xref: /freebsd/sys/kern/vfs_bio.c (revision ee41f1b1cf5e3d4f586cb85b46123b416275862c)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD$
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/eventhandler.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/mount.h>
38 #include <sys/mutex.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58 
59 struct	bio_ops bioops;		/* I/O operation notification */
60 
61 struct buf *buf;		/* buffer header pool */
62 struct swqueue bswlist;
63 struct mtx buftimelock;		/* Interlock on setting prio and timo */
64 
65 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
66 		vm_offset_t to);
67 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
68 		vm_offset_t to);
69 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
70 			       int pageno, vm_page_t m);
71 static void vfs_clean_pages(struct buf * bp);
72 static void vfs_setdirty(struct buf *bp);
73 static void vfs_vmio_release(struct buf *bp);
74 static void vfs_backgroundwritedone(struct buf *bp);
75 static int flushbufqueues(void);
76 
77 static int bd_request;
78 
79 static void buf_daemon __P((void));
80 /*
81  * bogus page -- for I/O to/from partially complete buffers
82  * this is a temporary solution to the problem, but it is not
83  * really that bad.  it would be better to split the buffer
84  * for input in the case of buffers partially already in memory,
85  * but the code is intricate enough already.
86  */
87 vm_page_t bogus_page;
88 int vmiodirenable = FALSE;
89 int runningbufspace;
90 static vm_offset_t bogus_offset;
91 
92 static int bufspace, maxbufspace,
93 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
94 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
95 static int needsbuffer;
96 static int lorunningspace, hirunningspace, runningbufreq;
97 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
98 static int numfreebuffers, lofreebuffers, hifreebuffers;
99 static int getnewbufcalls;
100 static int getnewbufrestarts;
101 
102 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
103 	&numdirtybuffers, 0, "");
104 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
105 	&lodirtybuffers, 0, "");
106 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
107 	&hidirtybuffers, 0, "");
108 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
109 	&numfreebuffers, 0, "");
110 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
111 	&lofreebuffers, 0, "");
112 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
113 	&hifreebuffers, 0, "");
114 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
115 	&runningbufspace, 0, "");
116 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
117 	&lorunningspace, 0, "");
118 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
119 	&hirunningspace, 0, "");
120 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
121 	&maxbufspace, 0, "");
122 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
123 	&hibufspace, 0, "");
124 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
125 	&lobufspace, 0, "");
126 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
127 	&bufspace, 0, "");
128 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
129 	&maxbufmallocspace, 0, "");
130 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
131 	&bufmallocspace, 0, "");
132 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
133 	&getnewbufcalls, 0, "");
134 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
135 	&getnewbufrestarts, 0, "");
136 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
137 	&vmiodirenable, 0, "");
138 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
139 	&bufdefragcnt, 0, "");
140 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
141 	&buffreekvacnt, 0, "");
142 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
143 	&bufreusecnt, 0, "");
144 
145 static int bufhashmask;
146 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
147 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
148 char *buf_wmesg = BUF_WMESG;
149 
150 extern int vm_swap_size;
151 
152 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
153 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
154 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
155 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
156 
157 /*
158  * Buffer hash table code.  Note that the logical block scans linearly, which
159  * gives us some L1 cache locality.
160  */
161 
162 static __inline
163 struct bufhashhdr *
164 bufhash(struct vnode *vnp, daddr_t bn)
165 {
166 	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
167 }
168 
169 /*
170  *	numdirtywakeup:
171  *
172  *	If someone is blocked due to there being too many dirty buffers,
173  *	and numdirtybuffers is now reasonable, wake them up.
174  */
175 
176 static __inline void
177 numdirtywakeup(int level)
178 {
179 	if (numdirtybuffers <= level) {
180 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
181 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
182 			wakeup(&needsbuffer);
183 		}
184 	}
185 }
186 
187 /*
188  *	bufspacewakeup:
189  *
190  *	Called when buffer space is potentially available for recovery.
191  *	getnewbuf() will block on this flag when it is unable to free
192  *	sufficient buffer space.  Buffer space becomes recoverable when
193  *	bp's get placed back in the queues.
194  */
195 
196 static __inline void
197 bufspacewakeup(void)
198 {
199 	/*
200 	 * If someone is waiting for BUF space, wake them up.  Even
201 	 * though we haven't freed the kva space yet, the waiting
202 	 * process will be able to now.
203 	 */
204 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
205 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
206 		wakeup(&needsbuffer);
207 	}
208 }
209 
210 /*
211  * runningbufwakeup() - in-progress I/O accounting.
212  *
213  */
214 static __inline void
215 runningbufwakeup(struct buf *bp)
216 {
217 	if (bp->b_runningbufspace) {
218 		runningbufspace -= bp->b_runningbufspace;
219 		bp->b_runningbufspace = 0;
220 		if (runningbufreq && runningbufspace <= lorunningspace) {
221 			runningbufreq = 0;
222 			wakeup(&runningbufreq);
223 		}
224 	}
225 }
226 
227 /*
228  *	bufcountwakeup:
229  *
230  *	Called when a buffer has been added to one of the free queues to
231  *	account for the buffer and to wakeup anyone waiting for free buffers.
232  *	This typically occurs when large amounts of metadata are being handled
233  *	by the buffer cache ( else buffer space runs out first, usually ).
234  */
235 
236 static __inline void
237 bufcountwakeup(void)
238 {
239 	++numfreebuffers;
240 	if (needsbuffer) {
241 		needsbuffer &= ~VFS_BIO_NEED_ANY;
242 		if (numfreebuffers >= hifreebuffers)
243 			needsbuffer &= ~VFS_BIO_NEED_FREE;
244 		wakeup(&needsbuffer);
245 	}
246 }
247 
248 /*
249  *	waitrunningbufspace()
250  *
251  *	runningbufspace is a measure of the amount of I/O currently
252  *	running.  This routine is used in async-write situations to
253  *	prevent creating huge backups of pending writes to a device.
254  *	Only asynchronous writes are governed by this function.
255  *
256  *	Reads will adjust runningbufspace, but will not block based on it.
257  *	The read load has a side effect of reducing the allowed write load.
258  *
259  *	This does NOT turn an async write into a sync write.  It waits
260  *	for earlier writes to complete and generally returns before the
261  *	caller's write has reached the device.
262  */
263 static __inline void
264 waitrunningbufspace(void)
265 {
266 	while (runningbufspace > hirunningspace) {
267 		++runningbufreq;
268 		tsleep(&runningbufreq, PVM, "wdrain", 0);
269 	}
270 }
271 
272 
273 /*
274  *	vfs_buf_test_cache:
275  *
276  *	Called when a buffer is extended.  This function clears the B_CACHE
277  *	bit if the newly extended portion of the buffer does not contain
278  *	valid data.
279  */
280 static __inline__
281 void
282 vfs_buf_test_cache(struct buf *bp,
283 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
284 		  vm_page_t m)
285 {
286 	if (bp->b_flags & B_CACHE) {
287 		int base = (foff + off) & PAGE_MASK;
288 		if (vm_page_is_valid(m, base, size) == 0)
289 			bp->b_flags &= ~B_CACHE;
290 	}
291 }
292 
293 static __inline__
294 void
295 bd_wakeup(int dirtybuflevel)
296 {
297 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
298 		bd_request = 1;
299 		wakeup(&bd_request);
300 	}
301 }
302 
303 /*
304  * bd_speedup - speedup the buffer cache flushing code
305  */
306 
307 static __inline__
308 void
309 bd_speedup(void)
310 {
311 	bd_wakeup(1);
312 }
313 
314 /*
315  * Initialize buffer headers and related structures.
316  */
317 
318 caddr_t
319 bufhashinit(caddr_t vaddr)
320 {
321 	/* first, make a null hash table */
322 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
323 		;
324 	bufhashtbl = (void *)vaddr;
325 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
326 	--bufhashmask;
327 	return(vaddr);
328 }
329 
330 void
331 bufinit(void)
332 {
333 	struct buf *bp;
334 	int i;
335 
336 	TAILQ_INIT(&bswlist);
337 	LIST_INIT(&invalhash);
338 	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
339 
340 	for (i = 0; i <= bufhashmask; i++)
341 		LIST_INIT(&bufhashtbl[i]);
342 
343 	/* next, make a null set of free lists */
344 	for (i = 0; i < BUFFER_QUEUES; i++)
345 		TAILQ_INIT(&bufqueues[i]);
346 
347 	/* finally, initialize each buffer header and stick on empty q */
348 	for (i = 0; i < nbuf; i++) {
349 		bp = &buf[i];
350 		bzero(bp, sizeof *bp);
351 		bp->b_flags = B_INVAL;	/* we're just an empty header */
352 		bp->b_dev = NODEV;
353 		bp->b_rcred = NOCRED;
354 		bp->b_wcred = NOCRED;
355 		bp->b_qindex = QUEUE_EMPTY;
356 		bp->b_xflags = 0;
357 		LIST_INIT(&bp->b_dep);
358 		BUF_LOCKINIT(bp);
359 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
360 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
361 	}
362 
363 	/*
364 	 * maxbufspace is the absolute maximum amount of buffer space we are
365 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
366 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
367 	 * used by most other processes.  The differential is required to
368 	 * ensure that buf_daemon is able to run when other processes might
369 	 * be blocked waiting for buffer space.
370 	 *
371 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
372 	 * this may result in KVM fragmentation which is not handled optimally
373 	 * by the system.
374 	 */
375 	maxbufspace = nbuf * BKVASIZE;
376 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
377 	lobufspace = hibufspace - MAXBSIZE;
378 
379 	lorunningspace = 512 * 1024;
380 	hirunningspace = 1024 * 1024;
381 
382 /*
383  * Limit the amount of malloc memory since it is wired permanently into
384  * the kernel space.  Even though this is accounted for in the buffer
385  * allocation, we don't want the malloced region to grow uncontrolled.
386  * The malloc scheme improves memory utilization significantly on average
387  * (small) directories.
388  */
389 	maxbufmallocspace = hibufspace / 20;
390 
391 /*
392  * Reduce the chance of a deadlock occuring by limiting the number
393  * of delayed-write dirty buffers we allow to stack up.
394  */
395 	hidirtybuffers = nbuf / 4 + 20;
396 	numdirtybuffers = 0;
397 /*
398  * To support extreme low-memory systems, make sure hidirtybuffers cannot
399  * eat up all available buffer space.  This occurs when our minimum cannot
400  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
401  * BKVASIZE'd (8K) buffers.
402  */
403 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
404 		hidirtybuffers >>= 1;
405 	}
406 	lodirtybuffers = hidirtybuffers / 2;
407 
408 /*
409  * Try to keep the number of free buffers in the specified range,
410  * and give special processes (e.g. like buf_daemon) access to an
411  * emergency reserve.
412  */
413 	lofreebuffers = nbuf / 18 + 5;
414 	hifreebuffers = 2 * lofreebuffers;
415 	numfreebuffers = nbuf;
416 
417 /*
418  * Maximum number of async ops initiated per buf_daemon loop.  This is
419  * somewhat of a hack at the moment, we really need to limit ourselves
420  * based on the number of bytes of I/O in-transit that were initiated
421  * from buf_daemon.
422  */
423 
424 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
425 	bogus_page = vm_page_alloc(kernel_object,
426 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
427 			VM_ALLOC_NORMAL);
428 	cnt.v_wire_count++;
429 
430 }
431 
432 /*
433  * bfreekva() - free the kva allocation for a buffer.
434  *
435  *	Must be called at splbio() or higher as this is the only locking for
436  *	buffer_map.
437  *
438  *	Since this call frees up buffer space, we call bufspacewakeup().
439  */
440 static void
441 bfreekva(struct buf * bp)
442 {
443 	if (bp->b_kvasize) {
444 		++buffreekvacnt;
445 		bufspace -= bp->b_kvasize;
446 		vm_map_delete(buffer_map,
447 		    (vm_offset_t) bp->b_kvabase,
448 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
449 		);
450 		bp->b_kvasize = 0;
451 		bufspacewakeup();
452 	}
453 }
454 
455 /*
456  *	bremfree:
457  *
458  *	Remove the buffer from the appropriate free list.
459  */
460 void
461 bremfree(struct buf * bp)
462 {
463 	int s = splbio();
464 	int old_qindex = bp->b_qindex;
465 
466 	if (bp->b_qindex != QUEUE_NONE) {
467 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
468 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
469 		bp->b_qindex = QUEUE_NONE;
470 	} else {
471 		if (BUF_REFCNT(bp) <= 1)
472 			panic("bremfree: removing a buffer not on a queue");
473 	}
474 
475 	/*
476 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
477 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
478 	 * the buffer was free and we must decrement numfreebuffers.
479 	 */
480 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
481 		switch(old_qindex) {
482 		case QUEUE_DIRTY:
483 		case QUEUE_CLEAN:
484 		case QUEUE_EMPTY:
485 		case QUEUE_EMPTYKVA:
486 			--numfreebuffers;
487 			break;
488 		default:
489 			break;
490 		}
491 	}
492 	splx(s);
493 }
494 
495 
496 /*
497  * Get a buffer with the specified data.  Look in the cache first.  We
498  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
499  * is set, the buffer is valid and we do not have to do anything ( see
500  * getblk() ).
501  */
502 int
503 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
504     struct buf ** bpp)
505 {
506 	struct buf *bp;
507 
508 	bp = getblk(vp, blkno, size, 0, 0);
509 	*bpp = bp;
510 
511 	/* if not found in cache, do some I/O */
512 	if ((bp->b_flags & B_CACHE) == 0) {
513 		if (curproc != PCPU_GET(idleproc))
514 			curproc->p_stats->p_ru.ru_inblock++;
515 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
516 		bp->b_iocmd = BIO_READ;
517 		bp->b_flags &= ~B_INVAL;
518 		bp->b_ioflags &= ~BIO_ERROR;
519 		if (bp->b_rcred == NOCRED) {
520 			if (cred != NOCRED)
521 				crhold(cred);
522 			bp->b_rcred = cred;
523 		}
524 		vfs_busy_pages(bp, 0);
525 		VOP_STRATEGY(vp, bp);
526 		return (bufwait(bp));
527 	}
528 	return (0);
529 }
530 
531 /*
532  * Operates like bread, but also starts asynchronous I/O on
533  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
534  * to initiating I/O . If B_CACHE is set, the buffer is valid
535  * and we do not have to do anything.
536  */
537 int
538 breadn(struct vnode * vp, daddr_t blkno, int size,
539     daddr_t * rablkno, int *rabsize,
540     int cnt, struct ucred * cred, struct buf ** bpp)
541 {
542 	struct buf *bp, *rabp;
543 	int i;
544 	int rv = 0, readwait = 0;
545 
546 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
547 
548 	/* if not found in cache, do some I/O */
549 	if ((bp->b_flags & B_CACHE) == 0) {
550 		if (curproc != PCPU_GET(idleproc))
551 			curproc->p_stats->p_ru.ru_inblock++;
552 		bp->b_iocmd = BIO_READ;
553 		bp->b_flags &= ~B_INVAL;
554 		bp->b_ioflags &= ~BIO_ERROR;
555 		if (bp->b_rcred == NOCRED) {
556 			if (cred != NOCRED)
557 				crhold(cred);
558 			bp->b_rcred = cred;
559 		}
560 		vfs_busy_pages(bp, 0);
561 		VOP_STRATEGY(vp, bp);
562 		++readwait;
563 	}
564 
565 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
566 		if (inmem(vp, *rablkno))
567 			continue;
568 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
569 
570 		if ((rabp->b_flags & B_CACHE) == 0) {
571 			if (curproc != PCPU_GET(idleproc))
572 				curproc->p_stats->p_ru.ru_inblock++;
573 			rabp->b_flags |= B_ASYNC;
574 			rabp->b_flags &= ~B_INVAL;
575 			rabp->b_ioflags &= ~BIO_ERROR;
576 			rabp->b_iocmd = BIO_READ;
577 			if (rabp->b_rcred == NOCRED) {
578 				if (cred != NOCRED)
579 					crhold(cred);
580 				rabp->b_rcred = cred;
581 			}
582 			vfs_busy_pages(rabp, 0);
583 			BUF_KERNPROC(rabp);
584 			VOP_STRATEGY(vp, rabp);
585 		} else {
586 			brelse(rabp);
587 		}
588 	}
589 
590 	if (readwait) {
591 		rv = bufwait(bp);
592 	}
593 	return (rv);
594 }
595 
596 /*
597  * Write, release buffer on completion.  (Done by iodone
598  * if async).  Do not bother writing anything if the buffer
599  * is invalid.
600  *
601  * Note that we set B_CACHE here, indicating that buffer is
602  * fully valid and thus cacheable.  This is true even of NFS
603  * now so we set it generally.  This could be set either here
604  * or in biodone() since the I/O is synchronous.  We put it
605  * here.
606  */
607 int
608 bwrite(struct buf * bp)
609 {
610 	int oldflags, s;
611 	struct buf *newbp;
612 
613 	if (bp->b_flags & B_INVAL) {
614 		brelse(bp);
615 		return (0);
616 	}
617 
618 	oldflags = bp->b_flags;
619 
620 	if (BUF_REFCNT(bp) == 0)
621 		panic("bwrite: buffer is not busy???");
622 	s = splbio();
623 	/*
624 	 * If a background write is already in progress, delay
625 	 * writing this block if it is asynchronous. Otherwise
626 	 * wait for the background write to complete.
627 	 */
628 	if (bp->b_xflags & BX_BKGRDINPROG) {
629 		if (bp->b_flags & B_ASYNC) {
630 			splx(s);
631 			bdwrite(bp);
632 			return (0);
633 		}
634 		bp->b_xflags |= BX_BKGRDWAIT;
635 		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
636 		if (bp->b_xflags & BX_BKGRDINPROG)
637 			panic("bwrite: still writing");
638 	}
639 
640 	/* Mark the buffer clean */
641 	bundirty(bp);
642 
643 	/*
644 	 * If this buffer is marked for background writing and we
645 	 * do not have to wait for it, make a copy and write the
646 	 * copy so as to leave this buffer ready for further use.
647 	 *
648 	 * This optimization eats a lot of memory.  If we have a page
649 	 * or buffer shortfall we can't do it.
650 	 */
651 	if ((bp->b_xflags & BX_BKGRDWRITE) &&
652 	    (bp->b_flags & B_ASYNC) &&
653 	    !vm_page_count_severe() &&
654 	    !buf_dirty_count_severe()) {
655 		if (bp->b_iodone != NULL) {
656 			printf("bp->b_iodone = %p\n", bp->b_iodone);
657 			panic("bwrite: need chained iodone");
658 		}
659 
660 		/* get a new block */
661 		newbp = geteblk(bp->b_bufsize);
662 
663 		/* set it to be identical to the old block */
664 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
665 		bgetvp(bp->b_vp, newbp);
666 		newbp->b_lblkno = bp->b_lblkno;
667 		newbp->b_blkno = bp->b_blkno;
668 		newbp->b_offset = bp->b_offset;
669 		newbp->b_iodone = vfs_backgroundwritedone;
670 		newbp->b_flags |= B_ASYNC;
671 		newbp->b_flags &= ~B_INVAL;
672 
673 		/* move over the dependencies */
674 		if (LIST_FIRST(&bp->b_dep) != NULL)
675 			buf_movedeps(bp, newbp);
676 
677 		/*
678 		 * Initiate write on the copy, release the original to
679 		 * the B_LOCKED queue so that it cannot go away until
680 		 * the background write completes. If not locked it could go
681 		 * away and then be reconstituted while it was being written.
682 		 * If the reconstituted buffer were written, we could end up
683 		 * with two background copies being written at the same time.
684 		 */
685 		bp->b_xflags |= BX_BKGRDINPROG;
686 		bp->b_flags |= B_LOCKED;
687 		bqrelse(bp);
688 		bp = newbp;
689 	}
690 
691 	bp->b_flags &= ~B_DONE;
692 	bp->b_ioflags &= ~BIO_ERROR;
693 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
694 	bp->b_iocmd = BIO_WRITE;
695 
696 	bp->b_vp->v_numoutput++;
697 	vfs_busy_pages(bp, 1);
698 	if (curproc != PCPU_GET(idleproc))
699 		curproc->p_stats->p_ru.ru_oublock++;
700 	splx(s);
701 	if (oldflags & B_ASYNC)
702 		BUF_KERNPROC(bp);
703 	BUF_STRATEGY(bp);
704 
705 	if ((oldflags & B_ASYNC) == 0) {
706 		int rtval = bufwait(bp);
707 		brelse(bp);
708 		return (rtval);
709 	} else {
710 		/*
711 		 * don't allow the async write to saturate the I/O
712 		 * system.  There is no chance of deadlock here because
713 		 * we are blocking on I/O that is already in-progress.
714 		 */
715 		waitrunningbufspace();
716 	}
717 
718 	return (0);
719 }
720 
721 /*
722  * Complete a background write started from bwrite.
723  */
724 static void
725 vfs_backgroundwritedone(bp)
726 	struct buf *bp;
727 {
728 	struct buf *origbp;
729 
730 	/*
731 	 * Find the original buffer that we are writing.
732 	 */
733 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
734 		panic("backgroundwritedone: lost buffer");
735 	/*
736 	 * Process dependencies then return any unfinished ones.
737 	 */
738 	if (LIST_FIRST(&bp->b_dep) != NULL)
739 		buf_complete(bp);
740 	if (LIST_FIRST(&bp->b_dep) != NULL)
741 		buf_movedeps(bp, origbp);
742 	/*
743 	 * Clear the BX_BKGRDINPROG flag in the original buffer
744 	 * and awaken it if it is waiting for the write to complete.
745 	 * If BX_BKGRDINPROG is not set in the original buffer it must
746 	 * have been released and re-instantiated - which is not legal.
747 	 */
748 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
749 	origbp->b_xflags &= ~BX_BKGRDINPROG;
750 	if (origbp->b_xflags & BX_BKGRDWAIT) {
751 		origbp->b_xflags &= ~BX_BKGRDWAIT;
752 		wakeup(&origbp->b_xflags);
753 	}
754 	/*
755 	 * Clear the B_LOCKED flag and remove it from the locked
756 	 * queue if it currently resides there.
757 	 */
758 	origbp->b_flags &= ~B_LOCKED;
759 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
760 		bremfree(origbp);
761 		bqrelse(origbp);
762 	}
763 	/*
764 	 * This buffer is marked B_NOCACHE, so when it is released
765 	 * by biodone, it will be tossed. We mark it with BIO_READ
766 	 * to avoid biodone doing a second vwakeup.
767 	 */
768 	bp->b_flags |= B_NOCACHE;
769 	bp->b_iocmd = BIO_READ;
770 	bp->b_flags &= ~(B_CACHE | B_DONE);
771 	bp->b_iodone = 0;
772 	bufdone(bp);
773 }
774 
775 /*
776  * Delayed write. (Buffer is marked dirty).  Do not bother writing
777  * anything if the buffer is marked invalid.
778  *
779  * Note that since the buffer must be completely valid, we can safely
780  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
781  * biodone() in order to prevent getblk from writing the buffer
782  * out synchronously.
783  */
784 void
785 bdwrite(struct buf * bp)
786 {
787 	if (BUF_REFCNT(bp) == 0)
788 		panic("bdwrite: buffer is not busy");
789 
790 	if (bp->b_flags & B_INVAL) {
791 		brelse(bp);
792 		return;
793 	}
794 	bdirty(bp);
795 
796 	/*
797 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
798 	 * true even of NFS now.
799 	 */
800 	bp->b_flags |= B_CACHE;
801 
802 	/*
803 	 * This bmap keeps the system from needing to do the bmap later,
804 	 * perhaps when the system is attempting to do a sync.  Since it
805 	 * is likely that the indirect block -- or whatever other datastructure
806 	 * that the filesystem needs is still in memory now, it is a good
807 	 * thing to do this.  Note also, that if the pageout daemon is
808 	 * requesting a sync -- there might not be enough memory to do
809 	 * the bmap then...  So, this is important to do.
810 	 */
811 	if (bp->b_lblkno == bp->b_blkno) {
812 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
813 	}
814 
815 	/*
816 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
817 	 */
818 	vfs_setdirty(bp);
819 
820 	/*
821 	 * We need to do this here to satisfy the vnode_pager and the
822 	 * pageout daemon, so that it thinks that the pages have been
823 	 * "cleaned".  Note that since the pages are in a delayed write
824 	 * buffer -- the VFS layer "will" see that the pages get written
825 	 * out on the next sync, or perhaps the cluster will be completed.
826 	 */
827 	vfs_clean_pages(bp);
828 	bqrelse(bp);
829 
830 	/*
831 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
832 	 * buffers (midpoint between our recovery point and our stall
833 	 * point).
834 	 */
835 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
836 
837 	/*
838 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
839 	 * due to the softdep code.
840 	 */
841 }
842 
843 /*
844  *	bdirty:
845  *
846  *	Turn buffer into delayed write request.  We must clear BIO_READ and
847  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
848  *	itself to properly update it in the dirty/clean lists.  We mark it
849  *	B_DONE to ensure that any asynchronization of the buffer properly
850  *	clears B_DONE ( else a panic will occur later ).
851  *
852  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
853  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
854  *	should only be called if the buffer is known-good.
855  *
856  *	Since the buffer is not on a queue, we do not update the numfreebuffers
857  *	count.
858  *
859  *	Must be called at splbio().
860  *	The buffer must be on QUEUE_NONE.
861  */
862 void
863 bdirty(bp)
864 	struct buf *bp;
865 {
866 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
867 	bp->b_flags &= ~(B_RELBUF);
868 	bp->b_iocmd = BIO_WRITE;
869 
870 	if ((bp->b_flags & B_DELWRI) == 0) {
871 		bp->b_flags |= B_DONE | B_DELWRI;
872 		reassignbuf(bp, bp->b_vp);
873 		++numdirtybuffers;
874 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
875 	}
876 }
877 
878 /*
879  *	bundirty:
880  *
881  *	Clear B_DELWRI for buffer.
882  *
883  *	Since the buffer is not on a queue, we do not update the numfreebuffers
884  *	count.
885  *
886  *	Must be called at splbio().
887  *	The buffer must be on QUEUE_NONE.
888  */
889 
890 void
891 bundirty(bp)
892 	struct buf *bp;
893 {
894 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
895 
896 	if (bp->b_flags & B_DELWRI) {
897 		bp->b_flags &= ~B_DELWRI;
898 		reassignbuf(bp, bp->b_vp);
899 		--numdirtybuffers;
900 		numdirtywakeup(lodirtybuffers);
901 	}
902 	/*
903 	 * Since it is now being written, we can clear its deferred write flag.
904 	 */
905 	bp->b_flags &= ~B_DEFERRED;
906 }
907 
908 /*
909  *	bawrite:
910  *
911  *	Asynchronous write.  Start output on a buffer, but do not wait for
912  *	it to complete.  The buffer is released when the output completes.
913  *
914  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
915  *	B_INVAL buffers.  Not us.
916  */
917 void
918 bawrite(struct buf * bp)
919 {
920 	bp->b_flags |= B_ASYNC;
921 	(void) BUF_WRITE(bp);
922 }
923 
924 /*
925  *	bowrite:
926  *
927  *	Ordered write.  Start output on a buffer, and flag it so that the
928  *	device will write it in the order it was queued.  The buffer is
929  *	released when the output completes.  bwrite() ( or the VOP routine
930  *	anyway ) is responsible for handling B_INVAL buffers.
931  */
932 int
933 bowrite(struct buf * bp)
934 {
935 	bp->b_ioflags |= BIO_ORDERED;
936 	bp->b_flags |= B_ASYNC;
937 	return (BUF_WRITE(bp));
938 }
939 
940 /*
941  *	bwillwrite:
942  *
943  *	Called prior to the locking of any vnodes when we are expecting to
944  *	write.  We do not want to starve the buffer cache with too many
945  *	dirty buffers so we block here.  By blocking prior to the locking
946  *	of any vnodes we attempt to avoid the situation where a locked vnode
947  *	prevents the various system daemons from flushing related buffers.
948  */
949 
950 void
951 bwillwrite(void)
952 {
953 	if (numdirtybuffers >= hidirtybuffers) {
954 		int s;
955 
956 		s = splbio();
957 		while (numdirtybuffers >= hidirtybuffers) {
958 			bd_wakeup(1);
959 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
960 			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
961 		}
962 		splx(s);
963 	}
964 }
965 
966 /*
967  * Return true if we have too many dirty buffers.
968  */
969 int
970 buf_dirty_count_severe(void)
971 {
972 	return(numdirtybuffers >= hidirtybuffers);
973 }
974 
975 /*
976  *	brelse:
977  *
978  *	Release a busy buffer and, if requested, free its resources.  The
979  *	buffer will be stashed in the appropriate bufqueue[] allowing it
980  *	to be accessed later as a cache entity or reused for other purposes.
981  */
982 void
983 brelse(struct buf * bp)
984 {
985 	int s;
986 
987 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
988 
989 	s = splbio();
990 
991 	if (bp->b_flags & B_LOCKED)
992 		bp->b_ioflags &= ~BIO_ERROR;
993 
994 	if (bp->b_iocmd == BIO_WRITE &&
995 	    (bp->b_ioflags & BIO_ERROR) &&
996 	    !(bp->b_flags & B_INVAL)) {
997 		/*
998 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
999 		 * pages from being scrapped.  If B_INVAL is set then
1000 		 * this case is not run and the next case is run to
1001 		 * destroy the buffer.  B_INVAL can occur if the buffer
1002 		 * is outside the range supported by the underlying device.
1003 		 */
1004 		bp->b_ioflags &= ~BIO_ERROR;
1005 		bdirty(bp);
1006 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1007 	    (bp->b_ioflags & BIO_ERROR) ||
1008 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1009 		/*
1010 		 * Either a failed I/O or we were asked to free or not
1011 		 * cache the buffer.
1012 		 */
1013 		bp->b_flags |= B_INVAL;
1014 		if (LIST_FIRST(&bp->b_dep) != NULL)
1015 			buf_deallocate(bp);
1016 		if (bp->b_flags & B_DELWRI) {
1017 			--numdirtybuffers;
1018 			numdirtywakeup(lodirtybuffers);
1019 		}
1020 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1021 		if ((bp->b_flags & B_VMIO) == 0) {
1022 			if (bp->b_bufsize)
1023 				allocbuf(bp, 0);
1024 			if (bp->b_vp)
1025 				brelvp(bp);
1026 		}
1027 	}
1028 
1029 	/*
1030 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1031 	 * is called with B_DELWRI set, the underlying pages may wind up
1032 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1033 	 * because pages associated with a B_DELWRI bp are marked clean.
1034 	 *
1035 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1036 	 * if B_DELWRI is set.
1037 	 *
1038 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1039 	 * on pages to return pages to the VM page queues.
1040 	 */
1041 	if (bp->b_flags & B_DELWRI)
1042 		bp->b_flags &= ~B_RELBUF;
1043 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1044 		bp->b_flags |= B_RELBUF;
1045 
1046 	/*
1047 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1048 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1049 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1050 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1051 	 *
1052 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1053 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1054 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1055 	 *
1056 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1057 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1058 	 * the commit state and we cannot afford to lose the buffer. If the
1059 	 * buffer has a background write in progress, we need to keep it
1060 	 * around to prevent it from being reconstituted and starting a second
1061 	 * background write.
1062 	 */
1063 	if ((bp->b_flags & B_VMIO)
1064 	    && !(bp->b_vp->v_tag == VT_NFS &&
1065 		 !vn_isdisk(bp->b_vp, NULL) &&
1066 		 (bp->b_flags & B_DELWRI))
1067 	    ) {
1068 
1069 		int i, j, resid;
1070 		vm_page_t m;
1071 		off_t foff;
1072 		vm_pindex_t poff;
1073 		vm_object_t obj;
1074 		struct vnode *vp;
1075 
1076 		vp = bp->b_vp;
1077 
1078 		/*
1079 		 * Get the base offset and length of the buffer.  Note that
1080 		 * for block sizes that are less then PAGE_SIZE, the b_data
1081 		 * base of the buffer does not represent exactly b_offset and
1082 		 * neither b_offset nor b_size are necessarily page aligned.
1083 		 * Instead, the starting position of b_offset is:
1084 		 *
1085 		 * 	b_data + (b_offset & PAGE_MASK)
1086 		 *
1087 		 * block sizes less then DEV_BSIZE (usually 512) are not
1088 		 * supported due to the page granularity bits (m->valid,
1089 		 * m->dirty, etc...).
1090 		 *
1091 		 * See man buf(9) for more information
1092 		 */
1093 		resid = bp->b_bufsize;
1094 		foff = bp->b_offset;
1095 
1096 		for (i = 0; i < bp->b_npages; i++) {
1097 			int had_bogus = 0;
1098 
1099 			m = bp->b_pages[i];
1100 			vm_page_flag_clear(m, PG_ZERO);
1101 
1102 			/*
1103 			 * If we hit a bogus page, fixup *all* the bogus pages
1104 			 * now.
1105 			 */
1106 			if (m == bogus_page) {
1107 				VOP_GETVOBJECT(vp, &obj);
1108 				poff = OFF_TO_IDX(bp->b_offset);
1109 				had_bogus = 1;
1110 
1111 				for (j = i; j < bp->b_npages; j++) {
1112 					vm_page_t mtmp;
1113 					mtmp = bp->b_pages[j];
1114 					if (mtmp == bogus_page) {
1115 						mtmp = vm_page_lookup(obj, poff + j);
1116 						if (!mtmp) {
1117 							panic("brelse: page missing\n");
1118 						}
1119 						bp->b_pages[j] = mtmp;
1120 					}
1121 				}
1122 
1123 				if ((bp->b_flags & B_INVAL) == 0) {
1124 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1125 				}
1126 				m = bp->b_pages[i];
1127 			}
1128 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1129 				int poffset = foff & PAGE_MASK;
1130 				int presid = resid > (PAGE_SIZE - poffset) ?
1131 					(PAGE_SIZE - poffset) : resid;
1132 
1133 				KASSERT(presid >= 0, ("brelse: extra page"));
1134 				vm_page_set_invalid(m, poffset, presid);
1135 				if (had_bogus)
1136 					printf("avoided corruption bug in bogus_page/brelse code\n");
1137 			}
1138 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1139 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1140 		}
1141 
1142 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1143 			vfs_vmio_release(bp);
1144 
1145 	} else if (bp->b_flags & B_VMIO) {
1146 
1147 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1148 			vfs_vmio_release(bp);
1149 
1150 	}
1151 
1152 	if (bp->b_qindex != QUEUE_NONE)
1153 		panic("brelse: free buffer onto another queue???");
1154 	if (BUF_REFCNT(bp) > 1) {
1155 		/* do not release to free list */
1156 		BUF_UNLOCK(bp);
1157 		splx(s);
1158 		return;
1159 	}
1160 
1161 	/* enqueue */
1162 
1163 	/* buffers with no memory */
1164 	if (bp->b_bufsize == 0) {
1165 		bp->b_flags |= B_INVAL;
1166 		bp->b_xflags &= ~BX_BKGRDWRITE;
1167 		if (bp->b_xflags & BX_BKGRDINPROG)
1168 			panic("losing buffer 1");
1169 		if (bp->b_kvasize) {
1170 			bp->b_qindex = QUEUE_EMPTYKVA;
1171 		} else {
1172 			bp->b_qindex = QUEUE_EMPTY;
1173 		}
1174 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1175 		LIST_REMOVE(bp, b_hash);
1176 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1177 		bp->b_dev = NODEV;
1178 	/* buffers with junk contents */
1179 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1180 		bp->b_flags |= B_INVAL;
1181 		bp->b_xflags &= ~BX_BKGRDWRITE;
1182 		if (bp->b_xflags & BX_BKGRDINPROG)
1183 			panic("losing buffer 2");
1184 		bp->b_qindex = QUEUE_CLEAN;
1185 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1186 		LIST_REMOVE(bp, b_hash);
1187 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1188 		bp->b_dev = NODEV;
1189 
1190 	/* buffers that are locked */
1191 	} else if (bp->b_flags & B_LOCKED) {
1192 		bp->b_qindex = QUEUE_LOCKED;
1193 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1194 
1195 	/* remaining buffers */
1196 	} else {
1197 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1198 		case B_DELWRI | B_AGE:
1199 		    bp->b_qindex = QUEUE_DIRTY;
1200 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1201 		    break;
1202 		case B_DELWRI:
1203 		    bp->b_qindex = QUEUE_DIRTY;
1204 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1205 		    break;
1206 		case B_AGE:
1207 		    bp->b_qindex = QUEUE_CLEAN;
1208 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1209 		    break;
1210 		default:
1211 		    bp->b_qindex = QUEUE_CLEAN;
1212 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1213 		    break;
1214 		}
1215 	}
1216 
1217 	/*
1218 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1219 	 * on the correct queue.
1220 	 */
1221 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1222 		bp->b_flags &= ~B_DELWRI;
1223 		--numdirtybuffers;
1224 		numdirtywakeup(lodirtybuffers);
1225 	}
1226 
1227 	/*
1228 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1229 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1230 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1231 	 * if B_INVAL is set ).
1232 	 */
1233 
1234 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1235 		bufcountwakeup();
1236 
1237 	/*
1238 	 * Something we can maybe free or reuse
1239 	 */
1240 	if (bp->b_bufsize || bp->b_kvasize)
1241 		bufspacewakeup();
1242 
1243 	/* unlock */
1244 	BUF_UNLOCK(bp);
1245 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1246 	bp->b_ioflags &= ~BIO_ORDERED;
1247 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1248 		panic("brelse: not dirty");
1249 	splx(s);
1250 }
1251 
1252 /*
1253  * Release a buffer back to the appropriate queue but do not try to free
1254  * it.  The buffer is expected to be used again soon.
1255  *
1256  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1257  * biodone() to requeue an async I/O on completion.  It is also used when
1258  * known good buffers need to be requeued but we think we may need the data
1259  * again soon.
1260  */
1261 void
1262 bqrelse(struct buf * bp)
1263 {
1264 	int s;
1265 
1266 	s = splbio();
1267 
1268 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1269 
1270 	if (bp->b_qindex != QUEUE_NONE)
1271 		panic("bqrelse: free buffer onto another queue???");
1272 	if (BUF_REFCNT(bp) > 1) {
1273 		/* do not release to free list */
1274 		BUF_UNLOCK(bp);
1275 		splx(s);
1276 		return;
1277 	}
1278 	if (bp->b_flags & B_LOCKED) {
1279 		bp->b_ioflags &= ~BIO_ERROR;
1280 		bp->b_qindex = QUEUE_LOCKED;
1281 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1282 		/* buffers with stale but valid contents */
1283 	} else if (bp->b_flags & B_DELWRI) {
1284 		bp->b_qindex = QUEUE_DIRTY;
1285 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1286 	} else if (vm_page_count_severe()) {
1287 		/*
1288 		 * We are too low on memory, we have to try to free the
1289 		 * buffer (most importantly: the wired pages making up its
1290 		 * backing store) *now*.
1291 		 */
1292 		splx(s);
1293 		brelse(bp);
1294 		return;
1295 	} else {
1296 		bp->b_qindex = QUEUE_CLEAN;
1297 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1298 	}
1299 
1300 	if ((bp->b_flags & B_LOCKED) == 0 &&
1301 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1302 		bufcountwakeup();
1303 	}
1304 
1305 	/*
1306 	 * Something we can maybe free or reuse.
1307 	 */
1308 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1309 		bufspacewakeup();
1310 
1311 	/* unlock */
1312 	BUF_UNLOCK(bp);
1313 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1314 	bp->b_ioflags &= ~BIO_ORDERED;
1315 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1316 		panic("bqrelse: not dirty");
1317 	splx(s);
1318 }
1319 
1320 static void
1321 vfs_vmio_release(bp)
1322 	struct buf *bp;
1323 {
1324 	int i, s;
1325 	vm_page_t m;
1326 
1327 	s = splvm();
1328 	for (i = 0; i < bp->b_npages; i++) {
1329 		m = bp->b_pages[i];
1330 		bp->b_pages[i] = NULL;
1331 		/*
1332 		 * In order to keep page LRU ordering consistent, put
1333 		 * everything on the inactive queue.
1334 		 */
1335 		vm_page_unwire(m, 0);
1336 		/*
1337 		 * We don't mess with busy pages, it is
1338 		 * the responsibility of the process that
1339 		 * busied the pages to deal with them.
1340 		 */
1341 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1342 			continue;
1343 
1344 		if (m->wire_count == 0) {
1345 			vm_page_flag_clear(m, PG_ZERO);
1346 			/*
1347 			 * Might as well free the page if we can and it has
1348 			 * no valid data.
1349 			 */
1350 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1351 				vm_page_busy(m);
1352 				vm_page_protect(m, VM_PROT_NONE);
1353 				vm_page_free(m);
1354 			} else if (vm_page_count_severe()) {
1355 				vm_page_try_to_cache(m);
1356 			}
1357 		}
1358 	}
1359 	splx(s);
1360 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1361 	if (bp->b_bufsize) {
1362 		bufspacewakeup();
1363 		bp->b_bufsize = 0;
1364 	}
1365 	bp->b_npages = 0;
1366 	bp->b_flags &= ~B_VMIO;
1367 	if (bp->b_vp)
1368 		brelvp(bp);
1369 }
1370 
1371 /*
1372  * Check to see if a block is currently memory resident.
1373  */
1374 struct buf *
1375 gbincore(struct vnode * vp, daddr_t blkno)
1376 {
1377 	struct buf *bp;
1378 	struct bufhashhdr *bh;
1379 
1380 	bh = bufhash(vp, blkno);
1381 
1382 	/* Search hash chain */
1383 	LIST_FOREACH(bp, bh, b_hash) {
1384 		/* hit */
1385 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1386 		    (bp->b_flags & B_INVAL) == 0) {
1387 			break;
1388 		}
1389 	}
1390 	return (bp);
1391 }
1392 
1393 /*
1394  *	vfs_bio_awrite:
1395  *
1396  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1397  *	This is much better then the old way of writing only one buffer at
1398  *	a time.  Note that we may not be presented with the buffers in the
1399  *	correct order, so we search for the cluster in both directions.
1400  */
1401 int
1402 vfs_bio_awrite(struct buf * bp)
1403 {
1404 	int i;
1405 	int j;
1406 	daddr_t lblkno = bp->b_lblkno;
1407 	struct vnode *vp = bp->b_vp;
1408 	int s;
1409 	int ncl;
1410 	struct buf *bpa;
1411 	int nwritten;
1412 	int size;
1413 	int maxcl;
1414 
1415 	s = splbio();
1416 	/*
1417 	 * right now we support clustered writing only to regular files.  If
1418 	 * we find a clusterable block we could be in the middle of a cluster
1419 	 * rather then at the beginning.
1420 	 */
1421 	if ((vp->v_type == VREG) &&
1422 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1423 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1424 
1425 		size = vp->v_mount->mnt_stat.f_iosize;
1426 		maxcl = MAXPHYS / size;
1427 
1428 		for (i = 1; i < maxcl; i++) {
1429 			if ((bpa = gbincore(vp, lblkno + i)) &&
1430 			    BUF_REFCNT(bpa) == 0 &&
1431 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1432 			    (B_DELWRI | B_CLUSTEROK)) &&
1433 			    (bpa->b_bufsize == size)) {
1434 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1435 				    (bpa->b_blkno !=
1436 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1437 					break;
1438 			} else {
1439 				break;
1440 			}
1441 		}
1442 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1443 			if ((bpa = gbincore(vp, lblkno - j)) &&
1444 			    BUF_REFCNT(bpa) == 0 &&
1445 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1446 			    (B_DELWRI | B_CLUSTEROK)) &&
1447 			    (bpa->b_bufsize == size)) {
1448 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1449 				    (bpa->b_blkno !=
1450 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1451 					break;
1452 			} else {
1453 				break;
1454 			}
1455 		}
1456 		--j;
1457 		ncl = i + j;
1458 		/*
1459 		 * this is a possible cluster write
1460 		 */
1461 		if (ncl != 1) {
1462 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1463 			splx(s);
1464 			return nwritten;
1465 		}
1466 	}
1467 
1468 	BUF_LOCK(bp, LK_EXCLUSIVE);
1469 	bremfree(bp);
1470 	bp->b_flags |= B_ASYNC;
1471 
1472 	splx(s);
1473 	/*
1474 	 * default (old) behavior, writing out only one block
1475 	 *
1476 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1477 	 */
1478 	nwritten = bp->b_bufsize;
1479 	(void) BUF_WRITE(bp);
1480 
1481 	return nwritten;
1482 }
1483 
1484 /*
1485  *	getnewbuf:
1486  *
1487  *	Find and initialize a new buffer header, freeing up existing buffers
1488  *	in the bufqueues as necessary.  The new buffer is returned locked.
1489  *
1490  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1491  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1492  *
1493  *	We block if:
1494  *		We have insufficient buffer headers
1495  *		We have insufficient buffer space
1496  *		buffer_map is too fragmented ( space reservation fails )
1497  *		If we have to flush dirty buffers ( but we try to avoid this )
1498  *
1499  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1500  *	Instead we ask the buf daemon to do it for us.  We attempt to
1501  *	avoid piecemeal wakeups of the pageout daemon.
1502  */
1503 
1504 static struct buf *
1505 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1506 {
1507 	struct buf *bp;
1508 	struct buf *nbp;
1509 	int defrag = 0;
1510 	int nqindex;
1511 	static int flushingbufs;
1512 
1513 	/*
1514 	 * We can't afford to block since we might be holding a vnode lock,
1515 	 * which may prevent system daemons from running.  We deal with
1516 	 * low-memory situations by proactively returning memory and running
1517 	 * async I/O rather then sync I/O.
1518 	 */
1519 
1520 	++getnewbufcalls;
1521 	--getnewbufrestarts;
1522 restart:
1523 	++getnewbufrestarts;
1524 
1525 	/*
1526 	 * Setup for scan.  If we do not have enough free buffers,
1527 	 * we setup a degenerate case that immediately fails.  Note
1528 	 * that if we are specially marked process, we are allowed to
1529 	 * dip into our reserves.
1530 	 *
1531 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1532 	 *
1533 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1534 	 * However, there are a number of cases (defragging, reusing, ...)
1535 	 * where we cannot backup.
1536 	 */
1537 	nqindex = QUEUE_EMPTYKVA;
1538 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1539 
1540 	if (nbp == NULL) {
1541 		/*
1542 		 * If no EMPTYKVA buffers and we are either
1543 		 * defragging or reusing, locate a CLEAN buffer
1544 		 * to free or reuse.  If bufspace useage is low
1545 		 * skip this step so we can allocate a new buffer.
1546 		 */
1547 		if (defrag || bufspace >= lobufspace) {
1548 			nqindex = QUEUE_CLEAN;
1549 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1550 		}
1551 
1552 		/*
1553 		 * If we could not find or were not allowed to reuse a
1554 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1555 		 * buffer.  We can only use an EMPTY buffer if allocating
1556 		 * its KVA would not otherwise run us out of buffer space.
1557 		 */
1558 		if (nbp == NULL && defrag == 0 &&
1559 		    bufspace + maxsize < hibufspace) {
1560 			nqindex = QUEUE_EMPTY;
1561 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1567 	 * depending.
1568 	 */
1569 
1570 	while ((bp = nbp) != NULL) {
1571 		int qindex = nqindex;
1572 
1573 		/*
1574 		 * Calculate next bp ( we can only use it if we do not block
1575 		 * or do other fancy things ).
1576 		 */
1577 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1578 			switch(qindex) {
1579 			case QUEUE_EMPTY:
1580 				nqindex = QUEUE_EMPTYKVA;
1581 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1582 					break;
1583 				/* fall through */
1584 			case QUEUE_EMPTYKVA:
1585 				nqindex = QUEUE_CLEAN;
1586 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1587 					break;
1588 				/* fall through */
1589 			case QUEUE_CLEAN:
1590 				/*
1591 				 * nbp is NULL.
1592 				 */
1593 				break;
1594 			}
1595 		}
1596 
1597 		/*
1598 		 * Sanity Checks
1599 		 */
1600 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1601 
1602 		/*
1603 		 * Note: we no longer distinguish between VMIO and non-VMIO
1604 		 * buffers.
1605 		 */
1606 
1607 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1608 
1609 		/*
1610 		 * If we are defragging then we need a buffer with
1611 		 * b_kvasize != 0.  XXX this situation should no longer
1612 		 * occur, if defrag is non-zero the buffer's b_kvasize
1613 		 * should also be non-zero at this point.  XXX
1614 		 */
1615 		if (defrag && bp->b_kvasize == 0) {
1616 			printf("Warning: defrag empty buffer %p\n", bp);
1617 			continue;
1618 		}
1619 
1620 		/*
1621 		 * Start freeing the bp.  This is somewhat involved.  nbp
1622 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1623 		 */
1624 
1625 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1626 			panic("getnewbuf: locked buf");
1627 		bremfree(bp);
1628 
1629 		if (qindex == QUEUE_CLEAN) {
1630 			if (bp->b_flags & B_VMIO) {
1631 				bp->b_flags &= ~B_ASYNC;
1632 				vfs_vmio_release(bp);
1633 			}
1634 			if (bp->b_vp)
1635 				brelvp(bp);
1636 		}
1637 
1638 		/*
1639 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1640 		 * the scan from this point on.
1641 		 *
1642 		 * Get the rest of the buffer freed up.  b_kva* is still
1643 		 * valid after this operation.
1644 		 */
1645 
1646 		if (bp->b_rcred != NOCRED) {
1647 			crfree(bp->b_rcred);
1648 			bp->b_rcred = NOCRED;
1649 		}
1650 		if (bp->b_wcred != NOCRED) {
1651 			crfree(bp->b_wcred);
1652 			bp->b_wcred = NOCRED;
1653 		}
1654 		if (LIST_FIRST(&bp->b_dep) != NULL)
1655 			buf_deallocate(bp);
1656 		if (bp->b_xflags & BX_BKGRDINPROG)
1657 			panic("losing buffer 3");
1658 		LIST_REMOVE(bp, b_hash);
1659 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1660 
1661 		if (bp->b_bufsize)
1662 			allocbuf(bp, 0);
1663 
1664 		bp->b_flags = 0;
1665 		bp->b_ioflags = 0;
1666 		bp->b_xflags = 0;
1667 		bp->b_dev = NODEV;
1668 		bp->b_vp = NULL;
1669 		bp->b_blkno = bp->b_lblkno = 0;
1670 		bp->b_offset = NOOFFSET;
1671 		bp->b_iodone = 0;
1672 		bp->b_error = 0;
1673 		bp->b_resid = 0;
1674 		bp->b_bcount = 0;
1675 		bp->b_npages = 0;
1676 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1677 
1678 		LIST_INIT(&bp->b_dep);
1679 
1680 		/*
1681 		 * If we are defragging then free the buffer.
1682 		 */
1683 		if (defrag) {
1684 			bp->b_flags |= B_INVAL;
1685 			bfreekva(bp);
1686 			brelse(bp);
1687 			defrag = 0;
1688 			goto restart;
1689 		}
1690 
1691 		/*
1692 		 * If we are overcomitted then recover the buffer and its
1693 		 * KVM space.  This occurs in rare situations when multiple
1694 		 * processes are blocked in getnewbuf() or allocbuf().
1695 		 */
1696 		if (bufspace >= hibufspace)
1697 			flushingbufs = 1;
1698 		if (flushingbufs && bp->b_kvasize != 0) {
1699 			bp->b_flags |= B_INVAL;
1700 			bfreekva(bp);
1701 			brelse(bp);
1702 			goto restart;
1703 		}
1704 		if (bufspace < lobufspace)
1705 			flushingbufs = 0;
1706 		break;
1707 	}
1708 
1709 	/*
1710 	 * If we exhausted our list, sleep as appropriate.  We may have to
1711 	 * wakeup various daemons and write out some dirty buffers.
1712 	 *
1713 	 * Generally we are sleeping due to insufficient buffer space.
1714 	 */
1715 
1716 	if (bp == NULL) {
1717 		int flags;
1718 		char *waitmsg;
1719 
1720 		if (defrag) {
1721 			flags = VFS_BIO_NEED_BUFSPACE;
1722 			waitmsg = "nbufkv";
1723 		} else if (bufspace >= hibufspace) {
1724 			waitmsg = "nbufbs";
1725 			flags = VFS_BIO_NEED_BUFSPACE;
1726 		} else {
1727 			waitmsg = "newbuf";
1728 			flags = VFS_BIO_NEED_ANY;
1729 		}
1730 
1731 		bd_speedup();	/* heeeelp */
1732 
1733 		needsbuffer |= flags;
1734 		while (needsbuffer & flags) {
1735 			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1736 			    waitmsg, slptimeo))
1737 				return (NULL);
1738 		}
1739 	} else {
1740 		/*
1741 		 * We finally have a valid bp.  We aren't quite out of the
1742 		 * woods, we still have to reserve kva space.  In order
1743 		 * to keep fragmentation sane we only allocate kva in
1744 		 * BKVASIZE chunks.
1745 		 */
1746 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1747 
1748 		if (maxsize != bp->b_kvasize) {
1749 			vm_offset_t addr = 0;
1750 
1751 			bfreekva(bp);
1752 
1753 			if (vm_map_findspace(buffer_map,
1754 				vm_map_min(buffer_map), maxsize, &addr)) {
1755 				/*
1756 				 * Uh oh.  Buffer map is to fragmented.  We
1757 				 * must defragment the map.
1758 				 */
1759 				++bufdefragcnt;
1760 				defrag = 1;
1761 				bp->b_flags |= B_INVAL;
1762 				brelse(bp);
1763 				goto restart;
1764 			}
1765 			if (addr) {
1766 				vm_map_insert(buffer_map, NULL, 0,
1767 					addr, addr + maxsize,
1768 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1769 
1770 				bp->b_kvabase = (caddr_t) addr;
1771 				bp->b_kvasize = maxsize;
1772 				bufspace += bp->b_kvasize;
1773 				++bufreusecnt;
1774 			}
1775 		}
1776 		bp->b_data = bp->b_kvabase;
1777 	}
1778 	return(bp);
1779 }
1780 
1781 /*
1782  *	buf_daemon:
1783  *
1784  *	buffer flushing daemon.  Buffers are normally flushed by the
1785  *	update daemon but if it cannot keep up this process starts to
1786  *	take the load in an attempt to prevent getnewbuf() from blocking.
1787  */
1788 
1789 static struct proc *bufdaemonproc;
1790 
1791 static struct kproc_desc buf_kp = {
1792 	"bufdaemon",
1793 	buf_daemon,
1794 	&bufdaemonproc
1795 };
1796 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1797 
1798 static void
1799 buf_daemon()
1800 {
1801 	int s;
1802 
1803 	mtx_lock(&Giant);
1804 
1805 	/*
1806 	 * This process needs to be suspended prior to shutdown sync.
1807 	 */
1808 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1809 	    SHUTDOWN_PRI_LAST);
1810 
1811 	/*
1812 	 * This process is allowed to take the buffer cache to the limit
1813 	 */
1814 	curproc->p_flag |= P_BUFEXHAUST;
1815 	s = splbio();
1816 
1817 	for (;;) {
1818 		kthread_suspend_check(bufdaemonproc);
1819 
1820 		bd_request = 0;
1821 
1822 		/*
1823 		 * Do the flush.  Limit the amount of in-transit I/O we
1824 		 * allow to build up, otherwise we would completely saturate
1825 		 * the I/O system.  Wakeup any waiting processes before we
1826 		 * normally would so they can run in parallel with our drain.
1827 		 */
1828 		while (numdirtybuffers > lodirtybuffers) {
1829 			if (flushbufqueues() == 0)
1830 				break;
1831 			waitrunningbufspace();
1832 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1833 		}
1834 
1835 		/*
1836 		 * Only clear bd_request if we have reached our low water
1837 		 * mark.  The buf_daemon normally waits 5 seconds and
1838 		 * then incrementally flushes any dirty buffers that have
1839 		 * built up, within reason.
1840 		 *
1841 		 * If we were unable to hit our low water mark and couldn't
1842 		 * find any flushable buffers, we sleep half a second.
1843 		 * Otherwise we loop immediately.
1844 		 */
1845 		if (numdirtybuffers <= lodirtybuffers) {
1846 			/*
1847 			 * We reached our low water mark, reset the
1848 			 * request and sleep until we are needed again.
1849 			 * The sleep is just so the suspend code works.
1850 			 */
1851 			bd_request = 0;
1852 			tsleep(&bd_request, PVM, "psleep", hz);
1853 		} else {
1854 			/*
1855 			 * We couldn't find any flushable dirty buffers but
1856 			 * still have too many dirty buffers, we
1857 			 * have to sleep and try again.  (rare)
1858 			 */
1859 			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1860 		}
1861 	}
1862 }
1863 
1864 /*
1865  *	flushbufqueues:
1866  *
1867  *	Try to flush a buffer in the dirty queue.  We must be careful to
1868  *	free up B_INVAL buffers instead of write them, which NFS is
1869  *	particularly sensitive to.
1870  */
1871 
1872 static int
1873 flushbufqueues(void)
1874 {
1875 	struct buf *bp;
1876 	int r = 0;
1877 
1878 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1879 
1880 	while (bp) {
1881 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1882 		if ((bp->b_flags & B_DELWRI) != 0 &&
1883 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1884 			if (bp->b_flags & B_INVAL) {
1885 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1886 					panic("flushbufqueues: locked buf");
1887 				bremfree(bp);
1888 				brelse(bp);
1889 				++r;
1890 				break;
1891 			}
1892 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1893 			    (bp->b_flags & B_DEFERRED) == 0 &&
1894 			    buf_countdeps(bp, 0)) {
1895 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1896 				    bp, b_freelist);
1897 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1898 				    bp, b_freelist);
1899 				bp->b_flags |= B_DEFERRED;
1900 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1901 				continue;
1902 			}
1903 			vfs_bio_awrite(bp);
1904 			++r;
1905 			break;
1906 		}
1907 		bp = TAILQ_NEXT(bp, b_freelist);
1908 	}
1909 	return (r);
1910 }
1911 
1912 /*
1913  * Check to see if a block is currently memory resident.
1914  */
1915 struct buf *
1916 incore(struct vnode * vp, daddr_t blkno)
1917 {
1918 	struct buf *bp;
1919 
1920 	int s = splbio();
1921 	bp = gbincore(vp, blkno);
1922 	splx(s);
1923 	return (bp);
1924 }
1925 
1926 /*
1927  * Returns true if no I/O is needed to access the
1928  * associated VM object.  This is like incore except
1929  * it also hunts around in the VM system for the data.
1930  */
1931 
1932 int
1933 inmem(struct vnode * vp, daddr_t blkno)
1934 {
1935 	vm_object_t obj;
1936 	vm_offset_t toff, tinc, size;
1937 	vm_page_t m;
1938 	vm_ooffset_t off;
1939 
1940 	if (incore(vp, blkno))
1941 		return 1;
1942 	if (vp->v_mount == NULL)
1943 		return 0;
1944 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1945 		return 0;
1946 
1947 	size = PAGE_SIZE;
1948 	if (size > vp->v_mount->mnt_stat.f_iosize)
1949 		size = vp->v_mount->mnt_stat.f_iosize;
1950 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1951 
1952 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1953 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1954 		if (!m)
1955 			return 0;
1956 		tinc = size;
1957 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1958 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1959 		if (vm_page_is_valid(m,
1960 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1961 			return 0;
1962 	}
1963 	return 1;
1964 }
1965 
1966 /*
1967  *	vfs_setdirty:
1968  *
1969  *	Sets the dirty range for a buffer based on the status of the dirty
1970  *	bits in the pages comprising the buffer.
1971  *
1972  *	The range is limited to the size of the buffer.
1973  *
1974  *	This routine is primarily used by NFS, but is generalized for the
1975  *	B_VMIO case.
1976  */
1977 static void
1978 vfs_setdirty(struct buf *bp)
1979 {
1980 	int i;
1981 	vm_object_t object;
1982 
1983 	/*
1984 	 * Degenerate case - empty buffer
1985 	 */
1986 
1987 	if (bp->b_bufsize == 0)
1988 		return;
1989 
1990 	/*
1991 	 * We qualify the scan for modified pages on whether the
1992 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1993 	 * is not cleared simply by protecting pages off.
1994 	 */
1995 
1996 	if ((bp->b_flags & B_VMIO) == 0)
1997 		return;
1998 
1999 	object = bp->b_pages[0]->object;
2000 
2001 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2002 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2003 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2004 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2005 
2006 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2007 		vm_offset_t boffset;
2008 		vm_offset_t eoffset;
2009 
2010 		/*
2011 		 * test the pages to see if they have been modified directly
2012 		 * by users through the VM system.
2013 		 */
2014 		for (i = 0; i < bp->b_npages; i++) {
2015 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2016 			vm_page_test_dirty(bp->b_pages[i]);
2017 		}
2018 
2019 		/*
2020 		 * Calculate the encompassing dirty range, boffset and eoffset,
2021 		 * (eoffset - boffset) bytes.
2022 		 */
2023 
2024 		for (i = 0; i < bp->b_npages; i++) {
2025 			if (bp->b_pages[i]->dirty)
2026 				break;
2027 		}
2028 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2029 
2030 		for (i = bp->b_npages - 1; i >= 0; --i) {
2031 			if (bp->b_pages[i]->dirty) {
2032 				break;
2033 			}
2034 		}
2035 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2036 
2037 		/*
2038 		 * Fit it to the buffer.
2039 		 */
2040 
2041 		if (eoffset > bp->b_bcount)
2042 			eoffset = bp->b_bcount;
2043 
2044 		/*
2045 		 * If we have a good dirty range, merge with the existing
2046 		 * dirty range.
2047 		 */
2048 
2049 		if (boffset < eoffset) {
2050 			if (bp->b_dirtyoff > boffset)
2051 				bp->b_dirtyoff = boffset;
2052 			if (bp->b_dirtyend < eoffset)
2053 				bp->b_dirtyend = eoffset;
2054 		}
2055 	}
2056 }
2057 
2058 /*
2059  *	getblk:
2060  *
2061  *	Get a block given a specified block and offset into a file/device.
2062  *	The buffers B_DONE bit will be cleared on return, making it almost
2063  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2064  *	return.  The caller should clear B_INVAL prior to initiating a
2065  *	READ.
2066  *
2067  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2068  *	an existing buffer.
2069  *
2070  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2071  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2072  *	and then cleared based on the backing VM.  If the previous buffer is
2073  *	non-0-sized but invalid, B_CACHE will be cleared.
2074  *
2075  *	If getblk() must create a new buffer, the new buffer is returned with
2076  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2077  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2078  *	backing VM.
2079  *
2080  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2081  *	B_CACHE bit is clear.
2082  *
2083  *	What this means, basically, is that the caller should use B_CACHE to
2084  *	determine whether the buffer is fully valid or not and should clear
2085  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2086  *	the buffer by loading its data area with something, the caller needs
2087  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2088  *	the caller should set B_CACHE ( as an optimization ), else the caller
2089  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2090  *	a write attempt or if it was a successfull read.  If the caller
2091  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2092  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2093  */
2094 struct buf *
2095 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2096 {
2097 	struct buf *bp;
2098 	int s;
2099 	struct bufhashhdr *bh;
2100 
2101 	if (size > MAXBSIZE)
2102 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2103 
2104 	s = splbio();
2105 loop:
2106 	/*
2107 	 * Block if we are low on buffers.   Certain processes are allowed
2108 	 * to completely exhaust the buffer cache.
2109          *
2110          * If this check ever becomes a bottleneck it may be better to
2111          * move it into the else, when gbincore() fails.  At the moment
2112          * it isn't a problem.
2113 	 *
2114 	 * XXX remove if 0 sections (clean this up after its proven)
2115          */
2116 	if (numfreebuffers == 0) {
2117 		if (curproc == PCPU_GET(idleproc))
2118 			return NULL;
2119 		needsbuffer |= VFS_BIO_NEED_ANY;
2120 	}
2121 
2122 	if ((bp = gbincore(vp, blkno))) {
2123 		/*
2124 		 * Buffer is in-core.  If the buffer is not busy, it must
2125 		 * be on a queue.
2126 		 */
2127 
2128 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2129 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2130 			    "getblk", slpflag, slptimeo) == ENOLCK)
2131 				goto loop;
2132 			splx(s);
2133 			return (struct buf *) NULL;
2134 		}
2135 
2136 		/*
2137 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2138 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2139 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2140 		 * backing VM cache.
2141 		 */
2142 		if (bp->b_flags & B_INVAL)
2143 			bp->b_flags &= ~B_CACHE;
2144 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2145 			bp->b_flags |= B_CACHE;
2146 		bremfree(bp);
2147 
2148 		/*
2149 		 * check for size inconsistancies for non-VMIO case.
2150 		 */
2151 
2152 		if (bp->b_bcount != size) {
2153 			if ((bp->b_flags & B_VMIO) == 0 ||
2154 			    (size > bp->b_kvasize)) {
2155 				if (bp->b_flags & B_DELWRI) {
2156 					bp->b_flags |= B_NOCACHE;
2157 					BUF_WRITE(bp);
2158 				} else {
2159 					if ((bp->b_flags & B_VMIO) &&
2160 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2161 						bp->b_flags |= B_RELBUF;
2162 						brelse(bp);
2163 					} else {
2164 						bp->b_flags |= B_NOCACHE;
2165 						BUF_WRITE(bp);
2166 					}
2167 				}
2168 				goto loop;
2169 			}
2170 		}
2171 
2172 		/*
2173 		 * If the size is inconsistant in the VMIO case, we can resize
2174 		 * the buffer.  This might lead to B_CACHE getting set or
2175 		 * cleared.  If the size has not changed, B_CACHE remains
2176 		 * unchanged from its previous state.
2177 		 */
2178 
2179 		if (bp->b_bcount != size)
2180 			allocbuf(bp, size);
2181 
2182 		KASSERT(bp->b_offset != NOOFFSET,
2183 		    ("getblk: no buffer offset"));
2184 
2185 		/*
2186 		 * A buffer with B_DELWRI set and B_CACHE clear must
2187 		 * be committed before we can return the buffer in
2188 		 * order to prevent the caller from issuing a read
2189 		 * ( due to B_CACHE not being set ) and overwriting
2190 		 * it.
2191 		 *
2192 		 * Most callers, including NFS and FFS, need this to
2193 		 * operate properly either because they assume they
2194 		 * can issue a read if B_CACHE is not set, or because
2195 		 * ( for example ) an uncached B_DELWRI might loop due
2196 		 * to softupdates re-dirtying the buffer.  In the latter
2197 		 * case, B_CACHE is set after the first write completes,
2198 		 * preventing further loops.
2199 		 */
2200 
2201 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2202 			BUF_WRITE(bp);
2203 			goto loop;
2204 		}
2205 
2206 		splx(s);
2207 		bp->b_flags &= ~B_DONE;
2208 	} else {
2209 		/*
2210 		 * Buffer is not in-core, create new buffer.  The buffer
2211 		 * returned by getnewbuf() is locked.  Note that the returned
2212 		 * buffer is also considered valid (not marked B_INVAL).
2213 		 */
2214 		int bsize, maxsize, vmio;
2215 		off_t offset;
2216 
2217 		if (vn_isdisk(vp, NULL))
2218 			bsize = DEV_BSIZE;
2219 		else if (vp->v_mountedhere)
2220 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2221 		else if (vp->v_mount)
2222 			bsize = vp->v_mount->mnt_stat.f_iosize;
2223 		else
2224 			bsize = size;
2225 
2226 		offset = (off_t)blkno * bsize;
2227 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2228 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2229 		maxsize = imax(maxsize, bsize);
2230 
2231 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2232 			if (slpflag || slptimeo) {
2233 				splx(s);
2234 				return NULL;
2235 			}
2236 			goto loop;
2237 		}
2238 
2239 		/*
2240 		 * This code is used to make sure that a buffer is not
2241 		 * created while the getnewbuf routine is blocked.
2242 		 * This can be a problem whether the vnode is locked or not.
2243 		 * If the buffer is created out from under us, we have to
2244 		 * throw away the one we just created.  There is now window
2245 		 * race because we are safely running at splbio() from the
2246 		 * point of the duplicate buffer creation through to here,
2247 		 * and we've locked the buffer.
2248 		 */
2249 		if (gbincore(vp, blkno)) {
2250 			bp->b_flags |= B_INVAL;
2251 			brelse(bp);
2252 			goto loop;
2253 		}
2254 
2255 		/*
2256 		 * Insert the buffer into the hash, so that it can
2257 		 * be found by incore.
2258 		 */
2259 		bp->b_blkno = bp->b_lblkno = blkno;
2260 		bp->b_offset = offset;
2261 
2262 		bgetvp(vp, bp);
2263 		LIST_REMOVE(bp, b_hash);
2264 		bh = bufhash(vp, blkno);
2265 		LIST_INSERT_HEAD(bh, bp, b_hash);
2266 
2267 		/*
2268 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2269 		 * buffer size starts out as 0, B_CACHE will be set by
2270 		 * allocbuf() for the VMIO case prior to it testing the
2271 		 * backing store for validity.
2272 		 */
2273 
2274 		if (vmio) {
2275 			bp->b_flags |= B_VMIO;
2276 #if defined(VFS_BIO_DEBUG)
2277 			if (vp->v_type != VREG)
2278 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2279 #endif
2280 		} else {
2281 			bp->b_flags &= ~B_VMIO;
2282 		}
2283 
2284 		allocbuf(bp, size);
2285 
2286 		splx(s);
2287 		bp->b_flags &= ~B_DONE;
2288 	}
2289 	return (bp);
2290 }
2291 
2292 /*
2293  * Get an empty, disassociated buffer of given size.  The buffer is initially
2294  * set to B_INVAL.
2295  */
2296 struct buf *
2297 geteblk(int size)
2298 {
2299 	struct buf *bp;
2300 	int s;
2301 	int maxsize;
2302 
2303 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2304 
2305 	s = splbio();
2306 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2307 	splx(s);
2308 	allocbuf(bp, size);
2309 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2310 	return (bp);
2311 }
2312 
2313 
2314 /*
2315  * This code constitutes the buffer memory from either anonymous system
2316  * memory (in the case of non-VMIO operations) or from an associated
2317  * VM object (in the case of VMIO operations).  This code is able to
2318  * resize a buffer up or down.
2319  *
2320  * Note that this code is tricky, and has many complications to resolve
2321  * deadlock or inconsistant data situations.  Tread lightly!!!
2322  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2323  * the caller.  Calling this code willy nilly can result in the loss of data.
2324  *
2325  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2326  * B_CACHE for the non-VMIO case.
2327  */
2328 
2329 int
2330 allocbuf(struct buf *bp, int size)
2331 {
2332 	int newbsize, mbsize;
2333 	int i;
2334 
2335 	if (BUF_REFCNT(bp) == 0)
2336 		panic("allocbuf: buffer not busy");
2337 
2338 	if (bp->b_kvasize < size)
2339 		panic("allocbuf: buffer too small");
2340 
2341 	if ((bp->b_flags & B_VMIO) == 0) {
2342 		caddr_t origbuf;
2343 		int origbufsize;
2344 		/*
2345 		 * Just get anonymous memory from the kernel.  Don't
2346 		 * mess with B_CACHE.
2347 		 */
2348 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2349 #if !defined(NO_B_MALLOC)
2350 		if (bp->b_flags & B_MALLOC)
2351 			newbsize = mbsize;
2352 		else
2353 #endif
2354 			newbsize = round_page(size);
2355 
2356 		if (newbsize < bp->b_bufsize) {
2357 #if !defined(NO_B_MALLOC)
2358 			/*
2359 			 * malloced buffers are not shrunk
2360 			 */
2361 			if (bp->b_flags & B_MALLOC) {
2362 				if (newbsize) {
2363 					bp->b_bcount = size;
2364 				} else {
2365 					free(bp->b_data, M_BIOBUF);
2366 					if (bp->b_bufsize) {
2367 						bufmallocspace -= bp->b_bufsize;
2368 						bufspacewakeup();
2369 						bp->b_bufsize = 0;
2370 					}
2371 					bp->b_data = bp->b_kvabase;
2372 					bp->b_bcount = 0;
2373 					bp->b_flags &= ~B_MALLOC;
2374 				}
2375 				return 1;
2376 			}
2377 #endif
2378 			vm_hold_free_pages(
2379 			    bp,
2380 			    (vm_offset_t) bp->b_data + newbsize,
2381 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2382 		} else if (newbsize > bp->b_bufsize) {
2383 #if !defined(NO_B_MALLOC)
2384 			/*
2385 			 * We only use malloced memory on the first allocation.
2386 			 * and revert to page-allocated memory when the buffer
2387 			 * grows.
2388 			 */
2389 			if ( (bufmallocspace < maxbufmallocspace) &&
2390 				(bp->b_bufsize == 0) &&
2391 				(mbsize <= PAGE_SIZE/2)) {
2392 
2393 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2394 				bp->b_bufsize = mbsize;
2395 				bp->b_bcount = size;
2396 				bp->b_flags |= B_MALLOC;
2397 				bufmallocspace += mbsize;
2398 				return 1;
2399 			}
2400 #endif
2401 			origbuf = NULL;
2402 			origbufsize = 0;
2403 #if !defined(NO_B_MALLOC)
2404 			/*
2405 			 * If the buffer is growing on its other-than-first allocation,
2406 			 * then we revert to the page-allocation scheme.
2407 			 */
2408 			if (bp->b_flags & B_MALLOC) {
2409 				origbuf = bp->b_data;
2410 				origbufsize = bp->b_bufsize;
2411 				bp->b_data = bp->b_kvabase;
2412 				if (bp->b_bufsize) {
2413 					bufmallocspace -= bp->b_bufsize;
2414 					bufspacewakeup();
2415 					bp->b_bufsize = 0;
2416 				}
2417 				bp->b_flags &= ~B_MALLOC;
2418 				newbsize = round_page(newbsize);
2419 			}
2420 #endif
2421 			vm_hold_load_pages(
2422 			    bp,
2423 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2424 			    (vm_offset_t) bp->b_data + newbsize);
2425 #if !defined(NO_B_MALLOC)
2426 			if (origbuf) {
2427 				bcopy(origbuf, bp->b_data, origbufsize);
2428 				free(origbuf, M_BIOBUF);
2429 			}
2430 #endif
2431 		}
2432 	} else {
2433 		vm_page_t m;
2434 		int desiredpages;
2435 
2436 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2437 		desiredpages = (size == 0) ? 0 :
2438 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2439 
2440 #if !defined(NO_B_MALLOC)
2441 		if (bp->b_flags & B_MALLOC)
2442 			panic("allocbuf: VMIO buffer can't be malloced");
2443 #endif
2444 		/*
2445 		 * Set B_CACHE initially if buffer is 0 length or will become
2446 		 * 0-length.
2447 		 */
2448 		if (size == 0 || bp->b_bufsize == 0)
2449 			bp->b_flags |= B_CACHE;
2450 
2451 		if (newbsize < bp->b_bufsize) {
2452 			/*
2453 			 * DEV_BSIZE aligned new buffer size is less then the
2454 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2455 			 * if we have to remove any pages.
2456 			 */
2457 			if (desiredpages < bp->b_npages) {
2458 				for (i = desiredpages; i < bp->b_npages; i++) {
2459 					/*
2460 					 * the page is not freed here -- it
2461 					 * is the responsibility of
2462 					 * vnode_pager_setsize
2463 					 */
2464 					m = bp->b_pages[i];
2465 					KASSERT(m != bogus_page,
2466 					    ("allocbuf: bogus page found"));
2467 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2468 						;
2469 
2470 					bp->b_pages[i] = NULL;
2471 					vm_page_unwire(m, 0);
2472 				}
2473 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2474 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2475 				bp->b_npages = desiredpages;
2476 			}
2477 		} else if (size > bp->b_bcount) {
2478 			/*
2479 			 * We are growing the buffer, possibly in a
2480 			 * byte-granular fashion.
2481 			 */
2482 			struct vnode *vp;
2483 			vm_object_t obj;
2484 			vm_offset_t toff;
2485 			vm_offset_t tinc;
2486 
2487 			/*
2488 			 * Step 1, bring in the VM pages from the object,
2489 			 * allocating them if necessary.  We must clear
2490 			 * B_CACHE if these pages are not valid for the
2491 			 * range covered by the buffer.
2492 			 */
2493 
2494 			vp = bp->b_vp;
2495 			VOP_GETVOBJECT(vp, &obj);
2496 
2497 			while (bp->b_npages < desiredpages) {
2498 				vm_page_t m;
2499 				vm_pindex_t pi;
2500 
2501 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2502 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2503 					/*
2504 					 * note: must allocate system pages
2505 					 * since blocking here could intefere
2506 					 * with paging I/O, no matter which
2507 					 * process we are.
2508 					 */
2509 					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2510 					if (m == NULL) {
2511 						VM_WAIT;
2512 						vm_pageout_deficit += desiredpages - bp->b_npages;
2513 					} else {
2514 						vm_page_wire(m);
2515 						vm_page_wakeup(m);
2516 						bp->b_flags &= ~B_CACHE;
2517 						bp->b_pages[bp->b_npages] = m;
2518 						++bp->b_npages;
2519 					}
2520 					continue;
2521 				}
2522 
2523 				/*
2524 				 * We found a page.  If we have to sleep on it,
2525 				 * retry because it might have gotten freed out
2526 				 * from under us.
2527 				 *
2528 				 * We can only test PG_BUSY here.  Blocking on
2529 				 * m->busy might lead to a deadlock:
2530 				 *
2531 				 *  vm_fault->getpages->cluster_read->allocbuf
2532 				 *
2533 				 */
2534 
2535 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2536 					continue;
2537 
2538 				/*
2539 				 * We have a good page.  Should we wakeup the
2540 				 * page daemon?
2541 				 */
2542 				if ((curproc != pageproc) &&
2543 				    ((m->queue - m->pc) == PQ_CACHE) &&
2544 				    ((cnt.v_free_count + cnt.v_cache_count) <
2545 					(cnt.v_free_min + cnt.v_cache_min))) {
2546 					pagedaemon_wakeup();
2547 				}
2548 				vm_page_flag_clear(m, PG_ZERO);
2549 				vm_page_wire(m);
2550 				bp->b_pages[bp->b_npages] = m;
2551 				++bp->b_npages;
2552 			}
2553 
2554 			/*
2555 			 * Step 2.  We've loaded the pages into the buffer,
2556 			 * we have to figure out if we can still have B_CACHE
2557 			 * set.  Note that B_CACHE is set according to the
2558 			 * byte-granular range ( bcount and size ), new the
2559 			 * aligned range ( newbsize ).
2560 			 *
2561 			 * The VM test is against m->valid, which is DEV_BSIZE
2562 			 * aligned.  Needless to say, the validity of the data
2563 			 * needs to also be DEV_BSIZE aligned.  Note that this
2564 			 * fails with NFS if the server or some other client
2565 			 * extends the file's EOF.  If our buffer is resized,
2566 			 * B_CACHE may remain set! XXX
2567 			 */
2568 
2569 			toff = bp->b_bcount;
2570 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2571 
2572 			while ((bp->b_flags & B_CACHE) && toff < size) {
2573 				vm_pindex_t pi;
2574 
2575 				if (tinc > (size - toff))
2576 					tinc = size - toff;
2577 
2578 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2579 				    PAGE_SHIFT;
2580 
2581 				vfs_buf_test_cache(
2582 				    bp,
2583 				    bp->b_offset,
2584 				    toff,
2585 				    tinc,
2586 				    bp->b_pages[pi]
2587 				);
2588 				toff += tinc;
2589 				tinc = PAGE_SIZE;
2590 			}
2591 
2592 			/*
2593 			 * Step 3, fixup the KVM pmap.  Remember that
2594 			 * bp->b_data is relative to bp->b_offset, but
2595 			 * bp->b_offset may be offset into the first page.
2596 			 */
2597 
2598 			bp->b_data = (caddr_t)
2599 			    trunc_page((vm_offset_t)bp->b_data);
2600 			pmap_qenter(
2601 			    (vm_offset_t)bp->b_data,
2602 			    bp->b_pages,
2603 			    bp->b_npages
2604 			);
2605 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2606 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2607 		}
2608 	}
2609 	if (newbsize < bp->b_bufsize)
2610 		bufspacewakeup();
2611 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2612 	bp->b_bcount = size;		/* requested buffer size	*/
2613 	return 1;
2614 }
2615 
2616 /*
2617  *	bufwait:
2618  *
2619  *	Wait for buffer I/O completion, returning error status.  The buffer
2620  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2621  *	error and cleared.
2622  */
2623 int
2624 bufwait(register struct buf * bp)
2625 {
2626 	int s;
2627 
2628 	s = splbio();
2629 	while ((bp->b_flags & B_DONE) == 0) {
2630 		if (bp->b_iocmd == BIO_READ)
2631 			tsleep(bp, PRIBIO, "biord", 0);
2632 		else
2633 			tsleep(bp, PRIBIO, "biowr", 0);
2634 	}
2635 	splx(s);
2636 	if (bp->b_flags & B_EINTR) {
2637 		bp->b_flags &= ~B_EINTR;
2638 		return (EINTR);
2639 	}
2640 	if (bp->b_ioflags & BIO_ERROR) {
2641 		return (bp->b_error ? bp->b_error : EIO);
2642 	} else {
2643 		return (0);
2644 	}
2645 }
2646 
2647  /*
2648   * Call back function from struct bio back up to struct buf.
2649   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2650   */
2651 void
2652 bufdonebio(struct bio *bp)
2653 {
2654 	bufdone(bp->bio_caller2);
2655 }
2656 
2657 /*
2658  *	bufdone:
2659  *
2660  *	Finish I/O on a buffer, optionally calling a completion function.
2661  *	This is usually called from an interrupt so process blocking is
2662  *	not allowed.
2663  *
2664  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2665  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2666  *	assuming B_INVAL is clear.
2667  *
2668  *	For the VMIO case, we set B_CACHE if the op was a read and no
2669  *	read error occured, or if the op was a write.  B_CACHE is never
2670  *	set if the buffer is invalid or otherwise uncacheable.
2671  *
2672  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2673  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2674  *	in the biodone routine.
2675  */
2676 void
2677 bufdone(struct buf *bp)
2678 {
2679 	int s, error;
2680 	void    (*biodone) __P((struct buf *));
2681 
2682 	s = splbio();
2683 
2684 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2685 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2686 
2687 	bp->b_flags |= B_DONE;
2688 	runningbufwakeup(bp);
2689 
2690 	if (bp->b_iocmd == BIO_DELETE) {
2691 		brelse(bp);
2692 		splx(s);
2693 		return;
2694 	}
2695 
2696 	if (bp->b_iocmd == BIO_WRITE) {
2697 		vwakeup(bp);
2698 	}
2699 
2700 	/* call optional completion function if requested */
2701 	if (bp->b_iodone != NULL) {
2702 		biodone = bp->b_iodone;
2703 		bp->b_iodone = NULL;
2704 		(*biodone) (bp);
2705 		splx(s);
2706 		return;
2707 	}
2708 	if (LIST_FIRST(&bp->b_dep) != NULL)
2709 		buf_complete(bp);
2710 
2711 	if (bp->b_flags & B_VMIO) {
2712 		int i;
2713 		vm_ooffset_t foff;
2714 		vm_page_t m;
2715 		vm_object_t obj;
2716 		int iosize;
2717 		struct vnode *vp = bp->b_vp;
2718 
2719 		error = VOP_GETVOBJECT(vp, &obj);
2720 
2721 #if defined(VFS_BIO_DEBUG)
2722 		if (vp->v_usecount == 0) {
2723 			panic("biodone: zero vnode ref count");
2724 		}
2725 
2726 		if (error) {
2727 			panic("biodone: missing VM object");
2728 		}
2729 
2730 		if ((vp->v_flag & VOBJBUF) == 0) {
2731 			panic("biodone: vnode is not setup for merged cache");
2732 		}
2733 #endif
2734 
2735 		foff = bp->b_offset;
2736 		KASSERT(bp->b_offset != NOOFFSET,
2737 		    ("biodone: no buffer offset"));
2738 
2739 		if (error) {
2740 			panic("biodone: no object");
2741 		}
2742 #if defined(VFS_BIO_DEBUG)
2743 		if (obj->paging_in_progress < bp->b_npages) {
2744 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2745 			    obj->paging_in_progress, bp->b_npages);
2746 		}
2747 #endif
2748 
2749 		/*
2750 		 * Set B_CACHE if the op was a normal read and no error
2751 		 * occured.  B_CACHE is set for writes in the b*write()
2752 		 * routines.
2753 		 */
2754 		iosize = bp->b_bcount - bp->b_resid;
2755 		if (bp->b_iocmd == BIO_READ &&
2756 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2757 		    !(bp->b_ioflags & BIO_ERROR)) {
2758 			bp->b_flags |= B_CACHE;
2759 		}
2760 
2761 		for (i = 0; i < bp->b_npages; i++) {
2762 			int bogusflag = 0;
2763 			int resid;
2764 
2765 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2766 			if (resid > iosize)
2767 				resid = iosize;
2768 
2769 			/*
2770 			 * cleanup bogus pages, restoring the originals
2771 			 */
2772 			m = bp->b_pages[i];
2773 			if (m == bogus_page) {
2774 				bogusflag = 1;
2775 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2776 				if (m == NULL)
2777 					panic("biodone: page disappeared!");
2778 				bp->b_pages[i] = m;
2779 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2780 			}
2781 #if defined(VFS_BIO_DEBUG)
2782 			if (OFF_TO_IDX(foff) != m->pindex) {
2783 				printf(
2784 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2785 				    (unsigned long)foff, m->pindex);
2786 			}
2787 #endif
2788 
2789 			/*
2790 			 * In the write case, the valid and clean bits are
2791 			 * already changed correctly ( see bdwrite() ), so we
2792 			 * only need to do this here in the read case.
2793 			 */
2794 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2795 				vfs_page_set_valid(bp, foff, i, m);
2796 			}
2797 			vm_page_flag_clear(m, PG_ZERO);
2798 
2799 			/*
2800 			 * when debugging new filesystems or buffer I/O methods, this
2801 			 * is the most common error that pops up.  if you see this, you
2802 			 * have not set the page busy flag correctly!!!
2803 			 */
2804 			if (m->busy == 0) {
2805 				printf("biodone: page busy < 0, "
2806 				    "pindex: %d, foff: 0x(%x,%x), "
2807 				    "resid: %d, index: %d\n",
2808 				    (int) m->pindex, (int)(foff >> 32),
2809 						(int) foff & 0xffffffff, resid, i);
2810 				if (!vn_isdisk(vp, NULL))
2811 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2812 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2813 					    (int) bp->b_lblkno,
2814 					    bp->b_flags, bp->b_npages);
2815 				else
2816 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2817 					    (int) bp->b_lblkno,
2818 					    bp->b_flags, bp->b_npages);
2819 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2820 				    m->valid, m->dirty, m->wire_count);
2821 				panic("biodone: page busy < 0\n");
2822 			}
2823 			vm_page_io_finish(m);
2824 			vm_object_pip_subtract(obj, 1);
2825 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2826 			iosize -= resid;
2827 		}
2828 		if (obj)
2829 			vm_object_pip_wakeupn(obj, 0);
2830 	}
2831 
2832 	/*
2833 	 * For asynchronous completions, release the buffer now. The brelse
2834 	 * will do a wakeup there if necessary - so no need to do a wakeup
2835 	 * here in the async case. The sync case always needs to do a wakeup.
2836 	 */
2837 
2838 	if (bp->b_flags & B_ASYNC) {
2839 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2840 			brelse(bp);
2841 		else
2842 			bqrelse(bp);
2843 	} else {
2844 		wakeup(bp);
2845 	}
2846 	splx(s);
2847 }
2848 
2849 /*
2850  * This routine is called in lieu of iodone in the case of
2851  * incomplete I/O.  This keeps the busy status for pages
2852  * consistant.
2853  */
2854 void
2855 vfs_unbusy_pages(struct buf * bp)
2856 {
2857 	int i;
2858 
2859 	runningbufwakeup(bp);
2860 	if (bp->b_flags & B_VMIO) {
2861 		struct vnode *vp = bp->b_vp;
2862 		vm_object_t obj;
2863 
2864 		VOP_GETVOBJECT(vp, &obj);
2865 
2866 		for (i = 0; i < bp->b_npages; i++) {
2867 			vm_page_t m = bp->b_pages[i];
2868 
2869 			if (m == bogus_page) {
2870 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2871 				if (!m) {
2872 					panic("vfs_unbusy_pages: page missing\n");
2873 				}
2874 				bp->b_pages[i] = m;
2875 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2876 			}
2877 			vm_object_pip_subtract(obj, 1);
2878 			vm_page_flag_clear(m, PG_ZERO);
2879 			vm_page_io_finish(m);
2880 		}
2881 		vm_object_pip_wakeupn(obj, 0);
2882 	}
2883 }
2884 
2885 /*
2886  * vfs_page_set_valid:
2887  *
2888  *	Set the valid bits in a page based on the supplied offset.   The
2889  *	range is restricted to the buffer's size.
2890  *
2891  *	This routine is typically called after a read completes.
2892  */
2893 static void
2894 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2895 {
2896 	vm_ooffset_t soff, eoff;
2897 
2898 	/*
2899 	 * Start and end offsets in buffer.  eoff - soff may not cross a
2900 	 * page boundry or cross the end of the buffer.  The end of the
2901 	 * buffer, in this case, is our file EOF, not the allocation size
2902 	 * of the buffer.
2903 	 */
2904 	soff = off;
2905 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2906 	if (eoff > bp->b_offset + bp->b_bcount)
2907 		eoff = bp->b_offset + bp->b_bcount;
2908 
2909 	/*
2910 	 * Set valid range.  This is typically the entire buffer and thus the
2911 	 * entire page.
2912 	 */
2913 	if (eoff > soff) {
2914 		vm_page_set_validclean(
2915 		    m,
2916 		   (vm_offset_t) (soff & PAGE_MASK),
2917 		   (vm_offset_t) (eoff - soff)
2918 		);
2919 	}
2920 }
2921 
2922 /*
2923  * This routine is called before a device strategy routine.
2924  * It is used to tell the VM system that paging I/O is in
2925  * progress, and treat the pages associated with the buffer
2926  * almost as being PG_BUSY.  Also the object paging_in_progress
2927  * flag is handled to make sure that the object doesn't become
2928  * inconsistant.
2929  *
2930  * Since I/O has not been initiated yet, certain buffer flags
2931  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
2932  * and should be ignored.
2933  */
2934 void
2935 vfs_busy_pages(struct buf * bp, int clear_modify)
2936 {
2937 	int i, bogus;
2938 
2939 	bp->b_runningbufspace = bp->b_bufsize;
2940 	runningbufspace += bp->b_runningbufspace;
2941 
2942 	if (bp->b_flags & B_VMIO) {
2943 		struct vnode *vp = bp->b_vp;
2944 		vm_object_t obj;
2945 		vm_ooffset_t foff;
2946 
2947 		VOP_GETVOBJECT(vp, &obj);
2948 		foff = bp->b_offset;
2949 		KASSERT(bp->b_offset != NOOFFSET,
2950 		    ("vfs_busy_pages: no buffer offset"));
2951 		vfs_setdirty(bp);
2952 
2953 retry:
2954 		for (i = 0; i < bp->b_npages; i++) {
2955 			vm_page_t m = bp->b_pages[i];
2956 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2957 				goto retry;
2958 		}
2959 
2960 		bogus = 0;
2961 		for (i = 0; i < bp->b_npages; i++) {
2962 			vm_page_t m = bp->b_pages[i];
2963 
2964 			vm_page_flag_clear(m, PG_ZERO);
2965 			if ((bp->b_flags & B_CLUSTER) == 0) {
2966 				vm_object_pip_add(obj, 1);
2967 				vm_page_io_start(m);
2968 			}
2969 
2970 			/*
2971 			 * When readying a buffer for a read ( i.e
2972 			 * clear_modify == 0 ), it is important to do
2973 			 * bogus_page replacement for valid pages in
2974 			 * partially instantiated buffers.  Partially
2975 			 * instantiated buffers can, in turn, occur when
2976 			 * reconstituting a buffer from its VM backing store
2977 			 * base.  We only have to do this if B_CACHE is
2978 			 * clear ( which causes the I/O to occur in the
2979 			 * first place ).  The replacement prevents the read
2980 			 * I/O from overwriting potentially dirty VM-backed
2981 			 * pages.  XXX bogus page replacement is, uh, bogus.
2982 			 * It may not work properly with small-block devices.
2983 			 * We need to find a better way.
2984 			 */
2985 
2986 			vm_page_protect(m, VM_PROT_NONE);
2987 			if (clear_modify)
2988 				vfs_page_set_valid(bp, foff, i, m);
2989 			else if (m->valid == VM_PAGE_BITS_ALL &&
2990 				(bp->b_flags & B_CACHE) == 0) {
2991 				bp->b_pages[i] = bogus_page;
2992 				bogus++;
2993 			}
2994 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2995 		}
2996 		if (bogus)
2997 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2998 	}
2999 }
3000 
3001 /*
3002  * Tell the VM system that the pages associated with this buffer
3003  * are clean.  This is used for delayed writes where the data is
3004  * going to go to disk eventually without additional VM intevention.
3005  *
3006  * Note that while we only really need to clean through to b_bcount, we
3007  * just go ahead and clean through to b_bufsize.
3008  */
3009 static void
3010 vfs_clean_pages(struct buf * bp)
3011 {
3012 	int i;
3013 
3014 	if (bp->b_flags & B_VMIO) {
3015 		vm_ooffset_t foff;
3016 
3017 		foff = bp->b_offset;
3018 		KASSERT(bp->b_offset != NOOFFSET,
3019 		    ("vfs_clean_pages: no buffer offset"));
3020 		for (i = 0; i < bp->b_npages; i++) {
3021 			vm_page_t m = bp->b_pages[i];
3022 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3023 			vm_ooffset_t eoff = noff;
3024 
3025 			if (eoff > bp->b_offset + bp->b_bufsize)
3026 				eoff = bp->b_offset + bp->b_bufsize;
3027 			vfs_page_set_valid(bp, foff, i, m);
3028 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3029 			foff = noff;
3030 		}
3031 	}
3032 }
3033 
3034 /*
3035  *	vfs_bio_set_validclean:
3036  *
3037  *	Set the range within the buffer to valid and clean.  The range is
3038  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3039  *	itself may be offset from the beginning of the first page.
3040  */
3041 
3042 void
3043 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3044 {
3045 	if (bp->b_flags & B_VMIO) {
3046 		int i;
3047 		int n;
3048 
3049 		/*
3050 		 * Fixup base to be relative to beginning of first page.
3051 		 * Set initial n to be the maximum number of bytes in the
3052 		 * first page that can be validated.
3053 		 */
3054 
3055 		base += (bp->b_offset & PAGE_MASK);
3056 		n = PAGE_SIZE - (base & PAGE_MASK);
3057 
3058 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3059 			vm_page_t m = bp->b_pages[i];
3060 
3061 			if (n > size)
3062 				n = size;
3063 
3064 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3065 			base += n;
3066 			size -= n;
3067 			n = PAGE_SIZE;
3068 		}
3069 	}
3070 }
3071 
3072 /*
3073  *	vfs_bio_clrbuf:
3074  *
3075  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3076  *	to clear BIO_ERROR and B_INVAL.
3077  *
3078  *	Note that while we only theoretically need to clear through b_bcount,
3079  *	we go ahead and clear through b_bufsize.
3080  */
3081 
3082 void
3083 vfs_bio_clrbuf(struct buf *bp) {
3084 	int i, mask = 0;
3085 	caddr_t sa, ea;
3086 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3087 		bp->b_flags &= ~B_INVAL;
3088 		bp->b_ioflags &= ~BIO_ERROR;
3089 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3090 		    (bp->b_offset & PAGE_MASK) == 0) {
3091 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3092 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3093 			    ((bp->b_pages[0]->valid & mask) != mask)) {
3094 				bzero(bp->b_data, bp->b_bufsize);
3095 			}
3096 			bp->b_pages[0]->valid |= mask;
3097 			bp->b_resid = 0;
3098 			return;
3099 		}
3100 		ea = sa = bp->b_data;
3101 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3102 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3103 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3104 			ea = (caddr_t)(vm_offset_t)ulmin(
3105 			    (u_long)(vm_offset_t)ea,
3106 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3107 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3108 			if ((bp->b_pages[i]->valid & mask) == mask)
3109 				continue;
3110 			if ((bp->b_pages[i]->valid & mask) == 0) {
3111 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3112 					bzero(sa, ea - sa);
3113 				}
3114 			} else {
3115 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3116 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3117 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3118 						bzero(sa, DEV_BSIZE);
3119 				}
3120 			}
3121 			bp->b_pages[i]->valid |= mask;
3122 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3123 		}
3124 		bp->b_resid = 0;
3125 	} else {
3126 		clrbuf(bp);
3127 	}
3128 }
3129 
3130 /*
3131  * vm_hold_load_pages and vm_hold_unload pages get pages into
3132  * a buffers address space.  The pages are anonymous and are
3133  * not associated with a file object.
3134  */
3135 void
3136 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3137 {
3138 	vm_offset_t pg;
3139 	vm_page_t p;
3140 	int index;
3141 
3142 	to = round_page(to);
3143 	from = round_page(from);
3144 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3145 
3146 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3147 
3148 tryagain:
3149 
3150 		/*
3151 		 * note: must allocate system pages since blocking here
3152 		 * could intefere with paging I/O, no matter which
3153 		 * process we are.
3154 		 */
3155 		p = vm_page_alloc(kernel_object,
3156 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3157 		    VM_ALLOC_SYSTEM);
3158 		if (!p) {
3159 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3160 			VM_WAIT;
3161 			goto tryagain;
3162 		}
3163 		vm_page_wire(p);
3164 		p->valid = VM_PAGE_BITS_ALL;
3165 		vm_page_flag_clear(p, PG_ZERO);
3166 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3167 		bp->b_pages[index] = p;
3168 		vm_page_wakeup(p);
3169 	}
3170 	bp->b_npages = index;
3171 }
3172 
3173 void
3174 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3175 {
3176 	vm_offset_t pg;
3177 	vm_page_t p;
3178 	int index, newnpages;
3179 
3180 	from = round_page(from);
3181 	to = round_page(to);
3182 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3183 
3184 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3185 		p = bp->b_pages[index];
3186 		if (p && (index < bp->b_npages)) {
3187 			if (p->busy) {
3188 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3189 					bp->b_blkno, bp->b_lblkno);
3190 			}
3191 			bp->b_pages[index] = NULL;
3192 			pmap_kremove(pg);
3193 			vm_page_busy(p);
3194 			vm_page_unwire(p, 0);
3195 			vm_page_free(p);
3196 		}
3197 	}
3198 	bp->b_npages = newnpages;
3199 }
3200 
3201 
3202 #include "opt_ddb.h"
3203 #ifdef DDB
3204 #include <ddb/ddb.h>
3205 
3206 DB_SHOW_COMMAND(buffer, db_show_buffer)
3207 {
3208 	/* get args */
3209 	struct buf *bp = (struct buf *)addr;
3210 
3211 	if (!have_addr) {
3212 		db_printf("usage: show buffer <addr>\n");
3213 		return;
3214 	}
3215 
3216 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3217 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3218 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3219 		  "b_blkno = %d, b_pblkno = %d\n",
3220 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3221 		  major(bp->b_dev), minor(bp->b_dev),
3222 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3223 	if (bp->b_npages) {
3224 		int i;
3225 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3226 		for (i = 0; i < bp->b_npages; i++) {
3227 			vm_page_t m;
3228 			m = bp->b_pages[i];
3229 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3230 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3231 			if ((i + 1) < bp->b_npages)
3232 				db_printf(",");
3233 		}
3234 		db_printf("\n");
3235 	}
3236 }
3237 #endif /* DDB */
3238