1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004 Poul-Henning Kamp 5 * Copyright (c) 1994,1997 John S. Dyson 6 * Copyright (c) 2013 The FreeBSD Foundation 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Konstantin Belousov 10 * under sponsorship from the FreeBSD Foundation. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * this file contains a new buffer I/O scheme implementing a coherent 36 * VM object and buffer cache scheme. Pains have been taken to make 37 * sure that the performance degradation associated with schemes such 38 * as this is not realized. 39 * 40 * Author: John S. Dyson 41 * Significant help during the development and debugging phases 42 * had been provided by David Greenman, also of the FreeBSD core team. 43 * 44 * see man buf(9) for more info. 45 */ 46 47 #include <sys/cdefs.h> 48 __FBSDID("$FreeBSD$"); 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/bio.h> 53 #include <sys/bitset.h> 54 #include <sys/conf.h> 55 #include <sys/counter.h> 56 #include <sys/buf.h> 57 #include <sys/devicestat.h> 58 #include <sys/eventhandler.h> 59 #include <sys/fail.h> 60 #include <sys/limits.h> 61 #include <sys/lock.h> 62 #include <sys/malloc.h> 63 #include <sys/mount.h> 64 #include <sys/mutex.h> 65 #include <sys/kernel.h> 66 #include <sys/kthread.h> 67 #include <sys/proc.h> 68 #include <sys/racct.h> 69 #include <sys/resourcevar.h> 70 #include <sys/rwlock.h> 71 #include <sys/smp.h> 72 #include <sys/sysctl.h> 73 #include <sys/sysproto.h> 74 #include <sys/vmem.h> 75 #include <sys/vmmeter.h> 76 #include <sys/vnode.h> 77 #include <sys/watchdog.h> 78 #include <geom/geom.h> 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_kern.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_pager.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_map.h> 88 #include <vm/swap_pager.h> 89 #include "opt_compat.h" 90 #include "opt_swap.h" 91 92 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer"); 93 94 struct bio_ops bioops; /* I/O operation notification */ 95 96 struct buf_ops buf_ops_bio = { 97 .bop_name = "buf_ops_bio", 98 .bop_write = bufwrite, 99 .bop_strategy = bufstrategy, 100 .bop_sync = bufsync, 101 .bop_bdflush = bufbdflush, 102 }; 103 104 struct bufqueue { 105 struct mtx_padalign bq_lock; 106 TAILQ_HEAD(, buf) bq_queue; 107 uint8_t bq_index; 108 uint16_t bq_subqueue; 109 int bq_len; 110 } __aligned(CACHE_LINE_SIZE); 111 112 #define BQ_LOCKPTR(bq) (&(bq)->bq_lock) 113 #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq))) 114 #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq))) 115 #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED) 116 117 struct bufdomain { 118 struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */ 119 struct bufqueue bd_dirtyq; 120 struct bufqueue *bd_cleanq; 121 struct mtx_padalign bd_run_lock; 122 /* Constants */ 123 long bd_maxbufspace; 124 long bd_hibufspace; 125 long bd_lobufspace; 126 long bd_bufspacethresh; 127 int bd_hifreebuffers; 128 int bd_lofreebuffers; 129 int bd_hidirtybuffers; 130 int bd_lodirtybuffers; 131 int bd_dirtybufthresh; 132 int bd_lim; 133 /* atomics */ 134 int bd_wanted; 135 int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers; 136 int __aligned(CACHE_LINE_SIZE) bd_running; 137 long __aligned(CACHE_LINE_SIZE) bd_bufspace; 138 int __aligned(CACHE_LINE_SIZE) bd_freebuffers; 139 } __aligned(CACHE_LINE_SIZE); 140 141 #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock) 142 #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd))) 143 #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd))) 144 #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED) 145 #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock) 146 #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd))) 147 #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd))) 148 #define BD_DOMAIN(bd) (bd - bdomain) 149 150 static struct buf *buf; /* buffer header pool */ 151 extern struct buf *swbuf; /* Swap buffer header pool. */ 152 caddr_t unmapped_buf; 153 154 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */ 155 struct proc *bufdaemonproc; 156 157 static int inmem(struct vnode *vp, daddr_t blkno); 158 static void vm_hold_free_pages(struct buf *bp, int newbsize); 159 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 160 vm_offset_t to); 161 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m); 162 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, 163 vm_page_t m); 164 static void vfs_clean_pages_dirty_buf(struct buf *bp); 165 static void vfs_setdirty_locked_object(struct buf *bp); 166 static void vfs_vmio_invalidate(struct buf *bp); 167 static void vfs_vmio_truncate(struct buf *bp, int npages); 168 static void vfs_vmio_extend(struct buf *bp, int npages, int size); 169 static int vfs_bio_clcheck(struct vnode *vp, int size, 170 daddr_t lblkno, daddr_t blkno); 171 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int, 172 void (*)(struct buf *)); 173 static int buf_flush(struct vnode *vp, struct bufdomain *, int); 174 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int); 175 static void buf_daemon(void); 176 static __inline void bd_wakeup(void); 177 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS); 178 static void bufkva_reclaim(vmem_t *, int); 179 static void bufkva_free(struct buf *); 180 static int buf_import(void *, void **, int, int, int); 181 static void buf_release(void *, void **, int); 182 static void maxbcachebuf_adjust(void); 183 static inline struct bufdomain *bufdomain(struct buf *); 184 static void bq_remove(struct bufqueue *bq, struct buf *bp); 185 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock); 186 static int buf_recycle(struct bufdomain *, bool kva); 187 static void bq_init(struct bufqueue *bq, int qindex, int cpu, 188 const char *lockname); 189 static void bd_init(struct bufdomain *bd); 190 static int bd_flushall(struct bufdomain *bd); 191 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS); 192 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS); 193 194 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS); 195 int vmiodirenable = TRUE; 196 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 197 "Use the VM system for directory writes"); 198 long runningbufspace; 199 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 200 "Amount of presently outstanding async buffer io"); 201 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD, 202 NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers"); 203 static counter_u64_t bufkvaspace; 204 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 205 "Kernel virtual memory used for buffers"); 206 static long maxbufspace; 207 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace, 208 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace, 209 __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L", 210 "Maximum allowed value of bufspace (including metadata)"); 211 static long bufmallocspace; 212 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 213 "Amount of malloced memory for buffers"); 214 static long maxbufmallocspace; 215 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 216 0, "Maximum amount of malloced memory for buffers"); 217 static long lobufspace; 218 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace, 219 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace, 220 __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L", 221 "Minimum amount of buffers we want to have"); 222 long hibufspace; 223 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace, 224 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace, 225 __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L", 226 "Maximum allowed value of bufspace (excluding metadata)"); 227 long bufspacethresh; 228 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh, 229 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh, 230 __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L", 231 "Bufspace consumed before waking the daemon to free some"); 232 static counter_u64_t buffreekvacnt; 233 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 234 "Number of times we have freed the KVA space from some buffer"); 235 static counter_u64_t bufdefragcnt; 236 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 237 "Number of times we have had to repeat buffer allocation to defragment"); 238 static long lorunningspace; 239 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 240 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L", 241 "Minimum preferred space used for in-progress I/O"); 242 static long hirunningspace; 243 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 244 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L", 245 "Maximum amount of space to use for in-progress I/O"); 246 int dirtybufferflushes; 247 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 248 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 249 int bdwriteskip; 250 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip, 251 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk"); 252 int altbufferflushes; 253 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes, 254 0, "Number of fsync flushes to limit dirty buffers"); 255 static int recursiveflushes; 256 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes, 257 0, "Number of flushes skipped due to being recursive"); 258 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS); 259 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers, 260 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I", 261 "Number of buffers that are dirty (has unwritten changes) at the moment"); 262 static int lodirtybuffers; 263 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers, 264 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers, 265 __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I", 266 "How many buffers we want to have free before bufdaemon can sleep"); 267 static int hidirtybuffers; 268 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers, 269 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers, 270 __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I", 271 "When the number of dirty buffers is considered severe"); 272 int dirtybufthresh; 273 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh, 274 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh, 275 __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I", 276 "Number of bdwrite to bawrite conversions to clear dirty buffers"); 277 static int numfreebuffers; 278 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 279 "Number of free buffers"); 280 static int lofreebuffers; 281 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers, 282 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers, 283 __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I", 284 "Target number of free buffers"); 285 static int hifreebuffers; 286 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers, 287 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers, 288 __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I", 289 "Threshold for clean buffer recycling"); 290 static counter_u64_t getnewbufcalls; 291 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, 292 &getnewbufcalls, "Number of calls to getnewbuf"); 293 static counter_u64_t getnewbufrestarts; 294 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, 295 &getnewbufrestarts, 296 "Number of times getnewbuf has had to restart a buffer acquisition"); 297 static counter_u64_t mappingrestarts; 298 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD, 299 &mappingrestarts, 300 "Number of times getblk has had to restart a buffer mapping for " 301 "unmapped buffer"); 302 static counter_u64_t numbufallocfails; 303 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, 304 &numbufallocfails, "Number of times buffer allocations failed"); 305 static int flushbufqtarget = 100; 306 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0, 307 "Amount of work to do in flushbufqueues when helping bufdaemon"); 308 static counter_u64_t notbufdflushes; 309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes, 310 "Number of dirty buffer flushes done by the bufdaemon helpers"); 311 static long barrierwrites; 312 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0, 313 "Number of barrier writes"); 314 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD, 315 &unmapped_buf_allowed, 0, 316 "Permit the use of the unmapped i/o"); 317 int maxbcachebuf = MAXBCACHEBUF; 318 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0, 319 "Maximum size of a buffer cache block"); 320 321 /* 322 * This lock synchronizes access to bd_request. 323 */ 324 static struct mtx_padalign __exclusive_cache_line bdlock; 325 326 /* 327 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 328 * waitrunningbufspace(). 329 */ 330 static struct mtx_padalign __exclusive_cache_line rbreqlock; 331 332 /* 333 * Lock that protects bdirtywait. 334 */ 335 static struct mtx_padalign __exclusive_cache_line bdirtylock; 336 337 /* 338 * Wakeup point for bufdaemon, as well as indicator of whether it is already 339 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 340 * is idling. 341 */ 342 static int bd_request; 343 344 /* 345 * Request for the buf daemon to write more buffers than is indicated by 346 * lodirtybuf. This may be necessary to push out excess dependencies or 347 * defragment the address space where a simple count of the number of dirty 348 * buffers is insufficient to characterize the demand for flushing them. 349 */ 350 static int bd_speedupreq; 351 352 /* 353 * Synchronization (sleep/wakeup) variable for active buffer space requests. 354 * Set when wait starts, cleared prior to wakeup(). 355 * Used in runningbufwakeup() and waitrunningbufspace(). 356 */ 357 static int runningbufreq; 358 359 /* 360 * Synchronization for bwillwrite() waiters. 361 */ 362 static int bdirtywait; 363 364 /* 365 * Definitions for the buffer free lists. 366 */ 367 #define QUEUE_NONE 0 /* on no queue */ 368 #define QUEUE_EMPTY 1 /* empty buffer headers */ 369 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */ 370 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */ 371 #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */ 372 373 /* Maximum number of buffer domains. */ 374 #define BUF_DOMAINS 8 375 376 struct bufdomainset bdlodirty; /* Domains > lodirty */ 377 struct bufdomainset bdhidirty; /* Domains > hidirty */ 378 379 /* Configured number of clean queues. */ 380 static int __read_mostly buf_domains; 381 382 BITSET_DEFINE(bufdomainset, BUF_DOMAINS); 383 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS]; 384 struct bufqueue __exclusive_cache_line bqempty; 385 386 /* 387 * per-cpu empty buffer cache. 388 */ 389 uma_zone_t buf_zone; 390 391 /* 392 * Single global constant for BUF_WMESG, to avoid getting multiple references. 393 * buf_wmesg is referred from macros. 394 */ 395 const char *buf_wmesg = BUF_WMESG; 396 397 static int 398 sysctl_runningspace(SYSCTL_HANDLER_ARGS) 399 { 400 long value; 401 int error; 402 403 value = *(long *)arg1; 404 error = sysctl_handle_long(oidp, &value, 0, req); 405 if (error != 0 || req->newptr == NULL) 406 return (error); 407 mtx_lock(&rbreqlock); 408 if (arg1 == &hirunningspace) { 409 if (value < lorunningspace) 410 error = EINVAL; 411 else 412 hirunningspace = value; 413 } else { 414 KASSERT(arg1 == &lorunningspace, 415 ("%s: unknown arg1", __func__)); 416 if (value > hirunningspace) 417 error = EINVAL; 418 else 419 lorunningspace = value; 420 } 421 mtx_unlock(&rbreqlock); 422 return (error); 423 } 424 425 static int 426 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS) 427 { 428 int error; 429 int value; 430 int i; 431 432 value = *(int *)arg1; 433 error = sysctl_handle_int(oidp, &value, 0, req); 434 if (error != 0 || req->newptr == NULL) 435 return (error); 436 *(int *)arg1 = value; 437 for (i = 0; i < buf_domains; i++) 438 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = 439 value / buf_domains; 440 441 return (error); 442 } 443 444 static int 445 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS) 446 { 447 long value; 448 int error; 449 int i; 450 451 value = *(long *)arg1; 452 error = sysctl_handle_long(oidp, &value, 0, req); 453 if (error != 0 || req->newptr == NULL) 454 return (error); 455 *(long *)arg1 = value; 456 for (i = 0; i < buf_domains; i++) 457 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = 458 value / buf_domains; 459 460 return (error); 461 } 462 463 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 464 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 465 static int 466 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 467 { 468 long lvalue; 469 int ivalue; 470 int i; 471 472 lvalue = 0; 473 for (i = 0; i < buf_domains; i++) 474 lvalue += bdomain[i].bd_bufspace; 475 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long)) 476 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 477 if (lvalue > INT_MAX) 478 /* On overflow, still write out a long to trigger ENOMEM. */ 479 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 480 ivalue = lvalue; 481 return (sysctl_handle_int(oidp, &ivalue, 0, req)); 482 } 483 #else 484 static int 485 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 486 { 487 long lvalue; 488 int i; 489 490 lvalue = 0; 491 for (i = 0; i < buf_domains; i++) 492 lvalue += bdomain[i].bd_bufspace; 493 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 494 } 495 #endif 496 497 static int 498 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS) 499 { 500 int value; 501 int i; 502 503 value = 0; 504 for (i = 0; i < buf_domains; i++) 505 value += bdomain[i].bd_numdirtybuffers; 506 return (sysctl_handle_int(oidp, &value, 0, req)); 507 } 508 509 /* 510 * bdirtywakeup: 511 * 512 * Wakeup any bwillwrite() waiters. 513 */ 514 static void 515 bdirtywakeup(void) 516 { 517 mtx_lock(&bdirtylock); 518 if (bdirtywait) { 519 bdirtywait = 0; 520 wakeup(&bdirtywait); 521 } 522 mtx_unlock(&bdirtylock); 523 } 524 525 /* 526 * bd_clear: 527 * 528 * Clear a domain from the appropriate bitsets when dirtybuffers 529 * is decremented. 530 */ 531 static void 532 bd_clear(struct bufdomain *bd) 533 { 534 535 mtx_lock(&bdirtylock); 536 if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers) 537 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); 538 if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers) 539 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); 540 mtx_unlock(&bdirtylock); 541 } 542 543 /* 544 * bd_set: 545 * 546 * Set a domain in the appropriate bitsets when dirtybuffers 547 * is incremented. 548 */ 549 static void 550 bd_set(struct bufdomain *bd) 551 { 552 553 mtx_lock(&bdirtylock); 554 if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers) 555 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); 556 if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers) 557 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); 558 mtx_unlock(&bdirtylock); 559 } 560 561 /* 562 * bdirtysub: 563 * 564 * Decrement the numdirtybuffers count by one and wakeup any 565 * threads blocked in bwillwrite(). 566 */ 567 static void 568 bdirtysub(struct buf *bp) 569 { 570 struct bufdomain *bd; 571 int num; 572 573 bd = bufdomain(bp); 574 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1); 575 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) 576 bdirtywakeup(); 577 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) 578 bd_clear(bd); 579 } 580 581 /* 582 * bdirtyadd: 583 * 584 * Increment the numdirtybuffers count by one and wakeup the buf 585 * daemon if needed. 586 */ 587 static void 588 bdirtyadd(struct buf *bp) 589 { 590 struct bufdomain *bd; 591 int num; 592 593 /* 594 * Only do the wakeup once as we cross the boundary. The 595 * buf daemon will keep running until the condition clears. 596 */ 597 bd = bufdomain(bp); 598 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1); 599 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) 600 bd_wakeup(); 601 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) 602 bd_set(bd); 603 } 604 605 /* 606 * bufspace_daemon_wakeup: 607 * 608 * Wakeup the daemons responsible for freeing clean bufs. 609 */ 610 static void 611 bufspace_daemon_wakeup(struct bufdomain *bd) 612 { 613 614 /* 615 * avoid the lock if the daemon is running. 616 */ 617 if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) { 618 BD_RUN_LOCK(bd); 619 atomic_store_int(&bd->bd_running, 1); 620 wakeup(&bd->bd_running); 621 BD_RUN_UNLOCK(bd); 622 } 623 } 624 625 /* 626 * bufspace_daemon_wait: 627 * 628 * Sleep until the domain falls below a limit or one second passes. 629 */ 630 static void 631 bufspace_daemon_wait(struct bufdomain *bd) 632 { 633 /* 634 * Re-check our limits and sleep. bd_running must be 635 * cleared prior to checking the limits to avoid missed 636 * wakeups. The waker will adjust one of bufspace or 637 * freebuffers prior to checking bd_running. 638 */ 639 BD_RUN_LOCK(bd); 640 atomic_store_int(&bd->bd_running, 0); 641 if (bd->bd_bufspace < bd->bd_bufspacethresh && 642 bd->bd_freebuffers > bd->bd_lofreebuffers) { 643 msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP, 644 "-", hz); 645 } else { 646 /* Avoid spurious wakeups while running. */ 647 atomic_store_int(&bd->bd_running, 1); 648 BD_RUN_UNLOCK(bd); 649 } 650 } 651 652 /* 653 * bufspace_adjust: 654 * 655 * Adjust the reported bufspace for a KVA managed buffer, possibly 656 * waking any waiters. 657 */ 658 static void 659 bufspace_adjust(struct buf *bp, int bufsize) 660 { 661 struct bufdomain *bd; 662 long space; 663 int diff; 664 665 KASSERT((bp->b_flags & B_MALLOC) == 0, 666 ("bufspace_adjust: malloc buf %p", bp)); 667 bd = bufdomain(bp); 668 diff = bufsize - bp->b_bufsize; 669 if (diff < 0) { 670 atomic_subtract_long(&bd->bd_bufspace, -diff); 671 } else if (diff > 0) { 672 space = atomic_fetchadd_long(&bd->bd_bufspace, diff); 673 /* Wake up the daemon on the transition. */ 674 if (space < bd->bd_bufspacethresh && 675 space + diff >= bd->bd_bufspacethresh) 676 bufspace_daemon_wakeup(bd); 677 } 678 bp->b_bufsize = bufsize; 679 } 680 681 /* 682 * bufspace_reserve: 683 * 684 * Reserve bufspace before calling allocbuf(). metadata has a 685 * different space limit than data. 686 */ 687 static int 688 bufspace_reserve(struct bufdomain *bd, int size, bool metadata) 689 { 690 long limit, new; 691 long space; 692 693 if (metadata) 694 limit = bd->bd_maxbufspace; 695 else 696 limit = bd->bd_hibufspace; 697 space = atomic_fetchadd_long(&bd->bd_bufspace, size); 698 new = space + size; 699 if (new > limit) { 700 atomic_subtract_long(&bd->bd_bufspace, size); 701 return (ENOSPC); 702 } 703 704 /* Wake up the daemon on the transition. */ 705 if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh) 706 bufspace_daemon_wakeup(bd); 707 708 return (0); 709 } 710 711 /* 712 * bufspace_release: 713 * 714 * Release reserved bufspace after bufspace_adjust() has consumed it. 715 */ 716 static void 717 bufspace_release(struct bufdomain *bd, int size) 718 { 719 720 atomic_subtract_long(&bd->bd_bufspace, size); 721 } 722 723 /* 724 * bufspace_wait: 725 * 726 * Wait for bufspace, acting as the buf daemon if a locked vnode is 727 * supplied. bd_wanted must be set prior to polling for space. The 728 * operation must be re-tried on return. 729 */ 730 static void 731 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags, 732 int slpflag, int slptimeo) 733 { 734 struct thread *td; 735 int error, fl, norunbuf; 736 737 if ((gbflags & GB_NOWAIT_BD) != 0) 738 return; 739 740 td = curthread; 741 BD_LOCK(bd); 742 while (bd->bd_wanted) { 743 if (vp != NULL && vp->v_type != VCHR && 744 (td->td_pflags & TDP_BUFNEED) == 0) { 745 BD_UNLOCK(bd); 746 /* 747 * getblk() is called with a vnode locked, and 748 * some majority of the dirty buffers may as 749 * well belong to the vnode. Flushing the 750 * buffers there would make a progress that 751 * cannot be achieved by the buf_daemon, that 752 * cannot lock the vnode. 753 */ 754 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) | 755 (td->td_pflags & TDP_NORUNNINGBUF); 756 757 /* 758 * Play bufdaemon. The getnewbuf() function 759 * may be called while the thread owns lock 760 * for another dirty buffer for the same 761 * vnode, which makes it impossible to use 762 * VOP_FSYNC() there, due to the buffer lock 763 * recursion. 764 */ 765 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF; 766 fl = buf_flush(vp, bd, flushbufqtarget); 767 td->td_pflags &= norunbuf; 768 BD_LOCK(bd); 769 if (fl != 0) 770 continue; 771 if (bd->bd_wanted == 0) 772 break; 773 } 774 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd), 775 (PRIBIO + 4) | slpflag, "newbuf", slptimeo); 776 if (error != 0) 777 break; 778 } 779 BD_UNLOCK(bd); 780 } 781 782 783 /* 784 * bufspace_daemon: 785 * 786 * buffer space management daemon. Tries to maintain some marginal 787 * amount of free buffer space so that requesting processes neither 788 * block nor work to reclaim buffers. 789 */ 790 static void 791 bufspace_daemon(void *arg) 792 { 793 struct bufdomain *bd; 794 795 bd = arg; 796 for (;;) { 797 kproc_suspend_check(curproc); 798 799 /* 800 * Free buffers from the clean queue until we meet our 801 * targets. 802 * 803 * Theory of operation: The buffer cache is most efficient 804 * when some free buffer headers and space are always 805 * available to getnewbuf(). This daemon attempts to prevent 806 * the excessive blocking and synchronization associated 807 * with shortfall. It goes through three phases according 808 * demand: 809 * 810 * 1) The daemon wakes up voluntarily once per-second 811 * during idle periods when the counters are below 812 * the wakeup thresholds (bufspacethresh, lofreebuffers). 813 * 814 * 2) The daemon wakes up as we cross the thresholds 815 * ahead of any potential blocking. This may bounce 816 * slightly according to the rate of consumption and 817 * release. 818 * 819 * 3) The daemon and consumers are starved for working 820 * clean buffers. This is the 'bufspace' sleep below 821 * which will inefficiently trade bufs with bqrelse 822 * until we return to condition 2. 823 */ 824 while (bd->bd_bufspace > bd->bd_lobufspace || 825 bd->bd_freebuffers < bd->bd_hifreebuffers) { 826 if (buf_recycle(bd, false) != 0) { 827 if (bd_flushall(bd)) 828 continue; 829 /* 830 * Speedup dirty if we've run out of clean 831 * buffers. This is possible in particular 832 * because softdep may held many bufs locked 833 * pending writes to other bufs which are 834 * marked for delayed write, exhausting 835 * clean space until they are written. 836 */ 837 bd_speedup(); 838 BD_LOCK(bd); 839 if (bd->bd_wanted) { 840 msleep(&bd->bd_wanted, BD_LOCKPTR(bd), 841 PRIBIO|PDROP, "bufspace", hz/10); 842 } else 843 BD_UNLOCK(bd); 844 } 845 maybe_yield(); 846 } 847 bufspace_daemon_wait(bd); 848 } 849 } 850 851 /* 852 * bufmallocadjust: 853 * 854 * Adjust the reported bufspace for a malloc managed buffer, possibly 855 * waking any waiters. 856 */ 857 static void 858 bufmallocadjust(struct buf *bp, int bufsize) 859 { 860 int diff; 861 862 KASSERT((bp->b_flags & B_MALLOC) != 0, 863 ("bufmallocadjust: non-malloc buf %p", bp)); 864 diff = bufsize - bp->b_bufsize; 865 if (diff < 0) 866 atomic_subtract_long(&bufmallocspace, -diff); 867 else 868 atomic_add_long(&bufmallocspace, diff); 869 bp->b_bufsize = bufsize; 870 } 871 872 /* 873 * runningwakeup: 874 * 875 * Wake up processes that are waiting on asynchronous writes to fall 876 * below lorunningspace. 877 */ 878 static void 879 runningwakeup(void) 880 { 881 882 mtx_lock(&rbreqlock); 883 if (runningbufreq) { 884 runningbufreq = 0; 885 wakeup(&runningbufreq); 886 } 887 mtx_unlock(&rbreqlock); 888 } 889 890 /* 891 * runningbufwakeup: 892 * 893 * Decrement the outstanding write count according. 894 */ 895 void 896 runningbufwakeup(struct buf *bp) 897 { 898 long space, bspace; 899 900 bspace = bp->b_runningbufspace; 901 if (bspace == 0) 902 return; 903 space = atomic_fetchadd_long(&runningbufspace, -bspace); 904 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld", 905 space, bspace)); 906 bp->b_runningbufspace = 0; 907 /* 908 * Only acquire the lock and wakeup on the transition from exceeding 909 * the threshold to falling below it. 910 */ 911 if (space < lorunningspace) 912 return; 913 if (space - bspace > lorunningspace) 914 return; 915 runningwakeup(); 916 } 917 918 /* 919 * waitrunningbufspace() 920 * 921 * runningbufspace is a measure of the amount of I/O currently 922 * running. This routine is used in async-write situations to 923 * prevent creating huge backups of pending writes to a device. 924 * Only asynchronous writes are governed by this function. 925 * 926 * This does NOT turn an async write into a sync write. It waits 927 * for earlier writes to complete and generally returns before the 928 * caller's write has reached the device. 929 */ 930 void 931 waitrunningbufspace(void) 932 { 933 934 mtx_lock(&rbreqlock); 935 while (runningbufspace > hirunningspace) { 936 runningbufreq = 1; 937 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 938 } 939 mtx_unlock(&rbreqlock); 940 } 941 942 943 /* 944 * vfs_buf_test_cache: 945 * 946 * Called when a buffer is extended. This function clears the B_CACHE 947 * bit if the newly extended portion of the buffer does not contain 948 * valid data. 949 */ 950 static __inline void 951 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off, 952 vm_offset_t size, vm_page_t m) 953 { 954 955 VM_OBJECT_ASSERT_LOCKED(m->object); 956 if (bp->b_flags & B_CACHE) { 957 int base = (foff + off) & PAGE_MASK; 958 if (vm_page_is_valid(m, base, size) == 0) 959 bp->b_flags &= ~B_CACHE; 960 } 961 } 962 963 /* Wake up the buffer daemon if necessary */ 964 static void 965 bd_wakeup(void) 966 { 967 968 mtx_lock(&bdlock); 969 if (bd_request == 0) { 970 bd_request = 1; 971 wakeup(&bd_request); 972 } 973 mtx_unlock(&bdlock); 974 } 975 976 /* 977 * Adjust the maxbcachbuf tunable. 978 */ 979 static void 980 maxbcachebuf_adjust(void) 981 { 982 int i; 983 984 /* 985 * maxbcachebuf must be a power of 2 >= MAXBSIZE. 986 */ 987 i = 2; 988 while (i * 2 <= maxbcachebuf) 989 i *= 2; 990 maxbcachebuf = i; 991 if (maxbcachebuf < MAXBSIZE) 992 maxbcachebuf = MAXBSIZE; 993 if (maxbcachebuf > MAXPHYS) 994 maxbcachebuf = MAXPHYS; 995 if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF) 996 printf("maxbcachebuf=%d\n", maxbcachebuf); 997 } 998 999 /* 1000 * bd_speedup - speedup the buffer cache flushing code 1001 */ 1002 void 1003 bd_speedup(void) 1004 { 1005 int needwake; 1006 1007 mtx_lock(&bdlock); 1008 needwake = 0; 1009 if (bd_speedupreq == 0 || bd_request == 0) 1010 needwake = 1; 1011 bd_speedupreq = 1; 1012 bd_request = 1; 1013 if (needwake) 1014 wakeup(&bd_request); 1015 mtx_unlock(&bdlock); 1016 } 1017 1018 #ifndef NSWBUF_MIN 1019 #define NSWBUF_MIN 16 1020 #endif 1021 1022 #ifdef __i386__ 1023 #define TRANSIENT_DENOM 5 1024 #else 1025 #define TRANSIENT_DENOM 10 1026 #endif 1027 1028 /* 1029 * Calculating buffer cache scaling values and reserve space for buffer 1030 * headers. This is called during low level kernel initialization and 1031 * may be called more then once. We CANNOT write to the memory area 1032 * being reserved at this time. 1033 */ 1034 caddr_t 1035 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 1036 { 1037 int tuned_nbuf; 1038 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz; 1039 1040 /* 1041 * physmem_est is in pages. Convert it to kilobytes (assumes 1042 * PAGE_SIZE is >= 1K) 1043 */ 1044 physmem_est = physmem_est * (PAGE_SIZE / 1024); 1045 1046 maxbcachebuf_adjust(); 1047 /* 1048 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 1049 * For the first 64MB of ram nominally allocate sufficient buffers to 1050 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 1051 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing 1052 * the buffer cache we limit the eventual kva reservation to 1053 * maxbcache bytes. 1054 * 1055 * factor represents the 1/4 x ram conversion. 1056 */ 1057 if (nbuf == 0) { 1058 int factor = 4 * BKVASIZE / 1024; 1059 1060 nbuf = 50; 1061 if (physmem_est > 4096) 1062 nbuf += min((physmem_est - 4096) / factor, 1063 65536 / factor); 1064 if (physmem_est > 65536) 1065 nbuf += min((physmem_est - 65536) * 2 / (factor * 5), 1066 32 * 1024 * 1024 / (factor * 5)); 1067 1068 if (maxbcache && nbuf > maxbcache / BKVASIZE) 1069 nbuf = maxbcache / BKVASIZE; 1070 tuned_nbuf = 1; 1071 } else 1072 tuned_nbuf = 0; 1073 1074 /* XXX Avoid unsigned long overflows later on with maxbufspace. */ 1075 maxbuf = (LONG_MAX / 3) / BKVASIZE; 1076 if (nbuf > maxbuf) { 1077 if (!tuned_nbuf) 1078 printf("Warning: nbufs lowered from %d to %ld\n", nbuf, 1079 maxbuf); 1080 nbuf = maxbuf; 1081 } 1082 1083 /* 1084 * Ideal allocation size for the transient bio submap is 10% 1085 * of the maximal space buffer map. This roughly corresponds 1086 * to the amount of the buffer mapped for typical UFS load. 1087 * 1088 * Clip the buffer map to reserve space for the transient 1089 * BIOs, if its extent is bigger than 90% (80% on i386) of the 1090 * maximum buffer map extent on the platform. 1091 * 1092 * The fall-back to the maxbuf in case of maxbcache unset, 1093 * allows to not trim the buffer KVA for the architectures 1094 * with ample KVA space. 1095 */ 1096 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) { 1097 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE; 1098 buf_sz = (long)nbuf * BKVASIZE; 1099 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM * 1100 (TRANSIENT_DENOM - 1)) { 1101 /* 1102 * There is more KVA than memory. Do not 1103 * adjust buffer map size, and assign the rest 1104 * of maxbuf to transient map. 1105 */ 1106 biotmap_sz = maxbuf_sz - buf_sz; 1107 } else { 1108 /* 1109 * Buffer map spans all KVA we could afford on 1110 * this platform. Give 10% (20% on i386) of 1111 * the buffer map to the transient bio map. 1112 */ 1113 biotmap_sz = buf_sz / TRANSIENT_DENOM; 1114 buf_sz -= biotmap_sz; 1115 } 1116 if (biotmap_sz / INT_MAX > MAXPHYS) 1117 bio_transient_maxcnt = INT_MAX; 1118 else 1119 bio_transient_maxcnt = biotmap_sz / MAXPHYS; 1120 /* 1121 * Artificially limit to 1024 simultaneous in-flight I/Os 1122 * using the transient mapping. 1123 */ 1124 if (bio_transient_maxcnt > 1024) 1125 bio_transient_maxcnt = 1024; 1126 if (tuned_nbuf) 1127 nbuf = buf_sz / BKVASIZE; 1128 } 1129 1130 /* 1131 * swbufs are used as temporary holders for I/O, such as paging I/O. 1132 * We have no less then 16 and no more then 256. 1133 */ 1134 nswbuf = min(nbuf / 4, 256); 1135 TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf); 1136 if (nswbuf < NSWBUF_MIN) 1137 nswbuf = NSWBUF_MIN; 1138 1139 /* 1140 * Reserve space for the buffer cache buffers 1141 */ 1142 swbuf = (void *)v; 1143 v = (caddr_t)(swbuf + nswbuf); 1144 buf = (void *)v; 1145 v = (caddr_t)(buf + nbuf); 1146 1147 return(v); 1148 } 1149 1150 /* Initialize the buffer subsystem. Called before use of any buffers. */ 1151 void 1152 bufinit(void) 1153 { 1154 struct buf *bp; 1155 int i; 1156 1157 KASSERT(maxbcachebuf >= MAXBSIZE, 1158 ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf, 1159 MAXBSIZE)); 1160 bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock"); 1161 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 1162 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 1163 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF); 1164 1165 unmapped_buf = (caddr_t)kva_alloc(MAXPHYS); 1166 1167 /* finally, initialize each buffer header and stick on empty q */ 1168 for (i = 0; i < nbuf; i++) { 1169 bp = &buf[i]; 1170 bzero(bp, sizeof *bp); 1171 bp->b_flags = B_INVAL; 1172 bp->b_rcred = NOCRED; 1173 bp->b_wcred = NOCRED; 1174 bp->b_qindex = QUEUE_NONE; 1175 bp->b_domain = -1; 1176 bp->b_subqueue = mp_maxid + 1; 1177 bp->b_xflags = 0; 1178 bp->b_data = bp->b_kvabase = unmapped_buf; 1179 LIST_INIT(&bp->b_dep); 1180 BUF_LOCKINIT(bp); 1181 bq_insert(&bqempty, bp, false); 1182 } 1183 1184 /* 1185 * maxbufspace is the absolute maximum amount of buffer space we are 1186 * allowed to reserve in KVM and in real terms. The absolute maximum 1187 * is nominally used by metadata. hibufspace is the nominal maximum 1188 * used by most other requests. The differential is required to 1189 * ensure that metadata deadlocks don't occur. 1190 * 1191 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 1192 * this may result in KVM fragmentation which is not handled optimally 1193 * by the system. XXX This is less true with vmem. We could use 1194 * PAGE_SIZE. 1195 */ 1196 maxbufspace = (long)nbuf * BKVASIZE; 1197 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10); 1198 lobufspace = (hibufspace / 20) * 19; /* 95% */ 1199 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2; 1200 1201 /* 1202 * Note: The 16 MiB upper limit for hirunningspace was chosen 1203 * arbitrarily and may need further tuning. It corresponds to 1204 * 128 outstanding write IO requests (if IO size is 128 KiB), 1205 * which fits with many RAID controllers' tagged queuing limits. 1206 * The lower 1 MiB limit is the historical upper limit for 1207 * hirunningspace. 1208 */ 1209 hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf), 1210 16 * 1024 * 1024), 1024 * 1024); 1211 lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf); 1212 1213 /* 1214 * Limit the amount of malloc memory since it is wired permanently into 1215 * the kernel space. Even though this is accounted for in the buffer 1216 * allocation, we don't want the malloced region to grow uncontrolled. 1217 * The malloc scheme improves memory utilization significantly on 1218 * average (small) directories. 1219 */ 1220 maxbufmallocspace = hibufspace / 20; 1221 1222 /* 1223 * Reduce the chance of a deadlock occurring by limiting the number 1224 * of delayed-write dirty buffers we allow to stack up. 1225 */ 1226 hidirtybuffers = nbuf / 4 + 20; 1227 dirtybufthresh = hidirtybuffers * 9 / 10; 1228 /* 1229 * To support extreme low-memory systems, make sure hidirtybuffers 1230 * cannot eat up all available buffer space. This occurs when our 1231 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our 1232 * buffer space assuming BKVASIZE'd buffers. 1233 */ 1234 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 1235 hidirtybuffers >>= 1; 1236 } 1237 lodirtybuffers = hidirtybuffers / 2; 1238 1239 /* 1240 * lofreebuffers should be sufficient to avoid stalling waiting on 1241 * buf headers under heavy utilization. The bufs in per-cpu caches 1242 * are counted as free but will be unavailable to threads executing 1243 * on other cpus. 1244 * 1245 * hifreebuffers is the free target for the bufspace daemon. This 1246 * should be set appropriately to limit work per-iteration. 1247 */ 1248 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus); 1249 hifreebuffers = (3 * lofreebuffers) / 2; 1250 numfreebuffers = nbuf; 1251 1252 /* Setup the kva and free list allocators. */ 1253 vmem_set_reclaim(buffer_arena, bufkva_reclaim); 1254 buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf), 1255 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0); 1256 1257 /* 1258 * Size the clean queue according to the amount of buffer space. 1259 * One queue per-256mb up to the max. More queues gives better 1260 * concurrency but less accurate LRU. 1261 */ 1262 buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS); 1263 for (i = 0 ; i < buf_domains; i++) { 1264 struct bufdomain *bd; 1265 1266 bd = &bdomain[i]; 1267 bd_init(bd); 1268 bd->bd_freebuffers = nbuf / buf_domains; 1269 bd->bd_hifreebuffers = hifreebuffers / buf_domains; 1270 bd->bd_lofreebuffers = lofreebuffers / buf_domains; 1271 bd->bd_bufspace = 0; 1272 bd->bd_maxbufspace = maxbufspace / buf_domains; 1273 bd->bd_hibufspace = hibufspace / buf_domains; 1274 bd->bd_lobufspace = lobufspace / buf_domains; 1275 bd->bd_bufspacethresh = bufspacethresh / buf_domains; 1276 bd->bd_numdirtybuffers = 0; 1277 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains; 1278 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains; 1279 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains; 1280 /* Don't allow more than 2% of bufs in the per-cpu caches. */ 1281 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus; 1282 } 1283 getnewbufcalls = counter_u64_alloc(M_WAITOK); 1284 getnewbufrestarts = counter_u64_alloc(M_WAITOK); 1285 mappingrestarts = counter_u64_alloc(M_WAITOK); 1286 numbufallocfails = counter_u64_alloc(M_WAITOK); 1287 notbufdflushes = counter_u64_alloc(M_WAITOK); 1288 buffreekvacnt = counter_u64_alloc(M_WAITOK); 1289 bufdefragcnt = counter_u64_alloc(M_WAITOK); 1290 bufkvaspace = counter_u64_alloc(M_WAITOK); 1291 } 1292 1293 #ifdef INVARIANTS 1294 static inline void 1295 vfs_buf_check_mapped(struct buf *bp) 1296 { 1297 1298 KASSERT(bp->b_kvabase != unmapped_buf, 1299 ("mapped buf: b_kvabase was not updated %p", bp)); 1300 KASSERT(bp->b_data != unmapped_buf, 1301 ("mapped buf: b_data was not updated %p", bp)); 1302 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf + 1303 MAXPHYS, ("b_data + b_offset unmapped %p", bp)); 1304 } 1305 1306 static inline void 1307 vfs_buf_check_unmapped(struct buf *bp) 1308 { 1309 1310 KASSERT(bp->b_data == unmapped_buf, 1311 ("unmapped buf: corrupted b_data %p", bp)); 1312 } 1313 1314 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp) 1315 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp) 1316 #else 1317 #define BUF_CHECK_MAPPED(bp) do {} while (0) 1318 #define BUF_CHECK_UNMAPPED(bp) do {} while (0) 1319 #endif 1320 1321 static int 1322 isbufbusy(struct buf *bp) 1323 { 1324 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) || 1325 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI)) 1326 return (1); 1327 return (0); 1328 } 1329 1330 /* 1331 * Shutdown the system cleanly to prepare for reboot, halt, or power off. 1332 */ 1333 void 1334 bufshutdown(int show_busybufs) 1335 { 1336 static int first_buf_printf = 1; 1337 struct buf *bp; 1338 int iter, nbusy, pbusy; 1339 #ifndef PREEMPTION 1340 int subiter; 1341 #endif 1342 1343 /* 1344 * Sync filesystems for shutdown 1345 */ 1346 wdog_kern_pat(WD_LASTVAL); 1347 sys_sync(curthread, NULL); 1348 1349 /* 1350 * With soft updates, some buffers that are 1351 * written will be remarked as dirty until other 1352 * buffers are written. 1353 */ 1354 for (iter = pbusy = 0; iter < 20; iter++) { 1355 nbusy = 0; 1356 for (bp = &buf[nbuf]; --bp >= buf; ) 1357 if (isbufbusy(bp)) 1358 nbusy++; 1359 if (nbusy == 0) { 1360 if (first_buf_printf) 1361 printf("All buffers synced."); 1362 break; 1363 } 1364 if (first_buf_printf) { 1365 printf("Syncing disks, buffers remaining... "); 1366 first_buf_printf = 0; 1367 } 1368 printf("%d ", nbusy); 1369 if (nbusy < pbusy) 1370 iter = 0; 1371 pbusy = nbusy; 1372 1373 wdog_kern_pat(WD_LASTVAL); 1374 sys_sync(curthread, NULL); 1375 1376 #ifdef PREEMPTION 1377 /* 1378 * Spin for a while to allow interrupt threads to run. 1379 */ 1380 DELAY(50000 * iter); 1381 #else 1382 /* 1383 * Context switch several times to allow interrupt 1384 * threads to run. 1385 */ 1386 for (subiter = 0; subiter < 50 * iter; subiter++) { 1387 thread_lock(curthread); 1388 mi_switch(SW_VOL, NULL); 1389 thread_unlock(curthread); 1390 DELAY(1000); 1391 } 1392 #endif 1393 } 1394 printf("\n"); 1395 /* 1396 * Count only busy local buffers to prevent forcing 1397 * a fsck if we're just a client of a wedged NFS server 1398 */ 1399 nbusy = 0; 1400 for (bp = &buf[nbuf]; --bp >= buf; ) { 1401 if (isbufbusy(bp)) { 1402 #if 0 1403 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ 1404 if (bp->b_dev == NULL) { 1405 TAILQ_REMOVE(&mountlist, 1406 bp->b_vp->v_mount, mnt_list); 1407 continue; 1408 } 1409 #endif 1410 nbusy++; 1411 if (show_busybufs > 0) { 1412 printf( 1413 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", 1414 nbusy, bp, bp->b_vp, bp->b_flags, 1415 (intmax_t)bp->b_blkno, 1416 (intmax_t)bp->b_lblkno); 1417 BUF_LOCKPRINTINFO(bp); 1418 if (show_busybufs > 1) 1419 vn_printf(bp->b_vp, 1420 "vnode content: "); 1421 } 1422 } 1423 } 1424 if (nbusy) { 1425 /* 1426 * Failed to sync all blocks. Indicate this and don't 1427 * unmount filesystems (thus forcing an fsck on reboot). 1428 */ 1429 printf("Giving up on %d buffers\n", nbusy); 1430 DELAY(5000000); /* 5 seconds */ 1431 } else { 1432 if (!first_buf_printf) 1433 printf("Final sync complete\n"); 1434 /* 1435 * Unmount filesystems 1436 */ 1437 if (panicstr == NULL) 1438 vfs_unmountall(); 1439 } 1440 swapoff_all(); 1441 DELAY(100000); /* wait for console output to finish */ 1442 } 1443 1444 static void 1445 bpmap_qenter(struct buf *bp) 1446 { 1447 1448 BUF_CHECK_MAPPED(bp); 1449 1450 /* 1451 * bp->b_data is relative to bp->b_offset, but 1452 * bp->b_offset may be offset into the first page. 1453 */ 1454 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); 1455 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1456 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 1457 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 1458 } 1459 1460 static inline struct bufdomain * 1461 bufdomain(struct buf *bp) 1462 { 1463 1464 return (&bdomain[bp->b_domain]); 1465 } 1466 1467 static struct bufqueue * 1468 bufqueue(struct buf *bp) 1469 { 1470 1471 switch (bp->b_qindex) { 1472 case QUEUE_NONE: 1473 /* FALLTHROUGH */ 1474 case QUEUE_SENTINEL: 1475 return (NULL); 1476 case QUEUE_EMPTY: 1477 return (&bqempty); 1478 case QUEUE_DIRTY: 1479 return (&bufdomain(bp)->bd_dirtyq); 1480 case QUEUE_CLEAN: 1481 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]); 1482 default: 1483 break; 1484 } 1485 panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex); 1486 } 1487 1488 /* 1489 * Return the locked bufqueue that bp is a member of. 1490 */ 1491 static struct bufqueue * 1492 bufqueue_acquire(struct buf *bp) 1493 { 1494 struct bufqueue *bq, *nbq; 1495 1496 /* 1497 * bp can be pushed from a per-cpu queue to the 1498 * cleanq while we're waiting on the lock. Retry 1499 * if the queues don't match. 1500 */ 1501 bq = bufqueue(bp); 1502 BQ_LOCK(bq); 1503 for (;;) { 1504 nbq = bufqueue(bp); 1505 if (bq == nbq) 1506 break; 1507 BQ_UNLOCK(bq); 1508 BQ_LOCK(nbq); 1509 bq = nbq; 1510 } 1511 return (bq); 1512 } 1513 1514 /* 1515 * binsfree: 1516 * 1517 * Insert the buffer into the appropriate free list. Requires a 1518 * locked buffer on entry and buffer is unlocked before return. 1519 */ 1520 static void 1521 binsfree(struct buf *bp, int qindex) 1522 { 1523 struct bufdomain *bd; 1524 struct bufqueue *bq; 1525 1526 KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY, 1527 ("binsfree: Invalid qindex %d", qindex)); 1528 BUF_ASSERT_XLOCKED(bp); 1529 1530 /* 1531 * Handle delayed bremfree() processing. 1532 */ 1533 if (bp->b_flags & B_REMFREE) { 1534 if (bp->b_qindex == qindex) { 1535 bp->b_flags |= B_REUSE; 1536 bp->b_flags &= ~B_REMFREE; 1537 BUF_UNLOCK(bp); 1538 return; 1539 } 1540 bq = bufqueue_acquire(bp); 1541 bq_remove(bq, bp); 1542 BQ_UNLOCK(bq); 1543 } 1544 bd = bufdomain(bp); 1545 if (qindex == QUEUE_CLEAN) { 1546 if (bd->bd_lim != 0) 1547 bq = &bd->bd_subq[PCPU_GET(cpuid)]; 1548 else 1549 bq = bd->bd_cleanq; 1550 } else 1551 bq = &bd->bd_dirtyq; 1552 bq_insert(bq, bp, true); 1553 } 1554 1555 /* 1556 * buf_free: 1557 * 1558 * Free a buffer to the buf zone once it no longer has valid contents. 1559 */ 1560 static void 1561 buf_free(struct buf *bp) 1562 { 1563 1564 if (bp->b_flags & B_REMFREE) 1565 bremfreef(bp); 1566 if (bp->b_vflags & BV_BKGRDINPROG) 1567 panic("losing buffer 1"); 1568 if (bp->b_rcred != NOCRED) { 1569 crfree(bp->b_rcred); 1570 bp->b_rcred = NOCRED; 1571 } 1572 if (bp->b_wcred != NOCRED) { 1573 crfree(bp->b_wcred); 1574 bp->b_wcred = NOCRED; 1575 } 1576 if (!LIST_EMPTY(&bp->b_dep)) 1577 buf_deallocate(bp); 1578 bufkva_free(bp); 1579 atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1); 1580 BUF_UNLOCK(bp); 1581 uma_zfree(buf_zone, bp); 1582 } 1583 1584 /* 1585 * buf_import: 1586 * 1587 * Import bufs into the uma cache from the buf list. The system still 1588 * expects a static array of bufs and much of the synchronization 1589 * around bufs assumes type stable storage. As a result, UMA is used 1590 * only as a per-cpu cache of bufs still maintained on a global list. 1591 */ 1592 static int 1593 buf_import(void *arg, void **store, int cnt, int domain, int flags) 1594 { 1595 struct buf *bp; 1596 int i; 1597 1598 BQ_LOCK(&bqempty); 1599 for (i = 0; i < cnt; i++) { 1600 bp = TAILQ_FIRST(&bqempty.bq_queue); 1601 if (bp == NULL) 1602 break; 1603 bq_remove(&bqempty, bp); 1604 store[i] = bp; 1605 } 1606 BQ_UNLOCK(&bqempty); 1607 1608 return (i); 1609 } 1610 1611 /* 1612 * buf_release: 1613 * 1614 * Release bufs from the uma cache back to the buffer queues. 1615 */ 1616 static void 1617 buf_release(void *arg, void **store, int cnt) 1618 { 1619 struct bufqueue *bq; 1620 struct buf *bp; 1621 int i; 1622 1623 bq = &bqempty; 1624 BQ_LOCK(bq); 1625 for (i = 0; i < cnt; i++) { 1626 bp = store[i]; 1627 /* Inline bq_insert() to batch locking. */ 1628 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1629 bp->b_flags &= ~(B_AGE | B_REUSE); 1630 bq->bq_len++; 1631 bp->b_qindex = bq->bq_index; 1632 } 1633 BQ_UNLOCK(bq); 1634 } 1635 1636 /* 1637 * buf_alloc: 1638 * 1639 * Allocate an empty buffer header. 1640 */ 1641 static struct buf * 1642 buf_alloc(struct bufdomain *bd) 1643 { 1644 struct buf *bp; 1645 int freebufs; 1646 1647 /* 1648 * We can only run out of bufs in the buf zone if the average buf 1649 * is less than BKVASIZE. In this case the actual wait/block will 1650 * come from buf_reycle() failing to flush one of these small bufs. 1651 */ 1652 bp = NULL; 1653 freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1); 1654 if (freebufs > 0) 1655 bp = uma_zalloc(buf_zone, M_NOWAIT); 1656 if (bp == NULL) { 1657 atomic_fetchadd_int(&bd->bd_freebuffers, 1); 1658 bufspace_daemon_wakeup(bd); 1659 counter_u64_add(numbufallocfails, 1); 1660 return (NULL); 1661 } 1662 /* 1663 * Wake-up the bufspace daemon on transition below threshold. 1664 */ 1665 if (freebufs == bd->bd_lofreebuffers) 1666 bufspace_daemon_wakeup(bd); 1667 1668 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1669 panic("getnewbuf_empty: Locked buf %p on free queue.", bp); 1670 1671 KASSERT(bp->b_vp == NULL, 1672 ("bp: %p still has vnode %p.", bp, bp->b_vp)); 1673 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0, 1674 ("invalid buffer %p flags %#x", bp, bp->b_flags)); 1675 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0, 1676 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags)); 1677 KASSERT(bp->b_npages == 0, 1678 ("bp: %p still has %d vm pages\n", bp, bp->b_npages)); 1679 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp)); 1680 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp)); 1681 1682 bp->b_domain = BD_DOMAIN(bd); 1683 bp->b_flags = 0; 1684 bp->b_ioflags = 0; 1685 bp->b_xflags = 0; 1686 bp->b_vflags = 0; 1687 bp->b_vp = NULL; 1688 bp->b_blkno = bp->b_lblkno = 0; 1689 bp->b_offset = NOOFFSET; 1690 bp->b_iodone = 0; 1691 bp->b_error = 0; 1692 bp->b_resid = 0; 1693 bp->b_bcount = 0; 1694 bp->b_npages = 0; 1695 bp->b_dirtyoff = bp->b_dirtyend = 0; 1696 bp->b_bufobj = NULL; 1697 bp->b_data = bp->b_kvabase = unmapped_buf; 1698 bp->b_fsprivate1 = NULL; 1699 bp->b_fsprivate2 = NULL; 1700 bp->b_fsprivate3 = NULL; 1701 LIST_INIT(&bp->b_dep); 1702 1703 return (bp); 1704 } 1705 1706 /* 1707 * buf_recycle: 1708 * 1709 * Free a buffer from the given bufqueue. kva controls whether the 1710 * freed buf must own some kva resources. This is used for 1711 * defragmenting. 1712 */ 1713 static int 1714 buf_recycle(struct bufdomain *bd, bool kva) 1715 { 1716 struct bufqueue *bq; 1717 struct buf *bp, *nbp; 1718 1719 if (kva) 1720 counter_u64_add(bufdefragcnt, 1); 1721 nbp = NULL; 1722 bq = bd->bd_cleanq; 1723 BQ_LOCK(bq); 1724 KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd), 1725 ("buf_recycle: Locks don't match")); 1726 nbp = TAILQ_FIRST(&bq->bq_queue); 1727 1728 /* 1729 * Run scan, possibly freeing data and/or kva mappings on the fly 1730 * depending. 1731 */ 1732 while ((bp = nbp) != NULL) { 1733 /* 1734 * Calculate next bp (we can only use it if we do not 1735 * release the bqlock). 1736 */ 1737 nbp = TAILQ_NEXT(bp, b_freelist); 1738 1739 /* 1740 * If we are defragging then we need a buffer with 1741 * some kva to reclaim. 1742 */ 1743 if (kva && bp->b_kvasize == 0) 1744 continue; 1745 1746 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1747 continue; 1748 1749 /* 1750 * Implement a second chance algorithm for frequently 1751 * accessed buffers. 1752 */ 1753 if ((bp->b_flags & B_REUSE) != 0) { 1754 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1755 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1756 bp->b_flags &= ~B_REUSE; 1757 BUF_UNLOCK(bp); 1758 continue; 1759 } 1760 1761 /* 1762 * Skip buffers with background writes in progress. 1763 */ 1764 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 1765 BUF_UNLOCK(bp); 1766 continue; 1767 } 1768 1769 KASSERT(bp->b_qindex == QUEUE_CLEAN, 1770 ("buf_recycle: inconsistent queue %d bp %p", 1771 bp->b_qindex, bp)); 1772 KASSERT(bp->b_domain == BD_DOMAIN(bd), 1773 ("getnewbuf: queue domain %d doesn't match request %d", 1774 bp->b_domain, (int)BD_DOMAIN(bd))); 1775 /* 1776 * NOTE: nbp is now entirely invalid. We can only restart 1777 * the scan from this point on. 1778 */ 1779 bq_remove(bq, bp); 1780 BQ_UNLOCK(bq); 1781 1782 /* 1783 * Requeue the background write buffer with error and 1784 * restart the scan. 1785 */ 1786 if ((bp->b_vflags & BV_BKGRDERR) != 0) { 1787 bqrelse(bp); 1788 BQ_LOCK(bq); 1789 nbp = TAILQ_FIRST(&bq->bq_queue); 1790 continue; 1791 } 1792 bp->b_flags |= B_INVAL; 1793 brelse(bp); 1794 return (0); 1795 } 1796 bd->bd_wanted = 1; 1797 BQ_UNLOCK(bq); 1798 1799 return (ENOBUFS); 1800 } 1801 1802 /* 1803 * bremfree: 1804 * 1805 * Mark the buffer for removal from the appropriate free list. 1806 * 1807 */ 1808 void 1809 bremfree(struct buf *bp) 1810 { 1811 1812 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1813 KASSERT((bp->b_flags & B_REMFREE) == 0, 1814 ("bremfree: buffer %p already marked for delayed removal.", bp)); 1815 KASSERT(bp->b_qindex != QUEUE_NONE, 1816 ("bremfree: buffer %p not on a queue.", bp)); 1817 BUF_ASSERT_XLOCKED(bp); 1818 1819 bp->b_flags |= B_REMFREE; 1820 } 1821 1822 /* 1823 * bremfreef: 1824 * 1825 * Force an immediate removal from a free list. Used only in nfs when 1826 * it abuses the b_freelist pointer. 1827 */ 1828 void 1829 bremfreef(struct buf *bp) 1830 { 1831 struct bufqueue *bq; 1832 1833 bq = bufqueue_acquire(bp); 1834 bq_remove(bq, bp); 1835 BQ_UNLOCK(bq); 1836 } 1837 1838 static void 1839 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname) 1840 { 1841 1842 mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF); 1843 TAILQ_INIT(&bq->bq_queue); 1844 bq->bq_len = 0; 1845 bq->bq_index = qindex; 1846 bq->bq_subqueue = subqueue; 1847 } 1848 1849 static void 1850 bd_init(struct bufdomain *bd) 1851 { 1852 int domain; 1853 int i; 1854 1855 domain = bd - bdomain; 1856 bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1]; 1857 bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock"); 1858 bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock"); 1859 for (i = 0; i <= mp_maxid; i++) 1860 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i, 1861 "bufq clean subqueue lock"); 1862 mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF); 1863 } 1864 1865 /* 1866 * bq_remove: 1867 * 1868 * Removes a buffer from the free list, must be called with the 1869 * correct qlock held. 1870 */ 1871 static void 1872 bq_remove(struct bufqueue *bq, struct buf *bp) 1873 { 1874 1875 CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X", 1876 bp, bp->b_vp, bp->b_flags); 1877 KASSERT(bp->b_qindex != QUEUE_NONE, 1878 ("bq_remove: buffer %p not on a queue.", bp)); 1879 KASSERT(bufqueue(bp) == bq, 1880 ("bq_remove: Remove buffer %p from wrong queue.", bp)); 1881 1882 BQ_ASSERT_LOCKED(bq); 1883 if (bp->b_qindex != QUEUE_EMPTY) { 1884 BUF_ASSERT_XLOCKED(bp); 1885 } 1886 KASSERT(bq->bq_len >= 1, 1887 ("queue %d underflow", bp->b_qindex)); 1888 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1889 bq->bq_len--; 1890 bp->b_qindex = QUEUE_NONE; 1891 bp->b_flags &= ~(B_REMFREE | B_REUSE); 1892 } 1893 1894 static void 1895 bd_flush(struct bufdomain *bd, struct bufqueue *bq) 1896 { 1897 struct buf *bp; 1898 1899 BQ_ASSERT_LOCKED(bq); 1900 if (bq != bd->bd_cleanq) { 1901 BD_LOCK(bd); 1902 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) { 1903 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1904 TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp, 1905 b_freelist); 1906 bp->b_subqueue = bd->bd_cleanq->bq_subqueue; 1907 } 1908 bd->bd_cleanq->bq_len += bq->bq_len; 1909 bq->bq_len = 0; 1910 } 1911 if (bd->bd_wanted) { 1912 bd->bd_wanted = 0; 1913 wakeup(&bd->bd_wanted); 1914 } 1915 if (bq != bd->bd_cleanq) 1916 BD_UNLOCK(bd); 1917 } 1918 1919 static int 1920 bd_flushall(struct bufdomain *bd) 1921 { 1922 struct bufqueue *bq; 1923 int flushed; 1924 int i; 1925 1926 if (bd->bd_lim == 0) 1927 return (0); 1928 flushed = 0; 1929 for (i = 0; i <= mp_maxid; i++) { 1930 bq = &bd->bd_subq[i]; 1931 if (bq->bq_len == 0) 1932 continue; 1933 BQ_LOCK(bq); 1934 bd_flush(bd, bq); 1935 BQ_UNLOCK(bq); 1936 flushed++; 1937 } 1938 1939 return (flushed); 1940 } 1941 1942 static void 1943 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock) 1944 { 1945 struct bufdomain *bd; 1946 1947 if (bp->b_qindex != QUEUE_NONE) 1948 panic("bq_insert: free buffer %p onto another queue?", bp); 1949 1950 bd = bufdomain(bp); 1951 if (bp->b_flags & B_AGE) { 1952 /* Place this buf directly on the real queue. */ 1953 if (bq->bq_index == QUEUE_CLEAN) 1954 bq = bd->bd_cleanq; 1955 BQ_LOCK(bq); 1956 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist); 1957 } else { 1958 BQ_LOCK(bq); 1959 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1960 } 1961 bp->b_flags &= ~(B_AGE | B_REUSE); 1962 bq->bq_len++; 1963 bp->b_qindex = bq->bq_index; 1964 bp->b_subqueue = bq->bq_subqueue; 1965 1966 /* 1967 * Unlock before we notify so that we don't wakeup a waiter that 1968 * fails a trylock on the buf and sleeps again. 1969 */ 1970 if (unlock) 1971 BUF_UNLOCK(bp); 1972 1973 if (bp->b_qindex == QUEUE_CLEAN) { 1974 /* 1975 * Flush the per-cpu queue and notify any waiters. 1976 */ 1977 if (bd->bd_wanted || (bq != bd->bd_cleanq && 1978 bq->bq_len >= bd->bd_lim)) 1979 bd_flush(bd, bq); 1980 } 1981 BQ_UNLOCK(bq); 1982 } 1983 1984 /* 1985 * bufkva_free: 1986 * 1987 * Free the kva allocation for a buffer. 1988 * 1989 */ 1990 static void 1991 bufkva_free(struct buf *bp) 1992 { 1993 1994 #ifdef INVARIANTS 1995 if (bp->b_kvasize == 0) { 1996 KASSERT(bp->b_kvabase == unmapped_buf && 1997 bp->b_data == unmapped_buf, 1998 ("Leaked KVA space on %p", bp)); 1999 } else if (buf_mapped(bp)) 2000 BUF_CHECK_MAPPED(bp); 2001 else 2002 BUF_CHECK_UNMAPPED(bp); 2003 #endif 2004 if (bp->b_kvasize == 0) 2005 return; 2006 2007 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize); 2008 counter_u64_add(bufkvaspace, -bp->b_kvasize); 2009 counter_u64_add(buffreekvacnt, 1); 2010 bp->b_data = bp->b_kvabase = unmapped_buf; 2011 bp->b_kvasize = 0; 2012 } 2013 2014 /* 2015 * bufkva_alloc: 2016 * 2017 * Allocate the buffer KVA and set b_kvasize and b_kvabase. 2018 */ 2019 static int 2020 bufkva_alloc(struct buf *bp, int maxsize, int gbflags) 2021 { 2022 vm_offset_t addr; 2023 int error; 2024 2025 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0, 2026 ("Invalid gbflags 0x%x in %s", gbflags, __func__)); 2027 2028 bufkva_free(bp); 2029 2030 addr = 0; 2031 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr); 2032 if (error != 0) { 2033 /* 2034 * Buffer map is too fragmented. Request the caller 2035 * to defragment the map. 2036 */ 2037 return (error); 2038 } 2039 bp->b_kvabase = (caddr_t)addr; 2040 bp->b_kvasize = maxsize; 2041 counter_u64_add(bufkvaspace, bp->b_kvasize); 2042 if ((gbflags & GB_UNMAPPED) != 0) { 2043 bp->b_data = unmapped_buf; 2044 BUF_CHECK_UNMAPPED(bp); 2045 } else { 2046 bp->b_data = bp->b_kvabase; 2047 BUF_CHECK_MAPPED(bp); 2048 } 2049 return (0); 2050 } 2051 2052 /* 2053 * bufkva_reclaim: 2054 * 2055 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem 2056 * callback that fires to avoid returning failure. 2057 */ 2058 static void 2059 bufkva_reclaim(vmem_t *vmem, int flags) 2060 { 2061 bool done; 2062 int q; 2063 int i; 2064 2065 done = false; 2066 for (i = 0; i < 5; i++) { 2067 for (q = 0; q < buf_domains; q++) 2068 if (buf_recycle(&bdomain[q], true) != 0) 2069 done = true; 2070 if (done) 2071 break; 2072 } 2073 return; 2074 } 2075 2076 /* 2077 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must 2078 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set, 2079 * the buffer is valid and we do not have to do anything. 2080 */ 2081 static void 2082 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt, 2083 struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *)) 2084 { 2085 struct buf *rabp; 2086 int i; 2087 2088 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 2089 if (inmem(vp, *rablkno)) 2090 continue; 2091 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 2092 if ((rabp->b_flags & B_CACHE) != 0) { 2093 brelse(rabp); 2094 continue; 2095 } 2096 if (!TD_IS_IDLETHREAD(curthread)) { 2097 #ifdef RACCT 2098 if (racct_enable) { 2099 PROC_LOCK(curproc); 2100 racct_add_buf(curproc, rabp, 0); 2101 PROC_UNLOCK(curproc); 2102 } 2103 #endif /* RACCT */ 2104 curthread->td_ru.ru_inblock++; 2105 } 2106 rabp->b_flags |= B_ASYNC; 2107 rabp->b_flags &= ~B_INVAL; 2108 if ((flags & GB_CKHASH) != 0) { 2109 rabp->b_flags |= B_CKHASH; 2110 rabp->b_ckhashcalc = ckhashfunc; 2111 } 2112 rabp->b_ioflags &= ~BIO_ERROR; 2113 rabp->b_iocmd = BIO_READ; 2114 if (rabp->b_rcred == NOCRED && cred != NOCRED) 2115 rabp->b_rcred = crhold(cred); 2116 vfs_busy_pages(rabp, 0); 2117 BUF_KERNPROC(rabp); 2118 rabp->b_iooffset = dbtob(rabp->b_blkno); 2119 bstrategy(rabp); 2120 } 2121 } 2122 2123 /* 2124 * Entry point for bread() and breadn() via #defines in sys/buf.h. 2125 * 2126 * Get a buffer with the specified data. Look in the cache first. We 2127 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 2128 * is set, the buffer is valid and we do not have to do anything, see 2129 * getblk(). Also starts asynchronous I/O on read-ahead blocks. 2130 * 2131 * Always return a NULL buffer pointer (in bpp) when returning an error. 2132 */ 2133 int 2134 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno, 2135 int *rabsize, int cnt, struct ucred *cred, int flags, 2136 void (*ckhashfunc)(struct buf *), struct buf **bpp) 2137 { 2138 struct buf *bp; 2139 int readwait, rv; 2140 2141 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size); 2142 /* 2143 * Can only return NULL if GB_LOCK_NOWAIT flag is specified. 2144 */ 2145 *bpp = bp = getblk(vp, blkno, size, 0, 0, flags); 2146 if (bp == NULL) 2147 return (EBUSY); 2148 2149 /* 2150 * If not found in cache, do some I/O 2151 */ 2152 readwait = 0; 2153 if ((bp->b_flags & B_CACHE) == 0) { 2154 if (!TD_IS_IDLETHREAD(curthread)) { 2155 #ifdef RACCT 2156 if (racct_enable) { 2157 PROC_LOCK(curproc); 2158 racct_add_buf(curproc, bp, 0); 2159 PROC_UNLOCK(curproc); 2160 } 2161 #endif /* RACCT */ 2162 curthread->td_ru.ru_inblock++; 2163 } 2164 bp->b_iocmd = BIO_READ; 2165 bp->b_flags &= ~B_INVAL; 2166 if ((flags & GB_CKHASH) != 0) { 2167 bp->b_flags |= B_CKHASH; 2168 bp->b_ckhashcalc = ckhashfunc; 2169 } 2170 bp->b_ioflags &= ~BIO_ERROR; 2171 if (bp->b_rcred == NOCRED && cred != NOCRED) 2172 bp->b_rcred = crhold(cred); 2173 vfs_busy_pages(bp, 0); 2174 bp->b_iooffset = dbtob(bp->b_blkno); 2175 bstrategy(bp); 2176 ++readwait; 2177 } 2178 2179 /* 2180 * Attempt to initiate asynchronous I/O on read-ahead blocks. 2181 */ 2182 breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc); 2183 2184 rv = 0; 2185 if (readwait) { 2186 rv = bufwait(bp); 2187 if (rv != 0) { 2188 brelse(bp); 2189 *bpp = NULL; 2190 } 2191 } 2192 return (rv); 2193 } 2194 2195 /* 2196 * Write, release buffer on completion. (Done by iodone 2197 * if async). Do not bother writing anything if the buffer 2198 * is invalid. 2199 * 2200 * Note that we set B_CACHE here, indicating that buffer is 2201 * fully valid and thus cacheable. This is true even of NFS 2202 * now so we set it generally. This could be set either here 2203 * or in biodone() since the I/O is synchronous. We put it 2204 * here. 2205 */ 2206 int 2207 bufwrite(struct buf *bp) 2208 { 2209 int oldflags; 2210 struct vnode *vp; 2211 long space; 2212 int vp_md; 2213 2214 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2215 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) { 2216 bp->b_flags |= B_INVAL | B_RELBUF; 2217 bp->b_flags &= ~B_CACHE; 2218 brelse(bp); 2219 return (ENXIO); 2220 } 2221 if (bp->b_flags & B_INVAL) { 2222 brelse(bp); 2223 return (0); 2224 } 2225 2226 if (bp->b_flags & B_BARRIER) 2227 barrierwrites++; 2228 2229 oldflags = bp->b_flags; 2230 2231 BUF_ASSERT_HELD(bp); 2232 2233 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG), 2234 ("FFS background buffer should not get here %p", bp)); 2235 2236 vp = bp->b_vp; 2237 if (vp) 2238 vp_md = vp->v_vflag & VV_MD; 2239 else 2240 vp_md = 0; 2241 2242 /* 2243 * Mark the buffer clean. Increment the bufobj write count 2244 * before bundirty() call, to prevent other thread from seeing 2245 * empty dirty list and zero counter for writes in progress, 2246 * falsely indicating that the bufobj is clean. 2247 */ 2248 bufobj_wref(bp->b_bufobj); 2249 bundirty(bp); 2250 2251 bp->b_flags &= ~B_DONE; 2252 bp->b_ioflags &= ~BIO_ERROR; 2253 bp->b_flags |= B_CACHE; 2254 bp->b_iocmd = BIO_WRITE; 2255 2256 vfs_busy_pages(bp, 1); 2257 2258 /* 2259 * Normal bwrites pipeline writes 2260 */ 2261 bp->b_runningbufspace = bp->b_bufsize; 2262 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace); 2263 2264 if (!TD_IS_IDLETHREAD(curthread)) { 2265 #ifdef RACCT 2266 if (racct_enable) { 2267 PROC_LOCK(curproc); 2268 racct_add_buf(curproc, bp, 1); 2269 PROC_UNLOCK(curproc); 2270 } 2271 #endif /* RACCT */ 2272 curthread->td_ru.ru_oublock++; 2273 } 2274 if (oldflags & B_ASYNC) 2275 BUF_KERNPROC(bp); 2276 bp->b_iooffset = dbtob(bp->b_blkno); 2277 buf_track(bp, __func__); 2278 bstrategy(bp); 2279 2280 if ((oldflags & B_ASYNC) == 0) { 2281 int rtval = bufwait(bp); 2282 brelse(bp); 2283 return (rtval); 2284 } else if (space > hirunningspace) { 2285 /* 2286 * don't allow the async write to saturate the I/O 2287 * system. We will not deadlock here because 2288 * we are blocking waiting for I/O that is already in-progress 2289 * to complete. We do not block here if it is the update 2290 * or syncer daemon trying to clean up as that can lead 2291 * to deadlock. 2292 */ 2293 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md) 2294 waitrunningbufspace(); 2295 } 2296 2297 return (0); 2298 } 2299 2300 void 2301 bufbdflush(struct bufobj *bo, struct buf *bp) 2302 { 2303 struct buf *nbp; 2304 2305 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) { 2306 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread); 2307 altbufferflushes++; 2308 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) { 2309 BO_LOCK(bo); 2310 /* 2311 * Try to find a buffer to flush. 2312 */ 2313 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) { 2314 if ((nbp->b_vflags & BV_BKGRDINPROG) || 2315 BUF_LOCK(nbp, 2316 LK_EXCLUSIVE | LK_NOWAIT, NULL)) 2317 continue; 2318 if (bp == nbp) 2319 panic("bdwrite: found ourselves"); 2320 BO_UNLOCK(bo); 2321 /* Don't countdeps with the bo lock held. */ 2322 if (buf_countdeps(nbp, 0)) { 2323 BO_LOCK(bo); 2324 BUF_UNLOCK(nbp); 2325 continue; 2326 } 2327 if (nbp->b_flags & B_CLUSTEROK) { 2328 vfs_bio_awrite(nbp); 2329 } else { 2330 bremfree(nbp); 2331 bawrite(nbp); 2332 } 2333 dirtybufferflushes++; 2334 break; 2335 } 2336 if (nbp == NULL) 2337 BO_UNLOCK(bo); 2338 } 2339 } 2340 2341 /* 2342 * Delayed write. (Buffer is marked dirty). Do not bother writing 2343 * anything if the buffer is marked invalid. 2344 * 2345 * Note that since the buffer must be completely valid, we can safely 2346 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 2347 * biodone() in order to prevent getblk from writing the buffer 2348 * out synchronously. 2349 */ 2350 void 2351 bdwrite(struct buf *bp) 2352 { 2353 struct thread *td = curthread; 2354 struct vnode *vp; 2355 struct bufobj *bo; 2356 2357 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2358 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2359 KASSERT((bp->b_flags & B_BARRIER) == 0, 2360 ("Barrier request in delayed write %p", bp)); 2361 BUF_ASSERT_HELD(bp); 2362 2363 if (bp->b_flags & B_INVAL) { 2364 brelse(bp); 2365 return; 2366 } 2367 2368 /* 2369 * If we have too many dirty buffers, don't create any more. 2370 * If we are wildly over our limit, then force a complete 2371 * cleanup. Otherwise, just keep the situation from getting 2372 * out of control. Note that we have to avoid a recursive 2373 * disaster and not try to clean up after our own cleanup! 2374 */ 2375 vp = bp->b_vp; 2376 bo = bp->b_bufobj; 2377 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) { 2378 td->td_pflags |= TDP_INBDFLUSH; 2379 BO_BDFLUSH(bo, bp); 2380 td->td_pflags &= ~TDP_INBDFLUSH; 2381 } else 2382 recursiveflushes++; 2383 2384 bdirty(bp); 2385 /* 2386 * Set B_CACHE, indicating that the buffer is fully valid. This is 2387 * true even of NFS now. 2388 */ 2389 bp->b_flags |= B_CACHE; 2390 2391 /* 2392 * This bmap keeps the system from needing to do the bmap later, 2393 * perhaps when the system is attempting to do a sync. Since it 2394 * is likely that the indirect block -- or whatever other datastructure 2395 * that the filesystem needs is still in memory now, it is a good 2396 * thing to do this. Note also, that if the pageout daemon is 2397 * requesting a sync -- there might not be enough memory to do 2398 * the bmap then... So, this is important to do. 2399 */ 2400 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 2401 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 2402 } 2403 2404 buf_track(bp, __func__); 2405 2406 /* 2407 * Set the *dirty* buffer range based upon the VM system dirty 2408 * pages. 2409 * 2410 * Mark the buffer pages as clean. We need to do this here to 2411 * satisfy the vnode_pager and the pageout daemon, so that it 2412 * thinks that the pages have been "cleaned". Note that since 2413 * the pages are in a delayed write buffer -- the VFS layer 2414 * "will" see that the pages get written out on the next sync, 2415 * or perhaps the cluster will be completed. 2416 */ 2417 vfs_clean_pages_dirty_buf(bp); 2418 bqrelse(bp); 2419 2420 /* 2421 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 2422 * due to the softdep code. 2423 */ 2424 } 2425 2426 /* 2427 * bdirty: 2428 * 2429 * Turn buffer into delayed write request. We must clear BIO_READ and 2430 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 2431 * itself to properly update it in the dirty/clean lists. We mark it 2432 * B_DONE to ensure that any asynchronization of the buffer properly 2433 * clears B_DONE ( else a panic will occur later ). 2434 * 2435 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 2436 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 2437 * should only be called if the buffer is known-good. 2438 * 2439 * Since the buffer is not on a queue, we do not update the numfreebuffers 2440 * count. 2441 * 2442 * The buffer must be on QUEUE_NONE. 2443 */ 2444 void 2445 bdirty(struct buf *bp) 2446 { 2447 2448 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X", 2449 bp, bp->b_vp, bp->b_flags); 2450 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2451 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2452 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2453 BUF_ASSERT_HELD(bp); 2454 bp->b_flags &= ~(B_RELBUF); 2455 bp->b_iocmd = BIO_WRITE; 2456 2457 if ((bp->b_flags & B_DELWRI) == 0) { 2458 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI; 2459 reassignbuf(bp); 2460 bdirtyadd(bp); 2461 } 2462 } 2463 2464 /* 2465 * bundirty: 2466 * 2467 * Clear B_DELWRI for buffer. 2468 * 2469 * Since the buffer is not on a queue, we do not update the numfreebuffers 2470 * count. 2471 * 2472 * The buffer must be on QUEUE_NONE. 2473 */ 2474 2475 void 2476 bundirty(struct buf *bp) 2477 { 2478 2479 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2480 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2481 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2482 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2483 BUF_ASSERT_HELD(bp); 2484 2485 if (bp->b_flags & B_DELWRI) { 2486 bp->b_flags &= ~B_DELWRI; 2487 reassignbuf(bp); 2488 bdirtysub(bp); 2489 } 2490 /* 2491 * Since it is now being written, we can clear its deferred write flag. 2492 */ 2493 bp->b_flags &= ~B_DEFERRED; 2494 } 2495 2496 /* 2497 * bawrite: 2498 * 2499 * Asynchronous write. Start output on a buffer, but do not wait for 2500 * it to complete. The buffer is released when the output completes. 2501 * 2502 * bwrite() ( or the VOP routine anyway ) is responsible for handling 2503 * B_INVAL buffers. Not us. 2504 */ 2505 void 2506 bawrite(struct buf *bp) 2507 { 2508 2509 bp->b_flags |= B_ASYNC; 2510 (void) bwrite(bp); 2511 } 2512 2513 /* 2514 * babarrierwrite: 2515 * 2516 * Asynchronous barrier write. Start output on a buffer, but do not 2517 * wait for it to complete. Place a write barrier after this write so 2518 * that this buffer and all buffers written before it are committed to 2519 * the disk before any buffers written after this write are committed 2520 * to the disk. The buffer is released when the output completes. 2521 */ 2522 void 2523 babarrierwrite(struct buf *bp) 2524 { 2525 2526 bp->b_flags |= B_ASYNC | B_BARRIER; 2527 (void) bwrite(bp); 2528 } 2529 2530 /* 2531 * bbarrierwrite: 2532 * 2533 * Synchronous barrier write. Start output on a buffer and wait for 2534 * it to complete. Place a write barrier after this write so that 2535 * this buffer and all buffers written before it are committed to 2536 * the disk before any buffers written after this write are committed 2537 * to the disk. The buffer is released when the output completes. 2538 */ 2539 int 2540 bbarrierwrite(struct buf *bp) 2541 { 2542 2543 bp->b_flags |= B_BARRIER; 2544 return (bwrite(bp)); 2545 } 2546 2547 /* 2548 * bwillwrite: 2549 * 2550 * Called prior to the locking of any vnodes when we are expecting to 2551 * write. We do not want to starve the buffer cache with too many 2552 * dirty buffers so we block here. By blocking prior to the locking 2553 * of any vnodes we attempt to avoid the situation where a locked vnode 2554 * prevents the various system daemons from flushing related buffers. 2555 */ 2556 void 2557 bwillwrite(void) 2558 { 2559 2560 if (buf_dirty_count_severe()) { 2561 mtx_lock(&bdirtylock); 2562 while (buf_dirty_count_severe()) { 2563 bdirtywait = 1; 2564 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4), 2565 "flswai", 0); 2566 } 2567 mtx_unlock(&bdirtylock); 2568 } 2569 } 2570 2571 /* 2572 * Return true if we have too many dirty buffers. 2573 */ 2574 int 2575 buf_dirty_count_severe(void) 2576 { 2577 2578 return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty)); 2579 } 2580 2581 /* 2582 * brelse: 2583 * 2584 * Release a busy buffer and, if requested, free its resources. The 2585 * buffer will be stashed in the appropriate bufqueue[] allowing it 2586 * to be accessed later as a cache entity or reused for other purposes. 2587 */ 2588 void 2589 brelse(struct buf *bp) 2590 { 2591 struct mount *v_mnt; 2592 int qindex; 2593 2594 /* 2595 * Many functions erroneously call brelse with a NULL bp under rare 2596 * error conditions. Simply return when called with a NULL bp. 2597 */ 2598 if (bp == NULL) 2599 return; 2600 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X", 2601 bp, bp->b_vp, bp->b_flags); 2602 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2603 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2604 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0, 2605 ("brelse: non-VMIO buffer marked NOREUSE")); 2606 2607 if (BUF_LOCKRECURSED(bp)) { 2608 /* 2609 * Do not process, in particular, do not handle the 2610 * B_INVAL/B_RELBUF and do not release to free list. 2611 */ 2612 BUF_UNLOCK(bp); 2613 return; 2614 } 2615 2616 if (bp->b_flags & B_MANAGED) { 2617 bqrelse(bp); 2618 return; 2619 } 2620 2621 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) { 2622 BO_LOCK(bp->b_bufobj); 2623 bp->b_vflags &= ~BV_BKGRDERR; 2624 BO_UNLOCK(bp->b_bufobj); 2625 bdirty(bp); 2626 } 2627 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 2628 (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) && 2629 !(bp->b_flags & B_INVAL)) { 2630 /* 2631 * Failed write, redirty. All errors except ENXIO (which 2632 * means the device is gone) are treated as being 2633 * transient. 2634 * 2635 * XXX Treating EIO as transient is not correct; the 2636 * contract with the local storage device drivers is that 2637 * they will only return EIO once the I/O is no longer 2638 * retriable. Network I/O also respects this through the 2639 * guarantees of TCP and/or the internal retries of NFS. 2640 * ENOMEM might be transient, but we also have no way of 2641 * knowing when its ok to retry/reschedule. In general, 2642 * this entire case should be made obsolete through better 2643 * error handling/recovery and resource scheduling. 2644 * 2645 * Do this also for buffers that failed with ENXIO, but have 2646 * non-empty dependencies - the soft updates code might need 2647 * to access the buffer to untangle them. 2648 * 2649 * Must clear BIO_ERROR to prevent pages from being scrapped. 2650 */ 2651 bp->b_ioflags &= ~BIO_ERROR; 2652 bdirty(bp); 2653 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 2654 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) { 2655 /* 2656 * Either a failed read I/O, or we were asked to free or not 2657 * cache the buffer, or we failed to write to a device that's 2658 * no longer present. 2659 */ 2660 bp->b_flags |= B_INVAL; 2661 if (!LIST_EMPTY(&bp->b_dep)) 2662 buf_deallocate(bp); 2663 if (bp->b_flags & B_DELWRI) 2664 bdirtysub(bp); 2665 bp->b_flags &= ~(B_DELWRI | B_CACHE); 2666 if ((bp->b_flags & B_VMIO) == 0) { 2667 allocbuf(bp, 0); 2668 if (bp->b_vp) 2669 brelvp(bp); 2670 } 2671 } 2672 2673 /* 2674 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate() 2675 * is called with B_DELWRI set, the underlying pages may wind up 2676 * getting freed causing a previous write (bdwrite()) to get 'lost' 2677 * because pages associated with a B_DELWRI bp are marked clean. 2678 * 2679 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even 2680 * if B_DELWRI is set. 2681 */ 2682 if (bp->b_flags & B_DELWRI) 2683 bp->b_flags &= ~B_RELBUF; 2684 2685 /* 2686 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 2687 * constituted, not even NFS buffers now. Two flags effect this. If 2688 * B_INVAL, the struct buf is invalidated but the VM object is kept 2689 * around ( i.e. so it is trivial to reconstitute the buffer later ). 2690 * 2691 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 2692 * invalidated. BIO_ERROR cannot be set for a failed write unless the 2693 * buffer is also B_INVAL because it hits the re-dirtying code above. 2694 * 2695 * Normally we can do this whether a buffer is B_DELWRI or not. If 2696 * the buffer is an NFS buffer, it is tracking piecemeal writes or 2697 * the commit state and we cannot afford to lose the buffer. If the 2698 * buffer has a background write in progress, we need to keep it 2699 * around to prevent it from being reconstituted and starting a second 2700 * background write. 2701 */ 2702 2703 v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL; 2704 2705 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE || 2706 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) && 2707 (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 || 2708 vn_isdisk(bp->b_vp, NULL) || (bp->b_flags & B_DELWRI) == 0)) { 2709 vfs_vmio_invalidate(bp); 2710 allocbuf(bp, 0); 2711 } 2712 2713 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 || 2714 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) { 2715 allocbuf(bp, 0); 2716 bp->b_flags &= ~B_NOREUSE; 2717 if (bp->b_vp != NULL) 2718 brelvp(bp); 2719 } 2720 2721 /* 2722 * If the buffer has junk contents signal it and eventually 2723 * clean up B_DELWRI and diassociate the vnode so that gbincore() 2724 * doesn't find it. 2725 */ 2726 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 || 2727 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0) 2728 bp->b_flags |= B_INVAL; 2729 if (bp->b_flags & B_INVAL) { 2730 if (bp->b_flags & B_DELWRI) 2731 bundirty(bp); 2732 if (bp->b_vp) 2733 brelvp(bp); 2734 } 2735 2736 buf_track(bp, __func__); 2737 2738 /* buffers with no memory */ 2739 if (bp->b_bufsize == 0) { 2740 buf_free(bp); 2741 return; 2742 } 2743 /* buffers with junk contents */ 2744 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 2745 (bp->b_ioflags & BIO_ERROR)) { 2746 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 2747 if (bp->b_vflags & BV_BKGRDINPROG) 2748 panic("losing buffer 2"); 2749 qindex = QUEUE_CLEAN; 2750 bp->b_flags |= B_AGE; 2751 /* remaining buffers */ 2752 } else if (bp->b_flags & B_DELWRI) 2753 qindex = QUEUE_DIRTY; 2754 else 2755 qindex = QUEUE_CLEAN; 2756 2757 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 2758 panic("brelse: not dirty"); 2759 2760 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT); 2761 /* binsfree unlocks bp. */ 2762 binsfree(bp, qindex); 2763 } 2764 2765 /* 2766 * Release a buffer back to the appropriate queue but do not try to free 2767 * it. The buffer is expected to be used again soon. 2768 * 2769 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 2770 * biodone() to requeue an async I/O on completion. It is also used when 2771 * known good buffers need to be requeued but we think we may need the data 2772 * again soon. 2773 * 2774 * XXX we should be able to leave the B_RELBUF hint set on completion. 2775 */ 2776 void 2777 bqrelse(struct buf *bp) 2778 { 2779 int qindex; 2780 2781 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2782 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2783 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2784 2785 qindex = QUEUE_NONE; 2786 if (BUF_LOCKRECURSED(bp)) { 2787 /* do not release to free list */ 2788 BUF_UNLOCK(bp); 2789 return; 2790 } 2791 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 2792 2793 if (bp->b_flags & B_MANAGED) { 2794 if (bp->b_flags & B_REMFREE) 2795 bremfreef(bp); 2796 goto out; 2797 } 2798 2799 /* buffers with stale but valid contents */ 2800 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG | 2801 BV_BKGRDERR)) == BV_BKGRDERR) { 2802 BO_LOCK(bp->b_bufobj); 2803 bp->b_vflags &= ~BV_BKGRDERR; 2804 BO_UNLOCK(bp->b_bufobj); 2805 qindex = QUEUE_DIRTY; 2806 } else { 2807 if ((bp->b_flags & B_DELWRI) == 0 && 2808 (bp->b_xflags & BX_VNDIRTY)) 2809 panic("bqrelse: not dirty"); 2810 if ((bp->b_flags & B_NOREUSE) != 0) { 2811 brelse(bp); 2812 return; 2813 } 2814 qindex = QUEUE_CLEAN; 2815 } 2816 buf_track(bp, __func__); 2817 /* binsfree unlocks bp. */ 2818 binsfree(bp, qindex); 2819 return; 2820 2821 out: 2822 buf_track(bp, __func__); 2823 /* unlock */ 2824 BUF_UNLOCK(bp); 2825 } 2826 2827 /* 2828 * Complete I/O to a VMIO backed page. Validate the pages as appropriate, 2829 * restore bogus pages. 2830 */ 2831 static void 2832 vfs_vmio_iodone(struct buf *bp) 2833 { 2834 vm_ooffset_t foff; 2835 vm_page_t m; 2836 vm_object_t obj; 2837 struct vnode *vp; 2838 int i, iosize, resid; 2839 bool bogus; 2840 2841 obj = bp->b_bufobj->bo_object; 2842 KASSERT(obj->paging_in_progress >= bp->b_npages, 2843 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)", 2844 obj->paging_in_progress, bp->b_npages)); 2845 2846 vp = bp->b_vp; 2847 KASSERT(vp->v_holdcnt > 0, 2848 ("vfs_vmio_iodone: vnode %p has zero hold count", vp)); 2849 KASSERT(vp->v_object != NULL, 2850 ("vfs_vmio_iodone: vnode %p has no vm_object", vp)); 2851 2852 foff = bp->b_offset; 2853 KASSERT(bp->b_offset != NOOFFSET, 2854 ("vfs_vmio_iodone: bp %p has no buffer offset", bp)); 2855 2856 bogus = false; 2857 iosize = bp->b_bcount - bp->b_resid; 2858 VM_OBJECT_WLOCK(obj); 2859 for (i = 0; i < bp->b_npages; i++) { 2860 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2861 if (resid > iosize) 2862 resid = iosize; 2863 2864 /* 2865 * cleanup bogus pages, restoring the originals 2866 */ 2867 m = bp->b_pages[i]; 2868 if (m == bogus_page) { 2869 bogus = true; 2870 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2871 if (m == NULL) 2872 panic("biodone: page disappeared!"); 2873 bp->b_pages[i] = m; 2874 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) { 2875 /* 2876 * In the write case, the valid and clean bits are 2877 * already changed correctly ( see bdwrite() ), so we 2878 * only need to do this here in the read case. 2879 */ 2880 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK, 2881 resid)) == 0, ("vfs_vmio_iodone: page %p " 2882 "has unexpected dirty bits", m)); 2883 vfs_page_set_valid(bp, foff, m); 2884 } 2885 KASSERT(OFF_TO_IDX(foff) == m->pindex, 2886 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch", 2887 (intmax_t)foff, (uintmax_t)m->pindex)); 2888 2889 vm_page_sunbusy(m); 2890 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2891 iosize -= resid; 2892 } 2893 vm_object_pip_wakeupn(obj, bp->b_npages); 2894 VM_OBJECT_WUNLOCK(obj); 2895 if (bogus && buf_mapped(bp)) { 2896 BUF_CHECK_MAPPED(bp); 2897 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 2898 bp->b_pages, bp->b_npages); 2899 } 2900 } 2901 2902 /* 2903 * Unwire a page held by a buf and either free it or update the page queues to 2904 * reflect its recent use. 2905 */ 2906 static void 2907 vfs_vmio_unwire(struct buf *bp, vm_page_t m) 2908 { 2909 bool freed; 2910 2911 vm_page_lock(m); 2912 if (vm_page_unwire_noq(m)) { 2913 if ((bp->b_flags & B_DIRECT) != 0) 2914 freed = vm_page_try_to_free(m); 2915 else 2916 freed = false; 2917 if (!freed) { 2918 /* 2919 * Use a racy check of the valid bits to determine 2920 * whether we can accelerate reclamation of the page. 2921 * The valid bits will be stable unless the page is 2922 * being mapped or is referenced by multiple buffers, 2923 * and in those cases we expect races to be rare. At 2924 * worst we will either accelerate reclamation of a 2925 * valid page and violate LRU, or unnecessarily defer 2926 * reclamation of an invalid page. 2927 * 2928 * The B_NOREUSE flag marks data that is not expected to 2929 * be reused, so accelerate reclamation in that case 2930 * too. Otherwise, maintain LRU. 2931 */ 2932 if (m->valid == 0 || (bp->b_flags & B_NOREUSE) != 0) 2933 vm_page_deactivate_noreuse(m); 2934 else if (m->queue == PQ_ACTIVE) 2935 vm_page_reference(m); 2936 else 2937 vm_page_deactivate(m); 2938 } 2939 } 2940 vm_page_unlock(m); 2941 } 2942 2943 /* 2944 * Perform page invalidation when a buffer is released. The fully invalid 2945 * pages will be reclaimed later in vfs_vmio_truncate(). 2946 */ 2947 static void 2948 vfs_vmio_invalidate(struct buf *bp) 2949 { 2950 vm_object_t obj; 2951 vm_page_t m; 2952 int i, resid, poffset, presid; 2953 2954 if (buf_mapped(bp)) { 2955 BUF_CHECK_MAPPED(bp); 2956 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages); 2957 } else 2958 BUF_CHECK_UNMAPPED(bp); 2959 /* 2960 * Get the base offset and length of the buffer. Note that 2961 * in the VMIO case if the buffer block size is not 2962 * page-aligned then b_data pointer may not be page-aligned. 2963 * But our b_pages[] array *IS* page aligned. 2964 * 2965 * block sizes less then DEV_BSIZE (usually 512) are not 2966 * supported due to the page granularity bits (m->valid, 2967 * m->dirty, etc...). 2968 * 2969 * See man buf(9) for more information 2970 */ 2971 obj = bp->b_bufobj->bo_object; 2972 resid = bp->b_bufsize; 2973 poffset = bp->b_offset & PAGE_MASK; 2974 VM_OBJECT_WLOCK(obj); 2975 for (i = 0; i < bp->b_npages; i++) { 2976 m = bp->b_pages[i]; 2977 if (m == bogus_page) 2978 panic("vfs_vmio_invalidate: Unexpected bogus page."); 2979 bp->b_pages[i] = NULL; 2980 2981 presid = resid > (PAGE_SIZE - poffset) ? 2982 (PAGE_SIZE - poffset) : resid; 2983 KASSERT(presid >= 0, ("brelse: extra page")); 2984 while (vm_page_xbusied(m)) { 2985 vm_page_lock(m); 2986 VM_OBJECT_WUNLOCK(obj); 2987 vm_page_busy_sleep(m, "mbncsh", true); 2988 VM_OBJECT_WLOCK(obj); 2989 } 2990 if (pmap_page_wired_mappings(m) == 0) 2991 vm_page_set_invalid(m, poffset, presid); 2992 vfs_vmio_unwire(bp, m); 2993 resid -= presid; 2994 poffset = 0; 2995 } 2996 VM_OBJECT_WUNLOCK(obj); 2997 bp->b_npages = 0; 2998 } 2999 3000 /* 3001 * Page-granular truncation of an existing VMIO buffer. 3002 */ 3003 static void 3004 vfs_vmio_truncate(struct buf *bp, int desiredpages) 3005 { 3006 vm_object_t obj; 3007 vm_page_t m; 3008 int i; 3009 3010 if (bp->b_npages == desiredpages) 3011 return; 3012 3013 if (buf_mapped(bp)) { 3014 BUF_CHECK_MAPPED(bp); 3015 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) + 3016 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages); 3017 } else 3018 BUF_CHECK_UNMAPPED(bp); 3019 3020 /* 3021 * The object lock is needed only if we will attempt to free pages. 3022 */ 3023 obj = (bp->b_flags & B_DIRECT) != 0 ? bp->b_bufobj->bo_object : NULL; 3024 if (obj != NULL) 3025 VM_OBJECT_WLOCK(obj); 3026 for (i = desiredpages; i < bp->b_npages; i++) { 3027 m = bp->b_pages[i]; 3028 KASSERT(m != bogus_page, ("allocbuf: bogus page found")); 3029 bp->b_pages[i] = NULL; 3030 vfs_vmio_unwire(bp, m); 3031 } 3032 if (obj != NULL) 3033 VM_OBJECT_WUNLOCK(obj); 3034 bp->b_npages = desiredpages; 3035 } 3036 3037 /* 3038 * Byte granular extension of VMIO buffers. 3039 */ 3040 static void 3041 vfs_vmio_extend(struct buf *bp, int desiredpages, int size) 3042 { 3043 /* 3044 * We are growing the buffer, possibly in a 3045 * byte-granular fashion. 3046 */ 3047 vm_object_t obj; 3048 vm_offset_t toff; 3049 vm_offset_t tinc; 3050 vm_page_t m; 3051 3052 /* 3053 * Step 1, bring in the VM pages from the object, allocating 3054 * them if necessary. We must clear B_CACHE if these pages 3055 * are not valid for the range covered by the buffer. 3056 */ 3057 obj = bp->b_bufobj->bo_object; 3058 VM_OBJECT_WLOCK(obj); 3059 if (bp->b_npages < desiredpages) { 3060 /* 3061 * We must allocate system pages since blocking 3062 * here could interfere with paging I/O, no 3063 * matter which process we are. 3064 * 3065 * Only exclusive busy can be tested here. 3066 * Blocking on shared busy might lead to 3067 * deadlocks once allocbuf() is called after 3068 * pages are vfs_busy_pages(). 3069 */ 3070 (void)vm_page_grab_pages(obj, 3071 OFF_TO_IDX(bp->b_offset) + bp->b_npages, 3072 VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY | 3073 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED, 3074 &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages); 3075 bp->b_npages = desiredpages; 3076 } 3077 3078 /* 3079 * Step 2. We've loaded the pages into the buffer, 3080 * we have to figure out if we can still have B_CACHE 3081 * set. Note that B_CACHE is set according to the 3082 * byte-granular range ( bcount and size ), not the 3083 * aligned range ( newbsize ). 3084 * 3085 * The VM test is against m->valid, which is DEV_BSIZE 3086 * aligned. Needless to say, the validity of the data 3087 * needs to also be DEV_BSIZE aligned. Note that this 3088 * fails with NFS if the server or some other client 3089 * extends the file's EOF. If our buffer is resized, 3090 * B_CACHE may remain set! XXX 3091 */ 3092 toff = bp->b_bcount; 3093 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 3094 while ((bp->b_flags & B_CACHE) && toff < size) { 3095 vm_pindex_t pi; 3096 3097 if (tinc > (size - toff)) 3098 tinc = size - toff; 3099 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT; 3100 m = bp->b_pages[pi]; 3101 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m); 3102 toff += tinc; 3103 tinc = PAGE_SIZE; 3104 } 3105 VM_OBJECT_WUNLOCK(obj); 3106 3107 /* 3108 * Step 3, fixup the KVA pmap. 3109 */ 3110 if (buf_mapped(bp)) 3111 bpmap_qenter(bp); 3112 else 3113 BUF_CHECK_UNMAPPED(bp); 3114 } 3115 3116 /* 3117 * Check to see if a block at a particular lbn is available for a clustered 3118 * write. 3119 */ 3120 static int 3121 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 3122 { 3123 struct buf *bpa; 3124 int match; 3125 3126 match = 0; 3127 3128 /* If the buf isn't in core skip it */ 3129 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL) 3130 return (0); 3131 3132 /* If the buf is busy we don't want to wait for it */ 3133 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 3134 return (0); 3135 3136 /* Only cluster with valid clusterable delayed write buffers */ 3137 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 3138 (B_DELWRI | B_CLUSTEROK)) 3139 goto done; 3140 3141 if (bpa->b_bufsize != size) 3142 goto done; 3143 3144 /* 3145 * Check to see if it is in the expected place on disk and that the 3146 * block has been mapped. 3147 */ 3148 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 3149 match = 1; 3150 done: 3151 BUF_UNLOCK(bpa); 3152 return (match); 3153 } 3154 3155 /* 3156 * vfs_bio_awrite: 3157 * 3158 * Implement clustered async writes for clearing out B_DELWRI buffers. 3159 * This is much better then the old way of writing only one buffer at 3160 * a time. Note that we may not be presented with the buffers in the 3161 * correct order, so we search for the cluster in both directions. 3162 */ 3163 int 3164 vfs_bio_awrite(struct buf *bp) 3165 { 3166 struct bufobj *bo; 3167 int i; 3168 int j; 3169 daddr_t lblkno = bp->b_lblkno; 3170 struct vnode *vp = bp->b_vp; 3171 int ncl; 3172 int nwritten; 3173 int size; 3174 int maxcl; 3175 int gbflags; 3176 3177 bo = &vp->v_bufobj; 3178 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0; 3179 /* 3180 * right now we support clustered writing only to regular files. If 3181 * we find a clusterable block we could be in the middle of a cluster 3182 * rather then at the beginning. 3183 */ 3184 if ((vp->v_type == VREG) && 3185 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 3186 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 3187 3188 size = vp->v_mount->mnt_stat.f_iosize; 3189 maxcl = MAXPHYS / size; 3190 3191 BO_RLOCK(bo); 3192 for (i = 1; i < maxcl; i++) 3193 if (vfs_bio_clcheck(vp, size, lblkno + i, 3194 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 3195 break; 3196 3197 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 3198 if (vfs_bio_clcheck(vp, size, lblkno - j, 3199 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 3200 break; 3201 BO_RUNLOCK(bo); 3202 --j; 3203 ncl = i + j; 3204 /* 3205 * this is a possible cluster write 3206 */ 3207 if (ncl != 1) { 3208 BUF_UNLOCK(bp); 3209 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl, 3210 gbflags); 3211 return (nwritten); 3212 } 3213 } 3214 bremfree(bp); 3215 bp->b_flags |= B_ASYNC; 3216 /* 3217 * default (old) behavior, writing out only one block 3218 * 3219 * XXX returns b_bufsize instead of b_bcount for nwritten? 3220 */ 3221 nwritten = bp->b_bufsize; 3222 (void) bwrite(bp); 3223 3224 return (nwritten); 3225 } 3226 3227 /* 3228 * getnewbuf_kva: 3229 * 3230 * Allocate KVA for an empty buf header according to gbflags. 3231 */ 3232 static int 3233 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize) 3234 { 3235 3236 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) { 3237 /* 3238 * In order to keep fragmentation sane we only allocate kva 3239 * in BKVASIZE chunks. XXX with vmem we can do page size. 3240 */ 3241 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 3242 3243 if (maxsize != bp->b_kvasize && 3244 bufkva_alloc(bp, maxsize, gbflags)) 3245 return (ENOSPC); 3246 } 3247 return (0); 3248 } 3249 3250 /* 3251 * getnewbuf: 3252 * 3253 * Find and initialize a new buffer header, freeing up existing buffers 3254 * in the bufqueues as necessary. The new buffer is returned locked. 3255 * 3256 * We block if: 3257 * We have insufficient buffer headers 3258 * We have insufficient buffer space 3259 * buffer_arena is too fragmented ( space reservation fails ) 3260 * If we have to flush dirty buffers ( but we try to avoid this ) 3261 * 3262 * The caller is responsible for releasing the reserved bufspace after 3263 * allocbuf() is called. 3264 */ 3265 static struct buf * 3266 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags) 3267 { 3268 struct bufdomain *bd; 3269 struct buf *bp; 3270 bool metadata, reserved; 3271 3272 bp = NULL; 3273 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3274 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3275 if (!unmapped_buf_allowed) 3276 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3277 3278 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 || 3279 vp->v_type == VCHR) 3280 metadata = true; 3281 else 3282 metadata = false; 3283 if (vp == NULL) 3284 bd = &bdomain[0]; 3285 else 3286 bd = &bdomain[vp->v_bufobj.bo_domain]; 3287 3288 counter_u64_add(getnewbufcalls, 1); 3289 reserved = false; 3290 do { 3291 if (reserved == false && 3292 bufspace_reserve(bd, maxsize, metadata) != 0) { 3293 counter_u64_add(getnewbufrestarts, 1); 3294 continue; 3295 } 3296 reserved = true; 3297 if ((bp = buf_alloc(bd)) == NULL) { 3298 counter_u64_add(getnewbufrestarts, 1); 3299 continue; 3300 } 3301 if (getnewbuf_kva(bp, gbflags, maxsize) == 0) 3302 return (bp); 3303 break; 3304 } while (buf_recycle(bd, false) == 0); 3305 3306 if (reserved) 3307 bufspace_release(bd, maxsize); 3308 if (bp != NULL) { 3309 bp->b_flags |= B_INVAL; 3310 brelse(bp); 3311 } 3312 bufspace_wait(bd, vp, gbflags, slpflag, slptimeo); 3313 3314 return (NULL); 3315 } 3316 3317 /* 3318 * buf_daemon: 3319 * 3320 * buffer flushing daemon. Buffers are normally flushed by the 3321 * update daemon but if it cannot keep up this process starts to 3322 * take the load in an attempt to prevent getnewbuf() from blocking. 3323 */ 3324 static struct kproc_desc buf_kp = { 3325 "bufdaemon", 3326 buf_daemon, 3327 &bufdaemonproc 3328 }; 3329 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp); 3330 3331 static int 3332 buf_flush(struct vnode *vp, struct bufdomain *bd, int target) 3333 { 3334 int flushed; 3335 3336 flushed = flushbufqueues(vp, bd, target, 0); 3337 if (flushed == 0) { 3338 /* 3339 * Could not find any buffers without rollback 3340 * dependencies, so just write the first one 3341 * in the hopes of eventually making progress. 3342 */ 3343 if (vp != NULL && target > 2) 3344 target /= 2; 3345 flushbufqueues(vp, bd, target, 1); 3346 } 3347 return (flushed); 3348 } 3349 3350 static void 3351 buf_daemon() 3352 { 3353 struct bufdomain *bd; 3354 int speedupreq; 3355 int lodirty; 3356 int i; 3357 3358 /* 3359 * This process needs to be suspended prior to shutdown sync. 3360 */ 3361 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 3362 SHUTDOWN_PRI_LAST); 3363 3364 /* 3365 * Start the buf clean daemons as children threads. 3366 */ 3367 for (i = 0 ; i < buf_domains; i++) { 3368 int error; 3369 3370 error = kthread_add((void (*)(void *))bufspace_daemon, 3371 &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i); 3372 if (error) 3373 panic("error %d spawning bufspace daemon", error); 3374 } 3375 3376 /* 3377 * This process is allowed to take the buffer cache to the limit 3378 */ 3379 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED; 3380 mtx_lock(&bdlock); 3381 for (;;) { 3382 bd_request = 0; 3383 mtx_unlock(&bdlock); 3384 3385 kproc_suspend_check(bufdaemonproc); 3386 3387 /* 3388 * Save speedupreq for this pass and reset to capture new 3389 * requests. 3390 */ 3391 speedupreq = bd_speedupreq; 3392 bd_speedupreq = 0; 3393 3394 /* 3395 * Flush each domain sequentially according to its level and 3396 * the speedup request. 3397 */ 3398 for (i = 0; i < buf_domains; i++) { 3399 bd = &bdomain[i]; 3400 if (speedupreq) 3401 lodirty = bd->bd_numdirtybuffers / 2; 3402 else 3403 lodirty = bd->bd_lodirtybuffers; 3404 while (bd->bd_numdirtybuffers > lodirty) { 3405 if (buf_flush(NULL, bd, 3406 bd->bd_numdirtybuffers - lodirty) == 0) 3407 break; 3408 kern_yield(PRI_USER); 3409 } 3410 } 3411 3412 /* 3413 * Only clear bd_request if we have reached our low water 3414 * mark. The buf_daemon normally waits 1 second and 3415 * then incrementally flushes any dirty buffers that have 3416 * built up, within reason. 3417 * 3418 * If we were unable to hit our low water mark and couldn't 3419 * find any flushable buffers, we sleep for a short period 3420 * to avoid endless loops on unlockable buffers. 3421 */ 3422 mtx_lock(&bdlock); 3423 if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) { 3424 /* 3425 * We reached our low water mark, reset the 3426 * request and sleep until we are needed again. 3427 * The sleep is just so the suspend code works. 3428 */ 3429 bd_request = 0; 3430 /* 3431 * Do an extra wakeup in case dirty threshold 3432 * changed via sysctl and the explicit transition 3433 * out of shortfall was missed. 3434 */ 3435 bdirtywakeup(); 3436 if (runningbufspace <= lorunningspace) 3437 runningwakeup(); 3438 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 3439 } else { 3440 /* 3441 * We couldn't find any flushable dirty buffers but 3442 * still have too many dirty buffers, we 3443 * have to sleep and try again. (rare) 3444 */ 3445 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 3446 } 3447 } 3448 } 3449 3450 /* 3451 * flushbufqueues: 3452 * 3453 * Try to flush a buffer in the dirty queue. We must be careful to 3454 * free up B_INVAL buffers instead of write them, which NFS is 3455 * particularly sensitive to. 3456 */ 3457 static int flushwithdeps = 0; 3458 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 3459 0, "Number of buffers flushed with dependecies that require rollbacks"); 3460 3461 static int 3462 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target, 3463 int flushdeps) 3464 { 3465 struct bufqueue *bq; 3466 struct buf *sentinel; 3467 struct vnode *vp; 3468 struct mount *mp; 3469 struct buf *bp; 3470 int hasdeps; 3471 int flushed; 3472 int error; 3473 bool unlock; 3474 3475 flushed = 0; 3476 bq = &bd->bd_dirtyq; 3477 bp = NULL; 3478 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO); 3479 sentinel->b_qindex = QUEUE_SENTINEL; 3480 BQ_LOCK(bq); 3481 TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist); 3482 BQ_UNLOCK(bq); 3483 while (flushed != target) { 3484 maybe_yield(); 3485 BQ_LOCK(bq); 3486 bp = TAILQ_NEXT(sentinel, b_freelist); 3487 if (bp != NULL) { 3488 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); 3489 TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel, 3490 b_freelist); 3491 } else { 3492 BQ_UNLOCK(bq); 3493 break; 3494 } 3495 /* 3496 * Skip sentinels inserted by other invocations of the 3497 * flushbufqueues(), taking care to not reorder them. 3498 * 3499 * Only flush the buffers that belong to the 3500 * vnode locked by the curthread. 3501 */ 3502 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL && 3503 bp->b_vp != lvp)) { 3504 BQ_UNLOCK(bq); 3505 continue; 3506 } 3507 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL); 3508 BQ_UNLOCK(bq); 3509 if (error != 0) 3510 continue; 3511 3512 /* 3513 * BKGRDINPROG can only be set with the buf and bufobj 3514 * locks both held. We tolerate a race to clear it here. 3515 */ 3516 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 || 3517 (bp->b_flags & B_DELWRI) == 0) { 3518 BUF_UNLOCK(bp); 3519 continue; 3520 } 3521 if (bp->b_flags & B_INVAL) { 3522 bremfreef(bp); 3523 brelse(bp); 3524 flushed++; 3525 continue; 3526 } 3527 3528 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) { 3529 if (flushdeps == 0) { 3530 BUF_UNLOCK(bp); 3531 continue; 3532 } 3533 hasdeps = 1; 3534 } else 3535 hasdeps = 0; 3536 /* 3537 * We must hold the lock on a vnode before writing 3538 * one of its buffers. Otherwise we may confuse, or 3539 * in the case of a snapshot vnode, deadlock the 3540 * system. 3541 * 3542 * The lock order here is the reverse of the normal 3543 * of vnode followed by buf lock. This is ok because 3544 * the NOWAIT will prevent deadlock. 3545 */ 3546 vp = bp->b_vp; 3547 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 3548 BUF_UNLOCK(bp); 3549 continue; 3550 } 3551 if (lvp == NULL) { 3552 unlock = true; 3553 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 3554 } else { 3555 ASSERT_VOP_LOCKED(vp, "getbuf"); 3556 unlock = false; 3557 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 : 3558 vn_lock(vp, LK_TRYUPGRADE); 3559 } 3560 if (error == 0) { 3561 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X", 3562 bp, bp->b_vp, bp->b_flags); 3563 if (curproc == bufdaemonproc) { 3564 vfs_bio_awrite(bp); 3565 } else { 3566 bremfree(bp); 3567 bwrite(bp); 3568 counter_u64_add(notbufdflushes, 1); 3569 } 3570 vn_finished_write(mp); 3571 if (unlock) 3572 VOP_UNLOCK(vp, 0); 3573 flushwithdeps += hasdeps; 3574 flushed++; 3575 3576 /* 3577 * Sleeping on runningbufspace while holding 3578 * vnode lock leads to deadlock. 3579 */ 3580 if (curproc == bufdaemonproc && 3581 runningbufspace > hirunningspace) 3582 waitrunningbufspace(); 3583 continue; 3584 } 3585 vn_finished_write(mp); 3586 BUF_UNLOCK(bp); 3587 } 3588 BQ_LOCK(bq); 3589 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); 3590 BQ_UNLOCK(bq); 3591 free(sentinel, M_TEMP); 3592 return (flushed); 3593 } 3594 3595 /* 3596 * Check to see if a block is currently memory resident. 3597 */ 3598 struct buf * 3599 incore(struct bufobj *bo, daddr_t blkno) 3600 { 3601 struct buf *bp; 3602 3603 BO_RLOCK(bo); 3604 bp = gbincore(bo, blkno); 3605 BO_RUNLOCK(bo); 3606 return (bp); 3607 } 3608 3609 /* 3610 * Returns true if no I/O is needed to access the 3611 * associated VM object. This is like incore except 3612 * it also hunts around in the VM system for the data. 3613 */ 3614 3615 static int 3616 inmem(struct vnode * vp, daddr_t blkno) 3617 { 3618 vm_object_t obj; 3619 vm_offset_t toff, tinc, size; 3620 vm_page_t m; 3621 vm_ooffset_t off; 3622 3623 ASSERT_VOP_LOCKED(vp, "inmem"); 3624 3625 if (incore(&vp->v_bufobj, blkno)) 3626 return 1; 3627 if (vp->v_mount == NULL) 3628 return 0; 3629 obj = vp->v_object; 3630 if (obj == NULL) 3631 return (0); 3632 3633 size = PAGE_SIZE; 3634 if (size > vp->v_mount->mnt_stat.f_iosize) 3635 size = vp->v_mount->mnt_stat.f_iosize; 3636 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 3637 3638 VM_OBJECT_RLOCK(obj); 3639 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 3640 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 3641 if (!m) 3642 goto notinmem; 3643 tinc = size; 3644 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 3645 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 3646 if (vm_page_is_valid(m, 3647 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 3648 goto notinmem; 3649 } 3650 VM_OBJECT_RUNLOCK(obj); 3651 return 1; 3652 3653 notinmem: 3654 VM_OBJECT_RUNLOCK(obj); 3655 return (0); 3656 } 3657 3658 /* 3659 * Set the dirty range for a buffer based on the status of the dirty 3660 * bits in the pages comprising the buffer. The range is limited 3661 * to the size of the buffer. 3662 * 3663 * Tell the VM system that the pages associated with this buffer 3664 * are clean. This is used for delayed writes where the data is 3665 * going to go to disk eventually without additional VM intevention. 3666 * 3667 * Note that while we only really need to clean through to b_bcount, we 3668 * just go ahead and clean through to b_bufsize. 3669 */ 3670 static void 3671 vfs_clean_pages_dirty_buf(struct buf *bp) 3672 { 3673 vm_ooffset_t foff, noff, eoff; 3674 vm_page_t m; 3675 int i; 3676 3677 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0) 3678 return; 3679 3680 foff = bp->b_offset; 3681 KASSERT(bp->b_offset != NOOFFSET, 3682 ("vfs_clean_pages_dirty_buf: no buffer offset")); 3683 3684 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 3685 vfs_drain_busy_pages(bp); 3686 vfs_setdirty_locked_object(bp); 3687 for (i = 0; i < bp->b_npages; i++) { 3688 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3689 eoff = noff; 3690 if (eoff > bp->b_offset + bp->b_bufsize) 3691 eoff = bp->b_offset + bp->b_bufsize; 3692 m = bp->b_pages[i]; 3693 vfs_page_set_validclean(bp, foff, m); 3694 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3695 foff = noff; 3696 } 3697 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 3698 } 3699 3700 static void 3701 vfs_setdirty_locked_object(struct buf *bp) 3702 { 3703 vm_object_t object; 3704 int i; 3705 3706 object = bp->b_bufobj->bo_object; 3707 VM_OBJECT_ASSERT_WLOCKED(object); 3708 3709 /* 3710 * We qualify the scan for modified pages on whether the 3711 * object has been flushed yet. 3712 */ 3713 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) { 3714 vm_offset_t boffset; 3715 vm_offset_t eoffset; 3716 3717 /* 3718 * test the pages to see if they have been modified directly 3719 * by users through the VM system. 3720 */ 3721 for (i = 0; i < bp->b_npages; i++) 3722 vm_page_test_dirty(bp->b_pages[i]); 3723 3724 /* 3725 * Calculate the encompassing dirty range, boffset and eoffset, 3726 * (eoffset - boffset) bytes. 3727 */ 3728 3729 for (i = 0; i < bp->b_npages; i++) { 3730 if (bp->b_pages[i]->dirty) 3731 break; 3732 } 3733 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3734 3735 for (i = bp->b_npages - 1; i >= 0; --i) { 3736 if (bp->b_pages[i]->dirty) { 3737 break; 3738 } 3739 } 3740 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3741 3742 /* 3743 * Fit it to the buffer. 3744 */ 3745 3746 if (eoffset > bp->b_bcount) 3747 eoffset = bp->b_bcount; 3748 3749 /* 3750 * If we have a good dirty range, merge with the existing 3751 * dirty range. 3752 */ 3753 3754 if (boffset < eoffset) { 3755 if (bp->b_dirtyoff > boffset) 3756 bp->b_dirtyoff = boffset; 3757 if (bp->b_dirtyend < eoffset) 3758 bp->b_dirtyend = eoffset; 3759 } 3760 } 3761 } 3762 3763 /* 3764 * Allocate the KVA mapping for an existing buffer. 3765 * If an unmapped buffer is provided but a mapped buffer is requested, take 3766 * also care to properly setup mappings between pages and KVA. 3767 */ 3768 static void 3769 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags) 3770 { 3771 int bsize, maxsize, need_mapping, need_kva; 3772 off_t offset; 3773 3774 need_mapping = bp->b_data == unmapped_buf && 3775 (gbflags & GB_UNMAPPED) == 0; 3776 need_kva = bp->b_kvabase == unmapped_buf && 3777 bp->b_data == unmapped_buf && 3778 (gbflags & GB_KVAALLOC) != 0; 3779 if (!need_mapping && !need_kva) 3780 return; 3781 3782 BUF_CHECK_UNMAPPED(bp); 3783 3784 if (need_mapping && bp->b_kvabase != unmapped_buf) { 3785 /* 3786 * Buffer is not mapped, but the KVA was already 3787 * reserved at the time of the instantiation. Use the 3788 * allocated space. 3789 */ 3790 goto has_addr; 3791 } 3792 3793 /* 3794 * Calculate the amount of the address space we would reserve 3795 * if the buffer was mapped. 3796 */ 3797 bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize; 3798 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 3799 offset = blkno * bsize; 3800 maxsize = size + (offset & PAGE_MASK); 3801 maxsize = imax(maxsize, bsize); 3802 3803 while (bufkva_alloc(bp, maxsize, gbflags) != 0) { 3804 if ((gbflags & GB_NOWAIT_BD) != 0) { 3805 /* 3806 * XXXKIB: defragmentation cannot 3807 * succeed, not sure what else to do. 3808 */ 3809 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp); 3810 } 3811 counter_u64_add(mappingrestarts, 1); 3812 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0); 3813 } 3814 has_addr: 3815 if (need_mapping) { 3816 /* b_offset is handled by bpmap_qenter. */ 3817 bp->b_data = bp->b_kvabase; 3818 BUF_CHECK_MAPPED(bp); 3819 bpmap_qenter(bp); 3820 } 3821 } 3822 3823 /* 3824 * getblk: 3825 * 3826 * Get a block given a specified block and offset into a file/device. 3827 * The buffers B_DONE bit will be cleared on return, making it almost 3828 * ready for an I/O initiation. B_INVAL may or may not be set on 3829 * return. The caller should clear B_INVAL prior to initiating a 3830 * READ. 3831 * 3832 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 3833 * an existing buffer. 3834 * 3835 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 3836 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 3837 * and then cleared based on the backing VM. If the previous buffer is 3838 * non-0-sized but invalid, B_CACHE will be cleared. 3839 * 3840 * If getblk() must create a new buffer, the new buffer is returned with 3841 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 3842 * case it is returned with B_INVAL clear and B_CACHE set based on the 3843 * backing VM. 3844 * 3845 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 3846 * B_CACHE bit is clear. 3847 * 3848 * What this means, basically, is that the caller should use B_CACHE to 3849 * determine whether the buffer is fully valid or not and should clear 3850 * B_INVAL prior to issuing a read. If the caller intends to validate 3851 * the buffer by loading its data area with something, the caller needs 3852 * to clear B_INVAL. If the caller does this without issuing an I/O, 3853 * the caller should set B_CACHE ( as an optimization ), else the caller 3854 * should issue the I/O and biodone() will set B_CACHE if the I/O was 3855 * a write attempt or if it was a successful read. If the caller 3856 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 3857 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 3858 */ 3859 struct buf * 3860 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo, 3861 int flags) 3862 { 3863 struct buf *bp; 3864 struct bufobj *bo; 3865 int bsize, error, maxsize, vmio; 3866 off_t offset; 3867 3868 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size); 3869 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3870 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3871 ASSERT_VOP_LOCKED(vp, "getblk"); 3872 if (size > maxbcachebuf) 3873 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size, 3874 maxbcachebuf); 3875 if (!unmapped_buf_allowed) 3876 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3877 3878 bo = &vp->v_bufobj; 3879 loop: 3880 BO_RLOCK(bo); 3881 bp = gbincore(bo, blkno); 3882 if (bp != NULL) { 3883 int lockflags; 3884 /* 3885 * Buffer is in-core. If the buffer is not busy nor managed, 3886 * it must be on a queue. 3887 */ 3888 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK; 3889 3890 if (flags & GB_LOCK_NOWAIT) 3891 lockflags |= LK_NOWAIT; 3892 3893 error = BUF_TIMELOCK(bp, lockflags, 3894 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo); 3895 3896 /* 3897 * If we slept and got the lock we have to restart in case 3898 * the buffer changed identities. 3899 */ 3900 if (error == ENOLCK) 3901 goto loop; 3902 /* We timed out or were interrupted. */ 3903 else if (error) 3904 return (NULL); 3905 /* If recursed, assume caller knows the rules. */ 3906 else if (BUF_LOCKRECURSED(bp)) 3907 goto end; 3908 3909 /* 3910 * The buffer is locked. B_CACHE is cleared if the buffer is 3911 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 3912 * and for a VMIO buffer B_CACHE is adjusted according to the 3913 * backing VM cache. 3914 */ 3915 if (bp->b_flags & B_INVAL) 3916 bp->b_flags &= ~B_CACHE; 3917 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 3918 bp->b_flags |= B_CACHE; 3919 if (bp->b_flags & B_MANAGED) 3920 MPASS(bp->b_qindex == QUEUE_NONE); 3921 else 3922 bremfree(bp); 3923 3924 /* 3925 * check for size inconsistencies for non-VMIO case. 3926 */ 3927 if (bp->b_bcount != size) { 3928 if ((bp->b_flags & B_VMIO) == 0 || 3929 (size > bp->b_kvasize)) { 3930 if (bp->b_flags & B_DELWRI) { 3931 bp->b_flags |= B_NOCACHE; 3932 bwrite(bp); 3933 } else { 3934 if (LIST_EMPTY(&bp->b_dep)) { 3935 bp->b_flags |= B_RELBUF; 3936 brelse(bp); 3937 } else { 3938 bp->b_flags |= B_NOCACHE; 3939 bwrite(bp); 3940 } 3941 } 3942 goto loop; 3943 } 3944 } 3945 3946 /* 3947 * Handle the case of unmapped buffer which should 3948 * become mapped, or the buffer for which KVA 3949 * reservation is requested. 3950 */ 3951 bp_unmapped_get_kva(bp, blkno, size, flags); 3952 3953 /* 3954 * If the size is inconsistent in the VMIO case, we can resize 3955 * the buffer. This might lead to B_CACHE getting set or 3956 * cleared. If the size has not changed, B_CACHE remains 3957 * unchanged from its previous state. 3958 */ 3959 allocbuf(bp, size); 3960 3961 KASSERT(bp->b_offset != NOOFFSET, 3962 ("getblk: no buffer offset")); 3963 3964 /* 3965 * A buffer with B_DELWRI set and B_CACHE clear must 3966 * be committed before we can return the buffer in 3967 * order to prevent the caller from issuing a read 3968 * ( due to B_CACHE not being set ) and overwriting 3969 * it. 3970 * 3971 * Most callers, including NFS and FFS, need this to 3972 * operate properly either because they assume they 3973 * can issue a read if B_CACHE is not set, or because 3974 * ( for example ) an uncached B_DELWRI might loop due 3975 * to softupdates re-dirtying the buffer. In the latter 3976 * case, B_CACHE is set after the first write completes, 3977 * preventing further loops. 3978 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3979 * above while extending the buffer, we cannot allow the 3980 * buffer to remain with B_CACHE set after the write 3981 * completes or it will represent a corrupt state. To 3982 * deal with this we set B_NOCACHE to scrap the buffer 3983 * after the write. 3984 * 3985 * We might be able to do something fancy, like setting 3986 * B_CACHE in bwrite() except if B_DELWRI is already set, 3987 * so the below call doesn't set B_CACHE, but that gets real 3988 * confusing. This is much easier. 3989 */ 3990 3991 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3992 bp->b_flags |= B_NOCACHE; 3993 bwrite(bp); 3994 goto loop; 3995 } 3996 bp->b_flags &= ~B_DONE; 3997 } else { 3998 /* 3999 * Buffer is not in-core, create new buffer. The buffer 4000 * returned by getnewbuf() is locked. Note that the returned 4001 * buffer is also considered valid (not marked B_INVAL). 4002 */ 4003 BO_RUNLOCK(bo); 4004 /* 4005 * If the user does not want us to create the buffer, bail out 4006 * here. 4007 */ 4008 if (flags & GB_NOCREAT) 4009 return NULL; 4010 if (bdomain[bo->bo_domain].bd_freebuffers == 0 && 4011 TD_IS_IDLETHREAD(curthread)) 4012 return NULL; 4013 4014 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize; 4015 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 4016 offset = blkno * bsize; 4017 vmio = vp->v_object != NULL; 4018 if (vmio) { 4019 maxsize = size + (offset & PAGE_MASK); 4020 } else { 4021 maxsize = size; 4022 /* Do not allow non-VMIO notmapped buffers. */ 4023 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 4024 } 4025 maxsize = imax(maxsize, bsize); 4026 4027 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags); 4028 if (bp == NULL) { 4029 if (slpflag || slptimeo) 4030 return NULL; 4031 /* 4032 * XXX This is here until the sleep path is diagnosed 4033 * enough to work under very low memory conditions. 4034 * 4035 * There's an issue on low memory, 4BSD+non-preempt 4036 * systems (eg MIPS routers with 32MB RAM) where buffer 4037 * exhaustion occurs without sleeping for buffer 4038 * reclaimation. This just sticks in a loop and 4039 * constantly attempts to allocate a buffer, which 4040 * hits exhaustion and tries to wakeup bufdaemon. 4041 * This never happens because we never yield. 4042 * 4043 * The real solution is to identify and fix these cases 4044 * so we aren't effectively busy-waiting in a loop 4045 * until the reclaimation path has cycles to run. 4046 */ 4047 kern_yield(PRI_USER); 4048 goto loop; 4049 } 4050 4051 /* 4052 * This code is used to make sure that a buffer is not 4053 * created while the getnewbuf routine is blocked. 4054 * This can be a problem whether the vnode is locked or not. 4055 * If the buffer is created out from under us, we have to 4056 * throw away the one we just created. 4057 * 4058 * Note: this must occur before we associate the buffer 4059 * with the vp especially considering limitations in 4060 * the splay tree implementation when dealing with duplicate 4061 * lblkno's. 4062 */ 4063 BO_LOCK(bo); 4064 if (gbincore(bo, blkno)) { 4065 BO_UNLOCK(bo); 4066 bp->b_flags |= B_INVAL; 4067 bufspace_release(bufdomain(bp), maxsize); 4068 brelse(bp); 4069 goto loop; 4070 } 4071 4072 /* 4073 * Insert the buffer into the hash, so that it can 4074 * be found by incore. 4075 */ 4076 bp->b_blkno = bp->b_lblkno = blkno; 4077 bp->b_offset = offset; 4078 bgetvp(vp, bp); 4079 BO_UNLOCK(bo); 4080 4081 /* 4082 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 4083 * buffer size starts out as 0, B_CACHE will be set by 4084 * allocbuf() for the VMIO case prior to it testing the 4085 * backing store for validity. 4086 */ 4087 4088 if (vmio) { 4089 bp->b_flags |= B_VMIO; 4090 KASSERT(vp->v_object == bp->b_bufobj->bo_object, 4091 ("ARGH! different b_bufobj->bo_object %p %p %p\n", 4092 bp, vp->v_object, bp->b_bufobj->bo_object)); 4093 } else { 4094 bp->b_flags &= ~B_VMIO; 4095 KASSERT(bp->b_bufobj->bo_object == NULL, 4096 ("ARGH! has b_bufobj->bo_object %p %p\n", 4097 bp, bp->b_bufobj->bo_object)); 4098 BUF_CHECK_MAPPED(bp); 4099 } 4100 4101 allocbuf(bp, size); 4102 bufspace_release(bufdomain(bp), maxsize); 4103 bp->b_flags &= ~B_DONE; 4104 } 4105 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp); 4106 BUF_ASSERT_HELD(bp); 4107 end: 4108 buf_track(bp, __func__); 4109 KASSERT(bp->b_bufobj == bo, 4110 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 4111 return (bp); 4112 } 4113 4114 /* 4115 * Get an empty, disassociated buffer of given size. The buffer is initially 4116 * set to B_INVAL. 4117 */ 4118 struct buf * 4119 geteblk(int size, int flags) 4120 { 4121 struct buf *bp; 4122 int maxsize; 4123 4124 maxsize = (size + BKVAMASK) & ~BKVAMASK; 4125 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) { 4126 if ((flags & GB_NOWAIT_BD) && 4127 (curthread->td_pflags & TDP_BUFNEED) != 0) 4128 return (NULL); 4129 } 4130 allocbuf(bp, size); 4131 bufspace_release(bufdomain(bp), maxsize); 4132 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 4133 BUF_ASSERT_HELD(bp); 4134 return (bp); 4135 } 4136 4137 /* 4138 * Truncate the backing store for a non-vmio buffer. 4139 */ 4140 static void 4141 vfs_nonvmio_truncate(struct buf *bp, int newbsize) 4142 { 4143 4144 if (bp->b_flags & B_MALLOC) { 4145 /* 4146 * malloced buffers are not shrunk 4147 */ 4148 if (newbsize == 0) { 4149 bufmallocadjust(bp, 0); 4150 free(bp->b_data, M_BIOBUF); 4151 bp->b_data = bp->b_kvabase; 4152 bp->b_flags &= ~B_MALLOC; 4153 } 4154 return; 4155 } 4156 vm_hold_free_pages(bp, newbsize); 4157 bufspace_adjust(bp, newbsize); 4158 } 4159 4160 /* 4161 * Extend the backing for a non-VMIO buffer. 4162 */ 4163 static void 4164 vfs_nonvmio_extend(struct buf *bp, int newbsize) 4165 { 4166 caddr_t origbuf; 4167 int origbufsize; 4168 4169 /* 4170 * We only use malloced memory on the first allocation. 4171 * and revert to page-allocated memory when the buffer 4172 * grows. 4173 * 4174 * There is a potential smp race here that could lead 4175 * to bufmallocspace slightly passing the max. It 4176 * is probably extremely rare and not worth worrying 4177 * over. 4178 */ 4179 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 && 4180 bufmallocspace < maxbufmallocspace) { 4181 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK); 4182 bp->b_flags |= B_MALLOC; 4183 bufmallocadjust(bp, newbsize); 4184 return; 4185 } 4186 4187 /* 4188 * If the buffer is growing on its other-than-first 4189 * allocation then we revert to the page-allocation 4190 * scheme. 4191 */ 4192 origbuf = NULL; 4193 origbufsize = 0; 4194 if (bp->b_flags & B_MALLOC) { 4195 origbuf = bp->b_data; 4196 origbufsize = bp->b_bufsize; 4197 bp->b_data = bp->b_kvabase; 4198 bufmallocadjust(bp, 0); 4199 bp->b_flags &= ~B_MALLOC; 4200 newbsize = round_page(newbsize); 4201 } 4202 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize, 4203 (vm_offset_t) bp->b_data + newbsize); 4204 if (origbuf != NULL) { 4205 bcopy(origbuf, bp->b_data, origbufsize); 4206 free(origbuf, M_BIOBUF); 4207 } 4208 bufspace_adjust(bp, newbsize); 4209 } 4210 4211 /* 4212 * This code constitutes the buffer memory from either anonymous system 4213 * memory (in the case of non-VMIO operations) or from an associated 4214 * VM object (in the case of VMIO operations). This code is able to 4215 * resize a buffer up or down. 4216 * 4217 * Note that this code is tricky, and has many complications to resolve 4218 * deadlock or inconsistent data situations. Tread lightly!!! 4219 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 4220 * the caller. Calling this code willy nilly can result in the loss of data. 4221 * 4222 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 4223 * B_CACHE for the non-VMIO case. 4224 */ 4225 int 4226 allocbuf(struct buf *bp, int size) 4227 { 4228 int newbsize; 4229 4230 BUF_ASSERT_HELD(bp); 4231 4232 if (bp->b_bcount == size) 4233 return (1); 4234 4235 if (bp->b_kvasize != 0 && bp->b_kvasize < size) 4236 panic("allocbuf: buffer too small"); 4237 4238 newbsize = roundup2(size, DEV_BSIZE); 4239 if ((bp->b_flags & B_VMIO) == 0) { 4240 if ((bp->b_flags & B_MALLOC) == 0) 4241 newbsize = round_page(newbsize); 4242 /* 4243 * Just get anonymous memory from the kernel. Don't 4244 * mess with B_CACHE. 4245 */ 4246 if (newbsize < bp->b_bufsize) 4247 vfs_nonvmio_truncate(bp, newbsize); 4248 else if (newbsize > bp->b_bufsize) 4249 vfs_nonvmio_extend(bp, newbsize); 4250 } else { 4251 int desiredpages; 4252 4253 desiredpages = (size == 0) ? 0 : 4254 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 4255 4256 if (bp->b_flags & B_MALLOC) 4257 panic("allocbuf: VMIO buffer can't be malloced"); 4258 /* 4259 * Set B_CACHE initially if buffer is 0 length or will become 4260 * 0-length. 4261 */ 4262 if (size == 0 || bp->b_bufsize == 0) 4263 bp->b_flags |= B_CACHE; 4264 4265 if (newbsize < bp->b_bufsize) 4266 vfs_vmio_truncate(bp, desiredpages); 4267 /* XXX This looks as if it should be newbsize > b_bufsize */ 4268 else if (size > bp->b_bcount) 4269 vfs_vmio_extend(bp, desiredpages, size); 4270 bufspace_adjust(bp, newbsize); 4271 } 4272 bp->b_bcount = size; /* requested buffer size. */ 4273 return (1); 4274 } 4275 4276 extern int inflight_transient_maps; 4277 4278 void 4279 biodone(struct bio *bp) 4280 { 4281 struct mtx *mtxp; 4282 void (*done)(struct bio *); 4283 vm_offset_t start, end; 4284 4285 biotrack(bp, __func__); 4286 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) { 4287 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING; 4288 bp->bio_flags |= BIO_UNMAPPED; 4289 start = trunc_page((vm_offset_t)bp->bio_data); 4290 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length); 4291 bp->bio_data = unmapped_buf; 4292 pmap_qremove(start, atop(end - start)); 4293 vmem_free(transient_arena, start, end - start); 4294 atomic_add_int(&inflight_transient_maps, -1); 4295 } 4296 done = bp->bio_done; 4297 if (done == NULL) { 4298 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4299 mtx_lock(mtxp); 4300 bp->bio_flags |= BIO_DONE; 4301 wakeup(bp); 4302 mtx_unlock(mtxp); 4303 } else 4304 done(bp); 4305 } 4306 4307 /* 4308 * Wait for a BIO to finish. 4309 */ 4310 int 4311 biowait(struct bio *bp, const char *wchan) 4312 { 4313 struct mtx *mtxp; 4314 4315 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4316 mtx_lock(mtxp); 4317 while ((bp->bio_flags & BIO_DONE) == 0) 4318 msleep(bp, mtxp, PRIBIO, wchan, 0); 4319 mtx_unlock(mtxp); 4320 if (bp->bio_error != 0) 4321 return (bp->bio_error); 4322 if (!(bp->bio_flags & BIO_ERROR)) 4323 return (0); 4324 return (EIO); 4325 } 4326 4327 void 4328 biofinish(struct bio *bp, struct devstat *stat, int error) 4329 { 4330 4331 if (error) { 4332 bp->bio_error = error; 4333 bp->bio_flags |= BIO_ERROR; 4334 } 4335 if (stat != NULL) 4336 devstat_end_transaction_bio(stat, bp); 4337 biodone(bp); 4338 } 4339 4340 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4341 void 4342 biotrack_buf(struct bio *bp, const char *location) 4343 { 4344 4345 buf_track(bp->bio_track_bp, location); 4346 } 4347 #endif 4348 4349 /* 4350 * bufwait: 4351 * 4352 * Wait for buffer I/O completion, returning error status. The buffer 4353 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 4354 * error and cleared. 4355 */ 4356 int 4357 bufwait(struct buf *bp) 4358 { 4359 if (bp->b_iocmd == BIO_READ) 4360 bwait(bp, PRIBIO, "biord"); 4361 else 4362 bwait(bp, PRIBIO, "biowr"); 4363 if (bp->b_flags & B_EINTR) { 4364 bp->b_flags &= ~B_EINTR; 4365 return (EINTR); 4366 } 4367 if (bp->b_ioflags & BIO_ERROR) { 4368 return (bp->b_error ? bp->b_error : EIO); 4369 } else { 4370 return (0); 4371 } 4372 } 4373 4374 /* 4375 * bufdone: 4376 * 4377 * Finish I/O on a buffer, optionally calling a completion function. 4378 * This is usually called from an interrupt so process blocking is 4379 * not allowed. 4380 * 4381 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 4382 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 4383 * assuming B_INVAL is clear. 4384 * 4385 * For the VMIO case, we set B_CACHE if the op was a read and no 4386 * read error occurred, or if the op was a write. B_CACHE is never 4387 * set if the buffer is invalid or otherwise uncacheable. 4388 * 4389 * biodone does not mess with B_INVAL, allowing the I/O routine or the 4390 * initiator to leave B_INVAL set to brelse the buffer out of existence 4391 * in the biodone routine. 4392 */ 4393 void 4394 bufdone(struct buf *bp) 4395 { 4396 struct bufobj *dropobj; 4397 void (*biodone)(struct buf *); 4398 4399 buf_track(bp, __func__); 4400 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 4401 dropobj = NULL; 4402 4403 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 4404 BUF_ASSERT_HELD(bp); 4405 4406 runningbufwakeup(bp); 4407 if (bp->b_iocmd == BIO_WRITE) 4408 dropobj = bp->b_bufobj; 4409 /* call optional completion function if requested */ 4410 if (bp->b_iodone != NULL) { 4411 biodone = bp->b_iodone; 4412 bp->b_iodone = NULL; 4413 (*biodone) (bp); 4414 if (dropobj) 4415 bufobj_wdrop(dropobj); 4416 return; 4417 } 4418 if (bp->b_flags & B_VMIO) { 4419 /* 4420 * Set B_CACHE if the op was a normal read and no error 4421 * occurred. B_CACHE is set for writes in the b*write() 4422 * routines. 4423 */ 4424 if (bp->b_iocmd == BIO_READ && 4425 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 4426 !(bp->b_ioflags & BIO_ERROR)) 4427 bp->b_flags |= B_CACHE; 4428 vfs_vmio_iodone(bp); 4429 } 4430 if (!LIST_EMPTY(&bp->b_dep)) 4431 buf_complete(bp); 4432 if ((bp->b_flags & B_CKHASH) != 0) { 4433 KASSERT(bp->b_iocmd == BIO_READ, 4434 ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd)); 4435 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp)); 4436 (*bp->b_ckhashcalc)(bp); 4437 } 4438 /* 4439 * For asynchronous completions, release the buffer now. The brelse 4440 * will do a wakeup there if necessary - so no need to do a wakeup 4441 * here in the async case. The sync case always needs to do a wakeup. 4442 */ 4443 if (bp->b_flags & B_ASYNC) { 4444 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || 4445 (bp->b_ioflags & BIO_ERROR)) 4446 brelse(bp); 4447 else 4448 bqrelse(bp); 4449 } else 4450 bdone(bp); 4451 if (dropobj) 4452 bufobj_wdrop(dropobj); 4453 } 4454 4455 /* 4456 * This routine is called in lieu of iodone in the case of 4457 * incomplete I/O. This keeps the busy status for pages 4458 * consistent. 4459 */ 4460 void 4461 vfs_unbusy_pages(struct buf *bp) 4462 { 4463 int i; 4464 vm_object_t obj; 4465 vm_page_t m; 4466 4467 runningbufwakeup(bp); 4468 if (!(bp->b_flags & B_VMIO)) 4469 return; 4470 4471 obj = bp->b_bufobj->bo_object; 4472 VM_OBJECT_WLOCK(obj); 4473 for (i = 0; i < bp->b_npages; i++) { 4474 m = bp->b_pages[i]; 4475 if (m == bogus_page) { 4476 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 4477 if (!m) 4478 panic("vfs_unbusy_pages: page missing\n"); 4479 bp->b_pages[i] = m; 4480 if (buf_mapped(bp)) { 4481 BUF_CHECK_MAPPED(bp); 4482 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4483 bp->b_pages, bp->b_npages); 4484 } else 4485 BUF_CHECK_UNMAPPED(bp); 4486 } 4487 vm_page_sunbusy(m); 4488 } 4489 vm_object_pip_wakeupn(obj, bp->b_npages); 4490 VM_OBJECT_WUNLOCK(obj); 4491 } 4492 4493 /* 4494 * vfs_page_set_valid: 4495 * 4496 * Set the valid bits in a page based on the supplied offset. The 4497 * range is restricted to the buffer's size. 4498 * 4499 * This routine is typically called after a read completes. 4500 */ 4501 static void 4502 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4503 { 4504 vm_ooffset_t eoff; 4505 4506 /* 4507 * Compute the end offset, eoff, such that [off, eoff) does not span a 4508 * page boundary and eoff is not greater than the end of the buffer. 4509 * The end of the buffer, in this case, is our file EOF, not the 4510 * allocation size of the buffer. 4511 */ 4512 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK; 4513 if (eoff > bp->b_offset + bp->b_bcount) 4514 eoff = bp->b_offset + bp->b_bcount; 4515 4516 /* 4517 * Set valid range. This is typically the entire buffer and thus the 4518 * entire page. 4519 */ 4520 if (eoff > off) 4521 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off); 4522 } 4523 4524 /* 4525 * vfs_page_set_validclean: 4526 * 4527 * Set the valid bits and clear the dirty bits in a page based on the 4528 * supplied offset. The range is restricted to the buffer's size. 4529 */ 4530 static void 4531 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4532 { 4533 vm_ooffset_t soff, eoff; 4534 4535 /* 4536 * Start and end offsets in buffer. eoff - soff may not cross a 4537 * page boundary or cross the end of the buffer. The end of the 4538 * buffer, in this case, is our file EOF, not the allocation size 4539 * of the buffer. 4540 */ 4541 soff = off; 4542 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4543 if (eoff > bp->b_offset + bp->b_bcount) 4544 eoff = bp->b_offset + bp->b_bcount; 4545 4546 /* 4547 * Set valid range. This is typically the entire buffer and thus the 4548 * entire page. 4549 */ 4550 if (eoff > soff) { 4551 vm_page_set_validclean( 4552 m, 4553 (vm_offset_t) (soff & PAGE_MASK), 4554 (vm_offset_t) (eoff - soff) 4555 ); 4556 } 4557 } 4558 4559 /* 4560 * Ensure that all buffer pages are not exclusive busied. If any page is 4561 * exclusive busy, drain it. 4562 */ 4563 void 4564 vfs_drain_busy_pages(struct buf *bp) 4565 { 4566 vm_page_t m; 4567 int i, last_busied; 4568 4569 VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object); 4570 last_busied = 0; 4571 for (i = 0; i < bp->b_npages; i++) { 4572 m = bp->b_pages[i]; 4573 if (vm_page_xbusied(m)) { 4574 for (; last_busied < i; last_busied++) 4575 vm_page_sbusy(bp->b_pages[last_busied]); 4576 while (vm_page_xbusied(m)) { 4577 vm_page_lock(m); 4578 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4579 vm_page_busy_sleep(m, "vbpage", true); 4580 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4581 } 4582 } 4583 } 4584 for (i = 0; i < last_busied; i++) 4585 vm_page_sunbusy(bp->b_pages[i]); 4586 } 4587 4588 /* 4589 * This routine is called before a device strategy routine. 4590 * It is used to tell the VM system that paging I/O is in 4591 * progress, and treat the pages associated with the buffer 4592 * almost as being exclusive busy. Also the object paging_in_progress 4593 * flag is handled to make sure that the object doesn't become 4594 * inconsistent. 4595 * 4596 * Since I/O has not been initiated yet, certain buffer flags 4597 * such as BIO_ERROR or B_INVAL may be in an inconsistent state 4598 * and should be ignored. 4599 */ 4600 void 4601 vfs_busy_pages(struct buf *bp, int clear_modify) 4602 { 4603 vm_object_t obj; 4604 vm_ooffset_t foff; 4605 vm_page_t m; 4606 int i; 4607 bool bogus; 4608 4609 if (!(bp->b_flags & B_VMIO)) 4610 return; 4611 4612 obj = bp->b_bufobj->bo_object; 4613 foff = bp->b_offset; 4614 KASSERT(bp->b_offset != NOOFFSET, 4615 ("vfs_busy_pages: no buffer offset")); 4616 VM_OBJECT_WLOCK(obj); 4617 vfs_drain_busy_pages(bp); 4618 if (bp->b_bufsize != 0) 4619 vfs_setdirty_locked_object(bp); 4620 bogus = false; 4621 for (i = 0; i < bp->b_npages; i++) { 4622 m = bp->b_pages[i]; 4623 4624 if ((bp->b_flags & B_CLUSTER) == 0) { 4625 vm_object_pip_add(obj, 1); 4626 vm_page_sbusy(m); 4627 } 4628 /* 4629 * When readying a buffer for a read ( i.e 4630 * clear_modify == 0 ), it is important to do 4631 * bogus_page replacement for valid pages in 4632 * partially instantiated buffers. Partially 4633 * instantiated buffers can, in turn, occur when 4634 * reconstituting a buffer from its VM backing store 4635 * base. We only have to do this if B_CACHE is 4636 * clear ( which causes the I/O to occur in the 4637 * first place ). The replacement prevents the read 4638 * I/O from overwriting potentially dirty VM-backed 4639 * pages. XXX bogus page replacement is, uh, bogus. 4640 * It may not work properly with small-block devices. 4641 * We need to find a better way. 4642 */ 4643 if (clear_modify) { 4644 pmap_remove_write(m); 4645 vfs_page_set_validclean(bp, foff, m); 4646 } else if (m->valid == VM_PAGE_BITS_ALL && 4647 (bp->b_flags & B_CACHE) == 0) { 4648 bp->b_pages[i] = bogus_page; 4649 bogus = true; 4650 } 4651 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4652 } 4653 VM_OBJECT_WUNLOCK(obj); 4654 if (bogus && buf_mapped(bp)) { 4655 BUF_CHECK_MAPPED(bp); 4656 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4657 bp->b_pages, bp->b_npages); 4658 } 4659 } 4660 4661 /* 4662 * vfs_bio_set_valid: 4663 * 4664 * Set the range within the buffer to valid. The range is 4665 * relative to the beginning of the buffer, b_offset. Note that 4666 * b_offset itself may be offset from the beginning of the first 4667 * page. 4668 */ 4669 void 4670 vfs_bio_set_valid(struct buf *bp, int base, int size) 4671 { 4672 int i, n; 4673 vm_page_t m; 4674 4675 if (!(bp->b_flags & B_VMIO)) 4676 return; 4677 4678 /* 4679 * Fixup base to be relative to beginning of first page. 4680 * Set initial n to be the maximum number of bytes in the 4681 * first page that can be validated. 4682 */ 4683 base += (bp->b_offset & PAGE_MASK); 4684 n = PAGE_SIZE - (base & PAGE_MASK); 4685 4686 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4687 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4688 m = bp->b_pages[i]; 4689 if (n > size) 4690 n = size; 4691 vm_page_set_valid_range(m, base & PAGE_MASK, n); 4692 base += n; 4693 size -= n; 4694 n = PAGE_SIZE; 4695 } 4696 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4697 } 4698 4699 /* 4700 * vfs_bio_clrbuf: 4701 * 4702 * If the specified buffer is a non-VMIO buffer, clear the entire 4703 * buffer. If the specified buffer is a VMIO buffer, clear and 4704 * validate only the previously invalid portions of the buffer. 4705 * This routine essentially fakes an I/O, so we need to clear 4706 * BIO_ERROR and B_INVAL. 4707 * 4708 * Note that while we only theoretically need to clear through b_bcount, 4709 * we go ahead and clear through b_bufsize. 4710 */ 4711 void 4712 vfs_bio_clrbuf(struct buf *bp) 4713 { 4714 int i, j, mask, sa, ea, slide; 4715 4716 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) { 4717 clrbuf(bp); 4718 return; 4719 } 4720 bp->b_flags &= ~B_INVAL; 4721 bp->b_ioflags &= ~BIO_ERROR; 4722 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4723 if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4724 (bp->b_offset & PAGE_MASK) == 0) { 4725 if (bp->b_pages[0] == bogus_page) 4726 goto unlock; 4727 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4728 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object); 4729 if ((bp->b_pages[0]->valid & mask) == mask) 4730 goto unlock; 4731 if ((bp->b_pages[0]->valid & mask) == 0) { 4732 pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize); 4733 bp->b_pages[0]->valid |= mask; 4734 goto unlock; 4735 } 4736 } 4737 sa = bp->b_offset & PAGE_MASK; 4738 slide = 0; 4739 for (i = 0; i < bp->b_npages; i++, sa = 0) { 4740 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize); 4741 ea = slide & PAGE_MASK; 4742 if (ea == 0) 4743 ea = PAGE_SIZE; 4744 if (bp->b_pages[i] == bogus_page) 4745 continue; 4746 j = sa / DEV_BSIZE; 4747 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4748 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object); 4749 if ((bp->b_pages[i]->valid & mask) == mask) 4750 continue; 4751 if ((bp->b_pages[i]->valid & mask) == 0) 4752 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa); 4753 else { 4754 for (; sa < ea; sa += DEV_BSIZE, j++) { 4755 if ((bp->b_pages[i]->valid & (1 << j)) == 0) { 4756 pmap_zero_page_area(bp->b_pages[i], 4757 sa, DEV_BSIZE); 4758 } 4759 } 4760 } 4761 bp->b_pages[i]->valid |= mask; 4762 } 4763 unlock: 4764 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4765 bp->b_resid = 0; 4766 } 4767 4768 void 4769 vfs_bio_bzero_buf(struct buf *bp, int base, int size) 4770 { 4771 vm_page_t m; 4772 int i, n; 4773 4774 if (buf_mapped(bp)) { 4775 BUF_CHECK_MAPPED(bp); 4776 bzero(bp->b_data + base, size); 4777 } else { 4778 BUF_CHECK_UNMAPPED(bp); 4779 n = PAGE_SIZE - (base & PAGE_MASK); 4780 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4781 m = bp->b_pages[i]; 4782 if (n > size) 4783 n = size; 4784 pmap_zero_page_area(m, base & PAGE_MASK, n); 4785 base += n; 4786 size -= n; 4787 n = PAGE_SIZE; 4788 } 4789 } 4790 } 4791 4792 /* 4793 * Update buffer flags based on I/O request parameters, optionally releasing the 4794 * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM, 4795 * where they may be placed on a page queue (VMIO) or freed immediately (direct 4796 * I/O). Otherwise the buffer is released to the cache. 4797 */ 4798 static void 4799 b_io_dismiss(struct buf *bp, int ioflag, bool release) 4800 { 4801 4802 KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0, 4803 ("buf %p non-VMIO noreuse", bp)); 4804 4805 if ((ioflag & IO_DIRECT) != 0) 4806 bp->b_flags |= B_DIRECT; 4807 if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) { 4808 bp->b_flags |= B_RELBUF; 4809 if ((ioflag & IO_NOREUSE) != 0) 4810 bp->b_flags |= B_NOREUSE; 4811 if (release) 4812 brelse(bp); 4813 } else if (release) 4814 bqrelse(bp); 4815 } 4816 4817 void 4818 vfs_bio_brelse(struct buf *bp, int ioflag) 4819 { 4820 4821 b_io_dismiss(bp, ioflag, true); 4822 } 4823 4824 void 4825 vfs_bio_set_flags(struct buf *bp, int ioflag) 4826 { 4827 4828 b_io_dismiss(bp, ioflag, false); 4829 } 4830 4831 /* 4832 * vm_hold_load_pages and vm_hold_free_pages get pages into 4833 * a buffers address space. The pages are anonymous and are 4834 * not associated with a file object. 4835 */ 4836 static void 4837 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4838 { 4839 vm_offset_t pg; 4840 vm_page_t p; 4841 int index; 4842 4843 BUF_CHECK_MAPPED(bp); 4844 4845 to = round_page(to); 4846 from = round_page(from); 4847 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4848 4849 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4850 /* 4851 * note: must allocate system pages since blocking here 4852 * could interfere with paging I/O, no matter which 4853 * process we are. 4854 */ 4855 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ | 4856 VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | 4857 VM_ALLOC_WAITOK); 4858 pmap_qenter(pg, &p, 1); 4859 bp->b_pages[index] = p; 4860 } 4861 bp->b_npages = index; 4862 } 4863 4864 /* Return pages associated with this buf to the vm system */ 4865 static void 4866 vm_hold_free_pages(struct buf *bp, int newbsize) 4867 { 4868 vm_offset_t from; 4869 vm_page_t p; 4870 int index, newnpages; 4871 4872 BUF_CHECK_MAPPED(bp); 4873 4874 from = round_page((vm_offset_t)bp->b_data + newbsize); 4875 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4876 if (bp->b_npages > newnpages) 4877 pmap_qremove(from, bp->b_npages - newnpages); 4878 for (index = newnpages; index < bp->b_npages; index++) { 4879 p = bp->b_pages[index]; 4880 bp->b_pages[index] = NULL; 4881 p->wire_count--; 4882 vm_page_free(p); 4883 } 4884 vm_wire_sub(bp->b_npages - newnpages); 4885 bp->b_npages = newnpages; 4886 } 4887 4888 /* 4889 * Map an IO request into kernel virtual address space. 4890 * 4891 * All requests are (re)mapped into kernel VA space. 4892 * Notice that we use b_bufsize for the size of the buffer 4893 * to be mapped. b_bcount might be modified by the driver. 4894 * 4895 * Note that even if the caller determines that the address space should 4896 * be valid, a race or a smaller-file mapped into a larger space may 4897 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 4898 * check the return value. 4899 * 4900 * This function only works with pager buffers. 4901 */ 4902 int 4903 vmapbuf(struct buf *bp, int mapbuf) 4904 { 4905 vm_prot_t prot; 4906 int pidx; 4907 4908 if (bp->b_bufsize < 0) 4909 return (-1); 4910 prot = VM_PROT_READ; 4911 if (bp->b_iocmd == BIO_READ) 4912 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 4913 if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 4914 (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages, 4915 btoc(MAXPHYS))) < 0) 4916 return (-1); 4917 bp->b_npages = pidx; 4918 bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK; 4919 if (mapbuf || !unmapped_buf_allowed) { 4920 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx); 4921 bp->b_data = bp->b_kvabase + bp->b_offset; 4922 } else 4923 bp->b_data = unmapped_buf; 4924 return(0); 4925 } 4926 4927 /* 4928 * Free the io map PTEs associated with this IO operation. 4929 * We also invalidate the TLB entries and restore the original b_addr. 4930 * 4931 * This function only works with pager buffers. 4932 */ 4933 void 4934 vunmapbuf(struct buf *bp) 4935 { 4936 int npages; 4937 4938 npages = bp->b_npages; 4939 if (buf_mapped(bp)) 4940 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4941 vm_page_unhold_pages(bp->b_pages, npages); 4942 4943 bp->b_data = unmapped_buf; 4944 } 4945 4946 void 4947 bdone(struct buf *bp) 4948 { 4949 struct mtx *mtxp; 4950 4951 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4952 mtx_lock(mtxp); 4953 bp->b_flags |= B_DONE; 4954 wakeup(bp); 4955 mtx_unlock(mtxp); 4956 } 4957 4958 void 4959 bwait(struct buf *bp, u_char pri, const char *wchan) 4960 { 4961 struct mtx *mtxp; 4962 4963 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4964 mtx_lock(mtxp); 4965 while ((bp->b_flags & B_DONE) == 0) 4966 msleep(bp, mtxp, pri, wchan, 0); 4967 mtx_unlock(mtxp); 4968 } 4969 4970 int 4971 bufsync(struct bufobj *bo, int waitfor) 4972 { 4973 4974 return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread)); 4975 } 4976 4977 void 4978 bufstrategy(struct bufobj *bo, struct buf *bp) 4979 { 4980 int i = 0; 4981 struct vnode *vp; 4982 4983 vp = bp->b_vp; 4984 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy")); 4985 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 4986 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp)); 4987 i = VOP_STRATEGY(vp, bp); 4988 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp)); 4989 } 4990 4991 /* 4992 * Initialize a struct bufobj before use. Memory is assumed zero filled. 4993 */ 4994 void 4995 bufobj_init(struct bufobj *bo, void *private) 4996 { 4997 static volatile int bufobj_cleanq; 4998 4999 bo->bo_domain = 5000 atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains; 5001 rw_init(BO_LOCKPTR(bo), "bufobj interlock"); 5002 bo->bo_private = private; 5003 TAILQ_INIT(&bo->bo_clean.bv_hd); 5004 TAILQ_INIT(&bo->bo_dirty.bv_hd); 5005 } 5006 5007 void 5008 bufobj_wrefl(struct bufobj *bo) 5009 { 5010 5011 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 5012 ASSERT_BO_WLOCKED(bo); 5013 bo->bo_numoutput++; 5014 } 5015 5016 void 5017 bufobj_wref(struct bufobj *bo) 5018 { 5019 5020 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 5021 BO_LOCK(bo); 5022 bo->bo_numoutput++; 5023 BO_UNLOCK(bo); 5024 } 5025 5026 void 5027 bufobj_wdrop(struct bufobj *bo) 5028 { 5029 5030 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop")); 5031 BO_LOCK(bo); 5032 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count")); 5033 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) { 5034 bo->bo_flag &= ~BO_WWAIT; 5035 wakeup(&bo->bo_numoutput); 5036 } 5037 BO_UNLOCK(bo); 5038 } 5039 5040 int 5041 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo) 5042 { 5043 int error; 5044 5045 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait")); 5046 ASSERT_BO_WLOCKED(bo); 5047 error = 0; 5048 while (bo->bo_numoutput) { 5049 bo->bo_flag |= BO_WWAIT; 5050 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo), 5051 slpflag | (PRIBIO + 1), "bo_wwait", timeo); 5052 if (error) 5053 break; 5054 } 5055 return (error); 5056 } 5057 5058 /* 5059 * Set bio_data or bio_ma for struct bio from the struct buf. 5060 */ 5061 void 5062 bdata2bio(struct buf *bp, struct bio *bip) 5063 { 5064 5065 if (!buf_mapped(bp)) { 5066 KASSERT(unmapped_buf_allowed, ("unmapped")); 5067 bip->bio_ma = bp->b_pages; 5068 bip->bio_ma_n = bp->b_npages; 5069 bip->bio_data = unmapped_buf; 5070 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 5071 bip->bio_flags |= BIO_UNMAPPED; 5072 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) / 5073 PAGE_SIZE == bp->b_npages, 5074 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset, 5075 (long long)bip->bio_length, bip->bio_ma_n)); 5076 } else { 5077 bip->bio_data = bp->b_data; 5078 bip->bio_ma = NULL; 5079 } 5080 } 5081 5082 /* 5083 * The MIPS pmap code currently doesn't handle aliased pages. 5084 * The VIPT caches may not handle page aliasing themselves, leading 5085 * to data corruption. 5086 * 5087 * As such, this code makes a system extremely unhappy if said 5088 * system doesn't support unaliasing the above situation in hardware. 5089 * Some "recent" systems (eg some mips24k/mips74k cores) don't enable 5090 * this feature at build time, so it has to be handled in software. 5091 * 5092 * Once the MIPS pmap/cache code grows to support this function on 5093 * earlier chips, it should be flipped back off. 5094 */ 5095 #ifdef __mips__ 5096 static int buf_pager_relbuf = 1; 5097 #else 5098 static int buf_pager_relbuf = 0; 5099 #endif 5100 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN, 5101 &buf_pager_relbuf, 0, 5102 "Make buffer pager release buffers after reading"); 5103 5104 /* 5105 * The buffer pager. It uses buffer reads to validate pages. 5106 * 5107 * In contrast to the generic local pager from vm/vnode_pager.c, this 5108 * pager correctly and easily handles volumes where the underlying 5109 * device block size is greater than the machine page size. The 5110 * buffer cache transparently extends the requested page run to be 5111 * aligned at the block boundary, and does the necessary bogus page 5112 * replacements in the addends to avoid obliterating already valid 5113 * pages. 5114 * 5115 * The only non-trivial issue is that the exclusive busy state for 5116 * pages, which is assumed by the vm_pager_getpages() interface, is 5117 * incompatible with the VMIO buffer cache's desire to share-busy the 5118 * pages. This function performs a trivial downgrade of the pages' 5119 * state before reading buffers, and a less trivial upgrade from the 5120 * shared-busy to excl-busy state after the read. 5121 */ 5122 int 5123 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count, 5124 int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno, 5125 vbg_get_blksize_t get_blksize) 5126 { 5127 vm_page_t m; 5128 vm_object_t object; 5129 struct buf *bp; 5130 struct mount *mp; 5131 daddr_t lbn, lbnp; 5132 vm_ooffset_t la, lb, poff, poffe; 5133 long bsize; 5134 int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b; 5135 bool redo, lpart; 5136 5137 object = vp->v_object; 5138 mp = vp->v_mount; 5139 error = 0; 5140 la = IDX_TO_OFF(ma[count - 1]->pindex); 5141 if (la >= object->un_pager.vnp.vnp_size) 5142 return (VM_PAGER_BAD); 5143 5144 /* 5145 * Change the meaning of la from where the last requested page starts 5146 * to where it ends, because that's the end of the requested region 5147 * and the start of the potential read-ahead region. 5148 */ 5149 la += PAGE_SIZE; 5150 lpart = la > object->un_pager.vnp.vnp_size; 5151 bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex))); 5152 5153 /* 5154 * Calculate read-ahead, behind and total pages. 5155 */ 5156 pgsin = count; 5157 lb = IDX_TO_OFF(ma[0]->pindex); 5158 pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs)); 5159 pgsin += pgsin_b; 5160 if (rbehind != NULL) 5161 *rbehind = pgsin_b; 5162 pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la); 5163 if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size) 5164 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size, 5165 PAGE_SIZE) - la); 5166 pgsin += pgsin_a; 5167 if (rahead != NULL) 5168 *rahead = pgsin_a; 5169 VM_CNT_INC(v_vnodein); 5170 VM_CNT_ADD(v_vnodepgsin, pgsin); 5171 5172 br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) 5173 != 0) ? GB_UNMAPPED : 0; 5174 VM_OBJECT_WLOCK(object); 5175 again: 5176 for (i = 0; i < count; i++) 5177 vm_page_busy_downgrade(ma[i]); 5178 VM_OBJECT_WUNLOCK(object); 5179 5180 lbnp = -1; 5181 for (i = 0; i < count; i++) { 5182 m = ma[i]; 5183 5184 /* 5185 * Pages are shared busy and the object lock is not 5186 * owned, which together allow for the pages' 5187 * invalidation. The racy test for validity avoids 5188 * useless creation of the buffer for the most typical 5189 * case when invalidation is not used in redo or for 5190 * parallel read. The shared->excl upgrade loop at 5191 * the end of the function catches the race in a 5192 * reliable way (protected by the object lock). 5193 */ 5194 if (m->valid == VM_PAGE_BITS_ALL) 5195 continue; 5196 5197 poff = IDX_TO_OFF(m->pindex); 5198 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size); 5199 for (; poff < poffe; poff += bsize) { 5200 lbn = get_lblkno(vp, poff); 5201 if (lbn == lbnp) 5202 goto next_page; 5203 lbnp = lbn; 5204 5205 bsize = get_blksize(vp, lbn); 5206 error = bread_gb(vp, lbn, bsize, curthread->td_ucred, 5207 br_flags, &bp); 5208 if (error != 0) 5209 goto end_pages; 5210 if (LIST_EMPTY(&bp->b_dep)) { 5211 /* 5212 * Invalidation clears m->valid, but 5213 * may leave B_CACHE flag if the 5214 * buffer existed at the invalidation 5215 * time. In this case, recycle the 5216 * buffer to do real read on next 5217 * bread() after redo. 5218 * 5219 * Otherwise B_RELBUF is not strictly 5220 * necessary, enable to reduce buf 5221 * cache pressure. 5222 */ 5223 if (buf_pager_relbuf || 5224 m->valid != VM_PAGE_BITS_ALL) 5225 bp->b_flags |= B_RELBUF; 5226 5227 bp->b_flags &= ~B_NOCACHE; 5228 brelse(bp); 5229 } else { 5230 bqrelse(bp); 5231 } 5232 } 5233 KASSERT(1 /* racy, enable for debugging */ || 5234 m->valid == VM_PAGE_BITS_ALL || i == count - 1, 5235 ("buf %d %p invalid", i, m)); 5236 if (i == count - 1 && lpart) { 5237 VM_OBJECT_WLOCK(object); 5238 if (m->valid != 0 && 5239 m->valid != VM_PAGE_BITS_ALL) 5240 vm_page_zero_invalid(m, TRUE); 5241 VM_OBJECT_WUNLOCK(object); 5242 } 5243 next_page:; 5244 } 5245 end_pages: 5246 5247 VM_OBJECT_WLOCK(object); 5248 redo = false; 5249 for (i = 0; i < count; i++) { 5250 vm_page_sunbusy(ma[i]); 5251 ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL); 5252 5253 /* 5254 * Since the pages were only sbusy while neither the 5255 * buffer nor the object lock was held by us, or 5256 * reallocated while vm_page_grab() slept for busy 5257 * relinguish, they could have been invalidated. 5258 * Recheck the valid bits and re-read as needed. 5259 * 5260 * Note that the last page is made fully valid in the 5261 * read loop, and partial validity for the page at 5262 * index count - 1 could mean that the page was 5263 * invalidated or removed, so we must restart for 5264 * safety as well. 5265 */ 5266 if (ma[i]->valid != VM_PAGE_BITS_ALL) 5267 redo = true; 5268 } 5269 if (redo && error == 0) 5270 goto again; 5271 VM_OBJECT_WUNLOCK(object); 5272 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 5273 } 5274 5275 #include "opt_ddb.h" 5276 #ifdef DDB 5277 #include <ddb/ddb.h> 5278 5279 /* DDB command to show buffer data */ 5280 DB_SHOW_COMMAND(buffer, db_show_buffer) 5281 { 5282 /* get args */ 5283 struct buf *bp = (struct buf *)addr; 5284 #ifdef FULL_BUF_TRACKING 5285 uint32_t i, j; 5286 #endif 5287 5288 if (!have_addr) { 5289 db_printf("usage: show buffer <addr>\n"); 5290 return; 5291 } 5292 5293 db_printf("buf at %p\n", bp); 5294 db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n", 5295 (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags, 5296 PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS); 5297 db_printf( 5298 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 5299 "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, " 5300 "b_dep = %p\n", 5301 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 5302 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno, 5303 (intmax_t)bp->b_lblkno, bp->b_dep.lh_first); 5304 db_printf("b_kvabase = %p, b_kvasize = %d\n", 5305 bp->b_kvabase, bp->b_kvasize); 5306 if (bp->b_npages) { 5307 int i; 5308 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 5309 for (i = 0; i < bp->b_npages; i++) { 5310 vm_page_t m; 5311 m = bp->b_pages[i]; 5312 if (m != NULL) 5313 db_printf("(%p, 0x%lx, 0x%lx)", m->object, 5314 (u_long)m->pindex, 5315 (u_long)VM_PAGE_TO_PHYS(m)); 5316 else 5317 db_printf("( ??? )"); 5318 if ((i + 1) < bp->b_npages) 5319 db_printf(","); 5320 } 5321 db_printf("\n"); 5322 } 5323 BUF_LOCKPRINTINFO(bp); 5324 #if defined(FULL_BUF_TRACKING) 5325 db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt); 5326 5327 i = bp->b_io_tcnt % BUF_TRACKING_SIZE; 5328 for (j = 1; j <= BUF_TRACKING_SIZE; j++) { 5329 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL) 5330 continue; 5331 db_printf(" %2u: %s\n", j, 5332 bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]); 5333 } 5334 #elif defined(BUF_TRACKING) 5335 db_printf("b_io_tracking: %s\n", bp->b_io_tracking); 5336 #endif 5337 db_printf(" "); 5338 } 5339 5340 DB_SHOW_COMMAND(bufqueues, bufqueues) 5341 { 5342 struct bufdomain *bd; 5343 struct buf *bp; 5344 long total; 5345 int i, j, cnt; 5346 5347 db_printf("bqempty: %d\n", bqempty.bq_len); 5348 5349 for (i = 0; i < buf_domains; i++) { 5350 bd = &bdomain[i]; 5351 db_printf("Buf domain %d\n", i); 5352 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers); 5353 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers); 5354 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers); 5355 db_printf("\n"); 5356 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace); 5357 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace); 5358 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace); 5359 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace); 5360 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh); 5361 db_printf("\n"); 5362 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers); 5363 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers); 5364 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers); 5365 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh); 5366 db_printf("\n"); 5367 total = 0; 5368 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist) 5369 total += bp->b_bufsize; 5370 db_printf("\tcleanq count\t%d (%ld)\n", 5371 bd->bd_cleanq->bq_len, total); 5372 total = 0; 5373 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist) 5374 total += bp->b_bufsize; 5375 db_printf("\tdirtyq count\t%d (%ld)\n", 5376 bd->bd_dirtyq.bq_len, total); 5377 db_printf("\twakeup\t\t%d\n", bd->bd_wanted); 5378 db_printf("\tlim\t\t%d\n", bd->bd_lim); 5379 db_printf("\tCPU "); 5380 for (j = 0; j <= mp_maxid; j++) 5381 db_printf("%d, ", bd->bd_subq[j].bq_len); 5382 db_printf("\n"); 5383 cnt = 0; 5384 total = 0; 5385 for (j = 0; j < nbuf; j++) 5386 if (buf[j].b_domain == i && BUF_ISLOCKED(&buf[j])) { 5387 cnt++; 5388 total += buf[j].b_bufsize; 5389 } 5390 db_printf("\tLocked buffers: %d space %ld\n", cnt, total); 5391 cnt = 0; 5392 total = 0; 5393 for (j = 0; j < nbuf; j++) 5394 if (buf[j].b_domain == i) { 5395 cnt++; 5396 total += buf[j].b_bufsize; 5397 } 5398 db_printf("\tTotal buffers: %d space %ld\n", cnt, total); 5399 } 5400 } 5401 5402 DB_SHOW_COMMAND(lockedbufs, lockedbufs) 5403 { 5404 struct buf *bp; 5405 int i; 5406 5407 for (i = 0; i < nbuf; i++) { 5408 bp = &buf[i]; 5409 if (BUF_ISLOCKED(bp)) { 5410 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5411 db_printf("\n"); 5412 if (db_pager_quit) 5413 break; 5414 } 5415 } 5416 } 5417 5418 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs) 5419 { 5420 struct vnode *vp; 5421 struct buf *bp; 5422 5423 if (!have_addr) { 5424 db_printf("usage: show vnodebufs <addr>\n"); 5425 return; 5426 } 5427 vp = (struct vnode *)addr; 5428 db_printf("Clean buffers:\n"); 5429 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) { 5430 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5431 db_printf("\n"); 5432 } 5433 db_printf("Dirty buffers:\n"); 5434 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 5435 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5436 db_printf("\n"); 5437 } 5438 } 5439 5440 DB_COMMAND(countfreebufs, db_coundfreebufs) 5441 { 5442 struct buf *bp; 5443 int i, used = 0, nfree = 0; 5444 5445 if (have_addr) { 5446 db_printf("usage: countfreebufs\n"); 5447 return; 5448 } 5449 5450 for (i = 0; i < nbuf; i++) { 5451 bp = &buf[i]; 5452 if (bp->b_qindex == QUEUE_EMPTY) 5453 nfree++; 5454 else 5455 used++; 5456 } 5457 5458 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used, 5459 nfree + used); 5460 db_printf("numfreebuffers is %d\n", numfreebuffers); 5461 } 5462 #endif /* DDB */ 5463