1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004 Poul-Henning Kamp 5 * Copyright (c) 1994,1997 John S. Dyson 6 * Copyright (c) 2013 The FreeBSD Foundation 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Konstantin Belousov 10 * under sponsorship from the FreeBSD Foundation. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * this file contains a new buffer I/O scheme implementing a coherent 36 * VM object and buffer cache scheme. Pains have been taken to make 37 * sure that the performance degradation associated with schemes such 38 * as this is not realized. 39 * 40 * Author: John S. Dyson 41 * Significant help during the development and debugging phases 42 * had been provided by David Greenman, also of the FreeBSD core team. 43 * 44 * see man buf(9) for more info. 45 */ 46 47 #include <sys/cdefs.h> 48 __FBSDID("$FreeBSD$"); 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/bio.h> 53 #include <sys/bitset.h> 54 #include <sys/conf.h> 55 #include <sys/counter.h> 56 #include <sys/buf.h> 57 #include <sys/devicestat.h> 58 #include <sys/eventhandler.h> 59 #include <sys/fail.h> 60 #include <sys/ktr.h> 61 #include <sys/limits.h> 62 #include <sys/lock.h> 63 #include <sys/malloc.h> 64 #include <sys/mount.h> 65 #include <sys/mutex.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/proc.h> 69 #include <sys/racct.h> 70 #include <sys/refcount.h> 71 #include <sys/resourcevar.h> 72 #include <sys/rwlock.h> 73 #include <sys/smp.h> 74 #include <sys/sysctl.h> 75 #include <sys/syscallsubr.h> 76 #include <sys/vmem.h> 77 #include <sys/vmmeter.h> 78 #include <sys/vnode.h> 79 #include <sys/watchdog.h> 80 #include <geom/geom.h> 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_kern.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_pager.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_map.h> 90 #include <vm/swap_pager.h> 91 92 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer"); 93 94 struct bio_ops bioops; /* I/O operation notification */ 95 96 struct buf_ops buf_ops_bio = { 97 .bop_name = "buf_ops_bio", 98 .bop_write = bufwrite, 99 .bop_strategy = bufstrategy, 100 .bop_sync = bufsync, 101 .bop_bdflush = bufbdflush, 102 }; 103 104 struct bufqueue { 105 struct mtx_padalign bq_lock; 106 TAILQ_HEAD(, buf) bq_queue; 107 uint8_t bq_index; 108 uint16_t bq_subqueue; 109 int bq_len; 110 } __aligned(CACHE_LINE_SIZE); 111 112 #define BQ_LOCKPTR(bq) (&(bq)->bq_lock) 113 #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq))) 114 #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq))) 115 #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED) 116 117 struct bufdomain { 118 struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */ 119 struct bufqueue bd_dirtyq; 120 struct bufqueue *bd_cleanq; 121 struct mtx_padalign bd_run_lock; 122 /* Constants */ 123 long bd_maxbufspace; 124 long bd_hibufspace; 125 long bd_lobufspace; 126 long bd_bufspacethresh; 127 int bd_hifreebuffers; 128 int bd_lofreebuffers; 129 int bd_hidirtybuffers; 130 int bd_lodirtybuffers; 131 int bd_dirtybufthresh; 132 int bd_lim; 133 /* atomics */ 134 int bd_wanted; 135 int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers; 136 int __aligned(CACHE_LINE_SIZE) bd_running; 137 long __aligned(CACHE_LINE_SIZE) bd_bufspace; 138 int __aligned(CACHE_LINE_SIZE) bd_freebuffers; 139 } __aligned(CACHE_LINE_SIZE); 140 141 #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock) 142 #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd))) 143 #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd))) 144 #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED) 145 #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock) 146 #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd))) 147 #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd))) 148 #define BD_DOMAIN(bd) (bd - bdomain) 149 150 static char *buf; /* buffer header pool */ 151 static struct buf * 152 nbufp(unsigned i) 153 { 154 return ((struct buf *)(buf + (sizeof(struct buf) + 155 sizeof(vm_page_t) * atop(maxbcachebuf)) * i)); 156 } 157 158 caddr_t __read_mostly unmapped_buf; 159 160 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */ 161 struct proc *bufdaemonproc; 162 163 static void vm_hold_free_pages(struct buf *bp, int newbsize); 164 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 165 vm_offset_t to); 166 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m); 167 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, 168 vm_page_t m); 169 static void vfs_clean_pages_dirty_buf(struct buf *bp); 170 static void vfs_setdirty_range(struct buf *bp); 171 static void vfs_vmio_invalidate(struct buf *bp); 172 static void vfs_vmio_truncate(struct buf *bp, int npages); 173 static void vfs_vmio_extend(struct buf *bp, int npages, int size); 174 static int vfs_bio_clcheck(struct vnode *vp, int size, 175 daddr_t lblkno, daddr_t blkno); 176 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int, 177 void (*)(struct buf *)); 178 static int buf_flush(struct vnode *vp, struct bufdomain *, int); 179 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int); 180 static void buf_daemon(void); 181 static __inline void bd_wakeup(void); 182 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS); 183 static void bufkva_reclaim(vmem_t *, int); 184 static void bufkva_free(struct buf *); 185 static int buf_import(void *, void **, int, int, int); 186 static void buf_release(void *, void **, int); 187 static void maxbcachebuf_adjust(void); 188 static inline struct bufdomain *bufdomain(struct buf *); 189 static void bq_remove(struct bufqueue *bq, struct buf *bp); 190 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock); 191 static int buf_recycle(struct bufdomain *, bool kva); 192 static void bq_init(struct bufqueue *bq, int qindex, int cpu, 193 const char *lockname); 194 static void bd_init(struct bufdomain *bd); 195 static int bd_flushall(struct bufdomain *bd); 196 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS); 197 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS); 198 199 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS); 200 int vmiodirenable = TRUE; 201 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 202 "Use the VM system for directory writes"); 203 long runningbufspace; 204 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 205 "Amount of presently outstanding async buffer io"); 206 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD, 207 NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers"); 208 static counter_u64_t bufkvaspace; 209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 210 "Kernel virtual memory used for buffers"); 211 static long maxbufspace; 212 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace, 213 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace, 214 __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L", 215 "Maximum allowed value of bufspace (including metadata)"); 216 static long bufmallocspace; 217 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 218 "Amount of malloced memory for buffers"); 219 static long maxbufmallocspace; 220 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 221 0, "Maximum amount of malloced memory for buffers"); 222 static long lobufspace; 223 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace, 224 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace, 225 __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L", 226 "Minimum amount of buffers we want to have"); 227 long hibufspace; 228 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace, 229 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace, 230 __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L", 231 "Maximum allowed value of bufspace (excluding metadata)"); 232 long bufspacethresh; 233 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh, 234 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh, 235 __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L", 236 "Bufspace consumed before waking the daemon to free some"); 237 static counter_u64_t buffreekvacnt; 238 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 239 "Number of times we have freed the KVA space from some buffer"); 240 static counter_u64_t bufdefragcnt; 241 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 242 "Number of times we have had to repeat buffer allocation to defragment"); 243 static long lorunningspace; 244 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 245 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L", 246 "Minimum preferred space used for in-progress I/O"); 247 static long hirunningspace; 248 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 249 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L", 250 "Maximum amount of space to use for in-progress I/O"); 251 int dirtybufferflushes; 252 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 253 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 254 int bdwriteskip; 255 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip, 256 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk"); 257 int altbufferflushes; 258 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS, 259 &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers"); 260 static int recursiveflushes; 261 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS, 262 &recursiveflushes, 0, "Number of flushes skipped due to being recursive"); 263 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS); 264 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers, 265 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I", 266 "Number of buffers that are dirty (has unwritten changes) at the moment"); 267 static int lodirtybuffers; 268 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers, 269 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers, 270 __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I", 271 "How many buffers we want to have free before bufdaemon can sleep"); 272 static int hidirtybuffers; 273 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers, 274 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers, 275 __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I", 276 "When the number of dirty buffers is considered severe"); 277 int dirtybufthresh; 278 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh, 279 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh, 280 __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I", 281 "Number of bdwrite to bawrite conversions to clear dirty buffers"); 282 static int numfreebuffers; 283 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 284 "Number of free buffers"); 285 static int lofreebuffers; 286 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers, 287 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers, 288 __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I", 289 "Target number of free buffers"); 290 static int hifreebuffers; 291 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers, 292 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers, 293 __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I", 294 "Threshold for clean buffer recycling"); 295 static counter_u64_t getnewbufcalls; 296 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, 297 &getnewbufcalls, "Number of calls to getnewbuf"); 298 static counter_u64_t getnewbufrestarts; 299 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, 300 &getnewbufrestarts, 301 "Number of times getnewbuf has had to restart a buffer acquisition"); 302 static counter_u64_t mappingrestarts; 303 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD, 304 &mappingrestarts, 305 "Number of times getblk has had to restart a buffer mapping for " 306 "unmapped buffer"); 307 static counter_u64_t numbufallocfails; 308 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, 309 &numbufallocfails, "Number of times buffer allocations failed"); 310 static int flushbufqtarget = 100; 311 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0, 312 "Amount of work to do in flushbufqueues when helping bufdaemon"); 313 static counter_u64_t notbufdflushes; 314 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes, 315 "Number of dirty buffer flushes done by the bufdaemon helpers"); 316 static long barrierwrites; 317 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS, 318 &barrierwrites, 0, "Number of barrier writes"); 319 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD, 320 &unmapped_buf_allowed, 0, 321 "Permit the use of the unmapped i/o"); 322 int maxbcachebuf = MAXBCACHEBUF; 323 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0, 324 "Maximum size of a buffer cache block"); 325 326 /* 327 * This lock synchronizes access to bd_request. 328 */ 329 static struct mtx_padalign __exclusive_cache_line bdlock; 330 331 /* 332 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 333 * waitrunningbufspace(). 334 */ 335 static struct mtx_padalign __exclusive_cache_line rbreqlock; 336 337 /* 338 * Lock that protects bdirtywait. 339 */ 340 static struct mtx_padalign __exclusive_cache_line bdirtylock; 341 342 /* 343 * Wakeup point for bufdaemon, as well as indicator of whether it is already 344 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 345 * is idling. 346 */ 347 static int bd_request; 348 349 /* 350 * Request for the buf daemon to write more buffers than is indicated by 351 * lodirtybuf. This may be necessary to push out excess dependencies or 352 * defragment the address space where a simple count of the number of dirty 353 * buffers is insufficient to characterize the demand for flushing them. 354 */ 355 static int bd_speedupreq; 356 357 /* 358 * Synchronization (sleep/wakeup) variable for active buffer space requests. 359 * Set when wait starts, cleared prior to wakeup(). 360 * Used in runningbufwakeup() and waitrunningbufspace(). 361 */ 362 static int runningbufreq; 363 364 /* 365 * Synchronization for bwillwrite() waiters. 366 */ 367 static int bdirtywait; 368 369 /* 370 * Definitions for the buffer free lists. 371 */ 372 #define QUEUE_NONE 0 /* on no queue */ 373 #define QUEUE_EMPTY 1 /* empty buffer headers */ 374 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */ 375 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */ 376 #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */ 377 378 /* Maximum number of buffer domains. */ 379 #define BUF_DOMAINS 8 380 381 struct bufdomainset bdlodirty; /* Domains > lodirty */ 382 struct bufdomainset bdhidirty; /* Domains > hidirty */ 383 384 /* Configured number of clean queues. */ 385 static int __read_mostly buf_domains; 386 387 BITSET_DEFINE(bufdomainset, BUF_DOMAINS); 388 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS]; 389 struct bufqueue __exclusive_cache_line bqempty; 390 391 /* 392 * per-cpu empty buffer cache. 393 */ 394 uma_zone_t buf_zone; 395 396 /* 397 * Single global constant for BUF_WMESG, to avoid getting multiple references. 398 * buf_wmesg is referred from macros. 399 */ 400 const char *buf_wmesg = BUF_WMESG; 401 402 static int 403 sysctl_runningspace(SYSCTL_HANDLER_ARGS) 404 { 405 long value; 406 int error; 407 408 value = *(long *)arg1; 409 error = sysctl_handle_long(oidp, &value, 0, req); 410 if (error != 0 || req->newptr == NULL) 411 return (error); 412 mtx_lock(&rbreqlock); 413 if (arg1 == &hirunningspace) { 414 if (value < lorunningspace) 415 error = EINVAL; 416 else 417 hirunningspace = value; 418 } else { 419 KASSERT(arg1 == &lorunningspace, 420 ("%s: unknown arg1", __func__)); 421 if (value > hirunningspace) 422 error = EINVAL; 423 else 424 lorunningspace = value; 425 } 426 mtx_unlock(&rbreqlock); 427 return (error); 428 } 429 430 static int 431 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS) 432 { 433 int error; 434 int value; 435 int i; 436 437 value = *(int *)arg1; 438 error = sysctl_handle_int(oidp, &value, 0, req); 439 if (error != 0 || req->newptr == NULL) 440 return (error); 441 *(int *)arg1 = value; 442 for (i = 0; i < buf_domains; i++) 443 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = 444 value / buf_domains; 445 446 return (error); 447 } 448 449 static int 450 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS) 451 { 452 long value; 453 int error; 454 int i; 455 456 value = *(long *)arg1; 457 error = sysctl_handle_long(oidp, &value, 0, req); 458 if (error != 0 || req->newptr == NULL) 459 return (error); 460 *(long *)arg1 = value; 461 for (i = 0; i < buf_domains; i++) 462 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = 463 value / buf_domains; 464 465 return (error); 466 } 467 468 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 469 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 470 static int 471 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 472 { 473 long lvalue; 474 int ivalue; 475 int i; 476 477 lvalue = 0; 478 for (i = 0; i < buf_domains; i++) 479 lvalue += bdomain[i].bd_bufspace; 480 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long)) 481 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 482 if (lvalue > INT_MAX) 483 /* On overflow, still write out a long to trigger ENOMEM. */ 484 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 485 ivalue = lvalue; 486 return (sysctl_handle_int(oidp, &ivalue, 0, req)); 487 } 488 #else 489 static int 490 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 491 { 492 long lvalue; 493 int i; 494 495 lvalue = 0; 496 for (i = 0; i < buf_domains; i++) 497 lvalue += bdomain[i].bd_bufspace; 498 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 499 } 500 #endif 501 502 static int 503 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS) 504 { 505 int value; 506 int i; 507 508 value = 0; 509 for (i = 0; i < buf_domains; i++) 510 value += bdomain[i].bd_numdirtybuffers; 511 return (sysctl_handle_int(oidp, &value, 0, req)); 512 } 513 514 /* 515 * bdirtywakeup: 516 * 517 * Wakeup any bwillwrite() waiters. 518 */ 519 static void 520 bdirtywakeup(void) 521 { 522 mtx_lock(&bdirtylock); 523 if (bdirtywait) { 524 bdirtywait = 0; 525 wakeup(&bdirtywait); 526 } 527 mtx_unlock(&bdirtylock); 528 } 529 530 /* 531 * bd_clear: 532 * 533 * Clear a domain from the appropriate bitsets when dirtybuffers 534 * is decremented. 535 */ 536 static void 537 bd_clear(struct bufdomain *bd) 538 { 539 540 mtx_lock(&bdirtylock); 541 if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers) 542 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); 543 if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers) 544 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); 545 mtx_unlock(&bdirtylock); 546 } 547 548 /* 549 * bd_set: 550 * 551 * Set a domain in the appropriate bitsets when dirtybuffers 552 * is incremented. 553 */ 554 static void 555 bd_set(struct bufdomain *bd) 556 { 557 558 mtx_lock(&bdirtylock); 559 if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers) 560 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); 561 if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers) 562 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); 563 mtx_unlock(&bdirtylock); 564 } 565 566 /* 567 * bdirtysub: 568 * 569 * Decrement the numdirtybuffers count by one and wakeup any 570 * threads blocked in bwillwrite(). 571 */ 572 static void 573 bdirtysub(struct buf *bp) 574 { 575 struct bufdomain *bd; 576 int num; 577 578 bd = bufdomain(bp); 579 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1); 580 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) 581 bdirtywakeup(); 582 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) 583 bd_clear(bd); 584 } 585 586 /* 587 * bdirtyadd: 588 * 589 * Increment the numdirtybuffers count by one and wakeup the buf 590 * daemon if needed. 591 */ 592 static void 593 bdirtyadd(struct buf *bp) 594 { 595 struct bufdomain *bd; 596 int num; 597 598 /* 599 * Only do the wakeup once as we cross the boundary. The 600 * buf daemon will keep running until the condition clears. 601 */ 602 bd = bufdomain(bp); 603 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1); 604 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) 605 bd_wakeup(); 606 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) 607 bd_set(bd); 608 } 609 610 /* 611 * bufspace_daemon_wakeup: 612 * 613 * Wakeup the daemons responsible for freeing clean bufs. 614 */ 615 static void 616 bufspace_daemon_wakeup(struct bufdomain *bd) 617 { 618 619 /* 620 * avoid the lock if the daemon is running. 621 */ 622 if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) { 623 BD_RUN_LOCK(bd); 624 atomic_store_int(&bd->bd_running, 1); 625 wakeup(&bd->bd_running); 626 BD_RUN_UNLOCK(bd); 627 } 628 } 629 630 /* 631 * bufspace_daemon_wait: 632 * 633 * Sleep until the domain falls below a limit or one second passes. 634 */ 635 static void 636 bufspace_daemon_wait(struct bufdomain *bd) 637 { 638 /* 639 * Re-check our limits and sleep. bd_running must be 640 * cleared prior to checking the limits to avoid missed 641 * wakeups. The waker will adjust one of bufspace or 642 * freebuffers prior to checking bd_running. 643 */ 644 BD_RUN_LOCK(bd); 645 atomic_store_int(&bd->bd_running, 0); 646 if (bd->bd_bufspace < bd->bd_bufspacethresh && 647 bd->bd_freebuffers > bd->bd_lofreebuffers) { 648 msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP, 649 "-", hz); 650 } else { 651 /* Avoid spurious wakeups while running. */ 652 atomic_store_int(&bd->bd_running, 1); 653 BD_RUN_UNLOCK(bd); 654 } 655 } 656 657 /* 658 * bufspace_adjust: 659 * 660 * Adjust the reported bufspace for a KVA managed buffer, possibly 661 * waking any waiters. 662 */ 663 static void 664 bufspace_adjust(struct buf *bp, int bufsize) 665 { 666 struct bufdomain *bd; 667 long space; 668 int diff; 669 670 KASSERT((bp->b_flags & B_MALLOC) == 0, 671 ("bufspace_adjust: malloc buf %p", bp)); 672 bd = bufdomain(bp); 673 diff = bufsize - bp->b_bufsize; 674 if (diff < 0) { 675 atomic_subtract_long(&bd->bd_bufspace, -diff); 676 } else if (diff > 0) { 677 space = atomic_fetchadd_long(&bd->bd_bufspace, diff); 678 /* Wake up the daemon on the transition. */ 679 if (space < bd->bd_bufspacethresh && 680 space + diff >= bd->bd_bufspacethresh) 681 bufspace_daemon_wakeup(bd); 682 } 683 bp->b_bufsize = bufsize; 684 } 685 686 /* 687 * bufspace_reserve: 688 * 689 * Reserve bufspace before calling allocbuf(). metadata has a 690 * different space limit than data. 691 */ 692 static int 693 bufspace_reserve(struct bufdomain *bd, int size, bool metadata) 694 { 695 long limit, new; 696 long space; 697 698 if (metadata) 699 limit = bd->bd_maxbufspace; 700 else 701 limit = bd->bd_hibufspace; 702 space = atomic_fetchadd_long(&bd->bd_bufspace, size); 703 new = space + size; 704 if (new > limit) { 705 atomic_subtract_long(&bd->bd_bufspace, size); 706 return (ENOSPC); 707 } 708 709 /* Wake up the daemon on the transition. */ 710 if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh) 711 bufspace_daemon_wakeup(bd); 712 713 return (0); 714 } 715 716 /* 717 * bufspace_release: 718 * 719 * Release reserved bufspace after bufspace_adjust() has consumed it. 720 */ 721 static void 722 bufspace_release(struct bufdomain *bd, int size) 723 { 724 725 atomic_subtract_long(&bd->bd_bufspace, size); 726 } 727 728 /* 729 * bufspace_wait: 730 * 731 * Wait for bufspace, acting as the buf daemon if a locked vnode is 732 * supplied. bd_wanted must be set prior to polling for space. The 733 * operation must be re-tried on return. 734 */ 735 static void 736 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags, 737 int slpflag, int slptimeo) 738 { 739 struct thread *td; 740 int error, fl, norunbuf; 741 742 if ((gbflags & GB_NOWAIT_BD) != 0) 743 return; 744 745 td = curthread; 746 BD_LOCK(bd); 747 while (bd->bd_wanted) { 748 if (vp != NULL && vp->v_type != VCHR && 749 (td->td_pflags & TDP_BUFNEED) == 0) { 750 BD_UNLOCK(bd); 751 /* 752 * getblk() is called with a vnode locked, and 753 * some majority of the dirty buffers may as 754 * well belong to the vnode. Flushing the 755 * buffers there would make a progress that 756 * cannot be achieved by the buf_daemon, that 757 * cannot lock the vnode. 758 */ 759 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) | 760 (td->td_pflags & TDP_NORUNNINGBUF); 761 762 /* 763 * Play bufdaemon. The getnewbuf() function 764 * may be called while the thread owns lock 765 * for another dirty buffer for the same 766 * vnode, which makes it impossible to use 767 * VOP_FSYNC() there, due to the buffer lock 768 * recursion. 769 */ 770 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF; 771 fl = buf_flush(vp, bd, flushbufqtarget); 772 td->td_pflags &= norunbuf; 773 BD_LOCK(bd); 774 if (fl != 0) 775 continue; 776 if (bd->bd_wanted == 0) 777 break; 778 } 779 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd), 780 (PRIBIO + 4) | slpflag, "newbuf", slptimeo); 781 if (error != 0) 782 break; 783 } 784 BD_UNLOCK(bd); 785 } 786 787 /* 788 * bufspace_daemon: 789 * 790 * buffer space management daemon. Tries to maintain some marginal 791 * amount of free buffer space so that requesting processes neither 792 * block nor work to reclaim buffers. 793 */ 794 static void 795 bufspace_daemon(void *arg) 796 { 797 struct bufdomain *bd; 798 799 EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread, 800 SHUTDOWN_PRI_LAST + 100); 801 802 bd = arg; 803 for (;;) { 804 kthread_suspend_check(); 805 806 /* 807 * Free buffers from the clean queue until we meet our 808 * targets. 809 * 810 * Theory of operation: The buffer cache is most efficient 811 * when some free buffer headers and space are always 812 * available to getnewbuf(). This daemon attempts to prevent 813 * the excessive blocking and synchronization associated 814 * with shortfall. It goes through three phases according 815 * demand: 816 * 817 * 1) The daemon wakes up voluntarily once per-second 818 * during idle periods when the counters are below 819 * the wakeup thresholds (bufspacethresh, lofreebuffers). 820 * 821 * 2) The daemon wakes up as we cross the thresholds 822 * ahead of any potential blocking. This may bounce 823 * slightly according to the rate of consumption and 824 * release. 825 * 826 * 3) The daemon and consumers are starved for working 827 * clean buffers. This is the 'bufspace' sleep below 828 * which will inefficiently trade bufs with bqrelse 829 * until we return to condition 2. 830 */ 831 while (bd->bd_bufspace > bd->bd_lobufspace || 832 bd->bd_freebuffers < bd->bd_hifreebuffers) { 833 if (buf_recycle(bd, false) != 0) { 834 if (bd_flushall(bd)) 835 continue; 836 /* 837 * Speedup dirty if we've run out of clean 838 * buffers. This is possible in particular 839 * because softdep may held many bufs locked 840 * pending writes to other bufs which are 841 * marked for delayed write, exhausting 842 * clean space until they are written. 843 */ 844 bd_speedup(); 845 BD_LOCK(bd); 846 if (bd->bd_wanted) { 847 msleep(&bd->bd_wanted, BD_LOCKPTR(bd), 848 PRIBIO|PDROP, "bufspace", hz/10); 849 } else 850 BD_UNLOCK(bd); 851 } 852 maybe_yield(); 853 } 854 bufspace_daemon_wait(bd); 855 } 856 } 857 858 /* 859 * bufmallocadjust: 860 * 861 * Adjust the reported bufspace for a malloc managed buffer, possibly 862 * waking any waiters. 863 */ 864 static void 865 bufmallocadjust(struct buf *bp, int bufsize) 866 { 867 int diff; 868 869 KASSERT((bp->b_flags & B_MALLOC) != 0, 870 ("bufmallocadjust: non-malloc buf %p", bp)); 871 diff = bufsize - bp->b_bufsize; 872 if (diff < 0) 873 atomic_subtract_long(&bufmallocspace, -diff); 874 else 875 atomic_add_long(&bufmallocspace, diff); 876 bp->b_bufsize = bufsize; 877 } 878 879 /* 880 * runningwakeup: 881 * 882 * Wake up processes that are waiting on asynchronous writes to fall 883 * below lorunningspace. 884 */ 885 static void 886 runningwakeup(void) 887 { 888 889 mtx_lock(&rbreqlock); 890 if (runningbufreq) { 891 runningbufreq = 0; 892 wakeup(&runningbufreq); 893 } 894 mtx_unlock(&rbreqlock); 895 } 896 897 /* 898 * runningbufwakeup: 899 * 900 * Decrement the outstanding write count according. 901 */ 902 void 903 runningbufwakeup(struct buf *bp) 904 { 905 long space, bspace; 906 907 bspace = bp->b_runningbufspace; 908 if (bspace == 0) 909 return; 910 space = atomic_fetchadd_long(&runningbufspace, -bspace); 911 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld", 912 space, bspace)); 913 bp->b_runningbufspace = 0; 914 /* 915 * Only acquire the lock and wakeup on the transition from exceeding 916 * the threshold to falling below it. 917 */ 918 if (space < lorunningspace) 919 return; 920 if (space - bspace > lorunningspace) 921 return; 922 runningwakeup(); 923 } 924 925 /* 926 * waitrunningbufspace() 927 * 928 * runningbufspace is a measure of the amount of I/O currently 929 * running. This routine is used in async-write situations to 930 * prevent creating huge backups of pending writes to a device. 931 * Only asynchronous writes are governed by this function. 932 * 933 * This does NOT turn an async write into a sync write. It waits 934 * for earlier writes to complete and generally returns before the 935 * caller's write has reached the device. 936 */ 937 void 938 waitrunningbufspace(void) 939 { 940 941 mtx_lock(&rbreqlock); 942 while (runningbufspace > hirunningspace) { 943 runningbufreq = 1; 944 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 945 } 946 mtx_unlock(&rbreqlock); 947 } 948 949 /* 950 * vfs_buf_test_cache: 951 * 952 * Called when a buffer is extended. This function clears the B_CACHE 953 * bit if the newly extended portion of the buffer does not contain 954 * valid data. 955 */ 956 static __inline void 957 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off, 958 vm_offset_t size, vm_page_t m) 959 { 960 961 /* 962 * This function and its results are protected by higher level 963 * synchronization requiring vnode and buf locks to page in and 964 * validate pages. 965 */ 966 if (bp->b_flags & B_CACHE) { 967 int base = (foff + off) & PAGE_MASK; 968 if (vm_page_is_valid(m, base, size) == 0) 969 bp->b_flags &= ~B_CACHE; 970 } 971 } 972 973 /* Wake up the buffer daemon if necessary */ 974 static void 975 bd_wakeup(void) 976 { 977 978 mtx_lock(&bdlock); 979 if (bd_request == 0) { 980 bd_request = 1; 981 wakeup(&bd_request); 982 } 983 mtx_unlock(&bdlock); 984 } 985 986 /* 987 * Adjust the maxbcachbuf tunable. 988 */ 989 static void 990 maxbcachebuf_adjust(void) 991 { 992 int i; 993 994 /* 995 * maxbcachebuf must be a power of 2 >= MAXBSIZE. 996 */ 997 i = 2; 998 while (i * 2 <= maxbcachebuf) 999 i *= 2; 1000 maxbcachebuf = i; 1001 if (maxbcachebuf < MAXBSIZE) 1002 maxbcachebuf = MAXBSIZE; 1003 if (maxbcachebuf > maxphys) 1004 maxbcachebuf = maxphys; 1005 if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF) 1006 printf("maxbcachebuf=%d\n", maxbcachebuf); 1007 } 1008 1009 /* 1010 * bd_speedup - speedup the buffer cache flushing code 1011 */ 1012 void 1013 bd_speedup(void) 1014 { 1015 int needwake; 1016 1017 mtx_lock(&bdlock); 1018 needwake = 0; 1019 if (bd_speedupreq == 0 || bd_request == 0) 1020 needwake = 1; 1021 bd_speedupreq = 1; 1022 bd_request = 1; 1023 if (needwake) 1024 wakeup(&bd_request); 1025 mtx_unlock(&bdlock); 1026 } 1027 1028 #ifdef __i386__ 1029 #define TRANSIENT_DENOM 5 1030 #else 1031 #define TRANSIENT_DENOM 10 1032 #endif 1033 1034 /* 1035 * Calculating buffer cache scaling values and reserve space for buffer 1036 * headers. This is called during low level kernel initialization and 1037 * may be called more then once. We CANNOT write to the memory area 1038 * being reserved at this time. 1039 */ 1040 caddr_t 1041 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 1042 { 1043 int tuned_nbuf; 1044 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz; 1045 1046 /* 1047 * physmem_est is in pages. Convert it to kilobytes (assumes 1048 * PAGE_SIZE is >= 1K) 1049 */ 1050 physmem_est = physmem_est * (PAGE_SIZE / 1024); 1051 1052 maxbcachebuf_adjust(); 1053 /* 1054 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 1055 * For the first 64MB of ram nominally allocate sufficient buffers to 1056 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 1057 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing 1058 * the buffer cache we limit the eventual kva reservation to 1059 * maxbcache bytes. 1060 * 1061 * factor represents the 1/4 x ram conversion. 1062 */ 1063 if (nbuf == 0) { 1064 int factor = 4 * BKVASIZE / 1024; 1065 1066 nbuf = 50; 1067 if (physmem_est > 4096) 1068 nbuf += min((physmem_est - 4096) / factor, 1069 65536 / factor); 1070 if (physmem_est > 65536) 1071 nbuf += min((physmem_est - 65536) * 2 / (factor * 5), 1072 32 * 1024 * 1024 / (factor * 5)); 1073 1074 if (maxbcache && nbuf > maxbcache / BKVASIZE) 1075 nbuf = maxbcache / BKVASIZE; 1076 tuned_nbuf = 1; 1077 } else 1078 tuned_nbuf = 0; 1079 1080 /* XXX Avoid unsigned long overflows later on with maxbufspace. */ 1081 maxbuf = (LONG_MAX / 3) / BKVASIZE; 1082 if (nbuf > maxbuf) { 1083 if (!tuned_nbuf) 1084 printf("Warning: nbufs lowered from %d to %ld\n", nbuf, 1085 maxbuf); 1086 nbuf = maxbuf; 1087 } 1088 1089 /* 1090 * Ideal allocation size for the transient bio submap is 10% 1091 * of the maximal space buffer map. This roughly corresponds 1092 * to the amount of the buffer mapped for typical UFS load. 1093 * 1094 * Clip the buffer map to reserve space for the transient 1095 * BIOs, if its extent is bigger than 90% (80% on i386) of the 1096 * maximum buffer map extent on the platform. 1097 * 1098 * The fall-back to the maxbuf in case of maxbcache unset, 1099 * allows to not trim the buffer KVA for the architectures 1100 * with ample KVA space. 1101 */ 1102 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) { 1103 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE; 1104 buf_sz = (long)nbuf * BKVASIZE; 1105 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM * 1106 (TRANSIENT_DENOM - 1)) { 1107 /* 1108 * There is more KVA than memory. Do not 1109 * adjust buffer map size, and assign the rest 1110 * of maxbuf to transient map. 1111 */ 1112 biotmap_sz = maxbuf_sz - buf_sz; 1113 } else { 1114 /* 1115 * Buffer map spans all KVA we could afford on 1116 * this platform. Give 10% (20% on i386) of 1117 * the buffer map to the transient bio map. 1118 */ 1119 biotmap_sz = buf_sz / TRANSIENT_DENOM; 1120 buf_sz -= biotmap_sz; 1121 } 1122 if (biotmap_sz / INT_MAX > maxphys) 1123 bio_transient_maxcnt = INT_MAX; 1124 else 1125 bio_transient_maxcnt = biotmap_sz / maxphys; 1126 /* 1127 * Artificially limit to 1024 simultaneous in-flight I/Os 1128 * using the transient mapping. 1129 */ 1130 if (bio_transient_maxcnt > 1024) 1131 bio_transient_maxcnt = 1024; 1132 if (tuned_nbuf) 1133 nbuf = buf_sz / BKVASIZE; 1134 } 1135 1136 if (nswbuf == 0) { 1137 nswbuf = min(nbuf / 4, 256); 1138 if (nswbuf < NSWBUF_MIN) 1139 nswbuf = NSWBUF_MIN; 1140 } 1141 1142 /* 1143 * Reserve space for the buffer cache buffers 1144 */ 1145 buf = (char *)v; 1146 v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) * 1147 atop(maxbcachebuf)) * nbuf; 1148 1149 return (v); 1150 } 1151 1152 /* Initialize the buffer subsystem. Called before use of any buffers. */ 1153 void 1154 bufinit(void) 1155 { 1156 struct buf *bp; 1157 int i; 1158 1159 KASSERT(maxbcachebuf >= MAXBSIZE, 1160 ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf, 1161 MAXBSIZE)); 1162 bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock"); 1163 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 1164 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 1165 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF); 1166 1167 unmapped_buf = (caddr_t)kva_alloc(maxphys); 1168 1169 /* finally, initialize each buffer header and stick on empty q */ 1170 for (i = 0; i < nbuf; i++) { 1171 bp = nbufp(i); 1172 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf)); 1173 bp->b_flags = B_INVAL; 1174 bp->b_rcred = NOCRED; 1175 bp->b_wcred = NOCRED; 1176 bp->b_qindex = QUEUE_NONE; 1177 bp->b_domain = -1; 1178 bp->b_subqueue = mp_maxid + 1; 1179 bp->b_xflags = 0; 1180 bp->b_data = bp->b_kvabase = unmapped_buf; 1181 LIST_INIT(&bp->b_dep); 1182 BUF_LOCKINIT(bp); 1183 bq_insert(&bqempty, bp, false); 1184 } 1185 1186 /* 1187 * maxbufspace is the absolute maximum amount of buffer space we are 1188 * allowed to reserve in KVM and in real terms. The absolute maximum 1189 * is nominally used by metadata. hibufspace is the nominal maximum 1190 * used by most other requests. The differential is required to 1191 * ensure that metadata deadlocks don't occur. 1192 * 1193 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 1194 * this may result in KVM fragmentation which is not handled optimally 1195 * by the system. XXX This is less true with vmem. We could use 1196 * PAGE_SIZE. 1197 */ 1198 maxbufspace = (long)nbuf * BKVASIZE; 1199 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10); 1200 lobufspace = (hibufspace / 20) * 19; /* 95% */ 1201 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2; 1202 1203 /* 1204 * Note: The 16 MiB upper limit for hirunningspace was chosen 1205 * arbitrarily and may need further tuning. It corresponds to 1206 * 128 outstanding write IO requests (if IO size is 128 KiB), 1207 * which fits with many RAID controllers' tagged queuing limits. 1208 * The lower 1 MiB limit is the historical upper limit for 1209 * hirunningspace. 1210 */ 1211 hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf), 1212 16 * 1024 * 1024), 1024 * 1024); 1213 lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf); 1214 1215 /* 1216 * Limit the amount of malloc memory since it is wired permanently into 1217 * the kernel space. Even though this is accounted for in the buffer 1218 * allocation, we don't want the malloced region to grow uncontrolled. 1219 * The malloc scheme improves memory utilization significantly on 1220 * average (small) directories. 1221 */ 1222 maxbufmallocspace = hibufspace / 20; 1223 1224 /* 1225 * Reduce the chance of a deadlock occurring by limiting the number 1226 * of delayed-write dirty buffers we allow to stack up. 1227 */ 1228 hidirtybuffers = nbuf / 4 + 20; 1229 dirtybufthresh = hidirtybuffers * 9 / 10; 1230 /* 1231 * To support extreme low-memory systems, make sure hidirtybuffers 1232 * cannot eat up all available buffer space. This occurs when our 1233 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our 1234 * buffer space assuming BKVASIZE'd buffers. 1235 */ 1236 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 1237 hidirtybuffers >>= 1; 1238 } 1239 lodirtybuffers = hidirtybuffers / 2; 1240 1241 /* 1242 * lofreebuffers should be sufficient to avoid stalling waiting on 1243 * buf headers under heavy utilization. The bufs in per-cpu caches 1244 * are counted as free but will be unavailable to threads executing 1245 * on other cpus. 1246 * 1247 * hifreebuffers is the free target for the bufspace daemon. This 1248 * should be set appropriately to limit work per-iteration. 1249 */ 1250 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus); 1251 hifreebuffers = (3 * lofreebuffers) / 2; 1252 numfreebuffers = nbuf; 1253 1254 /* Setup the kva and free list allocators. */ 1255 vmem_set_reclaim(buffer_arena, bufkva_reclaim); 1256 buf_zone = uma_zcache_create("buf free cache", 1257 sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf), 1258 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0); 1259 1260 /* 1261 * Size the clean queue according to the amount of buffer space. 1262 * One queue per-256mb up to the max. More queues gives better 1263 * concurrency but less accurate LRU. 1264 */ 1265 buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS); 1266 for (i = 0 ; i < buf_domains; i++) { 1267 struct bufdomain *bd; 1268 1269 bd = &bdomain[i]; 1270 bd_init(bd); 1271 bd->bd_freebuffers = nbuf / buf_domains; 1272 bd->bd_hifreebuffers = hifreebuffers / buf_domains; 1273 bd->bd_lofreebuffers = lofreebuffers / buf_domains; 1274 bd->bd_bufspace = 0; 1275 bd->bd_maxbufspace = maxbufspace / buf_domains; 1276 bd->bd_hibufspace = hibufspace / buf_domains; 1277 bd->bd_lobufspace = lobufspace / buf_domains; 1278 bd->bd_bufspacethresh = bufspacethresh / buf_domains; 1279 bd->bd_numdirtybuffers = 0; 1280 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains; 1281 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains; 1282 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains; 1283 /* Don't allow more than 2% of bufs in the per-cpu caches. */ 1284 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus; 1285 } 1286 getnewbufcalls = counter_u64_alloc(M_WAITOK); 1287 getnewbufrestarts = counter_u64_alloc(M_WAITOK); 1288 mappingrestarts = counter_u64_alloc(M_WAITOK); 1289 numbufallocfails = counter_u64_alloc(M_WAITOK); 1290 notbufdflushes = counter_u64_alloc(M_WAITOK); 1291 buffreekvacnt = counter_u64_alloc(M_WAITOK); 1292 bufdefragcnt = counter_u64_alloc(M_WAITOK); 1293 bufkvaspace = counter_u64_alloc(M_WAITOK); 1294 } 1295 1296 #ifdef INVARIANTS 1297 static inline void 1298 vfs_buf_check_mapped(struct buf *bp) 1299 { 1300 1301 KASSERT(bp->b_kvabase != unmapped_buf, 1302 ("mapped buf: b_kvabase was not updated %p", bp)); 1303 KASSERT(bp->b_data != unmapped_buf, 1304 ("mapped buf: b_data was not updated %p", bp)); 1305 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf + 1306 maxphys, ("b_data + b_offset unmapped %p", bp)); 1307 } 1308 1309 static inline void 1310 vfs_buf_check_unmapped(struct buf *bp) 1311 { 1312 1313 KASSERT(bp->b_data == unmapped_buf, 1314 ("unmapped buf: corrupted b_data %p", bp)); 1315 } 1316 1317 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp) 1318 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp) 1319 #else 1320 #define BUF_CHECK_MAPPED(bp) do {} while (0) 1321 #define BUF_CHECK_UNMAPPED(bp) do {} while (0) 1322 #endif 1323 1324 static int 1325 isbufbusy(struct buf *bp) 1326 { 1327 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) || 1328 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI)) 1329 return (1); 1330 return (0); 1331 } 1332 1333 /* 1334 * Shutdown the system cleanly to prepare for reboot, halt, or power off. 1335 */ 1336 void 1337 bufshutdown(int show_busybufs) 1338 { 1339 static int first_buf_printf = 1; 1340 struct buf *bp; 1341 int i, iter, nbusy, pbusy; 1342 #ifndef PREEMPTION 1343 int subiter; 1344 #endif 1345 1346 /* 1347 * Sync filesystems for shutdown 1348 */ 1349 wdog_kern_pat(WD_LASTVAL); 1350 kern_sync(curthread); 1351 1352 /* 1353 * With soft updates, some buffers that are 1354 * written will be remarked as dirty until other 1355 * buffers are written. 1356 */ 1357 for (iter = pbusy = 0; iter < 20; iter++) { 1358 nbusy = 0; 1359 for (i = nbuf - 1; i >= 0; i--) { 1360 bp = nbufp(i); 1361 if (isbufbusy(bp)) 1362 nbusy++; 1363 } 1364 if (nbusy == 0) { 1365 if (first_buf_printf) 1366 printf("All buffers synced."); 1367 break; 1368 } 1369 if (first_buf_printf) { 1370 printf("Syncing disks, buffers remaining... "); 1371 first_buf_printf = 0; 1372 } 1373 printf("%d ", nbusy); 1374 if (nbusy < pbusy) 1375 iter = 0; 1376 pbusy = nbusy; 1377 1378 wdog_kern_pat(WD_LASTVAL); 1379 kern_sync(curthread); 1380 1381 #ifdef PREEMPTION 1382 /* 1383 * Spin for a while to allow interrupt threads to run. 1384 */ 1385 DELAY(50000 * iter); 1386 #else 1387 /* 1388 * Context switch several times to allow interrupt 1389 * threads to run. 1390 */ 1391 for (subiter = 0; subiter < 50 * iter; subiter++) { 1392 thread_lock(curthread); 1393 mi_switch(SW_VOL); 1394 DELAY(1000); 1395 } 1396 #endif 1397 } 1398 printf("\n"); 1399 /* 1400 * Count only busy local buffers to prevent forcing 1401 * a fsck if we're just a client of a wedged NFS server 1402 */ 1403 nbusy = 0; 1404 for (i = nbuf - 1; i >= 0; i--) { 1405 bp = nbufp(i); 1406 if (isbufbusy(bp)) { 1407 #if 0 1408 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ 1409 if (bp->b_dev == NULL) { 1410 TAILQ_REMOVE(&mountlist, 1411 bp->b_vp->v_mount, mnt_list); 1412 continue; 1413 } 1414 #endif 1415 nbusy++; 1416 if (show_busybufs > 0) { 1417 printf( 1418 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", 1419 nbusy, bp, bp->b_vp, bp->b_flags, 1420 (intmax_t)bp->b_blkno, 1421 (intmax_t)bp->b_lblkno); 1422 BUF_LOCKPRINTINFO(bp); 1423 if (show_busybufs > 1) 1424 vn_printf(bp->b_vp, 1425 "vnode content: "); 1426 } 1427 } 1428 } 1429 if (nbusy) { 1430 /* 1431 * Failed to sync all blocks. Indicate this and don't 1432 * unmount filesystems (thus forcing an fsck on reboot). 1433 */ 1434 printf("Giving up on %d buffers\n", nbusy); 1435 DELAY(5000000); /* 5 seconds */ 1436 } else { 1437 if (!first_buf_printf) 1438 printf("Final sync complete\n"); 1439 /* 1440 * Unmount filesystems 1441 */ 1442 if (!KERNEL_PANICKED()) 1443 vfs_unmountall(); 1444 } 1445 swapoff_all(); 1446 DELAY(100000); /* wait for console output to finish */ 1447 } 1448 1449 static void 1450 bpmap_qenter(struct buf *bp) 1451 { 1452 1453 BUF_CHECK_MAPPED(bp); 1454 1455 /* 1456 * bp->b_data is relative to bp->b_offset, but 1457 * bp->b_offset may be offset into the first page. 1458 */ 1459 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); 1460 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1461 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 1462 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 1463 } 1464 1465 static inline struct bufdomain * 1466 bufdomain(struct buf *bp) 1467 { 1468 1469 return (&bdomain[bp->b_domain]); 1470 } 1471 1472 static struct bufqueue * 1473 bufqueue(struct buf *bp) 1474 { 1475 1476 switch (bp->b_qindex) { 1477 case QUEUE_NONE: 1478 /* FALLTHROUGH */ 1479 case QUEUE_SENTINEL: 1480 return (NULL); 1481 case QUEUE_EMPTY: 1482 return (&bqempty); 1483 case QUEUE_DIRTY: 1484 return (&bufdomain(bp)->bd_dirtyq); 1485 case QUEUE_CLEAN: 1486 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]); 1487 default: 1488 break; 1489 } 1490 panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex); 1491 } 1492 1493 /* 1494 * Return the locked bufqueue that bp is a member of. 1495 */ 1496 static struct bufqueue * 1497 bufqueue_acquire(struct buf *bp) 1498 { 1499 struct bufqueue *bq, *nbq; 1500 1501 /* 1502 * bp can be pushed from a per-cpu queue to the 1503 * cleanq while we're waiting on the lock. Retry 1504 * if the queues don't match. 1505 */ 1506 bq = bufqueue(bp); 1507 BQ_LOCK(bq); 1508 for (;;) { 1509 nbq = bufqueue(bp); 1510 if (bq == nbq) 1511 break; 1512 BQ_UNLOCK(bq); 1513 BQ_LOCK(nbq); 1514 bq = nbq; 1515 } 1516 return (bq); 1517 } 1518 1519 /* 1520 * binsfree: 1521 * 1522 * Insert the buffer into the appropriate free list. Requires a 1523 * locked buffer on entry and buffer is unlocked before return. 1524 */ 1525 static void 1526 binsfree(struct buf *bp, int qindex) 1527 { 1528 struct bufdomain *bd; 1529 struct bufqueue *bq; 1530 1531 KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY, 1532 ("binsfree: Invalid qindex %d", qindex)); 1533 BUF_ASSERT_XLOCKED(bp); 1534 1535 /* 1536 * Handle delayed bremfree() processing. 1537 */ 1538 if (bp->b_flags & B_REMFREE) { 1539 if (bp->b_qindex == qindex) { 1540 bp->b_flags |= B_REUSE; 1541 bp->b_flags &= ~B_REMFREE; 1542 BUF_UNLOCK(bp); 1543 return; 1544 } 1545 bq = bufqueue_acquire(bp); 1546 bq_remove(bq, bp); 1547 BQ_UNLOCK(bq); 1548 } 1549 bd = bufdomain(bp); 1550 if (qindex == QUEUE_CLEAN) { 1551 if (bd->bd_lim != 0) 1552 bq = &bd->bd_subq[PCPU_GET(cpuid)]; 1553 else 1554 bq = bd->bd_cleanq; 1555 } else 1556 bq = &bd->bd_dirtyq; 1557 bq_insert(bq, bp, true); 1558 } 1559 1560 /* 1561 * buf_free: 1562 * 1563 * Free a buffer to the buf zone once it no longer has valid contents. 1564 */ 1565 static void 1566 buf_free(struct buf *bp) 1567 { 1568 1569 if (bp->b_flags & B_REMFREE) 1570 bremfreef(bp); 1571 if (bp->b_vflags & BV_BKGRDINPROG) 1572 panic("losing buffer 1"); 1573 if (bp->b_rcred != NOCRED) { 1574 crfree(bp->b_rcred); 1575 bp->b_rcred = NOCRED; 1576 } 1577 if (bp->b_wcred != NOCRED) { 1578 crfree(bp->b_wcred); 1579 bp->b_wcred = NOCRED; 1580 } 1581 if (!LIST_EMPTY(&bp->b_dep)) 1582 buf_deallocate(bp); 1583 bufkva_free(bp); 1584 atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1); 1585 MPASS((bp->b_flags & B_MAXPHYS) == 0); 1586 BUF_UNLOCK(bp); 1587 uma_zfree(buf_zone, bp); 1588 } 1589 1590 /* 1591 * buf_import: 1592 * 1593 * Import bufs into the uma cache from the buf list. The system still 1594 * expects a static array of bufs and much of the synchronization 1595 * around bufs assumes type stable storage. As a result, UMA is used 1596 * only as a per-cpu cache of bufs still maintained on a global list. 1597 */ 1598 static int 1599 buf_import(void *arg, void **store, int cnt, int domain, int flags) 1600 { 1601 struct buf *bp; 1602 int i; 1603 1604 BQ_LOCK(&bqempty); 1605 for (i = 0; i < cnt; i++) { 1606 bp = TAILQ_FIRST(&bqempty.bq_queue); 1607 if (bp == NULL) 1608 break; 1609 bq_remove(&bqempty, bp); 1610 store[i] = bp; 1611 } 1612 BQ_UNLOCK(&bqempty); 1613 1614 return (i); 1615 } 1616 1617 /* 1618 * buf_release: 1619 * 1620 * Release bufs from the uma cache back to the buffer queues. 1621 */ 1622 static void 1623 buf_release(void *arg, void **store, int cnt) 1624 { 1625 struct bufqueue *bq; 1626 struct buf *bp; 1627 int i; 1628 1629 bq = &bqempty; 1630 BQ_LOCK(bq); 1631 for (i = 0; i < cnt; i++) { 1632 bp = store[i]; 1633 /* Inline bq_insert() to batch locking. */ 1634 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1635 bp->b_flags &= ~(B_AGE | B_REUSE); 1636 bq->bq_len++; 1637 bp->b_qindex = bq->bq_index; 1638 } 1639 BQ_UNLOCK(bq); 1640 } 1641 1642 /* 1643 * buf_alloc: 1644 * 1645 * Allocate an empty buffer header. 1646 */ 1647 static struct buf * 1648 buf_alloc(struct bufdomain *bd) 1649 { 1650 struct buf *bp; 1651 int freebufs, error; 1652 1653 /* 1654 * We can only run out of bufs in the buf zone if the average buf 1655 * is less than BKVASIZE. In this case the actual wait/block will 1656 * come from buf_reycle() failing to flush one of these small bufs. 1657 */ 1658 bp = NULL; 1659 freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1); 1660 if (freebufs > 0) 1661 bp = uma_zalloc(buf_zone, M_NOWAIT); 1662 if (bp == NULL) { 1663 atomic_add_int(&bd->bd_freebuffers, 1); 1664 bufspace_daemon_wakeup(bd); 1665 counter_u64_add(numbufallocfails, 1); 1666 return (NULL); 1667 } 1668 /* 1669 * Wake-up the bufspace daemon on transition below threshold. 1670 */ 1671 if (freebufs == bd->bd_lofreebuffers) 1672 bufspace_daemon_wakeup(bd); 1673 1674 error = BUF_LOCK(bp, LK_EXCLUSIVE, NULL); 1675 KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp, 1676 error)); 1677 (void)error; 1678 1679 KASSERT(bp->b_vp == NULL, 1680 ("bp: %p still has vnode %p.", bp, bp->b_vp)); 1681 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0, 1682 ("invalid buffer %p flags %#x", bp, bp->b_flags)); 1683 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0, 1684 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags)); 1685 KASSERT(bp->b_npages == 0, 1686 ("bp: %p still has %d vm pages\n", bp, bp->b_npages)); 1687 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp)); 1688 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp)); 1689 MPASS((bp->b_flags & B_MAXPHYS) == 0); 1690 1691 bp->b_domain = BD_DOMAIN(bd); 1692 bp->b_flags = 0; 1693 bp->b_ioflags = 0; 1694 bp->b_xflags = 0; 1695 bp->b_vflags = 0; 1696 bp->b_vp = NULL; 1697 bp->b_blkno = bp->b_lblkno = 0; 1698 bp->b_offset = NOOFFSET; 1699 bp->b_iodone = 0; 1700 bp->b_error = 0; 1701 bp->b_resid = 0; 1702 bp->b_bcount = 0; 1703 bp->b_npages = 0; 1704 bp->b_dirtyoff = bp->b_dirtyend = 0; 1705 bp->b_bufobj = NULL; 1706 bp->b_data = bp->b_kvabase = unmapped_buf; 1707 bp->b_fsprivate1 = NULL; 1708 bp->b_fsprivate2 = NULL; 1709 bp->b_fsprivate3 = NULL; 1710 LIST_INIT(&bp->b_dep); 1711 1712 return (bp); 1713 } 1714 1715 /* 1716 * buf_recycle: 1717 * 1718 * Free a buffer from the given bufqueue. kva controls whether the 1719 * freed buf must own some kva resources. This is used for 1720 * defragmenting. 1721 */ 1722 static int 1723 buf_recycle(struct bufdomain *bd, bool kva) 1724 { 1725 struct bufqueue *bq; 1726 struct buf *bp, *nbp; 1727 1728 if (kva) 1729 counter_u64_add(bufdefragcnt, 1); 1730 nbp = NULL; 1731 bq = bd->bd_cleanq; 1732 BQ_LOCK(bq); 1733 KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd), 1734 ("buf_recycle: Locks don't match")); 1735 nbp = TAILQ_FIRST(&bq->bq_queue); 1736 1737 /* 1738 * Run scan, possibly freeing data and/or kva mappings on the fly 1739 * depending. 1740 */ 1741 while ((bp = nbp) != NULL) { 1742 /* 1743 * Calculate next bp (we can only use it if we do not 1744 * release the bqlock). 1745 */ 1746 nbp = TAILQ_NEXT(bp, b_freelist); 1747 1748 /* 1749 * If we are defragging then we need a buffer with 1750 * some kva to reclaim. 1751 */ 1752 if (kva && bp->b_kvasize == 0) 1753 continue; 1754 1755 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1756 continue; 1757 1758 /* 1759 * Implement a second chance algorithm for frequently 1760 * accessed buffers. 1761 */ 1762 if ((bp->b_flags & B_REUSE) != 0) { 1763 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1764 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1765 bp->b_flags &= ~B_REUSE; 1766 BUF_UNLOCK(bp); 1767 continue; 1768 } 1769 1770 /* 1771 * Skip buffers with background writes in progress. 1772 */ 1773 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 1774 BUF_UNLOCK(bp); 1775 continue; 1776 } 1777 1778 KASSERT(bp->b_qindex == QUEUE_CLEAN, 1779 ("buf_recycle: inconsistent queue %d bp %p", 1780 bp->b_qindex, bp)); 1781 KASSERT(bp->b_domain == BD_DOMAIN(bd), 1782 ("getnewbuf: queue domain %d doesn't match request %d", 1783 bp->b_domain, (int)BD_DOMAIN(bd))); 1784 /* 1785 * NOTE: nbp is now entirely invalid. We can only restart 1786 * the scan from this point on. 1787 */ 1788 bq_remove(bq, bp); 1789 BQ_UNLOCK(bq); 1790 1791 /* 1792 * Requeue the background write buffer with error and 1793 * restart the scan. 1794 */ 1795 if ((bp->b_vflags & BV_BKGRDERR) != 0) { 1796 bqrelse(bp); 1797 BQ_LOCK(bq); 1798 nbp = TAILQ_FIRST(&bq->bq_queue); 1799 continue; 1800 } 1801 bp->b_flags |= B_INVAL; 1802 brelse(bp); 1803 return (0); 1804 } 1805 bd->bd_wanted = 1; 1806 BQ_UNLOCK(bq); 1807 1808 return (ENOBUFS); 1809 } 1810 1811 /* 1812 * bremfree: 1813 * 1814 * Mark the buffer for removal from the appropriate free list. 1815 * 1816 */ 1817 void 1818 bremfree(struct buf *bp) 1819 { 1820 1821 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1822 KASSERT((bp->b_flags & B_REMFREE) == 0, 1823 ("bremfree: buffer %p already marked for delayed removal.", bp)); 1824 KASSERT(bp->b_qindex != QUEUE_NONE, 1825 ("bremfree: buffer %p not on a queue.", bp)); 1826 BUF_ASSERT_XLOCKED(bp); 1827 1828 bp->b_flags |= B_REMFREE; 1829 } 1830 1831 /* 1832 * bremfreef: 1833 * 1834 * Force an immediate removal from a free list. Used only in nfs when 1835 * it abuses the b_freelist pointer. 1836 */ 1837 void 1838 bremfreef(struct buf *bp) 1839 { 1840 struct bufqueue *bq; 1841 1842 bq = bufqueue_acquire(bp); 1843 bq_remove(bq, bp); 1844 BQ_UNLOCK(bq); 1845 } 1846 1847 static void 1848 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname) 1849 { 1850 1851 mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF); 1852 TAILQ_INIT(&bq->bq_queue); 1853 bq->bq_len = 0; 1854 bq->bq_index = qindex; 1855 bq->bq_subqueue = subqueue; 1856 } 1857 1858 static void 1859 bd_init(struct bufdomain *bd) 1860 { 1861 int i; 1862 1863 bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1]; 1864 bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock"); 1865 bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock"); 1866 for (i = 0; i <= mp_maxid; i++) 1867 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i, 1868 "bufq clean subqueue lock"); 1869 mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF); 1870 } 1871 1872 /* 1873 * bq_remove: 1874 * 1875 * Removes a buffer from the free list, must be called with the 1876 * correct qlock held. 1877 */ 1878 static void 1879 bq_remove(struct bufqueue *bq, struct buf *bp) 1880 { 1881 1882 CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X", 1883 bp, bp->b_vp, bp->b_flags); 1884 KASSERT(bp->b_qindex != QUEUE_NONE, 1885 ("bq_remove: buffer %p not on a queue.", bp)); 1886 KASSERT(bufqueue(bp) == bq, 1887 ("bq_remove: Remove buffer %p from wrong queue.", bp)); 1888 1889 BQ_ASSERT_LOCKED(bq); 1890 if (bp->b_qindex != QUEUE_EMPTY) { 1891 BUF_ASSERT_XLOCKED(bp); 1892 } 1893 KASSERT(bq->bq_len >= 1, 1894 ("queue %d underflow", bp->b_qindex)); 1895 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1896 bq->bq_len--; 1897 bp->b_qindex = QUEUE_NONE; 1898 bp->b_flags &= ~(B_REMFREE | B_REUSE); 1899 } 1900 1901 static void 1902 bd_flush(struct bufdomain *bd, struct bufqueue *bq) 1903 { 1904 struct buf *bp; 1905 1906 BQ_ASSERT_LOCKED(bq); 1907 if (bq != bd->bd_cleanq) { 1908 BD_LOCK(bd); 1909 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) { 1910 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1911 TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp, 1912 b_freelist); 1913 bp->b_subqueue = bd->bd_cleanq->bq_subqueue; 1914 } 1915 bd->bd_cleanq->bq_len += bq->bq_len; 1916 bq->bq_len = 0; 1917 } 1918 if (bd->bd_wanted) { 1919 bd->bd_wanted = 0; 1920 wakeup(&bd->bd_wanted); 1921 } 1922 if (bq != bd->bd_cleanq) 1923 BD_UNLOCK(bd); 1924 } 1925 1926 static int 1927 bd_flushall(struct bufdomain *bd) 1928 { 1929 struct bufqueue *bq; 1930 int flushed; 1931 int i; 1932 1933 if (bd->bd_lim == 0) 1934 return (0); 1935 flushed = 0; 1936 for (i = 0; i <= mp_maxid; i++) { 1937 bq = &bd->bd_subq[i]; 1938 if (bq->bq_len == 0) 1939 continue; 1940 BQ_LOCK(bq); 1941 bd_flush(bd, bq); 1942 BQ_UNLOCK(bq); 1943 flushed++; 1944 } 1945 1946 return (flushed); 1947 } 1948 1949 static void 1950 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock) 1951 { 1952 struct bufdomain *bd; 1953 1954 if (bp->b_qindex != QUEUE_NONE) 1955 panic("bq_insert: free buffer %p onto another queue?", bp); 1956 1957 bd = bufdomain(bp); 1958 if (bp->b_flags & B_AGE) { 1959 /* Place this buf directly on the real queue. */ 1960 if (bq->bq_index == QUEUE_CLEAN) 1961 bq = bd->bd_cleanq; 1962 BQ_LOCK(bq); 1963 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist); 1964 } else { 1965 BQ_LOCK(bq); 1966 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1967 } 1968 bp->b_flags &= ~(B_AGE | B_REUSE); 1969 bq->bq_len++; 1970 bp->b_qindex = bq->bq_index; 1971 bp->b_subqueue = bq->bq_subqueue; 1972 1973 /* 1974 * Unlock before we notify so that we don't wakeup a waiter that 1975 * fails a trylock on the buf and sleeps again. 1976 */ 1977 if (unlock) 1978 BUF_UNLOCK(bp); 1979 1980 if (bp->b_qindex == QUEUE_CLEAN) { 1981 /* 1982 * Flush the per-cpu queue and notify any waiters. 1983 */ 1984 if (bd->bd_wanted || (bq != bd->bd_cleanq && 1985 bq->bq_len >= bd->bd_lim)) 1986 bd_flush(bd, bq); 1987 } 1988 BQ_UNLOCK(bq); 1989 } 1990 1991 /* 1992 * bufkva_free: 1993 * 1994 * Free the kva allocation for a buffer. 1995 * 1996 */ 1997 static void 1998 bufkva_free(struct buf *bp) 1999 { 2000 2001 #ifdef INVARIANTS 2002 if (bp->b_kvasize == 0) { 2003 KASSERT(bp->b_kvabase == unmapped_buf && 2004 bp->b_data == unmapped_buf, 2005 ("Leaked KVA space on %p", bp)); 2006 } else if (buf_mapped(bp)) 2007 BUF_CHECK_MAPPED(bp); 2008 else 2009 BUF_CHECK_UNMAPPED(bp); 2010 #endif 2011 if (bp->b_kvasize == 0) 2012 return; 2013 2014 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize); 2015 counter_u64_add(bufkvaspace, -bp->b_kvasize); 2016 counter_u64_add(buffreekvacnt, 1); 2017 bp->b_data = bp->b_kvabase = unmapped_buf; 2018 bp->b_kvasize = 0; 2019 } 2020 2021 /* 2022 * bufkva_alloc: 2023 * 2024 * Allocate the buffer KVA and set b_kvasize and b_kvabase. 2025 */ 2026 static int 2027 bufkva_alloc(struct buf *bp, int maxsize, int gbflags) 2028 { 2029 vm_offset_t addr; 2030 int error; 2031 2032 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0, 2033 ("Invalid gbflags 0x%x in %s", gbflags, __func__)); 2034 MPASS((bp->b_flags & B_MAXPHYS) == 0); 2035 KASSERT(maxsize <= maxbcachebuf, 2036 ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf)); 2037 2038 bufkva_free(bp); 2039 2040 addr = 0; 2041 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr); 2042 if (error != 0) { 2043 /* 2044 * Buffer map is too fragmented. Request the caller 2045 * to defragment the map. 2046 */ 2047 return (error); 2048 } 2049 bp->b_kvabase = (caddr_t)addr; 2050 bp->b_kvasize = maxsize; 2051 counter_u64_add(bufkvaspace, bp->b_kvasize); 2052 if ((gbflags & GB_UNMAPPED) != 0) { 2053 bp->b_data = unmapped_buf; 2054 BUF_CHECK_UNMAPPED(bp); 2055 } else { 2056 bp->b_data = bp->b_kvabase; 2057 BUF_CHECK_MAPPED(bp); 2058 } 2059 return (0); 2060 } 2061 2062 /* 2063 * bufkva_reclaim: 2064 * 2065 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem 2066 * callback that fires to avoid returning failure. 2067 */ 2068 static void 2069 bufkva_reclaim(vmem_t *vmem, int flags) 2070 { 2071 bool done; 2072 int q; 2073 int i; 2074 2075 done = false; 2076 for (i = 0; i < 5; i++) { 2077 for (q = 0; q < buf_domains; q++) 2078 if (buf_recycle(&bdomain[q], true) != 0) 2079 done = true; 2080 if (done) 2081 break; 2082 } 2083 return; 2084 } 2085 2086 /* 2087 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must 2088 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set, 2089 * the buffer is valid and we do not have to do anything. 2090 */ 2091 static void 2092 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt, 2093 struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *)) 2094 { 2095 struct buf *rabp; 2096 struct thread *td; 2097 int i; 2098 2099 td = curthread; 2100 2101 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 2102 if (inmem(vp, *rablkno)) 2103 continue; 2104 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 2105 if ((rabp->b_flags & B_CACHE) != 0) { 2106 brelse(rabp); 2107 continue; 2108 } 2109 #ifdef RACCT 2110 if (racct_enable) { 2111 PROC_LOCK(curproc); 2112 racct_add_buf(curproc, rabp, 0); 2113 PROC_UNLOCK(curproc); 2114 } 2115 #endif /* RACCT */ 2116 td->td_ru.ru_inblock++; 2117 rabp->b_flags |= B_ASYNC; 2118 rabp->b_flags &= ~B_INVAL; 2119 if ((flags & GB_CKHASH) != 0) { 2120 rabp->b_flags |= B_CKHASH; 2121 rabp->b_ckhashcalc = ckhashfunc; 2122 } 2123 rabp->b_ioflags &= ~BIO_ERROR; 2124 rabp->b_iocmd = BIO_READ; 2125 if (rabp->b_rcred == NOCRED && cred != NOCRED) 2126 rabp->b_rcred = crhold(cred); 2127 vfs_busy_pages(rabp, 0); 2128 BUF_KERNPROC(rabp); 2129 rabp->b_iooffset = dbtob(rabp->b_blkno); 2130 bstrategy(rabp); 2131 } 2132 } 2133 2134 /* 2135 * Entry point for bread() and breadn() via #defines in sys/buf.h. 2136 * 2137 * Get a buffer with the specified data. Look in the cache first. We 2138 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 2139 * is set, the buffer is valid and we do not have to do anything, see 2140 * getblk(). Also starts asynchronous I/O on read-ahead blocks. 2141 * 2142 * Always return a NULL buffer pointer (in bpp) when returning an error. 2143 * 2144 * The blkno parameter is the logical block being requested. Normally 2145 * the mapping of logical block number to disk block address is done 2146 * by calling VOP_BMAP(). However, if the mapping is already known, the 2147 * disk block address can be passed using the dblkno parameter. If the 2148 * disk block address is not known, then the same value should be passed 2149 * for blkno and dblkno. 2150 */ 2151 int 2152 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, 2153 daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags, 2154 void (*ckhashfunc)(struct buf *), struct buf **bpp) 2155 { 2156 struct buf *bp; 2157 struct thread *td; 2158 int error, readwait, rv; 2159 2160 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size); 2161 td = curthread; 2162 /* 2163 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags 2164 * are specified. 2165 */ 2166 error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp); 2167 if (error != 0) { 2168 *bpp = NULL; 2169 return (error); 2170 } 2171 KASSERT(blkno == bp->b_lblkno, 2172 ("getblkx returned buffer for blkno %jd instead of blkno %jd", 2173 (intmax_t)bp->b_lblkno, (intmax_t)blkno)); 2174 flags &= ~GB_NOSPARSE; 2175 *bpp = bp; 2176 2177 /* 2178 * If not found in cache, do some I/O 2179 */ 2180 readwait = 0; 2181 if ((bp->b_flags & B_CACHE) == 0) { 2182 #ifdef RACCT 2183 if (racct_enable) { 2184 PROC_LOCK(td->td_proc); 2185 racct_add_buf(td->td_proc, bp, 0); 2186 PROC_UNLOCK(td->td_proc); 2187 } 2188 #endif /* RACCT */ 2189 td->td_ru.ru_inblock++; 2190 bp->b_iocmd = BIO_READ; 2191 bp->b_flags &= ~B_INVAL; 2192 if ((flags & GB_CKHASH) != 0) { 2193 bp->b_flags |= B_CKHASH; 2194 bp->b_ckhashcalc = ckhashfunc; 2195 } 2196 if ((flags & GB_CVTENXIO) != 0) 2197 bp->b_xflags |= BX_CVTENXIO; 2198 bp->b_ioflags &= ~BIO_ERROR; 2199 if (bp->b_rcred == NOCRED && cred != NOCRED) 2200 bp->b_rcred = crhold(cred); 2201 vfs_busy_pages(bp, 0); 2202 bp->b_iooffset = dbtob(bp->b_blkno); 2203 bstrategy(bp); 2204 ++readwait; 2205 } 2206 2207 /* 2208 * Attempt to initiate asynchronous I/O on read-ahead blocks. 2209 */ 2210 breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc); 2211 2212 rv = 0; 2213 if (readwait) { 2214 rv = bufwait(bp); 2215 if (rv != 0) { 2216 brelse(bp); 2217 *bpp = NULL; 2218 } 2219 } 2220 return (rv); 2221 } 2222 2223 /* 2224 * Write, release buffer on completion. (Done by iodone 2225 * if async). Do not bother writing anything if the buffer 2226 * is invalid. 2227 * 2228 * Note that we set B_CACHE here, indicating that buffer is 2229 * fully valid and thus cacheable. This is true even of NFS 2230 * now so we set it generally. This could be set either here 2231 * or in biodone() since the I/O is synchronous. We put it 2232 * here. 2233 */ 2234 int 2235 bufwrite(struct buf *bp) 2236 { 2237 int oldflags; 2238 struct vnode *vp; 2239 long space; 2240 int vp_md; 2241 2242 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2243 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) { 2244 bp->b_flags |= B_INVAL | B_RELBUF; 2245 bp->b_flags &= ~B_CACHE; 2246 brelse(bp); 2247 return (ENXIO); 2248 } 2249 if (bp->b_flags & B_INVAL) { 2250 brelse(bp); 2251 return (0); 2252 } 2253 2254 if (bp->b_flags & B_BARRIER) 2255 atomic_add_long(&barrierwrites, 1); 2256 2257 oldflags = bp->b_flags; 2258 2259 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG), 2260 ("FFS background buffer should not get here %p", bp)); 2261 2262 vp = bp->b_vp; 2263 if (vp) 2264 vp_md = vp->v_vflag & VV_MD; 2265 else 2266 vp_md = 0; 2267 2268 /* 2269 * Mark the buffer clean. Increment the bufobj write count 2270 * before bundirty() call, to prevent other thread from seeing 2271 * empty dirty list and zero counter for writes in progress, 2272 * falsely indicating that the bufobj is clean. 2273 */ 2274 bufobj_wref(bp->b_bufobj); 2275 bundirty(bp); 2276 2277 bp->b_flags &= ~B_DONE; 2278 bp->b_ioflags &= ~BIO_ERROR; 2279 bp->b_flags |= B_CACHE; 2280 bp->b_iocmd = BIO_WRITE; 2281 2282 vfs_busy_pages(bp, 1); 2283 2284 /* 2285 * Normal bwrites pipeline writes 2286 */ 2287 bp->b_runningbufspace = bp->b_bufsize; 2288 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace); 2289 2290 #ifdef RACCT 2291 if (racct_enable) { 2292 PROC_LOCK(curproc); 2293 racct_add_buf(curproc, bp, 1); 2294 PROC_UNLOCK(curproc); 2295 } 2296 #endif /* RACCT */ 2297 curthread->td_ru.ru_oublock++; 2298 if (oldflags & B_ASYNC) 2299 BUF_KERNPROC(bp); 2300 bp->b_iooffset = dbtob(bp->b_blkno); 2301 buf_track(bp, __func__); 2302 bstrategy(bp); 2303 2304 if ((oldflags & B_ASYNC) == 0) { 2305 int rtval = bufwait(bp); 2306 brelse(bp); 2307 return (rtval); 2308 } else if (space > hirunningspace) { 2309 /* 2310 * don't allow the async write to saturate the I/O 2311 * system. We will not deadlock here because 2312 * we are blocking waiting for I/O that is already in-progress 2313 * to complete. We do not block here if it is the update 2314 * or syncer daemon trying to clean up as that can lead 2315 * to deadlock. 2316 */ 2317 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md) 2318 waitrunningbufspace(); 2319 } 2320 2321 return (0); 2322 } 2323 2324 void 2325 bufbdflush(struct bufobj *bo, struct buf *bp) 2326 { 2327 struct buf *nbp; 2328 2329 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) { 2330 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread); 2331 altbufferflushes++; 2332 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) { 2333 BO_LOCK(bo); 2334 /* 2335 * Try to find a buffer to flush. 2336 */ 2337 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) { 2338 if ((nbp->b_vflags & BV_BKGRDINPROG) || 2339 BUF_LOCK(nbp, 2340 LK_EXCLUSIVE | LK_NOWAIT, NULL)) 2341 continue; 2342 if (bp == nbp) 2343 panic("bdwrite: found ourselves"); 2344 BO_UNLOCK(bo); 2345 /* Don't countdeps with the bo lock held. */ 2346 if (buf_countdeps(nbp, 0)) { 2347 BO_LOCK(bo); 2348 BUF_UNLOCK(nbp); 2349 continue; 2350 } 2351 if (nbp->b_flags & B_CLUSTEROK) { 2352 vfs_bio_awrite(nbp); 2353 } else { 2354 bremfree(nbp); 2355 bawrite(nbp); 2356 } 2357 dirtybufferflushes++; 2358 break; 2359 } 2360 if (nbp == NULL) 2361 BO_UNLOCK(bo); 2362 } 2363 } 2364 2365 /* 2366 * Delayed write. (Buffer is marked dirty). Do not bother writing 2367 * anything if the buffer is marked invalid. 2368 * 2369 * Note that since the buffer must be completely valid, we can safely 2370 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 2371 * biodone() in order to prevent getblk from writing the buffer 2372 * out synchronously. 2373 */ 2374 void 2375 bdwrite(struct buf *bp) 2376 { 2377 struct thread *td = curthread; 2378 struct vnode *vp; 2379 struct bufobj *bo; 2380 2381 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2382 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2383 KASSERT((bp->b_flags & B_BARRIER) == 0, 2384 ("Barrier request in delayed write %p", bp)); 2385 2386 if (bp->b_flags & B_INVAL) { 2387 brelse(bp); 2388 return; 2389 } 2390 2391 /* 2392 * If we have too many dirty buffers, don't create any more. 2393 * If we are wildly over our limit, then force a complete 2394 * cleanup. Otherwise, just keep the situation from getting 2395 * out of control. Note that we have to avoid a recursive 2396 * disaster and not try to clean up after our own cleanup! 2397 */ 2398 vp = bp->b_vp; 2399 bo = bp->b_bufobj; 2400 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) { 2401 td->td_pflags |= TDP_INBDFLUSH; 2402 BO_BDFLUSH(bo, bp); 2403 td->td_pflags &= ~TDP_INBDFLUSH; 2404 } else 2405 recursiveflushes++; 2406 2407 bdirty(bp); 2408 /* 2409 * Set B_CACHE, indicating that the buffer is fully valid. This is 2410 * true even of NFS now. 2411 */ 2412 bp->b_flags |= B_CACHE; 2413 2414 /* 2415 * This bmap keeps the system from needing to do the bmap later, 2416 * perhaps when the system is attempting to do a sync. Since it 2417 * is likely that the indirect block -- or whatever other datastructure 2418 * that the filesystem needs is still in memory now, it is a good 2419 * thing to do this. Note also, that if the pageout daemon is 2420 * requesting a sync -- there might not be enough memory to do 2421 * the bmap then... So, this is important to do. 2422 */ 2423 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 2424 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 2425 } 2426 2427 buf_track(bp, __func__); 2428 2429 /* 2430 * Set the *dirty* buffer range based upon the VM system dirty 2431 * pages. 2432 * 2433 * Mark the buffer pages as clean. We need to do this here to 2434 * satisfy the vnode_pager and the pageout daemon, so that it 2435 * thinks that the pages have been "cleaned". Note that since 2436 * the pages are in a delayed write buffer -- the VFS layer 2437 * "will" see that the pages get written out on the next sync, 2438 * or perhaps the cluster will be completed. 2439 */ 2440 vfs_clean_pages_dirty_buf(bp); 2441 bqrelse(bp); 2442 2443 /* 2444 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 2445 * due to the softdep code. 2446 */ 2447 } 2448 2449 /* 2450 * bdirty: 2451 * 2452 * Turn buffer into delayed write request. We must clear BIO_READ and 2453 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 2454 * itself to properly update it in the dirty/clean lists. We mark it 2455 * B_DONE to ensure that any asynchronization of the buffer properly 2456 * clears B_DONE ( else a panic will occur later ). 2457 * 2458 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 2459 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 2460 * should only be called if the buffer is known-good. 2461 * 2462 * Since the buffer is not on a queue, we do not update the numfreebuffers 2463 * count. 2464 * 2465 * The buffer must be on QUEUE_NONE. 2466 */ 2467 void 2468 bdirty(struct buf *bp) 2469 { 2470 2471 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X", 2472 bp, bp->b_vp, bp->b_flags); 2473 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2474 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2475 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2476 bp->b_flags &= ~(B_RELBUF); 2477 bp->b_iocmd = BIO_WRITE; 2478 2479 if ((bp->b_flags & B_DELWRI) == 0) { 2480 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI; 2481 reassignbuf(bp); 2482 bdirtyadd(bp); 2483 } 2484 } 2485 2486 /* 2487 * bundirty: 2488 * 2489 * Clear B_DELWRI for buffer. 2490 * 2491 * Since the buffer is not on a queue, we do not update the numfreebuffers 2492 * count. 2493 * 2494 * The buffer must be on QUEUE_NONE. 2495 */ 2496 2497 void 2498 bundirty(struct buf *bp) 2499 { 2500 2501 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2502 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2503 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2504 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2505 2506 if (bp->b_flags & B_DELWRI) { 2507 bp->b_flags &= ~B_DELWRI; 2508 reassignbuf(bp); 2509 bdirtysub(bp); 2510 } 2511 /* 2512 * Since it is now being written, we can clear its deferred write flag. 2513 */ 2514 bp->b_flags &= ~B_DEFERRED; 2515 } 2516 2517 /* 2518 * bawrite: 2519 * 2520 * Asynchronous write. Start output on a buffer, but do not wait for 2521 * it to complete. The buffer is released when the output completes. 2522 * 2523 * bwrite() ( or the VOP routine anyway ) is responsible for handling 2524 * B_INVAL buffers. Not us. 2525 */ 2526 void 2527 bawrite(struct buf *bp) 2528 { 2529 2530 bp->b_flags |= B_ASYNC; 2531 (void) bwrite(bp); 2532 } 2533 2534 /* 2535 * babarrierwrite: 2536 * 2537 * Asynchronous barrier write. Start output on a buffer, but do not 2538 * wait for it to complete. Place a write barrier after this write so 2539 * that this buffer and all buffers written before it are committed to 2540 * the disk before any buffers written after this write are committed 2541 * to the disk. The buffer is released when the output completes. 2542 */ 2543 void 2544 babarrierwrite(struct buf *bp) 2545 { 2546 2547 bp->b_flags |= B_ASYNC | B_BARRIER; 2548 (void) bwrite(bp); 2549 } 2550 2551 /* 2552 * bbarrierwrite: 2553 * 2554 * Synchronous barrier write. Start output on a buffer and wait for 2555 * it to complete. Place a write barrier after this write so that 2556 * this buffer and all buffers written before it are committed to 2557 * the disk before any buffers written after this write are committed 2558 * to the disk. The buffer is released when the output completes. 2559 */ 2560 int 2561 bbarrierwrite(struct buf *bp) 2562 { 2563 2564 bp->b_flags |= B_BARRIER; 2565 return (bwrite(bp)); 2566 } 2567 2568 /* 2569 * bwillwrite: 2570 * 2571 * Called prior to the locking of any vnodes when we are expecting to 2572 * write. We do not want to starve the buffer cache with too many 2573 * dirty buffers so we block here. By blocking prior to the locking 2574 * of any vnodes we attempt to avoid the situation where a locked vnode 2575 * prevents the various system daemons from flushing related buffers. 2576 */ 2577 void 2578 bwillwrite(void) 2579 { 2580 2581 if (buf_dirty_count_severe()) { 2582 mtx_lock(&bdirtylock); 2583 while (buf_dirty_count_severe()) { 2584 bdirtywait = 1; 2585 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4), 2586 "flswai", 0); 2587 } 2588 mtx_unlock(&bdirtylock); 2589 } 2590 } 2591 2592 /* 2593 * Return true if we have too many dirty buffers. 2594 */ 2595 int 2596 buf_dirty_count_severe(void) 2597 { 2598 2599 return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty)); 2600 } 2601 2602 /* 2603 * brelse: 2604 * 2605 * Release a busy buffer and, if requested, free its resources. The 2606 * buffer will be stashed in the appropriate bufqueue[] allowing it 2607 * to be accessed later as a cache entity or reused for other purposes. 2608 */ 2609 void 2610 brelse(struct buf *bp) 2611 { 2612 struct mount *v_mnt; 2613 int qindex; 2614 2615 /* 2616 * Many functions erroneously call brelse with a NULL bp under rare 2617 * error conditions. Simply return when called with a NULL bp. 2618 */ 2619 if (bp == NULL) 2620 return; 2621 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X", 2622 bp, bp->b_vp, bp->b_flags); 2623 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2624 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2625 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0, 2626 ("brelse: non-VMIO buffer marked NOREUSE")); 2627 2628 if (BUF_LOCKRECURSED(bp)) { 2629 /* 2630 * Do not process, in particular, do not handle the 2631 * B_INVAL/B_RELBUF and do not release to free list. 2632 */ 2633 BUF_UNLOCK(bp); 2634 return; 2635 } 2636 2637 if (bp->b_flags & B_MANAGED) { 2638 bqrelse(bp); 2639 return; 2640 } 2641 2642 if (LIST_EMPTY(&bp->b_dep)) { 2643 bp->b_flags &= ~B_IOSTARTED; 2644 } else { 2645 KASSERT((bp->b_flags & B_IOSTARTED) == 0, 2646 ("brelse: SU io not finished bp %p", bp)); 2647 } 2648 2649 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) { 2650 BO_LOCK(bp->b_bufobj); 2651 bp->b_vflags &= ~BV_BKGRDERR; 2652 BO_UNLOCK(bp->b_bufobj); 2653 bdirty(bp); 2654 } 2655 2656 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 2657 (bp->b_flags & B_INVALONERR)) { 2658 /* 2659 * Forced invalidation of dirty buffer contents, to be used 2660 * after a failed write in the rare case that the loss of the 2661 * contents is acceptable. The buffer is invalidated and 2662 * freed. 2663 */ 2664 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE; 2665 bp->b_flags &= ~(B_ASYNC | B_CACHE); 2666 } 2667 2668 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 2669 (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) && 2670 !(bp->b_flags & B_INVAL)) { 2671 /* 2672 * Failed write, redirty. All errors except ENXIO (which 2673 * means the device is gone) are treated as being 2674 * transient. 2675 * 2676 * XXX Treating EIO as transient is not correct; the 2677 * contract with the local storage device drivers is that 2678 * they will only return EIO once the I/O is no longer 2679 * retriable. Network I/O also respects this through the 2680 * guarantees of TCP and/or the internal retries of NFS. 2681 * ENOMEM might be transient, but we also have no way of 2682 * knowing when its ok to retry/reschedule. In general, 2683 * this entire case should be made obsolete through better 2684 * error handling/recovery and resource scheduling. 2685 * 2686 * Do this also for buffers that failed with ENXIO, but have 2687 * non-empty dependencies - the soft updates code might need 2688 * to access the buffer to untangle them. 2689 * 2690 * Must clear BIO_ERROR to prevent pages from being scrapped. 2691 */ 2692 bp->b_ioflags &= ~BIO_ERROR; 2693 bdirty(bp); 2694 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 2695 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) { 2696 /* 2697 * Either a failed read I/O, or we were asked to free or not 2698 * cache the buffer, or we failed to write to a device that's 2699 * no longer present. 2700 */ 2701 bp->b_flags |= B_INVAL; 2702 if (!LIST_EMPTY(&bp->b_dep)) 2703 buf_deallocate(bp); 2704 if (bp->b_flags & B_DELWRI) 2705 bdirtysub(bp); 2706 bp->b_flags &= ~(B_DELWRI | B_CACHE); 2707 if ((bp->b_flags & B_VMIO) == 0) { 2708 allocbuf(bp, 0); 2709 if (bp->b_vp) 2710 brelvp(bp); 2711 } 2712 } 2713 2714 /* 2715 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate() 2716 * is called with B_DELWRI set, the underlying pages may wind up 2717 * getting freed causing a previous write (bdwrite()) to get 'lost' 2718 * because pages associated with a B_DELWRI bp are marked clean. 2719 * 2720 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even 2721 * if B_DELWRI is set. 2722 */ 2723 if (bp->b_flags & B_DELWRI) 2724 bp->b_flags &= ~B_RELBUF; 2725 2726 /* 2727 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 2728 * constituted, not even NFS buffers now. Two flags effect this. If 2729 * B_INVAL, the struct buf is invalidated but the VM object is kept 2730 * around ( i.e. so it is trivial to reconstitute the buffer later ). 2731 * 2732 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 2733 * invalidated. BIO_ERROR cannot be set for a failed write unless the 2734 * buffer is also B_INVAL because it hits the re-dirtying code above. 2735 * 2736 * Normally we can do this whether a buffer is B_DELWRI or not. If 2737 * the buffer is an NFS buffer, it is tracking piecemeal writes or 2738 * the commit state and we cannot afford to lose the buffer. If the 2739 * buffer has a background write in progress, we need to keep it 2740 * around to prevent it from being reconstituted and starting a second 2741 * background write. 2742 */ 2743 2744 v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL; 2745 2746 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE || 2747 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) && 2748 (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 || 2749 vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) { 2750 vfs_vmio_invalidate(bp); 2751 allocbuf(bp, 0); 2752 } 2753 2754 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 || 2755 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) { 2756 allocbuf(bp, 0); 2757 bp->b_flags &= ~B_NOREUSE; 2758 if (bp->b_vp != NULL) 2759 brelvp(bp); 2760 } 2761 2762 /* 2763 * If the buffer has junk contents signal it and eventually 2764 * clean up B_DELWRI and diassociate the vnode so that gbincore() 2765 * doesn't find it. 2766 */ 2767 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 || 2768 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0) 2769 bp->b_flags |= B_INVAL; 2770 if (bp->b_flags & B_INVAL) { 2771 if (bp->b_flags & B_DELWRI) 2772 bundirty(bp); 2773 if (bp->b_vp) 2774 brelvp(bp); 2775 } 2776 2777 buf_track(bp, __func__); 2778 2779 /* buffers with no memory */ 2780 if (bp->b_bufsize == 0) { 2781 buf_free(bp); 2782 return; 2783 } 2784 /* buffers with junk contents */ 2785 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 2786 (bp->b_ioflags & BIO_ERROR)) { 2787 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 2788 if (bp->b_vflags & BV_BKGRDINPROG) 2789 panic("losing buffer 2"); 2790 qindex = QUEUE_CLEAN; 2791 bp->b_flags |= B_AGE; 2792 /* remaining buffers */ 2793 } else if (bp->b_flags & B_DELWRI) 2794 qindex = QUEUE_DIRTY; 2795 else 2796 qindex = QUEUE_CLEAN; 2797 2798 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 2799 panic("brelse: not dirty"); 2800 2801 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT); 2802 bp->b_xflags &= ~(BX_CVTENXIO); 2803 /* binsfree unlocks bp. */ 2804 binsfree(bp, qindex); 2805 } 2806 2807 /* 2808 * Release a buffer back to the appropriate queue but do not try to free 2809 * it. The buffer is expected to be used again soon. 2810 * 2811 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 2812 * biodone() to requeue an async I/O on completion. It is also used when 2813 * known good buffers need to be requeued but we think we may need the data 2814 * again soon. 2815 * 2816 * XXX we should be able to leave the B_RELBUF hint set on completion. 2817 */ 2818 void 2819 bqrelse(struct buf *bp) 2820 { 2821 int qindex; 2822 2823 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2824 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2825 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2826 2827 qindex = QUEUE_NONE; 2828 if (BUF_LOCKRECURSED(bp)) { 2829 /* do not release to free list */ 2830 BUF_UNLOCK(bp); 2831 return; 2832 } 2833 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 2834 bp->b_xflags &= ~(BX_CVTENXIO); 2835 2836 if (LIST_EMPTY(&bp->b_dep)) { 2837 bp->b_flags &= ~B_IOSTARTED; 2838 } else { 2839 KASSERT((bp->b_flags & B_IOSTARTED) == 0, 2840 ("bqrelse: SU io not finished bp %p", bp)); 2841 } 2842 2843 if (bp->b_flags & B_MANAGED) { 2844 if (bp->b_flags & B_REMFREE) 2845 bremfreef(bp); 2846 goto out; 2847 } 2848 2849 /* buffers with stale but valid contents */ 2850 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG | 2851 BV_BKGRDERR)) == BV_BKGRDERR) { 2852 BO_LOCK(bp->b_bufobj); 2853 bp->b_vflags &= ~BV_BKGRDERR; 2854 BO_UNLOCK(bp->b_bufobj); 2855 qindex = QUEUE_DIRTY; 2856 } else { 2857 if ((bp->b_flags & B_DELWRI) == 0 && 2858 (bp->b_xflags & BX_VNDIRTY)) 2859 panic("bqrelse: not dirty"); 2860 if ((bp->b_flags & B_NOREUSE) != 0) { 2861 brelse(bp); 2862 return; 2863 } 2864 qindex = QUEUE_CLEAN; 2865 } 2866 buf_track(bp, __func__); 2867 /* binsfree unlocks bp. */ 2868 binsfree(bp, qindex); 2869 return; 2870 2871 out: 2872 buf_track(bp, __func__); 2873 /* unlock */ 2874 BUF_UNLOCK(bp); 2875 } 2876 2877 /* 2878 * Complete I/O to a VMIO backed page. Validate the pages as appropriate, 2879 * restore bogus pages. 2880 */ 2881 static void 2882 vfs_vmio_iodone(struct buf *bp) 2883 { 2884 vm_ooffset_t foff; 2885 vm_page_t m; 2886 vm_object_t obj; 2887 struct vnode *vp __unused; 2888 int i, iosize, resid; 2889 bool bogus; 2890 2891 obj = bp->b_bufobj->bo_object; 2892 KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages, 2893 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)", 2894 blockcount_read(&obj->paging_in_progress), bp->b_npages)); 2895 2896 vp = bp->b_vp; 2897 VNPASS(vp->v_holdcnt > 0, vp); 2898 VNPASS(vp->v_object != NULL, vp); 2899 2900 foff = bp->b_offset; 2901 KASSERT(bp->b_offset != NOOFFSET, 2902 ("vfs_vmio_iodone: bp %p has no buffer offset", bp)); 2903 2904 bogus = false; 2905 iosize = bp->b_bcount - bp->b_resid; 2906 for (i = 0; i < bp->b_npages; i++) { 2907 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2908 if (resid > iosize) 2909 resid = iosize; 2910 2911 /* 2912 * cleanup bogus pages, restoring the originals 2913 */ 2914 m = bp->b_pages[i]; 2915 if (m == bogus_page) { 2916 bogus = true; 2917 m = vm_page_relookup(obj, OFF_TO_IDX(foff)); 2918 if (m == NULL) 2919 panic("biodone: page disappeared!"); 2920 bp->b_pages[i] = m; 2921 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) { 2922 /* 2923 * In the write case, the valid and clean bits are 2924 * already changed correctly ( see bdwrite() ), so we 2925 * only need to do this here in the read case. 2926 */ 2927 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK, 2928 resid)) == 0, ("vfs_vmio_iodone: page %p " 2929 "has unexpected dirty bits", m)); 2930 vfs_page_set_valid(bp, foff, m); 2931 } 2932 KASSERT(OFF_TO_IDX(foff) == m->pindex, 2933 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch", 2934 (intmax_t)foff, (uintmax_t)m->pindex)); 2935 2936 vm_page_sunbusy(m); 2937 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2938 iosize -= resid; 2939 } 2940 vm_object_pip_wakeupn(obj, bp->b_npages); 2941 if (bogus && buf_mapped(bp)) { 2942 BUF_CHECK_MAPPED(bp); 2943 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 2944 bp->b_pages, bp->b_npages); 2945 } 2946 } 2947 2948 /* 2949 * Perform page invalidation when a buffer is released. The fully invalid 2950 * pages will be reclaimed later in vfs_vmio_truncate(). 2951 */ 2952 static void 2953 vfs_vmio_invalidate(struct buf *bp) 2954 { 2955 vm_object_t obj; 2956 vm_page_t m; 2957 int flags, i, resid, poffset, presid; 2958 2959 if (buf_mapped(bp)) { 2960 BUF_CHECK_MAPPED(bp); 2961 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages); 2962 } else 2963 BUF_CHECK_UNMAPPED(bp); 2964 /* 2965 * Get the base offset and length of the buffer. Note that 2966 * in the VMIO case if the buffer block size is not 2967 * page-aligned then b_data pointer may not be page-aligned. 2968 * But our b_pages[] array *IS* page aligned. 2969 * 2970 * block sizes less then DEV_BSIZE (usually 512) are not 2971 * supported due to the page granularity bits (m->valid, 2972 * m->dirty, etc...). 2973 * 2974 * See man buf(9) for more information 2975 */ 2976 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0; 2977 obj = bp->b_bufobj->bo_object; 2978 resid = bp->b_bufsize; 2979 poffset = bp->b_offset & PAGE_MASK; 2980 VM_OBJECT_WLOCK(obj); 2981 for (i = 0; i < bp->b_npages; i++) { 2982 m = bp->b_pages[i]; 2983 if (m == bogus_page) 2984 panic("vfs_vmio_invalidate: Unexpected bogus page."); 2985 bp->b_pages[i] = NULL; 2986 2987 presid = resid > (PAGE_SIZE - poffset) ? 2988 (PAGE_SIZE - poffset) : resid; 2989 KASSERT(presid >= 0, ("brelse: extra page")); 2990 vm_page_busy_acquire(m, VM_ALLOC_SBUSY); 2991 if (pmap_page_wired_mappings(m) == 0) 2992 vm_page_set_invalid(m, poffset, presid); 2993 vm_page_sunbusy(m); 2994 vm_page_release_locked(m, flags); 2995 resid -= presid; 2996 poffset = 0; 2997 } 2998 VM_OBJECT_WUNLOCK(obj); 2999 bp->b_npages = 0; 3000 } 3001 3002 /* 3003 * Page-granular truncation of an existing VMIO buffer. 3004 */ 3005 static void 3006 vfs_vmio_truncate(struct buf *bp, int desiredpages) 3007 { 3008 vm_object_t obj; 3009 vm_page_t m; 3010 int flags, i; 3011 3012 if (bp->b_npages == desiredpages) 3013 return; 3014 3015 if (buf_mapped(bp)) { 3016 BUF_CHECK_MAPPED(bp); 3017 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) + 3018 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages); 3019 } else 3020 BUF_CHECK_UNMAPPED(bp); 3021 3022 /* 3023 * The object lock is needed only if we will attempt to free pages. 3024 */ 3025 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0; 3026 if ((bp->b_flags & B_DIRECT) != 0) { 3027 flags |= VPR_TRYFREE; 3028 obj = bp->b_bufobj->bo_object; 3029 VM_OBJECT_WLOCK(obj); 3030 } else { 3031 obj = NULL; 3032 } 3033 for (i = desiredpages; i < bp->b_npages; i++) { 3034 m = bp->b_pages[i]; 3035 KASSERT(m != bogus_page, ("allocbuf: bogus page found")); 3036 bp->b_pages[i] = NULL; 3037 if (obj != NULL) 3038 vm_page_release_locked(m, flags); 3039 else 3040 vm_page_release(m, flags); 3041 } 3042 if (obj != NULL) 3043 VM_OBJECT_WUNLOCK(obj); 3044 bp->b_npages = desiredpages; 3045 } 3046 3047 /* 3048 * Byte granular extension of VMIO buffers. 3049 */ 3050 static void 3051 vfs_vmio_extend(struct buf *bp, int desiredpages, int size) 3052 { 3053 /* 3054 * We are growing the buffer, possibly in a 3055 * byte-granular fashion. 3056 */ 3057 vm_object_t obj; 3058 vm_offset_t toff; 3059 vm_offset_t tinc; 3060 vm_page_t m; 3061 3062 /* 3063 * Step 1, bring in the VM pages from the object, allocating 3064 * them if necessary. We must clear B_CACHE if these pages 3065 * are not valid for the range covered by the buffer. 3066 */ 3067 obj = bp->b_bufobj->bo_object; 3068 if (bp->b_npages < desiredpages) { 3069 KASSERT(desiredpages <= atop(maxbcachebuf), 3070 ("vfs_vmio_extend past maxbcachebuf %p %d %u", 3071 bp, desiredpages, maxbcachebuf)); 3072 3073 /* 3074 * We must allocate system pages since blocking 3075 * here could interfere with paging I/O, no 3076 * matter which process we are. 3077 * 3078 * Only exclusive busy can be tested here. 3079 * Blocking on shared busy might lead to 3080 * deadlocks once allocbuf() is called after 3081 * pages are vfs_busy_pages(). 3082 */ 3083 (void)vm_page_grab_pages_unlocked(obj, 3084 OFF_TO_IDX(bp->b_offset) + bp->b_npages, 3085 VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY | 3086 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED, 3087 &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages); 3088 bp->b_npages = desiredpages; 3089 } 3090 3091 /* 3092 * Step 2. We've loaded the pages into the buffer, 3093 * we have to figure out if we can still have B_CACHE 3094 * set. Note that B_CACHE is set according to the 3095 * byte-granular range ( bcount and size ), not the 3096 * aligned range ( newbsize ). 3097 * 3098 * The VM test is against m->valid, which is DEV_BSIZE 3099 * aligned. Needless to say, the validity of the data 3100 * needs to also be DEV_BSIZE aligned. Note that this 3101 * fails with NFS if the server or some other client 3102 * extends the file's EOF. If our buffer is resized, 3103 * B_CACHE may remain set! XXX 3104 */ 3105 toff = bp->b_bcount; 3106 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 3107 while ((bp->b_flags & B_CACHE) && toff < size) { 3108 vm_pindex_t pi; 3109 3110 if (tinc > (size - toff)) 3111 tinc = size - toff; 3112 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT; 3113 m = bp->b_pages[pi]; 3114 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m); 3115 toff += tinc; 3116 tinc = PAGE_SIZE; 3117 } 3118 3119 /* 3120 * Step 3, fixup the KVA pmap. 3121 */ 3122 if (buf_mapped(bp)) 3123 bpmap_qenter(bp); 3124 else 3125 BUF_CHECK_UNMAPPED(bp); 3126 } 3127 3128 /* 3129 * Check to see if a block at a particular lbn is available for a clustered 3130 * write. 3131 */ 3132 static int 3133 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 3134 { 3135 struct buf *bpa; 3136 int match; 3137 3138 match = 0; 3139 3140 /* If the buf isn't in core skip it */ 3141 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL) 3142 return (0); 3143 3144 /* If the buf is busy we don't want to wait for it */ 3145 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 3146 return (0); 3147 3148 /* Only cluster with valid clusterable delayed write buffers */ 3149 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 3150 (B_DELWRI | B_CLUSTEROK)) 3151 goto done; 3152 3153 if (bpa->b_bufsize != size) 3154 goto done; 3155 3156 /* 3157 * Check to see if it is in the expected place on disk and that the 3158 * block has been mapped. 3159 */ 3160 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 3161 match = 1; 3162 done: 3163 BUF_UNLOCK(bpa); 3164 return (match); 3165 } 3166 3167 /* 3168 * vfs_bio_awrite: 3169 * 3170 * Implement clustered async writes for clearing out B_DELWRI buffers. 3171 * This is much better then the old way of writing only one buffer at 3172 * a time. Note that we may not be presented with the buffers in the 3173 * correct order, so we search for the cluster in both directions. 3174 */ 3175 int 3176 vfs_bio_awrite(struct buf *bp) 3177 { 3178 struct bufobj *bo; 3179 int i; 3180 int j; 3181 daddr_t lblkno = bp->b_lblkno; 3182 struct vnode *vp = bp->b_vp; 3183 int ncl; 3184 int nwritten; 3185 int size; 3186 int maxcl; 3187 int gbflags; 3188 3189 bo = &vp->v_bufobj; 3190 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0; 3191 /* 3192 * right now we support clustered writing only to regular files. If 3193 * we find a clusterable block we could be in the middle of a cluster 3194 * rather then at the beginning. 3195 */ 3196 if ((vp->v_type == VREG) && 3197 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 3198 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 3199 size = vp->v_mount->mnt_stat.f_iosize; 3200 maxcl = maxphys / size; 3201 3202 BO_RLOCK(bo); 3203 for (i = 1; i < maxcl; i++) 3204 if (vfs_bio_clcheck(vp, size, lblkno + i, 3205 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 3206 break; 3207 3208 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 3209 if (vfs_bio_clcheck(vp, size, lblkno - j, 3210 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 3211 break; 3212 BO_RUNLOCK(bo); 3213 --j; 3214 ncl = i + j; 3215 /* 3216 * this is a possible cluster write 3217 */ 3218 if (ncl != 1) { 3219 BUF_UNLOCK(bp); 3220 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl, 3221 gbflags); 3222 return (nwritten); 3223 } 3224 } 3225 bremfree(bp); 3226 bp->b_flags |= B_ASYNC; 3227 /* 3228 * default (old) behavior, writing out only one block 3229 * 3230 * XXX returns b_bufsize instead of b_bcount for nwritten? 3231 */ 3232 nwritten = bp->b_bufsize; 3233 (void) bwrite(bp); 3234 3235 return (nwritten); 3236 } 3237 3238 /* 3239 * getnewbuf_kva: 3240 * 3241 * Allocate KVA for an empty buf header according to gbflags. 3242 */ 3243 static int 3244 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize) 3245 { 3246 3247 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) { 3248 /* 3249 * In order to keep fragmentation sane we only allocate kva 3250 * in BKVASIZE chunks. XXX with vmem we can do page size. 3251 */ 3252 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 3253 3254 if (maxsize != bp->b_kvasize && 3255 bufkva_alloc(bp, maxsize, gbflags)) 3256 return (ENOSPC); 3257 } 3258 return (0); 3259 } 3260 3261 /* 3262 * getnewbuf: 3263 * 3264 * Find and initialize a new buffer header, freeing up existing buffers 3265 * in the bufqueues as necessary. The new buffer is returned locked. 3266 * 3267 * We block if: 3268 * We have insufficient buffer headers 3269 * We have insufficient buffer space 3270 * buffer_arena is too fragmented ( space reservation fails ) 3271 * If we have to flush dirty buffers ( but we try to avoid this ) 3272 * 3273 * The caller is responsible for releasing the reserved bufspace after 3274 * allocbuf() is called. 3275 */ 3276 static struct buf * 3277 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags) 3278 { 3279 struct bufdomain *bd; 3280 struct buf *bp; 3281 bool metadata, reserved; 3282 3283 bp = NULL; 3284 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3285 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3286 if (!unmapped_buf_allowed) 3287 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3288 3289 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 || 3290 vp->v_type == VCHR) 3291 metadata = true; 3292 else 3293 metadata = false; 3294 if (vp == NULL) 3295 bd = &bdomain[0]; 3296 else 3297 bd = &bdomain[vp->v_bufobj.bo_domain]; 3298 3299 counter_u64_add(getnewbufcalls, 1); 3300 reserved = false; 3301 do { 3302 if (reserved == false && 3303 bufspace_reserve(bd, maxsize, metadata) != 0) { 3304 counter_u64_add(getnewbufrestarts, 1); 3305 continue; 3306 } 3307 reserved = true; 3308 if ((bp = buf_alloc(bd)) == NULL) { 3309 counter_u64_add(getnewbufrestarts, 1); 3310 continue; 3311 } 3312 if (getnewbuf_kva(bp, gbflags, maxsize) == 0) 3313 return (bp); 3314 break; 3315 } while (buf_recycle(bd, false) == 0); 3316 3317 if (reserved) 3318 bufspace_release(bd, maxsize); 3319 if (bp != NULL) { 3320 bp->b_flags |= B_INVAL; 3321 brelse(bp); 3322 } 3323 bufspace_wait(bd, vp, gbflags, slpflag, slptimeo); 3324 3325 return (NULL); 3326 } 3327 3328 /* 3329 * buf_daemon: 3330 * 3331 * buffer flushing daemon. Buffers are normally flushed by the 3332 * update daemon but if it cannot keep up this process starts to 3333 * take the load in an attempt to prevent getnewbuf() from blocking. 3334 */ 3335 static struct kproc_desc buf_kp = { 3336 "bufdaemon", 3337 buf_daemon, 3338 &bufdaemonproc 3339 }; 3340 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp); 3341 3342 static int 3343 buf_flush(struct vnode *vp, struct bufdomain *bd, int target) 3344 { 3345 int flushed; 3346 3347 flushed = flushbufqueues(vp, bd, target, 0); 3348 if (flushed == 0) { 3349 /* 3350 * Could not find any buffers without rollback 3351 * dependencies, so just write the first one 3352 * in the hopes of eventually making progress. 3353 */ 3354 if (vp != NULL && target > 2) 3355 target /= 2; 3356 flushbufqueues(vp, bd, target, 1); 3357 } 3358 return (flushed); 3359 } 3360 3361 static void 3362 buf_daemon() 3363 { 3364 struct bufdomain *bd; 3365 int speedupreq; 3366 int lodirty; 3367 int i; 3368 3369 /* 3370 * This process needs to be suspended prior to shutdown sync. 3371 */ 3372 EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread, 3373 SHUTDOWN_PRI_LAST + 100); 3374 3375 /* 3376 * Start the buf clean daemons as children threads. 3377 */ 3378 for (i = 0 ; i < buf_domains; i++) { 3379 int error; 3380 3381 error = kthread_add((void (*)(void *))bufspace_daemon, 3382 &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i); 3383 if (error) 3384 panic("error %d spawning bufspace daemon", error); 3385 } 3386 3387 /* 3388 * This process is allowed to take the buffer cache to the limit 3389 */ 3390 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED; 3391 mtx_lock(&bdlock); 3392 for (;;) { 3393 bd_request = 0; 3394 mtx_unlock(&bdlock); 3395 3396 kthread_suspend_check(); 3397 3398 /* 3399 * Save speedupreq for this pass and reset to capture new 3400 * requests. 3401 */ 3402 speedupreq = bd_speedupreq; 3403 bd_speedupreq = 0; 3404 3405 /* 3406 * Flush each domain sequentially according to its level and 3407 * the speedup request. 3408 */ 3409 for (i = 0; i < buf_domains; i++) { 3410 bd = &bdomain[i]; 3411 if (speedupreq) 3412 lodirty = bd->bd_numdirtybuffers / 2; 3413 else 3414 lodirty = bd->bd_lodirtybuffers; 3415 while (bd->bd_numdirtybuffers > lodirty) { 3416 if (buf_flush(NULL, bd, 3417 bd->bd_numdirtybuffers - lodirty) == 0) 3418 break; 3419 kern_yield(PRI_USER); 3420 } 3421 } 3422 3423 /* 3424 * Only clear bd_request if we have reached our low water 3425 * mark. The buf_daemon normally waits 1 second and 3426 * then incrementally flushes any dirty buffers that have 3427 * built up, within reason. 3428 * 3429 * If we were unable to hit our low water mark and couldn't 3430 * find any flushable buffers, we sleep for a short period 3431 * to avoid endless loops on unlockable buffers. 3432 */ 3433 mtx_lock(&bdlock); 3434 if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) { 3435 /* 3436 * We reached our low water mark, reset the 3437 * request and sleep until we are needed again. 3438 * The sleep is just so the suspend code works. 3439 */ 3440 bd_request = 0; 3441 /* 3442 * Do an extra wakeup in case dirty threshold 3443 * changed via sysctl and the explicit transition 3444 * out of shortfall was missed. 3445 */ 3446 bdirtywakeup(); 3447 if (runningbufspace <= lorunningspace) 3448 runningwakeup(); 3449 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 3450 } else { 3451 /* 3452 * We couldn't find any flushable dirty buffers but 3453 * still have too many dirty buffers, we 3454 * have to sleep and try again. (rare) 3455 */ 3456 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 3457 } 3458 } 3459 } 3460 3461 /* 3462 * flushbufqueues: 3463 * 3464 * Try to flush a buffer in the dirty queue. We must be careful to 3465 * free up B_INVAL buffers instead of write them, which NFS is 3466 * particularly sensitive to. 3467 */ 3468 static int flushwithdeps = 0; 3469 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS, 3470 &flushwithdeps, 0, 3471 "Number of buffers flushed with dependecies that require rollbacks"); 3472 3473 static int 3474 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target, 3475 int flushdeps) 3476 { 3477 struct bufqueue *bq; 3478 struct buf *sentinel; 3479 struct vnode *vp; 3480 struct mount *mp; 3481 struct buf *bp; 3482 int hasdeps; 3483 int flushed; 3484 int error; 3485 bool unlock; 3486 3487 flushed = 0; 3488 bq = &bd->bd_dirtyq; 3489 bp = NULL; 3490 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO); 3491 sentinel->b_qindex = QUEUE_SENTINEL; 3492 BQ_LOCK(bq); 3493 TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist); 3494 BQ_UNLOCK(bq); 3495 while (flushed != target) { 3496 maybe_yield(); 3497 BQ_LOCK(bq); 3498 bp = TAILQ_NEXT(sentinel, b_freelist); 3499 if (bp != NULL) { 3500 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); 3501 TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel, 3502 b_freelist); 3503 } else { 3504 BQ_UNLOCK(bq); 3505 break; 3506 } 3507 /* 3508 * Skip sentinels inserted by other invocations of the 3509 * flushbufqueues(), taking care to not reorder them. 3510 * 3511 * Only flush the buffers that belong to the 3512 * vnode locked by the curthread. 3513 */ 3514 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL && 3515 bp->b_vp != lvp)) { 3516 BQ_UNLOCK(bq); 3517 continue; 3518 } 3519 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL); 3520 BQ_UNLOCK(bq); 3521 if (error != 0) 3522 continue; 3523 3524 /* 3525 * BKGRDINPROG can only be set with the buf and bufobj 3526 * locks both held. We tolerate a race to clear it here. 3527 */ 3528 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 || 3529 (bp->b_flags & B_DELWRI) == 0) { 3530 BUF_UNLOCK(bp); 3531 continue; 3532 } 3533 if (bp->b_flags & B_INVAL) { 3534 bremfreef(bp); 3535 brelse(bp); 3536 flushed++; 3537 continue; 3538 } 3539 3540 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) { 3541 if (flushdeps == 0) { 3542 BUF_UNLOCK(bp); 3543 continue; 3544 } 3545 hasdeps = 1; 3546 } else 3547 hasdeps = 0; 3548 /* 3549 * We must hold the lock on a vnode before writing 3550 * one of its buffers. Otherwise we may confuse, or 3551 * in the case of a snapshot vnode, deadlock the 3552 * system. 3553 * 3554 * The lock order here is the reverse of the normal 3555 * of vnode followed by buf lock. This is ok because 3556 * the NOWAIT will prevent deadlock. 3557 */ 3558 vp = bp->b_vp; 3559 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 3560 BUF_UNLOCK(bp); 3561 continue; 3562 } 3563 if (lvp == NULL) { 3564 unlock = true; 3565 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 3566 } else { 3567 ASSERT_VOP_LOCKED(vp, "getbuf"); 3568 unlock = false; 3569 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 : 3570 vn_lock(vp, LK_TRYUPGRADE); 3571 } 3572 if (error == 0) { 3573 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X", 3574 bp, bp->b_vp, bp->b_flags); 3575 if (curproc == bufdaemonproc) { 3576 vfs_bio_awrite(bp); 3577 } else { 3578 bremfree(bp); 3579 bwrite(bp); 3580 counter_u64_add(notbufdflushes, 1); 3581 } 3582 vn_finished_write(mp); 3583 if (unlock) 3584 VOP_UNLOCK(vp); 3585 flushwithdeps += hasdeps; 3586 flushed++; 3587 3588 /* 3589 * Sleeping on runningbufspace while holding 3590 * vnode lock leads to deadlock. 3591 */ 3592 if (curproc == bufdaemonproc && 3593 runningbufspace > hirunningspace) 3594 waitrunningbufspace(); 3595 continue; 3596 } 3597 vn_finished_write(mp); 3598 BUF_UNLOCK(bp); 3599 } 3600 BQ_LOCK(bq); 3601 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); 3602 BQ_UNLOCK(bq); 3603 free(sentinel, M_TEMP); 3604 return (flushed); 3605 } 3606 3607 /* 3608 * Check to see if a block is currently memory resident. 3609 */ 3610 struct buf * 3611 incore(struct bufobj *bo, daddr_t blkno) 3612 { 3613 return (gbincore_unlocked(bo, blkno)); 3614 } 3615 3616 /* 3617 * Returns true if no I/O is needed to access the 3618 * associated VM object. This is like incore except 3619 * it also hunts around in the VM system for the data. 3620 */ 3621 bool 3622 inmem(struct vnode * vp, daddr_t blkno) 3623 { 3624 vm_object_t obj; 3625 vm_offset_t toff, tinc, size; 3626 vm_page_t m, n; 3627 vm_ooffset_t off; 3628 int valid; 3629 3630 ASSERT_VOP_LOCKED(vp, "inmem"); 3631 3632 if (incore(&vp->v_bufobj, blkno)) 3633 return (true); 3634 if (vp->v_mount == NULL) 3635 return (false); 3636 obj = vp->v_object; 3637 if (obj == NULL) 3638 return (false); 3639 3640 size = PAGE_SIZE; 3641 if (size > vp->v_mount->mnt_stat.f_iosize) 3642 size = vp->v_mount->mnt_stat.f_iosize; 3643 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 3644 3645 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 3646 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff)); 3647 recheck: 3648 if (m == NULL) 3649 return (false); 3650 3651 tinc = size; 3652 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 3653 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 3654 /* 3655 * Consider page validity only if page mapping didn't change 3656 * during the check. 3657 */ 3658 valid = vm_page_is_valid(m, 3659 (vm_offset_t)((toff + off) & PAGE_MASK), tinc); 3660 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff)); 3661 if (m != n) { 3662 m = n; 3663 goto recheck; 3664 } 3665 if (!valid) 3666 return (false); 3667 } 3668 return (true); 3669 } 3670 3671 /* 3672 * Set the dirty range for a buffer based on the status of the dirty 3673 * bits in the pages comprising the buffer. The range is limited 3674 * to the size of the buffer. 3675 * 3676 * Tell the VM system that the pages associated with this buffer 3677 * are clean. This is used for delayed writes where the data is 3678 * going to go to disk eventually without additional VM intevention. 3679 * 3680 * Note that while we only really need to clean through to b_bcount, we 3681 * just go ahead and clean through to b_bufsize. 3682 */ 3683 static void 3684 vfs_clean_pages_dirty_buf(struct buf *bp) 3685 { 3686 vm_ooffset_t foff, noff, eoff; 3687 vm_page_t m; 3688 int i; 3689 3690 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0) 3691 return; 3692 3693 foff = bp->b_offset; 3694 KASSERT(bp->b_offset != NOOFFSET, 3695 ("vfs_clean_pages_dirty_buf: no buffer offset")); 3696 3697 vfs_busy_pages_acquire(bp); 3698 vfs_setdirty_range(bp); 3699 for (i = 0; i < bp->b_npages; i++) { 3700 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3701 eoff = noff; 3702 if (eoff > bp->b_offset + bp->b_bufsize) 3703 eoff = bp->b_offset + bp->b_bufsize; 3704 m = bp->b_pages[i]; 3705 vfs_page_set_validclean(bp, foff, m); 3706 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3707 foff = noff; 3708 } 3709 vfs_busy_pages_release(bp); 3710 } 3711 3712 static void 3713 vfs_setdirty_range(struct buf *bp) 3714 { 3715 vm_offset_t boffset; 3716 vm_offset_t eoffset; 3717 int i; 3718 3719 /* 3720 * test the pages to see if they have been modified directly 3721 * by users through the VM system. 3722 */ 3723 for (i = 0; i < bp->b_npages; i++) 3724 vm_page_test_dirty(bp->b_pages[i]); 3725 3726 /* 3727 * Calculate the encompassing dirty range, boffset and eoffset, 3728 * (eoffset - boffset) bytes. 3729 */ 3730 3731 for (i = 0; i < bp->b_npages; i++) { 3732 if (bp->b_pages[i]->dirty) 3733 break; 3734 } 3735 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3736 3737 for (i = bp->b_npages - 1; i >= 0; --i) { 3738 if (bp->b_pages[i]->dirty) { 3739 break; 3740 } 3741 } 3742 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3743 3744 /* 3745 * Fit it to the buffer. 3746 */ 3747 3748 if (eoffset > bp->b_bcount) 3749 eoffset = bp->b_bcount; 3750 3751 /* 3752 * If we have a good dirty range, merge with the existing 3753 * dirty range. 3754 */ 3755 3756 if (boffset < eoffset) { 3757 if (bp->b_dirtyoff > boffset) 3758 bp->b_dirtyoff = boffset; 3759 if (bp->b_dirtyend < eoffset) 3760 bp->b_dirtyend = eoffset; 3761 } 3762 } 3763 3764 /* 3765 * Allocate the KVA mapping for an existing buffer. 3766 * If an unmapped buffer is provided but a mapped buffer is requested, take 3767 * also care to properly setup mappings between pages and KVA. 3768 */ 3769 static void 3770 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags) 3771 { 3772 int bsize, maxsize, need_mapping, need_kva; 3773 off_t offset; 3774 3775 need_mapping = bp->b_data == unmapped_buf && 3776 (gbflags & GB_UNMAPPED) == 0; 3777 need_kva = bp->b_kvabase == unmapped_buf && 3778 bp->b_data == unmapped_buf && 3779 (gbflags & GB_KVAALLOC) != 0; 3780 if (!need_mapping && !need_kva) 3781 return; 3782 3783 BUF_CHECK_UNMAPPED(bp); 3784 3785 if (need_mapping && bp->b_kvabase != unmapped_buf) { 3786 /* 3787 * Buffer is not mapped, but the KVA was already 3788 * reserved at the time of the instantiation. Use the 3789 * allocated space. 3790 */ 3791 goto has_addr; 3792 } 3793 3794 /* 3795 * Calculate the amount of the address space we would reserve 3796 * if the buffer was mapped. 3797 */ 3798 bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize; 3799 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 3800 offset = blkno * bsize; 3801 maxsize = size + (offset & PAGE_MASK); 3802 maxsize = imax(maxsize, bsize); 3803 3804 while (bufkva_alloc(bp, maxsize, gbflags) != 0) { 3805 if ((gbflags & GB_NOWAIT_BD) != 0) { 3806 /* 3807 * XXXKIB: defragmentation cannot 3808 * succeed, not sure what else to do. 3809 */ 3810 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp); 3811 } 3812 counter_u64_add(mappingrestarts, 1); 3813 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0); 3814 } 3815 has_addr: 3816 if (need_mapping) { 3817 /* b_offset is handled by bpmap_qenter. */ 3818 bp->b_data = bp->b_kvabase; 3819 BUF_CHECK_MAPPED(bp); 3820 bpmap_qenter(bp); 3821 } 3822 } 3823 3824 struct buf * 3825 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo, 3826 int flags) 3827 { 3828 struct buf *bp; 3829 int error; 3830 3831 error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp); 3832 if (error != 0) 3833 return (NULL); 3834 return (bp); 3835 } 3836 3837 /* 3838 * getblkx: 3839 * 3840 * Get a block given a specified block and offset into a file/device. 3841 * The buffers B_DONE bit will be cleared on return, making it almost 3842 * ready for an I/O initiation. B_INVAL may or may not be set on 3843 * return. The caller should clear B_INVAL prior to initiating a 3844 * READ. 3845 * 3846 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 3847 * an existing buffer. 3848 * 3849 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 3850 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 3851 * and then cleared based on the backing VM. If the previous buffer is 3852 * non-0-sized but invalid, B_CACHE will be cleared. 3853 * 3854 * If getblk() must create a new buffer, the new buffer is returned with 3855 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 3856 * case it is returned with B_INVAL clear and B_CACHE set based on the 3857 * backing VM. 3858 * 3859 * getblk() also forces a bwrite() for any B_DELWRI buffer whose 3860 * B_CACHE bit is clear. 3861 * 3862 * What this means, basically, is that the caller should use B_CACHE to 3863 * determine whether the buffer is fully valid or not and should clear 3864 * B_INVAL prior to issuing a read. If the caller intends to validate 3865 * the buffer by loading its data area with something, the caller needs 3866 * to clear B_INVAL. If the caller does this without issuing an I/O, 3867 * the caller should set B_CACHE ( as an optimization ), else the caller 3868 * should issue the I/O and biodone() will set B_CACHE if the I/O was 3869 * a write attempt or if it was a successful read. If the caller 3870 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 3871 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 3872 * 3873 * The blkno parameter is the logical block being requested. Normally 3874 * the mapping of logical block number to disk block address is done 3875 * by calling VOP_BMAP(). However, if the mapping is already known, the 3876 * disk block address can be passed using the dblkno parameter. If the 3877 * disk block address is not known, then the same value should be passed 3878 * for blkno and dblkno. 3879 */ 3880 int 3881 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag, 3882 int slptimeo, int flags, struct buf **bpp) 3883 { 3884 struct buf *bp; 3885 struct bufobj *bo; 3886 daddr_t d_blkno; 3887 int bsize, error, maxsize, vmio; 3888 off_t offset; 3889 3890 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size); 3891 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3892 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3893 ASSERT_VOP_LOCKED(vp, "getblk"); 3894 if (size > maxbcachebuf) 3895 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size, 3896 maxbcachebuf); 3897 if (!unmapped_buf_allowed) 3898 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3899 3900 bo = &vp->v_bufobj; 3901 d_blkno = dblkno; 3902 3903 /* Attempt lockless lookup first. */ 3904 bp = gbincore_unlocked(bo, blkno); 3905 if (bp == NULL) { 3906 /* 3907 * With GB_NOCREAT we must be sure about not finding the buffer 3908 * as it may have been reassigned during unlocked lookup. 3909 */ 3910 if ((flags & GB_NOCREAT) != 0) 3911 goto loop; 3912 goto newbuf_unlocked; 3913 } 3914 3915 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0, 3916 0); 3917 if (error != 0) 3918 goto loop; 3919 3920 /* Verify buf identify has not changed since lookup. */ 3921 if (bp->b_bufobj == bo && bp->b_lblkno == blkno) 3922 goto foundbuf_fastpath; 3923 3924 /* It changed, fallback to locked lookup. */ 3925 BUF_UNLOCK_RAW(bp); 3926 3927 loop: 3928 BO_RLOCK(bo); 3929 bp = gbincore(bo, blkno); 3930 if (bp != NULL) { 3931 int lockflags; 3932 3933 /* 3934 * Buffer is in-core. If the buffer is not busy nor managed, 3935 * it must be on a queue. 3936 */ 3937 lockflags = LK_EXCLUSIVE | LK_INTERLOCK | 3938 ((flags & GB_LOCK_NOWAIT) ? LK_NOWAIT : LK_SLEEPFAIL); 3939 3940 error = BUF_TIMELOCK(bp, lockflags, 3941 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo); 3942 3943 /* 3944 * If we slept and got the lock we have to restart in case 3945 * the buffer changed identities. 3946 */ 3947 if (error == ENOLCK) 3948 goto loop; 3949 /* We timed out or were interrupted. */ 3950 else if (error != 0) 3951 return (error); 3952 3953 foundbuf_fastpath: 3954 /* If recursed, assume caller knows the rules. */ 3955 if (BUF_LOCKRECURSED(bp)) 3956 goto end; 3957 3958 /* 3959 * The buffer is locked. B_CACHE is cleared if the buffer is 3960 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 3961 * and for a VMIO buffer B_CACHE is adjusted according to the 3962 * backing VM cache. 3963 */ 3964 if (bp->b_flags & B_INVAL) 3965 bp->b_flags &= ~B_CACHE; 3966 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 3967 bp->b_flags |= B_CACHE; 3968 if (bp->b_flags & B_MANAGED) 3969 MPASS(bp->b_qindex == QUEUE_NONE); 3970 else 3971 bremfree(bp); 3972 3973 /* 3974 * check for size inconsistencies for non-VMIO case. 3975 */ 3976 if (bp->b_bcount != size) { 3977 if ((bp->b_flags & B_VMIO) == 0 || 3978 (size > bp->b_kvasize)) { 3979 if (bp->b_flags & B_DELWRI) { 3980 bp->b_flags |= B_NOCACHE; 3981 bwrite(bp); 3982 } else { 3983 if (LIST_EMPTY(&bp->b_dep)) { 3984 bp->b_flags |= B_RELBUF; 3985 brelse(bp); 3986 } else { 3987 bp->b_flags |= B_NOCACHE; 3988 bwrite(bp); 3989 } 3990 } 3991 goto loop; 3992 } 3993 } 3994 3995 /* 3996 * Handle the case of unmapped buffer which should 3997 * become mapped, or the buffer for which KVA 3998 * reservation is requested. 3999 */ 4000 bp_unmapped_get_kva(bp, blkno, size, flags); 4001 4002 /* 4003 * If the size is inconsistent in the VMIO case, we can resize 4004 * the buffer. This might lead to B_CACHE getting set or 4005 * cleared. If the size has not changed, B_CACHE remains 4006 * unchanged from its previous state. 4007 */ 4008 allocbuf(bp, size); 4009 4010 KASSERT(bp->b_offset != NOOFFSET, 4011 ("getblk: no buffer offset")); 4012 4013 /* 4014 * A buffer with B_DELWRI set and B_CACHE clear must 4015 * be committed before we can return the buffer in 4016 * order to prevent the caller from issuing a read 4017 * ( due to B_CACHE not being set ) and overwriting 4018 * it. 4019 * 4020 * Most callers, including NFS and FFS, need this to 4021 * operate properly either because they assume they 4022 * can issue a read if B_CACHE is not set, or because 4023 * ( for example ) an uncached B_DELWRI might loop due 4024 * to softupdates re-dirtying the buffer. In the latter 4025 * case, B_CACHE is set after the first write completes, 4026 * preventing further loops. 4027 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 4028 * above while extending the buffer, we cannot allow the 4029 * buffer to remain with B_CACHE set after the write 4030 * completes or it will represent a corrupt state. To 4031 * deal with this we set B_NOCACHE to scrap the buffer 4032 * after the write. 4033 * 4034 * We might be able to do something fancy, like setting 4035 * B_CACHE in bwrite() except if B_DELWRI is already set, 4036 * so the below call doesn't set B_CACHE, but that gets real 4037 * confusing. This is much easier. 4038 */ 4039 4040 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 4041 bp->b_flags |= B_NOCACHE; 4042 bwrite(bp); 4043 goto loop; 4044 } 4045 bp->b_flags &= ~B_DONE; 4046 } else { 4047 /* 4048 * Buffer is not in-core, create new buffer. The buffer 4049 * returned by getnewbuf() is locked. Note that the returned 4050 * buffer is also considered valid (not marked B_INVAL). 4051 */ 4052 BO_RUNLOCK(bo); 4053 newbuf_unlocked: 4054 /* 4055 * If the user does not want us to create the buffer, bail out 4056 * here. 4057 */ 4058 if (flags & GB_NOCREAT) 4059 return (EEXIST); 4060 4061 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize; 4062 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 4063 offset = blkno * bsize; 4064 vmio = vp->v_object != NULL; 4065 if (vmio) { 4066 maxsize = size + (offset & PAGE_MASK); 4067 } else { 4068 maxsize = size; 4069 /* Do not allow non-VMIO notmapped buffers. */ 4070 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 4071 } 4072 maxsize = imax(maxsize, bsize); 4073 if ((flags & GB_NOSPARSE) != 0 && vmio && 4074 !vn_isdisk(vp)) { 4075 error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0); 4076 KASSERT(error != EOPNOTSUPP, 4077 ("GB_NOSPARSE from fs not supporting bmap, vp %p", 4078 vp)); 4079 if (error != 0) 4080 return (error); 4081 if (d_blkno == -1) 4082 return (EJUSTRETURN); 4083 } 4084 4085 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags); 4086 if (bp == NULL) { 4087 if (slpflag || slptimeo) 4088 return (ETIMEDOUT); 4089 /* 4090 * XXX This is here until the sleep path is diagnosed 4091 * enough to work under very low memory conditions. 4092 * 4093 * There's an issue on low memory, 4BSD+non-preempt 4094 * systems (eg MIPS routers with 32MB RAM) where buffer 4095 * exhaustion occurs without sleeping for buffer 4096 * reclaimation. This just sticks in a loop and 4097 * constantly attempts to allocate a buffer, which 4098 * hits exhaustion and tries to wakeup bufdaemon. 4099 * This never happens because we never yield. 4100 * 4101 * The real solution is to identify and fix these cases 4102 * so we aren't effectively busy-waiting in a loop 4103 * until the reclaimation path has cycles to run. 4104 */ 4105 kern_yield(PRI_USER); 4106 goto loop; 4107 } 4108 4109 /* 4110 * This code is used to make sure that a buffer is not 4111 * created while the getnewbuf routine is blocked. 4112 * This can be a problem whether the vnode is locked or not. 4113 * If the buffer is created out from under us, we have to 4114 * throw away the one we just created. 4115 * 4116 * Note: this must occur before we associate the buffer 4117 * with the vp especially considering limitations in 4118 * the splay tree implementation when dealing with duplicate 4119 * lblkno's. 4120 */ 4121 BO_LOCK(bo); 4122 if (gbincore(bo, blkno)) { 4123 BO_UNLOCK(bo); 4124 bp->b_flags |= B_INVAL; 4125 bufspace_release(bufdomain(bp), maxsize); 4126 brelse(bp); 4127 goto loop; 4128 } 4129 4130 /* 4131 * Insert the buffer into the hash, so that it can 4132 * be found by incore. 4133 */ 4134 bp->b_lblkno = blkno; 4135 bp->b_blkno = d_blkno; 4136 bp->b_offset = offset; 4137 bgetvp(vp, bp); 4138 BO_UNLOCK(bo); 4139 4140 /* 4141 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 4142 * buffer size starts out as 0, B_CACHE will be set by 4143 * allocbuf() for the VMIO case prior to it testing the 4144 * backing store for validity. 4145 */ 4146 4147 if (vmio) { 4148 bp->b_flags |= B_VMIO; 4149 KASSERT(vp->v_object == bp->b_bufobj->bo_object, 4150 ("ARGH! different b_bufobj->bo_object %p %p %p\n", 4151 bp, vp->v_object, bp->b_bufobj->bo_object)); 4152 } else { 4153 bp->b_flags &= ~B_VMIO; 4154 KASSERT(bp->b_bufobj->bo_object == NULL, 4155 ("ARGH! has b_bufobj->bo_object %p %p\n", 4156 bp, bp->b_bufobj->bo_object)); 4157 BUF_CHECK_MAPPED(bp); 4158 } 4159 4160 allocbuf(bp, size); 4161 bufspace_release(bufdomain(bp), maxsize); 4162 bp->b_flags &= ~B_DONE; 4163 } 4164 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp); 4165 end: 4166 buf_track(bp, __func__); 4167 KASSERT(bp->b_bufobj == bo, 4168 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 4169 *bpp = bp; 4170 return (0); 4171 } 4172 4173 /* 4174 * Get an empty, disassociated buffer of given size. The buffer is initially 4175 * set to B_INVAL. 4176 */ 4177 struct buf * 4178 geteblk(int size, int flags) 4179 { 4180 struct buf *bp; 4181 int maxsize; 4182 4183 maxsize = (size + BKVAMASK) & ~BKVAMASK; 4184 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) { 4185 if ((flags & GB_NOWAIT_BD) && 4186 (curthread->td_pflags & TDP_BUFNEED) != 0) 4187 return (NULL); 4188 } 4189 allocbuf(bp, size); 4190 bufspace_release(bufdomain(bp), maxsize); 4191 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 4192 return (bp); 4193 } 4194 4195 /* 4196 * Truncate the backing store for a non-vmio buffer. 4197 */ 4198 static void 4199 vfs_nonvmio_truncate(struct buf *bp, int newbsize) 4200 { 4201 4202 if (bp->b_flags & B_MALLOC) { 4203 /* 4204 * malloced buffers are not shrunk 4205 */ 4206 if (newbsize == 0) { 4207 bufmallocadjust(bp, 0); 4208 free(bp->b_data, M_BIOBUF); 4209 bp->b_data = bp->b_kvabase; 4210 bp->b_flags &= ~B_MALLOC; 4211 } 4212 return; 4213 } 4214 vm_hold_free_pages(bp, newbsize); 4215 bufspace_adjust(bp, newbsize); 4216 } 4217 4218 /* 4219 * Extend the backing for a non-VMIO buffer. 4220 */ 4221 static void 4222 vfs_nonvmio_extend(struct buf *bp, int newbsize) 4223 { 4224 caddr_t origbuf; 4225 int origbufsize; 4226 4227 /* 4228 * We only use malloced memory on the first allocation. 4229 * and revert to page-allocated memory when the buffer 4230 * grows. 4231 * 4232 * There is a potential smp race here that could lead 4233 * to bufmallocspace slightly passing the max. It 4234 * is probably extremely rare and not worth worrying 4235 * over. 4236 */ 4237 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 && 4238 bufmallocspace < maxbufmallocspace) { 4239 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK); 4240 bp->b_flags |= B_MALLOC; 4241 bufmallocadjust(bp, newbsize); 4242 return; 4243 } 4244 4245 /* 4246 * If the buffer is growing on its other-than-first 4247 * allocation then we revert to the page-allocation 4248 * scheme. 4249 */ 4250 origbuf = NULL; 4251 origbufsize = 0; 4252 if (bp->b_flags & B_MALLOC) { 4253 origbuf = bp->b_data; 4254 origbufsize = bp->b_bufsize; 4255 bp->b_data = bp->b_kvabase; 4256 bufmallocadjust(bp, 0); 4257 bp->b_flags &= ~B_MALLOC; 4258 newbsize = round_page(newbsize); 4259 } 4260 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize, 4261 (vm_offset_t) bp->b_data + newbsize); 4262 if (origbuf != NULL) { 4263 bcopy(origbuf, bp->b_data, origbufsize); 4264 free(origbuf, M_BIOBUF); 4265 } 4266 bufspace_adjust(bp, newbsize); 4267 } 4268 4269 /* 4270 * This code constitutes the buffer memory from either anonymous system 4271 * memory (in the case of non-VMIO operations) or from an associated 4272 * VM object (in the case of VMIO operations). This code is able to 4273 * resize a buffer up or down. 4274 * 4275 * Note that this code is tricky, and has many complications to resolve 4276 * deadlock or inconsistent data situations. Tread lightly!!! 4277 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 4278 * the caller. Calling this code willy nilly can result in the loss of data. 4279 * 4280 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 4281 * B_CACHE for the non-VMIO case. 4282 */ 4283 int 4284 allocbuf(struct buf *bp, int size) 4285 { 4286 int newbsize; 4287 4288 if (bp->b_bcount == size) 4289 return (1); 4290 4291 if (bp->b_kvasize != 0 && bp->b_kvasize < size) 4292 panic("allocbuf: buffer too small"); 4293 4294 newbsize = roundup2(size, DEV_BSIZE); 4295 if ((bp->b_flags & B_VMIO) == 0) { 4296 if ((bp->b_flags & B_MALLOC) == 0) 4297 newbsize = round_page(newbsize); 4298 /* 4299 * Just get anonymous memory from the kernel. Don't 4300 * mess with B_CACHE. 4301 */ 4302 if (newbsize < bp->b_bufsize) 4303 vfs_nonvmio_truncate(bp, newbsize); 4304 else if (newbsize > bp->b_bufsize) 4305 vfs_nonvmio_extend(bp, newbsize); 4306 } else { 4307 int desiredpages; 4308 4309 desiredpages = (size == 0) ? 0 : 4310 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 4311 4312 if (bp->b_flags & B_MALLOC) 4313 panic("allocbuf: VMIO buffer can't be malloced"); 4314 /* 4315 * Set B_CACHE initially if buffer is 0 length or will become 4316 * 0-length. 4317 */ 4318 if (size == 0 || bp->b_bufsize == 0) 4319 bp->b_flags |= B_CACHE; 4320 4321 if (newbsize < bp->b_bufsize) 4322 vfs_vmio_truncate(bp, desiredpages); 4323 /* XXX This looks as if it should be newbsize > b_bufsize */ 4324 else if (size > bp->b_bcount) 4325 vfs_vmio_extend(bp, desiredpages, size); 4326 bufspace_adjust(bp, newbsize); 4327 } 4328 bp->b_bcount = size; /* requested buffer size. */ 4329 return (1); 4330 } 4331 4332 extern int inflight_transient_maps; 4333 4334 static struct bio_queue nondump_bios; 4335 4336 void 4337 biodone(struct bio *bp) 4338 { 4339 struct mtx *mtxp; 4340 void (*done)(struct bio *); 4341 vm_offset_t start, end; 4342 4343 biotrack(bp, __func__); 4344 4345 /* 4346 * Avoid completing I/O when dumping after a panic since that may 4347 * result in a deadlock in the filesystem or pager code. Note that 4348 * this doesn't affect dumps that were started manually since we aim 4349 * to keep the system usable after it has been resumed. 4350 */ 4351 if (__predict_false(dumping && SCHEDULER_STOPPED())) { 4352 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue); 4353 return; 4354 } 4355 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) { 4356 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING; 4357 bp->bio_flags |= BIO_UNMAPPED; 4358 start = trunc_page((vm_offset_t)bp->bio_data); 4359 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length); 4360 bp->bio_data = unmapped_buf; 4361 pmap_qremove(start, atop(end - start)); 4362 vmem_free(transient_arena, start, end - start); 4363 atomic_add_int(&inflight_transient_maps, -1); 4364 } 4365 done = bp->bio_done; 4366 if (done == NULL) { 4367 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4368 mtx_lock(mtxp); 4369 bp->bio_flags |= BIO_DONE; 4370 wakeup(bp); 4371 mtx_unlock(mtxp); 4372 } else 4373 done(bp); 4374 } 4375 4376 /* 4377 * Wait for a BIO to finish. 4378 */ 4379 int 4380 biowait(struct bio *bp, const char *wchan) 4381 { 4382 struct mtx *mtxp; 4383 4384 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4385 mtx_lock(mtxp); 4386 while ((bp->bio_flags & BIO_DONE) == 0) 4387 msleep(bp, mtxp, PRIBIO, wchan, 0); 4388 mtx_unlock(mtxp); 4389 if (bp->bio_error != 0) 4390 return (bp->bio_error); 4391 if (!(bp->bio_flags & BIO_ERROR)) 4392 return (0); 4393 return (EIO); 4394 } 4395 4396 void 4397 biofinish(struct bio *bp, struct devstat *stat, int error) 4398 { 4399 4400 if (error) { 4401 bp->bio_error = error; 4402 bp->bio_flags |= BIO_ERROR; 4403 } 4404 if (stat != NULL) 4405 devstat_end_transaction_bio(stat, bp); 4406 biodone(bp); 4407 } 4408 4409 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4410 void 4411 biotrack_buf(struct bio *bp, const char *location) 4412 { 4413 4414 buf_track(bp->bio_track_bp, location); 4415 } 4416 #endif 4417 4418 /* 4419 * bufwait: 4420 * 4421 * Wait for buffer I/O completion, returning error status. The buffer 4422 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 4423 * error and cleared. 4424 */ 4425 int 4426 bufwait(struct buf *bp) 4427 { 4428 if (bp->b_iocmd == BIO_READ) 4429 bwait(bp, PRIBIO, "biord"); 4430 else 4431 bwait(bp, PRIBIO, "biowr"); 4432 if (bp->b_flags & B_EINTR) { 4433 bp->b_flags &= ~B_EINTR; 4434 return (EINTR); 4435 } 4436 if (bp->b_ioflags & BIO_ERROR) { 4437 return (bp->b_error ? bp->b_error : EIO); 4438 } else { 4439 return (0); 4440 } 4441 } 4442 4443 /* 4444 * bufdone: 4445 * 4446 * Finish I/O on a buffer, optionally calling a completion function. 4447 * This is usually called from an interrupt so process blocking is 4448 * not allowed. 4449 * 4450 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 4451 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 4452 * assuming B_INVAL is clear. 4453 * 4454 * For the VMIO case, we set B_CACHE if the op was a read and no 4455 * read error occurred, or if the op was a write. B_CACHE is never 4456 * set if the buffer is invalid or otherwise uncacheable. 4457 * 4458 * bufdone does not mess with B_INVAL, allowing the I/O routine or the 4459 * initiator to leave B_INVAL set to brelse the buffer out of existence 4460 * in the biodone routine. 4461 */ 4462 void 4463 bufdone(struct buf *bp) 4464 { 4465 struct bufobj *dropobj; 4466 void (*biodone)(struct buf *); 4467 4468 buf_track(bp, __func__); 4469 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 4470 dropobj = NULL; 4471 4472 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 4473 4474 runningbufwakeup(bp); 4475 if (bp->b_iocmd == BIO_WRITE) 4476 dropobj = bp->b_bufobj; 4477 /* call optional completion function if requested */ 4478 if (bp->b_iodone != NULL) { 4479 biodone = bp->b_iodone; 4480 bp->b_iodone = NULL; 4481 (*biodone) (bp); 4482 if (dropobj) 4483 bufobj_wdrop(dropobj); 4484 return; 4485 } 4486 if (bp->b_flags & B_VMIO) { 4487 /* 4488 * Set B_CACHE if the op was a normal read and no error 4489 * occurred. B_CACHE is set for writes in the b*write() 4490 * routines. 4491 */ 4492 if (bp->b_iocmd == BIO_READ && 4493 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 4494 !(bp->b_ioflags & BIO_ERROR)) 4495 bp->b_flags |= B_CACHE; 4496 vfs_vmio_iodone(bp); 4497 } 4498 if (!LIST_EMPTY(&bp->b_dep)) 4499 buf_complete(bp); 4500 if ((bp->b_flags & B_CKHASH) != 0) { 4501 KASSERT(bp->b_iocmd == BIO_READ, 4502 ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd)); 4503 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp)); 4504 (*bp->b_ckhashcalc)(bp); 4505 } 4506 /* 4507 * For asynchronous completions, release the buffer now. The brelse 4508 * will do a wakeup there if necessary - so no need to do a wakeup 4509 * here in the async case. The sync case always needs to do a wakeup. 4510 */ 4511 if (bp->b_flags & B_ASYNC) { 4512 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || 4513 (bp->b_ioflags & BIO_ERROR)) 4514 brelse(bp); 4515 else 4516 bqrelse(bp); 4517 } else 4518 bdone(bp); 4519 if (dropobj) 4520 bufobj_wdrop(dropobj); 4521 } 4522 4523 /* 4524 * This routine is called in lieu of iodone in the case of 4525 * incomplete I/O. This keeps the busy status for pages 4526 * consistent. 4527 */ 4528 void 4529 vfs_unbusy_pages(struct buf *bp) 4530 { 4531 int i; 4532 vm_object_t obj; 4533 vm_page_t m; 4534 4535 runningbufwakeup(bp); 4536 if (!(bp->b_flags & B_VMIO)) 4537 return; 4538 4539 obj = bp->b_bufobj->bo_object; 4540 for (i = 0; i < bp->b_npages; i++) { 4541 m = bp->b_pages[i]; 4542 if (m == bogus_page) { 4543 m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i); 4544 if (!m) 4545 panic("vfs_unbusy_pages: page missing\n"); 4546 bp->b_pages[i] = m; 4547 if (buf_mapped(bp)) { 4548 BUF_CHECK_MAPPED(bp); 4549 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4550 bp->b_pages, bp->b_npages); 4551 } else 4552 BUF_CHECK_UNMAPPED(bp); 4553 } 4554 vm_page_sunbusy(m); 4555 } 4556 vm_object_pip_wakeupn(obj, bp->b_npages); 4557 } 4558 4559 /* 4560 * vfs_page_set_valid: 4561 * 4562 * Set the valid bits in a page based on the supplied offset. The 4563 * range is restricted to the buffer's size. 4564 * 4565 * This routine is typically called after a read completes. 4566 */ 4567 static void 4568 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4569 { 4570 vm_ooffset_t eoff; 4571 4572 /* 4573 * Compute the end offset, eoff, such that [off, eoff) does not span a 4574 * page boundary and eoff is not greater than the end of the buffer. 4575 * The end of the buffer, in this case, is our file EOF, not the 4576 * allocation size of the buffer. 4577 */ 4578 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK; 4579 if (eoff > bp->b_offset + bp->b_bcount) 4580 eoff = bp->b_offset + bp->b_bcount; 4581 4582 /* 4583 * Set valid range. This is typically the entire buffer and thus the 4584 * entire page. 4585 */ 4586 if (eoff > off) 4587 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off); 4588 } 4589 4590 /* 4591 * vfs_page_set_validclean: 4592 * 4593 * Set the valid bits and clear the dirty bits in a page based on the 4594 * supplied offset. The range is restricted to the buffer's size. 4595 */ 4596 static void 4597 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4598 { 4599 vm_ooffset_t soff, eoff; 4600 4601 /* 4602 * Start and end offsets in buffer. eoff - soff may not cross a 4603 * page boundary or cross the end of the buffer. The end of the 4604 * buffer, in this case, is our file EOF, not the allocation size 4605 * of the buffer. 4606 */ 4607 soff = off; 4608 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4609 if (eoff > bp->b_offset + bp->b_bcount) 4610 eoff = bp->b_offset + bp->b_bcount; 4611 4612 /* 4613 * Set valid range. This is typically the entire buffer and thus the 4614 * entire page. 4615 */ 4616 if (eoff > soff) { 4617 vm_page_set_validclean( 4618 m, 4619 (vm_offset_t) (soff & PAGE_MASK), 4620 (vm_offset_t) (eoff - soff) 4621 ); 4622 } 4623 } 4624 4625 /* 4626 * Acquire a shared busy on all pages in the buf. 4627 */ 4628 void 4629 vfs_busy_pages_acquire(struct buf *bp) 4630 { 4631 int i; 4632 4633 for (i = 0; i < bp->b_npages; i++) 4634 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY); 4635 } 4636 4637 void 4638 vfs_busy_pages_release(struct buf *bp) 4639 { 4640 int i; 4641 4642 for (i = 0; i < bp->b_npages; i++) 4643 vm_page_sunbusy(bp->b_pages[i]); 4644 } 4645 4646 /* 4647 * This routine is called before a device strategy routine. 4648 * It is used to tell the VM system that paging I/O is in 4649 * progress, and treat the pages associated with the buffer 4650 * almost as being exclusive busy. Also the object paging_in_progress 4651 * flag is handled to make sure that the object doesn't become 4652 * inconsistent. 4653 * 4654 * Since I/O has not been initiated yet, certain buffer flags 4655 * such as BIO_ERROR or B_INVAL may be in an inconsistent state 4656 * and should be ignored. 4657 */ 4658 void 4659 vfs_busy_pages(struct buf *bp, int clear_modify) 4660 { 4661 vm_object_t obj; 4662 vm_ooffset_t foff; 4663 vm_page_t m; 4664 int i; 4665 bool bogus; 4666 4667 if (!(bp->b_flags & B_VMIO)) 4668 return; 4669 4670 obj = bp->b_bufobj->bo_object; 4671 foff = bp->b_offset; 4672 KASSERT(bp->b_offset != NOOFFSET, 4673 ("vfs_busy_pages: no buffer offset")); 4674 if ((bp->b_flags & B_CLUSTER) == 0) { 4675 vm_object_pip_add(obj, bp->b_npages); 4676 vfs_busy_pages_acquire(bp); 4677 } 4678 if (bp->b_bufsize != 0) 4679 vfs_setdirty_range(bp); 4680 bogus = false; 4681 for (i = 0; i < bp->b_npages; i++) { 4682 m = bp->b_pages[i]; 4683 vm_page_assert_sbusied(m); 4684 4685 /* 4686 * When readying a buffer for a read ( i.e 4687 * clear_modify == 0 ), it is important to do 4688 * bogus_page replacement for valid pages in 4689 * partially instantiated buffers. Partially 4690 * instantiated buffers can, in turn, occur when 4691 * reconstituting a buffer from its VM backing store 4692 * base. We only have to do this if B_CACHE is 4693 * clear ( which causes the I/O to occur in the 4694 * first place ). The replacement prevents the read 4695 * I/O from overwriting potentially dirty VM-backed 4696 * pages. XXX bogus page replacement is, uh, bogus. 4697 * It may not work properly with small-block devices. 4698 * We need to find a better way. 4699 */ 4700 if (clear_modify) { 4701 pmap_remove_write(m); 4702 vfs_page_set_validclean(bp, foff, m); 4703 } else if (vm_page_all_valid(m) && 4704 (bp->b_flags & B_CACHE) == 0) { 4705 bp->b_pages[i] = bogus_page; 4706 bogus = true; 4707 } 4708 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4709 } 4710 if (bogus && buf_mapped(bp)) { 4711 BUF_CHECK_MAPPED(bp); 4712 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4713 bp->b_pages, bp->b_npages); 4714 } 4715 } 4716 4717 /* 4718 * vfs_bio_set_valid: 4719 * 4720 * Set the range within the buffer to valid. The range is 4721 * relative to the beginning of the buffer, b_offset. Note that 4722 * b_offset itself may be offset from the beginning of the first 4723 * page. 4724 */ 4725 void 4726 vfs_bio_set_valid(struct buf *bp, int base, int size) 4727 { 4728 int i, n; 4729 vm_page_t m; 4730 4731 if (!(bp->b_flags & B_VMIO)) 4732 return; 4733 4734 /* 4735 * Fixup base to be relative to beginning of first page. 4736 * Set initial n to be the maximum number of bytes in the 4737 * first page that can be validated. 4738 */ 4739 base += (bp->b_offset & PAGE_MASK); 4740 n = PAGE_SIZE - (base & PAGE_MASK); 4741 4742 /* 4743 * Busy may not be strictly necessary here because the pages are 4744 * unlikely to be fully valid and the vnode lock will synchronize 4745 * their access via getpages. It is grabbed for consistency with 4746 * other page validation. 4747 */ 4748 vfs_busy_pages_acquire(bp); 4749 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4750 m = bp->b_pages[i]; 4751 if (n > size) 4752 n = size; 4753 vm_page_set_valid_range(m, base & PAGE_MASK, n); 4754 base += n; 4755 size -= n; 4756 n = PAGE_SIZE; 4757 } 4758 vfs_busy_pages_release(bp); 4759 } 4760 4761 /* 4762 * vfs_bio_clrbuf: 4763 * 4764 * If the specified buffer is a non-VMIO buffer, clear the entire 4765 * buffer. If the specified buffer is a VMIO buffer, clear and 4766 * validate only the previously invalid portions of the buffer. 4767 * This routine essentially fakes an I/O, so we need to clear 4768 * BIO_ERROR and B_INVAL. 4769 * 4770 * Note that while we only theoretically need to clear through b_bcount, 4771 * we go ahead and clear through b_bufsize. 4772 */ 4773 void 4774 vfs_bio_clrbuf(struct buf *bp) 4775 { 4776 int i, j, mask, sa, ea, slide; 4777 4778 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) { 4779 clrbuf(bp); 4780 return; 4781 } 4782 bp->b_flags &= ~B_INVAL; 4783 bp->b_ioflags &= ~BIO_ERROR; 4784 vfs_busy_pages_acquire(bp); 4785 sa = bp->b_offset & PAGE_MASK; 4786 slide = 0; 4787 for (i = 0; i < bp->b_npages; i++, sa = 0) { 4788 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize); 4789 ea = slide & PAGE_MASK; 4790 if (ea == 0) 4791 ea = PAGE_SIZE; 4792 if (bp->b_pages[i] == bogus_page) 4793 continue; 4794 j = sa / DEV_BSIZE; 4795 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4796 if ((bp->b_pages[i]->valid & mask) == mask) 4797 continue; 4798 if ((bp->b_pages[i]->valid & mask) == 0) 4799 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa); 4800 else { 4801 for (; sa < ea; sa += DEV_BSIZE, j++) { 4802 if ((bp->b_pages[i]->valid & (1 << j)) == 0) { 4803 pmap_zero_page_area(bp->b_pages[i], 4804 sa, DEV_BSIZE); 4805 } 4806 } 4807 } 4808 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE, 4809 roundup2(ea - sa, DEV_BSIZE)); 4810 } 4811 vfs_busy_pages_release(bp); 4812 bp->b_resid = 0; 4813 } 4814 4815 void 4816 vfs_bio_bzero_buf(struct buf *bp, int base, int size) 4817 { 4818 vm_page_t m; 4819 int i, n; 4820 4821 if (buf_mapped(bp)) { 4822 BUF_CHECK_MAPPED(bp); 4823 bzero(bp->b_data + base, size); 4824 } else { 4825 BUF_CHECK_UNMAPPED(bp); 4826 n = PAGE_SIZE - (base & PAGE_MASK); 4827 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4828 m = bp->b_pages[i]; 4829 if (n > size) 4830 n = size; 4831 pmap_zero_page_area(m, base & PAGE_MASK, n); 4832 base += n; 4833 size -= n; 4834 n = PAGE_SIZE; 4835 } 4836 } 4837 } 4838 4839 /* 4840 * Update buffer flags based on I/O request parameters, optionally releasing the 4841 * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM, 4842 * where they may be placed on a page queue (VMIO) or freed immediately (direct 4843 * I/O). Otherwise the buffer is released to the cache. 4844 */ 4845 static void 4846 b_io_dismiss(struct buf *bp, int ioflag, bool release) 4847 { 4848 4849 KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0, 4850 ("buf %p non-VMIO noreuse", bp)); 4851 4852 if ((ioflag & IO_DIRECT) != 0) 4853 bp->b_flags |= B_DIRECT; 4854 if ((ioflag & IO_EXT) != 0) 4855 bp->b_xflags |= BX_ALTDATA; 4856 if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) { 4857 bp->b_flags |= B_RELBUF; 4858 if ((ioflag & IO_NOREUSE) != 0) 4859 bp->b_flags |= B_NOREUSE; 4860 if (release) 4861 brelse(bp); 4862 } else if (release) 4863 bqrelse(bp); 4864 } 4865 4866 void 4867 vfs_bio_brelse(struct buf *bp, int ioflag) 4868 { 4869 4870 b_io_dismiss(bp, ioflag, true); 4871 } 4872 4873 void 4874 vfs_bio_set_flags(struct buf *bp, int ioflag) 4875 { 4876 4877 b_io_dismiss(bp, ioflag, false); 4878 } 4879 4880 /* 4881 * vm_hold_load_pages and vm_hold_free_pages get pages into 4882 * a buffers address space. The pages are anonymous and are 4883 * not associated with a file object. 4884 */ 4885 static void 4886 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4887 { 4888 vm_offset_t pg; 4889 vm_page_t p; 4890 int index; 4891 4892 BUF_CHECK_MAPPED(bp); 4893 4894 to = round_page(to); 4895 from = round_page(from); 4896 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4897 MPASS((bp->b_flags & B_MAXPHYS) == 0); 4898 KASSERT(to - from <= maxbcachebuf, 4899 ("vm_hold_load_pages too large %p %#jx %#jx %u", 4900 bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf)); 4901 4902 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4903 /* 4904 * note: must allocate system pages since blocking here 4905 * could interfere with paging I/O, no matter which 4906 * process we are. 4907 */ 4908 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ | 4909 VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | 4910 VM_ALLOC_WAITOK); 4911 pmap_qenter(pg, &p, 1); 4912 bp->b_pages[index] = p; 4913 } 4914 bp->b_npages = index; 4915 } 4916 4917 /* Return pages associated with this buf to the vm system */ 4918 static void 4919 vm_hold_free_pages(struct buf *bp, int newbsize) 4920 { 4921 vm_offset_t from; 4922 vm_page_t p; 4923 int index, newnpages; 4924 4925 BUF_CHECK_MAPPED(bp); 4926 4927 from = round_page((vm_offset_t)bp->b_data + newbsize); 4928 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4929 if (bp->b_npages > newnpages) 4930 pmap_qremove(from, bp->b_npages - newnpages); 4931 for (index = newnpages; index < bp->b_npages; index++) { 4932 p = bp->b_pages[index]; 4933 bp->b_pages[index] = NULL; 4934 vm_page_unwire_noq(p); 4935 vm_page_free(p); 4936 } 4937 bp->b_npages = newnpages; 4938 } 4939 4940 /* 4941 * Map an IO request into kernel virtual address space. 4942 * 4943 * All requests are (re)mapped into kernel VA space. 4944 * Notice that we use b_bufsize for the size of the buffer 4945 * to be mapped. b_bcount might be modified by the driver. 4946 * 4947 * Note that even if the caller determines that the address space should 4948 * be valid, a race or a smaller-file mapped into a larger space may 4949 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 4950 * check the return value. 4951 * 4952 * This function only works with pager buffers. 4953 */ 4954 int 4955 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf) 4956 { 4957 vm_prot_t prot; 4958 int pidx; 4959 4960 MPASS((bp->b_flags & B_MAXPHYS) != 0); 4961 prot = VM_PROT_READ; 4962 if (bp->b_iocmd == BIO_READ) 4963 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 4964 pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 4965 (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES); 4966 if (pidx < 0) 4967 return (-1); 4968 bp->b_bufsize = len; 4969 bp->b_npages = pidx; 4970 bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK; 4971 if (mapbuf || !unmapped_buf_allowed) { 4972 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx); 4973 bp->b_data = bp->b_kvabase + bp->b_offset; 4974 } else 4975 bp->b_data = unmapped_buf; 4976 return (0); 4977 } 4978 4979 /* 4980 * Free the io map PTEs associated with this IO operation. 4981 * We also invalidate the TLB entries and restore the original b_addr. 4982 * 4983 * This function only works with pager buffers. 4984 */ 4985 void 4986 vunmapbuf(struct buf *bp) 4987 { 4988 int npages; 4989 4990 npages = bp->b_npages; 4991 if (buf_mapped(bp)) 4992 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4993 vm_page_unhold_pages(bp->b_pages, npages); 4994 4995 bp->b_data = unmapped_buf; 4996 } 4997 4998 void 4999 bdone(struct buf *bp) 5000 { 5001 struct mtx *mtxp; 5002 5003 mtxp = mtx_pool_find(mtxpool_sleep, bp); 5004 mtx_lock(mtxp); 5005 bp->b_flags |= B_DONE; 5006 wakeup(bp); 5007 mtx_unlock(mtxp); 5008 } 5009 5010 void 5011 bwait(struct buf *bp, u_char pri, const char *wchan) 5012 { 5013 struct mtx *mtxp; 5014 5015 mtxp = mtx_pool_find(mtxpool_sleep, bp); 5016 mtx_lock(mtxp); 5017 while ((bp->b_flags & B_DONE) == 0) 5018 msleep(bp, mtxp, pri, wchan, 0); 5019 mtx_unlock(mtxp); 5020 } 5021 5022 int 5023 bufsync(struct bufobj *bo, int waitfor) 5024 { 5025 5026 return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread)); 5027 } 5028 5029 void 5030 bufstrategy(struct bufobj *bo, struct buf *bp) 5031 { 5032 int i __unused; 5033 struct vnode *vp; 5034 5035 vp = bp->b_vp; 5036 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy")); 5037 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 5038 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp)); 5039 i = VOP_STRATEGY(vp, bp); 5040 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp)); 5041 } 5042 5043 /* 5044 * Initialize a struct bufobj before use. Memory is assumed zero filled. 5045 */ 5046 void 5047 bufobj_init(struct bufobj *bo, void *private) 5048 { 5049 static volatile int bufobj_cleanq; 5050 5051 bo->bo_domain = 5052 atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains; 5053 rw_init(BO_LOCKPTR(bo), "bufobj interlock"); 5054 bo->bo_private = private; 5055 TAILQ_INIT(&bo->bo_clean.bv_hd); 5056 TAILQ_INIT(&bo->bo_dirty.bv_hd); 5057 } 5058 5059 void 5060 bufobj_wrefl(struct bufobj *bo) 5061 { 5062 5063 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 5064 ASSERT_BO_WLOCKED(bo); 5065 bo->bo_numoutput++; 5066 } 5067 5068 void 5069 bufobj_wref(struct bufobj *bo) 5070 { 5071 5072 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 5073 BO_LOCK(bo); 5074 bo->bo_numoutput++; 5075 BO_UNLOCK(bo); 5076 } 5077 5078 void 5079 bufobj_wdrop(struct bufobj *bo) 5080 { 5081 5082 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop")); 5083 BO_LOCK(bo); 5084 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count")); 5085 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) { 5086 bo->bo_flag &= ~BO_WWAIT; 5087 wakeup(&bo->bo_numoutput); 5088 } 5089 BO_UNLOCK(bo); 5090 } 5091 5092 int 5093 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo) 5094 { 5095 int error; 5096 5097 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait")); 5098 ASSERT_BO_WLOCKED(bo); 5099 error = 0; 5100 while (bo->bo_numoutput) { 5101 bo->bo_flag |= BO_WWAIT; 5102 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo), 5103 slpflag | (PRIBIO + 1), "bo_wwait", timeo); 5104 if (error) 5105 break; 5106 } 5107 return (error); 5108 } 5109 5110 /* 5111 * Set bio_data or bio_ma for struct bio from the struct buf. 5112 */ 5113 void 5114 bdata2bio(struct buf *bp, struct bio *bip) 5115 { 5116 5117 if (!buf_mapped(bp)) { 5118 KASSERT(unmapped_buf_allowed, ("unmapped")); 5119 bip->bio_ma = bp->b_pages; 5120 bip->bio_ma_n = bp->b_npages; 5121 bip->bio_data = unmapped_buf; 5122 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 5123 bip->bio_flags |= BIO_UNMAPPED; 5124 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) / 5125 PAGE_SIZE == bp->b_npages, 5126 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset, 5127 (long long)bip->bio_length, bip->bio_ma_n)); 5128 } else { 5129 bip->bio_data = bp->b_data; 5130 bip->bio_ma = NULL; 5131 } 5132 } 5133 5134 /* 5135 * The MIPS pmap code currently doesn't handle aliased pages. 5136 * The VIPT caches may not handle page aliasing themselves, leading 5137 * to data corruption. 5138 * 5139 * As such, this code makes a system extremely unhappy if said 5140 * system doesn't support unaliasing the above situation in hardware. 5141 * Some "recent" systems (eg some mips24k/mips74k cores) don't enable 5142 * this feature at build time, so it has to be handled in software. 5143 * 5144 * Once the MIPS pmap/cache code grows to support this function on 5145 * earlier chips, it should be flipped back off. 5146 */ 5147 #ifdef __mips__ 5148 static int buf_pager_relbuf = 1; 5149 #else 5150 static int buf_pager_relbuf = 0; 5151 #endif 5152 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN, 5153 &buf_pager_relbuf, 0, 5154 "Make buffer pager release buffers after reading"); 5155 5156 /* 5157 * The buffer pager. It uses buffer reads to validate pages. 5158 * 5159 * In contrast to the generic local pager from vm/vnode_pager.c, this 5160 * pager correctly and easily handles volumes where the underlying 5161 * device block size is greater than the machine page size. The 5162 * buffer cache transparently extends the requested page run to be 5163 * aligned at the block boundary, and does the necessary bogus page 5164 * replacements in the addends to avoid obliterating already valid 5165 * pages. 5166 * 5167 * The only non-trivial issue is that the exclusive busy state for 5168 * pages, which is assumed by the vm_pager_getpages() interface, is 5169 * incompatible with the VMIO buffer cache's desire to share-busy the 5170 * pages. This function performs a trivial downgrade of the pages' 5171 * state before reading buffers, and a less trivial upgrade from the 5172 * shared-busy to excl-busy state after the read. 5173 */ 5174 int 5175 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count, 5176 int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno, 5177 vbg_get_blksize_t get_blksize) 5178 { 5179 vm_page_t m; 5180 vm_object_t object; 5181 struct buf *bp; 5182 struct mount *mp; 5183 daddr_t lbn, lbnp; 5184 vm_ooffset_t la, lb, poff, poffe; 5185 long bsize; 5186 int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b; 5187 bool redo, lpart; 5188 5189 object = vp->v_object; 5190 mp = vp->v_mount; 5191 error = 0; 5192 la = IDX_TO_OFF(ma[count - 1]->pindex); 5193 if (la >= object->un_pager.vnp.vnp_size) 5194 return (VM_PAGER_BAD); 5195 5196 /* 5197 * Change the meaning of la from where the last requested page starts 5198 * to where it ends, because that's the end of the requested region 5199 * and the start of the potential read-ahead region. 5200 */ 5201 la += PAGE_SIZE; 5202 lpart = la > object->un_pager.vnp.vnp_size; 5203 bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex))); 5204 5205 /* 5206 * Calculate read-ahead, behind and total pages. 5207 */ 5208 pgsin = count; 5209 lb = IDX_TO_OFF(ma[0]->pindex); 5210 pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs)); 5211 pgsin += pgsin_b; 5212 if (rbehind != NULL) 5213 *rbehind = pgsin_b; 5214 pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la); 5215 if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size) 5216 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size, 5217 PAGE_SIZE) - la); 5218 pgsin += pgsin_a; 5219 if (rahead != NULL) 5220 *rahead = pgsin_a; 5221 VM_CNT_INC(v_vnodein); 5222 VM_CNT_ADD(v_vnodepgsin, pgsin); 5223 5224 br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) 5225 != 0) ? GB_UNMAPPED : 0; 5226 again: 5227 for (i = 0; i < count; i++) { 5228 if (ma[i] != bogus_page) 5229 vm_page_busy_downgrade(ma[i]); 5230 } 5231 5232 lbnp = -1; 5233 for (i = 0; i < count; i++) { 5234 m = ma[i]; 5235 if (m == bogus_page) 5236 continue; 5237 5238 /* 5239 * Pages are shared busy and the object lock is not 5240 * owned, which together allow for the pages' 5241 * invalidation. The racy test for validity avoids 5242 * useless creation of the buffer for the most typical 5243 * case when invalidation is not used in redo or for 5244 * parallel read. The shared->excl upgrade loop at 5245 * the end of the function catches the race in a 5246 * reliable way (protected by the object lock). 5247 */ 5248 if (vm_page_all_valid(m)) 5249 continue; 5250 5251 poff = IDX_TO_OFF(m->pindex); 5252 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size); 5253 for (; poff < poffe; poff += bsize) { 5254 lbn = get_lblkno(vp, poff); 5255 if (lbn == lbnp) 5256 goto next_page; 5257 lbnp = lbn; 5258 5259 bsize = get_blksize(vp, lbn); 5260 error = bread_gb(vp, lbn, bsize, curthread->td_ucred, 5261 br_flags, &bp); 5262 if (error != 0) 5263 goto end_pages; 5264 if (bp->b_rcred == curthread->td_ucred) { 5265 crfree(bp->b_rcred); 5266 bp->b_rcred = NOCRED; 5267 } 5268 if (LIST_EMPTY(&bp->b_dep)) { 5269 /* 5270 * Invalidation clears m->valid, but 5271 * may leave B_CACHE flag if the 5272 * buffer existed at the invalidation 5273 * time. In this case, recycle the 5274 * buffer to do real read on next 5275 * bread() after redo. 5276 * 5277 * Otherwise B_RELBUF is not strictly 5278 * necessary, enable to reduce buf 5279 * cache pressure. 5280 */ 5281 if (buf_pager_relbuf || 5282 !vm_page_all_valid(m)) 5283 bp->b_flags |= B_RELBUF; 5284 5285 bp->b_flags &= ~B_NOCACHE; 5286 brelse(bp); 5287 } else { 5288 bqrelse(bp); 5289 } 5290 } 5291 KASSERT(1 /* racy, enable for debugging */ || 5292 vm_page_all_valid(m) || i == count - 1, 5293 ("buf %d %p invalid", i, m)); 5294 if (i == count - 1 && lpart) { 5295 if (!vm_page_none_valid(m) && 5296 !vm_page_all_valid(m)) 5297 vm_page_zero_invalid(m, TRUE); 5298 } 5299 next_page:; 5300 } 5301 end_pages: 5302 5303 redo = false; 5304 for (i = 0; i < count; i++) { 5305 if (ma[i] == bogus_page) 5306 continue; 5307 if (vm_page_busy_tryupgrade(ma[i]) == 0) { 5308 vm_page_sunbusy(ma[i]); 5309 ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex, 5310 VM_ALLOC_NORMAL); 5311 } 5312 5313 /* 5314 * Since the pages were only sbusy while neither the 5315 * buffer nor the object lock was held by us, or 5316 * reallocated while vm_page_grab() slept for busy 5317 * relinguish, they could have been invalidated. 5318 * Recheck the valid bits and re-read as needed. 5319 * 5320 * Note that the last page is made fully valid in the 5321 * read loop, and partial validity for the page at 5322 * index count - 1 could mean that the page was 5323 * invalidated or removed, so we must restart for 5324 * safety as well. 5325 */ 5326 if (!vm_page_all_valid(ma[i])) 5327 redo = true; 5328 } 5329 if (redo && error == 0) 5330 goto again; 5331 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 5332 } 5333 5334 #include "opt_ddb.h" 5335 #ifdef DDB 5336 #include <ddb/ddb.h> 5337 5338 /* DDB command to show buffer data */ 5339 DB_SHOW_COMMAND(buffer, db_show_buffer) 5340 { 5341 /* get args */ 5342 struct buf *bp = (struct buf *)addr; 5343 #ifdef FULL_BUF_TRACKING 5344 uint32_t i, j; 5345 #endif 5346 5347 if (!have_addr) { 5348 db_printf("usage: show buffer <addr>\n"); 5349 return; 5350 } 5351 5352 db_printf("buf at %p\n", bp); 5353 db_printf("b_flags = 0x%b, b_xflags=0x%b\n", 5354 (u_int)bp->b_flags, PRINT_BUF_FLAGS, 5355 (u_int)bp->b_xflags, PRINT_BUF_XFLAGS); 5356 db_printf("b_vflags=0x%b b_ioflags0x%b\n", 5357 (u_int)bp->b_vflags, PRINT_BUF_VFLAGS, 5358 (u_int)bp->b_ioflags, PRINT_BIO_FLAGS); 5359 db_printf( 5360 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 5361 "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, " 5362 "b_vp = %p, b_dep = %p\n", 5363 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 5364 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno, 5365 (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first); 5366 db_printf("b_kvabase = %p, b_kvasize = %d\n", 5367 bp->b_kvabase, bp->b_kvasize); 5368 if (bp->b_npages) { 5369 int i; 5370 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 5371 for (i = 0; i < bp->b_npages; i++) { 5372 vm_page_t m; 5373 m = bp->b_pages[i]; 5374 if (m != NULL) 5375 db_printf("(%p, 0x%lx, 0x%lx)", m->object, 5376 (u_long)m->pindex, 5377 (u_long)VM_PAGE_TO_PHYS(m)); 5378 else 5379 db_printf("( ??? )"); 5380 if ((i + 1) < bp->b_npages) 5381 db_printf(","); 5382 } 5383 db_printf("\n"); 5384 } 5385 BUF_LOCKPRINTINFO(bp); 5386 #if defined(FULL_BUF_TRACKING) 5387 db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt); 5388 5389 i = bp->b_io_tcnt % BUF_TRACKING_SIZE; 5390 for (j = 1; j <= BUF_TRACKING_SIZE; j++) { 5391 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL) 5392 continue; 5393 db_printf(" %2u: %s\n", j, 5394 bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]); 5395 } 5396 #elif defined(BUF_TRACKING) 5397 db_printf("b_io_tracking: %s\n", bp->b_io_tracking); 5398 #endif 5399 db_printf(" "); 5400 } 5401 5402 DB_SHOW_COMMAND(bufqueues, bufqueues) 5403 { 5404 struct bufdomain *bd; 5405 struct buf *bp; 5406 long total; 5407 int i, j, cnt; 5408 5409 db_printf("bqempty: %d\n", bqempty.bq_len); 5410 5411 for (i = 0; i < buf_domains; i++) { 5412 bd = &bdomain[i]; 5413 db_printf("Buf domain %d\n", i); 5414 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers); 5415 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers); 5416 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers); 5417 db_printf("\n"); 5418 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace); 5419 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace); 5420 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace); 5421 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace); 5422 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh); 5423 db_printf("\n"); 5424 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers); 5425 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers); 5426 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers); 5427 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh); 5428 db_printf("\n"); 5429 total = 0; 5430 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist) 5431 total += bp->b_bufsize; 5432 db_printf("\tcleanq count\t%d (%ld)\n", 5433 bd->bd_cleanq->bq_len, total); 5434 total = 0; 5435 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist) 5436 total += bp->b_bufsize; 5437 db_printf("\tdirtyq count\t%d (%ld)\n", 5438 bd->bd_dirtyq.bq_len, total); 5439 db_printf("\twakeup\t\t%d\n", bd->bd_wanted); 5440 db_printf("\tlim\t\t%d\n", bd->bd_lim); 5441 db_printf("\tCPU "); 5442 for (j = 0; j <= mp_maxid; j++) 5443 db_printf("%d, ", bd->bd_subq[j].bq_len); 5444 db_printf("\n"); 5445 cnt = 0; 5446 total = 0; 5447 for (j = 0; j < nbuf; j++) { 5448 bp = nbufp(j); 5449 if (bp->b_domain == i && BUF_ISLOCKED(bp)) { 5450 cnt++; 5451 total += bp->b_bufsize; 5452 } 5453 } 5454 db_printf("\tLocked buffers: %d space %ld\n", cnt, total); 5455 cnt = 0; 5456 total = 0; 5457 for (j = 0; j < nbuf; j++) { 5458 bp = nbufp(j); 5459 if (bp->b_domain == i) { 5460 cnt++; 5461 total += bp->b_bufsize; 5462 } 5463 } 5464 db_printf("\tTotal buffers: %d space %ld\n", cnt, total); 5465 } 5466 } 5467 5468 DB_SHOW_COMMAND(lockedbufs, lockedbufs) 5469 { 5470 struct buf *bp; 5471 int i; 5472 5473 for (i = 0; i < nbuf; i++) { 5474 bp = nbufp(i); 5475 if (BUF_ISLOCKED(bp)) { 5476 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5477 db_printf("\n"); 5478 if (db_pager_quit) 5479 break; 5480 } 5481 } 5482 } 5483 5484 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs) 5485 { 5486 struct vnode *vp; 5487 struct buf *bp; 5488 5489 if (!have_addr) { 5490 db_printf("usage: show vnodebufs <addr>\n"); 5491 return; 5492 } 5493 vp = (struct vnode *)addr; 5494 db_printf("Clean buffers:\n"); 5495 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) { 5496 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5497 db_printf("\n"); 5498 } 5499 db_printf("Dirty buffers:\n"); 5500 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 5501 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5502 db_printf("\n"); 5503 } 5504 } 5505 5506 DB_COMMAND(countfreebufs, db_coundfreebufs) 5507 { 5508 struct buf *bp; 5509 int i, used = 0, nfree = 0; 5510 5511 if (have_addr) { 5512 db_printf("usage: countfreebufs\n"); 5513 return; 5514 } 5515 5516 for (i = 0; i < nbuf; i++) { 5517 bp = nbufp(i); 5518 if (bp->b_qindex == QUEUE_EMPTY) 5519 nfree++; 5520 else 5521 used++; 5522 } 5523 5524 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used, 5525 nfree + used); 5526 db_printf("numfreebuffers is %d\n", numfreebuffers); 5527 } 5528 #endif /* DDB */ 5529