1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/stdint.h> 33 #include <sys/bio.h> 34 #include <sys/buf.h> 35 #include <sys/devicestat.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mount.h> 40 #include <sys/mutex.h> 41 #include <sys/kernel.h> 42 #include <sys/kthread.h> 43 #include <sys/proc.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 58 59 struct bio_ops bioops; /* I/O operation notification */ 60 61 struct buf_ops buf_ops_bio = { 62 "buf_ops_bio", 63 bwrite 64 }; 65 66 /* 67 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 68 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 69 */ 70 struct buf *buf; /* buffer header pool */ 71 72 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 73 vm_offset_t to); 74 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 75 vm_offset_t to); 76 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 77 int pageno, vm_page_t m); 78 static void vfs_clean_pages(struct buf * bp); 79 static void vfs_setdirty(struct buf *bp); 80 static void vfs_vmio_release(struct buf *bp); 81 static void vfs_backgroundwritedone(struct buf *bp); 82 static int vfs_bio_clcheck(struct vnode *vp, int size, 83 daddr_t lblkno, daddr_t blkno); 84 static int flushbufqueues(void); 85 static void buf_daemon(void); 86 void bremfreel(struct buf * bp); 87 88 int vmiodirenable = TRUE; 89 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 90 "Use the VM system for directory writes"); 91 int runningbufspace; 92 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 93 "Amount of presently outstanding async buffer io"); 94 static int bufspace; 95 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 96 "KVA memory used for bufs"); 97 static int maxbufspace; 98 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 99 "Maximum allowed value of bufspace (including buf_daemon)"); 100 static int bufmallocspace; 101 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 102 "Amount of malloced memory for buffers"); 103 static int maxbufmallocspace; 104 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 105 "Maximum amount of malloced memory for buffers"); 106 static int lobufspace; 107 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 108 "Minimum amount of buffers we want to have"); 109 static int hibufspace; 110 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 111 "Maximum allowed value of bufspace (excluding buf_daemon)"); 112 static int bufreusecnt; 113 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 114 "Number of times we have reused a buffer"); 115 static int buffreekvacnt; 116 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 117 "Number of times we have freed the KVA space from some buffer"); 118 static int bufdefragcnt; 119 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 120 "Number of times we have had to repeat buffer allocation to defragment"); 121 static int lorunningspace; 122 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 123 "Minimum preferred space used for in-progress I/O"); 124 static int hirunningspace; 125 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 126 "Maximum amount of space to use for in-progress I/O"); 127 static int dirtybufferflushes; 128 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 129 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 130 static int altbufferflushes; 131 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes, 132 0, "Number of fsync flushes to limit dirty buffers"); 133 static int recursiveflushes; 134 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes, 135 0, "Number of flushes skipped due to being recursive"); 136 static int numdirtybuffers; 137 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 138 "Number of buffers that are dirty (has unwritten changes) at the moment"); 139 static int lodirtybuffers; 140 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 141 "How many buffers we want to have free before bufdaemon can sleep"); 142 static int hidirtybuffers; 143 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 144 "When the number of dirty buffers is considered severe"); 145 static int dirtybufthresh; 146 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh, 147 0, "Number of bdwrite to bawrite conversions to clear dirty buffers"); 148 static int numfreebuffers; 149 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 150 "Number of free buffers"); 151 static int lofreebuffers; 152 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 153 "XXX Unused"); 154 static int hifreebuffers; 155 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 156 "XXX Complicatedly unused"); 157 static int getnewbufcalls; 158 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 159 "Number of calls to getnewbuf"); 160 static int getnewbufrestarts; 161 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 162 "Number of times getnewbuf has had to restart a buffer aquisition"); 163 static int dobkgrdwrite = 1; 164 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 165 "Do background writes (honoring the BX_BKGRDWRITE flag)?"); 166 167 /* 168 * Wakeup point for bufdaemon, as well as indicator of whether it is already 169 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 170 * is idling. 171 */ 172 static int bd_request; 173 174 /* 175 * This lock synchronizes access to bd_request. 176 */ 177 static struct mtx bdlock; 178 179 /* 180 * bogus page -- for I/O to/from partially complete buffers 181 * this is a temporary solution to the problem, but it is not 182 * really that bad. it would be better to split the buffer 183 * for input in the case of buffers partially already in memory, 184 * but the code is intricate enough already. 185 */ 186 vm_page_t bogus_page; 187 188 /* 189 * Synchronization (sleep/wakeup) variable for active buffer space requests. 190 * Set when wait starts, cleared prior to wakeup(). 191 * Used in runningbufwakeup() and waitrunningbufspace(). 192 */ 193 static int runningbufreq; 194 195 /* 196 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 197 * waitrunningbufspace(). 198 */ 199 static struct mtx rbreqlock; 200 201 /* 202 * Synchronization (sleep/wakeup) variable for buffer requests. 203 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 204 * by and/or. 205 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(), 206 * getnewbuf(), and getblk(). 207 */ 208 static int needsbuffer; 209 210 /* 211 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it. 212 */ 213 static struct mtx nblock; 214 215 /* 216 * Definitions for the buffer free lists. 217 */ 218 #define BUFFER_QUEUES 6 /* number of free buffer queues */ 219 220 #define QUEUE_NONE 0 /* on no queue */ 221 #define QUEUE_LOCKED 1 /* locked buffers */ 222 #define QUEUE_CLEAN 2 /* non-B_DELWRI buffers */ 223 #define QUEUE_DIRTY 3 /* B_DELWRI buffers */ 224 #define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */ 225 #define QUEUE_EMPTY 5 /* empty buffer headers */ 226 227 /* Queues for free buffers with various properties */ 228 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 229 230 /* Lock for the bufqueues */ 231 static struct mtx bqlock; 232 233 /* 234 * Single global constant for BUF_WMESG, to avoid getting multiple references. 235 * buf_wmesg is referred from macros. 236 */ 237 const char *buf_wmesg = BUF_WMESG; 238 239 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 240 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 241 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 242 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 243 244 /* 245 * numdirtywakeup: 246 * 247 * If someone is blocked due to there being too many dirty buffers, 248 * and numdirtybuffers is now reasonable, wake them up. 249 */ 250 251 static __inline void 252 numdirtywakeup(int level) 253 { 254 if (numdirtybuffers <= level) { 255 mtx_lock(&nblock); 256 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 257 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 258 wakeup(&needsbuffer); 259 } 260 mtx_unlock(&nblock); 261 } 262 } 263 264 /* 265 * bufspacewakeup: 266 * 267 * Called when buffer space is potentially available for recovery. 268 * getnewbuf() will block on this flag when it is unable to free 269 * sufficient buffer space. Buffer space becomes recoverable when 270 * bp's get placed back in the queues. 271 */ 272 273 static __inline void 274 bufspacewakeup(void) 275 { 276 /* 277 * If someone is waiting for BUF space, wake them up. Even 278 * though we haven't freed the kva space yet, the waiting 279 * process will be able to now. 280 */ 281 mtx_lock(&nblock); 282 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 283 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 284 wakeup(&needsbuffer); 285 } 286 mtx_unlock(&nblock); 287 } 288 289 /* 290 * runningbufwakeup() - in-progress I/O accounting. 291 * 292 */ 293 static __inline void 294 runningbufwakeup(struct buf *bp) 295 { 296 if (bp->b_runningbufspace) { 297 atomic_subtract_int(&runningbufspace, bp->b_runningbufspace); 298 bp->b_runningbufspace = 0; 299 mtx_lock(&rbreqlock); 300 if (runningbufreq && runningbufspace <= lorunningspace) { 301 runningbufreq = 0; 302 wakeup(&runningbufreq); 303 } 304 mtx_unlock(&rbreqlock); 305 } 306 } 307 308 /* 309 * bufcountwakeup: 310 * 311 * Called when a buffer has been added to one of the free queues to 312 * account for the buffer and to wakeup anyone waiting for free buffers. 313 * This typically occurs when large amounts of metadata are being handled 314 * by the buffer cache ( else buffer space runs out first, usually ). 315 */ 316 317 static __inline void 318 bufcountwakeup(void) 319 { 320 atomic_add_int(&numfreebuffers, 1); 321 mtx_lock(&nblock); 322 if (needsbuffer) { 323 needsbuffer &= ~VFS_BIO_NEED_ANY; 324 if (numfreebuffers >= hifreebuffers) 325 needsbuffer &= ~VFS_BIO_NEED_FREE; 326 wakeup(&needsbuffer); 327 } 328 mtx_unlock(&nblock); 329 } 330 331 /* 332 * waitrunningbufspace() 333 * 334 * runningbufspace is a measure of the amount of I/O currently 335 * running. This routine is used in async-write situations to 336 * prevent creating huge backups of pending writes to a device. 337 * Only asynchronous writes are governed by this function. 338 * 339 * Reads will adjust runningbufspace, but will not block based on it. 340 * The read load has a side effect of reducing the allowed write load. 341 * 342 * This does NOT turn an async write into a sync write. It waits 343 * for earlier writes to complete and generally returns before the 344 * caller's write has reached the device. 345 */ 346 static __inline void 347 waitrunningbufspace(void) 348 { 349 mtx_lock(&rbreqlock); 350 while (runningbufspace > hirunningspace) { 351 ++runningbufreq; 352 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 353 } 354 mtx_unlock(&rbreqlock); 355 } 356 357 358 /* 359 * vfs_buf_test_cache: 360 * 361 * Called when a buffer is extended. This function clears the B_CACHE 362 * bit if the newly extended portion of the buffer does not contain 363 * valid data. 364 */ 365 static __inline__ 366 void 367 vfs_buf_test_cache(struct buf *bp, 368 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 369 vm_page_t m) 370 { 371 GIANT_REQUIRED; 372 373 if (bp->b_flags & B_CACHE) { 374 int base = (foff + off) & PAGE_MASK; 375 if (vm_page_is_valid(m, base, size) == 0) 376 bp->b_flags &= ~B_CACHE; 377 } 378 } 379 380 /* Wake up the buffer deamon if necessary */ 381 static __inline__ 382 void 383 bd_wakeup(int dirtybuflevel) 384 { 385 mtx_lock(&bdlock); 386 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 387 bd_request = 1; 388 wakeup(&bd_request); 389 } 390 mtx_unlock(&bdlock); 391 } 392 393 /* 394 * bd_speedup - speedup the buffer cache flushing code 395 */ 396 397 static __inline__ 398 void 399 bd_speedup(void) 400 { 401 bd_wakeup(1); 402 } 403 404 /* 405 * Calculating buffer cache scaling values and reserve space for buffer 406 * headers. This is called during low level kernel initialization and 407 * may be called more then once. We CANNOT write to the memory area 408 * being reserved at this time. 409 */ 410 caddr_t 411 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 412 { 413 /* 414 * physmem_est is in pages. Convert it to kilobytes (assumes 415 * PAGE_SIZE is >= 1K) 416 */ 417 physmem_est = physmem_est * (PAGE_SIZE / 1024); 418 419 /* 420 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 421 * For the first 64MB of ram nominally allocate sufficient buffers to 422 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 423 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing 424 * the buffer cache we limit the eventual kva reservation to 425 * maxbcache bytes. 426 * 427 * factor represents the 1/4 x ram conversion. 428 */ 429 if (nbuf == 0) { 430 int factor = 4 * BKVASIZE / 1024; 431 432 nbuf = 50; 433 if (physmem_est > 4096) 434 nbuf += min((physmem_est - 4096) / factor, 435 65536 / factor); 436 if (physmem_est > 65536) 437 nbuf += (physmem_est - 65536) * 2 / (factor * 5); 438 439 if (maxbcache && nbuf > maxbcache / BKVASIZE) 440 nbuf = maxbcache / BKVASIZE; 441 } 442 443 #if 0 444 /* 445 * Do not allow the buffer_map to be more then 1/2 the size of the 446 * kernel_map. 447 */ 448 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 449 (BKVASIZE * 2)) { 450 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 451 (BKVASIZE * 2); 452 printf("Warning: nbufs capped at %d\n", nbuf); 453 } 454 #endif 455 456 /* 457 * swbufs are used as temporary holders for I/O, such as paging I/O. 458 * We have no less then 16 and no more then 256. 459 */ 460 nswbuf = max(min(nbuf/4, 256), 16); 461 462 /* 463 * Reserve space for the buffer cache buffers 464 */ 465 swbuf = (void *)v; 466 v = (caddr_t)(swbuf + nswbuf); 467 buf = (void *)v; 468 v = (caddr_t)(buf + nbuf); 469 470 return(v); 471 } 472 473 /* Initialize the buffer subsystem. Called before use of any buffers. */ 474 void 475 bufinit(void) 476 { 477 struct buf *bp; 478 vm_offset_t bogus_offset; 479 int i; 480 481 GIANT_REQUIRED; 482 483 mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF); 484 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 485 mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF); 486 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 487 488 /* next, make a null set of free lists */ 489 for (i = 0; i < BUFFER_QUEUES; i++) 490 TAILQ_INIT(&bufqueues[i]); 491 492 /* finally, initialize each buffer header and stick on empty q */ 493 for (i = 0; i < nbuf; i++) { 494 bp = &buf[i]; 495 bzero(bp, sizeof *bp); 496 bp->b_flags = B_INVAL; /* we're just an empty header */ 497 bp->b_dev = NODEV; 498 bp->b_rcred = NOCRED; 499 bp->b_wcred = NOCRED; 500 bp->b_qindex = QUEUE_EMPTY; 501 bp->b_vflags = 0; 502 bp->b_xflags = 0; 503 LIST_INIT(&bp->b_dep); 504 BUF_LOCKINIT(bp); 505 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 506 } 507 508 /* 509 * maxbufspace is the absolute maximum amount of buffer space we are 510 * allowed to reserve in KVM and in real terms. The absolute maximum 511 * is nominally used by buf_daemon. hibufspace is the nominal maximum 512 * used by most other processes. The differential is required to 513 * ensure that buf_daemon is able to run when other processes might 514 * be blocked waiting for buffer space. 515 * 516 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 517 * this may result in KVM fragmentation which is not handled optimally 518 * by the system. 519 */ 520 maxbufspace = nbuf * BKVASIZE; 521 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 522 lobufspace = hibufspace - MAXBSIZE; 523 524 lorunningspace = 512 * 1024; 525 hirunningspace = 1024 * 1024; 526 527 /* 528 * Limit the amount of malloc memory since it is wired permanently into 529 * the kernel space. Even though this is accounted for in the buffer 530 * allocation, we don't want the malloced region to grow uncontrolled. 531 * The malloc scheme improves memory utilization significantly on average 532 * (small) directories. 533 */ 534 maxbufmallocspace = hibufspace / 20; 535 536 /* 537 * Reduce the chance of a deadlock occuring by limiting the number 538 * of delayed-write dirty buffers we allow to stack up. 539 */ 540 hidirtybuffers = nbuf / 4 + 20; 541 dirtybufthresh = hidirtybuffers * 9 / 10; 542 numdirtybuffers = 0; 543 /* 544 * To support extreme low-memory systems, make sure hidirtybuffers cannot 545 * eat up all available buffer space. This occurs when our minimum cannot 546 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 547 * BKVASIZE'd (8K) buffers. 548 */ 549 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 550 hidirtybuffers >>= 1; 551 } 552 lodirtybuffers = hidirtybuffers / 2; 553 554 /* 555 * Try to keep the number of free buffers in the specified range, 556 * and give special processes (e.g. like buf_daemon) access to an 557 * emergency reserve. 558 */ 559 lofreebuffers = nbuf / 18 + 5; 560 hifreebuffers = 2 * lofreebuffers; 561 numfreebuffers = nbuf; 562 563 /* 564 * Maximum number of async ops initiated per buf_daemon loop. This is 565 * somewhat of a hack at the moment, we really need to limit ourselves 566 * based on the number of bytes of I/O in-transit that were initiated 567 * from buf_daemon. 568 */ 569 570 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 571 vm_object_lock(kernel_object); 572 bogus_page = vm_page_alloc(kernel_object, 573 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 574 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 575 vm_object_unlock(kernel_object); 576 } 577 578 /* 579 * bfreekva() - free the kva allocation for a buffer. 580 * 581 * Must be called at splbio() or higher as this is the only locking for 582 * buffer_map. 583 * 584 * Since this call frees up buffer space, we call bufspacewakeup(). 585 */ 586 static void 587 bfreekva(struct buf * bp) 588 { 589 GIANT_REQUIRED; 590 591 if (bp->b_kvasize) { 592 atomic_add_int(&buffreekvacnt, 1); 593 atomic_subtract_int(&bufspace, bp->b_kvasize); 594 vm_map_delete(buffer_map, 595 (vm_offset_t) bp->b_kvabase, 596 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 597 ); 598 bp->b_kvasize = 0; 599 bufspacewakeup(); 600 } 601 } 602 603 /* 604 * bremfree: 605 * 606 * Remove the buffer from the appropriate free list. 607 */ 608 void 609 bremfree(struct buf * bp) 610 { 611 mtx_lock(&bqlock); 612 bremfreel(bp); 613 mtx_unlock(&bqlock); 614 } 615 616 void 617 bremfreel(struct buf * bp) 618 { 619 int s = splbio(); 620 int old_qindex = bp->b_qindex; 621 622 GIANT_REQUIRED; 623 624 if (bp->b_qindex != QUEUE_NONE) { 625 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 626 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 627 bp->b_qindex = QUEUE_NONE; 628 } else { 629 if (BUF_REFCNT(bp) <= 1) 630 panic("bremfree: removing a buffer not on a queue"); 631 } 632 633 /* 634 * Fixup numfreebuffers count. If the buffer is invalid or not 635 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 636 * the buffer was free and we must decrement numfreebuffers. 637 */ 638 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 639 switch(old_qindex) { 640 case QUEUE_DIRTY: 641 case QUEUE_CLEAN: 642 case QUEUE_EMPTY: 643 case QUEUE_EMPTYKVA: 644 atomic_subtract_int(&numfreebuffers, 1); 645 break; 646 default: 647 break; 648 } 649 } 650 splx(s); 651 } 652 653 654 /* 655 * Get a buffer with the specified data. Look in the cache first. We 656 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 657 * is set, the buffer is valid and we do not have to do anything ( see 658 * getblk() ). This is really just a special case of breadn(). 659 */ 660 int 661 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 662 struct buf ** bpp) 663 { 664 665 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 666 } 667 668 /* 669 * Operates like bread, but also starts asynchronous I/O on 670 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 671 * to initiating I/O . If B_CACHE is set, the buffer is valid 672 * and we do not have to do anything. 673 */ 674 int 675 breadn(struct vnode * vp, daddr_t blkno, int size, 676 daddr_t * rablkno, int *rabsize, 677 int cnt, struct ucred * cred, struct buf ** bpp) 678 { 679 struct buf *bp, *rabp; 680 int i; 681 int rv = 0, readwait = 0; 682 683 *bpp = bp = getblk(vp, blkno, size, 0, 0); 684 685 /* if not found in cache, do some I/O */ 686 if ((bp->b_flags & B_CACHE) == 0) { 687 if (curthread != PCPU_GET(idlethread)) 688 curthread->td_proc->p_stats->p_ru.ru_inblock++; 689 bp->b_iocmd = BIO_READ; 690 bp->b_flags &= ~B_INVAL; 691 bp->b_ioflags &= ~BIO_ERROR; 692 if (bp->b_rcred == NOCRED && cred != NOCRED) 693 bp->b_rcred = crhold(cred); 694 vfs_busy_pages(bp, 0); 695 if (vp->v_type == VCHR) 696 VOP_SPECSTRATEGY(vp, bp); 697 else 698 VOP_STRATEGY(vp, bp); 699 ++readwait; 700 } 701 702 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 703 if (inmem(vp, *rablkno)) 704 continue; 705 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 706 707 if ((rabp->b_flags & B_CACHE) == 0) { 708 if (curthread != PCPU_GET(idlethread)) 709 curthread->td_proc->p_stats->p_ru.ru_inblock++; 710 rabp->b_flags |= B_ASYNC; 711 rabp->b_flags &= ~B_INVAL; 712 rabp->b_ioflags &= ~BIO_ERROR; 713 rabp->b_iocmd = BIO_READ; 714 if (rabp->b_rcred == NOCRED && cred != NOCRED) 715 rabp->b_rcred = crhold(cred); 716 vfs_busy_pages(rabp, 0); 717 BUF_KERNPROC(rabp); 718 if (vp->v_type == VCHR) 719 VOP_SPECSTRATEGY(vp, rabp); 720 else 721 VOP_STRATEGY(vp, rabp); 722 } else { 723 brelse(rabp); 724 } 725 } 726 727 if (readwait) { 728 rv = bufwait(bp); 729 } 730 return (rv); 731 } 732 733 /* 734 * Write, release buffer on completion. (Done by iodone 735 * if async). Do not bother writing anything if the buffer 736 * is invalid. 737 * 738 * Note that we set B_CACHE here, indicating that buffer is 739 * fully valid and thus cacheable. This is true even of NFS 740 * now so we set it generally. This could be set either here 741 * or in biodone() since the I/O is synchronous. We put it 742 * here. 743 */ 744 745 int 746 bwrite(struct buf * bp) 747 { 748 int oldflags, s; 749 struct buf *newbp; 750 751 if (bp->b_flags & B_INVAL) { 752 brelse(bp); 753 return (0); 754 } 755 756 oldflags = bp->b_flags; 757 758 if (BUF_REFCNT(bp) == 0) 759 panic("bwrite: buffer is not busy???"); 760 s = splbio(); 761 /* 762 * If a background write is already in progress, delay 763 * writing this block if it is asynchronous. Otherwise 764 * wait for the background write to complete. 765 */ 766 if (bp->b_xflags & BX_BKGRDINPROG) { 767 if (bp->b_flags & B_ASYNC) { 768 splx(s); 769 bdwrite(bp); 770 return (0); 771 } 772 bp->b_xflags |= BX_BKGRDWAIT; 773 tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0); 774 if (bp->b_xflags & BX_BKGRDINPROG) 775 panic("bwrite: still writing"); 776 } 777 778 /* Mark the buffer clean */ 779 bundirty(bp); 780 781 /* 782 * If this buffer is marked for background writing and we 783 * do not have to wait for it, make a copy and write the 784 * copy so as to leave this buffer ready for further use. 785 * 786 * This optimization eats a lot of memory. If we have a page 787 * or buffer shortfall we can't do it. 788 */ 789 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 790 (bp->b_flags & B_ASYNC) && 791 !vm_page_count_severe() && 792 !buf_dirty_count_severe()) { 793 if (bp->b_iodone != NULL) { 794 printf("bp->b_iodone = %p\n", bp->b_iodone); 795 panic("bwrite: need chained iodone"); 796 } 797 798 /* get a new block */ 799 newbp = geteblk(bp->b_bufsize); 800 801 /* 802 * set it to be identical to the old block. We have to 803 * set b_lblkno and BKGRDMARKER before calling bgetvp() 804 * to avoid confusing the splay tree and gbincore(). 805 */ 806 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 807 newbp->b_lblkno = bp->b_lblkno; 808 newbp->b_xflags |= BX_BKGRDMARKER; 809 /* XXX The BX_ flags need to be protected as well */ 810 VI_LOCK(bp->b_vp); 811 bgetvp(bp->b_vp, newbp); 812 VI_UNLOCK(bp->b_vp); 813 newbp->b_blkno = bp->b_blkno; 814 newbp->b_offset = bp->b_offset; 815 newbp->b_iodone = vfs_backgroundwritedone; 816 newbp->b_flags |= B_ASYNC; 817 newbp->b_flags &= ~B_INVAL; 818 819 /* move over the dependencies */ 820 if (LIST_FIRST(&bp->b_dep) != NULL) 821 buf_movedeps(bp, newbp); 822 823 /* 824 * Initiate write on the copy, release the original to 825 * the B_LOCKED queue so that it cannot go away until 826 * the background write completes. If not locked it could go 827 * away and then be reconstituted while it was being written. 828 * If the reconstituted buffer were written, we could end up 829 * with two background copies being written at the same time. 830 */ 831 bp->b_xflags |= BX_BKGRDINPROG; 832 bp->b_flags |= B_LOCKED; 833 bqrelse(bp); 834 bp = newbp; 835 } 836 837 bp->b_flags &= ~B_DONE; 838 bp->b_ioflags &= ~BIO_ERROR; 839 bp->b_flags |= B_WRITEINPROG | B_CACHE; 840 bp->b_iocmd = BIO_WRITE; 841 842 VI_LOCK(bp->b_vp); 843 bp->b_vp->v_numoutput++; 844 VI_UNLOCK(bp->b_vp); 845 vfs_busy_pages(bp, 1); 846 847 /* 848 * Normal bwrites pipeline writes 849 */ 850 bp->b_runningbufspace = bp->b_bufsize; 851 atomic_add_int(&runningbufspace, bp->b_runningbufspace); 852 853 if (curthread != PCPU_GET(idlethread)) 854 curthread->td_proc->p_stats->p_ru.ru_oublock++; 855 splx(s); 856 if (oldflags & B_ASYNC) 857 BUF_KERNPROC(bp); 858 if (bp->b_vp->v_type == VCHR) 859 VOP_SPECSTRATEGY(bp->b_vp, bp); 860 else 861 VOP_STRATEGY(bp->b_vp, bp); 862 863 if ((oldflags & B_ASYNC) == 0) { 864 int rtval = bufwait(bp); 865 brelse(bp); 866 return (rtval); 867 } else if ((oldflags & B_NOWDRAIN) == 0) { 868 /* 869 * don't allow the async write to saturate the I/O 870 * system. Deadlocks can occur only if a device strategy 871 * routine (like in MD) turns around and issues another 872 * high-level write, in which case B_NOWDRAIN is expected 873 * to be set. Otherwise we will not deadlock here because 874 * we are blocking waiting for I/O that is already in-progress 875 * to complete. 876 */ 877 waitrunningbufspace(); 878 } 879 880 return (0); 881 } 882 883 /* 884 * Complete a background write started from bwrite. 885 */ 886 static void 887 vfs_backgroundwritedone(bp) 888 struct buf *bp; 889 { 890 struct buf *origbp; 891 892 /* 893 * Find the original buffer that we are writing. 894 */ 895 VI_LOCK(bp->b_vp); 896 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 897 panic("backgroundwritedone: lost buffer"); 898 VI_UNLOCK(bp->b_vp); 899 /* 900 * Process dependencies then return any unfinished ones. 901 */ 902 if (LIST_FIRST(&bp->b_dep) != NULL) 903 buf_complete(bp); 904 if (LIST_FIRST(&bp->b_dep) != NULL) 905 buf_movedeps(bp, origbp); 906 907 /* XXX Find out if origbp can disappear or get inconsistent */ 908 /* 909 * Clear the BX_BKGRDINPROG flag in the original buffer 910 * and awaken it if it is waiting for the write to complete. 911 * If BX_BKGRDINPROG is not set in the original buffer it must 912 * have been released and re-instantiated - which is not legal. 913 */ 914 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), 915 ("backgroundwritedone: lost buffer2")); 916 origbp->b_xflags &= ~BX_BKGRDINPROG; 917 if (origbp->b_xflags & BX_BKGRDWAIT) { 918 origbp->b_xflags &= ~BX_BKGRDWAIT; 919 wakeup(&origbp->b_xflags); 920 } 921 /* 922 * Clear the B_LOCKED flag and remove it from the locked 923 * queue if it currently resides there. 924 */ 925 origbp->b_flags &= ~B_LOCKED; 926 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 927 bremfree(origbp); 928 bqrelse(origbp); 929 } 930 /* 931 * This buffer is marked B_NOCACHE, so when it is released 932 * by biodone, it will be tossed. We mark it with BIO_READ 933 * to avoid biodone doing a second vwakeup. 934 */ 935 bp->b_flags |= B_NOCACHE; 936 bp->b_iocmd = BIO_READ; 937 bp->b_flags &= ~(B_CACHE | B_DONE); 938 bp->b_iodone = 0; 939 bufdone(bp); 940 } 941 942 /* 943 * Delayed write. (Buffer is marked dirty). Do not bother writing 944 * anything if the buffer is marked invalid. 945 * 946 * Note that since the buffer must be completely valid, we can safely 947 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 948 * biodone() in order to prevent getblk from writing the buffer 949 * out synchronously. 950 */ 951 void 952 bdwrite(struct buf * bp) 953 { 954 struct thread *td = curthread; 955 struct vnode *vp; 956 struct buf *nbp; 957 958 GIANT_REQUIRED; 959 960 if (BUF_REFCNT(bp) == 0) 961 panic("bdwrite: buffer is not busy"); 962 963 if (bp->b_flags & B_INVAL) { 964 brelse(bp); 965 return; 966 } 967 968 /* 969 * If we have too many dirty buffers, don't create any more. 970 * If we are wildly over our limit, then force a complete 971 * cleanup. Otherwise, just keep the situation from getting 972 * out of control. Note that we have to avoid a recursive 973 * disaster and not try to clean up after our own cleanup! 974 */ 975 vp = bp->b_vp; 976 VI_LOCK(vp); 977 if (td->td_proc->p_flag & P_COWINPROGRESS) { 978 recursiveflushes++; 979 } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) { 980 VI_UNLOCK(vp); 981 (void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td); 982 VI_LOCK(vp); 983 altbufferflushes++; 984 } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) { 985 /* 986 * Try to find a buffer to flush. 987 */ 988 TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) { 989 if ((nbp->b_xflags & BX_BKGRDINPROG) || 990 buf_countdeps(nbp, 0) || 991 BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 992 continue; 993 if (bp == nbp) 994 panic("bdwrite: found ourselves"); 995 VI_UNLOCK(vp); 996 if (nbp->b_flags & B_CLUSTEROK) { 997 BUF_UNLOCK(nbp); 998 vfs_bio_awrite(nbp); 999 } else { 1000 bremfree(nbp); 1001 bawrite(nbp); 1002 } 1003 VI_LOCK(vp); 1004 dirtybufferflushes++; 1005 break; 1006 } 1007 } 1008 VI_UNLOCK(vp); 1009 1010 bdirty(bp); 1011 /* 1012 * Set B_CACHE, indicating that the buffer is fully valid. This is 1013 * true even of NFS now. 1014 */ 1015 bp->b_flags |= B_CACHE; 1016 1017 /* 1018 * This bmap keeps the system from needing to do the bmap later, 1019 * perhaps when the system is attempting to do a sync. Since it 1020 * is likely that the indirect block -- or whatever other datastructure 1021 * that the filesystem needs is still in memory now, it is a good 1022 * thing to do this. Note also, that if the pageout daemon is 1023 * requesting a sync -- there might not be enough memory to do 1024 * the bmap then... So, this is important to do. 1025 */ 1026 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 1027 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 1028 } 1029 1030 /* 1031 * Set the *dirty* buffer range based upon the VM system dirty pages. 1032 */ 1033 vfs_setdirty(bp); 1034 1035 /* 1036 * We need to do this here to satisfy the vnode_pager and the 1037 * pageout daemon, so that it thinks that the pages have been 1038 * "cleaned". Note that since the pages are in a delayed write 1039 * buffer -- the VFS layer "will" see that the pages get written 1040 * out on the next sync, or perhaps the cluster will be completed. 1041 */ 1042 vfs_clean_pages(bp); 1043 bqrelse(bp); 1044 1045 /* 1046 * Wakeup the buffer flushing daemon if we have a lot of dirty 1047 * buffers (midpoint between our recovery point and our stall 1048 * point). 1049 */ 1050 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1051 1052 /* 1053 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1054 * due to the softdep code. 1055 */ 1056 } 1057 1058 /* 1059 * bdirty: 1060 * 1061 * Turn buffer into delayed write request. We must clear BIO_READ and 1062 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 1063 * itself to properly update it in the dirty/clean lists. We mark it 1064 * B_DONE to ensure that any asynchronization of the buffer properly 1065 * clears B_DONE ( else a panic will occur later ). 1066 * 1067 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 1068 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 1069 * should only be called if the buffer is known-good. 1070 * 1071 * Since the buffer is not on a queue, we do not update the numfreebuffers 1072 * count. 1073 * 1074 * Must be called at splbio(). 1075 * The buffer must be on QUEUE_NONE. 1076 */ 1077 void 1078 bdirty(bp) 1079 struct buf *bp; 1080 { 1081 KASSERT(bp->b_qindex == QUEUE_NONE, 1082 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1083 bp->b_flags &= ~(B_RELBUF); 1084 bp->b_iocmd = BIO_WRITE; 1085 1086 if ((bp->b_flags & B_DELWRI) == 0) { 1087 bp->b_flags |= B_DONE | B_DELWRI; 1088 reassignbuf(bp, bp->b_vp); 1089 atomic_add_int(&numdirtybuffers, 1); 1090 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1091 } 1092 } 1093 1094 /* 1095 * bundirty: 1096 * 1097 * Clear B_DELWRI for buffer. 1098 * 1099 * Since the buffer is not on a queue, we do not update the numfreebuffers 1100 * count. 1101 * 1102 * Must be called at splbio(). 1103 * The buffer must be on QUEUE_NONE. 1104 */ 1105 1106 void 1107 bundirty(bp) 1108 struct buf *bp; 1109 { 1110 KASSERT(bp->b_qindex == QUEUE_NONE, 1111 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1112 1113 if (bp->b_flags & B_DELWRI) { 1114 bp->b_flags &= ~B_DELWRI; 1115 reassignbuf(bp, bp->b_vp); 1116 atomic_subtract_int(&numdirtybuffers, 1); 1117 numdirtywakeup(lodirtybuffers); 1118 } 1119 /* 1120 * Since it is now being written, we can clear its deferred write flag. 1121 */ 1122 bp->b_flags &= ~B_DEFERRED; 1123 } 1124 1125 /* 1126 * bawrite: 1127 * 1128 * Asynchronous write. Start output on a buffer, but do not wait for 1129 * it to complete. The buffer is released when the output completes. 1130 * 1131 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1132 * B_INVAL buffers. Not us. 1133 */ 1134 void 1135 bawrite(struct buf * bp) 1136 { 1137 bp->b_flags |= B_ASYNC; 1138 (void) BUF_WRITE(bp); 1139 } 1140 1141 /* 1142 * bwillwrite: 1143 * 1144 * Called prior to the locking of any vnodes when we are expecting to 1145 * write. We do not want to starve the buffer cache with too many 1146 * dirty buffers so we block here. By blocking prior to the locking 1147 * of any vnodes we attempt to avoid the situation where a locked vnode 1148 * prevents the various system daemons from flushing related buffers. 1149 */ 1150 1151 void 1152 bwillwrite(void) 1153 { 1154 if (numdirtybuffers >= hidirtybuffers) { 1155 int s; 1156 1157 mtx_lock(&Giant); 1158 s = splbio(); 1159 mtx_lock(&nblock); 1160 while (numdirtybuffers >= hidirtybuffers) { 1161 bd_wakeup(1); 1162 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1163 msleep(&needsbuffer, &nblock, 1164 (PRIBIO + 4), "flswai", 0); 1165 } 1166 splx(s); 1167 mtx_unlock(&nblock); 1168 mtx_unlock(&Giant); 1169 } 1170 } 1171 1172 /* 1173 * Return true if we have too many dirty buffers. 1174 */ 1175 int 1176 buf_dirty_count_severe(void) 1177 { 1178 return(numdirtybuffers >= hidirtybuffers); 1179 } 1180 1181 /* 1182 * brelse: 1183 * 1184 * Release a busy buffer and, if requested, free its resources. The 1185 * buffer will be stashed in the appropriate bufqueue[] allowing it 1186 * to be accessed later as a cache entity or reused for other purposes. 1187 */ 1188 void 1189 brelse(struct buf * bp) 1190 { 1191 int s; 1192 1193 GIANT_REQUIRED; 1194 1195 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1196 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1197 1198 s = splbio(); 1199 1200 if (bp->b_flags & B_LOCKED) 1201 bp->b_ioflags &= ~BIO_ERROR; 1202 1203 if (bp->b_iocmd == BIO_WRITE && 1204 (bp->b_ioflags & BIO_ERROR) && 1205 !(bp->b_flags & B_INVAL)) { 1206 /* 1207 * Failed write, redirty. Must clear BIO_ERROR to prevent 1208 * pages from being scrapped. If B_INVAL is set then 1209 * this case is not run and the next case is run to 1210 * destroy the buffer. B_INVAL can occur if the buffer 1211 * is outside the range supported by the underlying device. 1212 */ 1213 bp->b_ioflags &= ~BIO_ERROR; 1214 bdirty(bp); 1215 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1216 (bp->b_ioflags & BIO_ERROR) || 1217 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1218 /* 1219 * Either a failed I/O or we were asked to free or not 1220 * cache the buffer. 1221 */ 1222 bp->b_flags |= B_INVAL; 1223 if (LIST_FIRST(&bp->b_dep) != NULL) 1224 buf_deallocate(bp); 1225 if (bp->b_flags & B_DELWRI) { 1226 atomic_subtract_int(&numdirtybuffers, 1); 1227 numdirtywakeup(lodirtybuffers); 1228 } 1229 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1230 if ((bp->b_flags & B_VMIO) == 0) { 1231 if (bp->b_bufsize) 1232 allocbuf(bp, 0); 1233 if (bp->b_vp) 1234 brelvp(bp); 1235 } 1236 } 1237 1238 /* 1239 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1240 * is called with B_DELWRI set, the underlying pages may wind up 1241 * getting freed causing a previous write (bdwrite()) to get 'lost' 1242 * because pages associated with a B_DELWRI bp are marked clean. 1243 * 1244 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1245 * if B_DELWRI is set. 1246 * 1247 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1248 * on pages to return pages to the VM page queues. 1249 */ 1250 if (bp->b_flags & B_DELWRI) 1251 bp->b_flags &= ~B_RELBUF; 1252 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1253 bp->b_flags |= B_RELBUF; 1254 1255 /* 1256 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1257 * constituted, not even NFS buffers now. Two flags effect this. If 1258 * B_INVAL, the struct buf is invalidated but the VM object is kept 1259 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1260 * 1261 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1262 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1263 * buffer is also B_INVAL because it hits the re-dirtying code above. 1264 * 1265 * Normally we can do this whether a buffer is B_DELWRI or not. If 1266 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1267 * the commit state and we cannot afford to lose the buffer. If the 1268 * buffer has a background write in progress, we need to keep it 1269 * around to prevent it from being reconstituted and starting a second 1270 * background write. 1271 */ 1272 if ((bp->b_flags & B_VMIO) 1273 && !(bp->b_vp->v_mount != NULL && 1274 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1275 !vn_isdisk(bp->b_vp, NULL) && 1276 (bp->b_flags & B_DELWRI)) 1277 ) { 1278 1279 int i, j, resid; 1280 vm_page_t m; 1281 off_t foff; 1282 vm_pindex_t poff; 1283 vm_object_t obj; 1284 struct vnode *vp; 1285 1286 vp = bp->b_vp; 1287 obj = bp->b_object; 1288 1289 /* 1290 * Get the base offset and length of the buffer. Note that 1291 * in the VMIO case if the buffer block size is not 1292 * page-aligned then b_data pointer may not be page-aligned. 1293 * But our b_pages[] array *IS* page aligned. 1294 * 1295 * block sizes less then DEV_BSIZE (usually 512) are not 1296 * supported due to the page granularity bits (m->valid, 1297 * m->dirty, etc...). 1298 * 1299 * See man buf(9) for more information 1300 */ 1301 resid = bp->b_bufsize; 1302 foff = bp->b_offset; 1303 1304 for (i = 0; i < bp->b_npages; i++) { 1305 int had_bogus = 0; 1306 1307 m = bp->b_pages[i]; 1308 vm_page_lock_queues(); 1309 vm_page_flag_clear(m, PG_ZERO); 1310 vm_page_unlock_queues(); 1311 1312 /* 1313 * If we hit a bogus page, fixup *all* the bogus pages 1314 * now. 1315 */ 1316 if (m == bogus_page) { 1317 poff = OFF_TO_IDX(bp->b_offset); 1318 had_bogus = 1; 1319 1320 for (j = i; j < bp->b_npages; j++) { 1321 vm_page_t mtmp; 1322 mtmp = bp->b_pages[j]; 1323 if (mtmp == bogus_page) { 1324 mtmp = vm_page_lookup(obj, poff + j); 1325 if (!mtmp) { 1326 panic("brelse: page missing\n"); 1327 } 1328 bp->b_pages[j] = mtmp; 1329 } 1330 } 1331 1332 if ((bp->b_flags & B_INVAL) == 0) { 1333 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1334 } 1335 m = bp->b_pages[i]; 1336 } 1337 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1338 int poffset = foff & PAGE_MASK; 1339 int presid = resid > (PAGE_SIZE - poffset) ? 1340 (PAGE_SIZE - poffset) : resid; 1341 1342 KASSERT(presid >= 0, ("brelse: extra page")); 1343 vm_page_set_invalid(m, poffset, presid); 1344 if (had_bogus) 1345 printf("avoided corruption bug in bogus_page/brelse code\n"); 1346 } 1347 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1348 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1349 } 1350 1351 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1352 vfs_vmio_release(bp); 1353 1354 } else if (bp->b_flags & B_VMIO) { 1355 1356 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1357 vfs_vmio_release(bp); 1358 } 1359 1360 } 1361 1362 if (bp->b_qindex != QUEUE_NONE) 1363 panic("brelse: free buffer onto another queue???"); 1364 if (BUF_REFCNT(bp) > 1) { 1365 /* do not release to free list */ 1366 BUF_UNLOCK(bp); 1367 splx(s); 1368 return; 1369 } 1370 1371 /* enqueue */ 1372 mtx_lock(&bqlock); 1373 1374 /* buffers with no memory */ 1375 if (bp->b_bufsize == 0) { 1376 bp->b_flags |= B_INVAL; 1377 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1378 if (bp->b_xflags & BX_BKGRDINPROG) 1379 panic("losing buffer 1"); 1380 if (bp->b_kvasize) { 1381 bp->b_qindex = QUEUE_EMPTYKVA; 1382 } else { 1383 bp->b_qindex = QUEUE_EMPTY; 1384 } 1385 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1386 bp->b_dev = NODEV; 1387 /* buffers with junk contents */ 1388 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1389 (bp->b_ioflags & BIO_ERROR)) { 1390 bp->b_flags |= B_INVAL; 1391 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1392 if (bp->b_xflags & BX_BKGRDINPROG) 1393 panic("losing buffer 2"); 1394 bp->b_qindex = QUEUE_CLEAN; 1395 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1396 bp->b_dev = NODEV; 1397 1398 /* buffers that are locked */ 1399 } else if (bp->b_flags & B_LOCKED) { 1400 bp->b_qindex = QUEUE_LOCKED; 1401 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1402 1403 /* remaining buffers */ 1404 } else { 1405 if (bp->b_flags & B_DELWRI) 1406 bp->b_qindex = QUEUE_DIRTY; 1407 else 1408 bp->b_qindex = QUEUE_CLEAN; 1409 if (bp->b_flags & B_AGE) 1410 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1411 else 1412 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1413 } 1414 mtx_unlock(&bqlock); 1415 1416 /* 1417 * If B_INVAL and B_DELWRI is set, clear B_DELWRI. We have already 1418 * placed the buffer on the correct queue. We must also disassociate 1419 * the device and vnode for a B_INVAL buffer so gbincore() doesn't 1420 * find it. 1421 */ 1422 if (bp->b_flags & B_INVAL) { 1423 if (bp->b_flags & B_DELWRI) 1424 bundirty(bp); 1425 if (bp->b_vp) 1426 brelvp(bp); 1427 } 1428 1429 /* 1430 * Fixup numfreebuffers count. The bp is on an appropriate queue 1431 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1432 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1433 * if B_INVAL is set ). 1434 */ 1435 1436 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1437 bufcountwakeup(); 1438 1439 /* 1440 * Something we can maybe free or reuse 1441 */ 1442 if (bp->b_bufsize || bp->b_kvasize) 1443 bufspacewakeup(); 1444 1445 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1446 B_DIRECT | B_NOWDRAIN); 1447 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1448 panic("brelse: not dirty"); 1449 /* unlock */ 1450 BUF_UNLOCK(bp); 1451 splx(s); 1452 } 1453 1454 /* 1455 * Release a buffer back to the appropriate queue but do not try to free 1456 * it. The buffer is expected to be used again soon. 1457 * 1458 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1459 * biodone() to requeue an async I/O on completion. It is also used when 1460 * known good buffers need to be requeued but we think we may need the data 1461 * again soon. 1462 * 1463 * XXX we should be able to leave the B_RELBUF hint set on completion. 1464 */ 1465 void 1466 bqrelse(struct buf * bp) 1467 { 1468 int s; 1469 1470 s = splbio(); 1471 1472 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1473 1474 if (bp->b_qindex != QUEUE_NONE) 1475 panic("bqrelse: free buffer onto another queue???"); 1476 if (BUF_REFCNT(bp) > 1) { 1477 /* do not release to free list */ 1478 BUF_UNLOCK(bp); 1479 splx(s); 1480 return; 1481 } 1482 mtx_lock(&bqlock); 1483 if (bp->b_flags & B_LOCKED) { 1484 bp->b_ioflags &= ~BIO_ERROR; 1485 bp->b_qindex = QUEUE_LOCKED; 1486 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1487 /* buffers with stale but valid contents */ 1488 } else if (bp->b_flags & B_DELWRI) { 1489 bp->b_qindex = QUEUE_DIRTY; 1490 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1491 } else if (vm_page_count_severe()) { 1492 /* 1493 * We are too low on memory, we have to try to free the 1494 * buffer (most importantly: the wired pages making up its 1495 * backing store) *now*. 1496 */ 1497 mtx_unlock(&bqlock); 1498 splx(s); 1499 brelse(bp); 1500 return; 1501 } else { 1502 bp->b_qindex = QUEUE_CLEAN; 1503 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1504 } 1505 mtx_unlock(&bqlock); 1506 1507 if ((bp->b_flags & B_LOCKED) == 0 && 1508 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1509 bufcountwakeup(); 1510 } 1511 1512 /* 1513 * Something we can maybe free or reuse. 1514 */ 1515 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1516 bufspacewakeup(); 1517 1518 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1519 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1520 panic("bqrelse: not dirty"); 1521 /* unlock */ 1522 BUF_UNLOCK(bp); 1523 splx(s); 1524 } 1525 1526 /* Give pages used by the bp back to the VM system (where possible) */ 1527 static void 1528 vfs_vmio_release(bp) 1529 struct buf *bp; 1530 { 1531 int i; 1532 vm_page_t m; 1533 1534 GIANT_REQUIRED; 1535 vm_page_lock_queues(); 1536 for (i = 0; i < bp->b_npages; i++) { 1537 m = bp->b_pages[i]; 1538 bp->b_pages[i] = NULL; 1539 /* 1540 * In order to keep page LRU ordering consistent, put 1541 * everything on the inactive queue. 1542 */ 1543 vm_page_unwire(m, 0); 1544 /* 1545 * We don't mess with busy pages, it is 1546 * the responsibility of the process that 1547 * busied the pages to deal with them. 1548 */ 1549 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1550 continue; 1551 1552 if (m->wire_count == 0) { 1553 vm_page_flag_clear(m, PG_ZERO); 1554 /* 1555 * Might as well free the page if we can and it has 1556 * no valid data. We also free the page if the 1557 * buffer was used for direct I/O 1558 */ 1559 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1560 m->hold_count == 0) { 1561 vm_page_busy(m); 1562 pmap_remove_all(m); 1563 vm_page_free(m); 1564 } else if (bp->b_flags & B_DIRECT) { 1565 vm_page_try_to_free(m); 1566 } else if (vm_page_count_severe()) { 1567 vm_page_try_to_cache(m); 1568 } 1569 } 1570 } 1571 vm_page_unlock_queues(); 1572 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1573 1574 if (bp->b_bufsize) { 1575 bufspacewakeup(); 1576 bp->b_bufsize = 0; 1577 } 1578 bp->b_npages = 0; 1579 bp->b_flags &= ~B_VMIO; 1580 if (bp->b_vp) 1581 brelvp(bp); 1582 } 1583 1584 /* 1585 * Check to see if a block at a particular lbn is available for a clustered 1586 * write. 1587 */ 1588 static int 1589 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 1590 { 1591 struct buf *bpa; 1592 int match; 1593 1594 match = 0; 1595 1596 /* If the buf isn't in core skip it */ 1597 if ((bpa = gbincore(vp, lblkno)) == NULL) 1598 return (0); 1599 1600 /* If the buf is busy we don't want to wait for it */ 1601 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1602 return (0); 1603 1604 /* Only cluster with valid clusterable delayed write buffers */ 1605 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 1606 (B_DELWRI | B_CLUSTEROK)) 1607 goto done; 1608 1609 if (bpa->b_bufsize != size) 1610 goto done; 1611 1612 /* 1613 * Check to see if it is in the expected place on disk and that the 1614 * block has been mapped. 1615 */ 1616 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 1617 match = 1; 1618 done: 1619 BUF_UNLOCK(bpa); 1620 return (match); 1621 } 1622 1623 /* 1624 * vfs_bio_awrite: 1625 * 1626 * Implement clustered async writes for clearing out B_DELWRI buffers. 1627 * This is much better then the old way of writing only one buffer at 1628 * a time. Note that we may not be presented with the buffers in the 1629 * correct order, so we search for the cluster in both directions. 1630 */ 1631 int 1632 vfs_bio_awrite(struct buf * bp) 1633 { 1634 int i; 1635 int j; 1636 daddr_t lblkno = bp->b_lblkno; 1637 struct vnode *vp = bp->b_vp; 1638 int s; 1639 int ncl; 1640 int nwritten; 1641 int size; 1642 int maxcl; 1643 1644 s = splbio(); 1645 /* 1646 * right now we support clustered writing only to regular files. If 1647 * we find a clusterable block we could be in the middle of a cluster 1648 * rather then at the beginning. 1649 */ 1650 if ((vp->v_type == VREG) && 1651 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1652 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1653 1654 size = vp->v_mount->mnt_stat.f_iosize; 1655 maxcl = MAXPHYS / size; 1656 1657 VI_LOCK(vp); 1658 for (i = 1; i < maxcl; i++) 1659 if (vfs_bio_clcheck(vp, size, lblkno + i, 1660 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 1661 break; 1662 1663 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 1664 if (vfs_bio_clcheck(vp, size, lblkno - j, 1665 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 1666 break; 1667 1668 VI_UNLOCK(vp); 1669 --j; 1670 ncl = i + j; 1671 /* 1672 * this is a possible cluster write 1673 */ 1674 if (ncl != 1) { 1675 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1676 splx(s); 1677 return nwritten; 1678 } 1679 } 1680 1681 BUF_LOCK(bp, LK_EXCLUSIVE, NULL); 1682 bremfree(bp); 1683 bp->b_flags |= B_ASYNC; 1684 1685 splx(s); 1686 /* 1687 * default (old) behavior, writing out only one block 1688 * 1689 * XXX returns b_bufsize instead of b_bcount for nwritten? 1690 */ 1691 nwritten = bp->b_bufsize; 1692 (void) BUF_WRITE(bp); 1693 1694 return nwritten; 1695 } 1696 1697 /* 1698 * getnewbuf: 1699 * 1700 * Find and initialize a new buffer header, freeing up existing buffers 1701 * in the bufqueues as necessary. The new buffer is returned locked. 1702 * 1703 * Important: B_INVAL is not set. If the caller wishes to throw the 1704 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1705 * 1706 * We block if: 1707 * We have insufficient buffer headers 1708 * We have insufficient buffer space 1709 * buffer_map is too fragmented ( space reservation fails ) 1710 * If we have to flush dirty buffers ( but we try to avoid this ) 1711 * 1712 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1713 * Instead we ask the buf daemon to do it for us. We attempt to 1714 * avoid piecemeal wakeups of the pageout daemon. 1715 */ 1716 1717 static struct buf * 1718 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1719 { 1720 struct buf *bp; 1721 struct buf *nbp; 1722 int defrag = 0; 1723 int nqindex; 1724 static int flushingbufs; 1725 1726 GIANT_REQUIRED; 1727 1728 /* 1729 * We can't afford to block since we might be holding a vnode lock, 1730 * which may prevent system daemons from running. We deal with 1731 * low-memory situations by proactively returning memory and running 1732 * async I/O rather then sync I/O. 1733 */ 1734 1735 atomic_add_int(&getnewbufcalls, 1); 1736 atomic_subtract_int(&getnewbufrestarts, 1); 1737 restart: 1738 atomic_add_int(&getnewbufrestarts, 1); 1739 1740 /* 1741 * Setup for scan. If we do not have enough free buffers, 1742 * we setup a degenerate case that immediately fails. Note 1743 * that if we are specially marked process, we are allowed to 1744 * dip into our reserves. 1745 * 1746 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1747 * 1748 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1749 * However, there are a number of cases (defragging, reusing, ...) 1750 * where we cannot backup. 1751 */ 1752 mtx_lock(&bqlock); 1753 nqindex = QUEUE_EMPTYKVA; 1754 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1755 1756 if (nbp == NULL) { 1757 /* 1758 * If no EMPTYKVA buffers and we are either 1759 * defragging or reusing, locate a CLEAN buffer 1760 * to free or reuse. If bufspace useage is low 1761 * skip this step so we can allocate a new buffer. 1762 */ 1763 if (defrag || bufspace >= lobufspace) { 1764 nqindex = QUEUE_CLEAN; 1765 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1766 } 1767 1768 /* 1769 * If we could not find or were not allowed to reuse a 1770 * CLEAN buffer, check to see if it is ok to use an EMPTY 1771 * buffer. We can only use an EMPTY buffer if allocating 1772 * its KVA would not otherwise run us out of buffer space. 1773 */ 1774 if (nbp == NULL && defrag == 0 && 1775 bufspace + maxsize < hibufspace) { 1776 nqindex = QUEUE_EMPTY; 1777 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1778 } 1779 } 1780 1781 /* 1782 * Run scan, possibly freeing data and/or kva mappings on the fly 1783 * depending. 1784 */ 1785 1786 while ((bp = nbp) != NULL) { 1787 int qindex = nqindex; 1788 1789 /* 1790 * Calculate next bp ( we can only use it if we do not block 1791 * or do other fancy things ). 1792 */ 1793 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1794 switch(qindex) { 1795 case QUEUE_EMPTY: 1796 nqindex = QUEUE_EMPTYKVA; 1797 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1798 break; 1799 /* FALLTHROUGH */ 1800 case QUEUE_EMPTYKVA: 1801 nqindex = QUEUE_CLEAN; 1802 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1803 break; 1804 /* FALLTHROUGH */ 1805 case QUEUE_CLEAN: 1806 /* 1807 * nbp is NULL. 1808 */ 1809 break; 1810 } 1811 } 1812 1813 /* 1814 * Sanity Checks 1815 */ 1816 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1817 1818 /* 1819 * Note: we no longer distinguish between VMIO and non-VMIO 1820 * buffers. 1821 */ 1822 1823 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1824 1825 /* 1826 * If we are defragging then we need a buffer with 1827 * b_kvasize != 0. XXX this situation should no longer 1828 * occur, if defrag is non-zero the buffer's b_kvasize 1829 * should also be non-zero at this point. XXX 1830 */ 1831 if (defrag && bp->b_kvasize == 0) { 1832 printf("Warning: defrag empty buffer %p\n", bp); 1833 continue; 1834 } 1835 1836 /* 1837 * Start freeing the bp. This is somewhat involved. nbp 1838 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1839 */ 1840 1841 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1842 panic("getnewbuf: locked buf"); 1843 bremfreel(bp); 1844 mtx_unlock(&bqlock); 1845 1846 if (qindex == QUEUE_CLEAN) { 1847 if (bp->b_flags & B_VMIO) { 1848 bp->b_flags &= ~B_ASYNC; 1849 vfs_vmio_release(bp); 1850 } 1851 if (bp->b_vp) 1852 brelvp(bp); 1853 } 1854 1855 /* 1856 * NOTE: nbp is now entirely invalid. We can only restart 1857 * the scan from this point on. 1858 * 1859 * Get the rest of the buffer freed up. b_kva* is still 1860 * valid after this operation. 1861 */ 1862 1863 if (bp->b_rcred != NOCRED) { 1864 crfree(bp->b_rcred); 1865 bp->b_rcred = NOCRED; 1866 } 1867 if (bp->b_wcred != NOCRED) { 1868 crfree(bp->b_wcred); 1869 bp->b_wcred = NOCRED; 1870 } 1871 if (LIST_FIRST(&bp->b_dep) != NULL) 1872 buf_deallocate(bp); 1873 if (bp->b_xflags & BX_BKGRDINPROG) 1874 panic("losing buffer 3"); 1875 1876 if (bp->b_bufsize) 1877 allocbuf(bp, 0); 1878 1879 bp->b_flags = 0; 1880 bp->b_ioflags = 0; 1881 bp->b_xflags = 0; 1882 bp->b_vflags = 0; 1883 bp->b_dev = NODEV; 1884 bp->b_vp = NULL; 1885 bp->b_blkno = bp->b_lblkno = 0; 1886 bp->b_offset = NOOFFSET; 1887 bp->b_iodone = 0; 1888 bp->b_error = 0; 1889 bp->b_resid = 0; 1890 bp->b_bcount = 0; 1891 bp->b_npages = 0; 1892 bp->b_dirtyoff = bp->b_dirtyend = 0; 1893 bp->b_magic = B_MAGIC_BIO; 1894 bp->b_op = &buf_ops_bio; 1895 bp->b_object = NULL; 1896 1897 LIST_INIT(&bp->b_dep); 1898 1899 /* 1900 * If we are defragging then free the buffer. 1901 */ 1902 if (defrag) { 1903 bp->b_flags |= B_INVAL; 1904 bfreekva(bp); 1905 brelse(bp); 1906 defrag = 0; 1907 goto restart; 1908 } 1909 1910 /* 1911 * If we are overcomitted then recover the buffer and its 1912 * KVM space. This occurs in rare situations when multiple 1913 * processes are blocked in getnewbuf() or allocbuf(). 1914 */ 1915 if (bufspace >= hibufspace) 1916 flushingbufs = 1; 1917 if (flushingbufs && bp->b_kvasize != 0) { 1918 bp->b_flags |= B_INVAL; 1919 bfreekva(bp); 1920 brelse(bp); 1921 goto restart; 1922 } 1923 if (bufspace < lobufspace) 1924 flushingbufs = 0; 1925 break; 1926 } 1927 1928 /* 1929 * If we exhausted our list, sleep as appropriate. We may have to 1930 * wakeup various daemons and write out some dirty buffers. 1931 * 1932 * Generally we are sleeping due to insufficient buffer space. 1933 */ 1934 1935 if (bp == NULL) { 1936 int flags; 1937 char *waitmsg; 1938 1939 mtx_unlock(&bqlock); 1940 if (defrag) { 1941 flags = VFS_BIO_NEED_BUFSPACE; 1942 waitmsg = "nbufkv"; 1943 } else if (bufspace >= hibufspace) { 1944 waitmsg = "nbufbs"; 1945 flags = VFS_BIO_NEED_BUFSPACE; 1946 } else { 1947 waitmsg = "newbuf"; 1948 flags = VFS_BIO_NEED_ANY; 1949 } 1950 1951 bd_speedup(); /* heeeelp */ 1952 1953 mtx_lock(&nblock); 1954 needsbuffer |= flags; 1955 while (needsbuffer & flags) { 1956 if (msleep(&needsbuffer, &nblock, 1957 (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) { 1958 mtx_unlock(&nblock); 1959 return (NULL); 1960 } 1961 } 1962 mtx_unlock(&nblock); 1963 } else { 1964 /* 1965 * We finally have a valid bp. We aren't quite out of the 1966 * woods, we still have to reserve kva space. In order 1967 * to keep fragmentation sane we only allocate kva in 1968 * BKVASIZE chunks. 1969 */ 1970 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1971 1972 if (maxsize != bp->b_kvasize) { 1973 vm_offset_t addr = 0; 1974 1975 bfreekva(bp); 1976 1977 if (vm_map_findspace(buffer_map, 1978 vm_map_min(buffer_map), maxsize, &addr)) { 1979 /* 1980 * Uh oh. Buffer map is to fragmented. We 1981 * must defragment the map. 1982 */ 1983 atomic_add_int(&bufdefragcnt, 1); 1984 defrag = 1; 1985 bp->b_flags |= B_INVAL; 1986 brelse(bp); 1987 goto restart; 1988 } 1989 if (addr) { 1990 vm_map_insert(buffer_map, NULL, 0, 1991 addr, addr + maxsize, 1992 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1993 1994 bp->b_kvabase = (caddr_t) addr; 1995 bp->b_kvasize = maxsize; 1996 atomic_add_int(&bufspace, bp->b_kvasize); 1997 atomic_add_int(&bufreusecnt, 1); 1998 } 1999 } 2000 bp->b_data = bp->b_kvabase; 2001 } 2002 return(bp); 2003 } 2004 2005 /* 2006 * buf_daemon: 2007 * 2008 * buffer flushing daemon. Buffers are normally flushed by the 2009 * update daemon but if it cannot keep up this process starts to 2010 * take the load in an attempt to prevent getnewbuf() from blocking. 2011 */ 2012 2013 static struct proc *bufdaemonproc; 2014 2015 static struct kproc_desc buf_kp = { 2016 "bufdaemon", 2017 buf_daemon, 2018 &bufdaemonproc 2019 }; 2020 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 2021 2022 static void 2023 buf_daemon() 2024 { 2025 int s; 2026 2027 mtx_lock(&Giant); 2028 2029 /* 2030 * This process needs to be suspended prior to shutdown sync. 2031 */ 2032 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 2033 SHUTDOWN_PRI_LAST); 2034 2035 /* 2036 * This process is allowed to take the buffer cache to the limit 2037 */ 2038 s = splbio(); 2039 mtx_lock(&bdlock); 2040 2041 for (;;) { 2042 bd_request = 0; 2043 mtx_unlock(&bdlock); 2044 2045 kthread_suspend_check(bufdaemonproc); 2046 2047 /* 2048 * Do the flush. Limit the amount of in-transit I/O we 2049 * allow to build up, otherwise we would completely saturate 2050 * the I/O system. Wakeup any waiting processes before we 2051 * normally would so they can run in parallel with our drain. 2052 */ 2053 while (numdirtybuffers > lodirtybuffers) { 2054 if (flushbufqueues() == 0) 2055 break; 2056 waitrunningbufspace(); 2057 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 2058 } 2059 2060 /* 2061 * Only clear bd_request if we have reached our low water 2062 * mark. The buf_daemon normally waits 1 second and 2063 * then incrementally flushes any dirty buffers that have 2064 * built up, within reason. 2065 * 2066 * If we were unable to hit our low water mark and couldn't 2067 * find any flushable buffers, we sleep half a second. 2068 * Otherwise we loop immediately. 2069 */ 2070 mtx_lock(&bdlock); 2071 if (numdirtybuffers <= lodirtybuffers) { 2072 /* 2073 * We reached our low water mark, reset the 2074 * request and sleep until we are needed again. 2075 * The sleep is just so the suspend code works. 2076 */ 2077 bd_request = 0; 2078 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 2079 } else { 2080 /* 2081 * We couldn't find any flushable dirty buffers but 2082 * still have too many dirty buffers, we 2083 * have to sleep and try again. (rare) 2084 */ 2085 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 2086 } 2087 } 2088 } 2089 2090 /* 2091 * flushbufqueues: 2092 * 2093 * Try to flush a buffer in the dirty queue. We must be careful to 2094 * free up B_INVAL buffers instead of write them, which NFS is 2095 * particularly sensitive to. 2096 */ 2097 int flushwithdeps = 0; 2098 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 2099 0, "Number of buffers flushed with dependecies that require rollbacks"); 2100 static int 2101 flushbufqueues(void) 2102 { 2103 struct thread *td = curthread; 2104 struct vnode *vp; 2105 struct buf *bp; 2106 2107 mtx_lock(&bqlock); 2108 TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) { 2109 KASSERT((bp->b_flags & B_DELWRI), 2110 ("unexpected clean buffer %p", bp)); 2111 if ((bp->b_xflags & BX_BKGRDINPROG) != 0) 2112 continue; 2113 if (bp->b_flags & B_INVAL) { 2114 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2115 panic("flushbufqueues: locked buf"); 2116 bremfreel(bp); 2117 mtx_unlock(&bqlock); 2118 brelse(bp); 2119 return (1); 2120 } 2121 if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) 2122 continue; 2123 /* 2124 * We must hold the lock on a vnode before writing 2125 * one of its buffers. Otherwise we may confuse, or 2126 * in the case of a snapshot vnode, deadlock the 2127 * system. 2128 */ 2129 if ((vp = bp->b_vp) == NULL || 2130 vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) { 2131 mtx_unlock(&bqlock); 2132 vfs_bio_awrite(bp); 2133 if (vp != NULL) 2134 VOP_UNLOCK(vp, 0, td); 2135 return (1); 2136 } 2137 } 2138 /* 2139 * Could not find any buffers without rollback dependencies, 2140 * so just write the first one in the hopes of eventually 2141 * making progress. 2142 */ 2143 TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) { 2144 KASSERT((bp->b_flags & B_DELWRI), 2145 ("unexpected clean buffer %p", bp)); 2146 if ((bp->b_xflags & BX_BKGRDINPROG) != 0) 2147 continue; 2148 if (bp->b_flags & B_INVAL) { 2149 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2150 panic("flushbufqueues: locked buf"); 2151 bremfreel(bp); 2152 mtx_unlock(&bqlock); 2153 brelse(bp); 2154 return (1); 2155 } 2156 /* 2157 * We must hold the lock on a vnode before writing 2158 * one of its buffers. Otherwise we may confuse, or 2159 * in the case of a snapshot vnode, deadlock the 2160 * system. 2161 */ 2162 if ((vp = bp->b_vp) == NULL || 2163 vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) { 2164 mtx_unlock(&bqlock); 2165 vfs_bio_awrite(bp); 2166 if (vp != NULL) 2167 VOP_UNLOCK(vp, 0, td); 2168 flushwithdeps += 1; 2169 return (0); 2170 } 2171 } 2172 mtx_unlock(&bqlock); 2173 return (0); 2174 } 2175 2176 /* 2177 * Check to see if a block is currently memory resident. 2178 */ 2179 struct buf * 2180 incore(struct vnode * vp, daddr_t blkno) 2181 { 2182 struct buf *bp; 2183 2184 int s = splbio(); 2185 VI_LOCK(vp); 2186 bp = gbincore(vp, blkno); 2187 VI_UNLOCK(vp); 2188 splx(s); 2189 return (bp); 2190 } 2191 2192 /* 2193 * Returns true if no I/O is needed to access the 2194 * associated VM object. This is like incore except 2195 * it also hunts around in the VM system for the data. 2196 */ 2197 2198 int 2199 inmem(struct vnode * vp, daddr_t blkno) 2200 { 2201 vm_object_t obj; 2202 vm_offset_t toff, tinc, size; 2203 vm_page_t m; 2204 vm_ooffset_t off; 2205 2206 GIANT_REQUIRED; 2207 ASSERT_VOP_LOCKED(vp, "inmem"); 2208 2209 if (incore(vp, blkno)) 2210 return 1; 2211 if (vp->v_mount == NULL) 2212 return 0; 2213 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0) 2214 return 0; 2215 2216 size = PAGE_SIZE; 2217 if (size > vp->v_mount->mnt_stat.f_iosize) 2218 size = vp->v_mount->mnt_stat.f_iosize; 2219 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2220 2221 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2222 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2223 if (!m) 2224 goto notinmem; 2225 tinc = size; 2226 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2227 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2228 if (vm_page_is_valid(m, 2229 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2230 goto notinmem; 2231 } 2232 return 1; 2233 2234 notinmem: 2235 return (0); 2236 } 2237 2238 /* 2239 * vfs_setdirty: 2240 * 2241 * Sets the dirty range for a buffer based on the status of the dirty 2242 * bits in the pages comprising the buffer. 2243 * 2244 * The range is limited to the size of the buffer. 2245 * 2246 * This routine is primarily used by NFS, but is generalized for the 2247 * B_VMIO case. 2248 */ 2249 static void 2250 vfs_setdirty(struct buf *bp) 2251 { 2252 int i; 2253 vm_object_t object; 2254 2255 GIANT_REQUIRED; 2256 /* 2257 * Degenerate case - empty buffer 2258 */ 2259 2260 if (bp->b_bufsize == 0) 2261 return; 2262 2263 /* 2264 * We qualify the scan for modified pages on whether the 2265 * object has been flushed yet. The OBJ_WRITEABLE flag 2266 * is not cleared simply by protecting pages off. 2267 */ 2268 2269 if ((bp->b_flags & B_VMIO) == 0) 2270 return; 2271 2272 object = bp->b_pages[0]->object; 2273 2274 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2275 printf("Warning: object %p writeable but not mightbedirty\n", object); 2276 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2277 printf("Warning: object %p mightbedirty but not writeable\n", object); 2278 2279 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2280 vm_offset_t boffset; 2281 vm_offset_t eoffset; 2282 2283 vm_page_lock_queues(); 2284 /* 2285 * test the pages to see if they have been modified directly 2286 * by users through the VM system. 2287 */ 2288 for (i = 0; i < bp->b_npages; i++) { 2289 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2290 vm_page_test_dirty(bp->b_pages[i]); 2291 } 2292 2293 /* 2294 * Calculate the encompassing dirty range, boffset and eoffset, 2295 * (eoffset - boffset) bytes. 2296 */ 2297 2298 for (i = 0; i < bp->b_npages; i++) { 2299 if (bp->b_pages[i]->dirty) 2300 break; 2301 } 2302 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2303 2304 for (i = bp->b_npages - 1; i >= 0; --i) { 2305 if (bp->b_pages[i]->dirty) { 2306 break; 2307 } 2308 } 2309 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2310 2311 vm_page_unlock_queues(); 2312 /* 2313 * Fit it to the buffer. 2314 */ 2315 2316 if (eoffset > bp->b_bcount) 2317 eoffset = bp->b_bcount; 2318 2319 /* 2320 * If we have a good dirty range, merge with the existing 2321 * dirty range. 2322 */ 2323 2324 if (boffset < eoffset) { 2325 if (bp->b_dirtyoff > boffset) 2326 bp->b_dirtyoff = boffset; 2327 if (bp->b_dirtyend < eoffset) 2328 bp->b_dirtyend = eoffset; 2329 } 2330 } 2331 } 2332 2333 /* 2334 * getblk: 2335 * 2336 * Get a block given a specified block and offset into a file/device. 2337 * The buffers B_DONE bit will be cleared on return, making it almost 2338 * ready for an I/O initiation. B_INVAL may or may not be set on 2339 * return. The caller should clear B_INVAL prior to initiating a 2340 * READ. 2341 * 2342 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2343 * an existing buffer. 2344 * 2345 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2346 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2347 * and then cleared based on the backing VM. If the previous buffer is 2348 * non-0-sized but invalid, B_CACHE will be cleared. 2349 * 2350 * If getblk() must create a new buffer, the new buffer is returned with 2351 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2352 * case it is returned with B_INVAL clear and B_CACHE set based on the 2353 * backing VM. 2354 * 2355 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2356 * B_CACHE bit is clear. 2357 * 2358 * What this means, basically, is that the caller should use B_CACHE to 2359 * determine whether the buffer is fully valid or not and should clear 2360 * B_INVAL prior to issuing a read. If the caller intends to validate 2361 * the buffer by loading its data area with something, the caller needs 2362 * to clear B_INVAL. If the caller does this without issuing an I/O, 2363 * the caller should set B_CACHE ( as an optimization ), else the caller 2364 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2365 * a write attempt or if it was a successfull read. If the caller 2366 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2367 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2368 */ 2369 struct buf * 2370 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2371 { 2372 struct buf *bp; 2373 int s; 2374 int error; 2375 ASSERT_VOP_LOCKED(vp, "getblk"); 2376 2377 if (size > MAXBSIZE) 2378 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2379 2380 s = splbio(); 2381 loop: 2382 /* 2383 * Block if we are low on buffers. Certain processes are allowed 2384 * to completely exhaust the buffer cache. 2385 * 2386 * If this check ever becomes a bottleneck it may be better to 2387 * move it into the else, when gbincore() fails. At the moment 2388 * it isn't a problem. 2389 * 2390 * XXX remove if 0 sections (clean this up after its proven) 2391 */ 2392 if (numfreebuffers == 0) { 2393 if (curthread == PCPU_GET(idlethread)) 2394 return NULL; 2395 mtx_lock(&nblock); 2396 needsbuffer |= VFS_BIO_NEED_ANY; 2397 mtx_unlock(&nblock); 2398 } 2399 2400 VI_LOCK(vp); 2401 if ((bp = gbincore(vp, blkno))) { 2402 /* 2403 * Buffer is in-core. If the buffer is not busy, it must 2404 * be on a queue. 2405 */ 2406 2407 error = BUF_TIMELOCK(bp, 2408 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2409 VI_MTX(vp), "getblk", slpflag, slptimeo); 2410 2411 /* 2412 * If we slept and got the lock we have to restart in case 2413 * the buffer changed identities. 2414 */ 2415 if (error == ENOLCK) 2416 goto loop; 2417 /* We timed out or were interrupted. */ 2418 else if (error) 2419 return (NULL); 2420 2421 /* 2422 * The buffer is locked. B_CACHE is cleared if the buffer is 2423 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 2424 * and for a VMIO buffer B_CACHE is adjusted according to the 2425 * backing VM cache. 2426 */ 2427 if (bp->b_flags & B_INVAL) 2428 bp->b_flags &= ~B_CACHE; 2429 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2430 bp->b_flags |= B_CACHE; 2431 bremfree(bp); 2432 2433 /* 2434 * check for size inconsistancies for non-VMIO case. 2435 */ 2436 2437 if (bp->b_bcount != size) { 2438 if ((bp->b_flags & B_VMIO) == 0 || 2439 (size > bp->b_kvasize)) { 2440 if (bp->b_flags & B_DELWRI) { 2441 bp->b_flags |= B_NOCACHE; 2442 BUF_WRITE(bp); 2443 } else { 2444 if ((bp->b_flags & B_VMIO) && 2445 (LIST_FIRST(&bp->b_dep) == NULL)) { 2446 bp->b_flags |= B_RELBUF; 2447 brelse(bp); 2448 } else { 2449 bp->b_flags |= B_NOCACHE; 2450 BUF_WRITE(bp); 2451 } 2452 } 2453 goto loop; 2454 } 2455 } 2456 2457 /* 2458 * If the size is inconsistant in the VMIO case, we can resize 2459 * the buffer. This might lead to B_CACHE getting set or 2460 * cleared. If the size has not changed, B_CACHE remains 2461 * unchanged from its previous state. 2462 */ 2463 2464 if (bp->b_bcount != size) 2465 allocbuf(bp, size); 2466 2467 KASSERT(bp->b_offset != NOOFFSET, 2468 ("getblk: no buffer offset")); 2469 2470 /* 2471 * A buffer with B_DELWRI set and B_CACHE clear must 2472 * be committed before we can return the buffer in 2473 * order to prevent the caller from issuing a read 2474 * ( due to B_CACHE not being set ) and overwriting 2475 * it. 2476 * 2477 * Most callers, including NFS and FFS, need this to 2478 * operate properly either because they assume they 2479 * can issue a read if B_CACHE is not set, or because 2480 * ( for example ) an uncached B_DELWRI might loop due 2481 * to softupdates re-dirtying the buffer. In the latter 2482 * case, B_CACHE is set after the first write completes, 2483 * preventing further loops. 2484 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2485 * above while extending the buffer, we cannot allow the 2486 * buffer to remain with B_CACHE set after the write 2487 * completes or it will represent a corrupt state. To 2488 * deal with this we set B_NOCACHE to scrap the buffer 2489 * after the write. 2490 * 2491 * We might be able to do something fancy, like setting 2492 * B_CACHE in bwrite() except if B_DELWRI is already set, 2493 * so the below call doesn't set B_CACHE, but that gets real 2494 * confusing. This is much easier. 2495 */ 2496 2497 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2498 bp->b_flags |= B_NOCACHE; 2499 BUF_WRITE(bp); 2500 goto loop; 2501 } 2502 2503 splx(s); 2504 bp->b_flags &= ~B_DONE; 2505 } else { 2506 int bsize, maxsize, vmio; 2507 off_t offset; 2508 2509 /* 2510 * Buffer is not in-core, create new buffer. The buffer 2511 * returned by getnewbuf() is locked. Note that the returned 2512 * buffer is also considered valid (not marked B_INVAL). 2513 */ 2514 VI_UNLOCK(vp); 2515 if (vn_isdisk(vp, NULL)) 2516 bsize = DEV_BSIZE; 2517 else if (vp->v_mountedhere) 2518 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2519 else if (vp->v_mount) 2520 bsize = vp->v_mount->mnt_stat.f_iosize; 2521 else 2522 bsize = size; 2523 2524 offset = blkno * bsize; 2525 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && 2526 (vp->v_vflag & VV_OBJBUF); 2527 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2528 maxsize = imax(maxsize, bsize); 2529 2530 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2531 if (slpflag || slptimeo) { 2532 splx(s); 2533 return NULL; 2534 } 2535 goto loop; 2536 } 2537 2538 /* 2539 * This code is used to make sure that a buffer is not 2540 * created while the getnewbuf routine is blocked. 2541 * This can be a problem whether the vnode is locked or not. 2542 * If the buffer is created out from under us, we have to 2543 * throw away the one we just created. There is now window 2544 * race because we are safely running at splbio() from the 2545 * point of the duplicate buffer creation through to here, 2546 * and we've locked the buffer. 2547 * 2548 * Note: this must occur before we associate the buffer 2549 * with the vp especially considering limitations in 2550 * the splay tree implementation when dealing with duplicate 2551 * lblkno's. 2552 */ 2553 VI_LOCK(vp); 2554 if (gbincore(vp, blkno)) { 2555 VI_UNLOCK(vp); 2556 bp->b_flags |= B_INVAL; 2557 brelse(bp); 2558 goto loop; 2559 } 2560 2561 /* 2562 * Insert the buffer into the hash, so that it can 2563 * be found by incore. 2564 */ 2565 bp->b_blkno = bp->b_lblkno = blkno; 2566 bp->b_offset = offset; 2567 2568 bgetvp(vp, bp); 2569 VI_UNLOCK(vp); 2570 2571 /* 2572 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2573 * buffer size starts out as 0, B_CACHE will be set by 2574 * allocbuf() for the VMIO case prior to it testing the 2575 * backing store for validity. 2576 */ 2577 2578 if (vmio) { 2579 bp->b_flags |= B_VMIO; 2580 #if defined(VFS_BIO_DEBUG) 2581 if (vp->v_type != VREG) 2582 printf("getblk: vmioing file type %d???\n", vp->v_type); 2583 #endif 2584 VOP_GETVOBJECT(vp, &bp->b_object); 2585 } else { 2586 bp->b_flags &= ~B_VMIO; 2587 bp->b_object = NULL; 2588 } 2589 2590 allocbuf(bp, size); 2591 2592 splx(s); 2593 bp->b_flags &= ~B_DONE; 2594 } 2595 KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp)); 2596 return (bp); 2597 } 2598 2599 /* 2600 * Get an empty, disassociated buffer of given size. The buffer is initially 2601 * set to B_INVAL. 2602 */ 2603 struct buf * 2604 geteblk(int size) 2605 { 2606 struct buf *bp; 2607 int s; 2608 int maxsize; 2609 2610 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2611 2612 s = splbio(); 2613 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2614 continue; 2615 splx(s); 2616 allocbuf(bp, size); 2617 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2618 KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp)); 2619 return (bp); 2620 } 2621 2622 2623 /* 2624 * This code constitutes the buffer memory from either anonymous system 2625 * memory (in the case of non-VMIO operations) or from an associated 2626 * VM object (in the case of VMIO operations). This code is able to 2627 * resize a buffer up or down. 2628 * 2629 * Note that this code is tricky, and has many complications to resolve 2630 * deadlock or inconsistant data situations. Tread lightly!!! 2631 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2632 * the caller. Calling this code willy nilly can result in the loss of data. 2633 * 2634 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2635 * B_CACHE for the non-VMIO case. 2636 */ 2637 2638 int 2639 allocbuf(struct buf *bp, int size) 2640 { 2641 int newbsize, mbsize; 2642 int i; 2643 2644 GIANT_REQUIRED; 2645 2646 if (BUF_REFCNT(bp) == 0) 2647 panic("allocbuf: buffer not busy"); 2648 2649 if (bp->b_kvasize < size) 2650 panic("allocbuf: buffer too small"); 2651 2652 if ((bp->b_flags & B_VMIO) == 0) { 2653 caddr_t origbuf; 2654 int origbufsize; 2655 /* 2656 * Just get anonymous memory from the kernel. Don't 2657 * mess with B_CACHE. 2658 */ 2659 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2660 if (bp->b_flags & B_MALLOC) 2661 newbsize = mbsize; 2662 else 2663 newbsize = round_page(size); 2664 2665 if (newbsize < bp->b_bufsize) { 2666 /* 2667 * malloced buffers are not shrunk 2668 */ 2669 if (bp->b_flags & B_MALLOC) { 2670 if (newbsize) { 2671 bp->b_bcount = size; 2672 } else { 2673 free(bp->b_data, M_BIOBUF); 2674 if (bp->b_bufsize) { 2675 atomic_subtract_int( 2676 &bufmallocspace, 2677 bp->b_bufsize); 2678 bufspacewakeup(); 2679 bp->b_bufsize = 0; 2680 } 2681 bp->b_data = bp->b_kvabase; 2682 bp->b_bcount = 0; 2683 bp->b_flags &= ~B_MALLOC; 2684 } 2685 return 1; 2686 } 2687 vm_hold_free_pages( 2688 bp, 2689 (vm_offset_t) bp->b_data + newbsize, 2690 (vm_offset_t) bp->b_data + bp->b_bufsize); 2691 } else if (newbsize > bp->b_bufsize) { 2692 /* 2693 * We only use malloced memory on the first allocation. 2694 * and revert to page-allocated memory when the buffer 2695 * grows. 2696 */ 2697 /* 2698 * There is a potential smp race here that could lead 2699 * to bufmallocspace slightly passing the max. It 2700 * is probably extremely rare and not worth worrying 2701 * over. 2702 */ 2703 if ( (bufmallocspace < maxbufmallocspace) && 2704 (bp->b_bufsize == 0) && 2705 (mbsize <= PAGE_SIZE/2)) { 2706 2707 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2708 bp->b_bufsize = mbsize; 2709 bp->b_bcount = size; 2710 bp->b_flags |= B_MALLOC; 2711 atomic_add_int(&bufmallocspace, mbsize); 2712 return 1; 2713 } 2714 origbuf = NULL; 2715 origbufsize = 0; 2716 /* 2717 * If the buffer is growing on its other-than-first allocation, 2718 * then we revert to the page-allocation scheme. 2719 */ 2720 if (bp->b_flags & B_MALLOC) { 2721 origbuf = bp->b_data; 2722 origbufsize = bp->b_bufsize; 2723 bp->b_data = bp->b_kvabase; 2724 if (bp->b_bufsize) { 2725 atomic_subtract_int(&bufmallocspace, 2726 bp->b_bufsize); 2727 bufspacewakeup(); 2728 bp->b_bufsize = 0; 2729 } 2730 bp->b_flags &= ~B_MALLOC; 2731 newbsize = round_page(newbsize); 2732 } 2733 vm_hold_load_pages( 2734 bp, 2735 (vm_offset_t) bp->b_data + bp->b_bufsize, 2736 (vm_offset_t) bp->b_data + newbsize); 2737 if (origbuf) { 2738 bcopy(origbuf, bp->b_data, origbufsize); 2739 free(origbuf, M_BIOBUF); 2740 } 2741 } 2742 } else { 2743 int desiredpages; 2744 2745 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2746 desiredpages = (size == 0) ? 0 : 2747 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2748 2749 if (bp->b_flags & B_MALLOC) 2750 panic("allocbuf: VMIO buffer can't be malloced"); 2751 /* 2752 * Set B_CACHE initially if buffer is 0 length or will become 2753 * 0-length. 2754 */ 2755 if (size == 0 || bp->b_bufsize == 0) 2756 bp->b_flags |= B_CACHE; 2757 2758 if (newbsize < bp->b_bufsize) { 2759 /* 2760 * DEV_BSIZE aligned new buffer size is less then the 2761 * DEV_BSIZE aligned existing buffer size. Figure out 2762 * if we have to remove any pages. 2763 */ 2764 if (desiredpages < bp->b_npages) { 2765 vm_page_t m; 2766 2767 vm_page_lock_queues(); 2768 for (i = desiredpages; i < bp->b_npages; i++) { 2769 /* 2770 * the page is not freed here -- it 2771 * is the responsibility of 2772 * vnode_pager_setsize 2773 */ 2774 m = bp->b_pages[i]; 2775 KASSERT(m != bogus_page, 2776 ("allocbuf: bogus page found")); 2777 while (vm_page_sleep_if_busy(m, TRUE, "biodep")) 2778 vm_page_lock_queues(); 2779 2780 bp->b_pages[i] = NULL; 2781 vm_page_unwire(m, 0); 2782 } 2783 vm_page_unlock_queues(); 2784 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2785 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2786 bp->b_npages = desiredpages; 2787 } 2788 } else if (size > bp->b_bcount) { 2789 /* 2790 * We are growing the buffer, possibly in a 2791 * byte-granular fashion. 2792 */ 2793 struct vnode *vp; 2794 vm_object_t obj; 2795 vm_offset_t toff; 2796 vm_offset_t tinc; 2797 2798 /* 2799 * Step 1, bring in the VM pages from the object, 2800 * allocating them if necessary. We must clear 2801 * B_CACHE if these pages are not valid for the 2802 * range covered by the buffer. 2803 */ 2804 2805 vp = bp->b_vp; 2806 obj = bp->b_object; 2807 2808 while (bp->b_npages < desiredpages) { 2809 vm_page_t m; 2810 vm_pindex_t pi; 2811 2812 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2813 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2814 /* 2815 * note: must allocate system pages 2816 * since blocking here could intefere 2817 * with paging I/O, no matter which 2818 * process we are. 2819 */ 2820 m = vm_page_alloc(obj, pi, 2821 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 2822 if (m == NULL) { 2823 atomic_add_int(&vm_pageout_deficit, 2824 desiredpages - bp->b_npages); 2825 VM_WAIT; 2826 } else { 2827 vm_page_lock_queues(); 2828 vm_page_wakeup(m); 2829 vm_page_unlock_queues(); 2830 bp->b_flags &= ~B_CACHE; 2831 bp->b_pages[bp->b_npages] = m; 2832 ++bp->b_npages; 2833 } 2834 continue; 2835 } 2836 2837 /* 2838 * We found a page. If we have to sleep on it, 2839 * retry because it might have gotten freed out 2840 * from under us. 2841 * 2842 * We can only test PG_BUSY here. Blocking on 2843 * m->busy might lead to a deadlock: 2844 * 2845 * vm_fault->getpages->cluster_read->allocbuf 2846 * 2847 */ 2848 vm_page_lock_queues(); 2849 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk")) 2850 continue; 2851 2852 /* 2853 * We have a good page. Should we wakeup the 2854 * page daemon? 2855 */ 2856 if ((curproc != pageproc) && 2857 ((m->queue - m->pc) == PQ_CACHE) && 2858 ((cnt.v_free_count + cnt.v_cache_count) < 2859 (cnt.v_free_min + cnt.v_cache_min))) { 2860 pagedaemon_wakeup(); 2861 } 2862 vm_page_flag_clear(m, PG_ZERO); 2863 vm_page_wire(m); 2864 vm_page_unlock_queues(); 2865 bp->b_pages[bp->b_npages] = m; 2866 ++bp->b_npages; 2867 } 2868 2869 /* 2870 * Step 2. We've loaded the pages into the buffer, 2871 * we have to figure out if we can still have B_CACHE 2872 * set. Note that B_CACHE is set according to the 2873 * byte-granular range ( bcount and size ), new the 2874 * aligned range ( newbsize ). 2875 * 2876 * The VM test is against m->valid, which is DEV_BSIZE 2877 * aligned. Needless to say, the validity of the data 2878 * needs to also be DEV_BSIZE aligned. Note that this 2879 * fails with NFS if the server or some other client 2880 * extends the file's EOF. If our buffer is resized, 2881 * B_CACHE may remain set! XXX 2882 */ 2883 2884 toff = bp->b_bcount; 2885 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2886 2887 while ((bp->b_flags & B_CACHE) && toff < size) { 2888 vm_pindex_t pi; 2889 2890 if (tinc > (size - toff)) 2891 tinc = size - toff; 2892 2893 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2894 PAGE_SHIFT; 2895 2896 vfs_buf_test_cache( 2897 bp, 2898 bp->b_offset, 2899 toff, 2900 tinc, 2901 bp->b_pages[pi] 2902 ); 2903 toff += tinc; 2904 tinc = PAGE_SIZE; 2905 } 2906 2907 /* 2908 * Step 3, fixup the KVM pmap. Remember that 2909 * bp->b_data is relative to bp->b_offset, but 2910 * bp->b_offset may be offset into the first page. 2911 */ 2912 2913 bp->b_data = (caddr_t) 2914 trunc_page((vm_offset_t)bp->b_data); 2915 pmap_qenter( 2916 (vm_offset_t)bp->b_data, 2917 bp->b_pages, 2918 bp->b_npages 2919 ); 2920 2921 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2922 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2923 } 2924 } 2925 if (newbsize < bp->b_bufsize) 2926 bufspacewakeup(); 2927 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2928 bp->b_bcount = size; /* requested buffer size */ 2929 return 1; 2930 } 2931 2932 void 2933 biodone(struct bio *bp) 2934 { 2935 bp->bio_flags |= BIO_DONE; 2936 if (bp->bio_done != NULL) 2937 bp->bio_done(bp); 2938 else 2939 wakeup(bp); 2940 } 2941 2942 /* 2943 * Wait for a BIO to finish. 2944 * 2945 * XXX: resort to a timeout for now. The optimal locking (if any) for this 2946 * case is not yet clear. 2947 */ 2948 int 2949 biowait(struct bio *bp, const char *wchan) 2950 { 2951 2952 while ((bp->bio_flags & BIO_DONE) == 0) 2953 msleep(bp, NULL, PRIBIO, wchan, hz / 10); 2954 if (bp->bio_error != 0) 2955 return (bp->bio_error); 2956 if (!(bp->bio_flags & BIO_ERROR)) 2957 return (0); 2958 return (EIO); 2959 } 2960 2961 void 2962 biofinish(struct bio *bp, struct devstat *stat, int error) 2963 { 2964 2965 if (error) { 2966 bp->bio_error = error; 2967 bp->bio_flags |= BIO_ERROR; 2968 } 2969 if (stat != NULL) 2970 devstat_end_transaction_bio(stat, bp); 2971 biodone(bp); 2972 } 2973 2974 void 2975 bioq_init(struct bio_queue_head *head) 2976 { 2977 TAILQ_INIT(&head->queue); 2978 head->last_pblkno = 0; 2979 head->insert_point = NULL; 2980 head->switch_point = NULL; 2981 } 2982 2983 void 2984 bioq_remove(struct bio_queue_head *head, struct bio *bp) 2985 { 2986 if (bp == head->switch_point) 2987 head->switch_point = TAILQ_NEXT(bp, bio_queue); 2988 if (bp == head->insert_point) { 2989 head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue); 2990 if (head->insert_point == NULL) 2991 head->last_pblkno = 0; 2992 } else if (bp == TAILQ_FIRST(&head->queue)) 2993 head->last_pblkno = bp->bio_pblkno; 2994 TAILQ_REMOVE(&head->queue, bp, bio_queue); 2995 if (TAILQ_FIRST(&head->queue) == head->switch_point) 2996 head->switch_point = NULL; 2997 } 2998 2999 /* 3000 * bufwait: 3001 * 3002 * Wait for buffer I/O completion, returning error status. The buffer 3003 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 3004 * error and cleared. 3005 */ 3006 int 3007 bufwait(register struct buf * bp) 3008 { 3009 int s; 3010 3011 s = splbio(); 3012 while ((bp->b_flags & B_DONE) == 0) { 3013 if (bp->b_iocmd == BIO_READ) 3014 tsleep(bp, PRIBIO, "biord", 0); 3015 else 3016 tsleep(bp, PRIBIO, "biowr", 0); 3017 } 3018 splx(s); 3019 if (bp->b_flags & B_EINTR) { 3020 bp->b_flags &= ~B_EINTR; 3021 return (EINTR); 3022 } 3023 if (bp->b_ioflags & BIO_ERROR) { 3024 return (bp->b_error ? bp->b_error : EIO); 3025 } else { 3026 return (0); 3027 } 3028 } 3029 3030 /* 3031 * Call back function from struct bio back up to struct buf. 3032 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 3033 */ 3034 void 3035 bufdonebio(struct bio *bp) 3036 { 3037 bufdone(bp->bio_caller2); 3038 } 3039 3040 /* 3041 * bufdone: 3042 * 3043 * Finish I/O on a buffer, optionally calling a completion function. 3044 * This is usually called from an interrupt so process blocking is 3045 * not allowed. 3046 * 3047 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3048 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3049 * assuming B_INVAL is clear. 3050 * 3051 * For the VMIO case, we set B_CACHE if the op was a read and no 3052 * read error occured, or if the op was a write. B_CACHE is never 3053 * set if the buffer is invalid or otherwise uncacheable. 3054 * 3055 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3056 * initiator to leave B_INVAL set to brelse the buffer out of existance 3057 * in the biodone routine. 3058 */ 3059 void 3060 bufdone(struct buf *bp) 3061 { 3062 int s; 3063 void (*biodone)(struct buf *); 3064 3065 GIANT_REQUIRED; 3066 3067 s = splbio(); 3068 3069 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 3070 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 3071 3072 bp->b_flags |= B_DONE; 3073 runningbufwakeup(bp); 3074 3075 if (bp->b_iocmd == BIO_DELETE) { 3076 brelse(bp); 3077 splx(s); 3078 return; 3079 } 3080 3081 if (bp->b_iocmd == BIO_WRITE) { 3082 vwakeup(bp); 3083 } 3084 3085 /* call optional completion function if requested */ 3086 if (bp->b_iodone != NULL) { 3087 biodone = bp->b_iodone; 3088 bp->b_iodone = NULL; 3089 (*biodone) (bp); 3090 splx(s); 3091 return; 3092 } 3093 if (LIST_FIRST(&bp->b_dep) != NULL) 3094 buf_complete(bp); 3095 3096 if (bp->b_flags & B_VMIO) { 3097 int i; 3098 vm_ooffset_t foff; 3099 vm_page_t m; 3100 vm_object_t obj; 3101 int iosize; 3102 struct vnode *vp = bp->b_vp; 3103 3104 obj = bp->b_object; 3105 3106 #if defined(VFS_BIO_DEBUG) 3107 mp_fixme("usecount and vflag accessed without locks."); 3108 if (vp->v_usecount == 0) { 3109 panic("biodone: zero vnode ref count"); 3110 } 3111 3112 if ((vp->v_vflag & VV_OBJBUF) == 0) { 3113 panic("biodone: vnode is not setup for merged cache"); 3114 } 3115 #endif 3116 3117 foff = bp->b_offset; 3118 KASSERT(bp->b_offset != NOOFFSET, 3119 ("biodone: no buffer offset")); 3120 3121 #if defined(VFS_BIO_DEBUG) 3122 if (obj->paging_in_progress < bp->b_npages) { 3123 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 3124 obj->paging_in_progress, bp->b_npages); 3125 } 3126 #endif 3127 3128 /* 3129 * Set B_CACHE if the op was a normal read and no error 3130 * occured. B_CACHE is set for writes in the b*write() 3131 * routines. 3132 */ 3133 iosize = bp->b_bcount - bp->b_resid; 3134 if (bp->b_iocmd == BIO_READ && 3135 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 3136 !(bp->b_ioflags & BIO_ERROR)) { 3137 bp->b_flags |= B_CACHE; 3138 } 3139 vm_page_lock_queues(); 3140 for (i = 0; i < bp->b_npages; i++) { 3141 int bogusflag = 0; 3142 int resid; 3143 3144 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3145 if (resid > iosize) 3146 resid = iosize; 3147 3148 /* 3149 * cleanup bogus pages, restoring the originals 3150 */ 3151 m = bp->b_pages[i]; 3152 if (m == bogus_page) { 3153 bogusflag = 1; 3154 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3155 if (m == NULL) 3156 panic("biodone: page disappeared!"); 3157 bp->b_pages[i] = m; 3158 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3159 } 3160 #if defined(VFS_BIO_DEBUG) 3161 if (OFF_TO_IDX(foff) != m->pindex) { 3162 printf( 3163 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n", 3164 (intmax_t)foff, (uintmax_t)m->pindex); 3165 } 3166 #endif 3167 3168 /* 3169 * In the write case, the valid and clean bits are 3170 * already changed correctly ( see bdwrite() ), so we 3171 * only need to do this here in the read case. 3172 */ 3173 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 3174 vfs_page_set_valid(bp, foff, i, m); 3175 } 3176 vm_page_flag_clear(m, PG_ZERO); 3177 3178 /* 3179 * when debugging new filesystems or buffer I/O methods, this 3180 * is the most common error that pops up. if you see this, you 3181 * have not set the page busy flag correctly!!! 3182 */ 3183 if (m->busy == 0) { 3184 printf("biodone: page busy < 0, " 3185 "pindex: %d, foff: 0x(%x,%x), " 3186 "resid: %d, index: %d\n", 3187 (int) m->pindex, (int)(foff >> 32), 3188 (int) foff & 0xffffffff, resid, i); 3189 if (!vn_isdisk(vp, NULL)) 3190 printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n", 3191 bp->b_vp->v_mount->mnt_stat.f_iosize, 3192 (intmax_t) bp->b_lblkno, 3193 bp->b_flags, bp->b_npages); 3194 else 3195 printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n", 3196 (intmax_t) bp->b_lblkno, 3197 bp->b_flags, bp->b_npages); 3198 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3199 m->valid, m->dirty, m->wire_count); 3200 panic("biodone: page busy < 0\n"); 3201 } 3202 vm_page_io_finish(m); 3203 vm_object_pip_subtract(obj, 1); 3204 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3205 iosize -= resid; 3206 } 3207 vm_page_unlock_queues(); 3208 if (obj) 3209 vm_object_pip_wakeupn(obj, 0); 3210 } 3211 3212 /* 3213 * For asynchronous completions, release the buffer now. The brelse 3214 * will do a wakeup there if necessary - so no need to do a wakeup 3215 * here in the async case. The sync case always needs to do a wakeup. 3216 */ 3217 3218 if (bp->b_flags & B_ASYNC) { 3219 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 3220 brelse(bp); 3221 else 3222 bqrelse(bp); 3223 } else { 3224 wakeup(bp); 3225 } 3226 splx(s); 3227 } 3228 3229 /* 3230 * This routine is called in lieu of iodone in the case of 3231 * incomplete I/O. This keeps the busy status for pages 3232 * consistant. 3233 */ 3234 void 3235 vfs_unbusy_pages(struct buf * bp) 3236 { 3237 int i; 3238 3239 GIANT_REQUIRED; 3240 3241 runningbufwakeup(bp); 3242 if (bp->b_flags & B_VMIO) { 3243 vm_object_t obj; 3244 3245 obj = bp->b_object; 3246 vm_page_lock_queues(); 3247 for (i = 0; i < bp->b_npages; i++) { 3248 vm_page_t m = bp->b_pages[i]; 3249 3250 if (m == bogus_page) { 3251 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3252 if (!m) { 3253 panic("vfs_unbusy_pages: page missing\n"); 3254 } 3255 bp->b_pages[i] = m; 3256 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3257 } 3258 vm_object_pip_subtract(obj, 1); 3259 vm_page_flag_clear(m, PG_ZERO); 3260 vm_page_io_finish(m); 3261 } 3262 vm_page_unlock_queues(); 3263 vm_object_pip_wakeupn(obj, 0); 3264 } 3265 } 3266 3267 /* 3268 * vfs_page_set_valid: 3269 * 3270 * Set the valid bits in a page based on the supplied offset. The 3271 * range is restricted to the buffer's size. 3272 * 3273 * This routine is typically called after a read completes. 3274 */ 3275 static void 3276 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3277 { 3278 vm_ooffset_t soff, eoff; 3279 3280 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 3281 /* 3282 * Start and end offsets in buffer. eoff - soff may not cross a 3283 * page boundry or cross the end of the buffer. The end of the 3284 * buffer, in this case, is our file EOF, not the allocation size 3285 * of the buffer. 3286 */ 3287 soff = off; 3288 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3289 if (eoff > bp->b_offset + bp->b_bcount) 3290 eoff = bp->b_offset + bp->b_bcount; 3291 3292 /* 3293 * Set valid range. This is typically the entire buffer and thus the 3294 * entire page. 3295 */ 3296 if (eoff > soff) { 3297 vm_page_set_validclean( 3298 m, 3299 (vm_offset_t) (soff & PAGE_MASK), 3300 (vm_offset_t) (eoff - soff) 3301 ); 3302 } 3303 } 3304 3305 /* 3306 * This routine is called before a device strategy routine. 3307 * It is used to tell the VM system that paging I/O is in 3308 * progress, and treat the pages associated with the buffer 3309 * almost as being PG_BUSY. Also the object paging_in_progress 3310 * flag is handled to make sure that the object doesn't become 3311 * inconsistant. 3312 * 3313 * Since I/O has not been initiated yet, certain buffer flags 3314 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 3315 * and should be ignored. 3316 */ 3317 void 3318 vfs_busy_pages(struct buf * bp, int clear_modify) 3319 { 3320 int i, bogus; 3321 3322 if (bp->b_flags & B_VMIO) { 3323 vm_object_t obj; 3324 vm_ooffset_t foff; 3325 3326 obj = bp->b_object; 3327 foff = bp->b_offset; 3328 KASSERT(bp->b_offset != NOOFFSET, 3329 ("vfs_busy_pages: no buffer offset")); 3330 vfs_setdirty(bp); 3331 retry: 3332 vm_page_lock_queues(); 3333 for (i = 0; i < bp->b_npages; i++) { 3334 vm_page_t m = bp->b_pages[i]; 3335 3336 if (vm_page_sleep_if_busy(m, FALSE, "vbpage")) 3337 goto retry; 3338 } 3339 bogus = 0; 3340 for (i = 0; i < bp->b_npages; i++) { 3341 vm_page_t m = bp->b_pages[i]; 3342 3343 vm_page_flag_clear(m, PG_ZERO); 3344 if ((bp->b_flags & B_CLUSTER) == 0) { 3345 vm_object_pip_add(obj, 1); 3346 vm_page_io_start(m); 3347 } 3348 /* 3349 * When readying a buffer for a read ( i.e 3350 * clear_modify == 0 ), it is important to do 3351 * bogus_page replacement for valid pages in 3352 * partially instantiated buffers. Partially 3353 * instantiated buffers can, in turn, occur when 3354 * reconstituting a buffer from its VM backing store 3355 * base. We only have to do this if B_CACHE is 3356 * clear ( which causes the I/O to occur in the 3357 * first place ). The replacement prevents the read 3358 * I/O from overwriting potentially dirty VM-backed 3359 * pages. XXX bogus page replacement is, uh, bogus. 3360 * It may not work properly with small-block devices. 3361 * We need to find a better way. 3362 */ 3363 pmap_remove_all(m); 3364 if (clear_modify) 3365 vfs_page_set_valid(bp, foff, i, m); 3366 else if (m->valid == VM_PAGE_BITS_ALL && 3367 (bp->b_flags & B_CACHE) == 0) { 3368 bp->b_pages[i] = bogus_page; 3369 bogus++; 3370 } 3371 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3372 } 3373 vm_page_unlock_queues(); 3374 if (bogus) 3375 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3376 } 3377 } 3378 3379 /* 3380 * Tell the VM system that the pages associated with this buffer 3381 * are clean. This is used for delayed writes where the data is 3382 * going to go to disk eventually without additional VM intevention. 3383 * 3384 * Note that while we only really need to clean through to b_bcount, we 3385 * just go ahead and clean through to b_bufsize. 3386 */ 3387 static void 3388 vfs_clean_pages(struct buf * bp) 3389 { 3390 int i; 3391 3392 GIANT_REQUIRED; 3393 3394 if (bp->b_flags & B_VMIO) { 3395 vm_ooffset_t foff; 3396 3397 foff = bp->b_offset; 3398 KASSERT(bp->b_offset != NOOFFSET, 3399 ("vfs_clean_pages: no buffer offset")); 3400 vm_page_lock_queues(); 3401 for (i = 0; i < bp->b_npages; i++) { 3402 vm_page_t m = bp->b_pages[i]; 3403 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3404 vm_ooffset_t eoff = noff; 3405 3406 if (eoff > bp->b_offset + bp->b_bufsize) 3407 eoff = bp->b_offset + bp->b_bufsize; 3408 vfs_page_set_valid(bp, foff, i, m); 3409 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3410 foff = noff; 3411 } 3412 vm_page_unlock_queues(); 3413 } 3414 } 3415 3416 /* 3417 * vfs_bio_set_validclean: 3418 * 3419 * Set the range within the buffer to valid and clean. The range is 3420 * relative to the beginning of the buffer, b_offset. Note that b_offset 3421 * itself may be offset from the beginning of the first page. 3422 * 3423 */ 3424 3425 void 3426 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3427 { 3428 if (bp->b_flags & B_VMIO) { 3429 int i; 3430 int n; 3431 3432 /* 3433 * Fixup base to be relative to beginning of first page. 3434 * Set initial n to be the maximum number of bytes in the 3435 * first page that can be validated. 3436 */ 3437 3438 base += (bp->b_offset & PAGE_MASK); 3439 n = PAGE_SIZE - (base & PAGE_MASK); 3440 3441 vm_page_lock_queues(); 3442 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3443 vm_page_t m = bp->b_pages[i]; 3444 3445 if (n > size) 3446 n = size; 3447 3448 vm_page_set_validclean(m, base & PAGE_MASK, n); 3449 base += n; 3450 size -= n; 3451 n = PAGE_SIZE; 3452 } 3453 vm_page_unlock_queues(); 3454 } 3455 } 3456 3457 /* 3458 * vfs_bio_clrbuf: 3459 * 3460 * clear a buffer. This routine essentially fakes an I/O, so we need 3461 * to clear BIO_ERROR and B_INVAL. 3462 * 3463 * Note that while we only theoretically need to clear through b_bcount, 3464 * we go ahead and clear through b_bufsize. 3465 */ 3466 3467 void 3468 vfs_bio_clrbuf(struct buf *bp) 3469 { 3470 int i, mask = 0; 3471 caddr_t sa, ea; 3472 3473 GIANT_REQUIRED; 3474 3475 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3476 bp->b_flags &= ~B_INVAL; 3477 bp->b_ioflags &= ~BIO_ERROR; 3478 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3479 (bp->b_offset & PAGE_MASK) == 0) { 3480 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3481 if ((bp->b_pages[0]->valid & mask) == mask) { 3482 bp->b_resid = 0; 3483 return; 3484 } 3485 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3486 ((bp->b_pages[0]->valid & mask) == 0)) { 3487 bzero(bp->b_data, bp->b_bufsize); 3488 bp->b_pages[0]->valid |= mask; 3489 bp->b_resid = 0; 3490 return; 3491 } 3492 } 3493 ea = sa = bp->b_data; 3494 for(i=0;i<bp->b_npages;i++,sa=ea) { 3495 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3496 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3497 ea = (caddr_t)(vm_offset_t)ulmin( 3498 (u_long)(vm_offset_t)ea, 3499 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3500 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3501 if ((bp->b_pages[i]->valid & mask) == mask) 3502 continue; 3503 if ((bp->b_pages[i]->valid & mask) == 0) { 3504 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3505 bzero(sa, ea - sa); 3506 } 3507 } else { 3508 for (; sa < ea; sa += DEV_BSIZE, j++) { 3509 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3510 (bp->b_pages[i]->valid & (1<<j)) == 0) 3511 bzero(sa, DEV_BSIZE); 3512 } 3513 } 3514 bp->b_pages[i]->valid |= mask; 3515 vm_page_lock_queues(); 3516 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3517 vm_page_unlock_queues(); 3518 } 3519 bp->b_resid = 0; 3520 } else { 3521 clrbuf(bp); 3522 } 3523 } 3524 3525 /* 3526 * vm_hold_load_pages and vm_hold_free_pages get pages into 3527 * a buffers address space. The pages are anonymous and are 3528 * not associated with a file object. 3529 */ 3530 static void 3531 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3532 { 3533 vm_offset_t pg; 3534 vm_page_t p; 3535 int index; 3536 3537 GIANT_REQUIRED; 3538 3539 to = round_page(to); 3540 from = round_page(from); 3541 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3542 3543 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3544 tryagain: 3545 /* 3546 * note: must allocate system pages since blocking here 3547 * could intefere with paging I/O, no matter which 3548 * process we are. 3549 */ 3550 vm_object_lock(kernel_object); 3551 p = vm_page_alloc(kernel_object, 3552 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3553 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 3554 vm_object_unlock(kernel_object); 3555 if (!p) { 3556 atomic_add_int(&vm_pageout_deficit, 3557 (to - pg) >> PAGE_SHIFT); 3558 VM_WAIT; 3559 goto tryagain; 3560 } 3561 vm_page_lock_queues(); 3562 p->valid = VM_PAGE_BITS_ALL; 3563 vm_page_unlock_queues(); 3564 pmap_qenter(pg, &p, 1); 3565 bp->b_pages[index] = p; 3566 vm_page_lock_queues(); 3567 vm_page_wakeup(p); 3568 vm_page_unlock_queues(); 3569 } 3570 bp->b_npages = index; 3571 } 3572 3573 /* Return pages associated with this buf to the vm system */ 3574 static void 3575 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3576 { 3577 vm_offset_t pg; 3578 vm_page_t p; 3579 int index, newnpages; 3580 3581 GIANT_REQUIRED; 3582 3583 from = round_page(from); 3584 to = round_page(to); 3585 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3586 3587 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3588 p = bp->b_pages[index]; 3589 if (p && (index < bp->b_npages)) { 3590 if (p->busy) { 3591 printf( 3592 "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 3593 (intmax_t)bp->b_blkno, 3594 (intmax_t)bp->b_lblkno); 3595 } 3596 bp->b_pages[index] = NULL; 3597 pmap_qremove(pg, 1); 3598 vm_page_lock_queues(); 3599 vm_page_busy(p); 3600 vm_page_unwire(p, 0); 3601 vm_page_free(p); 3602 vm_page_unlock_queues(); 3603 } 3604 } 3605 bp->b_npages = newnpages; 3606 } 3607 3608 /* 3609 * Map an IO request into kernel virtual address space. 3610 * 3611 * All requests are (re)mapped into kernel VA space. 3612 * Notice that we use b_bufsize for the size of the buffer 3613 * to be mapped. b_bcount might be modified by the driver. 3614 * 3615 * Note that even if the caller determines that the address space should 3616 * be valid, a race or a smaller-file mapped into a larger space may 3617 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 3618 * check the return value. 3619 */ 3620 int 3621 vmapbuf(struct buf *bp) 3622 { 3623 caddr_t addr, kva; 3624 vm_offset_t pa; 3625 int pidx, i; 3626 struct vm_page *m; 3627 struct pmap *pmap = &curproc->p_vmspace->vm_pmap; 3628 3629 GIANT_REQUIRED; 3630 3631 if ((bp->b_flags & B_PHYS) == 0) 3632 panic("vmapbuf"); 3633 3634 for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0; 3635 addr < bp->b_data + bp->b_bufsize; 3636 addr += PAGE_SIZE, pidx++) { 3637 /* 3638 * Do the vm_fault if needed; do the copy-on-write thing 3639 * when reading stuff off device into memory. 3640 * 3641 * NOTE! Must use pmap_extract() because addr may be in 3642 * the userland address space, and kextract is only guarenteed 3643 * to work for the kernland address space (see: sparc64 port). 3644 */ 3645 retry: 3646 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3647 (bp->b_iocmd == BIO_READ) ? 3648 (VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ); 3649 if (i < 0) { 3650 printf("vmapbuf: warning, bad user address during I/O\n"); 3651 vm_page_lock_queues(); 3652 for (i = 0; i < pidx; ++i) { 3653 vm_page_unhold(bp->b_pages[i]); 3654 bp->b_pages[i] = NULL; 3655 } 3656 vm_page_unlock_queues(); 3657 return(-1); 3658 } 3659 pa = trunc_page(pmap_extract(pmap, (vm_offset_t) addr)); 3660 if (pa == 0) { 3661 printf("vmapbuf: warning, race against user address during I/O"); 3662 goto retry; 3663 } 3664 m = PHYS_TO_VM_PAGE(pa); 3665 vm_page_lock_queues(); 3666 vm_page_hold(m); 3667 vm_page_unlock_queues(); 3668 bp->b_pages[pidx] = m; 3669 } 3670 if (pidx > btoc(MAXPHYS)) 3671 panic("vmapbuf: mapped more than MAXPHYS"); 3672 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 3673 3674 kva = bp->b_saveaddr; 3675 bp->b_npages = pidx; 3676 bp->b_saveaddr = bp->b_data; 3677 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3678 return(0); 3679 } 3680 3681 /* 3682 * Free the io map PTEs associated with this IO operation. 3683 * We also invalidate the TLB entries and restore the original b_addr. 3684 */ 3685 void 3686 vunmapbuf(struct buf *bp) 3687 { 3688 int pidx; 3689 int npages; 3690 3691 GIANT_REQUIRED; 3692 3693 if ((bp->b_flags & B_PHYS) == 0) 3694 panic("vunmapbuf"); 3695 3696 npages = bp->b_npages; 3697 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3698 npages); 3699 vm_page_lock_queues(); 3700 for (pidx = 0; pidx < npages; pidx++) 3701 vm_page_unhold(bp->b_pages[pidx]); 3702 vm_page_unlock_queues(); 3703 3704 bp->b_data = bp->b_saveaddr; 3705 } 3706 3707 #include "opt_ddb.h" 3708 #ifdef DDB 3709 #include <ddb/ddb.h> 3710 3711 /* DDB command to show buffer data */ 3712 DB_SHOW_COMMAND(buffer, db_show_buffer) 3713 { 3714 /* get args */ 3715 struct buf *bp = (struct buf *)addr; 3716 3717 if (!have_addr) { 3718 db_printf("usage: show buffer <addr>\n"); 3719 return; 3720 } 3721 3722 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3723 db_printf( 3724 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 3725 "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n", 3726 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3727 major(bp->b_dev), minor(bp->b_dev), bp->b_data, 3728 (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno); 3729 if (bp->b_npages) { 3730 int i; 3731 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3732 for (i = 0; i < bp->b_npages; i++) { 3733 vm_page_t m; 3734 m = bp->b_pages[i]; 3735 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3736 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3737 if ((i + 1) < bp->b_npages) 3738 db_printf(","); 3739 } 3740 db_printf("\n"); 3741 } 3742 } 3743 #endif /* DDB */ 3744