1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bio.h> 33 #include <sys/buf.h> 34 #include <sys/eventhandler.h> 35 #include <sys/lock.h> 36 #include <sys/malloc.h> 37 #include <sys/mount.h> 38 #include <sys/mutex.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/ktr.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 58 59 struct bio_ops bioops; /* I/O operation notification */ 60 61 struct buf_ops buf_ops_bio = { 62 "buf_ops_bio", 63 bwrite 64 }; 65 66 /* 67 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 68 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 69 */ 70 struct buf *buf; /* buffer header pool */ 71 struct mtx buftimelock; /* Interlock on setting prio and timo */ 72 73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 74 vm_offset_t to); 75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 76 vm_offset_t to); 77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 78 int pageno, vm_page_t m); 79 static void vfs_clean_pages(struct buf * bp); 80 static void vfs_setdirty(struct buf *bp); 81 static void vfs_vmio_release(struct buf *bp); 82 static void vfs_backgroundwritedone(struct buf *bp); 83 static int flushbufqueues(void); 84 static void buf_daemon(void); 85 86 int vmiodirenable = TRUE; 87 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 88 "Use the VM system for directory writes"); 89 int runningbufspace; 90 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 91 "Amount of presently outstanding async buffer io"); 92 static int bufspace; 93 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 94 "KVA memory used for bufs"); 95 static int maxbufspace; 96 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 97 "Maximum allowed value of bufspace (including buf_daemon)"); 98 static int bufmallocspace; 99 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 100 "Amount of malloced memory for buffers"); 101 static int maxbufmallocspace; 102 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 103 "Maximum amount of malloced memory for buffers"); 104 static int lobufspace; 105 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 106 "Minimum amount of buffers we want to have"); 107 static int hibufspace; 108 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 109 "Maximum allowed value of bufspace (excluding buf_daemon)"); 110 static int bufreusecnt; 111 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 112 "Number of times we have reused a buffer"); 113 static int buffreekvacnt; 114 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 115 "Number of times we have freed the KVA space from some buffer"); 116 static int bufdefragcnt; 117 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 118 "Number of times we have had to repeat buffer allocation to defragment"); 119 static int lorunningspace; 120 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 121 "Minimum preferred space used for in-progress I/O"); 122 static int hirunningspace; 123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 124 "Maximum amount of space to use for in-progress I/O"); 125 static int numdirtybuffers; 126 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 127 "Number of buffers that are dirty (has unwritten changes) at the moment"); 128 static int lodirtybuffers; 129 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 130 "How many buffers we want to have free before bufdaemon can sleep"); 131 static int hidirtybuffers; 132 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 133 "When the number of dirty buffers is considered severe"); 134 static int numfreebuffers; 135 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 136 "Number of free buffers"); 137 static int lofreebuffers; 138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 139 "XXX Unused"); 140 static int hifreebuffers; 141 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 142 "XXX Complicatedly unused"); 143 static int getnewbufcalls; 144 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 145 "Number of calls to getnewbuf"); 146 static int getnewbufrestarts; 147 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 148 "Number of times getnewbuf has had to restart a buffer aquisition"); 149 static int dobkgrdwrite = 1; 150 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 151 "Do background writes (honoring the BX_BKGRDWRITE flag)?"); 152 153 /* 154 * Wakeup point for bufdaemon, as well as indicator of whether it is already 155 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 156 * is idling. 157 */ 158 static int bd_request; 159 160 /* 161 * bogus page -- for I/O to/from partially complete buffers 162 * this is a temporary solution to the problem, but it is not 163 * really that bad. it would be better to split the buffer 164 * for input in the case of buffers partially already in memory, 165 * but the code is intricate enough already. 166 */ 167 vm_page_t bogus_page; 168 169 /* 170 * Offset for bogus_page. 171 * XXX bogus_offset should be local to bufinit 172 */ 173 static vm_offset_t bogus_offset; 174 175 /* 176 * Synchronization (sleep/wakeup) variable for active buffer space requests. 177 * Set when wait starts, cleared prior to wakeup(). 178 * Used in runningbufwakeup() and waitrunningbufspace(). 179 */ 180 static int runningbufreq; 181 182 /* 183 * Synchronization (sleep/wakeup) variable for buffer requests. 184 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 185 * by and/or. 186 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(), 187 * getnewbuf(), and getblk(). 188 */ 189 static int needsbuffer; 190 191 /* 192 * Mask for index into the buffer hash table, which needs to be power of 2 in 193 * size. Set in kern_vfs_bio_buffer_alloc. 194 */ 195 static int bufhashmask; 196 197 /* 198 * Hash table for all buffers, with a linked list hanging from each table 199 * entry. Set in kern_vfs_bio_buffer_alloc, initialized in buf_init. 200 */ 201 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl; 202 203 /* 204 * Somewhere to store buffers when they are not in another list, to always 205 * have them in a list (and thus being able to use the same set of operations 206 * on them.) 207 */ 208 static struct bufhashhdr invalhash; 209 210 /* 211 * Definitions for the buffer free lists. 212 */ 213 #define BUFFER_QUEUES 6 /* number of free buffer queues */ 214 215 #define QUEUE_NONE 0 /* on no queue */ 216 #define QUEUE_LOCKED 1 /* locked buffers */ 217 #define QUEUE_CLEAN 2 /* non-B_DELWRI buffers */ 218 #define QUEUE_DIRTY 3 /* B_DELWRI buffers */ 219 #define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */ 220 #define QUEUE_EMPTY 5 /* empty buffer headers */ 221 222 /* Queues for free buffers with various properties */ 223 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 224 /* 225 * Single global constant for BUF_WMESG, to avoid getting multiple references. 226 * buf_wmesg is referred from macros. 227 */ 228 const char *buf_wmesg = BUF_WMESG; 229 230 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 231 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 232 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 233 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 234 235 /* 236 * Buffer hash table code. Note that the logical block scans linearly, which 237 * gives us some L1 cache locality. 238 */ 239 240 static __inline 241 struct bufhashhdr * 242 bufhash(struct vnode *vnp, daddr_t bn) 243 { 244 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 245 } 246 247 /* 248 * numdirtywakeup: 249 * 250 * If someone is blocked due to there being too many dirty buffers, 251 * and numdirtybuffers is now reasonable, wake them up. 252 */ 253 254 static __inline void 255 numdirtywakeup(int level) 256 { 257 if (numdirtybuffers <= level) { 258 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 259 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 260 wakeup(&needsbuffer); 261 } 262 } 263 } 264 265 /* 266 * bufspacewakeup: 267 * 268 * Called when buffer space is potentially available for recovery. 269 * getnewbuf() will block on this flag when it is unable to free 270 * sufficient buffer space. Buffer space becomes recoverable when 271 * bp's get placed back in the queues. 272 */ 273 274 static __inline void 275 bufspacewakeup(void) 276 { 277 /* 278 * If someone is waiting for BUF space, wake them up. Even 279 * though we haven't freed the kva space yet, the waiting 280 * process will be able to now. 281 */ 282 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 283 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 284 wakeup(&needsbuffer); 285 } 286 } 287 288 /* 289 * runningbufwakeup() - in-progress I/O accounting. 290 * 291 */ 292 static __inline void 293 runningbufwakeup(struct buf *bp) 294 { 295 if (bp->b_runningbufspace) { 296 runningbufspace -= bp->b_runningbufspace; 297 bp->b_runningbufspace = 0; 298 if (runningbufreq && runningbufspace <= lorunningspace) { 299 runningbufreq = 0; 300 wakeup(&runningbufreq); 301 } 302 } 303 } 304 305 /* 306 * bufcountwakeup: 307 * 308 * Called when a buffer has been added to one of the free queues to 309 * account for the buffer and to wakeup anyone waiting for free buffers. 310 * This typically occurs when large amounts of metadata are being handled 311 * by the buffer cache ( else buffer space runs out first, usually ). 312 */ 313 314 static __inline void 315 bufcountwakeup(void) 316 { 317 ++numfreebuffers; 318 if (needsbuffer) { 319 needsbuffer &= ~VFS_BIO_NEED_ANY; 320 if (numfreebuffers >= hifreebuffers) 321 needsbuffer &= ~VFS_BIO_NEED_FREE; 322 wakeup(&needsbuffer); 323 } 324 } 325 326 /* 327 * waitrunningbufspace() 328 * 329 * runningbufspace is a measure of the amount of I/O currently 330 * running. This routine is used in async-write situations to 331 * prevent creating huge backups of pending writes to a device. 332 * Only asynchronous writes are governed by this function. 333 * 334 * Reads will adjust runningbufspace, but will not block based on it. 335 * The read load has a side effect of reducing the allowed write load. 336 * 337 * This does NOT turn an async write into a sync write. It waits 338 * for earlier writes to complete and generally returns before the 339 * caller's write has reached the device. 340 */ 341 static __inline void 342 waitrunningbufspace(void) 343 { 344 /* 345 * XXX race against wakeup interrupt, currently 346 * protected by Giant. FIXME! 347 */ 348 while (runningbufspace > hirunningspace) { 349 ++runningbufreq; 350 tsleep(&runningbufreq, PVM, "wdrain", 0); 351 } 352 } 353 354 355 /* 356 * vfs_buf_test_cache: 357 * 358 * Called when a buffer is extended. This function clears the B_CACHE 359 * bit if the newly extended portion of the buffer does not contain 360 * valid data. 361 */ 362 static __inline__ 363 void 364 vfs_buf_test_cache(struct buf *bp, 365 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 366 vm_page_t m) 367 { 368 GIANT_REQUIRED; 369 370 if (bp->b_flags & B_CACHE) { 371 int base = (foff + off) & PAGE_MASK; 372 if (vm_page_is_valid(m, base, size) == 0) 373 bp->b_flags &= ~B_CACHE; 374 } 375 } 376 377 /* Wake up the buffer deamon if necessary */ 378 static __inline__ 379 void 380 bd_wakeup(int dirtybuflevel) 381 { 382 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 383 bd_request = 1; 384 wakeup(&bd_request); 385 } 386 } 387 388 /* 389 * bd_speedup - speedup the buffer cache flushing code 390 */ 391 392 static __inline__ 393 void 394 bd_speedup(void) 395 { 396 bd_wakeup(1); 397 } 398 399 /* 400 * Calculating buffer cache scaling values and reserve space for buffer 401 * headers. This is called during low level kernel initialization and 402 * may be called more then once. We CANNOT write to the memory area 403 * being reserved at this time. 404 */ 405 caddr_t 406 kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est) 407 { 408 /* 409 * physmem_est is in pages. Convert it to kilobytes (assumes 410 * PAGE_SIZE is >= 1K) 411 */ 412 physmem_est = physmem_est * (PAGE_SIZE / 1024); 413 414 /* 415 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 416 * For the first 64MB of ram nominally allocate sufficient buffers to 417 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 418 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing 419 * the buffer cache we limit the eventual kva reservation to 420 * maxbcache bytes. 421 * 422 * factor represents the 1/4 x ram conversion. 423 */ 424 if (nbuf == 0) { 425 int factor = 4 * BKVASIZE / 1024; 426 427 nbuf = 50; 428 if (physmem_est > 4096) 429 nbuf += min((physmem_est - 4096) / factor, 430 65536 / factor); 431 if (physmem_est > 65536) 432 nbuf += (physmem_est - 65536) * 2 / (factor * 5); 433 434 if (maxbcache && nbuf > maxbcache / BKVASIZE) 435 nbuf = maxbcache / BKVASIZE; 436 } 437 438 #if 0 439 /* 440 * Do not allow the buffer_map to be more then 1/2 the size of the 441 * kernel_map. 442 */ 443 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 444 (BKVASIZE * 2)) { 445 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 446 (BKVASIZE * 2); 447 printf("Warning: nbufs capped at %d\n", nbuf); 448 } 449 #endif 450 451 /* 452 * swbufs are used as temporary holders for I/O, such as paging I/O. 453 * We have no less then 16 and no more then 256. 454 */ 455 nswbuf = max(min(nbuf/4, 256), 16); 456 457 /* 458 * Reserve space for the buffer cache buffers 459 */ 460 swbuf = (void *)v; 461 v = (caddr_t)(swbuf + nswbuf); 462 buf = (void *)v; 463 v = (caddr_t)(buf + nbuf); 464 465 /* 466 * Calculate the hash table size and reserve space 467 */ 468 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 469 ; 470 bufhashtbl = (void *)v; 471 v = (caddr_t)(bufhashtbl + bufhashmask); 472 --bufhashmask; 473 474 return(v); 475 } 476 477 /* Initialize the buffer subsystem. Called before use of any buffers. */ 478 void 479 bufinit(void) 480 { 481 struct buf *bp; 482 int i; 483 484 GIANT_REQUIRED; 485 486 LIST_INIT(&invalhash); 487 mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF); 488 489 for (i = 0; i <= bufhashmask; i++) 490 LIST_INIT(&bufhashtbl[i]); 491 492 /* next, make a null set of free lists */ 493 for (i = 0; i < BUFFER_QUEUES; i++) 494 TAILQ_INIT(&bufqueues[i]); 495 496 /* finally, initialize each buffer header and stick on empty q */ 497 for (i = 0; i < nbuf; i++) { 498 bp = &buf[i]; 499 bzero(bp, sizeof *bp); 500 bp->b_flags = B_INVAL; /* we're just an empty header */ 501 bp->b_dev = NODEV; 502 bp->b_rcred = NOCRED; 503 bp->b_wcred = NOCRED; 504 bp->b_qindex = QUEUE_EMPTY; 505 bp->b_xflags = 0; 506 LIST_INIT(&bp->b_dep); 507 BUF_LOCKINIT(bp); 508 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 509 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 510 } 511 512 /* 513 * maxbufspace is the absolute maximum amount of buffer space we are 514 * allowed to reserve in KVM and in real terms. The absolute maximum 515 * is nominally used by buf_daemon. hibufspace is the nominal maximum 516 * used by most other processes. The differential is required to 517 * ensure that buf_daemon is able to run when other processes might 518 * be blocked waiting for buffer space. 519 * 520 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 521 * this may result in KVM fragmentation which is not handled optimally 522 * by the system. 523 */ 524 maxbufspace = nbuf * BKVASIZE; 525 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 526 lobufspace = hibufspace - MAXBSIZE; 527 528 lorunningspace = 512 * 1024; 529 hirunningspace = 1024 * 1024; 530 531 /* 532 * Limit the amount of malloc memory since it is wired permanently into 533 * the kernel space. Even though this is accounted for in the buffer 534 * allocation, we don't want the malloced region to grow uncontrolled. 535 * The malloc scheme improves memory utilization significantly on average 536 * (small) directories. 537 */ 538 maxbufmallocspace = hibufspace / 20; 539 540 /* 541 * Reduce the chance of a deadlock occuring by limiting the number 542 * of delayed-write dirty buffers we allow to stack up. 543 */ 544 hidirtybuffers = nbuf / 4 + 20; 545 numdirtybuffers = 0; 546 /* 547 * To support extreme low-memory systems, make sure hidirtybuffers cannot 548 * eat up all available buffer space. This occurs when our minimum cannot 549 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 550 * BKVASIZE'd (8K) buffers. 551 */ 552 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 553 hidirtybuffers >>= 1; 554 } 555 lodirtybuffers = hidirtybuffers / 2; 556 557 /* 558 * Try to keep the number of free buffers in the specified range, 559 * and give special processes (e.g. like buf_daemon) access to an 560 * emergency reserve. 561 */ 562 lofreebuffers = nbuf / 18 + 5; 563 hifreebuffers = 2 * lofreebuffers; 564 numfreebuffers = nbuf; 565 566 /* 567 * Maximum number of async ops initiated per buf_daemon loop. This is 568 * somewhat of a hack at the moment, we really need to limit ourselves 569 * based on the number of bytes of I/O in-transit that were initiated 570 * from buf_daemon. 571 */ 572 573 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 574 bogus_page = vm_page_alloc(kernel_object, 575 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 576 VM_ALLOC_NORMAL); 577 cnt.v_wire_count++; 578 } 579 580 /* 581 * bfreekva() - free the kva allocation for a buffer. 582 * 583 * Must be called at splbio() or higher as this is the only locking for 584 * buffer_map. 585 * 586 * Since this call frees up buffer space, we call bufspacewakeup(). 587 */ 588 static void 589 bfreekva(struct buf * bp) 590 { 591 GIANT_REQUIRED; 592 593 if (bp->b_kvasize) { 594 ++buffreekvacnt; 595 bufspace -= bp->b_kvasize; 596 vm_map_delete(buffer_map, 597 (vm_offset_t) bp->b_kvabase, 598 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 599 ); 600 bp->b_kvasize = 0; 601 bufspacewakeup(); 602 } 603 } 604 605 /* 606 * bremfree: 607 * 608 * Remove the buffer from the appropriate free list. 609 */ 610 void 611 bremfree(struct buf * bp) 612 { 613 int s = splbio(); 614 int old_qindex = bp->b_qindex; 615 616 GIANT_REQUIRED; 617 618 if (bp->b_qindex != QUEUE_NONE) { 619 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 620 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 621 bp->b_qindex = QUEUE_NONE; 622 } else { 623 if (BUF_REFCNT(bp) <= 1) 624 panic("bremfree: removing a buffer not on a queue"); 625 } 626 627 /* 628 * Fixup numfreebuffers count. If the buffer is invalid or not 629 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 630 * the buffer was free and we must decrement numfreebuffers. 631 */ 632 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 633 switch(old_qindex) { 634 case QUEUE_DIRTY: 635 case QUEUE_CLEAN: 636 case QUEUE_EMPTY: 637 case QUEUE_EMPTYKVA: 638 --numfreebuffers; 639 break; 640 default: 641 break; 642 } 643 } 644 splx(s); 645 } 646 647 648 /* 649 * Get a buffer with the specified data. Look in the cache first. We 650 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 651 * is set, the buffer is valid and we do not have to do anything ( see 652 * getblk() ). This is really just a special case of breadn(). 653 */ 654 int 655 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 656 struct buf ** bpp) 657 { 658 659 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 660 } 661 662 /* 663 * Operates like bread, but also starts asynchronous I/O on 664 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 665 * to initiating I/O . If B_CACHE is set, the buffer is valid 666 * and we do not have to do anything. 667 */ 668 int 669 breadn(struct vnode * vp, daddr_t blkno, int size, 670 daddr_t * rablkno, int *rabsize, 671 int cnt, struct ucred * cred, struct buf ** bpp) 672 { 673 struct buf *bp, *rabp; 674 int i; 675 int rv = 0, readwait = 0; 676 677 *bpp = bp = getblk(vp, blkno, size, 0, 0); 678 679 /* if not found in cache, do some I/O */ 680 if ((bp->b_flags & B_CACHE) == 0) { 681 if (curthread != PCPU_GET(idlethread)) 682 curthread->td_proc->p_stats->p_ru.ru_inblock++; 683 bp->b_iocmd = BIO_READ; 684 bp->b_flags &= ~B_INVAL; 685 bp->b_ioflags &= ~BIO_ERROR; 686 if (bp->b_rcred == NOCRED && cred != NOCRED) 687 bp->b_rcred = crhold(cred); 688 vfs_busy_pages(bp, 0); 689 VOP_STRATEGY(vp, bp); 690 ++readwait; 691 } 692 693 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 694 if (inmem(vp, *rablkno)) 695 continue; 696 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 697 698 if ((rabp->b_flags & B_CACHE) == 0) { 699 if (curthread != PCPU_GET(idlethread)) 700 curthread->td_proc->p_stats->p_ru.ru_inblock++; 701 rabp->b_flags |= B_ASYNC; 702 rabp->b_flags &= ~B_INVAL; 703 rabp->b_ioflags &= ~BIO_ERROR; 704 rabp->b_iocmd = BIO_READ; 705 if (rabp->b_rcred == NOCRED && cred != NOCRED) 706 rabp->b_rcred = crhold(cred); 707 vfs_busy_pages(rabp, 0); 708 BUF_KERNPROC(rabp); 709 VOP_STRATEGY(vp, rabp); 710 } else { 711 brelse(rabp); 712 } 713 } 714 715 if (readwait) { 716 rv = bufwait(bp); 717 } 718 return (rv); 719 } 720 721 /* 722 * Write, release buffer on completion. (Done by iodone 723 * if async). Do not bother writing anything if the buffer 724 * is invalid. 725 * 726 * Note that we set B_CACHE here, indicating that buffer is 727 * fully valid and thus cacheable. This is true even of NFS 728 * now so we set it generally. This could be set either here 729 * or in biodone() since the I/O is synchronous. We put it 730 * here. 731 */ 732 733 int 734 bwrite(struct buf * bp) 735 { 736 int oldflags, s; 737 struct buf *newbp; 738 739 if (bp->b_flags & B_INVAL) { 740 brelse(bp); 741 return (0); 742 } 743 744 oldflags = bp->b_flags; 745 746 if (BUF_REFCNT(bp) == 0) 747 panic("bwrite: buffer is not busy???"); 748 s = splbio(); 749 /* 750 * If a background write is already in progress, delay 751 * writing this block if it is asynchronous. Otherwise 752 * wait for the background write to complete. 753 */ 754 if (bp->b_xflags & BX_BKGRDINPROG) { 755 if (bp->b_flags & B_ASYNC) { 756 splx(s); 757 bdwrite(bp); 758 return (0); 759 } 760 bp->b_xflags |= BX_BKGRDWAIT; 761 tsleep(&bp->b_xflags, PRIBIO, "biord", 0); 762 if (bp->b_xflags & BX_BKGRDINPROG) 763 panic("bwrite: still writing"); 764 } 765 766 /* Mark the buffer clean */ 767 bundirty(bp); 768 769 /* 770 * If this buffer is marked for background writing and we 771 * do not have to wait for it, make a copy and write the 772 * copy so as to leave this buffer ready for further use. 773 * 774 * This optimization eats a lot of memory. If we have a page 775 * or buffer shortfall we can't do it. 776 */ 777 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 778 (bp->b_flags & B_ASYNC) && 779 !vm_page_count_severe() && 780 !buf_dirty_count_severe()) { 781 if (bp->b_iodone != NULL) { 782 printf("bp->b_iodone = %p\n", bp->b_iodone); 783 panic("bwrite: need chained iodone"); 784 } 785 786 /* get a new block */ 787 newbp = geteblk(bp->b_bufsize); 788 789 /* set it to be identical to the old block */ 790 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 791 bgetvp(bp->b_vp, newbp); 792 newbp->b_lblkno = bp->b_lblkno; 793 newbp->b_blkno = bp->b_blkno; 794 newbp->b_offset = bp->b_offset; 795 newbp->b_iodone = vfs_backgroundwritedone; 796 newbp->b_flags |= B_ASYNC; 797 newbp->b_flags &= ~B_INVAL; 798 799 /* move over the dependencies */ 800 if (LIST_FIRST(&bp->b_dep) != NULL) 801 buf_movedeps(bp, newbp); 802 803 /* 804 * Initiate write on the copy, release the original to 805 * the B_LOCKED queue so that it cannot go away until 806 * the background write completes. If not locked it could go 807 * away and then be reconstituted while it was being written. 808 * If the reconstituted buffer were written, we could end up 809 * with two background copies being written at the same time. 810 */ 811 bp->b_xflags |= BX_BKGRDINPROG; 812 bp->b_flags |= B_LOCKED; 813 bqrelse(bp); 814 bp = newbp; 815 } 816 817 bp->b_flags &= ~B_DONE; 818 bp->b_ioflags &= ~BIO_ERROR; 819 bp->b_flags |= B_WRITEINPROG | B_CACHE; 820 bp->b_iocmd = BIO_WRITE; 821 822 bp->b_vp->v_numoutput++; 823 vfs_busy_pages(bp, 1); 824 825 /* 826 * Normal bwrites pipeline writes 827 */ 828 bp->b_runningbufspace = bp->b_bufsize; 829 runningbufspace += bp->b_runningbufspace; 830 831 if (curthread != PCPU_GET(idlethread)) 832 curthread->td_proc->p_stats->p_ru.ru_oublock++; 833 splx(s); 834 if (oldflags & B_ASYNC) 835 BUF_KERNPROC(bp); 836 BUF_STRATEGY(bp); 837 838 if ((oldflags & B_ASYNC) == 0) { 839 int rtval = bufwait(bp); 840 brelse(bp); 841 return (rtval); 842 } else if ((oldflags & B_NOWDRAIN) == 0) { 843 /* 844 * don't allow the async write to saturate the I/O 845 * system. Deadlocks can occur only if a device strategy 846 * routine (like in MD) turns around and issues another 847 * high-level write, in which case B_NOWDRAIN is expected 848 * to be set. Otherwise we will not deadlock here because 849 * we are blocking waiting for I/O that is already in-progress 850 * to complete. 851 */ 852 waitrunningbufspace(); 853 } 854 855 return (0); 856 } 857 858 /* 859 * Complete a background write started from bwrite. 860 */ 861 static void 862 vfs_backgroundwritedone(bp) 863 struct buf *bp; 864 { 865 struct buf *origbp; 866 867 /* 868 * Find the original buffer that we are writing. 869 */ 870 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 871 panic("backgroundwritedone: lost buffer"); 872 /* 873 * Process dependencies then return any unfinished ones. 874 */ 875 if (LIST_FIRST(&bp->b_dep) != NULL) 876 buf_complete(bp); 877 if (LIST_FIRST(&bp->b_dep) != NULL) 878 buf_movedeps(bp, origbp); 879 /* 880 * Clear the BX_BKGRDINPROG flag in the original buffer 881 * and awaken it if it is waiting for the write to complete. 882 * If BX_BKGRDINPROG is not set in the original buffer it must 883 * have been released and re-instantiated - which is not legal. 884 */ 885 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), 886 ("backgroundwritedone: lost buffer2")); 887 origbp->b_xflags &= ~BX_BKGRDINPROG; 888 if (origbp->b_xflags & BX_BKGRDWAIT) { 889 origbp->b_xflags &= ~BX_BKGRDWAIT; 890 wakeup(&origbp->b_xflags); 891 } 892 /* 893 * Clear the B_LOCKED flag and remove it from the locked 894 * queue if it currently resides there. 895 */ 896 origbp->b_flags &= ~B_LOCKED; 897 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 898 bremfree(origbp); 899 bqrelse(origbp); 900 } 901 /* 902 * This buffer is marked B_NOCACHE, so when it is released 903 * by biodone, it will be tossed. We mark it with BIO_READ 904 * to avoid biodone doing a second vwakeup. 905 */ 906 bp->b_flags |= B_NOCACHE; 907 bp->b_iocmd = BIO_READ; 908 bp->b_flags &= ~(B_CACHE | B_DONE); 909 bp->b_iodone = 0; 910 bufdone(bp); 911 } 912 913 /* 914 * Delayed write. (Buffer is marked dirty). Do not bother writing 915 * anything if the buffer is marked invalid. 916 * 917 * Note that since the buffer must be completely valid, we can safely 918 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 919 * biodone() in order to prevent getblk from writing the buffer 920 * out synchronously. 921 */ 922 void 923 bdwrite(struct buf * bp) 924 { 925 GIANT_REQUIRED; 926 927 if (BUF_REFCNT(bp) == 0) 928 panic("bdwrite: buffer is not busy"); 929 930 if (bp->b_flags & B_INVAL) { 931 brelse(bp); 932 return; 933 } 934 bdirty(bp); 935 936 /* 937 * Set B_CACHE, indicating that the buffer is fully valid. This is 938 * true even of NFS now. 939 */ 940 bp->b_flags |= B_CACHE; 941 942 /* 943 * This bmap keeps the system from needing to do the bmap later, 944 * perhaps when the system is attempting to do a sync. Since it 945 * is likely that the indirect block -- or whatever other datastructure 946 * that the filesystem needs is still in memory now, it is a good 947 * thing to do this. Note also, that if the pageout daemon is 948 * requesting a sync -- there might not be enough memory to do 949 * the bmap then... So, this is important to do. 950 */ 951 if (bp->b_lblkno == bp->b_blkno) { 952 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 953 } 954 955 /* 956 * Set the *dirty* buffer range based upon the VM system dirty pages. 957 */ 958 vfs_setdirty(bp); 959 960 /* 961 * We need to do this here to satisfy the vnode_pager and the 962 * pageout daemon, so that it thinks that the pages have been 963 * "cleaned". Note that since the pages are in a delayed write 964 * buffer -- the VFS layer "will" see that the pages get written 965 * out on the next sync, or perhaps the cluster will be completed. 966 */ 967 vfs_clean_pages(bp); 968 bqrelse(bp); 969 970 /* 971 * Wakeup the buffer flushing daemon if we have a lot of dirty 972 * buffers (midpoint between our recovery point and our stall 973 * point). 974 */ 975 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 976 977 /* 978 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 979 * due to the softdep code. 980 */ 981 } 982 983 /* 984 * bdirty: 985 * 986 * Turn buffer into delayed write request. We must clear BIO_READ and 987 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 988 * itself to properly update it in the dirty/clean lists. We mark it 989 * B_DONE to ensure that any asynchronization of the buffer properly 990 * clears B_DONE ( else a panic will occur later ). 991 * 992 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 993 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 994 * should only be called if the buffer is known-good. 995 * 996 * Since the buffer is not on a queue, we do not update the numfreebuffers 997 * count. 998 * 999 * Must be called at splbio(). 1000 * The buffer must be on QUEUE_NONE. 1001 */ 1002 void 1003 bdirty(bp) 1004 struct buf *bp; 1005 { 1006 KASSERT(bp->b_qindex == QUEUE_NONE, 1007 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1008 bp->b_flags &= ~(B_RELBUF); 1009 bp->b_iocmd = BIO_WRITE; 1010 1011 if ((bp->b_flags & B_DELWRI) == 0) { 1012 bp->b_flags |= B_DONE | B_DELWRI; 1013 reassignbuf(bp, bp->b_vp); 1014 ++numdirtybuffers; 1015 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1016 } 1017 } 1018 1019 /* 1020 * bundirty: 1021 * 1022 * Clear B_DELWRI for buffer. 1023 * 1024 * Since the buffer is not on a queue, we do not update the numfreebuffers 1025 * count. 1026 * 1027 * Must be called at splbio(). 1028 * The buffer must be on QUEUE_NONE. 1029 */ 1030 1031 void 1032 bundirty(bp) 1033 struct buf *bp; 1034 { 1035 KASSERT(bp->b_qindex == QUEUE_NONE, 1036 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1037 1038 if (bp->b_flags & B_DELWRI) { 1039 bp->b_flags &= ~B_DELWRI; 1040 reassignbuf(bp, bp->b_vp); 1041 --numdirtybuffers; 1042 numdirtywakeup(lodirtybuffers); 1043 } 1044 /* 1045 * Since it is now being written, we can clear its deferred write flag. 1046 */ 1047 bp->b_flags &= ~B_DEFERRED; 1048 } 1049 1050 /* 1051 * bawrite: 1052 * 1053 * Asynchronous write. Start output on a buffer, but do not wait for 1054 * it to complete. The buffer is released when the output completes. 1055 * 1056 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1057 * B_INVAL buffers. Not us. 1058 */ 1059 void 1060 bawrite(struct buf * bp) 1061 { 1062 bp->b_flags |= B_ASYNC; 1063 (void) BUF_WRITE(bp); 1064 } 1065 1066 /* 1067 * bwillwrite: 1068 * 1069 * Called prior to the locking of any vnodes when we are expecting to 1070 * write. We do not want to starve the buffer cache with too many 1071 * dirty buffers so we block here. By blocking prior to the locking 1072 * of any vnodes we attempt to avoid the situation where a locked vnode 1073 * prevents the various system daemons from flushing related buffers. 1074 */ 1075 1076 void 1077 bwillwrite(void) 1078 { 1079 if (numdirtybuffers >= hidirtybuffers) { 1080 int s; 1081 1082 mtx_lock(&Giant); 1083 s = splbio(); 1084 while (numdirtybuffers >= hidirtybuffers) { 1085 bd_wakeup(1); 1086 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1087 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); 1088 } 1089 splx(s); 1090 mtx_unlock(&Giant); 1091 } 1092 } 1093 1094 /* 1095 * Return true if we have too many dirty buffers. 1096 */ 1097 int 1098 buf_dirty_count_severe(void) 1099 { 1100 return(numdirtybuffers >= hidirtybuffers); 1101 } 1102 1103 /* 1104 * brelse: 1105 * 1106 * Release a busy buffer and, if requested, free its resources. The 1107 * buffer will be stashed in the appropriate bufqueue[] allowing it 1108 * to be accessed later as a cache entity or reused for other purposes. 1109 */ 1110 void 1111 brelse(struct buf * bp) 1112 { 1113 int s; 1114 1115 GIANT_REQUIRED; 1116 1117 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1118 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1119 1120 s = splbio(); 1121 1122 if (bp->b_flags & B_LOCKED) 1123 bp->b_ioflags &= ~BIO_ERROR; 1124 1125 if (bp->b_iocmd == BIO_WRITE && 1126 (bp->b_ioflags & BIO_ERROR) && 1127 !(bp->b_flags & B_INVAL)) { 1128 /* 1129 * Failed write, redirty. Must clear BIO_ERROR to prevent 1130 * pages from being scrapped. If B_INVAL is set then 1131 * this case is not run and the next case is run to 1132 * destroy the buffer. B_INVAL can occur if the buffer 1133 * is outside the range supported by the underlying device. 1134 */ 1135 bp->b_ioflags &= ~BIO_ERROR; 1136 bdirty(bp); 1137 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1138 (bp->b_ioflags & BIO_ERROR) || 1139 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1140 /* 1141 * Either a failed I/O or we were asked to free or not 1142 * cache the buffer. 1143 */ 1144 bp->b_flags |= B_INVAL; 1145 if (LIST_FIRST(&bp->b_dep) != NULL) 1146 buf_deallocate(bp); 1147 if (bp->b_flags & B_DELWRI) { 1148 --numdirtybuffers; 1149 numdirtywakeup(lodirtybuffers); 1150 } 1151 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1152 if ((bp->b_flags & B_VMIO) == 0) { 1153 if (bp->b_bufsize) 1154 allocbuf(bp, 0); 1155 if (bp->b_vp) 1156 brelvp(bp); 1157 } 1158 } 1159 1160 /* 1161 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1162 * is called with B_DELWRI set, the underlying pages may wind up 1163 * getting freed causing a previous write (bdwrite()) to get 'lost' 1164 * because pages associated with a B_DELWRI bp are marked clean. 1165 * 1166 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1167 * if B_DELWRI is set. 1168 * 1169 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1170 * on pages to return pages to the VM page queues. 1171 */ 1172 if (bp->b_flags & B_DELWRI) 1173 bp->b_flags &= ~B_RELBUF; 1174 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1175 bp->b_flags |= B_RELBUF; 1176 1177 /* 1178 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1179 * constituted, not even NFS buffers now. Two flags effect this. If 1180 * B_INVAL, the struct buf is invalidated but the VM object is kept 1181 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1182 * 1183 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1184 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1185 * buffer is also B_INVAL because it hits the re-dirtying code above. 1186 * 1187 * Normally we can do this whether a buffer is B_DELWRI or not. If 1188 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1189 * the commit state and we cannot afford to lose the buffer. If the 1190 * buffer has a background write in progress, we need to keep it 1191 * around to prevent it from being reconstituted and starting a second 1192 * background write. 1193 */ 1194 if ((bp->b_flags & B_VMIO) 1195 && !(bp->b_vp->v_tag == VT_NFS && 1196 !vn_isdisk(bp->b_vp, NULL) && 1197 (bp->b_flags & B_DELWRI)) 1198 ) { 1199 1200 int i, j, resid; 1201 vm_page_t m; 1202 off_t foff; 1203 vm_pindex_t poff; 1204 vm_object_t obj; 1205 struct vnode *vp; 1206 1207 vp = bp->b_vp; 1208 1209 /* 1210 * Get the base offset and length of the buffer. Note that 1211 * in the VMIO case if the buffer block size is not 1212 * page-aligned then b_data pointer may not be page-aligned. 1213 * But our b_pages[] array *IS* page aligned. 1214 * 1215 * block sizes less then DEV_BSIZE (usually 512) are not 1216 * supported due to the page granularity bits (m->valid, 1217 * m->dirty, etc...). 1218 * 1219 * See man buf(9) for more information 1220 */ 1221 resid = bp->b_bufsize; 1222 foff = bp->b_offset; 1223 1224 for (i = 0; i < bp->b_npages; i++) { 1225 int had_bogus = 0; 1226 1227 m = bp->b_pages[i]; 1228 vm_page_flag_clear(m, PG_ZERO); 1229 1230 /* 1231 * If we hit a bogus page, fixup *all* the bogus pages 1232 * now. 1233 */ 1234 if (m == bogus_page) { 1235 VOP_GETVOBJECT(vp, &obj); 1236 poff = OFF_TO_IDX(bp->b_offset); 1237 had_bogus = 1; 1238 1239 for (j = i; j < bp->b_npages; j++) { 1240 vm_page_t mtmp; 1241 mtmp = bp->b_pages[j]; 1242 if (mtmp == bogus_page) { 1243 mtmp = vm_page_lookup(obj, poff + j); 1244 if (!mtmp) { 1245 panic("brelse: page missing\n"); 1246 } 1247 bp->b_pages[j] = mtmp; 1248 } 1249 } 1250 1251 if ((bp->b_flags & B_INVAL) == 0) { 1252 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1253 } 1254 m = bp->b_pages[i]; 1255 } 1256 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1257 int poffset = foff & PAGE_MASK; 1258 int presid = resid > (PAGE_SIZE - poffset) ? 1259 (PAGE_SIZE - poffset) : resid; 1260 1261 KASSERT(presid >= 0, ("brelse: extra page")); 1262 vm_page_set_invalid(m, poffset, presid); 1263 if (had_bogus) 1264 printf("avoided corruption bug in bogus_page/brelse code\n"); 1265 } 1266 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1267 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1268 } 1269 1270 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1271 vfs_vmio_release(bp); 1272 1273 } else if (bp->b_flags & B_VMIO) { 1274 1275 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1276 vfs_vmio_release(bp); 1277 } 1278 1279 } 1280 1281 if (bp->b_qindex != QUEUE_NONE) 1282 panic("brelse: free buffer onto another queue???"); 1283 if (BUF_REFCNT(bp) > 1) { 1284 /* do not release to free list */ 1285 BUF_UNLOCK(bp); 1286 splx(s); 1287 return; 1288 } 1289 1290 /* enqueue */ 1291 1292 /* buffers with no memory */ 1293 if (bp->b_bufsize == 0) { 1294 bp->b_flags |= B_INVAL; 1295 bp->b_xflags &= ~BX_BKGRDWRITE; 1296 if (bp->b_xflags & BX_BKGRDINPROG) 1297 panic("losing buffer 1"); 1298 if (bp->b_kvasize) { 1299 bp->b_qindex = QUEUE_EMPTYKVA; 1300 } else { 1301 bp->b_qindex = QUEUE_EMPTY; 1302 } 1303 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1304 LIST_REMOVE(bp, b_hash); 1305 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1306 bp->b_dev = NODEV; 1307 /* buffers with junk contents */ 1308 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1309 (bp->b_ioflags & BIO_ERROR)) { 1310 bp->b_flags |= B_INVAL; 1311 bp->b_xflags &= ~BX_BKGRDWRITE; 1312 if (bp->b_xflags & BX_BKGRDINPROG) 1313 panic("losing buffer 2"); 1314 bp->b_qindex = QUEUE_CLEAN; 1315 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1316 LIST_REMOVE(bp, b_hash); 1317 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1318 bp->b_dev = NODEV; 1319 1320 /* buffers that are locked */ 1321 } else if (bp->b_flags & B_LOCKED) { 1322 bp->b_qindex = QUEUE_LOCKED; 1323 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1324 1325 /* remaining buffers */ 1326 } else { 1327 if (bp->b_flags & B_DELWRI) 1328 bp->b_qindex = QUEUE_DIRTY; 1329 else 1330 bp->b_qindex = QUEUE_CLEAN; 1331 if (bp->b_flags & B_AGE) 1332 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1333 else 1334 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1335 } 1336 1337 /* 1338 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1339 * on the correct queue. 1340 */ 1341 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1342 bundirty(bp); 1343 1344 /* 1345 * Fixup numfreebuffers count. The bp is on an appropriate queue 1346 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1347 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1348 * if B_INVAL is set ). 1349 */ 1350 1351 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1352 bufcountwakeup(); 1353 1354 /* 1355 * Something we can maybe free or reuse 1356 */ 1357 if (bp->b_bufsize || bp->b_kvasize) 1358 bufspacewakeup(); 1359 1360 /* unlock */ 1361 BUF_UNLOCK(bp); 1362 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1363 B_DIRECT | B_NOWDRAIN); 1364 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1365 panic("brelse: not dirty"); 1366 splx(s); 1367 } 1368 1369 /* 1370 * Release a buffer back to the appropriate queue but do not try to free 1371 * it. The buffer is expected to be used again soon. 1372 * 1373 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1374 * biodone() to requeue an async I/O on completion. It is also used when 1375 * known good buffers need to be requeued but we think we may need the data 1376 * again soon. 1377 * 1378 * XXX we should be able to leave the B_RELBUF hint set on completion. 1379 */ 1380 void 1381 bqrelse(struct buf * bp) 1382 { 1383 int s; 1384 1385 s = splbio(); 1386 1387 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1388 1389 if (bp->b_qindex != QUEUE_NONE) 1390 panic("bqrelse: free buffer onto another queue???"); 1391 if (BUF_REFCNT(bp) > 1) { 1392 /* do not release to free list */ 1393 BUF_UNLOCK(bp); 1394 splx(s); 1395 return; 1396 } 1397 if (bp->b_flags & B_LOCKED) { 1398 bp->b_ioflags &= ~BIO_ERROR; 1399 bp->b_qindex = QUEUE_LOCKED; 1400 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1401 /* buffers with stale but valid contents */ 1402 } else if (bp->b_flags & B_DELWRI) { 1403 bp->b_qindex = QUEUE_DIRTY; 1404 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1405 } else if (vm_page_count_severe()) { 1406 /* 1407 * We are too low on memory, we have to try to free the 1408 * buffer (most importantly: the wired pages making up its 1409 * backing store) *now*. 1410 */ 1411 splx(s); 1412 brelse(bp); 1413 return; 1414 } else { 1415 bp->b_qindex = QUEUE_CLEAN; 1416 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1417 } 1418 1419 if ((bp->b_flags & B_LOCKED) == 0 && 1420 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1421 bufcountwakeup(); 1422 } 1423 1424 /* 1425 * Something we can maybe free or reuse. 1426 */ 1427 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1428 bufspacewakeup(); 1429 1430 /* unlock */ 1431 BUF_UNLOCK(bp); 1432 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1433 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1434 panic("bqrelse: not dirty"); 1435 splx(s); 1436 } 1437 1438 /* Give pages used by the bp back to the VM system (where possible) */ 1439 static void 1440 vfs_vmio_release(bp) 1441 struct buf *bp; 1442 { 1443 int i; 1444 vm_page_t m; 1445 1446 GIANT_REQUIRED; 1447 1448 for (i = 0; i < bp->b_npages; i++) { 1449 m = bp->b_pages[i]; 1450 bp->b_pages[i] = NULL; 1451 /* 1452 * In order to keep page LRU ordering consistent, put 1453 * everything on the inactive queue. 1454 */ 1455 vm_page_unwire(m, 0); 1456 /* 1457 * We don't mess with busy pages, it is 1458 * the responsibility of the process that 1459 * busied the pages to deal with them. 1460 */ 1461 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1462 continue; 1463 1464 if (m->wire_count == 0) { 1465 vm_page_flag_clear(m, PG_ZERO); 1466 /* 1467 * Might as well free the page if we can and it has 1468 * no valid data. We also free the page if the 1469 * buffer was used for direct I/O 1470 */ 1471 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1472 m->hold_count == 0) { 1473 vm_page_busy(m); 1474 vm_page_protect(m, VM_PROT_NONE); 1475 vm_page_free(m); 1476 } else if (bp->b_flags & B_DIRECT) { 1477 vm_page_try_to_free(m); 1478 } else if (vm_page_count_severe()) { 1479 vm_page_try_to_cache(m); 1480 } 1481 } 1482 } 1483 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1484 1485 if (bp->b_bufsize) { 1486 bufspacewakeup(); 1487 bp->b_bufsize = 0; 1488 } 1489 bp->b_npages = 0; 1490 bp->b_flags &= ~B_VMIO; 1491 if (bp->b_vp) 1492 brelvp(bp); 1493 } 1494 1495 /* 1496 * Check to see if a block is currently memory resident. 1497 */ 1498 struct buf * 1499 gbincore(struct vnode * vp, daddr_t blkno) 1500 { 1501 struct buf *bp; 1502 struct bufhashhdr *bh; 1503 1504 bh = bufhash(vp, blkno); 1505 1506 /* Search hash chain */ 1507 LIST_FOREACH(bp, bh, b_hash) { 1508 /* hit */ 1509 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1510 (bp->b_flags & B_INVAL) == 0) { 1511 break; 1512 } 1513 } 1514 return (bp); 1515 } 1516 1517 /* 1518 * vfs_bio_awrite: 1519 * 1520 * Implement clustered async writes for clearing out B_DELWRI buffers. 1521 * This is much better then the old way of writing only one buffer at 1522 * a time. Note that we may not be presented with the buffers in the 1523 * correct order, so we search for the cluster in both directions. 1524 */ 1525 int 1526 vfs_bio_awrite(struct buf * bp) 1527 { 1528 int i; 1529 int j; 1530 daddr_t lblkno = bp->b_lblkno; 1531 struct vnode *vp = bp->b_vp; 1532 int s; 1533 int ncl; 1534 struct buf *bpa; 1535 int nwritten; 1536 int size; 1537 int maxcl; 1538 1539 s = splbio(); 1540 /* 1541 * right now we support clustered writing only to regular files. If 1542 * we find a clusterable block we could be in the middle of a cluster 1543 * rather then at the beginning. 1544 */ 1545 if ((vp->v_type == VREG) && 1546 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1547 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1548 1549 size = vp->v_mount->mnt_stat.f_iosize; 1550 maxcl = MAXPHYS / size; 1551 1552 for (i = 1; i < maxcl; i++) { 1553 if ((bpa = gbincore(vp, lblkno + i)) && 1554 BUF_REFCNT(bpa) == 0 && 1555 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1556 (B_DELWRI | B_CLUSTEROK)) && 1557 (bpa->b_bufsize == size)) { 1558 if ((bpa->b_blkno == bpa->b_lblkno) || 1559 (bpa->b_blkno != 1560 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1561 break; 1562 } else { 1563 break; 1564 } 1565 } 1566 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1567 if ((bpa = gbincore(vp, lblkno - j)) && 1568 BUF_REFCNT(bpa) == 0 && 1569 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1570 (B_DELWRI | B_CLUSTEROK)) && 1571 (bpa->b_bufsize == size)) { 1572 if ((bpa->b_blkno == bpa->b_lblkno) || 1573 (bpa->b_blkno != 1574 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1575 break; 1576 } else { 1577 break; 1578 } 1579 } 1580 --j; 1581 ncl = i + j; 1582 /* 1583 * this is a possible cluster write 1584 */ 1585 if (ncl != 1) { 1586 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1587 splx(s); 1588 return nwritten; 1589 } 1590 } 1591 1592 BUF_LOCK(bp, LK_EXCLUSIVE); 1593 bremfree(bp); 1594 bp->b_flags |= B_ASYNC; 1595 1596 splx(s); 1597 /* 1598 * default (old) behavior, writing out only one block 1599 * 1600 * XXX returns b_bufsize instead of b_bcount for nwritten? 1601 */ 1602 nwritten = bp->b_bufsize; 1603 (void) BUF_WRITE(bp); 1604 1605 return nwritten; 1606 } 1607 1608 /* 1609 * getnewbuf: 1610 * 1611 * Find and initialize a new buffer header, freeing up existing buffers 1612 * in the bufqueues as necessary. The new buffer is returned locked. 1613 * 1614 * Important: B_INVAL is not set. If the caller wishes to throw the 1615 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1616 * 1617 * We block if: 1618 * We have insufficient buffer headers 1619 * We have insufficient buffer space 1620 * buffer_map is too fragmented ( space reservation fails ) 1621 * If we have to flush dirty buffers ( but we try to avoid this ) 1622 * 1623 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1624 * Instead we ask the buf daemon to do it for us. We attempt to 1625 * avoid piecemeal wakeups of the pageout daemon. 1626 */ 1627 1628 static struct buf * 1629 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1630 { 1631 struct buf *bp; 1632 struct buf *nbp; 1633 int defrag = 0; 1634 int nqindex; 1635 static int flushingbufs; 1636 1637 GIANT_REQUIRED; 1638 1639 /* 1640 * We can't afford to block since we might be holding a vnode lock, 1641 * which may prevent system daemons from running. We deal with 1642 * low-memory situations by proactively returning memory and running 1643 * async I/O rather then sync I/O. 1644 */ 1645 1646 ++getnewbufcalls; 1647 --getnewbufrestarts; 1648 restart: 1649 ++getnewbufrestarts; 1650 1651 /* 1652 * Setup for scan. If we do not have enough free buffers, 1653 * we setup a degenerate case that immediately fails. Note 1654 * that if we are specially marked process, we are allowed to 1655 * dip into our reserves. 1656 * 1657 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1658 * 1659 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1660 * However, there are a number of cases (defragging, reusing, ...) 1661 * where we cannot backup. 1662 */ 1663 nqindex = QUEUE_EMPTYKVA; 1664 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1665 1666 if (nbp == NULL) { 1667 /* 1668 * If no EMPTYKVA buffers and we are either 1669 * defragging or reusing, locate a CLEAN buffer 1670 * to free or reuse. If bufspace useage is low 1671 * skip this step so we can allocate a new buffer. 1672 */ 1673 if (defrag || bufspace >= lobufspace) { 1674 nqindex = QUEUE_CLEAN; 1675 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1676 } 1677 1678 /* 1679 * If we could not find or were not allowed to reuse a 1680 * CLEAN buffer, check to see if it is ok to use an EMPTY 1681 * buffer. We can only use an EMPTY buffer if allocating 1682 * its KVA would not otherwise run us out of buffer space. 1683 */ 1684 if (nbp == NULL && defrag == 0 && 1685 bufspace + maxsize < hibufspace) { 1686 nqindex = QUEUE_EMPTY; 1687 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1688 } 1689 } 1690 1691 /* 1692 * Run scan, possibly freeing data and/or kva mappings on the fly 1693 * depending. 1694 */ 1695 1696 while ((bp = nbp) != NULL) { 1697 int qindex = nqindex; 1698 1699 /* 1700 * Calculate next bp ( we can only use it if we do not block 1701 * or do other fancy things ). 1702 */ 1703 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1704 switch(qindex) { 1705 case QUEUE_EMPTY: 1706 nqindex = QUEUE_EMPTYKVA; 1707 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1708 break; 1709 /* fall through */ 1710 case QUEUE_EMPTYKVA: 1711 nqindex = QUEUE_CLEAN; 1712 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1713 break; 1714 /* fall through */ 1715 case QUEUE_CLEAN: 1716 /* 1717 * nbp is NULL. 1718 */ 1719 break; 1720 } 1721 } 1722 1723 /* 1724 * Sanity Checks 1725 */ 1726 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1727 1728 /* 1729 * Note: we no longer distinguish between VMIO and non-VMIO 1730 * buffers. 1731 */ 1732 1733 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1734 1735 /* 1736 * If we are defragging then we need a buffer with 1737 * b_kvasize != 0. XXX this situation should no longer 1738 * occur, if defrag is non-zero the buffer's b_kvasize 1739 * should also be non-zero at this point. XXX 1740 */ 1741 if (defrag && bp->b_kvasize == 0) { 1742 printf("Warning: defrag empty buffer %p\n", bp); 1743 continue; 1744 } 1745 1746 /* 1747 * Start freeing the bp. This is somewhat involved. nbp 1748 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1749 */ 1750 1751 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1752 panic("getnewbuf: locked buf"); 1753 bremfree(bp); 1754 1755 if (qindex == QUEUE_CLEAN) { 1756 if (bp->b_flags & B_VMIO) { 1757 bp->b_flags &= ~B_ASYNC; 1758 vfs_vmio_release(bp); 1759 } 1760 if (bp->b_vp) 1761 brelvp(bp); 1762 } 1763 1764 /* 1765 * NOTE: nbp is now entirely invalid. We can only restart 1766 * the scan from this point on. 1767 * 1768 * Get the rest of the buffer freed up. b_kva* is still 1769 * valid after this operation. 1770 */ 1771 1772 if (bp->b_rcred != NOCRED) { 1773 crfree(bp->b_rcred); 1774 bp->b_rcred = NOCRED; 1775 } 1776 if (bp->b_wcred != NOCRED) { 1777 crfree(bp->b_wcred); 1778 bp->b_wcred = NOCRED; 1779 } 1780 if (LIST_FIRST(&bp->b_dep) != NULL) 1781 buf_deallocate(bp); 1782 if (bp->b_xflags & BX_BKGRDINPROG) 1783 panic("losing buffer 3"); 1784 LIST_REMOVE(bp, b_hash); 1785 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1786 1787 if (bp->b_bufsize) 1788 allocbuf(bp, 0); 1789 1790 bp->b_flags = 0; 1791 bp->b_ioflags = 0; 1792 bp->b_xflags = 0; 1793 bp->b_dev = NODEV; 1794 bp->b_vp = NULL; 1795 bp->b_blkno = bp->b_lblkno = 0; 1796 bp->b_offset = NOOFFSET; 1797 bp->b_iodone = 0; 1798 bp->b_error = 0; 1799 bp->b_resid = 0; 1800 bp->b_bcount = 0; 1801 bp->b_npages = 0; 1802 bp->b_dirtyoff = bp->b_dirtyend = 0; 1803 bp->b_magic = B_MAGIC_BIO; 1804 bp->b_op = &buf_ops_bio; 1805 1806 LIST_INIT(&bp->b_dep); 1807 1808 /* 1809 * If we are defragging then free the buffer. 1810 */ 1811 if (defrag) { 1812 bp->b_flags |= B_INVAL; 1813 bfreekva(bp); 1814 brelse(bp); 1815 defrag = 0; 1816 goto restart; 1817 } 1818 1819 /* 1820 * If we are overcomitted then recover the buffer and its 1821 * KVM space. This occurs in rare situations when multiple 1822 * processes are blocked in getnewbuf() or allocbuf(). 1823 */ 1824 if (bufspace >= hibufspace) 1825 flushingbufs = 1; 1826 if (flushingbufs && bp->b_kvasize != 0) { 1827 bp->b_flags |= B_INVAL; 1828 bfreekva(bp); 1829 brelse(bp); 1830 goto restart; 1831 } 1832 if (bufspace < lobufspace) 1833 flushingbufs = 0; 1834 break; 1835 } 1836 1837 /* 1838 * If we exhausted our list, sleep as appropriate. We may have to 1839 * wakeup various daemons and write out some dirty buffers. 1840 * 1841 * Generally we are sleeping due to insufficient buffer space. 1842 */ 1843 1844 if (bp == NULL) { 1845 int flags; 1846 char *waitmsg; 1847 1848 if (defrag) { 1849 flags = VFS_BIO_NEED_BUFSPACE; 1850 waitmsg = "nbufkv"; 1851 } else if (bufspace >= hibufspace) { 1852 waitmsg = "nbufbs"; 1853 flags = VFS_BIO_NEED_BUFSPACE; 1854 } else { 1855 waitmsg = "newbuf"; 1856 flags = VFS_BIO_NEED_ANY; 1857 } 1858 1859 bd_speedup(); /* heeeelp */ 1860 1861 needsbuffer |= flags; 1862 while (needsbuffer & flags) { 1863 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1864 waitmsg, slptimeo)) 1865 return (NULL); 1866 } 1867 } else { 1868 /* 1869 * We finally have a valid bp. We aren't quite out of the 1870 * woods, we still have to reserve kva space. In order 1871 * to keep fragmentation sane we only allocate kva in 1872 * BKVASIZE chunks. 1873 */ 1874 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1875 1876 if (maxsize != bp->b_kvasize) { 1877 vm_offset_t addr = 0; 1878 1879 bfreekva(bp); 1880 1881 if (vm_map_findspace(buffer_map, 1882 vm_map_min(buffer_map), maxsize, &addr)) { 1883 /* 1884 * Uh oh. Buffer map is to fragmented. We 1885 * must defragment the map. 1886 */ 1887 ++bufdefragcnt; 1888 defrag = 1; 1889 bp->b_flags |= B_INVAL; 1890 brelse(bp); 1891 goto restart; 1892 } 1893 if (addr) { 1894 vm_map_insert(buffer_map, NULL, 0, 1895 addr, addr + maxsize, 1896 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1897 1898 bp->b_kvabase = (caddr_t) addr; 1899 bp->b_kvasize = maxsize; 1900 bufspace += bp->b_kvasize; 1901 ++bufreusecnt; 1902 } 1903 } 1904 bp->b_data = bp->b_kvabase; 1905 } 1906 return(bp); 1907 } 1908 1909 /* 1910 * buf_daemon: 1911 * 1912 * buffer flushing daemon. Buffers are normally flushed by the 1913 * update daemon but if it cannot keep up this process starts to 1914 * take the load in an attempt to prevent getnewbuf() from blocking. 1915 */ 1916 1917 static struct proc *bufdaemonproc; 1918 1919 static struct kproc_desc buf_kp = { 1920 "bufdaemon", 1921 buf_daemon, 1922 &bufdaemonproc 1923 }; 1924 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1925 1926 static void 1927 buf_daemon() 1928 { 1929 int s; 1930 1931 mtx_lock(&Giant); 1932 1933 /* 1934 * This process needs to be suspended prior to shutdown sync. 1935 */ 1936 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 1937 SHUTDOWN_PRI_LAST); 1938 1939 /* 1940 * This process is allowed to take the buffer cache to the limit 1941 */ 1942 s = splbio(); 1943 1944 for (;;) { 1945 kthread_suspend_check(bufdaemonproc); 1946 1947 bd_request = 0; 1948 1949 /* 1950 * Do the flush. Limit the amount of in-transit I/O we 1951 * allow to build up, otherwise we would completely saturate 1952 * the I/O system. Wakeup any waiting processes before we 1953 * normally would so they can run in parallel with our drain. 1954 */ 1955 while (numdirtybuffers > lodirtybuffers) { 1956 if (flushbufqueues() == 0) 1957 break; 1958 waitrunningbufspace(); 1959 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1960 } 1961 1962 /* 1963 * Only clear bd_request if we have reached our low water 1964 * mark. The buf_daemon normally waits 1 second and 1965 * then incrementally flushes any dirty buffers that have 1966 * built up, within reason. 1967 * 1968 * If we were unable to hit our low water mark and couldn't 1969 * find any flushable buffers, we sleep half a second. 1970 * Otherwise we loop immediately. 1971 */ 1972 if (numdirtybuffers <= lodirtybuffers) { 1973 /* 1974 * We reached our low water mark, reset the 1975 * request and sleep until we are needed again. 1976 * The sleep is just so the suspend code works. 1977 */ 1978 bd_request = 0; 1979 tsleep(&bd_request, PVM, "psleep", hz); 1980 } else { 1981 /* 1982 * We couldn't find any flushable dirty buffers but 1983 * still have too many dirty buffers, we 1984 * have to sleep and try again. (rare) 1985 */ 1986 tsleep(&bd_request, PVM, "qsleep", hz / 2); 1987 } 1988 } 1989 } 1990 1991 /* 1992 * flushbufqueues: 1993 * 1994 * Try to flush a buffer in the dirty queue. We must be careful to 1995 * free up B_INVAL buffers instead of write them, which NFS is 1996 * particularly sensitive to. 1997 */ 1998 1999 static int 2000 flushbufqueues(void) 2001 { 2002 struct buf *bp; 2003 int r = 0; 2004 2005 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 2006 2007 while (bp) { 2008 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 2009 if ((bp->b_flags & B_DELWRI) != 0 && 2010 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 2011 if (bp->b_flags & B_INVAL) { 2012 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2013 panic("flushbufqueues: locked buf"); 2014 bremfree(bp); 2015 brelse(bp); 2016 ++r; 2017 break; 2018 } 2019 if (LIST_FIRST(&bp->b_dep) != NULL && 2020 (bp->b_flags & B_DEFERRED) == 0 && 2021 buf_countdeps(bp, 0)) { 2022 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 2023 bp, b_freelist); 2024 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 2025 bp, b_freelist); 2026 bp->b_flags |= B_DEFERRED; 2027 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 2028 continue; 2029 } 2030 vfs_bio_awrite(bp); 2031 ++r; 2032 break; 2033 } 2034 bp = TAILQ_NEXT(bp, b_freelist); 2035 } 2036 return (r); 2037 } 2038 2039 /* 2040 * Check to see if a block is currently memory resident. 2041 */ 2042 struct buf * 2043 incore(struct vnode * vp, daddr_t blkno) 2044 { 2045 struct buf *bp; 2046 2047 int s = splbio(); 2048 bp = gbincore(vp, blkno); 2049 splx(s); 2050 return (bp); 2051 } 2052 2053 /* 2054 * Returns true if no I/O is needed to access the 2055 * associated VM object. This is like incore except 2056 * it also hunts around in the VM system for the data. 2057 */ 2058 2059 int 2060 inmem(struct vnode * vp, daddr_t blkno) 2061 { 2062 vm_object_t obj; 2063 vm_offset_t toff, tinc, size; 2064 vm_page_t m; 2065 vm_ooffset_t off; 2066 2067 GIANT_REQUIRED; 2068 2069 if (incore(vp, blkno)) 2070 return 1; 2071 if (vp->v_mount == NULL) 2072 return 0; 2073 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 2074 return 0; 2075 2076 size = PAGE_SIZE; 2077 if (size > vp->v_mount->mnt_stat.f_iosize) 2078 size = vp->v_mount->mnt_stat.f_iosize; 2079 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2080 2081 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2082 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2083 if (!m) 2084 goto notinmem; 2085 tinc = size; 2086 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2087 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2088 if (vm_page_is_valid(m, 2089 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2090 goto notinmem; 2091 } 2092 return 1; 2093 2094 notinmem: 2095 return (0); 2096 } 2097 2098 /* 2099 * vfs_setdirty: 2100 * 2101 * Sets the dirty range for a buffer based on the status of the dirty 2102 * bits in the pages comprising the buffer. 2103 * 2104 * The range is limited to the size of the buffer. 2105 * 2106 * This routine is primarily used by NFS, but is generalized for the 2107 * B_VMIO case. 2108 */ 2109 static void 2110 vfs_setdirty(struct buf *bp) 2111 { 2112 int i; 2113 vm_object_t object; 2114 2115 GIANT_REQUIRED; 2116 /* 2117 * Degenerate case - empty buffer 2118 */ 2119 2120 if (bp->b_bufsize == 0) 2121 return; 2122 2123 /* 2124 * We qualify the scan for modified pages on whether the 2125 * object has been flushed yet. The OBJ_WRITEABLE flag 2126 * is not cleared simply by protecting pages off. 2127 */ 2128 2129 if ((bp->b_flags & B_VMIO) == 0) 2130 return; 2131 2132 object = bp->b_pages[0]->object; 2133 2134 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2135 printf("Warning: object %p writeable but not mightbedirty\n", object); 2136 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2137 printf("Warning: object %p mightbedirty but not writeable\n", object); 2138 2139 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2140 vm_offset_t boffset; 2141 vm_offset_t eoffset; 2142 2143 /* 2144 * test the pages to see if they have been modified directly 2145 * by users through the VM system. 2146 */ 2147 for (i = 0; i < bp->b_npages; i++) { 2148 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2149 vm_page_test_dirty(bp->b_pages[i]); 2150 } 2151 2152 /* 2153 * Calculate the encompassing dirty range, boffset and eoffset, 2154 * (eoffset - boffset) bytes. 2155 */ 2156 2157 for (i = 0; i < bp->b_npages; i++) { 2158 if (bp->b_pages[i]->dirty) 2159 break; 2160 } 2161 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2162 2163 for (i = bp->b_npages - 1; i >= 0; --i) { 2164 if (bp->b_pages[i]->dirty) { 2165 break; 2166 } 2167 } 2168 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2169 2170 /* 2171 * Fit it to the buffer. 2172 */ 2173 2174 if (eoffset > bp->b_bcount) 2175 eoffset = bp->b_bcount; 2176 2177 /* 2178 * If we have a good dirty range, merge with the existing 2179 * dirty range. 2180 */ 2181 2182 if (boffset < eoffset) { 2183 if (bp->b_dirtyoff > boffset) 2184 bp->b_dirtyoff = boffset; 2185 if (bp->b_dirtyend < eoffset) 2186 bp->b_dirtyend = eoffset; 2187 } 2188 } 2189 } 2190 2191 /* 2192 * getblk: 2193 * 2194 * Get a block given a specified block and offset into a file/device. 2195 * The buffers B_DONE bit will be cleared on return, making it almost 2196 * ready for an I/O initiation. B_INVAL may or may not be set on 2197 * return. The caller should clear B_INVAL prior to initiating a 2198 * READ. 2199 * 2200 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2201 * an existing buffer. 2202 * 2203 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2204 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2205 * and then cleared based on the backing VM. If the previous buffer is 2206 * non-0-sized but invalid, B_CACHE will be cleared. 2207 * 2208 * If getblk() must create a new buffer, the new buffer is returned with 2209 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2210 * case it is returned with B_INVAL clear and B_CACHE set based on the 2211 * backing VM. 2212 * 2213 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2214 * B_CACHE bit is clear. 2215 * 2216 * What this means, basically, is that the caller should use B_CACHE to 2217 * determine whether the buffer is fully valid or not and should clear 2218 * B_INVAL prior to issuing a read. If the caller intends to validate 2219 * the buffer by loading its data area with something, the caller needs 2220 * to clear B_INVAL. If the caller does this without issuing an I/O, 2221 * the caller should set B_CACHE ( as an optimization ), else the caller 2222 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2223 * a write attempt or if it was a successfull read. If the caller 2224 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2225 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2226 */ 2227 struct buf * 2228 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2229 { 2230 struct buf *bp; 2231 int s; 2232 struct bufhashhdr *bh; 2233 2234 if (size > MAXBSIZE) 2235 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2236 2237 s = splbio(); 2238 loop: 2239 /* 2240 * Block if we are low on buffers. Certain processes are allowed 2241 * to completely exhaust the buffer cache. 2242 * 2243 * If this check ever becomes a bottleneck it may be better to 2244 * move it into the else, when gbincore() fails. At the moment 2245 * it isn't a problem. 2246 * 2247 * XXX remove if 0 sections (clean this up after its proven) 2248 */ 2249 if (numfreebuffers == 0) { 2250 if (curthread == PCPU_GET(idlethread)) 2251 return NULL; 2252 needsbuffer |= VFS_BIO_NEED_ANY; 2253 } 2254 2255 if ((bp = gbincore(vp, blkno))) { 2256 /* 2257 * Buffer is in-core. If the buffer is not busy, it must 2258 * be on a queue. 2259 */ 2260 2261 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2262 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2263 "getblk", slpflag, slptimeo) == ENOLCK) 2264 goto loop; 2265 splx(s); 2266 return (struct buf *) NULL; 2267 } 2268 2269 /* 2270 * The buffer is locked. B_CACHE is cleared if the buffer is 2271 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 2272 * and for a VMIO buffer B_CACHE is adjusted according to the 2273 * backing VM cache. 2274 */ 2275 if (bp->b_flags & B_INVAL) 2276 bp->b_flags &= ~B_CACHE; 2277 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2278 bp->b_flags |= B_CACHE; 2279 bremfree(bp); 2280 2281 /* 2282 * check for size inconsistancies for non-VMIO case. 2283 */ 2284 2285 if (bp->b_bcount != size) { 2286 if ((bp->b_flags & B_VMIO) == 0 || 2287 (size > bp->b_kvasize)) { 2288 if (bp->b_flags & B_DELWRI) { 2289 bp->b_flags |= B_NOCACHE; 2290 BUF_WRITE(bp); 2291 } else { 2292 if ((bp->b_flags & B_VMIO) && 2293 (LIST_FIRST(&bp->b_dep) == NULL)) { 2294 bp->b_flags |= B_RELBUF; 2295 brelse(bp); 2296 } else { 2297 bp->b_flags |= B_NOCACHE; 2298 BUF_WRITE(bp); 2299 } 2300 } 2301 goto loop; 2302 } 2303 } 2304 2305 /* 2306 * If the size is inconsistant in the VMIO case, we can resize 2307 * the buffer. This might lead to B_CACHE getting set or 2308 * cleared. If the size has not changed, B_CACHE remains 2309 * unchanged from its previous state. 2310 */ 2311 2312 if (bp->b_bcount != size) 2313 allocbuf(bp, size); 2314 2315 KASSERT(bp->b_offset != NOOFFSET, 2316 ("getblk: no buffer offset")); 2317 2318 /* 2319 * A buffer with B_DELWRI set and B_CACHE clear must 2320 * be committed before we can return the buffer in 2321 * order to prevent the caller from issuing a read 2322 * ( due to B_CACHE not being set ) and overwriting 2323 * it. 2324 * 2325 * Most callers, including NFS and FFS, need this to 2326 * operate properly either because they assume they 2327 * can issue a read if B_CACHE is not set, or because 2328 * ( for example ) an uncached B_DELWRI might loop due 2329 * to softupdates re-dirtying the buffer. In the latter 2330 * case, B_CACHE is set after the first write completes, 2331 * preventing further loops. 2332 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2333 * above while extending the buffer, we cannot allow the 2334 * buffer to remain with B_CACHE set after the write 2335 * completes or it will represent a corrupt state. To 2336 * deal with this we set B_NOCACHE to scrap the buffer 2337 * after the write. 2338 * 2339 * We might be able to do something fancy, like setting 2340 * B_CACHE in bwrite() except if B_DELWRI is already set, 2341 * so the below call doesn't set B_CACHE, but that gets real 2342 * confusing. This is much easier. 2343 */ 2344 2345 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2346 bp->b_flags |= B_NOCACHE; 2347 BUF_WRITE(bp); 2348 goto loop; 2349 } 2350 2351 splx(s); 2352 bp->b_flags &= ~B_DONE; 2353 } else { 2354 /* 2355 * Buffer is not in-core, create new buffer. The buffer 2356 * returned by getnewbuf() is locked. Note that the returned 2357 * buffer is also considered valid (not marked B_INVAL). 2358 */ 2359 int bsize, maxsize, vmio; 2360 off_t offset; 2361 2362 if (vn_isdisk(vp, NULL)) 2363 bsize = DEV_BSIZE; 2364 else if (vp->v_mountedhere) 2365 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2366 else if (vp->v_mount) 2367 bsize = vp->v_mount->mnt_stat.f_iosize; 2368 else 2369 bsize = size; 2370 2371 offset = (off_t)blkno * bsize; 2372 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2373 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2374 maxsize = imax(maxsize, bsize); 2375 2376 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2377 if (slpflag || slptimeo) { 2378 splx(s); 2379 return NULL; 2380 } 2381 goto loop; 2382 } 2383 2384 /* 2385 * This code is used to make sure that a buffer is not 2386 * created while the getnewbuf routine is blocked. 2387 * This can be a problem whether the vnode is locked or not. 2388 * If the buffer is created out from under us, we have to 2389 * throw away the one we just created. There is now window 2390 * race because we are safely running at splbio() from the 2391 * point of the duplicate buffer creation through to here, 2392 * and we've locked the buffer. 2393 */ 2394 if (gbincore(vp, blkno)) { 2395 bp->b_flags |= B_INVAL; 2396 brelse(bp); 2397 goto loop; 2398 } 2399 2400 /* 2401 * Insert the buffer into the hash, so that it can 2402 * be found by incore. 2403 */ 2404 bp->b_blkno = bp->b_lblkno = blkno; 2405 bp->b_offset = offset; 2406 2407 bgetvp(vp, bp); 2408 LIST_REMOVE(bp, b_hash); 2409 bh = bufhash(vp, blkno); 2410 LIST_INSERT_HEAD(bh, bp, b_hash); 2411 2412 /* 2413 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2414 * buffer size starts out as 0, B_CACHE will be set by 2415 * allocbuf() for the VMIO case prior to it testing the 2416 * backing store for validity. 2417 */ 2418 2419 if (vmio) { 2420 bp->b_flags |= B_VMIO; 2421 #if defined(VFS_BIO_DEBUG) 2422 if (vp->v_type != VREG) 2423 printf("getblk: vmioing file type %d???\n", vp->v_type); 2424 #endif 2425 } else { 2426 bp->b_flags &= ~B_VMIO; 2427 } 2428 2429 allocbuf(bp, size); 2430 2431 splx(s); 2432 bp->b_flags &= ~B_DONE; 2433 } 2434 return (bp); 2435 } 2436 2437 /* 2438 * Get an empty, disassociated buffer of given size. The buffer is initially 2439 * set to B_INVAL. 2440 */ 2441 struct buf * 2442 geteblk(int size) 2443 { 2444 struct buf *bp; 2445 int s; 2446 int maxsize; 2447 2448 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2449 2450 s = splbio(); 2451 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0); 2452 splx(s); 2453 allocbuf(bp, size); 2454 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2455 return (bp); 2456 } 2457 2458 2459 /* 2460 * This code constitutes the buffer memory from either anonymous system 2461 * memory (in the case of non-VMIO operations) or from an associated 2462 * VM object (in the case of VMIO operations). This code is able to 2463 * resize a buffer up or down. 2464 * 2465 * Note that this code is tricky, and has many complications to resolve 2466 * deadlock or inconsistant data situations. Tread lightly!!! 2467 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2468 * the caller. Calling this code willy nilly can result in the loss of data. 2469 * 2470 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2471 * B_CACHE for the non-VMIO case. 2472 */ 2473 2474 int 2475 allocbuf(struct buf *bp, int size) 2476 { 2477 int newbsize, mbsize; 2478 int i; 2479 2480 GIANT_REQUIRED; 2481 2482 if (BUF_REFCNT(bp) == 0) 2483 panic("allocbuf: buffer not busy"); 2484 2485 if (bp->b_kvasize < size) 2486 panic("allocbuf: buffer too small"); 2487 2488 if ((bp->b_flags & B_VMIO) == 0) { 2489 caddr_t origbuf; 2490 int origbufsize; 2491 /* 2492 * Just get anonymous memory from the kernel. Don't 2493 * mess with B_CACHE. 2494 */ 2495 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2496 if (bp->b_flags & B_MALLOC) 2497 newbsize = mbsize; 2498 else 2499 newbsize = round_page(size); 2500 2501 if (newbsize < bp->b_bufsize) { 2502 /* 2503 * malloced buffers are not shrunk 2504 */ 2505 if (bp->b_flags & B_MALLOC) { 2506 if (newbsize) { 2507 bp->b_bcount = size; 2508 } else { 2509 free(bp->b_data, M_BIOBUF); 2510 if (bp->b_bufsize) { 2511 bufmallocspace -= bp->b_bufsize; 2512 bufspacewakeup(); 2513 bp->b_bufsize = 0; 2514 } 2515 bp->b_data = bp->b_kvabase; 2516 bp->b_bcount = 0; 2517 bp->b_flags &= ~B_MALLOC; 2518 } 2519 return 1; 2520 } 2521 vm_hold_free_pages( 2522 bp, 2523 (vm_offset_t) bp->b_data + newbsize, 2524 (vm_offset_t) bp->b_data + bp->b_bufsize); 2525 } else if (newbsize > bp->b_bufsize) { 2526 /* 2527 * We only use malloced memory on the first allocation. 2528 * and revert to page-allocated memory when the buffer 2529 * grows. 2530 */ 2531 if ( (bufmallocspace < maxbufmallocspace) && 2532 (bp->b_bufsize == 0) && 2533 (mbsize <= PAGE_SIZE/2)) { 2534 2535 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2536 bp->b_bufsize = mbsize; 2537 bp->b_bcount = size; 2538 bp->b_flags |= B_MALLOC; 2539 bufmallocspace += mbsize; 2540 return 1; 2541 } 2542 origbuf = NULL; 2543 origbufsize = 0; 2544 /* 2545 * If the buffer is growing on its other-than-first allocation, 2546 * then we revert to the page-allocation scheme. 2547 */ 2548 if (bp->b_flags & B_MALLOC) { 2549 origbuf = bp->b_data; 2550 origbufsize = bp->b_bufsize; 2551 bp->b_data = bp->b_kvabase; 2552 if (bp->b_bufsize) { 2553 bufmallocspace -= bp->b_bufsize; 2554 bufspacewakeup(); 2555 bp->b_bufsize = 0; 2556 } 2557 bp->b_flags &= ~B_MALLOC; 2558 newbsize = round_page(newbsize); 2559 } 2560 vm_hold_load_pages( 2561 bp, 2562 (vm_offset_t) bp->b_data + bp->b_bufsize, 2563 (vm_offset_t) bp->b_data + newbsize); 2564 if (origbuf) { 2565 bcopy(origbuf, bp->b_data, origbufsize); 2566 free(origbuf, M_BIOBUF); 2567 } 2568 } 2569 } else { 2570 vm_page_t m; 2571 int desiredpages; 2572 2573 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2574 desiredpages = (size == 0) ? 0 : 2575 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2576 2577 if (bp->b_flags & B_MALLOC) 2578 panic("allocbuf: VMIO buffer can't be malloced"); 2579 /* 2580 * Set B_CACHE initially if buffer is 0 length or will become 2581 * 0-length. 2582 */ 2583 if (size == 0 || bp->b_bufsize == 0) 2584 bp->b_flags |= B_CACHE; 2585 2586 if (newbsize < bp->b_bufsize) { 2587 /* 2588 * DEV_BSIZE aligned new buffer size is less then the 2589 * DEV_BSIZE aligned existing buffer size. Figure out 2590 * if we have to remove any pages. 2591 */ 2592 if (desiredpages < bp->b_npages) { 2593 for (i = desiredpages; i < bp->b_npages; i++) { 2594 /* 2595 * the page is not freed here -- it 2596 * is the responsibility of 2597 * vnode_pager_setsize 2598 */ 2599 m = bp->b_pages[i]; 2600 KASSERT(m != bogus_page, 2601 ("allocbuf: bogus page found")); 2602 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2603 ; 2604 2605 bp->b_pages[i] = NULL; 2606 vm_page_unwire(m, 0); 2607 } 2608 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2609 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2610 bp->b_npages = desiredpages; 2611 } 2612 } else if (size > bp->b_bcount) { 2613 /* 2614 * We are growing the buffer, possibly in a 2615 * byte-granular fashion. 2616 */ 2617 struct vnode *vp; 2618 vm_object_t obj; 2619 vm_offset_t toff; 2620 vm_offset_t tinc; 2621 2622 /* 2623 * Step 1, bring in the VM pages from the object, 2624 * allocating them if necessary. We must clear 2625 * B_CACHE if these pages are not valid for the 2626 * range covered by the buffer. 2627 */ 2628 2629 vp = bp->b_vp; 2630 VOP_GETVOBJECT(vp, &obj); 2631 2632 while (bp->b_npages < desiredpages) { 2633 vm_page_t m; 2634 vm_pindex_t pi; 2635 2636 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2637 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2638 /* 2639 * note: must allocate system pages 2640 * since blocking here could intefere 2641 * with paging I/O, no matter which 2642 * process we are. 2643 */ 2644 m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM); 2645 if (m == NULL) { 2646 VM_WAIT; 2647 vm_pageout_deficit += desiredpages - bp->b_npages; 2648 } else { 2649 vm_page_wire(m); 2650 vm_page_wakeup(m); 2651 bp->b_flags &= ~B_CACHE; 2652 bp->b_pages[bp->b_npages] = m; 2653 ++bp->b_npages; 2654 } 2655 continue; 2656 } 2657 2658 /* 2659 * We found a page. If we have to sleep on it, 2660 * retry because it might have gotten freed out 2661 * from under us. 2662 * 2663 * We can only test PG_BUSY here. Blocking on 2664 * m->busy might lead to a deadlock: 2665 * 2666 * vm_fault->getpages->cluster_read->allocbuf 2667 * 2668 */ 2669 2670 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2671 continue; 2672 2673 /* 2674 * We have a good page. Should we wakeup the 2675 * page daemon? 2676 */ 2677 if ((curproc != pageproc) && 2678 ((m->queue - m->pc) == PQ_CACHE) && 2679 ((cnt.v_free_count + cnt.v_cache_count) < 2680 (cnt.v_free_min + cnt.v_cache_min))) { 2681 pagedaemon_wakeup(); 2682 } 2683 vm_page_flag_clear(m, PG_ZERO); 2684 vm_page_wire(m); 2685 bp->b_pages[bp->b_npages] = m; 2686 ++bp->b_npages; 2687 } 2688 2689 /* 2690 * Step 2. We've loaded the pages into the buffer, 2691 * we have to figure out if we can still have B_CACHE 2692 * set. Note that B_CACHE is set according to the 2693 * byte-granular range ( bcount and size ), new the 2694 * aligned range ( newbsize ). 2695 * 2696 * The VM test is against m->valid, which is DEV_BSIZE 2697 * aligned. Needless to say, the validity of the data 2698 * needs to also be DEV_BSIZE aligned. Note that this 2699 * fails with NFS if the server or some other client 2700 * extends the file's EOF. If our buffer is resized, 2701 * B_CACHE may remain set! XXX 2702 */ 2703 2704 toff = bp->b_bcount; 2705 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2706 2707 while ((bp->b_flags & B_CACHE) && toff < size) { 2708 vm_pindex_t pi; 2709 2710 if (tinc > (size - toff)) 2711 tinc = size - toff; 2712 2713 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2714 PAGE_SHIFT; 2715 2716 vfs_buf_test_cache( 2717 bp, 2718 bp->b_offset, 2719 toff, 2720 tinc, 2721 bp->b_pages[pi] 2722 ); 2723 toff += tinc; 2724 tinc = PAGE_SIZE; 2725 } 2726 2727 /* 2728 * Step 3, fixup the KVM pmap. Remember that 2729 * bp->b_data is relative to bp->b_offset, but 2730 * bp->b_offset may be offset into the first page. 2731 */ 2732 2733 bp->b_data = (caddr_t) 2734 trunc_page((vm_offset_t)bp->b_data); 2735 pmap_qenter( 2736 (vm_offset_t)bp->b_data, 2737 bp->b_pages, 2738 bp->b_npages 2739 ); 2740 2741 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2742 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2743 } 2744 } 2745 if (newbsize < bp->b_bufsize) 2746 bufspacewakeup(); 2747 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2748 bp->b_bcount = size; /* requested buffer size */ 2749 return 1; 2750 } 2751 2752 /* 2753 * bufwait: 2754 * 2755 * Wait for buffer I/O completion, returning error status. The buffer 2756 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2757 * error and cleared. 2758 */ 2759 int 2760 bufwait(register struct buf * bp) 2761 { 2762 int s; 2763 2764 s = splbio(); 2765 while ((bp->b_flags & B_DONE) == 0) { 2766 if (bp->b_iocmd == BIO_READ) 2767 tsleep(bp, PRIBIO, "biord", 0); 2768 else 2769 tsleep(bp, PRIBIO, "biowr", 0); 2770 } 2771 splx(s); 2772 if (bp->b_flags & B_EINTR) { 2773 bp->b_flags &= ~B_EINTR; 2774 return (EINTR); 2775 } 2776 if (bp->b_ioflags & BIO_ERROR) { 2777 return (bp->b_error ? bp->b_error : EIO); 2778 } else { 2779 return (0); 2780 } 2781 } 2782 2783 /* 2784 * Call back function from struct bio back up to struct buf. 2785 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 2786 */ 2787 void 2788 bufdonebio(struct bio *bp) 2789 { 2790 bufdone(bp->bio_caller2); 2791 } 2792 2793 /* 2794 * bufdone: 2795 * 2796 * Finish I/O on a buffer, optionally calling a completion function. 2797 * This is usually called from an interrupt so process blocking is 2798 * not allowed. 2799 * 2800 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2801 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2802 * assuming B_INVAL is clear. 2803 * 2804 * For the VMIO case, we set B_CACHE if the op was a read and no 2805 * read error occured, or if the op was a write. B_CACHE is never 2806 * set if the buffer is invalid or otherwise uncacheable. 2807 * 2808 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2809 * initiator to leave B_INVAL set to brelse the buffer out of existance 2810 * in the biodone routine. 2811 */ 2812 void 2813 bufdone(struct buf *bp) 2814 { 2815 int s, error; 2816 void (*biodone)(struct buf *); 2817 2818 GIANT_REQUIRED; 2819 2820 s = splbio(); 2821 2822 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2823 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2824 2825 bp->b_flags |= B_DONE; 2826 runningbufwakeup(bp); 2827 2828 if (bp->b_iocmd == BIO_DELETE) { 2829 brelse(bp); 2830 splx(s); 2831 return; 2832 } 2833 2834 if (bp->b_iocmd == BIO_WRITE) { 2835 vwakeup(bp); 2836 } 2837 2838 /* call optional completion function if requested */ 2839 if (bp->b_iodone != NULL) { 2840 biodone = bp->b_iodone; 2841 bp->b_iodone = NULL; 2842 (*biodone) (bp); 2843 splx(s); 2844 return; 2845 } 2846 if (LIST_FIRST(&bp->b_dep) != NULL) 2847 buf_complete(bp); 2848 2849 if (bp->b_flags & B_VMIO) { 2850 int i; 2851 vm_ooffset_t foff; 2852 vm_page_t m; 2853 vm_object_t obj; 2854 int iosize; 2855 struct vnode *vp = bp->b_vp; 2856 2857 error = VOP_GETVOBJECT(vp, &obj); 2858 2859 #if defined(VFS_BIO_DEBUG) 2860 if (vp->v_usecount == 0) { 2861 panic("biodone: zero vnode ref count"); 2862 } 2863 2864 if (error) { 2865 panic("biodone: missing VM object"); 2866 } 2867 2868 if ((vp->v_flag & VOBJBUF) == 0) { 2869 panic("biodone: vnode is not setup for merged cache"); 2870 } 2871 #endif 2872 2873 foff = bp->b_offset; 2874 KASSERT(bp->b_offset != NOOFFSET, 2875 ("biodone: no buffer offset")); 2876 2877 if (error) { 2878 panic("biodone: no object"); 2879 } 2880 #if defined(VFS_BIO_DEBUG) 2881 if (obj->paging_in_progress < bp->b_npages) { 2882 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2883 obj->paging_in_progress, bp->b_npages); 2884 } 2885 #endif 2886 2887 /* 2888 * Set B_CACHE if the op was a normal read and no error 2889 * occured. B_CACHE is set for writes in the b*write() 2890 * routines. 2891 */ 2892 iosize = bp->b_bcount - bp->b_resid; 2893 if (bp->b_iocmd == BIO_READ && 2894 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 2895 !(bp->b_ioflags & BIO_ERROR)) { 2896 bp->b_flags |= B_CACHE; 2897 } 2898 2899 for (i = 0; i < bp->b_npages; i++) { 2900 int bogusflag = 0; 2901 int resid; 2902 2903 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2904 if (resid > iosize) 2905 resid = iosize; 2906 2907 /* 2908 * cleanup bogus pages, restoring the originals 2909 */ 2910 m = bp->b_pages[i]; 2911 if (m == bogus_page) { 2912 bogusflag = 1; 2913 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2914 if (m == NULL) 2915 panic("biodone: page disappeared!"); 2916 bp->b_pages[i] = m; 2917 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2918 } 2919 #if defined(VFS_BIO_DEBUG) 2920 if (OFF_TO_IDX(foff) != m->pindex) { 2921 printf( 2922 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2923 (unsigned long)foff, m->pindex); 2924 } 2925 #endif 2926 2927 /* 2928 * In the write case, the valid and clean bits are 2929 * already changed correctly ( see bdwrite() ), so we 2930 * only need to do this here in the read case. 2931 */ 2932 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 2933 vfs_page_set_valid(bp, foff, i, m); 2934 } 2935 vm_page_flag_clear(m, PG_ZERO); 2936 2937 /* 2938 * when debugging new filesystems or buffer I/O methods, this 2939 * is the most common error that pops up. if you see this, you 2940 * have not set the page busy flag correctly!!! 2941 */ 2942 if (m->busy == 0) { 2943 printf("biodone: page busy < 0, " 2944 "pindex: %d, foff: 0x(%x,%x), " 2945 "resid: %d, index: %d\n", 2946 (int) m->pindex, (int)(foff >> 32), 2947 (int) foff & 0xffffffff, resid, i); 2948 if (!vn_isdisk(vp, NULL)) 2949 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2950 bp->b_vp->v_mount->mnt_stat.f_iosize, 2951 (int) bp->b_lblkno, 2952 bp->b_flags, bp->b_npages); 2953 else 2954 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2955 (int) bp->b_lblkno, 2956 bp->b_flags, bp->b_npages); 2957 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2958 m->valid, m->dirty, m->wire_count); 2959 panic("biodone: page busy < 0\n"); 2960 } 2961 vm_page_io_finish(m); 2962 vm_object_pip_subtract(obj, 1); 2963 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2964 iosize -= resid; 2965 } 2966 if (obj) 2967 vm_object_pip_wakeupn(obj, 0); 2968 } 2969 2970 /* 2971 * For asynchronous completions, release the buffer now. The brelse 2972 * will do a wakeup there if necessary - so no need to do a wakeup 2973 * here in the async case. The sync case always needs to do a wakeup. 2974 */ 2975 2976 if (bp->b_flags & B_ASYNC) { 2977 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 2978 brelse(bp); 2979 else 2980 bqrelse(bp); 2981 } else { 2982 wakeup(bp); 2983 } 2984 splx(s); 2985 } 2986 2987 /* 2988 * This routine is called in lieu of iodone in the case of 2989 * incomplete I/O. This keeps the busy status for pages 2990 * consistant. 2991 */ 2992 void 2993 vfs_unbusy_pages(struct buf * bp) 2994 { 2995 int i; 2996 2997 GIANT_REQUIRED; 2998 2999 runningbufwakeup(bp); 3000 if (bp->b_flags & B_VMIO) { 3001 struct vnode *vp = bp->b_vp; 3002 vm_object_t obj; 3003 3004 VOP_GETVOBJECT(vp, &obj); 3005 3006 for (i = 0; i < bp->b_npages; i++) { 3007 vm_page_t m = bp->b_pages[i]; 3008 3009 if (m == bogus_page) { 3010 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3011 if (!m) { 3012 panic("vfs_unbusy_pages: page missing\n"); 3013 } 3014 bp->b_pages[i] = m; 3015 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3016 } 3017 vm_object_pip_subtract(obj, 1); 3018 vm_page_flag_clear(m, PG_ZERO); 3019 vm_page_io_finish(m); 3020 } 3021 vm_object_pip_wakeupn(obj, 0); 3022 } 3023 } 3024 3025 /* 3026 * vfs_page_set_valid: 3027 * 3028 * Set the valid bits in a page based on the supplied offset. The 3029 * range is restricted to the buffer's size. 3030 * 3031 * This routine is typically called after a read completes. 3032 */ 3033 static void 3034 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3035 { 3036 vm_ooffset_t soff, eoff; 3037 3038 GIANT_REQUIRED; 3039 /* 3040 * Start and end offsets in buffer. eoff - soff may not cross a 3041 * page boundry or cross the end of the buffer. The end of the 3042 * buffer, in this case, is our file EOF, not the allocation size 3043 * of the buffer. 3044 */ 3045 soff = off; 3046 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3047 if (eoff > bp->b_offset + bp->b_bcount) 3048 eoff = bp->b_offset + bp->b_bcount; 3049 3050 /* 3051 * Set valid range. This is typically the entire buffer and thus the 3052 * entire page. 3053 */ 3054 if (eoff > soff) { 3055 vm_page_set_validclean( 3056 m, 3057 (vm_offset_t) (soff & PAGE_MASK), 3058 (vm_offset_t) (eoff - soff) 3059 ); 3060 } 3061 } 3062 3063 /* 3064 * This routine is called before a device strategy routine. 3065 * It is used to tell the VM system that paging I/O is in 3066 * progress, and treat the pages associated with the buffer 3067 * almost as being PG_BUSY. Also the object paging_in_progress 3068 * flag is handled to make sure that the object doesn't become 3069 * inconsistant. 3070 * 3071 * Since I/O has not been initiated yet, certain buffer flags 3072 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 3073 * and should be ignored. 3074 */ 3075 void 3076 vfs_busy_pages(struct buf * bp, int clear_modify) 3077 { 3078 int i, bogus; 3079 3080 GIANT_REQUIRED; 3081 3082 if (bp->b_flags & B_VMIO) { 3083 struct vnode *vp = bp->b_vp; 3084 vm_object_t obj; 3085 vm_ooffset_t foff; 3086 3087 VOP_GETVOBJECT(vp, &obj); 3088 foff = bp->b_offset; 3089 KASSERT(bp->b_offset != NOOFFSET, 3090 ("vfs_busy_pages: no buffer offset")); 3091 vfs_setdirty(bp); 3092 3093 retry: 3094 for (i = 0; i < bp->b_npages; i++) { 3095 vm_page_t m = bp->b_pages[i]; 3096 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3097 goto retry; 3098 } 3099 3100 bogus = 0; 3101 for (i = 0; i < bp->b_npages; i++) { 3102 vm_page_t m = bp->b_pages[i]; 3103 3104 vm_page_flag_clear(m, PG_ZERO); 3105 if ((bp->b_flags & B_CLUSTER) == 0) { 3106 vm_object_pip_add(obj, 1); 3107 vm_page_io_start(m); 3108 } 3109 3110 /* 3111 * When readying a buffer for a read ( i.e 3112 * clear_modify == 0 ), it is important to do 3113 * bogus_page replacement for valid pages in 3114 * partially instantiated buffers. Partially 3115 * instantiated buffers can, in turn, occur when 3116 * reconstituting a buffer from its VM backing store 3117 * base. We only have to do this if B_CACHE is 3118 * clear ( which causes the I/O to occur in the 3119 * first place ). The replacement prevents the read 3120 * I/O from overwriting potentially dirty VM-backed 3121 * pages. XXX bogus page replacement is, uh, bogus. 3122 * It may not work properly with small-block devices. 3123 * We need to find a better way. 3124 */ 3125 3126 vm_page_protect(m, VM_PROT_NONE); 3127 if (clear_modify) 3128 vfs_page_set_valid(bp, foff, i, m); 3129 else if (m->valid == VM_PAGE_BITS_ALL && 3130 (bp->b_flags & B_CACHE) == 0) { 3131 bp->b_pages[i] = bogus_page; 3132 bogus++; 3133 } 3134 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3135 } 3136 if (bogus) 3137 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3138 } 3139 } 3140 3141 /* 3142 * Tell the VM system that the pages associated with this buffer 3143 * are clean. This is used for delayed writes where the data is 3144 * going to go to disk eventually without additional VM intevention. 3145 * 3146 * Note that while we only really need to clean through to b_bcount, we 3147 * just go ahead and clean through to b_bufsize. 3148 */ 3149 static void 3150 vfs_clean_pages(struct buf * bp) 3151 { 3152 int i; 3153 3154 GIANT_REQUIRED; 3155 3156 if (bp->b_flags & B_VMIO) { 3157 vm_ooffset_t foff; 3158 3159 foff = bp->b_offset; 3160 KASSERT(bp->b_offset != NOOFFSET, 3161 ("vfs_clean_pages: no buffer offset")); 3162 for (i = 0; i < bp->b_npages; i++) { 3163 vm_page_t m = bp->b_pages[i]; 3164 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3165 vm_ooffset_t eoff = noff; 3166 3167 if (eoff > bp->b_offset + bp->b_bufsize) 3168 eoff = bp->b_offset + bp->b_bufsize; 3169 vfs_page_set_valid(bp, foff, i, m); 3170 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3171 foff = noff; 3172 } 3173 } 3174 } 3175 3176 /* 3177 * vfs_bio_set_validclean: 3178 * 3179 * Set the range within the buffer to valid and clean. The range is 3180 * relative to the beginning of the buffer, b_offset. Note that b_offset 3181 * itself may be offset from the beginning of the first page. 3182 * 3183 */ 3184 3185 void 3186 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3187 { 3188 if (bp->b_flags & B_VMIO) { 3189 int i; 3190 int n; 3191 3192 /* 3193 * Fixup base to be relative to beginning of first page. 3194 * Set initial n to be the maximum number of bytes in the 3195 * first page that can be validated. 3196 */ 3197 3198 base += (bp->b_offset & PAGE_MASK); 3199 n = PAGE_SIZE - (base & PAGE_MASK); 3200 3201 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3202 vm_page_t m = bp->b_pages[i]; 3203 3204 if (n > size) 3205 n = size; 3206 3207 vm_page_set_validclean(m, base & PAGE_MASK, n); 3208 base += n; 3209 size -= n; 3210 n = PAGE_SIZE; 3211 } 3212 } 3213 } 3214 3215 /* 3216 * vfs_bio_clrbuf: 3217 * 3218 * clear a buffer. This routine essentially fakes an I/O, so we need 3219 * to clear BIO_ERROR and B_INVAL. 3220 * 3221 * Note that while we only theoretically need to clear through b_bcount, 3222 * we go ahead and clear through b_bufsize. 3223 */ 3224 3225 void 3226 vfs_bio_clrbuf(struct buf *bp) { 3227 int i, mask = 0; 3228 caddr_t sa, ea; 3229 3230 GIANT_REQUIRED; 3231 3232 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3233 bp->b_flags &= ~B_INVAL; 3234 bp->b_ioflags &= ~BIO_ERROR; 3235 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3236 (bp->b_offset & PAGE_MASK) == 0) { 3237 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3238 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3239 ((bp->b_pages[0]->valid & mask) != mask)) { 3240 bzero(bp->b_data, bp->b_bufsize); 3241 } 3242 bp->b_pages[0]->valid |= mask; 3243 bp->b_resid = 0; 3244 return; 3245 } 3246 ea = sa = bp->b_data; 3247 for(i=0;i<bp->b_npages;i++,sa=ea) { 3248 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3249 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3250 ea = (caddr_t)(vm_offset_t)ulmin( 3251 (u_long)(vm_offset_t)ea, 3252 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3253 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3254 if ((bp->b_pages[i]->valid & mask) == mask) 3255 continue; 3256 if ((bp->b_pages[i]->valid & mask) == 0) { 3257 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3258 bzero(sa, ea - sa); 3259 } 3260 } else { 3261 for (; sa < ea; sa += DEV_BSIZE, j++) { 3262 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3263 (bp->b_pages[i]->valid & (1<<j)) == 0) 3264 bzero(sa, DEV_BSIZE); 3265 } 3266 } 3267 bp->b_pages[i]->valid |= mask; 3268 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3269 } 3270 bp->b_resid = 0; 3271 } else { 3272 clrbuf(bp); 3273 } 3274 } 3275 3276 /* 3277 * vm_hold_load_pages and vm_hold_free_pages get pages into 3278 * a buffers address space. The pages are anonymous and are 3279 * not associated with a file object. 3280 */ 3281 static void 3282 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3283 { 3284 vm_offset_t pg; 3285 vm_page_t p; 3286 int index; 3287 3288 GIANT_REQUIRED; 3289 3290 to = round_page(to); 3291 from = round_page(from); 3292 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3293 3294 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3295 tryagain: 3296 /* 3297 * note: must allocate system pages since blocking here 3298 * could intefere with paging I/O, no matter which 3299 * process we are. 3300 */ 3301 p = vm_page_alloc(kernel_object, 3302 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3303 VM_ALLOC_SYSTEM); 3304 if (!p) { 3305 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3306 VM_WAIT; 3307 goto tryagain; 3308 } 3309 vm_page_wire(p); 3310 p->valid = VM_PAGE_BITS_ALL; 3311 vm_page_flag_clear(p, PG_ZERO); 3312 pmap_qenter(pg, &p, 1); 3313 bp->b_pages[index] = p; 3314 vm_page_wakeup(p); 3315 } 3316 bp->b_npages = index; 3317 } 3318 3319 /* Return pages associated with this buf to the vm system */ 3320 void 3321 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3322 { 3323 vm_offset_t pg; 3324 vm_page_t p; 3325 int index, newnpages; 3326 3327 GIANT_REQUIRED; 3328 3329 from = round_page(from); 3330 to = round_page(to); 3331 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3332 3333 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3334 p = bp->b_pages[index]; 3335 if (p && (index < bp->b_npages)) { 3336 if (p->busy) { 3337 printf( 3338 "vm_hold_free_pages: blkno: %lld, lblkno: %lld\n", 3339 (long long)bp->b_blkno, 3340 (long long)bp->b_lblkno); 3341 } 3342 bp->b_pages[index] = NULL; 3343 pmap_qremove(pg, 1); 3344 vm_page_busy(p); 3345 vm_page_unwire(p, 0); 3346 vm_page_free(p); 3347 } 3348 } 3349 bp->b_npages = newnpages; 3350 } 3351 3352 3353 #include "opt_ddb.h" 3354 #ifdef DDB 3355 #include <ddb/ddb.h> 3356 3357 /* DDB command to show buffer data */ 3358 DB_SHOW_COMMAND(buffer, db_show_buffer) 3359 { 3360 /* get args */ 3361 struct buf *bp = (struct buf *)addr; 3362 3363 if (!have_addr) { 3364 db_printf("usage: show buffer <addr>\n"); 3365 return; 3366 } 3367 3368 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3369 db_printf( 3370 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 3371 "b_dev = (%d,%d), b_data = %p, b_blkno = %lld, b_pblkno = %lld\n", 3372 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3373 major(bp->b_dev), minor(bp->b_dev), bp->b_data, 3374 (long long)bp->b_blkno, (long long)bp->b_pblkno); 3375 if (bp->b_npages) { 3376 int i; 3377 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3378 for (i = 0; i < bp->b_npages; i++) { 3379 vm_page_t m; 3380 m = bp->b_pages[i]; 3381 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3382 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3383 if ((i + 1) < bp->b_npages) 3384 db_printf(","); 3385 } 3386 db_printf("\n"); 3387 } 3388 } 3389 #endif /* DDB */ 3390