusy(bp->b_pages[last_busied]);
3989 			while (vm_page_xbusied(m)) {
3990 				vm_page_lock(m);
3991 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3992 				vm_page_busy_sleep(m, "vbpage");
3993 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3994 			}
3995 		}
3996 	}
3997 	for (i = 0; i < last_busied; i++)
3998 		vm_page_sunbusy(bp->b_pages[i]);
3999 }
4000 
4001 /*
4002  * This routine is called before a device strategy routine.
4003  * It is used to tell the VM system that paging I/O is in
4004  * progress, and treat the pages associated with the buffer
4005  * almost as being exclusive busy.  Also the object paging_in_progress
4006  * flag is handled to make sure that the object doesn't become
4007  * inconsistant.
4008  *
4009  * Since I/O has not been initiated yet, certain buffer flags
4010  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4011  * and should be ignored.
4012  */
4013 void
4014 vfs_busy_pages(struct buf *bp, int clear_modify)
4015 {
4016 	int i, bogus;
4017 	vm_object_t obj;
4018 	vm_ooffset_t foff;
4019 	vm_page_t m;
4020 
4021 	if (!(bp->b_flags & B_VMIO))
4022 		return;
4023 
4024 	obj = bp->b_bufobj->bo_object;
4025 	foff = bp->b_offset;
4026 	KASSERT(bp->b_offset != NOOFFSET,
4027 	    ("vfs_busy_pages: no buffer offset"));
4028 	VM_OBJECT_WLOCK(obj);
4029 	vfs_drain_busy_pages(bp);
4030 	if (bp->b_bufsize != 0)
4031 		vfs_setdirty_locked_object(bp);
4032 	bogus = 0;
4033 	for (i = 0; i < bp->b_npages; i++) {
4034 		m = bp->b_pages[i];
4035 
4036 		if ((bp->b_flags & B_CLUSTER) == 0) {
4037 			vm_object_pip_add(obj, 1);
4038 			vm_page_sbusy(m);
4039 		}
4040 		/*
4041 		 * When readying a buffer for a read ( i.e
4042 		 * clear_modify == 0 ), it is important to do
4043 		 * bogus_page replacement for valid pages in
4044 		 * partially instantiated buffers.  Partially
4045 		 * instantiated buffers can, in turn, occur when
4046 		 * reconstituting a buffer from its VM backing store
4047 		 * base.  We only have to do this if B_CACHE is
4048 		 * clear ( which causes the I/O to occur in the
4049 		 * first place ).  The replacement prevents the read
4050 		 * I/O from overwriting potentially dirty VM-backed
4051 		 * pages.  XXX bogus page replacement is, uh, bogus.
4052 		 * It may not work properly with small-block devices.
4053 		 * We need to find a better way.
4054 		 */
4055 		if (clear_modify) {
4056 			pmap_remove_write(m);
4057 			vfs_page_set_validclean(bp, foff, m);
4058 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4059 		    (bp->b_flags & B_CACHE) == 0) {
4060 			bp->b_pages[i] = bogus_page;
4061 			bogus++;
4062 		}
4063 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4064 	}
4065 	VM_OBJECT_WUNLOCK(obj);
4066 	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4067 		BUF_CHECK_MAPPED(bp);
4068 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4069 		    bp->b_pages, bp->b_npages);
4070 	}
4071 }
4072 
4073 /*
4074  *	vfs_bio_set_valid:
4075  *
4076  *	Set the range within the buffer to valid.  The range is
4077  *	relative to the beginning of the buffer, b_offset.  Note that
4078  *	b_offset itself may be offset from the beginning of the first
4079  *	page.
4080  */
4081 void
4082 vfs_bio_set_valid(struct buf *bp, int base, int size)
4083 {
4084 	int i, n;
4085 	vm_page_t m;
4086 
4087 	if (!(bp->b_flags & B_VMIO))
4088 		return;
4089 
4090 	/*
4091 	 * Fixup base to be relative to beginning of first page.
4092 	 * Set initial n to be the maximum number of bytes in the
4093 	 * first page that can be validated.
4094 	 */
4095 	base += (bp->b_offset & PAGE_MASK);
4096 	n = PAGE_SIZE - (base & PAGE_MASK);
4097 
4098 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4099 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4100 		m = bp->b_pages[i];
4101 		if (n > size)
4102 			n = size;
4103 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4104 		base += n;
4105 		size -= n;
4106 		n = PAGE_SIZE;
4107 	}
4108 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4109 }
4110 
4111 /*
4112  *	vfs_bio_clrbuf:
4113  *
4114  *	If the specified buffer is a non-VMIO buffer, clear the entire
4115  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4116  *	validate only the previously invalid portions of the buffer.
4117  *	This routine essentially fakes an I/O, so we need to clear
4118  *	BIO_ERROR and B_INVAL.
4119  *
4120  *	Note that while we only theoretically need to clear through b_bcount,
4121  *	we go ahead and clear through b_bufsize.
4122  */
4123 void
4124 vfs_bio_clrbuf(struct buf *bp)
4125 {
4126 	int i, j, mask, sa, ea, slide;
4127 
4128 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4129 		clrbuf(bp);
4130 		return;
4131 	}
4132 	bp->b_flags &= ~B_INVAL;
4133 	bp->b_ioflags &= ~BIO_ERROR;
4134 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4135 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4136 	    (bp->b_offset & PAGE_MASK) == 0) {
4137 		if (bp->b_pages[0] == bogus_page)
4138 			goto unlock;
4139 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4140 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4141 		if ((bp->b_pages[0]->valid & mask) == mask)
4142 			goto unlock;
4143 		if ((bp->b_pages[0]->valid & mask) == 0) {
4144 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4145 			bp->b_pages[0]->valid |= mask;
4146 			goto unlock;
4147 		}
4148 	}
4149 	sa = bp->b_offset & PAGE_MASK;
4150 	slide = 0;
4151 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4152 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4153 		ea = slide & PAGE_MASK;
4154 		if (ea == 0)
4155 			ea = PAGE_SIZE;
4156 		if (bp->b_pages[i] == bogus_page)
4157 			continue;
4158 		j = sa / DEV_BSIZE;
4159 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4160 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4161 		if ((bp->b_pages[i]->valid & mask) == mask)
4162 			continue;
4163 		if ((bp->b_pages[i]->valid & mask) == 0)
4164 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4165 		else {
4166 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4167 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4168 					pmap_zero_page_area(bp->b_pages[i],
4169 					    sa, DEV_BSIZE);
4170 				}
4171 			}
4172 		}
4173 		bp->b_pages[i]->valid |= mask;
4174 	}
4175 unlock:
4176 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4177 	bp->b_resid = 0;
4178 }
4179 
4180 void
4181 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4182 {
4183 	vm_page_t m;
4184 	int i, n;
4185 
4186 	if ((bp->b_flags & B_UNMAPPED) == 0) {
4187 		BUF_CHECK_MAPPED(bp);
4188 		bzero(bp->b_data + base, size);
4189 	} else {
4190 		BUF_CHECK_UNMAPPED(bp);
4191 		n = PAGE_SIZE - (base & PAGE_MASK);
4192 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4193 			m = bp->b_pages[i];
4194 			if (n > size)
4195 				n = size;
4196 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4197 			base += n;
4198 			size -= n;
4199 			n = PAGE_SIZE;
4200 		}
4201 	}
4202 }
4203 
4204 /*
4205  * vm_hold_load_pages and vm_hold_free_pages get pages into
4206  * a buffers address space.  The pages are anonymous and are
4207  * not associated with a file object.
4208  */
4209 static void
4210 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4211 {
4212 	vm_offset_t pg;
4213 	vm_page_t p;
4214 	int index;
4215 
4216 	BUF_CHECK_MAPPED(bp);
4217 
4218 	to = round_page(to);
4219 	from = round_page(from);
4220 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4221 
4222 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4223 tryagain:
4224 		/*
4225 		 * note: must allocate system pages since blocking here
4226 		 * could interfere with paging I/O, no matter which
4227 		 * process we are.
4228 		 */
4229 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4230 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4231 		if (p == NULL) {
4232 			VM_WAIT;
4233 			goto tryagain;
4234 		}
4235 		pmap_qenter(pg, &p, 1);
4236 		bp->b_pages[index] = p;
4237 	}
4238 	bp->b_npages = index;
4239 }
4240 
4241 /* Return pages associated with this buf to the vm system */
4242 static void
4243 vm_hold_free_pages(struct buf *bp, int newbsize)
4244 {
4245 	vm_offset_t from;
4246 	vm_page_t p;
4247 	int index, newnpages;
4248 
4249 	BUF_CHECK_MAPPED(bp);
4250 
4251 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4252 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4253 	if (bp->b_npages > newnpages)
4254 		pmap_qremove(from, bp->b_npages - newnpages);
4255 	for (index = newnpages; index < bp->b_npages; index++) {
4256 		p = bp->b_pages[index];
4257 		bp->b_pages[index] = NULL;
4258 		if (vm_page_sbusied(p))
4259 			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4260 			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4261 		p->wire_count--;
4262 		vm_page_free(p);
4263 		atomic_subtract_int(&cnt.v_wire_count, 1);
4264 	}
4265 	bp->b_npages = newnpages;
4266 }
4267 
4268 /*
4269  * Map an IO request into kernel virtual address space.
4270  *
4271  * All requests are (re)mapped into kernel VA space.
4272  * Notice that we use b_bufsize for the size of the buffer
4273  * to be mapped.  b_bcount might be modified by the driver.
4274  *
4275  * Note that even if the caller determines that the address space should
4276  * be valid, a race or a smaller-file mapped into a larger space may
4277  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4278  * check the return value.
4279  */
4280 int
4281 vmapbuf(struct buf *bp, int mapbuf)
4282 {
4283 	caddr_t kva;
4284 	vm_prot_t prot;
4285 	int pidx;
4286 
4287 	if (bp->b_bufsize < 0)
4288 		return (-1);
4289 	prot = VM_PROT_READ;
4290 	if (bp->b_iocmd == BIO_READ)
4291 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4292 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4293 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4294 	    btoc(MAXPHYS))) < 0)
4295 		return (-1);
4296 	bp->b_npages = pidx;
4297 	if (mapbuf || !unmapped_buf_allowed) {
4298 		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4299 		kva = bp->b_saveaddr;
4300 		bp->b_saveaddr = bp->b_data;
4301 		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4302 		bp->b_flags &= ~B_UNMAPPED;
4303 	} else {
4304 		bp->b_flags |= B_UNMAPPED;
4305 		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4306 		bp->b_saveaddr = bp->b_data;
4307 		bp->b_data = unmapped_buf;
4308 	}
4309 	return(0);
4310 }
4311 
4312 /*
4313  * Free the io map PTEs associated with this IO operation.
4314  * We also invalidate the TLB entries and restore the original b_addr.
4315  */
4316 void
4317 vunmapbuf(struct buf *bp)
4318 {
4319 	int npages;
4320 
4321 	npages = bp->b_npages;
4322 	if (bp->b_flags & B_UNMAPPED)
4323 		bp->b_flags &= ~B_UNMAPPED;
4324 	else
4325 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4326 	vm_page_unhold_pages(bp->b_pages, npages);
4327 
4328 	bp->b_data = bp->b_saveaddr;
4329 }
4330 
4331 void
4332 bdone(struct buf *bp)
4333 {
4334 	struct mtx *mtxp;
4335 
4336 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4337 	mtx_lock(mtxp);
4338 	bp->b_flags |= B_DONE;
4339 	wakeup(bp);
4340 	mtx_unlock(mtxp);
4341 }
4342 
4343 void
4344 bwait(struct buf *bp, u_char pri, const char *wchan)
4345 {
4346 	struct mtx *mtxp;
4347 
4348 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4349 	mtx_lock(mtxp);
4350 	while ((bp->b_flags & B_DONE) == 0)
4351 		msleep(bp, mtxp, pri, wchan, 0);
4352 	mtx_unlock(mtxp);
4353 }
4354 
4355 int
4356 bufsync(struct bufobj *bo, int waitfor)
4357 {
4358 
4359 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4360 }
4361 
4362 void
4363 bufstrategy(struct bufobj *bo, struct buf *bp)
4364 {
4365 	int i = 0;
4366 	struct vnode *vp;
4367 
4368 	vp = bp->b_vp;
4369 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4370 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4371 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4372 	i = VOP_STRATEGY(vp, bp);
4373 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4374 }
4375 
4376 void
4377 bufobj_wrefl(struct bufobj *bo)
4378 {
4379 
4380 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4381 	ASSERT_BO_WLOCKED(bo);
4382 	bo->bo_numoutput++;
4383 }
4384 
4385 void
4386 bufobj_wref(struct bufobj *bo)
4387 {
4388 
4389 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4390 	BO_LOCK(bo);
4391 	bo->bo_numoutput++;
4392 	BO_UNLOCK(bo);
4393 }
4394 
4395 void
4396 bufobj_wdrop(struct bufobj *bo)
4397 {
4398 
4399 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4400 	BO_LOCK(bo);
4401 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4402 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4403 		bo->bo_flag &= ~BO_WWAIT;
4404 		wakeup(&bo->bo_numoutput);
4405 	}
4406 	BO_UNLOCK(bo);
4407 }
4408 
4409 int
4410 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4411 {
4412 	int error;
4413 
4414 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4415 	ASSERT_BO_WLOCKED(bo);
4416 	error = 0;
4417 	while (bo->bo_numoutput) {
4418 		bo->bo_flag |= BO_WWAIT;
4419 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4420 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4421 		if (error)
4422 			break;
4423 	}
4424 	return (error);
4425 }
4426 
4427 void
4428 bpin(struct buf *bp)
4429 {
4430 	struct mtx *mtxp;
4431 
4432 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4433 	mtx_lock(mtxp);
4434 	bp->b_pin_count++;
4435 	mtx_unlock(mtxp);
4436 }
4437 
4438 void
4439 bunpin(struct buf *bp)
4440 {
4441 	struct mtx *mtxp;
4442 
4443 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4444 	mtx_lock(mtxp);
4445 	if (--bp->b_pin_count == 0)
4446 		wakeup(bp);
4447 	mtx_unlock(mtxp);
4448 }
4449 
4450 void
4451 bunpin_wait(struct buf *bp)
4452 {
4453 	struct mtx *mtxp;
4454 
4455 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4456 	mtx_lock(mtxp);
4457 	while (bp->b_pin_count > 0)
4458 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4459 	mtx_unlock(mtxp);
4460 }
4461 
4462 /*
4463  * Set bio_data or bio_ma for struct bio from the struct buf.
4464  */
4465 void
4466 bdata2bio(struct buf *bp, struct bio *bip)
4467 {
4468 
4469 	if ((bp->b_flags & B_UNMAPPED) != 0) {
4470 		KASSERT(unmapped_buf_allowed, ("unmapped"));
4471 		bip->bio_ma = bp->b_pages;
4472 		bip->bio_ma_n = bp->b_npages;
4473 		bip->bio_data = unmapped_buf;
4474 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4475 		bip->bio_flags |= BIO_UNMAPPED;
4476 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4477 		    PAGE_SIZE == bp->b_npages,
4478 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4479 		    (long long)bip->bio_length, bip->bio_ma_n));
4480 	} else {
4481 		bip->bio_data = bp->b_data;
4482 		bip->bio_ma = NULL;
4483 	}
4484 }
4485 
4486 #include "opt_ddb.h"
4487 #ifdef DDB
4488 #include <ddb/ddb.h>
4489 
4490 /* DDB command to show buffer data */
4491 DB_SHOW_COMMAND(buffer, db_show_buffer)
4492 {
4493 	/* get args */
4494 	struct buf *bp = (struct buf *)addr;
4495 
4496 	if (!have_addr) {
4497 		db_printf("usage: show buffer <addr>\n");
4498 		return;
4499 	}
4500 
4501 	db_printf("buf at %p\n", bp);
4502 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4503 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4504 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4505 	db_printf(
4506 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4507 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4508 	    "b_dep = %p\n",
4509 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4510 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4511 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4512 	if (bp->b_npages) {
4513 		int i;
4514 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4515 		for (i = 0; i < bp->b_npages; i++) {
4516 			vm_page_t m;
4517 			m = bp->b_pages[i];
4518 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4519 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4520 			if ((i + 1) < bp->b_npages)
4521 				db_printf(",");
4522 		}
4523 		db_printf("\n");
4524 	}
4525 	db_printf(" ");
4526 	BUF_LOCKPRINTINFO(bp);
4527 }
4528 
4529 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4530 {
4531 	struct buf *bp;
4532 	int i;
4533 
4534 	for (i = 0; i < nbuf; i++) {
4535 		bp = &buf[i];
4536 		if (BUF_ISLOCKED(bp)) {
4537 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4538 			db_printf("\n");
4539 		}
4540 	}
4541 }
4542 
4543 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4544 {
4545 	struct vnode *vp;
4546 	struct buf *bp;
4547 
4548 	if (!have_addr) {
4549 		db_printf("usage: show vnodebufs <addr>\n");
4550 		return;
4551 	}
4552 	vp = (struct vnode *)addr;
4553 	db_printf("Clean buffers:\n");
4554 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4555 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4556 		db_printf("\n");
4557 	}
4558 	db_printf("Dirty buffers:\n");
4559 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4560 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4561 		db_printf("\n");
4562 	}
4563 }
4564 
4565 DB_COMMAND(countfreebufs, db_coundfreebufs)
4566 {
4567 	struct buf *bp;
4568 	int i, used = 0, nfree = 0;
4569 
4570 	if (have_addr) {
4571 		db_printf("usage: countfreebufs\n");
4572 		return;
4573 	}
4574 
4575 	for (i = 0; i < nbuf; i++) {
4576 		bp = &buf[i];
4577 		if ((bp->b_flags & B_INFREECNT) != 0)
4578 			nfree++;
4579 		else
4580 			used++;
4581 	}
4582 
4583 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4584 	    nfree + used);
4585 	db_printf("numfreebuffers is %d\n", numfreebuffers);
4586 }
4587 #endif /* DDB */
4588