xref: /freebsd/sys/kern/vfs_bio.c (revision ec3a1a66aad80b656971dcff4277d8ea4967fbb5)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD$
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/mutex.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_kern.h>
50 #include <vm/vm_pageout.h>
51 #include <vm/vm_page.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_map.h>
55 
56 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
57 
58 struct	bio_ops bioops;		/* I/O operation notification */
59 
60 struct	buf_ops buf_ops_bio = {
61 	"buf_ops_bio",
62 	bwrite
63 };
64 
65 /*
66  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
67  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
68  */
69 struct buf *buf;		/* buffer header pool */
70 
71 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
72 		vm_offset_t to);
73 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
74 		vm_offset_t to);
75 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
76 			       int pageno, vm_page_t m);
77 static void vfs_clean_pages(struct buf * bp);
78 static void vfs_setdirty(struct buf *bp);
79 static void vfs_vmio_release(struct buf *bp);
80 static void vfs_backgroundwritedone(struct buf *bp);
81 static int vfs_bio_clcheck(struct vnode *vp, int size,
82 		daddr_t lblkno, daddr_t blkno);
83 static int flushbufqueues(int flushdeps);
84 static void buf_daemon(void);
85 void bremfreel(struct buf * bp);
86 
87 int vmiodirenable = TRUE;
88 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
89     "Use the VM system for directory writes");
90 int runningbufspace;
91 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
92     "Amount of presently outstanding async buffer io");
93 static int bufspace;
94 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
95     "KVA memory used for bufs");
96 static int maxbufspace;
97 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
98     "Maximum allowed value of bufspace (including buf_daemon)");
99 static int bufmallocspace;
100 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
101     "Amount of malloced memory for buffers");
102 static int maxbufmallocspace;
103 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
104     "Maximum amount of malloced memory for buffers");
105 static int lobufspace;
106 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
107     "Minimum amount of buffers we want to have");
108 static int hibufspace;
109 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
110     "Maximum allowed value of bufspace (excluding buf_daemon)");
111 static int bufreusecnt;
112 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
113     "Number of times we have reused a buffer");
114 static int buffreekvacnt;
115 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
116     "Number of times we have freed the KVA space from some buffer");
117 static int bufdefragcnt;
118 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
119     "Number of times we have had to repeat buffer allocation to defragment");
120 static int lorunningspace;
121 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
122     "Minimum preferred space used for in-progress I/O");
123 static int hirunningspace;
124 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
125     "Maximum amount of space to use for in-progress I/O");
126 static int dirtybufferflushes;
127 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
128     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
129 static int altbufferflushes;
130 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
131     0, "Number of fsync flushes to limit dirty buffers");
132 static int recursiveflushes;
133 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
134     0, "Number of flushes skipped due to being recursive");
135 static int numdirtybuffers;
136 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
137     "Number of buffers that are dirty (has unwritten changes) at the moment");
138 static int lodirtybuffers;
139 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
140     "How many buffers we want to have free before bufdaemon can sleep");
141 static int hidirtybuffers;
142 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
143     "When the number of dirty buffers is considered severe");
144 static int dirtybufthresh;
145 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
146     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
147 static int numfreebuffers;
148 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
149     "Number of free buffers");
150 static int lofreebuffers;
151 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
152    "XXX Unused");
153 static int hifreebuffers;
154 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
155    "XXX Complicatedly unused");
156 static int getnewbufcalls;
157 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
158    "Number of calls to getnewbuf");
159 static int getnewbufrestarts;
160 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
161     "Number of times getnewbuf has had to restart a buffer aquisition");
162 static int dobkgrdwrite = 1;
163 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
164     "Do background writes (honoring the BX_BKGRDWRITE flag)?");
165 
166 /*
167  * Wakeup point for bufdaemon, as well as indicator of whether it is already
168  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
169  * is idling.
170  */
171 static int bd_request;
172 
173 /*
174  * This lock synchronizes access to bd_request.
175  */
176 static struct mtx bdlock;
177 
178 /*
179  * bogus page -- for I/O to/from partially complete buffers
180  * this is a temporary solution to the problem, but it is not
181  * really that bad.  it would be better to split the buffer
182  * for input in the case of buffers partially already in memory,
183  * but the code is intricate enough already.
184  */
185 vm_page_t bogus_page;
186 
187 /*
188  * Synchronization (sleep/wakeup) variable for active buffer space requests.
189  * Set when wait starts, cleared prior to wakeup().
190  * Used in runningbufwakeup() and waitrunningbufspace().
191  */
192 static int runningbufreq;
193 
194 /*
195  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
196  * waitrunningbufspace().
197  */
198 static struct mtx rbreqlock;
199 
200 /*
201  * Synchronization (sleep/wakeup) variable for buffer requests.
202  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
203  * by and/or.
204  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
205  * getnewbuf(), and getblk().
206  */
207 static int needsbuffer;
208 
209 /*
210  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
211  */
212 static struct mtx nblock;
213 
214 /*
215  * Lock that protects against bwait()/bdone()/B_DONE races.
216  */
217 
218 static struct mtx bdonelock;
219 
220 /*
221  * Definitions for the buffer free lists.
222  */
223 #define BUFFER_QUEUES	6	/* number of free buffer queues */
224 
225 #define QUEUE_NONE	0	/* on no queue */
226 #define QUEUE_LOCKED	1	/* locked buffers */
227 #define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
228 #define QUEUE_DIRTY	3	/* B_DELWRI buffers */
229 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
230 #define QUEUE_EMPTY	5	/* empty buffer headers */
231 
232 /* Queues for free buffers with various properties */
233 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
234 
235 /* Lock for the bufqueues */
236 static struct mtx bqlock;
237 
238 /*
239  * Single global constant for BUF_WMESG, to avoid getting multiple references.
240  * buf_wmesg is referred from macros.
241  */
242 const char *buf_wmesg = BUF_WMESG;
243 
244 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
245 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
246 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
247 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
248 
249 /*
250  *	numdirtywakeup:
251  *
252  *	If someone is blocked due to there being too many dirty buffers,
253  *	and numdirtybuffers is now reasonable, wake them up.
254  */
255 
256 static __inline void
257 numdirtywakeup(int level)
258 {
259 	if (numdirtybuffers <= level) {
260 		mtx_lock(&nblock);
261 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
262 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
263 			wakeup(&needsbuffer);
264 		}
265 		mtx_unlock(&nblock);
266 	}
267 }
268 
269 /*
270  *	bufspacewakeup:
271  *
272  *	Called when buffer space is potentially available for recovery.
273  *	getnewbuf() will block on this flag when it is unable to free
274  *	sufficient buffer space.  Buffer space becomes recoverable when
275  *	bp's get placed back in the queues.
276  */
277 
278 static __inline void
279 bufspacewakeup(void)
280 {
281 	/*
282 	 * If someone is waiting for BUF space, wake them up.  Even
283 	 * though we haven't freed the kva space yet, the waiting
284 	 * process will be able to now.
285 	 */
286 	mtx_lock(&nblock);
287 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
288 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
289 		wakeup(&needsbuffer);
290 	}
291 	mtx_unlock(&nblock);
292 }
293 
294 /*
295  * runningbufwakeup() - in-progress I/O accounting.
296  *
297  */
298 static __inline void
299 runningbufwakeup(struct buf *bp)
300 {
301 	if (bp->b_runningbufspace) {
302 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
303 		bp->b_runningbufspace = 0;
304 		mtx_lock(&rbreqlock);
305 		if (runningbufreq && runningbufspace <= lorunningspace) {
306 			runningbufreq = 0;
307 			wakeup(&runningbufreq);
308 		}
309 		mtx_unlock(&rbreqlock);
310 	}
311 }
312 
313 /*
314  *	bufcountwakeup:
315  *
316  *	Called when a buffer has been added to one of the free queues to
317  *	account for the buffer and to wakeup anyone waiting for free buffers.
318  *	This typically occurs when large amounts of metadata are being handled
319  *	by the buffer cache ( else buffer space runs out first, usually ).
320  */
321 
322 static __inline void
323 bufcountwakeup(void)
324 {
325 	atomic_add_int(&numfreebuffers, 1);
326 	mtx_lock(&nblock);
327 	if (needsbuffer) {
328 		needsbuffer &= ~VFS_BIO_NEED_ANY;
329 		if (numfreebuffers >= hifreebuffers)
330 			needsbuffer &= ~VFS_BIO_NEED_FREE;
331 		wakeup(&needsbuffer);
332 	}
333 	mtx_unlock(&nblock);
334 }
335 
336 /*
337  *	waitrunningbufspace()
338  *
339  *	runningbufspace is a measure of the amount of I/O currently
340  *	running.  This routine is used in async-write situations to
341  *	prevent creating huge backups of pending writes to a device.
342  *	Only asynchronous writes are governed by this function.
343  *
344  *	Reads will adjust runningbufspace, but will not block based on it.
345  *	The read load has a side effect of reducing the allowed write load.
346  *
347  *	This does NOT turn an async write into a sync write.  It waits
348  *	for earlier writes to complete and generally returns before the
349  *	caller's write has reached the device.
350  */
351 static __inline void
352 waitrunningbufspace(void)
353 {
354 	mtx_lock(&rbreqlock);
355 	while (runningbufspace > hirunningspace) {
356 		++runningbufreq;
357 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
358 	}
359 	mtx_unlock(&rbreqlock);
360 }
361 
362 
363 /*
364  *	vfs_buf_test_cache:
365  *
366  *	Called when a buffer is extended.  This function clears the B_CACHE
367  *	bit if the newly extended portion of the buffer does not contain
368  *	valid data.
369  */
370 static __inline__
371 void
372 vfs_buf_test_cache(struct buf *bp,
373 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
374 		  vm_page_t m)
375 {
376 	GIANT_REQUIRED;
377 
378 	if (bp->b_flags & B_CACHE) {
379 		int base = (foff + off) & PAGE_MASK;
380 		if (vm_page_is_valid(m, base, size) == 0)
381 			bp->b_flags &= ~B_CACHE;
382 	}
383 }
384 
385 /* Wake up the buffer deamon if necessary */
386 static __inline__
387 void
388 bd_wakeup(int dirtybuflevel)
389 {
390 	mtx_lock(&bdlock);
391 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
392 		bd_request = 1;
393 		wakeup(&bd_request);
394 	}
395 	mtx_unlock(&bdlock);
396 }
397 
398 /*
399  * bd_speedup - speedup the buffer cache flushing code
400  */
401 
402 static __inline__
403 void
404 bd_speedup(void)
405 {
406 	bd_wakeup(1);
407 }
408 
409 /*
410  * Calculating buffer cache scaling values and reserve space for buffer
411  * headers.  This is called during low level kernel initialization and
412  * may be called more then once.  We CANNOT write to the memory area
413  * being reserved at this time.
414  */
415 caddr_t
416 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
417 {
418 	/*
419 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
420 	 * PAGE_SIZE is >= 1K)
421 	 */
422 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
423 
424 	/*
425 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
426 	 * For the first 64MB of ram nominally allocate sufficient buffers to
427 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
428 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
429 	 * the buffer cache we limit the eventual kva reservation to
430 	 * maxbcache bytes.
431 	 *
432 	 * factor represents the 1/4 x ram conversion.
433 	 */
434 	if (nbuf == 0) {
435 		int factor = 4 * BKVASIZE / 1024;
436 
437 		nbuf = 50;
438 		if (physmem_est > 4096)
439 			nbuf += min((physmem_est - 4096) / factor,
440 			    65536 / factor);
441 		if (physmem_est > 65536)
442 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
443 
444 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
445 			nbuf = maxbcache / BKVASIZE;
446 	}
447 
448 #if 0
449 	/*
450 	 * Do not allow the buffer_map to be more then 1/2 the size of the
451 	 * kernel_map.
452 	 */
453 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
454 	    (BKVASIZE * 2)) {
455 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
456 		    (BKVASIZE * 2);
457 		printf("Warning: nbufs capped at %d\n", nbuf);
458 	}
459 #endif
460 
461 	/*
462 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
463 	 * We have no less then 16 and no more then 256.
464 	 */
465 	nswbuf = max(min(nbuf/4, 256), 16);
466 
467 	/*
468 	 * Reserve space for the buffer cache buffers
469 	 */
470 	swbuf = (void *)v;
471 	v = (caddr_t)(swbuf + nswbuf);
472 	buf = (void *)v;
473 	v = (caddr_t)(buf + nbuf);
474 
475 	return(v);
476 }
477 
478 /* Initialize the buffer subsystem.  Called before use of any buffers. */
479 void
480 bufinit(void)
481 {
482 	struct buf *bp;
483 	vm_offset_t bogus_offset;
484 	int i;
485 
486 	GIANT_REQUIRED;
487 
488 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
489 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
490 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
491 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
492 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
493 
494 	/* next, make a null set of free lists */
495 	for (i = 0; i < BUFFER_QUEUES; i++)
496 		TAILQ_INIT(&bufqueues[i]);
497 
498 	/* finally, initialize each buffer header and stick on empty q */
499 	for (i = 0; i < nbuf; i++) {
500 		bp = &buf[i];
501 		bzero(bp, sizeof *bp);
502 		bp->b_flags = B_INVAL;	/* we're just an empty header */
503 		bp->b_dev = NODEV;
504 		bp->b_rcred = NOCRED;
505 		bp->b_wcred = NOCRED;
506 		bp->b_qindex = QUEUE_EMPTY;
507 		bp->b_vflags = 0;
508 		bp->b_xflags = 0;
509 		LIST_INIT(&bp->b_dep);
510 		BUF_LOCKINIT(bp);
511 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
512 	}
513 
514 	/*
515 	 * maxbufspace is the absolute maximum amount of buffer space we are
516 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
517 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
518 	 * used by most other processes.  The differential is required to
519 	 * ensure that buf_daemon is able to run when other processes might
520 	 * be blocked waiting for buffer space.
521 	 *
522 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
523 	 * this may result in KVM fragmentation which is not handled optimally
524 	 * by the system.
525 	 */
526 	maxbufspace = nbuf * BKVASIZE;
527 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
528 	lobufspace = hibufspace - MAXBSIZE;
529 
530 	lorunningspace = 512 * 1024;
531 	hirunningspace = 1024 * 1024;
532 
533 /*
534  * Limit the amount of malloc memory since it is wired permanently into
535  * the kernel space.  Even though this is accounted for in the buffer
536  * allocation, we don't want the malloced region to grow uncontrolled.
537  * The malloc scheme improves memory utilization significantly on average
538  * (small) directories.
539  */
540 	maxbufmallocspace = hibufspace / 20;
541 
542 /*
543  * Reduce the chance of a deadlock occuring by limiting the number
544  * of delayed-write dirty buffers we allow to stack up.
545  */
546 	hidirtybuffers = nbuf / 4 + 20;
547 	dirtybufthresh = hidirtybuffers * 9 / 10;
548 	numdirtybuffers = 0;
549 /*
550  * To support extreme low-memory systems, make sure hidirtybuffers cannot
551  * eat up all available buffer space.  This occurs when our minimum cannot
552  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
553  * BKVASIZE'd (8K) buffers.
554  */
555 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
556 		hidirtybuffers >>= 1;
557 	}
558 	lodirtybuffers = hidirtybuffers / 2;
559 
560 /*
561  * Try to keep the number of free buffers in the specified range,
562  * and give special processes (e.g. like buf_daemon) access to an
563  * emergency reserve.
564  */
565 	lofreebuffers = nbuf / 18 + 5;
566 	hifreebuffers = 2 * lofreebuffers;
567 	numfreebuffers = nbuf;
568 
569 /*
570  * Maximum number of async ops initiated per buf_daemon loop.  This is
571  * somewhat of a hack at the moment, we really need to limit ourselves
572  * based on the number of bytes of I/O in-transit that were initiated
573  * from buf_daemon.
574  */
575 
576 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
577 	vm_object_lock(kernel_object);
578 	bogus_page = vm_page_alloc(kernel_object,
579 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
580 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
581 	vm_object_unlock(kernel_object);
582 }
583 
584 /*
585  * bfreekva() - free the kva allocation for a buffer.
586  *
587  *	Must be called at splbio() or higher as this is the only locking for
588  *	buffer_map.
589  *
590  *	Since this call frees up buffer space, we call bufspacewakeup().
591  */
592 static void
593 bfreekva(struct buf * bp)
594 {
595 	GIANT_REQUIRED;
596 
597 	if (bp->b_kvasize) {
598 		atomic_add_int(&buffreekvacnt, 1);
599 		atomic_subtract_int(&bufspace, bp->b_kvasize);
600 		vm_map_delete(buffer_map,
601 		    (vm_offset_t) bp->b_kvabase,
602 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
603 		);
604 		bp->b_kvasize = 0;
605 		bufspacewakeup();
606 	}
607 }
608 
609 /*
610  *	bremfree:
611  *
612  *	Remove the buffer from the appropriate free list.
613  */
614 void
615 bremfree(struct buf * bp)
616 {
617 	mtx_lock(&bqlock);
618 	bremfreel(bp);
619 	mtx_unlock(&bqlock);
620 }
621 
622 void
623 bremfreel(struct buf * bp)
624 {
625 	int s = splbio();
626 	int old_qindex = bp->b_qindex;
627 
628 	GIANT_REQUIRED;
629 
630 	if (bp->b_qindex != QUEUE_NONE) {
631 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
632 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
633 		bp->b_qindex = QUEUE_NONE;
634 	} else {
635 		if (BUF_REFCNT(bp) <= 1)
636 			panic("bremfree: removing a buffer not on a queue");
637 	}
638 
639 	/*
640 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
641 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
642 	 * the buffer was free and we must decrement numfreebuffers.
643 	 */
644 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
645 		switch(old_qindex) {
646 		case QUEUE_DIRTY:
647 		case QUEUE_CLEAN:
648 		case QUEUE_EMPTY:
649 		case QUEUE_EMPTYKVA:
650 			atomic_subtract_int(&numfreebuffers, 1);
651 			break;
652 		default:
653 			break;
654 		}
655 	}
656 	splx(s);
657 }
658 
659 
660 /*
661  * Get a buffer with the specified data.  Look in the cache first.  We
662  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
663  * is set, the buffer is valid and we do not have to do anything ( see
664  * getblk() ).  This is really just a special case of breadn().
665  */
666 int
667 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
668     struct buf ** bpp)
669 {
670 
671 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
672 }
673 
674 /*
675  * Operates like bread, but also starts asynchronous I/O on
676  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
677  * to initiating I/O . If B_CACHE is set, the buffer is valid
678  * and we do not have to do anything.
679  */
680 int
681 breadn(struct vnode * vp, daddr_t blkno, int size,
682     daddr_t * rablkno, int *rabsize,
683     int cnt, struct ucred * cred, struct buf ** bpp)
684 {
685 	struct buf *bp, *rabp;
686 	int i;
687 	int rv = 0, readwait = 0;
688 
689 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
690 
691 	/* if not found in cache, do some I/O */
692 	if ((bp->b_flags & B_CACHE) == 0) {
693 		if (curthread != PCPU_GET(idlethread))
694 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
695 		bp->b_iocmd = BIO_READ;
696 		bp->b_flags &= ~B_INVAL;
697 		bp->b_ioflags &= ~BIO_ERROR;
698 		if (bp->b_rcred == NOCRED && cred != NOCRED)
699 			bp->b_rcred = crhold(cred);
700 		vfs_busy_pages(bp, 0);
701 		if (vp->v_type == VCHR)
702 			VOP_SPECSTRATEGY(vp, bp);
703 		else
704 			VOP_STRATEGY(vp, bp);
705 		++readwait;
706 	}
707 
708 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
709 		if (inmem(vp, *rablkno))
710 			continue;
711 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
712 
713 		if ((rabp->b_flags & B_CACHE) == 0) {
714 			if (curthread != PCPU_GET(idlethread))
715 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
716 			rabp->b_flags |= B_ASYNC;
717 			rabp->b_flags &= ~B_INVAL;
718 			rabp->b_ioflags &= ~BIO_ERROR;
719 			rabp->b_iocmd = BIO_READ;
720 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
721 				rabp->b_rcred = crhold(cred);
722 			vfs_busy_pages(rabp, 0);
723 			BUF_KERNPROC(rabp);
724 			if (vp->v_type == VCHR)
725 				VOP_SPECSTRATEGY(vp, rabp);
726 			else
727 				VOP_STRATEGY(vp, rabp);
728 		} else {
729 			brelse(rabp);
730 		}
731 	}
732 
733 	if (readwait) {
734 		rv = bufwait(bp);
735 	}
736 	return (rv);
737 }
738 
739 /*
740  * Write, release buffer on completion.  (Done by iodone
741  * if async).  Do not bother writing anything if the buffer
742  * is invalid.
743  *
744  * Note that we set B_CACHE here, indicating that buffer is
745  * fully valid and thus cacheable.  This is true even of NFS
746  * now so we set it generally.  This could be set either here
747  * or in biodone() since the I/O is synchronous.  We put it
748  * here.
749  */
750 
751 int
752 bwrite(struct buf * bp)
753 {
754 	int oldflags, s;
755 	struct buf *newbp;
756 
757 	if (bp->b_flags & B_INVAL) {
758 		brelse(bp);
759 		return (0);
760 	}
761 
762 	oldflags = bp->b_flags;
763 
764 	if (BUF_REFCNT(bp) == 0)
765 		panic("bwrite: buffer is not busy???");
766 	s = splbio();
767 	/*
768 	 * If a background write is already in progress, delay
769 	 * writing this block if it is asynchronous. Otherwise
770 	 * wait for the background write to complete.
771 	 */
772 	if (bp->b_xflags & BX_BKGRDINPROG) {
773 		if (bp->b_flags & B_ASYNC) {
774 			splx(s);
775 			bdwrite(bp);
776 			return (0);
777 		}
778 		bp->b_xflags |= BX_BKGRDWAIT;
779 		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
780 		if (bp->b_xflags & BX_BKGRDINPROG)
781 			panic("bwrite: still writing");
782 	}
783 
784 	/* Mark the buffer clean */
785 	bundirty(bp);
786 
787 	/*
788 	 * If this buffer is marked for background writing and we
789 	 * do not have to wait for it, make a copy and write the
790 	 * copy so as to leave this buffer ready for further use.
791 	 *
792 	 * This optimization eats a lot of memory.  If we have a page
793 	 * or buffer shortfall we can't do it.
794 	 */
795 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
796 	    (bp->b_flags & B_ASYNC) &&
797 	    !vm_page_count_severe() &&
798 	    !buf_dirty_count_severe()) {
799 		if (bp->b_iodone != NULL) {
800 			printf("bp->b_iodone = %p\n", bp->b_iodone);
801 			panic("bwrite: need chained iodone");
802 		}
803 
804 		/* get a new block */
805 		newbp = geteblk(bp->b_bufsize);
806 
807 		/*
808 		 * set it to be identical to the old block.  We have to
809 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
810 		 * to avoid confusing the splay tree and gbincore().
811 		 */
812 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
813 		newbp->b_lblkno = bp->b_lblkno;
814 		newbp->b_xflags |= BX_BKGRDMARKER;
815 		/* XXX The BX_ flags need to be protected as well */
816 		VI_LOCK(bp->b_vp);
817 		bgetvp(bp->b_vp, newbp);
818 		VI_UNLOCK(bp->b_vp);
819 		newbp->b_blkno = bp->b_blkno;
820 		newbp->b_offset = bp->b_offset;
821 		newbp->b_iodone = vfs_backgroundwritedone;
822 		newbp->b_flags |= B_ASYNC;
823 		newbp->b_flags &= ~B_INVAL;
824 
825 		/* move over the dependencies */
826 		if (LIST_FIRST(&bp->b_dep) != NULL)
827 			buf_movedeps(bp, newbp);
828 
829 		/*
830 		 * Initiate write on the copy, release the original to
831 		 * the B_LOCKED queue so that it cannot go away until
832 		 * the background write completes. If not locked it could go
833 		 * away and then be reconstituted while it was being written.
834 		 * If the reconstituted buffer were written, we could end up
835 		 * with two background copies being written at the same time.
836 		 */
837 		bp->b_xflags |= BX_BKGRDINPROG;
838 		bp->b_flags |= B_LOCKED;
839 		bqrelse(bp);
840 		bp = newbp;
841 	}
842 
843 	bp->b_flags &= ~B_DONE;
844 	bp->b_ioflags &= ~BIO_ERROR;
845 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
846 	bp->b_iocmd = BIO_WRITE;
847 
848 	VI_LOCK(bp->b_vp);
849 	bp->b_vp->v_numoutput++;
850 	VI_UNLOCK(bp->b_vp);
851 	vfs_busy_pages(bp, 1);
852 
853 	/*
854 	 * Normal bwrites pipeline writes
855 	 */
856 	bp->b_runningbufspace = bp->b_bufsize;
857 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
858 
859 	if (curthread != PCPU_GET(idlethread))
860 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
861 	splx(s);
862 	if (oldflags & B_ASYNC)
863 		BUF_KERNPROC(bp);
864 	if (bp->b_vp->v_type == VCHR)
865 		VOP_SPECSTRATEGY(bp->b_vp, bp);
866 	else
867 		VOP_STRATEGY(bp->b_vp, bp);
868 
869 	if ((oldflags & B_ASYNC) == 0) {
870 		int rtval = bufwait(bp);
871 		brelse(bp);
872 		return (rtval);
873 	} else if ((oldflags & B_NOWDRAIN) == 0) {
874 		/*
875 		 * don't allow the async write to saturate the I/O
876 		 * system.  Deadlocks can occur only if a device strategy
877 		 * routine (like in MD) turns around and issues another
878 		 * high-level write, in which case B_NOWDRAIN is expected
879 		 * to be set.  Otherwise we will not deadlock here because
880 		 * we are blocking waiting for I/O that is already in-progress
881 		 * to complete.
882 		 */
883 		waitrunningbufspace();
884 	}
885 
886 	return (0);
887 }
888 
889 /*
890  * Complete a background write started from bwrite.
891  */
892 static void
893 vfs_backgroundwritedone(bp)
894 	struct buf *bp;
895 {
896 	struct buf *origbp;
897 
898 	/*
899 	 * Find the original buffer that we are writing.
900 	 */
901 	VI_LOCK(bp->b_vp);
902 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
903 		panic("backgroundwritedone: lost buffer");
904 	VI_UNLOCK(bp->b_vp);
905 	/*
906 	 * Process dependencies then return any unfinished ones.
907 	 */
908 	if (LIST_FIRST(&bp->b_dep) != NULL)
909 		buf_complete(bp);
910 	if (LIST_FIRST(&bp->b_dep) != NULL)
911 		buf_movedeps(bp, origbp);
912 
913 	/* XXX Find out if origbp can disappear or get inconsistent */
914 	/*
915 	 * Clear the BX_BKGRDINPROG flag in the original buffer
916 	 * and awaken it if it is waiting for the write to complete.
917 	 * If BX_BKGRDINPROG is not set in the original buffer it must
918 	 * have been released and re-instantiated - which is not legal.
919 	 */
920 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
921 	    ("backgroundwritedone: lost buffer2"));
922 	origbp->b_xflags &= ~BX_BKGRDINPROG;
923 	if (origbp->b_xflags & BX_BKGRDWAIT) {
924 		origbp->b_xflags &= ~BX_BKGRDWAIT;
925 		wakeup(&origbp->b_xflags);
926 	}
927 	/*
928 	 * Clear the B_LOCKED flag and remove it from the locked
929 	 * queue if it currently resides there.
930 	 */
931 	origbp->b_flags &= ~B_LOCKED;
932 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
933 		bremfree(origbp);
934 		bqrelse(origbp);
935 	}
936 	/*
937 	 * This buffer is marked B_NOCACHE, so when it is released
938 	 * by biodone, it will be tossed. We mark it with BIO_READ
939 	 * to avoid biodone doing a second vwakeup.
940 	 */
941 	bp->b_flags |= B_NOCACHE;
942 	bp->b_iocmd = BIO_READ;
943 	bp->b_flags &= ~(B_CACHE | B_DONE);
944 	bp->b_iodone = 0;
945 	bufdone(bp);
946 }
947 
948 /*
949  * Delayed write. (Buffer is marked dirty).  Do not bother writing
950  * anything if the buffer is marked invalid.
951  *
952  * Note that since the buffer must be completely valid, we can safely
953  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
954  * biodone() in order to prevent getblk from writing the buffer
955  * out synchronously.
956  */
957 void
958 bdwrite(struct buf * bp)
959 {
960 	struct thread *td = curthread;
961 	struct vnode *vp;
962 	struct buf *nbp;
963 
964 	GIANT_REQUIRED;
965 
966 	if (BUF_REFCNT(bp) == 0)
967 		panic("bdwrite: buffer is not busy");
968 
969 	if (bp->b_flags & B_INVAL) {
970 		brelse(bp);
971 		return;
972 	}
973 
974 	/*
975 	 * If we have too many dirty buffers, don't create any more.
976 	 * If we are wildly over our limit, then force a complete
977 	 * cleanup. Otherwise, just keep the situation from getting
978 	 * out of control. Note that we have to avoid a recursive
979 	 * disaster and not try to clean up after our own cleanup!
980 	 */
981 	vp = bp->b_vp;
982 	VI_LOCK(vp);
983 	if (td->td_proc->p_flag & P_COWINPROGRESS) {
984 		recursiveflushes++;
985 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
986 		VI_UNLOCK(vp);
987 		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
988 		VI_LOCK(vp);
989 		altbufferflushes++;
990 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
991 		/*
992 		 * Try to find a buffer to flush.
993 		 */
994 		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
995 			if ((nbp->b_xflags & BX_BKGRDINPROG) ||
996 			    buf_countdeps(nbp, 0) ||
997 			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
998 				continue;
999 			if (bp == nbp)
1000 				panic("bdwrite: found ourselves");
1001 			VI_UNLOCK(vp);
1002 			if (nbp->b_flags & B_CLUSTEROK) {
1003 				vfs_bio_awrite(nbp);
1004 			} else {
1005 				bremfree(nbp);
1006 				bawrite(nbp);
1007 			}
1008 			VI_LOCK(vp);
1009 			dirtybufferflushes++;
1010 			break;
1011 		}
1012 	}
1013 	VI_UNLOCK(vp);
1014 
1015 	bdirty(bp);
1016 	/*
1017 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1018 	 * true even of NFS now.
1019 	 */
1020 	bp->b_flags |= B_CACHE;
1021 
1022 	/*
1023 	 * This bmap keeps the system from needing to do the bmap later,
1024 	 * perhaps when the system is attempting to do a sync.  Since it
1025 	 * is likely that the indirect block -- or whatever other datastructure
1026 	 * that the filesystem needs is still in memory now, it is a good
1027 	 * thing to do this.  Note also, that if the pageout daemon is
1028 	 * requesting a sync -- there might not be enough memory to do
1029 	 * the bmap then...  So, this is important to do.
1030 	 */
1031 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1032 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1033 	}
1034 
1035 	/*
1036 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1037 	 */
1038 	vfs_setdirty(bp);
1039 
1040 	/*
1041 	 * We need to do this here to satisfy the vnode_pager and the
1042 	 * pageout daemon, so that it thinks that the pages have been
1043 	 * "cleaned".  Note that since the pages are in a delayed write
1044 	 * buffer -- the VFS layer "will" see that the pages get written
1045 	 * out on the next sync, or perhaps the cluster will be completed.
1046 	 */
1047 	vfs_clean_pages(bp);
1048 	bqrelse(bp);
1049 
1050 	/*
1051 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1052 	 * buffers (midpoint between our recovery point and our stall
1053 	 * point).
1054 	 */
1055 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1056 
1057 	/*
1058 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1059 	 * due to the softdep code.
1060 	 */
1061 }
1062 
1063 /*
1064  *	bdirty:
1065  *
1066  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1067  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1068  *	itself to properly update it in the dirty/clean lists.  We mark it
1069  *	B_DONE to ensure that any asynchronization of the buffer properly
1070  *	clears B_DONE ( else a panic will occur later ).
1071  *
1072  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1073  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1074  *	should only be called if the buffer is known-good.
1075  *
1076  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1077  *	count.
1078  *
1079  *	Must be called at splbio().
1080  *	The buffer must be on QUEUE_NONE.
1081  */
1082 void
1083 bdirty(bp)
1084 	struct buf *bp;
1085 {
1086 	KASSERT(bp->b_qindex == QUEUE_NONE,
1087 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1088 	bp->b_flags &= ~(B_RELBUF);
1089 	bp->b_iocmd = BIO_WRITE;
1090 
1091 	if ((bp->b_flags & B_DELWRI) == 0) {
1092 		bp->b_flags |= B_DONE | B_DELWRI;
1093 		reassignbuf(bp, bp->b_vp);
1094 		atomic_add_int(&numdirtybuffers, 1);
1095 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1096 	}
1097 }
1098 
1099 /*
1100  *	bundirty:
1101  *
1102  *	Clear B_DELWRI for buffer.
1103  *
1104  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1105  *	count.
1106  *
1107  *	Must be called at splbio().
1108  *	The buffer must be on QUEUE_NONE.
1109  */
1110 
1111 void
1112 bundirty(bp)
1113 	struct buf *bp;
1114 {
1115 	KASSERT(bp->b_qindex == QUEUE_NONE,
1116 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1117 
1118 	if (bp->b_flags & B_DELWRI) {
1119 		bp->b_flags &= ~B_DELWRI;
1120 		reassignbuf(bp, bp->b_vp);
1121 		atomic_subtract_int(&numdirtybuffers, 1);
1122 		numdirtywakeup(lodirtybuffers);
1123 	}
1124 	/*
1125 	 * Since it is now being written, we can clear its deferred write flag.
1126 	 */
1127 	bp->b_flags &= ~B_DEFERRED;
1128 }
1129 
1130 /*
1131  *	bawrite:
1132  *
1133  *	Asynchronous write.  Start output on a buffer, but do not wait for
1134  *	it to complete.  The buffer is released when the output completes.
1135  *
1136  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1137  *	B_INVAL buffers.  Not us.
1138  */
1139 void
1140 bawrite(struct buf * bp)
1141 {
1142 	bp->b_flags |= B_ASYNC;
1143 	(void) BUF_WRITE(bp);
1144 }
1145 
1146 /*
1147  *	bwillwrite:
1148  *
1149  *	Called prior to the locking of any vnodes when we are expecting to
1150  *	write.  We do not want to starve the buffer cache with too many
1151  *	dirty buffers so we block here.  By blocking prior to the locking
1152  *	of any vnodes we attempt to avoid the situation where a locked vnode
1153  *	prevents the various system daemons from flushing related buffers.
1154  */
1155 
1156 void
1157 bwillwrite(void)
1158 {
1159 	if (numdirtybuffers >= hidirtybuffers) {
1160 		int s;
1161 
1162 		mtx_lock(&Giant);
1163 		s = splbio();
1164 		mtx_lock(&nblock);
1165 		while (numdirtybuffers >= hidirtybuffers) {
1166 			bd_wakeup(1);
1167 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1168 			msleep(&needsbuffer, &nblock,
1169 			    (PRIBIO + 4), "flswai", 0);
1170 		}
1171 		splx(s);
1172 		mtx_unlock(&nblock);
1173 		mtx_unlock(&Giant);
1174 	}
1175 }
1176 
1177 /*
1178  * Return true if we have too many dirty buffers.
1179  */
1180 int
1181 buf_dirty_count_severe(void)
1182 {
1183 	return(numdirtybuffers >= hidirtybuffers);
1184 }
1185 
1186 /*
1187  *	brelse:
1188  *
1189  *	Release a busy buffer and, if requested, free its resources.  The
1190  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1191  *	to be accessed later as a cache entity or reused for other purposes.
1192  */
1193 void
1194 brelse(struct buf * bp)
1195 {
1196 	int s;
1197 
1198 	GIANT_REQUIRED;
1199 
1200 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1201 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1202 
1203 	s = splbio();
1204 
1205 	if (bp->b_flags & B_LOCKED)
1206 		bp->b_ioflags &= ~BIO_ERROR;
1207 
1208 	if (bp->b_iocmd == BIO_WRITE &&
1209 	    (bp->b_ioflags & BIO_ERROR) &&
1210 	    !(bp->b_flags & B_INVAL)) {
1211 		/*
1212 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1213 		 * pages from being scrapped.  If B_INVAL is set then
1214 		 * this case is not run and the next case is run to
1215 		 * destroy the buffer.  B_INVAL can occur if the buffer
1216 		 * is outside the range supported by the underlying device.
1217 		 */
1218 		bp->b_ioflags &= ~BIO_ERROR;
1219 		bdirty(bp);
1220 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1221 	    (bp->b_ioflags & BIO_ERROR) ||
1222 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1223 		/*
1224 		 * Either a failed I/O or we were asked to free or not
1225 		 * cache the buffer.
1226 		 */
1227 		bp->b_flags |= B_INVAL;
1228 		if (LIST_FIRST(&bp->b_dep) != NULL)
1229 			buf_deallocate(bp);
1230 		if (bp->b_flags & B_DELWRI) {
1231 			atomic_subtract_int(&numdirtybuffers, 1);
1232 			numdirtywakeup(lodirtybuffers);
1233 		}
1234 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1235 		if ((bp->b_flags & B_VMIO) == 0) {
1236 			if (bp->b_bufsize)
1237 				allocbuf(bp, 0);
1238 			if (bp->b_vp)
1239 				brelvp(bp);
1240 		}
1241 	}
1242 
1243 	/*
1244 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1245 	 * is called with B_DELWRI set, the underlying pages may wind up
1246 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1247 	 * because pages associated with a B_DELWRI bp are marked clean.
1248 	 *
1249 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1250 	 * if B_DELWRI is set.
1251 	 *
1252 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1253 	 * on pages to return pages to the VM page queues.
1254 	 */
1255 	if (bp->b_flags & B_DELWRI)
1256 		bp->b_flags &= ~B_RELBUF;
1257 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1258 		bp->b_flags |= B_RELBUF;
1259 
1260 	/*
1261 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1262 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1263 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1264 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1265 	 *
1266 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1267 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1268 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1269 	 *
1270 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1271 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1272 	 * the commit state and we cannot afford to lose the buffer. If the
1273 	 * buffer has a background write in progress, we need to keep it
1274 	 * around to prevent it from being reconstituted and starting a second
1275 	 * background write.
1276 	 */
1277 	if ((bp->b_flags & B_VMIO)
1278 	    && !(bp->b_vp->v_mount != NULL &&
1279 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1280 		 !vn_isdisk(bp->b_vp, NULL) &&
1281 		 (bp->b_flags & B_DELWRI))
1282 	    ) {
1283 
1284 		int i, j, resid;
1285 		vm_page_t m;
1286 		off_t foff;
1287 		vm_pindex_t poff;
1288 		vm_object_t obj;
1289 		struct vnode *vp;
1290 
1291 		vp = bp->b_vp;
1292 		obj = bp->b_object;
1293 
1294 		/*
1295 		 * Get the base offset and length of the buffer.  Note that
1296 		 * in the VMIO case if the buffer block size is not
1297 		 * page-aligned then b_data pointer may not be page-aligned.
1298 		 * But our b_pages[] array *IS* page aligned.
1299 		 *
1300 		 * block sizes less then DEV_BSIZE (usually 512) are not
1301 		 * supported due to the page granularity bits (m->valid,
1302 		 * m->dirty, etc...).
1303 		 *
1304 		 * See man buf(9) for more information
1305 		 */
1306 		resid = bp->b_bufsize;
1307 		foff = bp->b_offset;
1308 
1309 		for (i = 0; i < bp->b_npages; i++) {
1310 			int had_bogus = 0;
1311 
1312 			m = bp->b_pages[i];
1313 			vm_page_lock_queues();
1314 			vm_page_flag_clear(m, PG_ZERO);
1315 			vm_page_unlock_queues();
1316 
1317 			/*
1318 			 * If we hit a bogus page, fixup *all* the bogus pages
1319 			 * now.
1320 			 */
1321 			if (m == bogus_page) {
1322 				poff = OFF_TO_IDX(bp->b_offset);
1323 				had_bogus = 1;
1324 
1325 				for (j = i; j < bp->b_npages; j++) {
1326 					vm_page_t mtmp;
1327 					mtmp = bp->b_pages[j];
1328 					if (mtmp == bogus_page) {
1329 						mtmp = vm_page_lookup(obj, poff + j);
1330 						if (!mtmp) {
1331 							panic("brelse: page missing\n");
1332 						}
1333 						bp->b_pages[j] = mtmp;
1334 					}
1335 				}
1336 
1337 				if ((bp->b_flags & B_INVAL) == 0) {
1338 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1339 				}
1340 				m = bp->b_pages[i];
1341 			}
1342 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1343 				int poffset = foff & PAGE_MASK;
1344 				int presid = resid > (PAGE_SIZE - poffset) ?
1345 					(PAGE_SIZE - poffset) : resid;
1346 
1347 				KASSERT(presid >= 0, ("brelse: extra page"));
1348 				vm_page_set_invalid(m, poffset, presid);
1349 				if (had_bogus)
1350 					printf("avoided corruption bug in bogus_page/brelse code\n");
1351 			}
1352 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1353 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1354 		}
1355 
1356 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1357 			vfs_vmio_release(bp);
1358 
1359 	} else if (bp->b_flags & B_VMIO) {
1360 
1361 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1362 			vfs_vmio_release(bp);
1363 		}
1364 
1365 	}
1366 
1367 	if (bp->b_qindex != QUEUE_NONE)
1368 		panic("brelse: free buffer onto another queue???");
1369 	if (BUF_REFCNT(bp) > 1) {
1370 		/* do not release to free list */
1371 		BUF_UNLOCK(bp);
1372 		splx(s);
1373 		return;
1374 	}
1375 
1376 	/* enqueue */
1377 	mtx_lock(&bqlock);
1378 
1379 	/* buffers with no memory */
1380 	if (bp->b_bufsize == 0) {
1381 		bp->b_flags |= B_INVAL;
1382 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1383 		if (bp->b_xflags & BX_BKGRDINPROG)
1384 			panic("losing buffer 1");
1385 		if (bp->b_kvasize) {
1386 			bp->b_qindex = QUEUE_EMPTYKVA;
1387 		} else {
1388 			bp->b_qindex = QUEUE_EMPTY;
1389 		}
1390 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1391 		bp->b_dev = NODEV;
1392 	/* buffers with junk contents */
1393 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1394 	    (bp->b_ioflags & BIO_ERROR)) {
1395 		bp->b_flags |= B_INVAL;
1396 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1397 		if (bp->b_xflags & BX_BKGRDINPROG)
1398 			panic("losing buffer 2");
1399 		bp->b_qindex = QUEUE_CLEAN;
1400 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1401 		bp->b_dev = NODEV;
1402 
1403 	/* buffers that are locked */
1404 	} else if (bp->b_flags & B_LOCKED) {
1405 		bp->b_qindex = QUEUE_LOCKED;
1406 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1407 
1408 	/* remaining buffers */
1409 	} else {
1410 		if (bp->b_flags & B_DELWRI)
1411 			bp->b_qindex = QUEUE_DIRTY;
1412 		else
1413 			bp->b_qindex = QUEUE_CLEAN;
1414 		if (bp->b_flags & B_AGE)
1415 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1416 		else
1417 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1418 	}
1419 	mtx_unlock(&bqlock);
1420 
1421 	/*
1422 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1423 	 * placed the buffer on the correct queue.  We must also disassociate
1424 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1425 	 * find it.
1426 	 */
1427 	if (bp->b_flags & B_INVAL) {
1428 		if (bp->b_flags & B_DELWRI)
1429 			bundirty(bp);
1430 		if (bp->b_vp)
1431 			brelvp(bp);
1432 	}
1433 
1434 	/*
1435 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1436 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1437 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1438 	 * if B_INVAL is set ).
1439 	 */
1440 
1441 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1442 		bufcountwakeup();
1443 
1444 	/*
1445 	 * Something we can maybe free or reuse
1446 	 */
1447 	if (bp->b_bufsize || bp->b_kvasize)
1448 		bufspacewakeup();
1449 
1450 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1451 			B_DIRECT | B_NOWDRAIN);
1452 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1453 		panic("brelse: not dirty");
1454 	/* unlock */
1455 	BUF_UNLOCK(bp);
1456 	splx(s);
1457 }
1458 
1459 /*
1460  * Release a buffer back to the appropriate queue but do not try to free
1461  * it.  The buffer is expected to be used again soon.
1462  *
1463  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1464  * biodone() to requeue an async I/O on completion.  It is also used when
1465  * known good buffers need to be requeued but we think we may need the data
1466  * again soon.
1467  *
1468  * XXX we should be able to leave the B_RELBUF hint set on completion.
1469  */
1470 void
1471 bqrelse(struct buf * bp)
1472 {
1473 	int s;
1474 
1475 	s = splbio();
1476 
1477 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1478 
1479 	if (bp->b_qindex != QUEUE_NONE)
1480 		panic("bqrelse: free buffer onto another queue???");
1481 	if (BUF_REFCNT(bp) > 1) {
1482 		/* do not release to free list */
1483 		BUF_UNLOCK(bp);
1484 		splx(s);
1485 		return;
1486 	}
1487 	mtx_lock(&bqlock);
1488 	if (bp->b_flags & B_LOCKED) {
1489 		bp->b_ioflags &= ~BIO_ERROR;
1490 		bp->b_qindex = QUEUE_LOCKED;
1491 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1492 		/* buffers with stale but valid contents */
1493 	} else if (bp->b_flags & B_DELWRI) {
1494 		bp->b_qindex = QUEUE_DIRTY;
1495 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1496 	} else if (vm_page_count_severe()) {
1497 		/*
1498 		 * We are too low on memory, we have to try to free the
1499 		 * buffer (most importantly: the wired pages making up its
1500 		 * backing store) *now*.
1501 		 */
1502 		mtx_unlock(&bqlock);
1503 		splx(s);
1504 		brelse(bp);
1505 		return;
1506 	} else {
1507 		bp->b_qindex = QUEUE_CLEAN;
1508 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1509 	}
1510 	mtx_unlock(&bqlock);
1511 
1512 	if ((bp->b_flags & B_LOCKED) == 0 &&
1513 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1514 		bufcountwakeup();
1515 	}
1516 
1517 	/*
1518 	 * Something we can maybe free or reuse.
1519 	 */
1520 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1521 		bufspacewakeup();
1522 
1523 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1524 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1525 		panic("bqrelse: not dirty");
1526 	/* unlock */
1527 	BUF_UNLOCK(bp);
1528 	splx(s);
1529 }
1530 
1531 /* Give pages used by the bp back to the VM system (where possible) */
1532 static void
1533 vfs_vmio_release(bp)
1534 	struct buf *bp;
1535 {
1536 	int i;
1537 	vm_page_t m;
1538 
1539 	GIANT_REQUIRED;
1540 	vm_page_lock_queues();
1541 	for (i = 0; i < bp->b_npages; i++) {
1542 		m = bp->b_pages[i];
1543 		bp->b_pages[i] = NULL;
1544 		/*
1545 		 * In order to keep page LRU ordering consistent, put
1546 		 * everything on the inactive queue.
1547 		 */
1548 		vm_page_unwire(m, 0);
1549 		/*
1550 		 * We don't mess with busy pages, it is
1551 		 * the responsibility of the process that
1552 		 * busied the pages to deal with them.
1553 		 */
1554 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1555 			continue;
1556 
1557 		if (m->wire_count == 0) {
1558 			vm_page_flag_clear(m, PG_ZERO);
1559 			/*
1560 			 * Might as well free the page if we can and it has
1561 			 * no valid data.  We also free the page if the
1562 			 * buffer was used for direct I/O
1563 			 */
1564 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1565 			    m->hold_count == 0) {
1566 				vm_page_busy(m);
1567 				pmap_remove_all(m);
1568 				vm_page_free(m);
1569 			} else if (bp->b_flags & B_DIRECT) {
1570 				vm_page_try_to_free(m);
1571 			} else if (vm_page_count_severe()) {
1572 				vm_page_try_to_cache(m);
1573 			}
1574 		}
1575 	}
1576 	vm_page_unlock_queues();
1577 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1578 
1579 	if (bp->b_bufsize) {
1580 		bufspacewakeup();
1581 		bp->b_bufsize = 0;
1582 	}
1583 	bp->b_npages = 0;
1584 	bp->b_flags &= ~B_VMIO;
1585 	if (bp->b_vp)
1586 		brelvp(bp);
1587 }
1588 
1589 /*
1590  * Check to see if a block at a particular lbn is available for a clustered
1591  * write.
1592  */
1593 static int
1594 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1595 {
1596 	struct buf *bpa;
1597 	int match;
1598 
1599 	match = 0;
1600 
1601 	/* If the buf isn't in core skip it */
1602 	if ((bpa = gbincore(vp, lblkno)) == NULL)
1603 		return (0);
1604 
1605 	/* If the buf is busy we don't want to wait for it */
1606 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1607 		return (0);
1608 
1609 	/* Only cluster with valid clusterable delayed write buffers */
1610 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1611 	    (B_DELWRI | B_CLUSTEROK))
1612 		goto done;
1613 
1614 	if (bpa->b_bufsize != size)
1615 		goto done;
1616 
1617 	/*
1618 	 * Check to see if it is in the expected place on disk and that the
1619 	 * block has been mapped.
1620 	 */
1621 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1622 		match = 1;
1623 done:
1624 	BUF_UNLOCK(bpa);
1625 	return (match);
1626 }
1627 
1628 /*
1629  *	vfs_bio_awrite:
1630  *
1631  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1632  *	This is much better then the old way of writing only one buffer at
1633  *	a time.  Note that we may not be presented with the buffers in the
1634  *	correct order, so we search for the cluster in both directions.
1635  */
1636 int
1637 vfs_bio_awrite(struct buf * bp)
1638 {
1639 	int i;
1640 	int j;
1641 	daddr_t lblkno = bp->b_lblkno;
1642 	struct vnode *vp = bp->b_vp;
1643 	int s;
1644 	int ncl;
1645 	int nwritten;
1646 	int size;
1647 	int maxcl;
1648 
1649 	s = splbio();
1650 	/*
1651 	 * right now we support clustered writing only to regular files.  If
1652 	 * we find a clusterable block we could be in the middle of a cluster
1653 	 * rather then at the beginning.
1654 	 */
1655 	if ((vp->v_type == VREG) &&
1656 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1657 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1658 
1659 		size = vp->v_mount->mnt_stat.f_iosize;
1660 		maxcl = MAXPHYS / size;
1661 
1662 		VI_LOCK(vp);
1663 		for (i = 1; i < maxcl; i++)
1664 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1665 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1666 				break;
1667 
1668 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1669 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1670 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1671 				break;
1672 
1673 		VI_UNLOCK(vp);
1674 		--j;
1675 		ncl = i + j;
1676 		/*
1677 		 * this is a possible cluster write
1678 		 */
1679 		if (ncl != 1) {
1680 			BUF_UNLOCK(bp);
1681 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1682 			splx(s);
1683 			return nwritten;
1684 		}
1685 	}
1686 
1687 	bremfree(bp);
1688 	bp->b_flags |= B_ASYNC;
1689 
1690 	splx(s);
1691 	/*
1692 	 * default (old) behavior, writing out only one block
1693 	 *
1694 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1695 	 */
1696 	nwritten = bp->b_bufsize;
1697 	(void) BUF_WRITE(bp);
1698 
1699 	return nwritten;
1700 }
1701 
1702 /*
1703  *	getnewbuf:
1704  *
1705  *	Find and initialize a new buffer header, freeing up existing buffers
1706  *	in the bufqueues as necessary.  The new buffer is returned locked.
1707  *
1708  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1709  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1710  *
1711  *	We block if:
1712  *		We have insufficient buffer headers
1713  *		We have insufficient buffer space
1714  *		buffer_map is too fragmented ( space reservation fails )
1715  *		If we have to flush dirty buffers ( but we try to avoid this )
1716  *
1717  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1718  *	Instead we ask the buf daemon to do it for us.  We attempt to
1719  *	avoid piecemeal wakeups of the pageout daemon.
1720  */
1721 
1722 static struct buf *
1723 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1724 {
1725 	struct buf *bp;
1726 	struct buf *nbp;
1727 	int defrag = 0;
1728 	int nqindex;
1729 	static int flushingbufs;
1730 
1731 	GIANT_REQUIRED;
1732 
1733 	/*
1734 	 * We can't afford to block since we might be holding a vnode lock,
1735 	 * which may prevent system daemons from running.  We deal with
1736 	 * low-memory situations by proactively returning memory and running
1737 	 * async I/O rather then sync I/O.
1738 	 */
1739 
1740 	atomic_add_int(&getnewbufcalls, 1);
1741 	atomic_subtract_int(&getnewbufrestarts, 1);
1742 restart:
1743 	atomic_add_int(&getnewbufrestarts, 1);
1744 
1745 	/*
1746 	 * Setup for scan.  If we do not have enough free buffers,
1747 	 * we setup a degenerate case that immediately fails.  Note
1748 	 * that if we are specially marked process, we are allowed to
1749 	 * dip into our reserves.
1750 	 *
1751 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1752 	 *
1753 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1754 	 * However, there are a number of cases (defragging, reusing, ...)
1755 	 * where we cannot backup.
1756 	 */
1757 	mtx_lock(&bqlock);
1758 	nqindex = QUEUE_EMPTYKVA;
1759 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1760 
1761 	if (nbp == NULL) {
1762 		/*
1763 		 * If no EMPTYKVA buffers and we are either
1764 		 * defragging or reusing, locate a CLEAN buffer
1765 		 * to free or reuse.  If bufspace useage is low
1766 		 * skip this step so we can allocate a new buffer.
1767 		 */
1768 		if (defrag || bufspace >= lobufspace) {
1769 			nqindex = QUEUE_CLEAN;
1770 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1771 		}
1772 
1773 		/*
1774 		 * If we could not find or were not allowed to reuse a
1775 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1776 		 * buffer.  We can only use an EMPTY buffer if allocating
1777 		 * its KVA would not otherwise run us out of buffer space.
1778 		 */
1779 		if (nbp == NULL && defrag == 0 &&
1780 		    bufspace + maxsize < hibufspace) {
1781 			nqindex = QUEUE_EMPTY;
1782 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1788 	 * depending.
1789 	 */
1790 
1791 	while ((bp = nbp) != NULL) {
1792 		int qindex = nqindex;
1793 
1794 		/*
1795 		 * Calculate next bp ( we can only use it if we do not block
1796 		 * or do other fancy things ).
1797 		 */
1798 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1799 			switch(qindex) {
1800 			case QUEUE_EMPTY:
1801 				nqindex = QUEUE_EMPTYKVA;
1802 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1803 					break;
1804 				/* FALLTHROUGH */
1805 			case QUEUE_EMPTYKVA:
1806 				nqindex = QUEUE_CLEAN;
1807 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1808 					break;
1809 				/* FALLTHROUGH */
1810 			case QUEUE_CLEAN:
1811 				/*
1812 				 * nbp is NULL.
1813 				 */
1814 				break;
1815 			}
1816 		}
1817 
1818 		/*
1819 		 * Sanity Checks
1820 		 */
1821 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1822 
1823 		/*
1824 		 * Note: we no longer distinguish between VMIO and non-VMIO
1825 		 * buffers.
1826 		 */
1827 
1828 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1829 
1830 		/*
1831 		 * If we are defragging then we need a buffer with
1832 		 * b_kvasize != 0.  XXX this situation should no longer
1833 		 * occur, if defrag is non-zero the buffer's b_kvasize
1834 		 * should also be non-zero at this point.  XXX
1835 		 */
1836 		if (defrag && bp->b_kvasize == 0) {
1837 			printf("Warning: defrag empty buffer %p\n", bp);
1838 			continue;
1839 		}
1840 
1841 		/*
1842 		 * Start freeing the bp.  This is somewhat involved.  nbp
1843 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1844 		 */
1845 
1846 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1847 			panic("getnewbuf: locked buf");
1848 		bremfreel(bp);
1849 		mtx_unlock(&bqlock);
1850 
1851 		if (qindex == QUEUE_CLEAN) {
1852 			if (bp->b_flags & B_VMIO) {
1853 				bp->b_flags &= ~B_ASYNC;
1854 				vfs_vmio_release(bp);
1855 			}
1856 			if (bp->b_vp)
1857 				brelvp(bp);
1858 		}
1859 
1860 		/*
1861 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1862 		 * the scan from this point on.
1863 		 *
1864 		 * Get the rest of the buffer freed up.  b_kva* is still
1865 		 * valid after this operation.
1866 		 */
1867 
1868 		if (bp->b_rcred != NOCRED) {
1869 			crfree(bp->b_rcred);
1870 			bp->b_rcred = NOCRED;
1871 		}
1872 		if (bp->b_wcred != NOCRED) {
1873 			crfree(bp->b_wcred);
1874 			bp->b_wcred = NOCRED;
1875 		}
1876 		if (LIST_FIRST(&bp->b_dep) != NULL)
1877 			buf_deallocate(bp);
1878 		if (bp->b_xflags & BX_BKGRDINPROG)
1879 			panic("losing buffer 3");
1880 
1881 		if (bp->b_bufsize)
1882 			allocbuf(bp, 0);
1883 
1884 		bp->b_flags = 0;
1885 		bp->b_ioflags = 0;
1886 		bp->b_xflags = 0;
1887 		bp->b_vflags = 0;
1888 		bp->b_dev = NODEV;
1889 		bp->b_vp = NULL;
1890 		bp->b_blkno = bp->b_lblkno = 0;
1891 		bp->b_offset = NOOFFSET;
1892 		bp->b_iodone = 0;
1893 		bp->b_error = 0;
1894 		bp->b_resid = 0;
1895 		bp->b_bcount = 0;
1896 		bp->b_npages = 0;
1897 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1898 		bp->b_magic = B_MAGIC_BIO;
1899 		bp->b_op = &buf_ops_bio;
1900 		bp->b_object = NULL;
1901 
1902 		LIST_INIT(&bp->b_dep);
1903 
1904 		/*
1905 		 * If we are defragging then free the buffer.
1906 		 */
1907 		if (defrag) {
1908 			bp->b_flags |= B_INVAL;
1909 			bfreekva(bp);
1910 			brelse(bp);
1911 			defrag = 0;
1912 			goto restart;
1913 		}
1914 
1915 		/*
1916 		 * If we are overcomitted then recover the buffer and its
1917 		 * KVM space.  This occurs in rare situations when multiple
1918 		 * processes are blocked in getnewbuf() or allocbuf().
1919 		 */
1920 		if (bufspace >= hibufspace)
1921 			flushingbufs = 1;
1922 		if (flushingbufs && bp->b_kvasize != 0) {
1923 			bp->b_flags |= B_INVAL;
1924 			bfreekva(bp);
1925 			brelse(bp);
1926 			goto restart;
1927 		}
1928 		if (bufspace < lobufspace)
1929 			flushingbufs = 0;
1930 		break;
1931 	}
1932 
1933 	/*
1934 	 * If we exhausted our list, sleep as appropriate.  We may have to
1935 	 * wakeup various daemons and write out some dirty buffers.
1936 	 *
1937 	 * Generally we are sleeping due to insufficient buffer space.
1938 	 */
1939 
1940 	if (bp == NULL) {
1941 		int flags;
1942 		char *waitmsg;
1943 
1944 		mtx_unlock(&bqlock);
1945 		if (defrag) {
1946 			flags = VFS_BIO_NEED_BUFSPACE;
1947 			waitmsg = "nbufkv";
1948 		} else if (bufspace >= hibufspace) {
1949 			waitmsg = "nbufbs";
1950 			flags = VFS_BIO_NEED_BUFSPACE;
1951 		} else {
1952 			waitmsg = "newbuf";
1953 			flags = VFS_BIO_NEED_ANY;
1954 		}
1955 
1956 		bd_speedup();	/* heeeelp */
1957 
1958 		mtx_lock(&nblock);
1959 		needsbuffer |= flags;
1960 		while (needsbuffer & flags) {
1961 			if (msleep(&needsbuffer, &nblock,
1962 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1963 				mtx_unlock(&nblock);
1964 				return (NULL);
1965 			}
1966 		}
1967 		mtx_unlock(&nblock);
1968 	} else {
1969 		/*
1970 		 * We finally have a valid bp.  We aren't quite out of the
1971 		 * woods, we still have to reserve kva space.  In order
1972 		 * to keep fragmentation sane we only allocate kva in
1973 		 * BKVASIZE chunks.
1974 		 */
1975 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1976 
1977 		if (maxsize != bp->b_kvasize) {
1978 			vm_offset_t addr = 0;
1979 
1980 			bfreekva(bp);
1981 
1982 			if (vm_map_findspace(buffer_map,
1983 				vm_map_min(buffer_map), maxsize, &addr)) {
1984 				/*
1985 				 * Uh oh.  Buffer map is to fragmented.  We
1986 				 * must defragment the map.
1987 				 */
1988 				atomic_add_int(&bufdefragcnt, 1);
1989 				defrag = 1;
1990 				bp->b_flags |= B_INVAL;
1991 				brelse(bp);
1992 				goto restart;
1993 			}
1994 			if (addr) {
1995 				vm_map_insert(buffer_map, NULL, 0,
1996 					addr, addr + maxsize,
1997 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1998 
1999 				bp->b_kvabase = (caddr_t) addr;
2000 				bp->b_kvasize = maxsize;
2001 				atomic_add_int(&bufspace, bp->b_kvasize);
2002 				atomic_add_int(&bufreusecnt, 1);
2003 			}
2004 		}
2005 		bp->b_data = bp->b_kvabase;
2006 	}
2007 	return(bp);
2008 }
2009 
2010 /*
2011  *	buf_daemon:
2012  *
2013  *	buffer flushing daemon.  Buffers are normally flushed by the
2014  *	update daemon but if it cannot keep up this process starts to
2015  *	take the load in an attempt to prevent getnewbuf() from blocking.
2016  */
2017 
2018 static struct proc *bufdaemonproc;
2019 
2020 static struct kproc_desc buf_kp = {
2021 	"bufdaemon",
2022 	buf_daemon,
2023 	&bufdaemonproc
2024 };
2025 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2026 
2027 static void
2028 buf_daemon()
2029 {
2030 	int s;
2031 
2032 	mtx_lock(&Giant);
2033 
2034 	/*
2035 	 * This process needs to be suspended prior to shutdown sync.
2036 	 */
2037 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2038 	    SHUTDOWN_PRI_LAST);
2039 
2040 	/*
2041 	 * This process is allowed to take the buffer cache to the limit
2042 	 */
2043 	s = splbio();
2044 	mtx_lock(&bdlock);
2045 
2046 	for (;;) {
2047 		bd_request = 0;
2048 		mtx_unlock(&bdlock);
2049 
2050 		kthread_suspend_check(bufdaemonproc);
2051 
2052 		/*
2053 		 * Do the flush.  Limit the amount of in-transit I/O we
2054 		 * allow to build up, otherwise we would completely saturate
2055 		 * the I/O system.  Wakeup any waiting processes before we
2056 		 * normally would so they can run in parallel with our drain.
2057 		 */
2058 		while (numdirtybuffers > lodirtybuffers) {
2059 			if (flushbufqueues(0) == 0) {
2060 				/*
2061 				 * Could not find any buffers without rollback
2062 				 * dependencies, so just write the first one
2063 				 * in the hopes of eventually making progress.
2064 				 */
2065 				flushbufqueues(1);
2066 				break;
2067 			}
2068 			waitrunningbufspace();
2069 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2070 		}
2071 
2072 		/*
2073 		 * Only clear bd_request if we have reached our low water
2074 		 * mark.  The buf_daemon normally waits 1 second and
2075 		 * then incrementally flushes any dirty buffers that have
2076 		 * built up, within reason.
2077 		 *
2078 		 * If we were unable to hit our low water mark and couldn't
2079 		 * find any flushable buffers, we sleep half a second.
2080 		 * Otherwise we loop immediately.
2081 		 */
2082 		mtx_lock(&bdlock);
2083 		if (numdirtybuffers <= lodirtybuffers) {
2084 			/*
2085 			 * We reached our low water mark, reset the
2086 			 * request and sleep until we are needed again.
2087 			 * The sleep is just so the suspend code works.
2088 			 */
2089 			bd_request = 0;
2090 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2091 		} else {
2092 			/*
2093 			 * We couldn't find any flushable dirty buffers but
2094 			 * still have too many dirty buffers, we
2095 			 * have to sleep and try again.  (rare)
2096 			 */
2097 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2098 		}
2099 	}
2100 }
2101 
2102 /*
2103  *	flushbufqueues:
2104  *
2105  *	Try to flush a buffer in the dirty queue.  We must be careful to
2106  *	free up B_INVAL buffers instead of write them, which NFS is
2107  *	particularly sensitive to.
2108  */
2109 int flushwithdeps = 0;
2110 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2111     0, "Number of buffers flushed with dependecies that require rollbacks");
2112 static int
2113 flushbufqueues(int flushdeps)
2114 {
2115 	struct thread *td = curthread;
2116 	struct vnode *vp;
2117 	struct buf *bp;
2118 	int hasdeps;
2119 
2120 	mtx_lock(&bqlock);
2121 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2122 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2123 			continue;
2124 		KASSERT((bp->b_flags & B_DELWRI),
2125 		    ("unexpected clean buffer %p", bp));
2126 		if ((bp->b_xflags & BX_BKGRDINPROG) != 0) {
2127 			BUF_UNLOCK(bp);
2128 			continue;
2129 		}
2130 		if (bp->b_flags & B_INVAL) {
2131 			bremfreel(bp);
2132 			mtx_unlock(&bqlock);
2133 			brelse(bp);
2134 			return (1);
2135 		}
2136 
2137 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2138 			if (flushdeps == 0) {
2139 				BUF_UNLOCK(bp);
2140 				continue;
2141 			}
2142 			hasdeps = 1;
2143 		} else
2144 			hasdeps = 0;
2145 		/*
2146 		 * We must hold the lock on a vnode before writing
2147 		 * one of its buffers. Otherwise we may confuse, or
2148 		 * in the case of a snapshot vnode, deadlock the
2149 		 * system.
2150 		 *
2151 		 * The lock order here is the reverse of the normal
2152 		 * of vnode followed by buf lock.  This is ok because
2153 		 * the NOWAIT will prevent deadlock.
2154 		 */
2155 		if ((vp = bp->b_vp) == NULL ||
2156 		    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2157 			mtx_unlock(&bqlock);
2158 			vfs_bio_awrite(bp);
2159 			if (vp != NULL)
2160 				VOP_UNLOCK(vp, 0, td);
2161 			flushwithdeps += hasdeps;
2162 			return (1);
2163 		}
2164 		BUF_UNLOCK(bp);
2165 	}
2166 	mtx_unlock(&bqlock);
2167 	return (0);
2168 }
2169 
2170 /*
2171  * Check to see if a block is currently memory resident.
2172  */
2173 struct buf *
2174 incore(struct vnode * vp, daddr_t blkno)
2175 {
2176 	struct buf *bp;
2177 
2178 	int s = splbio();
2179 	VI_LOCK(vp);
2180 	bp = gbincore(vp, blkno);
2181 	VI_UNLOCK(vp);
2182 	splx(s);
2183 	return (bp);
2184 }
2185 
2186 /*
2187  * Returns true if no I/O is needed to access the
2188  * associated VM object.  This is like incore except
2189  * it also hunts around in the VM system for the data.
2190  */
2191 
2192 int
2193 inmem(struct vnode * vp, daddr_t blkno)
2194 {
2195 	vm_object_t obj;
2196 	vm_offset_t toff, tinc, size;
2197 	vm_page_t m;
2198 	vm_ooffset_t off;
2199 
2200 	GIANT_REQUIRED;
2201 	ASSERT_VOP_LOCKED(vp, "inmem");
2202 
2203 	if (incore(vp, blkno))
2204 		return 1;
2205 	if (vp->v_mount == NULL)
2206 		return 0;
2207 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2208 		return 0;
2209 
2210 	size = PAGE_SIZE;
2211 	if (size > vp->v_mount->mnt_stat.f_iosize)
2212 		size = vp->v_mount->mnt_stat.f_iosize;
2213 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2214 
2215 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2216 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2217 		if (!m)
2218 			goto notinmem;
2219 		tinc = size;
2220 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2221 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2222 		if (vm_page_is_valid(m,
2223 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2224 			goto notinmem;
2225 	}
2226 	return 1;
2227 
2228 notinmem:
2229 	return (0);
2230 }
2231 
2232 /*
2233  *	vfs_setdirty:
2234  *
2235  *	Sets the dirty range for a buffer based on the status of the dirty
2236  *	bits in the pages comprising the buffer.
2237  *
2238  *	The range is limited to the size of the buffer.
2239  *
2240  *	This routine is primarily used by NFS, but is generalized for the
2241  *	B_VMIO case.
2242  */
2243 static void
2244 vfs_setdirty(struct buf *bp)
2245 {
2246 	int i;
2247 	vm_object_t object;
2248 
2249 	GIANT_REQUIRED;
2250 	/*
2251 	 * Degenerate case - empty buffer
2252 	 */
2253 
2254 	if (bp->b_bufsize == 0)
2255 		return;
2256 
2257 	/*
2258 	 * We qualify the scan for modified pages on whether the
2259 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2260 	 * is not cleared simply by protecting pages off.
2261 	 */
2262 
2263 	if ((bp->b_flags & B_VMIO) == 0)
2264 		return;
2265 
2266 	object = bp->b_pages[0]->object;
2267 
2268 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2269 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2270 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2271 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2272 
2273 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2274 		vm_offset_t boffset;
2275 		vm_offset_t eoffset;
2276 
2277 		vm_page_lock_queues();
2278 		/*
2279 		 * test the pages to see if they have been modified directly
2280 		 * by users through the VM system.
2281 		 */
2282 		for (i = 0; i < bp->b_npages; i++) {
2283 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2284 			vm_page_test_dirty(bp->b_pages[i]);
2285 		}
2286 
2287 		/*
2288 		 * Calculate the encompassing dirty range, boffset and eoffset,
2289 		 * (eoffset - boffset) bytes.
2290 		 */
2291 
2292 		for (i = 0; i < bp->b_npages; i++) {
2293 			if (bp->b_pages[i]->dirty)
2294 				break;
2295 		}
2296 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2297 
2298 		for (i = bp->b_npages - 1; i >= 0; --i) {
2299 			if (bp->b_pages[i]->dirty) {
2300 				break;
2301 			}
2302 		}
2303 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2304 
2305 		vm_page_unlock_queues();
2306 		/*
2307 		 * Fit it to the buffer.
2308 		 */
2309 
2310 		if (eoffset > bp->b_bcount)
2311 			eoffset = bp->b_bcount;
2312 
2313 		/*
2314 		 * If we have a good dirty range, merge with the existing
2315 		 * dirty range.
2316 		 */
2317 
2318 		if (boffset < eoffset) {
2319 			if (bp->b_dirtyoff > boffset)
2320 				bp->b_dirtyoff = boffset;
2321 			if (bp->b_dirtyend < eoffset)
2322 				bp->b_dirtyend = eoffset;
2323 		}
2324 	}
2325 }
2326 
2327 /*
2328  *	getblk:
2329  *
2330  *	Get a block given a specified block and offset into a file/device.
2331  *	The buffers B_DONE bit will be cleared on return, making it almost
2332  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2333  *	return.  The caller should clear B_INVAL prior to initiating a
2334  *	READ.
2335  *
2336  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2337  *	an existing buffer.
2338  *
2339  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2340  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2341  *	and then cleared based on the backing VM.  If the previous buffer is
2342  *	non-0-sized but invalid, B_CACHE will be cleared.
2343  *
2344  *	If getblk() must create a new buffer, the new buffer is returned with
2345  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2346  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2347  *	backing VM.
2348  *
2349  *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2350  *	B_CACHE bit is clear.
2351  *
2352  *	What this means, basically, is that the caller should use B_CACHE to
2353  *	determine whether the buffer is fully valid or not and should clear
2354  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2355  *	the buffer by loading its data area with something, the caller needs
2356  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2357  *	the caller should set B_CACHE ( as an optimization ), else the caller
2358  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2359  *	a write attempt or if it was a successfull read.  If the caller
2360  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2361  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2362  */
2363 struct buf *
2364 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2365     int flags)
2366 {
2367 	struct buf *bp;
2368 	int s;
2369 	int error;
2370 	ASSERT_VOP_LOCKED(vp, "getblk");
2371 
2372 	if (size > MAXBSIZE)
2373 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2374 
2375 	s = splbio();
2376 loop:
2377 	/*
2378 	 * Block if we are low on buffers.   Certain processes are allowed
2379 	 * to completely exhaust the buffer cache.
2380          *
2381          * If this check ever becomes a bottleneck it may be better to
2382          * move it into the else, when gbincore() fails.  At the moment
2383          * it isn't a problem.
2384 	 *
2385 	 * XXX remove if 0 sections (clean this up after its proven)
2386          */
2387 	if (numfreebuffers == 0) {
2388 		if (curthread == PCPU_GET(idlethread))
2389 			return NULL;
2390 		mtx_lock(&nblock);
2391 		needsbuffer |= VFS_BIO_NEED_ANY;
2392 		mtx_unlock(&nblock);
2393 	}
2394 
2395 	VI_LOCK(vp);
2396 	if ((bp = gbincore(vp, blkno))) {
2397 		int lockflags;
2398 		/*
2399 		 * Buffer is in-core.  If the buffer is not busy, it must
2400 		 * be on a queue.
2401 		 */
2402 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2403 
2404 		if (flags & GB_LOCK_NOWAIT)
2405 			lockflags |= LK_NOWAIT;
2406 
2407 		error = BUF_TIMELOCK(bp, lockflags,
2408 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2409 
2410 		/*
2411 		 * If we slept and got the lock we have to restart in case
2412 		 * the buffer changed identities.
2413 		 */
2414 		if (error == ENOLCK)
2415 			goto loop;
2416 		/* We timed out or were interrupted. */
2417 		else if (error)
2418 			return (NULL);
2419 
2420 		/*
2421 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2422 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2423 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2424 		 * backing VM cache.
2425 		 */
2426 		if (bp->b_flags & B_INVAL)
2427 			bp->b_flags &= ~B_CACHE;
2428 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2429 			bp->b_flags |= B_CACHE;
2430 		bremfree(bp);
2431 
2432 		/*
2433 		 * check for size inconsistancies for non-VMIO case.
2434 		 */
2435 
2436 		if (bp->b_bcount != size) {
2437 			if ((bp->b_flags & B_VMIO) == 0 ||
2438 			    (size > bp->b_kvasize)) {
2439 				if (bp->b_flags & B_DELWRI) {
2440 					bp->b_flags |= B_NOCACHE;
2441 					BUF_WRITE(bp);
2442 				} else {
2443 					if ((bp->b_flags & B_VMIO) &&
2444 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2445 						bp->b_flags |= B_RELBUF;
2446 						brelse(bp);
2447 					} else {
2448 						bp->b_flags |= B_NOCACHE;
2449 						BUF_WRITE(bp);
2450 					}
2451 				}
2452 				goto loop;
2453 			}
2454 		}
2455 
2456 		/*
2457 		 * If the size is inconsistant in the VMIO case, we can resize
2458 		 * the buffer.  This might lead to B_CACHE getting set or
2459 		 * cleared.  If the size has not changed, B_CACHE remains
2460 		 * unchanged from its previous state.
2461 		 */
2462 
2463 		if (bp->b_bcount != size)
2464 			allocbuf(bp, size);
2465 
2466 		KASSERT(bp->b_offset != NOOFFSET,
2467 		    ("getblk: no buffer offset"));
2468 
2469 		/*
2470 		 * A buffer with B_DELWRI set and B_CACHE clear must
2471 		 * be committed before we can return the buffer in
2472 		 * order to prevent the caller from issuing a read
2473 		 * ( due to B_CACHE not being set ) and overwriting
2474 		 * it.
2475 		 *
2476 		 * Most callers, including NFS and FFS, need this to
2477 		 * operate properly either because they assume they
2478 		 * can issue a read if B_CACHE is not set, or because
2479 		 * ( for example ) an uncached B_DELWRI might loop due
2480 		 * to softupdates re-dirtying the buffer.  In the latter
2481 		 * case, B_CACHE is set after the first write completes,
2482 		 * preventing further loops.
2483 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2484 		 * above while extending the buffer, we cannot allow the
2485 		 * buffer to remain with B_CACHE set after the write
2486 		 * completes or it will represent a corrupt state.  To
2487 		 * deal with this we set B_NOCACHE to scrap the buffer
2488 		 * after the write.
2489 		 *
2490 		 * We might be able to do something fancy, like setting
2491 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2492 		 * so the below call doesn't set B_CACHE, but that gets real
2493 		 * confusing.  This is much easier.
2494 		 */
2495 
2496 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2497 			bp->b_flags |= B_NOCACHE;
2498 			BUF_WRITE(bp);
2499 			goto loop;
2500 		}
2501 
2502 		splx(s);
2503 		bp->b_flags &= ~B_DONE;
2504 	} else {
2505 		int bsize, maxsize, vmio;
2506 		off_t offset;
2507 
2508 		/*
2509 		 * Buffer is not in-core, create new buffer.  The buffer
2510 		 * returned by getnewbuf() is locked.  Note that the returned
2511 		 * buffer is also considered valid (not marked B_INVAL).
2512 		 */
2513 		VI_UNLOCK(vp);
2514 		if (vn_isdisk(vp, NULL))
2515 			bsize = DEV_BSIZE;
2516 		else if (vp->v_mountedhere)
2517 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2518 		else if (vp->v_mount)
2519 			bsize = vp->v_mount->mnt_stat.f_iosize;
2520 		else
2521 			bsize = size;
2522 
2523 		offset = blkno * bsize;
2524 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2525 		    (vp->v_vflag & VV_OBJBUF);
2526 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2527 		maxsize = imax(maxsize, bsize);
2528 
2529 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2530 			if (slpflag || slptimeo) {
2531 				splx(s);
2532 				return NULL;
2533 			}
2534 			goto loop;
2535 		}
2536 
2537 		/*
2538 		 * This code is used to make sure that a buffer is not
2539 		 * created while the getnewbuf routine is blocked.
2540 		 * This can be a problem whether the vnode is locked or not.
2541 		 * If the buffer is created out from under us, we have to
2542 		 * throw away the one we just created.  There is now window
2543 		 * race because we are safely running at splbio() from the
2544 		 * point of the duplicate buffer creation through to here,
2545 		 * and we've locked the buffer.
2546 		 *
2547 		 * Note: this must occur before we associate the buffer
2548 		 * with the vp especially considering limitations in
2549 		 * the splay tree implementation when dealing with duplicate
2550 		 * lblkno's.
2551 		 */
2552 		VI_LOCK(vp);
2553 		if (gbincore(vp, blkno)) {
2554 			VI_UNLOCK(vp);
2555 			bp->b_flags |= B_INVAL;
2556 			brelse(bp);
2557 			goto loop;
2558 		}
2559 
2560 		/*
2561 		 * Insert the buffer into the hash, so that it can
2562 		 * be found by incore.
2563 		 */
2564 		bp->b_blkno = bp->b_lblkno = blkno;
2565 		bp->b_offset = offset;
2566 
2567 		bgetvp(vp, bp);
2568 		VI_UNLOCK(vp);
2569 
2570 		/*
2571 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2572 		 * buffer size starts out as 0, B_CACHE will be set by
2573 		 * allocbuf() for the VMIO case prior to it testing the
2574 		 * backing store for validity.
2575 		 */
2576 
2577 		if (vmio) {
2578 			bp->b_flags |= B_VMIO;
2579 #if defined(VFS_BIO_DEBUG)
2580 			if (vp->v_type != VREG)
2581 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2582 #endif
2583 			VOP_GETVOBJECT(vp, &bp->b_object);
2584 		} else {
2585 			bp->b_flags &= ~B_VMIO;
2586 			bp->b_object = NULL;
2587 		}
2588 
2589 		allocbuf(bp, size);
2590 
2591 		splx(s);
2592 		bp->b_flags &= ~B_DONE;
2593 	}
2594 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2595 	return (bp);
2596 }
2597 
2598 /*
2599  * Get an empty, disassociated buffer of given size.  The buffer is initially
2600  * set to B_INVAL.
2601  */
2602 struct buf *
2603 geteblk(int size)
2604 {
2605 	struct buf *bp;
2606 	int s;
2607 	int maxsize;
2608 
2609 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2610 
2611 	s = splbio();
2612 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2613 		continue;
2614 	splx(s);
2615 	allocbuf(bp, size);
2616 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2617 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2618 	return (bp);
2619 }
2620 
2621 
2622 /*
2623  * This code constitutes the buffer memory from either anonymous system
2624  * memory (in the case of non-VMIO operations) or from an associated
2625  * VM object (in the case of VMIO operations).  This code is able to
2626  * resize a buffer up or down.
2627  *
2628  * Note that this code is tricky, and has many complications to resolve
2629  * deadlock or inconsistant data situations.  Tread lightly!!!
2630  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2631  * the caller.  Calling this code willy nilly can result in the loss of data.
2632  *
2633  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2634  * B_CACHE for the non-VMIO case.
2635  */
2636 
2637 int
2638 allocbuf(struct buf *bp, int size)
2639 {
2640 	int newbsize, mbsize;
2641 	int i;
2642 
2643 	GIANT_REQUIRED;
2644 
2645 	if (BUF_REFCNT(bp) == 0)
2646 		panic("allocbuf: buffer not busy");
2647 
2648 	if (bp->b_kvasize < size)
2649 		panic("allocbuf: buffer too small");
2650 
2651 	if ((bp->b_flags & B_VMIO) == 0) {
2652 		caddr_t origbuf;
2653 		int origbufsize;
2654 		/*
2655 		 * Just get anonymous memory from the kernel.  Don't
2656 		 * mess with B_CACHE.
2657 		 */
2658 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2659 		if (bp->b_flags & B_MALLOC)
2660 			newbsize = mbsize;
2661 		else
2662 			newbsize = round_page(size);
2663 
2664 		if (newbsize < bp->b_bufsize) {
2665 			/*
2666 			 * malloced buffers are not shrunk
2667 			 */
2668 			if (bp->b_flags & B_MALLOC) {
2669 				if (newbsize) {
2670 					bp->b_bcount = size;
2671 				} else {
2672 					free(bp->b_data, M_BIOBUF);
2673 					if (bp->b_bufsize) {
2674 						atomic_subtract_int(
2675 						    &bufmallocspace,
2676 						    bp->b_bufsize);
2677 						bufspacewakeup();
2678 						bp->b_bufsize = 0;
2679 					}
2680 					bp->b_data = bp->b_kvabase;
2681 					bp->b_bcount = 0;
2682 					bp->b_flags &= ~B_MALLOC;
2683 				}
2684 				return 1;
2685 			}
2686 			vm_hold_free_pages(
2687 			    bp,
2688 			    (vm_offset_t) bp->b_data + newbsize,
2689 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2690 		} else if (newbsize > bp->b_bufsize) {
2691 			/*
2692 			 * We only use malloced memory on the first allocation.
2693 			 * and revert to page-allocated memory when the buffer
2694 			 * grows.
2695 			 */
2696 			/*
2697 			 * There is a potential smp race here that could lead
2698 			 * to bufmallocspace slightly passing the max.  It
2699 			 * is probably extremely rare and not worth worrying
2700 			 * over.
2701 			 */
2702 			if ( (bufmallocspace < maxbufmallocspace) &&
2703 				(bp->b_bufsize == 0) &&
2704 				(mbsize <= PAGE_SIZE/2)) {
2705 
2706 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2707 				bp->b_bufsize = mbsize;
2708 				bp->b_bcount = size;
2709 				bp->b_flags |= B_MALLOC;
2710 				atomic_add_int(&bufmallocspace, mbsize);
2711 				return 1;
2712 			}
2713 			origbuf = NULL;
2714 			origbufsize = 0;
2715 			/*
2716 			 * If the buffer is growing on its other-than-first allocation,
2717 			 * then we revert to the page-allocation scheme.
2718 			 */
2719 			if (bp->b_flags & B_MALLOC) {
2720 				origbuf = bp->b_data;
2721 				origbufsize = bp->b_bufsize;
2722 				bp->b_data = bp->b_kvabase;
2723 				if (bp->b_bufsize) {
2724 					atomic_subtract_int(&bufmallocspace,
2725 					    bp->b_bufsize);
2726 					bufspacewakeup();
2727 					bp->b_bufsize = 0;
2728 				}
2729 				bp->b_flags &= ~B_MALLOC;
2730 				newbsize = round_page(newbsize);
2731 			}
2732 			vm_hold_load_pages(
2733 			    bp,
2734 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2735 			    (vm_offset_t) bp->b_data + newbsize);
2736 			if (origbuf) {
2737 				bcopy(origbuf, bp->b_data, origbufsize);
2738 				free(origbuf, M_BIOBUF);
2739 			}
2740 		}
2741 	} else {
2742 		int desiredpages;
2743 
2744 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2745 		desiredpages = (size == 0) ? 0 :
2746 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2747 
2748 		if (bp->b_flags & B_MALLOC)
2749 			panic("allocbuf: VMIO buffer can't be malloced");
2750 		/*
2751 		 * Set B_CACHE initially if buffer is 0 length or will become
2752 		 * 0-length.
2753 		 */
2754 		if (size == 0 || bp->b_bufsize == 0)
2755 			bp->b_flags |= B_CACHE;
2756 
2757 		if (newbsize < bp->b_bufsize) {
2758 			/*
2759 			 * DEV_BSIZE aligned new buffer size is less then the
2760 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2761 			 * if we have to remove any pages.
2762 			 */
2763 			if (desiredpages < bp->b_npages) {
2764 				vm_page_t m;
2765 
2766 				vm_page_lock_queues();
2767 				for (i = desiredpages; i < bp->b_npages; i++) {
2768 					/*
2769 					 * the page is not freed here -- it
2770 					 * is the responsibility of
2771 					 * vnode_pager_setsize
2772 					 */
2773 					m = bp->b_pages[i];
2774 					KASSERT(m != bogus_page,
2775 					    ("allocbuf: bogus page found"));
2776 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2777 						vm_page_lock_queues();
2778 
2779 					bp->b_pages[i] = NULL;
2780 					vm_page_unwire(m, 0);
2781 				}
2782 				vm_page_unlock_queues();
2783 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2784 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2785 				bp->b_npages = desiredpages;
2786 			}
2787 		} else if (size > bp->b_bcount) {
2788 			/*
2789 			 * We are growing the buffer, possibly in a
2790 			 * byte-granular fashion.
2791 			 */
2792 			struct vnode *vp;
2793 			vm_object_t obj;
2794 			vm_offset_t toff;
2795 			vm_offset_t tinc;
2796 
2797 			/*
2798 			 * Step 1, bring in the VM pages from the object,
2799 			 * allocating them if necessary.  We must clear
2800 			 * B_CACHE if these pages are not valid for the
2801 			 * range covered by the buffer.
2802 			 */
2803 
2804 			vp = bp->b_vp;
2805 			obj = bp->b_object;
2806 
2807 			while (bp->b_npages < desiredpages) {
2808 				vm_page_t m;
2809 				vm_pindex_t pi;
2810 
2811 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2812 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2813 					/*
2814 					 * note: must allocate system pages
2815 					 * since blocking here could intefere
2816 					 * with paging I/O, no matter which
2817 					 * process we are.
2818 					 */
2819 					m = vm_page_alloc(obj, pi,
2820 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2821 					if (m == NULL) {
2822 						atomic_add_int(&vm_pageout_deficit,
2823 						    desiredpages - bp->b_npages);
2824 						VM_WAIT;
2825 					} else {
2826 						vm_page_lock_queues();
2827 						vm_page_wakeup(m);
2828 						vm_page_unlock_queues();
2829 						bp->b_flags &= ~B_CACHE;
2830 						bp->b_pages[bp->b_npages] = m;
2831 						++bp->b_npages;
2832 					}
2833 					continue;
2834 				}
2835 
2836 				/*
2837 				 * We found a page.  If we have to sleep on it,
2838 				 * retry because it might have gotten freed out
2839 				 * from under us.
2840 				 *
2841 				 * We can only test PG_BUSY here.  Blocking on
2842 				 * m->busy might lead to a deadlock:
2843 				 *
2844 				 *  vm_fault->getpages->cluster_read->allocbuf
2845 				 *
2846 				 */
2847 				vm_page_lock_queues();
2848 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2849 					continue;
2850 
2851 				/*
2852 				 * We have a good page.  Should we wakeup the
2853 				 * page daemon?
2854 				 */
2855 				if ((curproc != pageproc) &&
2856 				    ((m->queue - m->pc) == PQ_CACHE) &&
2857 				    ((cnt.v_free_count + cnt.v_cache_count) <
2858 					(cnt.v_free_min + cnt.v_cache_min))) {
2859 					pagedaemon_wakeup();
2860 				}
2861 				vm_page_flag_clear(m, PG_ZERO);
2862 				vm_page_wire(m);
2863 				vm_page_unlock_queues();
2864 				bp->b_pages[bp->b_npages] = m;
2865 				++bp->b_npages;
2866 			}
2867 
2868 			/*
2869 			 * Step 2.  We've loaded the pages into the buffer,
2870 			 * we have to figure out if we can still have B_CACHE
2871 			 * set.  Note that B_CACHE is set according to the
2872 			 * byte-granular range ( bcount and size ), new the
2873 			 * aligned range ( newbsize ).
2874 			 *
2875 			 * The VM test is against m->valid, which is DEV_BSIZE
2876 			 * aligned.  Needless to say, the validity of the data
2877 			 * needs to also be DEV_BSIZE aligned.  Note that this
2878 			 * fails with NFS if the server or some other client
2879 			 * extends the file's EOF.  If our buffer is resized,
2880 			 * B_CACHE may remain set! XXX
2881 			 */
2882 
2883 			toff = bp->b_bcount;
2884 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2885 
2886 			while ((bp->b_flags & B_CACHE) && toff < size) {
2887 				vm_pindex_t pi;
2888 
2889 				if (tinc > (size - toff))
2890 					tinc = size - toff;
2891 
2892 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2893 				    PAGE_SHIFT;
2894 
2895 				vfs_buf_test_cache(
2896 				    bp,
2897 				    bp->b_offset,
2898 				    toff,
2899 				    tinc,
2900 				    bp->b_pages[pi]
2901 				);
2902 				toff += tinc;
2903 				tinc = PAGE_SIZE;
2904 			}
2905 
2906 			/*
2907 			 * Step 3, fixup the KVM pmap.  Remember that
2908 			 * bp->b_data is relative to bp->b_offset, but
2909 			 * bp->b_offset may be offset into the first page.
2910 			 */
2911 
2912 			bp->b_data = (caddr_t)
2913 			    trunc_page((vm_offset_t)bp->b_data);
2914 			pmap_qenter(
2915 			    (vm_offset_t)bp->b_data,
2916 			    bp->b_pages,
2917 			    bp->b_npages
2918 			);
2919 
2920 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2921 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2922 		}
2923 	}
2924 	if (newbsize < bp->b_bufsize)
2925 		bufspacewakeup();
2926 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2927 	bp->b_bcount = size;		/* requested buffer size	*/
2928 	return 1;
2929 }
2930 
2931 void
2932 biodone(struct bio *bp)
2933 {
2934 	mtx_lock(&bdonelock);
2935 	bp->bio_flags |= BIO_DONE;
2936 	if (bp->bio_done == NULL)
2937 		wakeup(bp);
2938 	mtx_unlock(&bdonelock);
2939 	if (bp->bio_done != NULL)
2940 		bp->bio_done(bp);
2941 }
2942 
2943 /*
2944  * Wait for a BIO to finish.
2945  *
2946  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2947  * case is not yet clear.
2948  */
2949 int
2950 biowait(struct bio *bp, const char *wchan)
2951 {
2952 
2953 	mtx_lock(&bdonelock);
2954 	while ((bp->bio_flags & BIO_DONE) == 0)
2955 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2956 	mtx_unlock(&bdonelock);
2957 	if (bp->bio_error != 0)
2958 		return (bp->bio_error);
2959 	if (!(bp->bio_flags & BIO_ERROR))
2960 		return (0);
2961 	return (EIO);
2962 }
2963 
2964 void
2965 biofinish(struct bio *bp, struct devstat *stat, int error)
2966 {
2967 
2968 	if (error) {
2969 		bp->bio_error = error;
2970 		bp->bio_flags |= BIO_ERROR;
2971 	}
2972 	if (stat != NULL)
2973 		devstat_end_transaction_bio(stat, bp);
2974 	biodone(bp);
2975 }
2976 
2977 void
2978 bioq_init(struct bio_queue_head *head)
2979 {
2980 	TAILQ_INIT(&head->queue);
2981 	head->last_pblkno = 0;
2982 	head->insert_point = NULL;
2983 	head->switch_point = NULL;
2984 }
2985 
2986 void
2987 bioq_remove(struct bio_queue_head *head, struct bio *bp)
2988 {
2989 	if (bp == head->switch_point)
2990 		head->switch_point = TAILQ_NEXT(bp, bio_queue);
2991 	if (bp == head->insert_point) {
2992 		head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue);
2993 		if (head->insert_point == NULL)
2994 			head->last_pblkno = 0;
2995 	} else if (bp == TAILQ_FIRST(&head->queue))
2996 		head->last_pblkno = bp->bio_pblkno;
2997 	TAILQ_REMOVE(&head->queue, bp, bio_queue);
2998 	if (TAILQ_FIRST(&head->queue) == head->switch_point)
2999 		head->switch_point = NULL;
3000 }
3001 
3002 /*
3003  *	bufwait:
3004  *
3005  *	Wait for buffer I/O completion, returning error status.  The buffer
3006  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3007  *	error and cleared.
3008  */
3009 int
3010 bufwait(register struct buf * bp)
3011 {
3012 	int s;
3013 
3014 	s = splbio();
3015 	if (bp->b_iocmd == BIO_READ)
3016 		bwait(bp, PRIBIO, "biord");
3017 	else
3018 		bwait(bp, PRIBIO, "biowr");
3019 	splx(s);
3020 	if (bp->b_flags & B_EINTR) {
3021 		bp->b_flags &= ~B_EINTR;
3022 		return (EINTR);
3023 	}
3024 	if (bp->b_ioflags & BIO_ERROR) {
3025 		return (bp->b_error ? bp->b_error : EIO);
3026 	} else {
3027 		return (0);
3028 	}
3029 }
3030 
3031  /*
3032   * Call back function from struct bio back up to struct buf.
3033   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3034   */
3035 void
3036 bufdonebio(struct bio *bp)
3037 {
3038 	bufdone(bp->bio_caller2);
3039 }
3040 
3041 /*
3042  *	bufdone:
3043  *
3044  *	Finish I/O on a buffer, optionally calling a completion function.
3045  *	This is usually called from an interrupt so process blocking is
3046  *	not allowed.
3047  *
3048  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3049  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3050  *	assuming B_INVAL is clear.
3051  *
3052  *	For the VMIO case, we set B_CACHE if the op was a read and no
3053  *	read error occured, or if the op was a write.  B_CACHE is never
3054  *	set if the buffer is invalid or otherwise uncacheable.
3055  *
3056  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3057  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3058  *	in the biodone routine.
3059  */
3060 void
3061 bufdone(struct buf *bp)
3062 {
3063 	int s;
3064 	void    (*biodone)(struct buf *);
3065 
3066 	GIANT_REQUIRED;
3067 
3068 	s = splbio();
3069 
3070 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3071 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3072 
3073 	bp->b_flags |= B_DONE;
3074 	runningbufwakeup(bp);
3075 
3076 	if (bp->b_iocmd == BIO_DELETE) {
3077 		brelse(bp);
3078 		splx(s);
3079 		return;
3080 	}
3081 
3082 	if (bp->b_iocmd == BIO_WRITE) {
3083 		vwakeup(bp);
3084 	}
3085 
3086 	/* call optional completion function if requested */
3087 	if (bp->b_iodone != NULL) {
3088 		biodone = bp->b_iodone;
3089 		bp->b_iodone = NULL;
3090 		(*biodone) (bp);
3091 		splx(s);
3092 		return;
3093 	}
3094 	if (LIST_FIRST(&bp->b_dep) != NULL)
3095 		buf_complete(bp);
3096 
3097 	if (bp->b_flags & B_VMIO) {
3098 		int i;
3099 		vm_ooffset_t foff;
3100 		vm_page_t m;
3101 		vm_object_t obj;
3102 		int iosize;
3103 		struct vnode *vp = bp->b_vp;
3104 
3105 		obj = bp->b_object;
3106 
3107 #if defined(VFS_BIO_DEBUG)
3108 		mp_fixme("usecount and vflag accessed without locks.");
3109 		if (vp->v_usecount == 0) {
3110 			panic("biodone: zero vnode ref count");
3111 		}
3112 
3113 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3114 			panic("biodone: vnode is not setup for merged cache");
3115 		}
3116 #endif
3117 
3118 		foff = bp->b_offset;
3119 		KASSERT(bp->b_offset != NOOFFSET,
3120 		    ("biodone: no buffer offset"));
3121 
3122 #if defined(VFS_BIO_DEBUG)
3123 		if (obj->paging_in_progress < bp->b_npages) {
3124 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3125 			    obj->paging_in_progress, bp->b_npages);
3126 		}
3127 #endif
3128 
3129 		/*
3130 		 * Set B_CACHE if the op was a normal read and no error
3131 		 * occured.  B_CACHE is set for writes in the b*write()
3132 		 * routines.
3133 		 */
3134 		iosize = bp->b_bcount - bp->b_resid;
3135 		if (bp->b_iocmd == BIO_READ &&
3136 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3137 		    !(bp->b_ioflags & BIO_ERROR)) {
3138 			bp->b_flags |= B_CACHE;
3139 		}
3140 		vm_page_lock_queues();
3141 		for (i = 0; i < bp->b_npages; i++) {
3142 			int bogusflag = 0;
3143 			int resid;
3144 
3145 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3146 			if (resid > iosize)
3147 				resid = iosize;
3148 
3149 			/*
3150 			 * cleanup bogus pages, restoring the originals
3151 			 */
3152 			m = bp->b_pages[i];
3153 			if (m == bogus_page) {
3154 				bogusflag = 1;
3155 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3156 				if (m == NULL)
3157 					panic("biodone: page disappeared!");
3158 				bp->b_pages[i] = m;
3159 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3160 			}
3161 #if defined(VFS_BIO_DEBUG)
3162 			if (OFF_TO_IDX(foff) != m->pindex) {
3163 				printf(
3164 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3165 				    (intmax_t)foff, (uintmax_t)m->pindex);
3166 			}
3167 #endif
3168 
3169 			/*
3170 			 * In the write case, the valid and clean bits are
3171 			 * already changed correctly ( see bdwrite() ), so we
3172 			 * only need to do this here in the read case.
3173 			 */
3174 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3175 				vfs_page_set_valid(bp, foff, i, m);
3176 			}
3177 			vm_page_flag_clear(m, PG_ZERO);
3178 
3179 			/*
3180 			 * when debugging new filesystems or buffer I/O methods, this
3181 			 * is the most common error that pops up.  if you see this, you
3182 			 * have not set the page busy flag correctly!!!
3183 			 */
3184 			if (m->busy == 0) {
3185 				printf("biodone: page busy < 0, "
3186 				    "pindex: %d, foff: 0x(%x,%x), "
3187 				    "resid: %d, index: %d\n",
3188 				    (int) m->pindex, (int)(foff >> 32),
3189 						(int) foff & 0xffffffff, resid, i);
3190 				if (!vn_isdisk(vp, NULL))
3191 					printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n",
3192 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3193 					    (intmax_t) bp->b_lblkno,
3194 					    bp->b_flags, bp->b_npages);
3195 				else
3196 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3197 					    (intmax_t) bp->b_lblkno,
3198 					    bp->b_flags, bp->b_npages);
3199 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3200 				    m->valid, m->dirty, m->wire_count);
3201 				panic("biodone: page busy < 0\n");
3202 			}
3203 			vm_page_io_finish(m);
3204 			vm_object_pip_subtract(obj, 1);
3205 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3206 			iosize -= resid;
3207 		}
3208 		vm_page_unlock_queues();
3209 		if (obj)
3210 			vm_object_pip_wakeupn(obj, 0);
3211 	}
3212 
3213 	/*
3214 	 * For asynchronous completions, release the buffer now. The brelse
3215 	 * will do a wakeup there if necessary - so no need to do a wakeup
3216 	 * here in the async case. The sync case always needs to do a wakeup.
3217 	 */
3218 
3219 	if (bp->b_flags & B_ASYNC) {
3220 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3221 			brelse(bp);
3222 		else
3223 			bqrelse(bp);
3224 	} else {
3225 		bdone(bp);
3226 	}
3227 	splx(s);
3228 }
3229 
3230 /*
3231  * This routine is called in lieu of iodone in the case of
3232  * incomplete I/O.  This keeps the busy status for pages
3233  * consistant.
3234  */
3235 void
3236 vfs_unbusy_pages(struct buf * bp)
3237 {
3238 	int i;
3239 
3240 	GIANT_REQUIRED;
3241 
3242 	runningbufwakeup(bp);
3243 	if (bp->b_flags & B_VMIO) {
3244 		vm_object_t obj;
3245 
3246 		obj = bp->b_object;
3247 		vm_page_lock_queues();
3248 		for (i = 0; i < bp->b_npages; i++) {
3249 			vm_page_t m = bp->b_pages[i];
3250 
3251 			if (m == bogus_page) {
3252 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3253 				if (!m) {
3254 					panic("vfs_unbusy_pages: page missing\n");
3255 				}
3256 				bp->b_pages[i] = m;
3257 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3258 			}
3259 			vm_object_pip_subtract(obj, 1);
3260 			vm_page_flag_clear(m, PG_ZERO);
3261 			vm_page_io_finish(m);
3262 		}
3263 		vm_page_unlock_queues();
3264 		vm_object_pip_wakeupn(obj, 0);
3265 	}
3266 }
3267 
3268 /*
3269  * vfs_page_set_valid:
3270  *
3271  *	Set the valid bits in a page based on the supplied offset.   The
3272  *	range is restricted to the buffer's size.
3273  *
3274  *	This routine is typically called after a read completes.
3275  */
3276 static void
3277 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3278 {
3279 	vm_ooffset_t soff, eoff;
3280 
3281 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3282 	/*
3283 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3284 	 * page boundry or cross the end of the buffer.  The end of the
3285 	 * buffer, in this case, is our file EOF, not the allocation size
3286 	 * of the buffer.
3287 	 */
3288 	soff = off;
3289 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3290 	if (eoff > bp->b_offset + bp->b_bcount)
3291 		eoff = bp->b_offset + bp->b_bcount;
3292 
3293 	/*
3294 	 * Set valid range.  This is typically the entire buffer and thus the
3295 	 * entire page.
3296 	 */
3297 	if (eoff > soff) {
3298 		vm_page_set_validclean(
3299 		    m,
3300 		   (vm_offset_t) (soff & PAGE_MASK),
3301 		   (vm_offset_t) (eoff - soff)
3302 		);
3303 	}
3304 }
3305 
3306 /*
3307  * This routine is called before a device strategy routine.
3308  * It is used to tell the VM system that paging I/O is in
3309  * progress, and treat the pages associated with the buffer
3310  * almost as being PG_BUSY.  Also the object paging_in_progress
3311  * flag is handled to make sure that the object doesn't become
3312  * inconsistant.
3313  *
3314  * Since I/O has not been initiated yet, certain buffer flags
3315  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3316  * and should be ignored.
3317  */
3318 void
3319 vfs_busy_pages(struct buf * bp, int clear_modify)
3320 {
3321 	int i, bogus;
3322 
3323 	if (bp->b_flags & B_VMIO) {
3324 		vm_object_t obj;
3325 		vm_ooffset_t foff;
3326 
3327 		obj = bp->b_object;
3328 		foff = bp->b_offset;
3329 		KASSERT(bp->b_offset != NOOFFSET,
3330 		    ("vfs_busy_pages: no buffer offset"));
3331 		vfs_setdirty(bp);
3332 retry:
3333 		vm_page_lock_queues();
3334 		for (i = 0; i < bp->b_npages; i++) {
3335 			vm_page_t m = bp->b_pages[i];
3336 
3337 			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3338 				goto retry;
3339 		}
3340 		bogus = 0;
3341 		for (i = 0; i < bp->b_npages; i++) {
3342 			vm_page_t m = bp->b_pages[i];
3343 
3344 			vm_page_flag_clear(m, PG_ZERO);
3345 			if ((bp->b_flags & B_CLUSTER) == 0) {
3346 				vm_object_pip_add(obj, 1);
3347 				vm_page_io_start(m);
3348 			}
3349 			/*
3350 			 * When readying a buffer for a read ( i.e
3351 			 * clear_modify == 0 ), it is important to do
3352 			 * bogus_page replacement for valid pages in
3353 			 * partially instantiated buffers.  Partially
3354 			 * instantiated buffers can, in turn, occur when
3355 			 * reconstituting a buffer from its VM backing store
3356 			 * base.  We only have to do this if B_CACHE is
3357 			 * clear ( which causes the I/O to occur in the
3358 			 * first place ).  The replacement prevents the read
3359 			 * I/O from overwriting potentially dirty VM-backed
3360 			 * pages.  XXX bogus page replacement is, uh, bogus.
3361 			 * It may not work properly with small-block devices.
3362 			 * We need to find a better way.
3363 			 */
3364 			pmap_remove_all(m);
3365 			if (clear_modify)
3366 				vfs_page_set_valid(bp, foff, i, m);
3367 			else if (m->valid == VM_PAGE_BITS_ALL &&
3368 				(bp->b_flags & B_CACHE) == 0) {
3369 				bp->b_pages[i] = bogus_page;
3370 				bogus++;
3371 			}
3372 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3373 		}
3374 		vm_page_unlock_queues();
3375 		if (bogus)
3376 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3377 	}
3378 }
3379 
3380 /*
3381  * Tell the VM system that the pages associated with this buffer
3382  * are clean.  This is used for delayed writes where the data is
3383  * going to go to disk eventually without additional VM intevention.
3384  *
3385  * Note that while we only really need to clean through to b_bcount, we
3386  * just go ahead and clean through to b_bufsize.
3387  */
3388 static void
3389 vfs_clean_pages(struct buf * bp)
3390 {
3391 	int i;
3392 
3393 	GIANT_REQUIRED;
3394 
3395 	if (bp->b_flags & B_VMIO) {
3396 		vm_ooffset_t foff;
3397 
3398 		foff = bp->b_offset;
3399 		KASSERT(bp->b_offset != NOOFFSET,
3400 		    ("vfs_clean_pages: no buffer offset"));
3401 		vm_page_lock_queues();
3402 		for (i = 0; i < bp->b_npages; i++) {
3403 			vm_page_t m = bp->b_pages[i];
3404 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3405 			vm_ooffset_t eoff = noff;
3406 
3407 			if (eoff > bp->b_offset + bp->b_bufsize)
3408 				eoff = bp->b_offset + bp->b_bufsize;
3409 			vfs_page_set_valid(bp, foff, i, m);
3410 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3411 			foff = noff;
3412 		}
3413 		vm_page_unlock_queues();
3414 	}
3415 }
3416 
3417 /*
3418  *	vfs_bio_set_validclean:
3419  *
3420  *	Set the range within the buffer to valid and clean.  The range is
3421  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3422  *	itself may be offset from the beginning of the first page.
3423  *
3424  */
3425 
3426 void
3427 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3428 {
3429 	if (bp->b_flags & B_VMIO) {
3430 		int i;
3431 		int n;
3432 
3433 		/*
3434 		 * Fixup base to be relative to beginning of first page.
3435 		 * Set initial n to be the maximum number of bytes in the
3436 		 * first page that can be validated.
3437 		 */
3438 
3439 		base += (bp->b_offset & PAGE_MASK);
3440 		n = PAGE_SIZE - (base & PAGE_MASK);
3441 
3442 		vm_page_lock_queues();
3443 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3444 			vm_page_t m = bp->b_pages[i];
3445 
3446 			if (n > size)
3447 				n = size;
3448 
3449 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3450 			base += n;
3451 			size -= n;
3452 			n = PAGE_SIZE;
3453 		}
3454 		vm_page_unlock_queues();
3455 	}
3456 }
3457 
3458 /*
3459  *	vfs_bio_clrbuf:
3460  *
3461  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3462  *	to clear BIO_ERROR and B_INVAL.
3463  *
3464  *	Note that while we only theoretically need to clear through b_bcount,
3465  *	we go ahead and clear through b_bufsize.
3466  */
3467 
3468 void
3469 vfs_bio_clrbuf(struct buf *bp)
3470 {
3471 	int i, mask = 0;
3472 	caddr_t sa, ea;
3473 
3474 	GIANT_REQUIRED;
3475 
3476 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3477 		bp->b_flags &= ~B_INVAL;
3478 		bp->b_ioflags &= ~BIO_ERROR;
3479 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3480 		    (bp->b_offset & PAGE_MASK) == 0) {
3481 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3482 			if ((bp->b_pages[0]->valid & mask) == mask) {
3483 				bp->b_resid = 0;
3484 				return;
3485 			}
3486 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3487 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3488 				bzero(bp->b_data, bp->b_bufsize);
3489 				bp->b_pages[0]->valid |= mask;
3490 				bp->b_resid = 0;
3491 				return;
3492 			}
3493 		}
3494 		ea = sa = bp->b_data;
3495 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3496 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3497 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3498 			ea = (caddr_t)(vm_offset_t)ulmin(
3499 			    (u_long)(vm_offset_t)ea,
3500 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3501 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3502 			if ((bp->b_pages[i]->valid & mask) == mask)
3503 				continue;
3504 			if ((bp->b_pages[i]->valid & mask) == 0) {
3505 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3506 					bzero(sa, ea - sa);
3507 				}
3508 			} else {
3509 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3510 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3511 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3512 						bzero(sa, DEV_BSIZE);
3513 				}
3514 			}
3515 			bp->b_pages[i]->valid |= mask;
3516 			vm_page_lock_queues();
3517 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3518 			vm_page_unlock_queues();
3519 		}
3520 		bp->b_resid = 0;
3521 	} else {
3522 		clrbuf(bp);
3523 	}
3524 }
3525 
3526 /*
3527  * vm_hold_load_pages and vm_hold_free_pages get pages into
3528  * a buffers address space.  The pages are anonymous and are
3529  * not associated with a file object.
3530  */
3531 static void
3532 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3533 {
3534 	vm_offset_t pg;
3535 	vm_page_t p;
3536 	int index;
3537 
3538 	GIANT_REQUIRED;
3539 
3540 	to = round_page(to);
3541 	from = round_page(from);
3542 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3543 
3544 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3545 tryagain:
3546 		/*
3547 		 * note: must allocate system pages since blocking here
3548 		 * could intefere with paging I/O, no matter which
3549 		 * process we are.
3550 		 */
3551 		vm_object_lock(kernel_object);
3552 		p = vm_page_alloc(kernel_object,
3553 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3554 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3555 		vm_object_unlock(kernel_object);
3556 		if (!p) {
3557 			atomic_add_int(&vm_pageout_deficit,
3558 			    (to - pg) >> PAGE_SHIFT);
3559 			VM_WAIT;
3560 			goto tryagain;
3561 		}
3562 		vm_page_lock_queues();
3563 		p->valid = VM_PAGE_BITS_ALL;
3564 		vm_page_unlock_queues();
3565 		pmap_qenter(pg, &p, 1);
3566 		bp->b_pages[index] = p;
3567 		vm_page_lock_queues();
3568 		vm_page_wakeup(p);
3569 		vm_page_unlock_queues();
3570 	}
3571 	bp->b_npages = index;
3572 }
3573 
3574 /* Return pages associated with this buf to the vm system */
3575 static void
3576 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3577 {
3578 	vm_offset_t pg;
3579 	vm_page_t p;
3580 	int index, newnpages;
3581 
3582 	GIANT_REQUIRED;
3583 
3584 	from = round_page(from);
3585 	to = round_page(to);
3586 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3587 
3588 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3589 		p = bp->b_pages[index];
3590 		if (p && (index < bp->b_npages)) {
3591 			if (p->busy) {
3592 				printf(
3593 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3594 				    (intmax_t)bp->b_blkno,
3595 				    (intmax_t)bp->b_lblkno);
3596 			}
3597 			bp->b_pages[index] = NULL;
3598 			pmap_qremove(pg, 1);
3599 			vm_page_lock_queues();
3600 			vm_page_busy(p);
3601 			vm_page_unwire(p, 0);
3602 			vm_page_free(p);
3603 			vm_page_unlock_queues();
3604 		}
3605 	}
3606 	bp->b_npages = newnpages;
3607 }
3608 
3609 /*
3610  * Map an IO request into kernel virtual address space.
3611  *
3612  * All requests are (re)mapped into kernel VA space.
3613  * Notice that we use b_bufsize for the size of the buffer
3614  * to be mapped.  b_bcount might be modified by the driver.
3615  *
3616  * Note that even if the caller determines that the address space should
3617  * be valid, a race or a smaller-file mapped into a larger space may
3618  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3619  * check the return value.
3620  */
3621 int
3622 vmapbuf(struct buf *bp)
3623 {
3624 	caddr_t addr, kva;
3625 	vm_paddr_t pa;
3626 	int pidx, i;
3627 	struct vm_page *m;
3628 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3629 
3630 	GIANT_REQUIRED;
3631 
3632 	if ((bp->b_flags & B_PHYS) == 0)
3633 		panic("vmapbuf");
3634 
3635 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3636 	     addr < bp->b_data + bp->b_bufsize;
3637 	     addr += PAGE_SIZE, pidx++) {
3638 		/*
3639 		 * Do the vm_fault if needed; do the copy-on-write thing
3640 		 * when reading stuff off device into memory.
3641 		 *
3642 		 * NOTE! Must use pmap_extract() because addr may be in
3643 		 * the userland address space, and kextract is only guarenteed
3644 		 * to work for the kernland address space (see: sparc64 port).
3645 		 */
3646 retry:
3647 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3648 			(bp->b_iocmd == BIO_READ) ?
3649 			(VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ);
3650 		if (i < 0) {
3651 			printf("vmapbuf: warning, bad user address during I/O\n");
3652 			vm_page_lock_queues();
3653 			for (i = 0; i < pidx; ++i) {
3654 				vm_page_unhold(bp->b_pages[i]);
3655 				bp->b_pages[i] = NULL;
3656 			}
3657 			vm_page_unlock_queues();
3658 			return(-1);
3659 		}
3660 		pa = trunc_page(pmap_extract(pmap, (vm_offset_t) addr));
3661 		if (pa == 0) {
3662 			printf("vmapbuf: warning, race against user address during I/O");
3663 			goto retry;
3664 		}
3665 		m = PHYS_TO_VM_PAGE(pa);
3666 		vm_page_lock_queues();
3667 		vm_page_hold(m);
3668 		vm_page_unlock_queues();
3669 		bp->b_pages[pidx] = m;
3670 	}
3671 	if (pidx > btoc(MAXPHYS))
3672 		panic("vmapbuf: mapped more than MAXPHYS");
3673 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3674 
3675 	kva = bp->b_saveaddr;
3676 	bp->b_npages = pidx;
3677 	bp->b_saveaddr = bp->b_data;
3678 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3679 	return(0);
3680 }
3681 
3682 /*
3683  * Free the io map PTEs associated with this IO operation.
3684  * We also invalidate the TLB entries and restore the original b_addr.
3685  */
3686 void
3687 vunmapbuf(struct buf *bp)
3688 {
3689 	int pidx;
3690 	int npages;
3691 
3692 	GIANT_REQUIRED;
3693 
3694 	if ((bp->b_flags & B_PHYS) == 0)
3695 		panic("vunmapbuf");
3696 
3697 	npages = bp->b_npages;
3698 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3699 		     npages);
3700 	vm_page_lock_queues();
3701 	for (pidx = 0; pidx < npages; pidx++)
3702 		vm_page_unhold(bp->b_pages[pidx]);
3703 	vm_page_unlock_queues();
3704 
3705 	bp->b_data = bp->b_saveaddr;
3706 }
3707 
3708 void
3709 bdone(struct buf *bp)
3710 {
3711 	mtx_lock(&bdonelock);
3712 	bp->b_flags |= B_DONE;
3713 	wakeup(bp);
3714 	mtx_unlock(&bdonelock);
3715 }
3716 
3717 void
3718 bwait(struct buf *bp, u_char pri, const char *wchan)
3719 {
3720 	mtx_lock(&bdonelock);
3721 	while ((bp->b_flags & B_DONE) == 0)
3722 		msleep(bp, &bdonelock, pri, wchan, 0);
3723 	mtx_unlock(&bdonelock);
3724 }
3725 
3726 #include "opt_ddb.h"
3727 #ifdef DDB
3728 #include <ddb/ddb.h>
3729 
3730 /* DDB command to show buffer data */
3731 DB_SHOW_COMMAND(buffer, db_show_buffer)
3732 {
3733 	/* get args */
3734 	struct buf *bp = (struct buf *)addr;
3735 
3736 	if (!have_addr) {
3737 		db_printf("usage: show buffer <addr>\n");
3738 		return;
3739 	}
3740 
3741 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3742 	db_printf(
3743 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3744 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3745 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3746 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3747 	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3748 	if (bp->b_npages) {
3749 		int i;
3750 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3751 		for (i = 0; i < bp->b_npages; i++) {
3752 			vm_page_t m;
3753 			m = bp->b_pages[i];
3754 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3755 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3756 			if ((i + 1) < bp->b_npages)
3757 				db_printf(",");
3758 		}
3759 		db_printf("\n");
3760 	}
3761 }
3762 #endif /* DDB */
3763