xref: /freebsd/sys/kern/vfs_bio.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * Copyright (c) 2013 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * this file contains a new buffer I/O scheme implementing a coherent
34  * VM object and buffer cache scheme.  Pains have been taken to make
35  * sure that the performance degradation associated with schemes such
36  * as this is not realized.
37  *
38  * Author:  John S. Dyson
39  * Significant help during the development and debugging phases
40  * had been provided by David Greenman, also of the FreeBSD core team.
41  *
42  * see man buf(9) for more info.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/conf.h>
52 #include <sys/buf.h>
53 #include <sys/devicestat.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fail.h>
56 #include <sys/limits.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/kthread.h>
63 #include <sys/proc.h>
64 #include <sys/resourcevar.h>
65 #include <sys/rwlock.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <geom/geom.h>
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_map.h>
78 #include "opt_compat.h"
79 #include "opt_directio.h"
80 #include "opt_swap.h"
81 
82 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
83 
84 struct	bio_ops bioops;		/* I/O operation notification */
85 
86 struct	buf_ops buf_ops_bio = {
87 	.bop_name	=	"buf_ops_bio",
88 	.bop_write	=	bufwrite,
89 	.bop_strategy	=	bufstrategy,
90 	.bop_sync	=	bufsync,
91 	.bop_bdflush	=	bufbdflush,
92 };
93 
94 /*
95  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
96  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
97  */
98 struct buf *buf;		/* buffer header pool */
99 caddr_t unmapped_buf;
100 
101 static struct proc *bufdaemonproc;
102 
103 static int inmem(struct vnode *vp, daddr_t blkno);
104 static void vm_hold_free_pages(struct buf *bp, int newbsize);
105 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
106 		vm_offset_t to);
107 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
108 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
109 		vm_page_t m);
110 static void vfs_drain_busy_pages(struct buf *bp);
111 static void vfs_clean_pages_dirty_buf(struct buf *bp);
112 static void vfs_setdirty_locked_object(struct buf *bp);
113 static void vfs_vmio_release(struct buf *bp);
114 static int vfs_bio_clcheck(struct vnode *vp, int size,
115 		daddr_t lblkno, daddr_t blkno);
116 static int buf_do_flush(struct vnode *vp);
117 static int flushbufqueues(struct vnode *, int, int);
118 static void buf_daemon(void);
119 static void bremfreel(struct buf *bp);
120 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
121     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
122 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
123 #endif
124 
125 int vmiodirenable = TRUE;
126 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
127     "Use the VM system for directory writes");
128 long runningbufspace;
129 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
130     "Amount of presently outstanding async buffer io");
131 static long bufspace;
132 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
133     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
134 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
135     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
136 #else
137 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
138     "Virtual memory used for buffers");
139 #endif
140 static long unmapped_bufspace;
141 SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
142     &unmapped_bufspace, 0,
143     "Amount of unmapped buffers, inclusive in the bufspace");
144 static long maxbufspace;
145 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
146     "Maximum allowed value of bufspace (including buf_daemon)");
147 static long bufmallocspace;
148 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
149     "Amount of malloced memory for buffers");
150 static long maxbufmallocspace;
151 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
152     "Maximum amount of malloced memory for buffers");
153 static long lobufspace;
154 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
155     "Minimum amount of buffers we want to have");
156 long hibufspace;
157 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
158     "Maximum allowed value of bufspace (excluding buf_daemon)");
159 static int bufreusecnt;
160 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
161     "Number of times we have reused a buffer");
162 static int buffreekvacnt;
163 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
164     "Number of times we have freed the KVA space from some buffer");
165 static int bufdefragcnt;
166 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
167     "Number of times we have had to repeat buffer allocation to defragment");
168 static long lorunningspace;
169 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
170     "Minimum preferred space used for in-progress I/O");
171 static long hirunningspace;
172 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
173     "Maximum amount of space to use for in-progress I/O");
174 int dirtybufferflushes;
175 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
176     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
177 int bdwriteskip;
178 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
179     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
180 int altbufferflushes;
181 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
182     0, "Number of fsync flushes to limit dirty buffers");
183 static int recursiveflushes;
184 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
185     0, "Number of flushes skipped due to being recursive");
186 static int numdirtybuffers;
187 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
188     "Number of buffers that are dirty (has unwritten changes) at the moment");
189 static int lodirtybuffers;
190 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
191     "How many buffers we want to have free before bufdaemon can sleep");
192 static int hidirtybuffers;
193 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
194     "When the number of dirty buffers is considered severe");
195 int dirtybufthresh;
196 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
197     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
198 static int numfreebuffers;
199 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
200     "Number of free buffers");
201 static int lofreebuffers;
202 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
203    "XXX Unused");
204 static int hifreebuffers;
205 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
206    "XXX Complicatedly unused");
207 static int getnewbufcalls;
208 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
209    "Number of calls to getnewbuf");
210 static int getnewbufrestarts;
211 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
212     "Number of times getnewbuf has had to restart a buffer aquisition");
213 static int mappingrestarts;
214 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
215     "Number of times getblk has had to restart a buffer mapping for "
216     "unmapped buffer");
217 static int flushbufqtarget = 100;
218 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
219     "Amount of work to do in flushbufqueues when helping bufdaemon");
220 static long notbufdflashes;
221 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
222     "Number of dirty buffer flushes done by the bufdaemon helpers");
223 static long barrierwrites;
224 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
225     "Number of barrier writes");
226 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
227     &unmapped_buf_allowed, 0,
228     "Permit the use of the unmapped i/o");
229 
230 /*
231  * Wakeup point for bufdaemon, as well as indicator of whether it is already
232  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
233  * is idling.
234  */
235 static int bd_request;
236 
237 /*
238  * Request for the buf daemon to write more buffers than is indicated by
239  * lodirtybuf.  This may be necessary to push out excess dependencies or
240  * defragment the address space where a simple count of the number of dirty
241  * buffers is insufficient to characterize the demand for flushing them.
242  */
243 static int bd_speedupreq;
244 
245 /*
246  * This lock synchronizes access to bd_request.
247  */
248 static struct mtx bdlock;
249 
250 /*
251  * bogus page -- for I/O to/from partially complete buffers
252  * this is a temporary solution to the problem, but it is not
253  * really that bad.  it would be better to split the buffer
254  * for input in the case of buffers partially already in memory,
255  * but the code is intricate enough already.
256  */
257 vm_page_t bogus_page;
258 
259 /*
260  * Synchronization (sleep/wakeup) variable for active buffer space requests.
261  * Set when wait starts, cleared prior to wakeup().
262  * Used in runningbufwakeup() and waitrunningbufspace().
263  */
264 static int runningbufreq;
265 
266 /*
267  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
268  * waitrunningbufspace().
269  */
270 static struct mtx rbreqlock;
271 
272 /*
273  * Synchronization (sleep/wakeup) variable for buffer requests.
274  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
275  * by and/or.
276  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
277  * getnewbuf(), and getblk().
278  */
279 static int needsbuffer;
280 
281 /*
282  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
283  */
284 static struct mtx nblock;
285 
286 /*
287  * Definitions for the buffer free lists.
288  */
289 #define BUFFER_QUEUES	5	/* number of free buffer queues */
290 
291 #define QUEUE_NONE	0	/* on no queue */
292 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
293 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
294 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
295 #define QUEUE_EMPTY	4	/* empty buffer headers */
296 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
297 
298 /* Queues for free buffers with various properties */
299 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
300 #ifdef INVARIANTS
301 static int bq_len[BUFFER_QUEUES];
302 #endif
303 
304 /* Lock for the bufqueues */
305 static struct mtx bqlock;
306 
307 /*
308  * Single global constant for BUF_WMESG, to avoid getting multiple references.
309  * buf_wmesg is referred from macros.
310  */
311 const char *buf_wmesg = BUF_WMESG;
312 
313 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
314 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
315 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
316 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
317 
318 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
319     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
320 static int
321 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
322 {
323 	long lvalue;
324 	int ivalue;
325 
326 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
327 		return (sysctl_handle_long(oidp, arg1, arg2, req));
328 	lvalue = *(long *)arg1;
329 	if (lvalue > INT_MAX)
330 		/* On overflow, still write out a long to trigger ENOMEM. */
331 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
332 	ivalue = lvalue;
333 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
334 }
335 #endif
336 
337 #ifdef DIRECTIO
338 extern void ffs_rawread_setup(void);
339 #endif /* DIRECTIO */
340 /*
341  *	numdirtywakeup:
342  *
343  *	If someone is blocked due to there being too many dirty buffers,
344  *	and numdirtybuffers is now reasonable, wake them up.
345  */
346 
347 static __inline void
348 numdirtywakeup(int level)
349 {
350 
351 	if (numdirtybuffers <= level) {
352 		mtx_lock(&nblock);
353 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
354 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
355 			wakeup(&needsbuffer);
356 		}
357 		mtx_unlock(&nblock);
358 	}
359 }
360 
361 /*
362  *	bufspacewakeup:
363  *
364  *	Called when buffer space is potentially available for recovery.
365  *	getnewbuf() will block on this flag when it is unable to free
366  *	sufficient buffer space.  Buffer space becomes recoverable when
367  *	bp's get placed back in the queues.
368  */
369 
370 static __inline void
371 bufspacewakeup(void)
372 {
373 
374 	/*
375 	 * If someone is waiting for BUF space, wake them up.  Even
376 	 * though we haven't freed the kva space yet, the waiting
377 	 * process will be able to now.
378 	 */
379 	mtx_lock(&nblock);
380 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
381 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
382 		wakeup(&needsbuffer);
383 	}
384 	mtx_unlock(&nblock);
385 }
386 
387 /*
388  * runningbufwakeup() - in-progress I/O accounting.
389  *
390  */
391 void
392 runningbufwakeup(struct buf *bp)
393 {
394 
395 	if (bp->b_runningbufspace) {
396 		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
397 		bp->b_runningbufspace = 0;
398 		mtx_lock(&rbreqlock);
399 		if (runningbufreq && runningbufspace <= lorunningspace) {
400 			runningbufreq = 0;
401 			wakeup(&runningbufreq);
402 		}
403 		mtx_unlock(&rbreqlock);
404 	}
405 }
406 
407 /*
408  *	bufcountwakeup:
409  *
410  *	Called when a buffer has been added to one of the free queues to
411  *	account for the buffer and to wakeup anyone waiting for free buffers.
412  *	This typically occurs when large amounts of metadata are being handled
413  *	by the buffer cache ( else buffer space runs out first, usually ).
414  */
415 
416 static __inline void
417 bufcountwakeup(struct buf *bp)
418 {
419 	int old;
420 
421 	KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
422 	    ("buf %p already counted as free", bp));
423 	if (bp->b_bufobj != NULL)
424 		mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
425 	bp->b_vflags |= BV_INFREECNT;
426 	old = atomic_fetchadd_int(&numfreebuffers, 1);
427 	KASSERT(old >= 0 && old < nbuf,
428 	    ("numfreebuffers climbed to %d", old + 1));
429 	mtx_lock(&nblock);
430 	if (needsbuffer) {
431 		needsbuffer &= ~VFS_BIO_NEED_ANY;
432 		if (numfreebuffers >= hifreebuffers)
433 			needsbuffer &= ~VFS_BIO_NEED_FREE;
434 		wakeup(&needsbuffer);
435 	}
436 	mtx_unlock(&nblock);
437 }
438 
439 /*
440  *	waitrunningbufspace()
441  *
442  *	runningbufspace is a measure of the amount of I/O currently
443  *	running.  This routine is used in async-write situations to
444  *	prevent creating huge backups of pending writes to a device.
445  *	Only asynchronous writes are governed by this function.
446  *
447  *	Reads will adjust runningbufspace, but will not block based on it.
448  *	The read load has a side effect of reducing the allowed write load.
449  *
450  *	This does NOT turn an async write into a sync write.  It waits
451  *	for earlier writes to complete and generally returns before the
452  *	caller's write has reached the device.
453  */
454 void
455 waitrunningbufspace(void)
456 {
457 
458 	mtx_lock(&rbreqlock);
459 	while (runningbufspace > hirunningspace) {
460 		++runningbufreq;
461 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
462 	}
463 	mtx_unlock(&rbreqlock);
464 }
465 
466 
467 /*
468  *	vfs_buf_test_cache:
469  *
470  *	Called when a buffer is extended.  This function clears the B_CACHE
471  *	bit if the newly extended portion of the buffer does not contain
472  *	valid data.
473  */
474 static __inline
475 void
476 vfs_buf_test_cache(struct buf *bp,
477 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
478 		  vm_page_t m)
479 {
480 
481 	VM_OBJECT_ASSERT_WLOCKED(m->object);
482 	if (bp->b_flags & B_CACHE) {
483 		int base = (foff + off) & PAGE_MASK;
484 		if (vm_page_is_valid(m, base, size) == 0)
485 			bp->b_flags &= ~B_CACHE;
486 	}
487 }
488 
489 /* Wake up the buffer daemon if necessary */
490 static __inline
491 void
492 bd_wakeup(int dirtybuflevel)
493 {
494 
495 	mtx_lock(&bdlock);
496 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
497 		bd_request = 1;
498 		wakeup(&bd_request);
499 	}
500 	mtx_unlock(&bdlock);
501 }
502 
503 /*
504  * bd_speedup - speedup the buffer cache flushing code
505  */
506 
507 void
508 bd_speedup(void)
509 {
510 	int needwake;
511 
512 	mtx_lock(&bdlock);
513 	needwake = 0;
514 	if (bd_speedupreq == 0 || bd_request == 0)
515 		needwake = 1;
516 	bd_speedupreq = 1;
517 	bd_request = 1;
518 	if (needwake)
519 		wakeup(&bd_request);
520 	mtx_unlock(&bdlock);
521 }
522 
523 #ifdef __i386__
524 #define	TRANSIENT_DENOM	5
525 #else
526 #define	TRANSIENT_DENOM 10
527 #endif
528 
529 /*
530  * Calculating buffer cache scaling values and reserve space for buffer
531  * headers.  This is called during low level kernel initialization and
532  * may be called more then once.  We CANNOT write to the memory area
533  * being reserved at this time.
534  */
535 caddr_t
536 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
537 {
538 	int tuned_nbuf;
539 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
540 
541 	/*
542 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
543 	 * PAGE_SIZE is >= 1K)
544 	 */
545 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
546 
547 	/*
548 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
549 	 * For the first 64MB of ram nominally allocate sufficient buffers to
550 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
551 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
552 	 * the buffer cache we limit the eventual kva reservation to
553 	 * maxbcache bytes.
554 	 *
555 	 * factor represents the 1/4 x ram conversion.
556 	 */
557 	if (nbuf == 0) {
558 		int factor = 4 * BKVASIZE / 1024;
559 
560 		nbuf = 50;
561 		if (physmem_est > 4096)
562 			nbuf += min((physmem_est - 4096) / factor,
563 			    65536 / factor);
564 		if (physmem_est > 65536)
565 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
566 
567 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
568 			nbuf = maxbcache / BKVASIZE;
569 		tuned_nbuf = 1;
570 	} else
571 		tuned_nbuf = 0;
572 
573 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
574 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
575 	if (nbuf > maxbuf) {
576 		if (!tuned_nbuf)
577 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
578 			    maxbuf);
579 		nbuf = maxbuf;
580 	}
581 
582 	/*
583 	 * Ideal allocation size for the transient bio submap if 10%
584 	 * of the maximal space buffer map.  This roughly corresponds
585 	 * to the amount of the buffer mapped for typical UFS load.
586 	 *
587 	 * Clip the buffer map to reserve space for the transient
588 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
589 	 * maximum buffer map extent on the platform.
590 	 *
591 	 * The fall-back to the maxbuf in case of maxbcache unset,
592 	 * allows to not trim the buffer KVA for the architectures
593 	 * with ample KVA space.
594 	 */
595 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
596 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
597 		buf_sz = (long)nbuf * BKVASIZE;
598 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
599 		    (TRANSIENT_DENOM - 1)) {
600 			/*
601 			 * There is more KVA than memory.  Do not
602 			 * adjust buffer map size, and assign the rest
603 			 * of maxbuf to transient map.
604 			 */
605 			biotmap_sz = maxbuf_sz - buf_sz;
606 		} else {
607 			/*
608 			 * Buffer map spans all KVA we could afford on
609 			 * this platform.  Give 10% (20% on i386) of
610 			 * the buffer map to the transient bio map.
611 			 */
612 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
613 			buf_sz -= biotmap_sz;
614 		}
615 		if (biotmap_sz / INT_MAX > MAXPHYS)
616 			bio_transient_maxcnt = INT_MAX;
617 		else
618 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
619 		/*
620 		 * Artifically limit to 1024 simultaneous in-flight I/Os
621 		 * using the transient mapping.
622 		 */
623 		if (bio_transient_maxcnt > 1024)
624 			bio_transient_maxcnt = 1024;
625 		if (tuned_nbuf)
626 			nbuf = buf_sz / BKVASIZE;
627 	}
628 
629 	/*
630 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
631 	 * We have no less then 16 and no more then 256.
632 	 */
633 	nswbuf = max(min(nbuf/4, 256), 16);
634 #ifdef NSWBUF_MIN
635 	if (nswbuf < NSWBUF_MIN)
636 		nswbuf = NSWBUF_MIN;
637 #endif
638 #ifdef DIRECTIO
639 	ffs_rawread_setup();
640 #endif
641 
642 	/*
643 	 * Reserve space for the buffer cache buffers
644 	 */
645 	swbuf = (void *)v;
646 	v = (caddr_t)(swbuf + nswbuf);
647 	buf = (void *)v;
648 	v = (caddr_t)(buf + nbuf);
649 
650 	return(v);
651 }
652 
653 /* Initialize the buffer subsystem.  Called before use of any buffers. */
654 void
655 bufinit(void)
656 {
657 	struct buf *bp;
658 	int i;
659 
660 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
661 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
662 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
663 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
664 
665 	/* next, make a null set of free lists */
666 	for (i = 0; i < BUFFER_QUEUES; i++)
667 		TAILQ_INIT(&bufqueues[i]);
668 
669 	/* finally, initialize each buffer header and stick on empty q */
670 	for (i = 0; i < nbuf; i++) {
671 		bp = &buf[i];
672 		bzero(bp, sizeof *bp);
673 		bp->b_flags = B_INVAL;	/* we're just an empty header */
674 		bp->b_rcred = NOCRED;
675 		bp->b_wcred = NOCRED;
676 		bp->b_qindex = QUEUE_EMPTY;
677 		bp->b_vflags = BV_INFREECNT;	/* buf is counted as free */
678 		bp->b_xflags = 0;
679 		LIST_INIT(&bp->b_dep);
680 		BUF_LOCKINIT(bp);
681 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
682 #ifdef INVARIANTS
683 		bq_len[QUEUE_EMPTY]++;
684 #endif
685 	}
686 
687 	/*
688 	 * maxbufspace is the absolute maximum amount of buffer space we are
689 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
690 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
691 	 * used by most other processes.  The differential is required to
692 	 * ensure that buf_daemon is able to run when other processes might
693 	 * be blocked waiting for buffer space.
694 	 *
695 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
696 	 * this may result in KVM fragmentation which is not handled optimally
697 	 * by the system.
698 	 */
699 	maxbufspace = (long)nbuf * BKVASIZE;
700 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
701 	lobufspace = hibufspace - MAXBSIZE;
702 
703 	/*
704 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
705 	 * arbitrarily and may need further tuning. It corresponds to
706 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
707 	 * which fits with many RAID controllers' tagged queuing limits.
708 	 * The lower 1 MiB limit is the historical upper limit for
709 	 * hirunningspace.
710 	 */
711 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
712 	    16 * 1024 * 1024), 1024 * 1024);
713 	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
714 
715 /*
716  * Limit the amount of malloc memory since it is wired permanently into
717  * the kernel space.  Even though this is accounted for in the buffer
718  * allocation, we don't want the malloced region to grow uncontrolled.
719  * The malloc scheme improves memory utilization significantly on average
720  * (small) directories.
721  */
722 	maxbufmallocspace = hibufspace / 20;
723 
724 /*
725  * Reduce the chance of a deadlock occuring by limiting the number
726  * of delayed-write dirty buffers we allow to stack up.
727  */
728 	hidirtybuffers = nbuf / 4 + 20;
729 	dirtybufthresh = hidirtybuffers * 9 / 10;
730 	numdirtybuffers = 0;
731 /*
732  * To support extreme low-memory systems, make sure hidirtybuffers cannot
733  * eat up all available buffer space.  This occurs when our minimum cannot
734  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
735  * BKVASIZE'd buffers.
736  */
737 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
738 		hidirtybuffers >>= 1;
739 	}
740 	lodirtybuffers = hidirtybuffers / 2;
741 
742 /*
743  * Try to keep the number of free buffers in the specified range,
744  * and give special processes (e.g. like buf_daemon) access to an
745  * emergency reserve.
746  */
747 	lofreebuffers = nbuf / 18 + 5;
748 	hifreebuffers = 2 * lofreebuffers;
749 	numfreebuffers = nbuf;
750 
751 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
752 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
753 	unmapped_buf = (caddr_t)kmem_alloc_nofault(kernel_map, MAXPHYS);
754 }
755 
756 #ifdef INVARIANTS
757 static inline void
758 vfs_buf_check_mapped(struct buf *bp)
759 {
760 
761 	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
762 	    ("mapped buf %p %x", bp, bp->b_flags));
763 	KASSERT(bp->b_kvabase != unmapped_buf,
764 	    ("mapped buf: b_kvabase was not updated %p", bp));
765 	KASSERT(bp->b_data != unmapped_buf,
766 	    ("mapped buf: b_data was not updated %p", bp));
767 }
768 
769 static inline void
770 vfs_buf_check_unmapped(struct buf *bp)
771 {
772 
773 	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
774 	    ("unmapped buf %p %x", bp, bp->b_flags));
775 	KASSERT(bp->b_kvabase == unmapped_buf,
776 	    ("unmapped buf: corrupted b_kvabase %p", bp));
777 	KASSERT(bp->b_data == unmapped_buf,
778 	    ("unmapped buf: corrupted b_data %p", bp));
779 }
780 
781 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
782 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
783 #else
784 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
785 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
786 #endif
787 
788 static void
789 bpmap_qenter(struct buf *bp)
790 {
791 
792 	BUF_CHECK_MAPPED(bp);
793 
794 	/*
795 	 * bp->b_data is relative to bp->b_offset, but
796 	 * bp->b_offset may be offset into the first page.
797 	 */
798 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
799 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
800 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
801 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
802 }
803 
804 /*
805  * bfreekva() - free the kva allocation for a buffer.
806  *
807  *	Since this call frees up buffer space, we call bufspacewakeup().
808  */
809 static void
810 bfreekva(struct buf *bp)
811 {
812 
813 	if (bp->b_kvasize == 0)
814 		return;
815 
816 	atomic_add_int(&buffreekvacnt, 1);
817 	atomic_subtract_long(&bufspace, bp->b_kvasize);
818 	if ((bp->b_flags & B_UNMAPPED) == 0) {
819 		BUF_CHECK_MAPPED(bp);
820 		vm_map_remove(buffer_map, (vm_offset_t)bp->b_kvabase,
821 		    (vm_offset_t)bp->b_kvabase + bp->b_kvasize);
822 	} else {
823 		BUF_CHECK_UNMAPPED(bp);
824 		if ((bp->b_flags & B_KVAALLOC) != 0) {
825 			vm_map_remove(buffer_map, (vm_offset_t)bp->b_kvaalloc,
826 			    (vm_offset_t)bp->b_kvaalloc + bp->b_kvasize);
827 		}
828 		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
829 		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
830 	}
831 	bp->b_kvasize = 0;
832 	bufspacewakeup();
833 }
834 
835 /*
836  *	bremfree:
837  *
838  *	Mark the buffer for removal from the appropriate free list in brelse.
839  *
840  */
841 void
842 bremfree(struct buf *bp)
843 {
844 	int old;
845 
846 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
847 	KASSERT((bp->b_flags & B_REMFREE) == 0,
848 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
849 	KASSERT(bp->b_qindex != QUEUE_NONE,
850 	    ("bremfree: buffer %p not on a queue.", bp));
851 	BUF_ASSERT_HELD(bp);
852 
853 	bp->b_flags |= B_REMFREE;
854 	/* Fixup numfreebuffers count.  */
855 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
856 		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
857 		    ("buf %p not counted in numfreebuffers", bp));
858 		if (bp->b_bufobj != NULL)
859 			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
860 		bp->b_vflags &= ~BV_INFREECNT;
861 		old = atomic_fetchadd_int(&numfreebuffers, -1);
862 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
863 	}
864 }
865 
866 /*
867  *	bremfreef:
868  *
869  *	Force an immediate removal from a free list.  Used only in nfs when
870  *	it abuses the b_freelist pointer.
871  */
872 void
873 bremfreef(struct buf *bp)
874 {
875 	mtx_lock(&bqlock);
876 	bremfreel(bp);
877 	mtx_unlock(&bqlock);
878 }
879 
880 /*
881  *	bremfreel:
882  *
883  *	Removes a buffer from the free list, must be called with the
884  *	bqlock held.
885  */
886 static void
887 bremfreel(struct buf *bp)
888 {
889 	int old;
890 
891 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
892 	    bp, bp->b_vp, bp->b_flags);
893 	KASSERT(bp->b_qindex != QUEUE_NONE,
894 	    ("bremfreel: buffer %p not on a queue.", bp));
895 	BUF_ASSERT_HELD(bp);
896 	mtx_assert(&bqlock, MA_OWNED);
897 
898 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
899 #ifdef INVARIANTS
900 	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
901 	    bp->b_qindex));
902 	bq_len[bp->b_qindex]--;
903 #endif
904 	bp->b_qindex = QUEUE_NONE;
905 	/*
906 	 * If this was a delayed bremfree() we only need to remove the buffer
907 	 * from the queue and return the stats are already done.
908 	 */
909 	if (bp->b_flags & B_REMFREE) {
910 		bp->b_flags &= ~B_REMFREE;
911 		return;
912 	}
913 	/*
914 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
915 	 * delayed-write, the buffer was free and we must decrement
916 	 * numfreebuffers.
917 	 */
918 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
919 		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
920 		    ("buf %p not counted in numfreebuffers", bp));
921 		if (bp->b_bufobj != NULL)
922 			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
923 		bp->b_vflags &= ~BV_INFREECNT;
924 		old = atomic_fetchadd_int(&numfreebuffers, -1);
925 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
926 	}
927 }
928 
929 /*
930  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
931  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
932  * the buffer is valid and we do not have to do anything.
933  */
934 void
935 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
936     int cnt, struct ucred * cred)
937 {
938 	struct buf *rabp;
939 	int i;
940 
941 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
942 		if (inmem(vp, *rablkno))
943 			continue;
944 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
945 
946 		if ((rabp->b_flags & B_CACHE) == 0) {
947 			if (!TD_IS_IDLETHREAD(curthread))
948 				curthread->td_ru.ru_inblock++;
949 			rabp->b_flags |= B_ASYNC;
950 			rabp->b_flags &= ~B_INVAL;
951 			rabp->b_ioflags &= ~BIO_ERROR;
952 			rabp->b_iocmd = BIO_READ;
953 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
954 				rabp->b_rcred = crhold(cred);
955 			vfs_busy_pages(rabp, 0);
956 			BUF_KERNPROC(rabp);
957 			rabp->b_iooffset = dbtob(rabp->b_blkno);
958 			bstrategy(rabp);
959 		} else {
960 			brelse(rabp);
961 		}
962 	}
963 }
964 
965 /*
966  * Entry point for bread() and breadn() via #defines in sys/buf.h.
967  *
968  * Get a buffer with the specified data.  Look in the cache first.  We
969  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
970  * is set, the buffer is valid and we do not have to do anything, see
971  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
972  */
973 int
974 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
975     int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
976 {
977 	struct buf *bp;
978 	int rv = 0, readwait = 0;
979 
980 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
981 	/*
982 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
983 	 */
984 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
985 	if (bp == NULL)
986 		return (EBUSY);
987 
988 	/* if not found in cache, do some I/O */
989 	if ((bp->b_flags & B_CACHE) == 0) {
990 		if (!TD_IS_IDLETHREAD(curthread))
991 			curthread->td_ru.ru_inblock++;
992 		bp->b_iocmd = BIO_READ;
993 		bp->b_flags &= ~B_INVAL;
994 		bp->b_ioflags &= ~BIO_ERROR;
995 		if (bp->b_rcred == NOCRED && cred != NOCRED)
996 			bp->b_rcred = crhold(cred);
997 		vfs_busy_pages(bp, 0);
998 		bp->b_iooffset = dbtob(bp->b_blkno);
999 		bstrategy(bp);
1000 		++readwait;
1001 	}
1002 
1003 	breada(vp, rablkno, rabsize, cnt, cred);
1004 
1005 	if (readwait) {
1006 		rv = bufwait(bp);
1007 	}
1008 	return (rv);
1009 }
1010 
1011 /*
1012  * Write, release buffer on completion.  (Done by iodone
1013  * if async).  Do not bother writing anything if the buffer
1014  * is invalid.
1015  *
1016  * Note that we set B_CACHE here, indicating that buffer is
1017  * fully valid and thus cacheable.  This is true even of NFS
1018  * now so we set it generally.  This could be set either here
1019  * or in biodone() since the I/O is synchronous.  We put it
1020  * here.
1021  */
1022 int
1023 bufwrite(struct buf *bp)
1024 {
1025 	int oldflags;
1026 	struct vnode *vp;
1027 	int vp_md;
1028 
1029 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1030 	if (bp->b_flags & B_INVAL) {
1031 		brelse(bp);
1032 		return (0);
1033 	}
1034 
1035 	if (bp->b_flags & B_BARRIER)
1036 		barrierwrites++;
1037 
1038 	oldflags = bp->b_flags;
1039 
1040 	BUF_ASSERT_HELD(bp);
1041 
1042 	if (bp->b_pin_count > 0)
1043 		bunpin_wait(bp);
1044 
1045 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1046 	    ("FFS background buffer should not get here %p", bp));
1047 
1048 	vp = bp->b_vp;
1049 	if (vp)
1050 		vp_md = vp->v_vflag & VV_MD;
1051 	else
1052 		vp_md = 0;
1053 
1054 	/*
1055 	 * Mark the buffer clean.  Increment the bufobj write count
1056 	 * before bundirty() call, to prevent other thread from seeing
1057 	 * empty dirty list and zero counter for writes in progress,
1058 	 * falsely indicating that the bufobj is clean.
1059 	 */
1060 	bufobj_wref(bp->b_bufobj);
1061 	bundirty(bp);
1062 
1063 	bp->b_flags &= ~B_DONE;
1064 	bp->b_ioflags &= ~BIO_ERROR;
1065 	bp->b_flags |= B_CACHE;
1066 	bp->b_iocmd = BIO_WRITE;
1067 
1068 	vfs_busy_pages(bp, 1);
1069 
1070 	/*
1071 	 * Normal bwrites pipeline writes
1072 	 */
1073 	bp->b_runningbufspace = bp->b_bufsize;
1074 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1075 
1076 	if (!TD_IS_IDLETHREAD(curthread))
1077 		curthread->td_ru.ru_oublock++;
1078 	if (oldflags & B_ASYNC)
1079 		BUF_KERNPROC(bp);
1080 	bp->b_iooffset = dbtob(bp->b_blkno);
1081 	bstrategy(bp);
1082 
1083 	if ((oldflags & B_ASYNC) == 0) {
1084 		int rtval = bufwait(bp);
1085 		brelse(bp);
1086 		return (rtval);
1087 	} else {
1088 		/*
1089 		 * don't allow the async write to saturate the I/O
1090 		 * system.  We will not deadlock here because
1091 		 * we are blocking waiting for I/O that is already in-progress
1092 		 * to complete. We do not block here if it is the update
1093 		 * or syncer daemon trying to clean up as that can lead
1094 		 * to deadlock.
1095 		 */
1096 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1097 			waitrunningbufspace();
1098 	}
1099 
1100 	return (0);
1101 }
1102 
1103 void
1104 bufbdflush(struct bufobj *bo, struct buf *bp)
1105 {
1106 	struct buf *nbp;
1107 
1108 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1109 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1110 		altbufferflushes++;
1111 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1112 		BO_LOCK(bo);
1113 		/*
1114 		 * Try to find a buffer to flush.
1115 		 */
1116 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1117 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1118 			    BUF_LOCK(nbp,
1119 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1120 				continue;
1121 			if (bp == nbp)
1122 				panic("bdwrite: found ourselves");
1123 			BO_UNLOCK(bo);
1124 			/* Don't countdeps with the bo lock held. */
1125 			if (buf_countdeps(nbp, 0)) {
1126 				BO_LOCK(bo);
1127 				BUF_UNLOCK(nbp);
1128 				continue;
1129 			}
1130 			if (nbp->b_flags & B_CLUSTEROK) {
1131 				vfs_bio_awrite(nbp);
1132 			} else {
1133 				bremfree(nbp);
1134 				bawrite(nbp);
1135 			}
1136 			dirtybufferflushes++;
1137 			break;
1138 		}
1139 		if (nbp == NULL)
1140 			BO_UNLOCK(bo);
1141 	}
1142 }
1143 
1144 /*
1145  * Delayed write. (Buffer is marked dirty).  Do not bother writing
1146  * anything if the buffer is marked invalid.
1147  *
1148  * Note that since the buffer must be completely valid, we can safely
1149  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1150  * biodone() in order to prevent getblk from writing the buffer
1151  * out synchronously.
1152  */
1153 void
1154 bdwrite(struct buf *bp)
1155 {
1156 	struct thread *td = curthread;
1157 	struct vnode *vp;
1158 	struct bufobj *bo;
1159 
1160 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1161 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1162 	KASSERT((bp->b_flags & B_BARRIER) == 0,
1163 	    ("Barrier request in delayed write %p", bp));
1164 	BUF_ASSERT_HELD(bp);
1165 
1166 	if (bp->b_flags & B_INVAL) {
1167 		brelse(bp);
1168 		return;
1169 	}
1170 
1171 	/*
1172 	 * If we have too many dirty buffers, don't create any more.
1173 	 * If we are wildly over our limit, then force a complete
1174 	 * cleanup. Otherwise, just keep the situation from getting
1175 	 * out of control. Note that we have to avoid a recursive
1176 	 * disaster and not try to clean up after our own cleanup!
1177 	 */
1178 	vp = bp->b_vp;
1179 	bo = bp->b_bufobj;
1180 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1181 		td->td_pflags |= TDP_INBDFLUSH;
1182 		BO_BDFLUSH(bo, bp);
1183 		td->td_pflags &= ~TDP_INBDFLUSH;
1184 	} else
1185 		recursiveflushes++;
1186 
1187 	bdirty(bp);
1188 	/*
1189 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1190 	 * true even of NFS now.
1191 	 */
1192 	bp->b_flags |= B_CACHE;
1193 
1194 	/*
1195 	 * This bmap keeps the system from needing to do the bmap later,
1196 	 * perhaps when the system is attempting to do a sync.  Since it
1197 	 * is likely that the indirect block -- or whatever other datastructure
1198 	 * that the filesystem needs is still in memory now, it is a good
1199 	 * thing to do this.  Note also, that if the pageout daemon is
1200 	 * requesting a sync -- there might not be enough memory to do
1201 	 * the bmap then...  So, this is important to do.
1202 	 */
1203 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1204 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1205 	}
1206 
1207 	/*
1208 	 * Set the *dirty* buffer range based upon the VM system dirty
1209 	 * pages.
1210 	 *
1211 	 * Mark the buffer pages as clean.  We need to do this here to
1212 	 * satisfy the vnode_pager and the pageout daemon, so that it
1213 	 * thinks that the pages have been "cleaned".  Note that since
1214 	 * the pages are in a delayed write buffer -- the VFS layer
1215 	 * "will" see that the pages get written out on the next sync,
1216 	 * or perhaps the cluster will be completed.
1217 	 */
1218 	vfs_clean_pages_dirty_buf(bp);
1219 	bqrelse(bp);
1220 
1221 	/*
1222 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1223 	 * buffers (midpoint between our recovery point and our stall
1224 	 * point).
1225 	 */
1226 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1227 
1228 	/*
1229 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1230 	 * due to the softdep code.
1231 	 */
1232 }
1233 
1234 /*
1235  *	bdirty:
1236  *
1237  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1238  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1239  *	itself to properly update it in the dirty/clean lists.  We mark it
1240  *	B_DONE to ensure that any asynchronization of the buffer properly
1241  *	clears B_DONE ( else a panic will occur later ).
1242  *
1243  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1244  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1245  *	should only be called if the buffer is known-good.
1246  *
1247  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1248  *	count.
1249  *
1250  *	The buffer must be on QUEUE_NONE.
1251  */
1252 void
1253 bdirty(struct buf *bp)
1254 {
1255 
1256 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1257 	    bp, bp->b_vp, bp->b_flags);
1258 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1259 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1260 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1261 	BUF_ASSERT_HELD(bp);
1262 	bp->b_flags &= ~(B_RELBUF);
1263 	bp->b_iocmd = BIO_WRITE;
1264 
1265 	if ((bp->b_flags & B_DELWRI) == 0) {
1266 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1267 		reassignbuf(bp);
1268 		atomic_add_int(&numdirtybuffers, 1);
1269 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1270 	}
1271 }
1272 
1273 /*
1274  *	bundirty:
1275  *
1276  *	Clear B_DELWRI for buffer.
1277  *
1278  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1279  *	count.
1280  *
1281  *	The buffer must be on QUEUE_NONE.
1282  */
1283 
1284 void
1285 bundirty(struct buf *bp)
1286 {
1287 
1288 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1289 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1290 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1291 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1292 	BUF_ASSERT_HELD(bp);
1293 
1294 	if (bp->b_flags & B_DELWRI) {
1295 		bp->b_flags &= ~B_DELWRI;
1296 		reassignbuf(bp);
1297 		atomic_subtract_int(&numdirtybuffers, 1);
1298 		numdirtywakeup(lodirtybuffers);
1299 	}
1300 	/*
1301 	 * Since it is now being written, we can clear its deferred write flag.
1302 	 */
1303 	bp->b_flags &= ~B_DEFERRED;
1304 }
1305 
1306 /*
1307  *	bawrite:
1308  *
1309  *	Asynchronous write.  Start output on a buffer, but do not wait for
1310  *	it to complete.  The buffer is released when the output completes.
1311  *
1312  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1313  *	B_INVAL buffers.  Not us.
1314  */
1315 void
1316 bawrite(struct buf *bp)
1317 {
1318 
1319 	bp->b_flags |= B_ASYNC;
1320 	(void) bwrite(bp);
1321 }
1322 
1323 /*
1324  *	babarrierwrite:
1325  *
1326  *	Asynchronous barrier write.  Start output on a buffer, but do not
1327  *	wait for it to complete.  Place a write barrier after this write so
1328  *	that this buffer and all buffers written before it are committed to
1329  *	the disk before any buffers written after this write are committed
1330  *	to the disk.  The buffer is released when the output completes.
1331  */
1332 void
1333 babarrierwrite(struct buf *bp)
1334 {
1335 
1336 	bp->b_flags |= B_ASYNC | B_BARRIER;
1337 	(void) bwrite(bp);
1338 }
1339 
1340 /*
1341  *	bbarrierwrite:
1342  *
1343  *	Synchronous barrier write.  Start output on a buffer and wait for
1344  *	it to complete.  Place a write barrier after this write so that
1345  *	this buffer and all buffers written before it are committed to
1346  *	the disk before any buffers written after this write are committed
1347  *	to the disk.  The buffer is released when the output completes.
1348  */
1349 int
1350 bbarrierwrite(struct buf *bp)
1351 {
1352 
1353 	bp->b_flags |= B_BARRIER;
1354 	return (bwrite(bp));
1355 }
1356 
1357 /*
1358  *	bwillwrite:
1359  *
1360  *	Called prior to the locking of any vnodes when we are expecting to
1361  *	write.  We do not want to starve the buffer cache with too many
1362  *	dirty buffers so we block here.  By blocking prior to the locking
1363  *	of any vnodes we attempt to avoid the situation where a locked vnode
1364  *	prevents the various system daemons from flushing related buffers.
1365  */
1366 
1367 void
1368 bwillwrite(void)
1369 {
1370 
1371 	if (numdirtybuffers >= hidirtybuffers) {
1372 		mtx_lock(&nblock);
1373 		while (numdirtybuffers >= hidirtybuffers) {
1374 			bd_wakeup(1);
1375 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1376 			msleep(&needsbuffer, &nblock,
1377 			    (PRIBIO + 4), "flswai", 0);
1378 		}
1379 		mtx_unlock(&nblock);
1380 	}
1381 }
1382 
1383 /*
1384  * Return true if we have too many dirty buffers.
1385  */
1386 int
1387 buf_dirty_count_severe(void)
1388 {
1389 
1390 	return(numdirtybuffers >= hidirtybuffers);
1391 }
1392 
1393 static __noinline int
1394 buf_vm_page_count_severe(void)
1395 {
1396 
1397 	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1398 
1399 	return vm_page_count_severe();
1400 }
1401 
1402 /*
1403  *	brelse:
1404  *
1405  *	Release a busy buffer and, if requested, free its resources.  The
1406  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1407  *	to be accessed later as a cache entity or reused for other purposes.
1408  */
1409 void
1410 brelse(struct buf *bp)
1411 {
1412 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1413 	    bp, bp->b_vp, bp->b_flags);
1414 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1415 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1416 
1417 	if (BUF_LOCKRECURSED(bp)) {
1418 		/*
1419 		 * Do not process, in particular, do not handle the
1420 		 * B_INVAL/B_RELBUF and do not release to free list.
1421 		 */
1422 		BUF_UNLOCK(bp);
1423 		return;
1424 	}
1425 
1426 	if (bp->b_flags & B_MANAGED) {
1427 		bqrelse(bp);
1428 		return;
1429 	}
1430 
1431 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1432 	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1433 		/*
1434 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1435 		 * pages from being scrapped.  If the error is anything
1436 		 * other than an I/O error (EIO), assume that retrying
1437 		 * is futile.
1438 		 */
1439 		bp->b_ioflags &= ~BIO_ERROR;
1440 		bdirty(bp);
1441 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1442 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1443 		/*
1444 		 * Either a failed I/O or we were asked to free or not
1445 		 * cache the buffer.
1446 		 */
1447 		bp->b_flags |= B_INVAL;
1448 		if (!LIST_EMPTY(&bp->b_dep))
1449 			buf_deallocate(bp);
1450 		if (bp->b_flags & B_DELWRI) {
1451 			atomic_subtract_int(&numdirtybuffers, 1);
1452 			numdirtywakeup(lodirtybuffers);
1453 		}
1454 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1455 		if ((bp->b_flags & B_VMIO) == 0) {
1456 			if (bp->b_bufsize)
1457 				allocbuf(bp, 0);
1458 			if (bp->b_vp)
1459 				brelvp(bp);
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1465 	 * is called with B_DELWRI set, the underlying pages may wind up
1466 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1467 	 * because pages associated with a B_DELWRI bp are marked clean.
1468 	 *
1469 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1470 	 * if B_DELWRI is set.
1471 	 *
1472 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1473 	 * on pages to return pages to the VM page queues.
1474 	 */
1475 	if (bp->b_flags & B_DELWRI)
1476 		bp->b_flags &= ~B_RELBUF;
1477 	else if (buf_vm_page_count_severe()) {
1478 		/*
1479 		 * The locking of the BO_LOCK is not necessary since
1480 		 * BKGRDINPROG cannot be set while we hold the buf
1481 		 * lock, it can only be cleared if it is already
1482 		 * pending.
1483 		 */
1484 		if (bp->b_vp) {
1485 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1486 				bp->b_flags |= B_RELBUF;
1487 		} else
1488 			bp->b_flags |= B_RELBUF;
1489 	}
1490 
1491 	/*
1492 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1493 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1494 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1495 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1496 	 *
1497 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1498 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1499 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1500 	 *
1501 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1502 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1503 	 * the commit state and we cannot afford to lose the buffer. If the
1504 	 * buffer has a background write in progress, we need to keep it
1505 	 * around to prevent it from being reconstituted and starting a second
1506 	 * background write.
1507 	 */
1508 	if ((bp->b_flags & B_VMIO)
1509 	    && !(bp->b_vp->v_mount != NULL &&
1510 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1511 		 !vn_isdisk(bp->b_vp, NULL) &&
1512 		 (bp->b_flags & B_DELWRI))
1513 	    ) {
1514 
1515 		int i, j, resid;
1516 		vm_page_t m;
1517 		off_t foff;
1518 		vm_pindex_t poff;
1519 		vm_object_t obj;
1520 
1521 		obj = bp->b_bufobj->bo_object;
1522 
1523 		/*
1524 		 * Get the base offset and length of the buffer.  Note that
1525 		 * in the VMIO case if the buffer block size is not
1526 		 * page-aligned then b_data pointer may not be page-aligned.
1527 		 * But our b_pages[] array *IS* page aligned.
1528 		 *
1529 		 * block sizes less then DEV_BSIZE (usually 512) are not
1530 		 * supported due to the page granularity bits (m->valid,
1531 		 * m->dirty, etc...).
1532 		 *
1533 		 * See man buf(9) for more information
1534 		 */
1535 		resid = bp->b_bufsize;
1536 		foff = bp->b_offset;
1537 		VM_OBJECT_WLOCK(obj);
1538 		for (i = 0; i < bp->b_npages; i++) {
1539 			int had_bogus = 0;
1540 
1541 			m = bp->b_pages[i];
1542 
1543 			/*
1544 			 * If we hit a bogus page, fixup *all* the bogus pages
1545 			 * now.
1546 			 */
1547 			if (m == bogus_page) {
1548 				poff = OFF_TO_IDX(bp->b_offset);
1549 				had_bogus = 1;
1550 
1551 				for (j = i; j < bp->b_npages; j++) {
1552 					vm_page_t mtmp;
1553 					mtmp = bp->b_pages[j];
1554 					if (mtmp == bogus_page) {
1555 						mtmp = vm_page_lookup(obj, poff + j);
1556 						if (!mtmp) {
1557 							panic("brelse: page missing\n");
1558 						}
1559 						bp->b_pages[j] = mtmp;
1560 					}
1561 				}
1562 
1563 				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1564 					BUF_CHECK_MAPPED(bp);
1565 					pmap_qenter(
1566 					    trunc_page((vm_offset_t)bp->b_data),
1567 					    bp->b_pages, bp->b_npages);
1568 				}
1569 				m = bp->b_pages[i];
1570 			}
1571 			if ((bp->b_flags & B_NOCACHE) ||
1572 			    (bp->b_ioflags & BIO_ERROR &&
1573 			     bp->b_iocmd == BIO_READ)) {
1574 				int poffset = foff & PAGE_MASK;
1575 				int presid = resid > (PAGE_SIZE - poffset) ?
1576 					(PAGE_SIZE - poffset) : resid;
1577 
1578 				KASSERT(presid >= 0, ("brelse: extra page"));
1579 				vm_page_set_invalid(m, poffset, presid);
1580 				if (had_bogus)
1581 					printf("avoided corruption bug in bogus_page/brelse code\n");
1582 			}
1583 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1584 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1585 		}
1586 		VM_OBJECT_WUNLOCK(obj);
1587 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1588 			vfs_vmio_release(bp);
1589 
1590 	} else if (bp->b_flags & B_VMIO) {
1591 
1592 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1593 			vfs_vmio_release(bp);
1594 		}
1595 
1596 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1597 		if (bp->b_bufsize != 0)
1598 			allocbuf(bp, 0);
1599 		if (bp->b_vp != NULL)
1600 			brelvp(bp);
1601 	}
1602 
1603 	/* enqueue */
1604 	mtx_lock(&bqlock);
1605 	/* Handle delayed bremfree() processing. */
1606 	if (bp->b_flags & B_REMFREE) {
1607 		struct bufobj *bo;
1608 
1609 		bo = bp->b_bufobj;
1610 		if (bo != NULL)
1611 			BO_LOCK(bo);
1612 		bremfreel(bp);
1613 		if (bo != NULL)
1614 			BO_UNLOCK(bo);
1615 	}
1616 	if (bp->b_qindex != QUEUE_NONE)
1617 		panic("brelse: free buffer onto another queue???");
1618 
1619 	/*
1620 	 * If the buffer has junk contents signal it and eventually
1621 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1622 	 * doesn't find it.
1623 	 */
1624 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1625 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1626 		bp->b_flags |= B_INVAL;
1627 	if (bp->b_flags & B_INVAL) {
1628 		if (bp->b_flags & B_DELWRI)
1629 			bundirty(bp);
1630 		if (bp->b_vp)
1631 			brelvp(bp);
1632 	}
1633 
1634 	/* buffers with no memory */
1635 	if (bp->b_bufsize == 0) {
1636 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1637 		if (bp->b_vflags & BV_BKGRDINPROG)
1638 			panic("losing buffer 1");
1639 		if (bp->b_kvasize) {
1640 			bp->b_qindex = QUEUE_EMPTYKVA;
1641 		} else {
1642 			bp->b_qindex = QUEUE_EMPTY;
1643 		}
1644 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1645 	/* buffers with junk contents */
1646 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1647 	    (bp->b_ioflags & BIO_ERROR)) {
1648 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1649 		if (bp->b_vflags & BV_BKGRDINPROG)
1650 			panic("losing buffer 2");
1651 		bp->b_qindex = QUEUE_CLEAN;
1652 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1653 	/* remaining buffers */
1654 	} else {
1655 		if (bp->b_flags & B_DELWRI)
1656 			bp->b_qindex = QUEUE_DIRTY;
1657 		else
1658 			bp->b_qindex = QUEUE_CLEAN;
1659 		if (bp->b_flags & B_AGE) {
1660 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp,
1661 			    b_freelist);
1662 		} else {
1663 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp,
1664 			    b_freelist);
1665 		}
1666 	}
1667 #ifdef INVARIANTS
1668 	bq_len[bp->b_qindex]++;
1669 #endif
1670 	mtx_unlock(&bqlock);
1671 
1672 	/*
1673 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1674 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1675 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1676 	 * if B_INVAL is set ).
1677 	 */
1678 
1679 	if (!(bp->b_flags & B_DELWRI)) {
1680 		struct bufobj *bo;
1681 
1682 		bo = bp->b_bufobj;
1683 		if (bo != NULL)
1684 			BO_LOCK(bo);
1685 		bufcountwakeup(bp);
1686 		if (bo != NULL)
1687 			BO_UNLOCK(bo);
1688 	}
1689 
1690 	/*
1691 	 * Something we can maybe free or reuse
1692 	 */
1693 	if (bp->b_bufsize || bp->b_kvasize)
1694 		bufspacewakeup();
1695 
1696 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1697 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1698 		panic("brelse: not dirty");
1699 	/* unlock */
1700 	BUF_UNLOCK(bp);
1701 }
1702 
1703 /*
1704  * Release a buffer back to the appropriate queue but do not try to free
1705  * it.  The buffer is expected to be used again soon.
1706  *
1707  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1708  * biodone() to requeue an async I/O on completion.  It is also used when
1709  * known good buffers need to be requeued but we think we may need the data
1710  * again soon.
1711  *
1712  * XXX we should be able to leave the B_RELBUF hint set on completion.
1713  */
1714 void
1715 bqrelse(struct buf *bp)
1716 {
1717 	struct bufobj *bo;
1718 
1719 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1720 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1721 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1722 
1723 	if (BUF_LOCKRECURSED(bp)) {
1724 		/* do not release to free list */
1725 		BUF_UNLOCK(bp);
1726 		return;
1727 	}
1728 
1729 	bo = bp->b_bufobj;
1730 	if (bp->b_flags & B_MANAGED) {
1731 		if (bp->b_flags & B_REMFREE) {
1732 			mtx_lock(&bqlock);
1733 			if (bo != NULL)
1734 				BO_LOCK(bo);
1735 			bremfreel(bp);
1736 			if (bo != NULL)
1737 				BO_UNLOCK(bo);
1738 			mtx_unlock(&bqlock);
1739 		}
1740 		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1741 		BUF_UNLOCK(bp);
1742 		return;
1743 	}
1744 
1745 	mtx_lock(&bqlock);
1746 	/* Handle delayed bremfree() processing. */
1747 	if (bp->b_flags & B_REMFREE) {
1748 		if (bo != NULL)
1749 			BO_LOCK(bo);
1750 		bremfreel(bp);
1751 		if (bo != NULL)
1752 			BO_UNLOCK(bo);
1753 	}
1754 	if (bp->b_qindex != QUEUE_NONE)
1755 		panic("bqrelse: free buffer onto another queue???");
1756 	/* buffers with stale but valid contents */
1757 	if (bp->b_flags & B_DELWRI) {
1758 		bp->b_qindex = QUEUE_DIRTY;
1759 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1760 #ifdef INVARIANTS
1761 		bq_len[bp->b_qindex]++;
1762 #endif
1763 	} else {
1764 		/*
1765 		 * The locking of the BO_LOCK for checking of the
1766 		 * BV_BKGRDINPROG is not necessary since the
1767 		 * BV_BKGRDINPROG cannot be set while we hold the buf
1768 		 * lock, it can only be cleared if it is already
1769 		 * pending.
1770 		 */
1771 		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1772 			bp->b_qindex = QUEUE_CLEAN;
1773 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1774 			    b_freelist);
1775 #ifdef INVARIANTS
1776 			bq_len[QUEUE_CLEAN]++;
1777 #endif
1778 		} else {
1779 			/*
1780 			 * We are too low on memory, we have to try to free
1781 			 * the buffer (most importantly: the wired pages
1782 			 * making up its backing store) *now*.
1783 			 */
1784 			mtx_unlock(&bqlock);
1785 			brelse(bp);
1786 			return;
1787 		}
1788 	}
1789 	mtx_unlock(&bqlock);
1790 
1791 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
1792 		if (bo != NULL)
1793 			BO_LOCK(bo);
1794 		bufcountwakeup(bp);
1795 		if (bo != NULL)
1796 			BO_UNLOCK(bo);
1797 	}
1798 
1799 	/*
1800 	 * Something we can maybe free or reuse.
1801 	 */
1802 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1803 		bufspacewakeup();
1804 
1805 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1806 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1807 		panic("bqrelse: not dirty");
1808 	/* unlock */
1809 	BUF_UNLOCK(bp);
1810 }
1811 
1812 /* Give pages used by the bp back to the VM system (where possible) */
1813 static void
1814 vfs_vmio_release(struct buf *bp)
1815 {
1816 	int i;
1817 	vm_page_t m;
1818 
1819 	if ((bp->b_flags & B_UNMAPPED) == 0) {
1820 		BUF_CHECK_MAPPED(bp);
1821 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1822 	} else
1823 		BUF_CHECK_UNMAPPED(bp);
1824 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
1825 	for (i = 0; i < bp->b_npages; i++) {
1826 		m = bp->b_pages[i];
1827 		bp->b_pages[i] = NULL;
1828 		/*
1829 		 * In order to keep page LRU ordering consistent, put
1830 		 * everything on the inactive queue.
1831 		 */
1832 		vm_page_lock(m);
1833 		vm_page_unwire(m, 0);
1834 		/*
1835 		 * We don't mess with busy pages, it is
1836 		 * the responsibility of the process that
1837 		 * busied the pages to deal with them.
1838 		 */
1839 		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1840 		    m->wire_count == 0) {
1841 			/*
1842 			 * Might as well free the page if we can and it has
1843 			 * no valid data.  We also free the page if the
1844 			 * buffer was used for direct I/O
1845 			 */
1846 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1847 				vm_page_free(m);
1848 			} else if (bp->b_flags & B_DIRECT) {
1849 				vm_page_try_to_free(m);
1850 			} else if (buf_vm_page_count_severe()) {
1851 				vm_page_try_to_cache(m);
1852 			}
1853 		}
1854 		vm_page_unlock(m);
1855 	}
1856 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
1857 
1858 	if (bp->b_bufsize) {
1859 		bufspacewakeup();
1860 		bp->b_bufsize = 0;
1861 	}
1862 	bp->b_npages = 0;
1863 	bp->b_flags &= ~B_VMIO;
1864 	if (bp->b_vp)
1865 		brelvp(bp);
1866 }
1867 
1868 /*
1869  * Check to see if a block at a particular lbn is available for a clustered
1870  * write.
1871  */
1872 static int
1873 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1874 {
1875 	struct buf *bpa;
1876 	int match;
1877 
1878 	match = 0;
1879 
1880 	/* If the buf isn't in core skip it */
1881 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1882 		return (0);
1883 
1884 	/* If the buf is busy we don't want to wait for it */
1885 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1886 		return (0);
1887 
1888 	/* Only cluster with valid clusterable delayed write buffers */
1889 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1890 	    (B_DELWRI | B_CLUSTEROK))
1891 		goto done;
1892 
1893 	if (bpa->b_bufsize != size)
1894 		goto done;
1895 
1896 	/*
1897 	 * Check to see if it is in the expected place on disk and that the
1898 	 * block has been mapped.
1899 	 */
1900 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1901 		match = 1;
1902 done:
1903 	BUF_UNLOCK(bpa);
1904 	return (match);
1905 }
1906 
1907 /*
1908  *	vfs_bio_awrite:
1909  *
1910  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1911  *	This is much better then the old way of writing only one buffer at
1912  *	a time.  Note that we may not be presented with the buffers in the
1913  *	correct order, so we search for the cluster in both directions.
1914  */
1915 int
1916 vfs_bio_awrite(struct buf *bp)
1917 {
1918 	struct bufobj *bo;
1919 	int i;
1920 	int j;
1921 	daddr_t lblkno = bp->b_lblkno;
1922 	struct vnode *vp = bp->b_vp;
1923 	int ncl;
1924 	int nwritten;
1925 	int size;
1926 	int maxcl;
1927 	int gbflags;
1928 
1929 	bo = &vp->v_bufobj;
1930 	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1931 	/*
1932 	 * right now we support clustered writing only to regular files.  If
1933 	 * we find a clusterable block we could be in the middle of a cluster
1934 	 * rather then at the beginning.
1935 	 */
1936 	if ((vp->v_type == VREG) &&
1937 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1938 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1939 
1940 		size = vp->v_mount->mnt_stat.f_iosize;
1941 		maxcl = MAXPHYS / size;
1942 
1943 		BO_LOCK(bo);
1944 		for (i = 1; i < maxcl; i++)
1945 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1946 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1947 				break;
1948 
1949 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1950 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1951 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1952 				break;
1953 		BO_UNLOCK(bo);
1954 		--j;
1955 		ncl = i + j;
1956 		/*
1957 		 * this is a possible cluster write
1958 		 */
1959 		if (ncl != 1) {
1960 			BUF_UNLOCK(bp);
1961 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
1962 			    gbflags);
1963 			return (nwritten);
1964 		}
1965 	}
1966 	bremfree(bp);
1967 	bp->b_flags |= B_ASYNC;
1968 	/*
1969 	 * default (old) behavior, writing out only one block
1970 	 *
1971 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1972 	 */
1973 	nwritten = bp->b_bufsize;
1974 	(void) bwrite(bp);
1975 
1976 	return (nwritten);
1977 }
1978 
1979 static void
1980 setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
1981 {
1982 
1983 	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
1984 	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
1985 	if ((gbflags & GB_UNMAPPED) == 0) {
1986 		bp->b_kvabase = (caddr_t)addr;
1987 	} else if ((gbflags & GB_KVAALLOC) != 0) {
1988 		KASSERT((gbflags & GB_UNMAPPED) != 0,
1989 		    ("GB_KVAALLOC without GB_UNMAPPED"));
1990 		bp->b_kvaalloc = (caddr_t)addr;
1991 		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
1992 		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
1993 	}
1994 	bp->b_kvasize = maxsize;
1995 }
1996 
1997 /*
1998  * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
1999  * needed.
2000  */
2001 static int
2002 allocbufkva(struct buf *bp, int maxsize, int gbflags)
2003 {
2004 	vm_offset_t addr;
2005 	int rv;
2006 
2007 	bfreekva(bp);
2008 	addr = 0;
2009 
2010 	vm_map_lock(buffer_map);
2011 	if (vm_map_findspace(buffer_map, vm_map_min(buffer_map), maxsize,
2012 	    &addr)) {
2013 		vm_map_unlock(buffer_map);
2014 		/*
2015 		 * Buffer map is too fragmented.  Request the caller
2016 		 * to defragment the map.
2017 		 */
2018 		atomic_add_int(&bufdefragcnt, 1);
2019 		return (1);
2020 	}
2021 	rv = vm_map_insert(buffer_map, NULL, 0, addr, addr + maxsize,
2022 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
2023 	KASSERT(rv == KERN_SUCCESS, ("vm_map_insert(buffer_map) rv %d", rv));
2024 	vm_map_unlock(buffer_map);
2025 	setbufkva(bp, addr, maxsize, gbflags);
2026 	atomic_add_long(&bufspace, bp->b_kvasize);
2027 	return (0);
2028 }
2029 
2030 /*
2031  * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2032  * locked vnode is supplied.
2033  */
2034 static void
2035 getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2036     int defrag)
2037 {
2038 	struct thread *td;
2039 	char *waitmsg;
2040 	int fl, flags, norunbuf;
2041 
2042 	mtx_assert(&bqlock, MA_OWNED);
2043 
2044 	if (defrag) {
2045 		flags = VFS_BIO_NEED_BUFSPACE;
2046 		waitmsg = "nbufkv";
2047 	} else if (bufspace >= hibufspace) {
2048 		waitmsg = "nbufbs";
2049 		flags = VFS_BIO_NEED_BUFSPACE;
2050 	} else {
2051 		waitmsg = "newbuf";
2052 		flags = VFS_BIO_NEED_ANY;
2053 	}
2054 	mtx_lock(&nblock);
2055 	needsbuffer |= flags;
2056 	mtx_unlock(&nblock);
2057 	mtx_unlock(&bqlock);
2058 
2059 	bd_speedup();	/* heeeelp */
2060 	if ((gbflags & GB_NOWAIT_BD) != 0)
2061 		return;
2062 
2063 	td = curthread;
2064 	mtx_lock(&nblock);
2065 	while (needsbuffer & flags) {
2066 		if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2067 			mtx_unlock(&nblock);
2068 			/*
2069 			 * getblk() is called with a vnode locked, and
2070 			 * some majority of the dirty buffers may as
2071 			 * well belong to the vnode.  Flushing the
2072 			 * buffers there would make a progress that
2073 			 * cannot be achieved by the buf_daemon, that
2074 			 * cannot lock the vnode.
2075 			 */
2076 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2077 			    (td->td_pflags & TDP_NORUNNINGBUF);
2078 			/* play bufdaemon */
2079 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2080 			fl = buf_do_flush(vp);
2081 			td->td_pflags &= norunbuf;
2082 			mtx_lock(&nblock);
2083 			if (fl != 0)
2084 				continue;
2085 			if ((needsbuffer & flags) == 0)
2086 				break;
2087 		}
2088 		if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag,
2089 		    waitmsg, slptimeo))
2090 			break;
2091 	}
2092 	mtx_unlock(&nblock);
2093 }
2094 
2095 static void
2096 getnewbuf_reuse_bp(struct buf *bp, int qindex)
2097 {
2098 
2099 	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2100 	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2101 	     bp->b_kvasize, bp->b_bufsize, qindex);
2102 	mtx_assert(&bqlock, MA_NOTOWNED);
2103 
2104 	/*
2105 	 * Note: we no longer distinguish between VMIO and non-VMIO
2106 	 * buffers.
2107 	 */
2108 	KASSERT((bp->b_flags & B_DELWRI) == 0,
2109 	    ("delwri buffer %p found in queue %d", bp, qindex));
2110 
2111 	if (qindex == QUEUE_CLEAN) {
2112 		if (bp->b_flags & B_VMIO) {
2113 			bp->b_flags &= ~B_ASYNC;
2114 			vfs_vmio_release(bp);
2115 		}
2116 		if (bp->b_vp != NULL)
2117 			brelvp(bp);
2118 	}
2119 
2120 	/*
2121 	 * Get the rest of the buffer freed up.  b_kva* is still valid
2122 	 * after this operation.
2123 	 */
2124 
2125 	if (bp->b_rcred != NOCRED) {
2126 		crfree(bp->b_rcred);
2127 		bp->b_rcred = NOCRED;
2128 	}
2129 	if (bp->b_wcred != NOCRED) {
2130 		crfree(bp->b_wcred);
2131 		bp->b_wcred = NOCRED;
2132 	}
2133 	if (!LIST_EMPTY(&bp->b_dep))
2134 		buf_deallocate(bp);
2135 	if (bp->b_vflags & BV_BKGRDINPROG)
2136 		panic("losing buffer 3");
2137 	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2138 	    bp, bp->b_vp, qindex));
2139 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2140 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2141 
2142 	if (bp->b_bufsize)
2143 		allocbuf(bp, 0);
2144 
2145 	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2146 	bp->b_ioflags = 0;
2147 	bp->b_xflags = 0;
2148 	KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
2149 	    ("buf %p still counted as free?", bp));
2150 	bp->b_vflags = 0;
2151 	bp->b_vp = NULL;
2152 	bp->b_blkno = bp->b_lblkno = 0;
2153 	bp->b_offset = NOOFFSET;
2154 	bp->b_iodone = 0;
2155 	bp->b_error = 0;
2156 	bp->b_resid = 0;
2157 	bp->b_bcount = 0;
2158 	bp->b_npages = 0;
2159 	bp->b_dirtyoff = bp->b_dirtyend = 0;
2160 	bp->b_bufobj = NULL;
2161 	bp->b_pin_count = 0;
2162 	bp->b_fsprivate1 = NULL;
2163 	bp->b_fsprivate2 = NULL;
2164 	bp->b_fsprivate3 = NULL;
2165 
2166 	LIST_INIT(&bp->b_dep);
2167 }
2168 
2169 static int flushingbufs;
2170 
2171 static struct buf *
2172 getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2173 {
2174 	struct buf *bp, *nbp;
2175 	int nqindex, qindex, pass;
2176 
2177 	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2178 
2179 	pass = 1;
2180 restart:
2181 	atomic_add_int(&getnewbufrestarts, 1);
2182 
2183 	/*
2184 	 * Setup for scan.  If we do not have enough free buffers,
2185 	 * we setup a degenerate case that immediately fails.  Note
2186 	 * that if we are specially marked process, we are allowed to
2187 	 * dip into our reserves.
2188 	 *
2189 	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2190 	 * for the allocation of the mapped buffer.  For unmapped, the
2191 	 * easiest is to start with EMPTY outright.
2192 	 *
2193 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2194 	 * However, there are a number of cases (defragging, reusing, ...)
2195 	 * where we cannot backup.
2196 	 */
2197 	nbp = NULL;
2198 	mtx_lock(&bqlock);
2199 	if (!defrag && unmapped) {
2200 		nqindex = QUEUE_EMPTY;
2201 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2202 	}
2203 	if (nbp == NULL) {
2204 		nqindex = QUEUE_EMPTYKVA;
2205 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2206 	}
2207 
2208 	/*
2209 	 * If no EMPTYKVA buffers and we are either defragging or
2210 	 * reusing, locate a CLEAN buffer to free or reuse.  If
2211 	 * bufspace useage is low skip this step so we can allocate a
2212 	 * new buffer.
2213 	 */
2214 	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2215 		nqindex = QUEUE_CLEAN;
2216 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2217 	}
2218 
2219 	/*
2220 	 * If we could not find or were not allowed to reuse a CLEAN
2221 	 * buffer, check to see if it is ok to use an EMPTY buffer.
2222 	 * We can only use an EMPTY buffer if allocating its KVA would
2223 	 * not otherwise run us out of buffer space.  No KVA is needed
2224 	 * for the unmapped allocation.
2225 	 */
2226 	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2227 	    metadata)) {
2228 		nqindex = QUEUE_EMPTY;
2229 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2230 	}
2231 
2232 	/*
2233 	 * All available buffers might be clean, retry ignoring the
2234 	 * lobufspace as the last resort.
2235 	 */
2236 	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2237 		nqindex = QUEUE_CLEAN;
2238 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2239 	}
2240 
2241 	/*
2242 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2243 	 * depending.
2244 	 */
2245 	while ((bp = nbp) != NULL) {
2246 		qindex = nqindex;
2247 
2248 		/*
2249 		 * Calculate next bp (we can only use it if we do not
2250 		 * block or do other fancy things).
2251 		 */
2252 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2253 			switch (qindex) {
2254 			case QUEUE_EMPTY:
2255 				nqindex = QUEUE_EMPTYKVA;
2256 				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2257 				if (nbp != NULL)
2258 					break;
2259 				/* FALLTHROUGH */
2260 			case QUEUE_EMPTYKVA:
2261 				nqindex = QUEUE_CLEAN;
2262 				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2263 				if (nbp != NULL)
2264 					break;
2265 				/* FALLTHROUGH */
2266 			case QUEUE_CLEAN:
2267 				if (metadata && pass == 1) {
2268 					pass = 2;
2269 					nqindex = QUEUE_EMPTY;
2270 					nbp = TAILQ_FIRST(
2271 					    &bufqueues[QUEUE_EMPTY]);
2272 				}
2273 				/*
2274 				 * nbp is NULL.
2275 				 */
2276 				break;
2277 			}
2278 		}
2279 		/*
2280 		 * If we are defragging then we need a buffer with
2281 		 * b_kvasize != 0.  XXX this situation should no longer
2282 		 * occur, if defrag is non-zero the buffer's b_kvasize
2283 		 * should also be non-zero at this point.  XXX
2284 		 */
2285 		if (defrag && bp->b_kvasize == 0) {
2286 			printf("Warning: defrag empty buffer %p\n", bp);
2287 			continue;
2288 		}
2289 
2290 		/*
2291 		 * Start freeing the bp.  This is somewhat involved.  nbp
2292 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2293 		 */
2294 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2295 			continue;
2296 		if (bp->b_vp) {
2297 			BO_LOCK(bp->b_bufobj);
2298 			if (bp->b_vflags & BV_BKGRDINPROG) {
2299 				BO_UNLOCK(bp->b_bufobj);
2300 				BUF_UNLOCK(bp);
2301 				continue;
2302 			}
2303 			BO_UNLOCK(bp->b_bufobj);
2304 		}
2305 
2306 		KASSERT(bp->b_qindex == qindex,
2307 		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2308 
2309 		if (bp->b_bufobj != NULL)
2310 			BO_LOCK(bp->b_bufobj);
2311 		bremfreel(bp);
2312 		if (bp->b_bufobj != NULL)
2313 			BO_UNLOCK(bp->b_bufobj);
2314 		mtx_unlock(&bqlock);
2315 		/*
2316 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2317 		 * the scan from this point on.
2318 		 */
2319 
2320 		getnewbuf_reuse_bp(bp, qindex);
2321 		mtx_assert(&bqlock, MA_NOTOWNED);
2322 
2323 		/*
2324 		 * If we are defragging then free the buffer.
2325 		 */
2326 		if (defrag) {
2327 			bp->b_flags |= B_INVAL;
2328 			bfreekva(bp);
2329 			brelse(bp);
2330 			defrag = 0;
2331 			goto restart;
2332 		}
2333 
2334 		/*
2335 		 * Notify any waiters for the buffer lock about
2336 		 * identity change by freeing the buffer.
2337 		 */
2338 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2339 			bp->b_flags |= B_INVAL;
2340 			bfreekva(bp);
2341 			brelse(bp);
2342 			goto restart;
2343 		}
2344 
2345 		if (metadata)
2346 			break;
2347 
2348 		/*
2349 		 * If we are overcomitted then recover the buffer and its
2350 		 * KVM space.  This occurs in rare situations when multiple
2351 		 * processes are blocked in getnewbuf() or allocbuf().
2352 		 */
2353 		if (bufspace >= hibufspace)
2354 			flushingbufs = 1;
2355 		if (flushingbufs && bp->b_kvasize != 0) {
2356 			bp->b_flags |= B_INVAL;
2357 			bfreekva(bp);
2358 			brelse(bp);
2359 			goto restart;
2360 		}
2361 		if (bufspace < lobufspace)
2362 			flushingbufs = 0;
2363 		break;
2364 	}
2365 	return (bp);
2366 }
2367 
2368 /*
2369  *	getnewbuf:
2370  *
2371  *	Find and initialize a new buffer header, freeing up existing buffers
2372  *	in the bufqueues as necessary.  The new buffer is returned locked.
2373  *
2374  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2375  *	buffer away, the caller must set B_INVAL prior to calling brelse().
2376  *
2377  *	We block if:
2378  *		We have insufficient buffer headers
2379  *		We have insufficient buffer space
2380  *		buffer_map is too fragmented ( space reservation fails )
2381  *		If we have to flush dirty buffers ( but we try to avoid this )
2382  *
2383  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
2384  *	Instead we ask the buf daemon to do it for us.  We attempt to
2385  *	avoid piecemeal wakeups of the pageout daemon.
2386  */
2387 static struct buf *
2388 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2389     int gbflags)
2390 {
2391 	struct buf *bp;
2392 	int defrag, metadata;
2393 
2394 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2395 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2396 	if (!unmapped_buf_allowed)
2397 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2398 
2399 	defrag = 0;
2400 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2401 	    vp->v_type == VCHR)
2402 		metadata = 1;
2403 	else
2404 		metadata = 0;
2405 	/*
2406 	 * We can't afford to block since we might be holding a vnode lock,
2407 	 * which may prevent system daemons from running.  We deal with
2408 	 * low-memory situations by proactively returning memory and running
2409 	 * async I/O rather then sync I/O.
2410 	 */
2411 	atomic_add_int(&getnewbufcalls, 1);
2412 	atomic_subtract_int(&getnewbufrestarts, 1);
2413 restart:
2414 	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2415 	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2416 	if (bp != NULL)
2417 		defrag = 0;
2418 
2419 	/*
2420 	 * If we exhausted our list, sleep as appropriate.  We may have to
2421 	 * wakeup various daemons and write out some dirty buffers.
2422 	 *
2423 	 * Generally we are sleeping due to insufficient buffer space.
2424 	 */
2425 	if (bp == NULL) {
2426 		mtx_assert(&bqlock, MA_OWNED);
2427 		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2428 		mtx_assert(&bqlock, MA_NOTOWNED);
2429 	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2430 		mtx_assert(&bqlock, MA_NOTOWNED);
2431 
2432 		bfreekva(bp);
2433 		bp->b_flags |= B_UNMAPPED;
2434 		bp->b_kvabase = bp->b_data = unmapped_buf;
2435 		bp->b_kvasize = maxsize;
2436 		atomic_add_long(&bufspace, bp->b_kvasize);
2437 		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2438 		atomic_add_int(&bufreusecnt, 1);
2439 	} else {
2440 		mtx_assert(&bqlock, MA_NOTOWNED);
2441 
2442 		/*
2443 		 * We finally have a valid bp.  We aren't quite out of the
2444 		 * woods, we still have to reserve kva space.  In order
2445 		 * to keep fragmentation sane we only allocate kva in
2446 		 * BKVASIZE chunks.
2447 		 */
2448 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2449 
2450 		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2451 		    B_KVAALLOC)) == B_UNMAPPED) {
2452 			if (allocbufkva(bp, maxsize, gbflags)) {
2453 				defrag = 1;
2454 				bp->b_flags |= B_INVAL;
2455 				brelse(bp);
2456 				goto restart;
2457 			}
2458 			atomic_add_int(&bufreusecnt, 1);
2459 		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2460 		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2461 			/*
2462 			 * If the reused buffer has KVA allocated,
2463 			 * reassign b_kvaalloc to b_kvabase.
2464 			 */
2465 			bp->b_kvabase = bp->b_kvaalloc;
2466 			bp->b_flags &= ~B_KVAALLOC;
2467 			atomic_subtract_long(&unmapped_bufspace,
2468 			    bp->b_kvasize);
2469 			atomic_add_int(&bufreusecnt, 1);
2470 		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2471 		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2472 		    GB_KVAALLOC)) {
2473 			/*
2474 			 * The case of reused buffer already have KVA
2475 			 * mapped, but the request is for unmapped
2476 			 * buffer with KVA allocated.
2477 			 */
2478 			bp->b_kvaalloc = bp->b_kvabase;
2479 			bp->b_data = bp->b_kvabase = unmapped_buf;
2480 			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2481 			atomic_add_long(&unmapped_bufspace,
2482 			    bp->b_kvasize);
2483 			atomic_add_int(&bufreusecnt, 1);
2484 		}
2485 		if ((gbflags & GB_UNMAPPED) == 0) {
2486 			bp->b_saveaddr = bp->b_kvabase;
2487 			bp->b_data = bp->b_saveaddr;
2488 			bp->b_flags &= ~B_UNMAPPED;
2489 			BUF_CHECK_MAPPED(bp);
2490 		}
2491 	}
2492 	return (bp);
2493 }
2494 
2495 /*
2496  *	buf_daemon:
2497  *
2498  *	buffer flushing daemon.  Buffers are normally flushed by the
2499  *	update daemon but if it cannot keep up this process starts to
2500  *	take the load in an attempt to prevent getnewbuf() from blocking.
2501  */
2502 
2503 static struct kproc_desc buf_kp = {
2504 	"bufdaemon",
2505 	buf_daemon,
2506 	&bufdaemonproc
2507 };
2508 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2509 
2510 static int
2511 buf_do_flush(struct vnode *vp)
2512 {
2513 	int flushed;
2514 
2515 	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2516 	if (flushed == 0) {
2517 		/*
2518 		 * Could not find any buffers without rollback
2519 		 * dependencies, so just write the first one
2520 		 * in the hopes of eventually making progress.
2521 		 */
2522 		flushbufqueues(vp, QUEUE_DIRTY, 1);
2523 	}
2524 	return (flushed);
2525 }
2526 
2527 static void
2528 buf_daemon()
2529 {
2530 	int lodirtysave;
2531 
2532 	/*
2533 	 * This process needs to be suspended prior to shutdown sync.
2534 	 */
2535 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2536 	    SHUTDOWN_PRI_LAST);
2537 
2538 	/*
2539 	 * This process is allowed to take the buffer cache to the limit
2540 	 */
2541 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2542 	mtx_lock(&bdlock);
2543 	for (;;) {
2544 		bd_request = 0;
2545 		mtx_unlock(&bdlock);
2546 
2547 		kproc_suspend_check(bufdaemonproc);
2548 		lodirtysave = lodirtybuffers;
2549 		if (bd_speedupreq) {
2550 			lodirtybuffers = numdirtybuffers / 2;
2551 			bd_speedupreq = 0;
2552 		}
2553 		/*
2554 		 * Do the flush.  Limit the amount of in-transit I/O we
2555 		 * allow to build up, otherwise we would completely saturate
2556 		 * the I/O system.  Wakeup any waiting processes before we
2557 		 * normally would so they can run in parallel with our drain.
2558 		 */
2559 		while (numdirtybuffers > lodirtybuffers) {
2560 			if (buf_do_flush(NULL) == 0)
2561 				break;
2562 			kern_yield(PRI_USER);
2563 		}
2564 		lodirtybuffers = lodirtysave;
2565 
2566 		/*
2567 		 * Only clear bd_request if we have reached our low water
2568 		 * mark.  The buf_daemon normally waits 1 second and
2569 		 * then incrementally flushes any dirty buffers that have
2570 		 * built up, within reason.
2571 		 *
2572 		 * If we were unable to hit our low water mark and couldn't
2573 		 * find any flushable buffers, we sleep half a second.
2574 		 * Otherwise we loop immediately.
2575 		 */
2576 		mtx_lock(&bdlock);
2577 		if (numdirtybuffers <= lodirtybuffers) {
2578 			/*
2579 			 * We reached our low water mark, reset the
2580 			 * request and sleep until we are needed again.
2581 			 * The sleep is just so the suspend code works.
2582 			 */
2583 			bd_request = 0;
2584 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2585 		} else {
2586 			/*
2587 			 * We couldn't find any flushable dirty buffers but
2588 			 * still have too many dirty buffers, we
2589 			 * have to sleep and try again.  (rare)
2590 			 */
2591 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2592 		}
2593 	}
2594 }
2595 
2596 /*
2597  *	flushbufqueues:
2598  *
2599  *	Try to flush a buffer in the dirty queue.  We must be careful to
2600  *	free up B_INVAL buffers instead of write them, which NFS is
2601  *	particularly sensitive to.
2602  */
2603 static int flushwithdeps = 0;
2604 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2605     0, "Number of buffers flushed with dependecies that require rollbacks");
2606 
2607 static int
2608 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2609 {
2610 	struct buf *sentinel;
2611 	struct vnode *vp;
2612 	struct mount *mp;
2613 	struct buf *bp;
2614 	int hasdeps;
2615 	int flushed;
2616 	int target;
2617 
2618 	if (lvp == NULL) {
2619 		target = numdirtybuffers - lodirtybuffers;
2620 		if (flushdeps && target > 2)
2621 			target /= 2;
2622 	} else
2623 		target = flushbufqtarget;
2624 	flushed = 0;
2625 	bp = NULL;
2626 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2627 	sentinel->b_qindex = QUEUE_SENTINEL;
2628 	mtx_lock(&bqlock);
2629 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2630 	while (flushed != target) {
2631 		bp = TAILQ_NEXT(sentinel, b_freelist);
2632 		if (bp != NULL) {
2633 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2634 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2635 			    b_freelist);
2636 		} else
2637 			break;
2638 		/*
2639 		 * Skip sentinels inserted by other invocations of the
2640 		 * flushbufqueues(), taking care to not reorder them.
2641 		 */
2642 		if (bp->b_qindex == QUEUE_SENTINEL)
2643 			continue;
2644 		/*
2645 		 * Only flush the buffers that belong to the
2646 		 * vnode locked by the curthread.
2647 		 */
2648 		if (lvp != NULL && bp->b_vp != lvp)
2649 			continue;
2650 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2651 			continue;
2652 		if (bp->b_pin_count > 0) {
2653 			BUF_UNLOCK(bp);
2654 			continue;
2655 		}
2656 		BO_LOCK(bp->b_bufobj);
2657 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2658 		    (bp->b_flags & B_DELWRI) == 0) {
2659 			BO_UNLOCK(bp->b_bufobj);
2660 			BUF_UNLOCK(bp);
2661 			continue;
2662 		}
2663 		BO_UNLOCK(bp->b_bufobj);
2664 		if (bp->b_flags & B_INVAL) {
2665 			bremfreel(bp);
2666 			mtx_unlock(&bqlock);
2667 			brelse(bp);
2668 			flushed++;
2669 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2670 			mtx_lock(&bqlock);
2671 			continue;
2672 		}
2673 
2674 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2675 			if (flushdeps == 0) {
2676 				BUF_UNLOCK(bp);
2677 				continue;
2678 			}
2679 			hasdeps = 1;
2680 		} else
2681 			hasdeps = 0;
2682 		/*
2683 		 * We must hold the lock on a vnode before writing
2684 		 * one of its buffers. Otherwise we may confuse, or
2685 		 * in the case of a snapshot vnode, deadlock the
2686 		 * system.
2687 		 *
2688 		 * The lock order here is the reverse of the normal
2689 		 * of vnode followed by buf lock.  This is ok because
2690 		 * the NOWAIT will prevent deadlock.
2691 		 */
2692 		vp = bp->b_vp;
2693 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2694 			BUF_UNLOCK(bp);
2695 			continue;
2696 		}
2697 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2698 			mtx_unlock(&bqlock);
2699 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2700 			    bp, bp->b_vp, bp->b_flags);
2701 			if (curproc == bufdaemonproc)
2702 				vfs_bio_awrite(bp);
2703 			else {
2704 				bremfree(bp);
2705 				bwrite(bp);
2706 				notbufdflashes++;
2707 			}
2708 			vn_finished_write(mp);
2709 			VOP_UNLOCK(vp, 0);
2710 			flushwithdeps += hasdeps;
2711 			flushed++;
2712 
2713 			/*
2714 			 * Sleeping on runningbufspace while holding
2715 			 * vnode lock leads to deadlock.
2716 			 */
2717 			if (curproc == bufdaemonproc)
2718 				waitrunningbufspace();
2719 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2720 			mtx_lock(&bqlock);
2721 			continue;
2722 		}
2723 		vn_finished_write(mp);
2724 		BUF_UNLOCK(bp);
2725 	}
2726 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2727 	mtx_unlock(&bqlock);
2728 	free(sentinel, M_TEMP);
2729 	return (flushed);
2730 }
2731 
2732 /*
2733  * Check to see if a block is currently memory resident.
2734  */
2735 struct buf *
2736 incore(struct bufobj *bo, daddr_t blkno)
2737 {
2738 	struct buf *bp;
2739 
2740 	BO_LOCK(bo);
2741 	bp = gbincore(bo, blkno);
2742 	BO_UNLOCK(bo);
2743 	return (bp);
2744 }
2745 
2746 /*
2747  * Returns true if no I/O is needed to access the
2748  * associated VM object.  This is like incore except
2749  * it also hunts around in the VM system for the data.
2750  */
2751 
2752 static int
2753 inmem(struct vnode * vp, daddr_t blkno)
2754 {
2755 	vm_object_t obj;
2756 	vm_offset_t toff, tinc, size;
2757 	vm_page_t m;
2758 	vm_ooffset_t off;
2759 
2760 	ASSERT_VOP_LOCKED(vp, "inmem");
2761 
2762 	if (incore(&vp->v_bufobj, blkno))
2763 		return 1;
2764 	if (vp->v_mount == NULL)
2765 		return 0;
2766 	obj = vp->v_object;
2767 	if (obj == NULL)
2768 		return (0);
2769 
2770 	size = PAGE_SIZE;
2771 	if (size > vp->v_mount->mnt_stat.f_iosize)
2772 		size = vp->v_mount->mnt_stat.f_iosize;
2773 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2774 
2775 	VM_OBJECT_WLOCK(obj);
2776 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2777 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2778 		if (!m)
2779 			goto notinmem;
2780 		tinc = size;
2781 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2782 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2783 		if (vm_page_is_valid(m,
2784 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2785 			goto notinmem;
2786 	}
2787 	VM_OBJECT_WUNLOCK(obj);
2788 	return 1;
2789 
2790 notinmem:
2791 	VM_OBJECT_WUNLOCK(obj);
2792 	return (0);
2793 }
2794 
2795 /*
2796  * Set the dirty range for a buffer based on the status of the dirty
2797  * bits in the pages comprising the buffer.  The range is limited
2798  * to the size of the buffer.
2799  *
2800  * Tell the VM system that the pages associated with this buffer
2801  * are clean.  This is used for delayed writes where the data is
2802  * going to go to disk eventually without additional VM intevention.
2803  *
2804  * Note that while we only really need to clean through to b_bcount, we
2805  * just go ahead and clean through to b_bufsize.
2806  */
2807 static void
2808 vfs_clean_pages_dirty_buf(struct buf *bp)
2809 {
2810 	vm_ooffset_t foff, noff, eoff;
2811 	vm_page_t m;
2812 	int i;
2813 
2814 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2815 		return;
2816 
2817 	foff = bp->b_offset;
2818 	KASSERT(bp->b_offset != NOOFFSET,
2819 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2820 
2821 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2822 	vfs_drain_busy_pages(bp);
2823 	vfs_setdirty_locked_object(bp);
2824 	for (i = 0; i < bp->b_npages; i++) {
2825 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2826 		eoff = noff;
2827 		if (eoff > bp->b_offset + bp->b_bufsize)
2828 			eoff = bp->b_offset + bp->b_bufsize;
2829 		m = bp->b_pages[i];
2830 		vfs_page_set_validclean(bp, foff, m);
2831 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2832 		foff = noff;
2833 	}
2834 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2835 }
2836 
2837 static void
2838 vfs_setdirty_locked_object(struct buf *bp)
2839 {
2840 	vm_object_t object;
2841 	int i;
2842 
2843 	object = bp->b_bufobj->bo_object;
2844 	VM_OBJECT_ASSERT_WLOCKED(object);
2845 
2846 	/*
2847 	 * We qualify the scan for modified pages on whether the
2848 	 * object has been flushed yet.
2849 	 */
2850 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2851 		vm_offset_t boffset;
2852 		vm_offset_t eoffset;
2853 
2854 		/*
2855 		 * test the pages to see if they have been modified directly
2856 		 * by users through the VM system.
2857 		 */
2858 		for (i = 0; i < bp->b_npages; i++)
2859 			vm_page_test_dirty(bp->b_pages[i]);
2860 
2861 		/*
2862 		 * Calculate the encompassing dirty range, boffset and eoffset,
2863 		 * (eoffset - boffset) bytes.
2864 		 */
2865 
2866 		for (i = 0; i < bp->b_npages; i++) {
2867 			if (bp->b_pages[i]->dirty)
2868 				break;
2869 		}
2870 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2871 
2872 		for (i = bp->b_npages - 1; i >= 0; --i) {
2873 			if (bp->b_pages[i]->dirty) {
2874 				break;
2875 			}
2876 		}
2877 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2878 
2879 		/*
2880 		 * Fit it to the buffer.
2881 		 */
2882 
2883 		if (eoffset > bp->b_bcount)
2884 			eoffset = bp->b_bcount;
2885 
2886 		/*
2887 		 * If we have a good dirty range, merge with the existing
2888 		 * dirty range.
2889 		 */
2890 
2891 		if (boffset < eoffset) {
2892 			if (bp->b_dirtyoff > boffset)
2893 				bp->b_dirtyoff = boffset;
2894 			if (bp->b_dirtyend < eoffset)
2895 				bp->b_dirtyend = eoffset;
2896 		}
2897 	}
2898 }
2899 
2900 /*
2901  * Allocate the KVA mapping for an existing buffer. It handles the
2902  * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2903  * KVA which is not mapped (B_KVAALLOC).
2904  */
2905 static void
2906 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2907 {
2908 	struct buf *scratch_bp;
2909 	int bsize, maxsize, need_mapping, need_kva;
2910 	off_t offset;
2911 
2912 	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2913 	    (gbflags & GB_UNMAPPED) == 0;
2914 	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2915 	    (gbflags & GB_KVAALLOC) != 0;
2916 	if (!need_mapping && !need_kva)
2917 		return;
2918 
2919 	BUF_CHECK_UNMAPPED(bp);
2920 
2921 	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2922 		/*
2923 		 * Buffer is not mapped, but the KVA was already
2924 		 * reserved at the time of the instantiation.  Use the
2925 		 * allocated space.
2926 		 */
2927 		bp->b_flags &= ~B_KVAALLOC;
2928 		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2929 		bp->b_kvabase = bp->b_kvaalloc;
2930 		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
2931 		goto has_addr;
2932 	}
2933 
2934 	/*
2935 	 * Calculate the amount of the address space we would reserve
2936 	 * if the buffer was mapped.
2937 	 */
2938 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
2939 	offset = blkno * bsize;
2940 	maxsize = size + (offset & PAGE_MASK);
2941 	maxsize = imax(maxsize, bsize);
2942 
2943 mapping_loop:
2944 	if (allocbufkva(bp, maxsize, gbflags)) {
2945 		/*
2946 		 * Request defragmentation. getnewbuf() returns us the
2947 		 * allocated space by the scratch buffer KVA.
2948 		 */
2949 		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
2950 		    (GB_UNMAPPED | GB_KVAALLOC));
2951 		if (scratch_bp == NULL) {
2952 			if ((gbflags & GB_NOWAIT_BD) != 0) {
2953 				/*
2954 				 * XXXKIB: defragmentation cannot
2955 				 * succeed, not sure what else to do.
2956 				 */
2957 				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
2958 			}
2959 			atomic_add_int(&mappingrestarts, 1);
2960 			goto mapping_loop;
2961 		}
2962 		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
2963 		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
2964 		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
2965 		    scratch_bp->b_kvasize, gbflags);
2966 
2967 		/* Get rid of the scratch buffer. */
2968 		scratch_bp->b_kvasize = 0;
2969 		scratch_bp->b_flags |= B_INVAL;
2970 		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
2971 		brelse(scratch_bp);
2972 	}
2973 	if (!need_mapping)
2974 		return;
2975 
2976 has_addr:
2977 	bp->b_saveaddr = bp->b_kvabase;
2978 	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
2979 	bp->b_flags &= ~B_UNMAPPED;
2980 	BUF_CHECK_MAPPED(bp);
2981 	bpmap_qenter(bp);
2982 }
2983 
2984 /*
2985  *	getblk:
2986  *
2987  *	Get a block given a specified block and offset into a file/device.
2988  *	The buffers B_DONE bit will be cleared on return, making it almost
2989  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2990  *	return.  The caller should clear B_INVAL prior to initiating a
2991  *	READ.
2992  *
2993  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2994  *	an existing buffer.
2995  *
2996  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2997  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2998  *	and then cleared based on the backing VM.  If the previous buffer is
2999  *	non-0-sized but invalid, B_CACHE will be cleared.
3000  *
3001  *	If getblk() must create a new buffer, the new buffer is returned with
3002  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3003  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3004  *	backing VM.
3005  *
3006  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3007  *	B_CACHE bit is clear.
3008  *
3009  *	What this means, basically, is that the caller should use B_CACHE to
3010  *	determine whether the buffer is fully valid or not and should clear
3011  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3012  *	the buffer by loading its data area with something, the caller needs
3013  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3014  *	the caller should set B_CACHE ( as an optimization ), else the caller
3015  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3016  *	a write attempt or if it was a successfull read.  If the caller
3017  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3018  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3019  */
3020 struct buf *
3021 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3022     int flags)
3023 {
3024 	struct buf *bp;
3025 	struct bufobj *bo;
3026 	int bsize, error, maxsize, vmio;
3027 	off_t offset;
3028 
3029 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3030 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3031 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3032 	ASSERT_VOP_LOCKED(vp, "getblk");
3033 	if (size > MAXBSIZE)
3034 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
3035 	if (!unmapped_buf_allowed)
3036 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3037 
3038 	bo = &vp->v_bufobj;
3039 loop:
3040 	/*
3041 	 * Block if we are low on buffers.   Certain processes are allowed
3042 	 * to completely exhaust the buffer cache.
3043          *
3044          * If this check ever becomes a bottleneck it may be better to
3045          * move it into the else, when gbincore() fails.  At the moment
3046          * it isn't a problem.
3047          */
3048 	if (numfreebuffers == 0) {
3049 		if (TD_IS_IDLETHREAD(curthread))
3050 			return NULL;
3051 		mtx_lock(&nblock);
3052 		needsbuffer |= VFS_BIO_NEED_ANY;
3053 		mtx_unlock(&nblock);
3054 	}
3055 
3056 	BO_LOCK(bo);
3057 	bp = gbincore(bo, blkno);
3058 	if (bp != NULL) {
3059 		int lockflags;
3060 		/*
3061 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3062 		 * it must be on a queue.
3063 		 */
3064 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3065 
3066 		if (flags & GB_LOCK_NOWAIT)
3067 			lockflags |= LK_NOWAIT;
3068 
3069 		error = BUF_TIMELOCK(bp, lockflags,
3070 		    BO_MTX(bo), "getblk", slpflag, slptimeo);
3071 
3072 		/*
3073 		 * If we slept and got the lock we have to restart in case
3074 		 * the buffer changed identities.
3075 		 */
3076 		if (error == ENOLCK)
3077 			goto loop;
3078 		/* We timed out or were interrupted. */
3079 		else if (error)
3080 			return (NULL);
3081 		/* If recursed, assume caller knows the rules. */
3082 		else if (BUF_LOCKRECURSED(bp))
3083 			goto end;
3084 
3085 		/*
3086 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3087 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3088 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3089 		 * backing VM cache.
3090 		 */
3091 		if (bp->b_flags & B_INVAL)
3092 			bp->b_flags &= ~B_CACHE;
3093 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3094 			bp->b_flags |= B_CACHE;
3095 		if (bp->b_flags & B_MANAGED)
3096 			MPASS(bp->b_qindex == QUEUE_NONE);
3097 		else {
3098 			BO_LOCK(bo);
3099 			bremfree(bp);
3100 			BO_UNLOCK(bo);
3101 		}
3102 
3103 		/*
3104 		 * check for size inconsistencies for non-VMIO case.
3105 		 */
3106 		if (bp->b_bcount != size) {
3107 			if ((bp->b_flags & B_VMIO) == 0 ||
3108 			    (size > bp->b_kvasize)) {
3109 				if (bp->b_flags & B_DELWRI) {
3110 					/*
3111 					 * If buffer is pinned and caller does
3112 					 * not want sleep  waiting for it to be
3113 					 * unpinned, bail out
3114 					 * */
3115 					if (bp->b_pin_count > 0) {
3116 						if (flags & GB_LOCK_NOWAIT) {
3117 							bqrelse(bp);
3118 							return (NULL);
3119 						} else {
3120 							bunpin_wait(bp);
3121 						}
3122 					}
3123 					bp->b_flags |= B_NOCACHE;
3124 					bwrite(bp);
3125 				} else {
3126 					if (LIST_EMPTY(&bp->b_dep)) {
3127 						bp->b_flags |= B_RELBUF;
3128 						brelse(bp);
3129 					} else {
3130 						bp->b_flags |= B_NOCACHE;
3131 						bwrite(bp);
3132 					}
3133 				}
3134 				goto loop;
3135 			}
3136 		}
3137 
3138 		/*
3139 		 * Handle the case of unmapped buffer which should
3140 		 * become mapped, or the buffer for which KVA
3141 		 * reservation is requested.
3142 		 */
3143 		bp_unmapped_get_kva(bp, blkno, size, flags);
3144 
3145 		/*
3146 		 * If the size is inconsistant in the VMIO case, we can resize
3147 		 * the buffer.  This might lead to B_CACHE getting set or
3148 		 * cleared.  If the size has not changed, B_CACHE remains
3149 		 * unchanged from its previous state.
3150 		 */
3151 		if (bp->b_bcount != size)
3152 			allocbuf(bp, size);
3153 
3154 		KASSERT(bp->b_offset != NOOFFSET,
3155 		    ("getblk: no buffer offset"));
3156 
3157 		/*
3158 		 * A buffer with B_DELWRI set and B_CACHE clear must
3159 		 * be committed before we can return the buffer in
3160 		 * order to prevent the caller from issuing a read
3161 		 * ( due to B_CACHE not being set ) and overwriting
3162 		 * it.
3163 		 *
3164 		 * Most callers, including NFS and FFS, need this to
3165 		 * operate properly either because they assume they
3166 		 * can issue a read if B_CACHE is not set, or because
3167 		 * ( for example ) an uncached B_DELWRI might loop due
3168 		 * to softupdates re-dirtying the buffer.  In the latter
3169 		 * case, B_CACHE is set after the first write completes,
3170 		 * preventing further loops.
3171 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3172 		 * above while extending the buffer, we cannot allow the
3173 		 * buffer to remain with B_CACHE set after the write
3174 		 * completes or it will represent a corrupt state.  To
3175 		 * deal with this we set B_NOCACHE to scrap the buffer
3176 		 * after the write.
3177 		 *
3178 		 * We might be able to do something fancy, like setting
3179 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3180 		 * so the below call doesn't set B_CACHE, but that gets real
3181 		 * confusing.  This is much easier.
3182 		 */
3183 
3184 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3185 			bp->b_flags |= B_NOCACHE;
3186 			bwrite(bp);
3187 			goto loop;
3188 		}
3189 		bp->b_flags &= ~B_DONE;
3190 	} else {
3191 		/*
3192 		 * Buffer is not in-core, create new buffer.  The buffer
3193 		 * returned by getnewbuf() is locked.  Note that the returned
3194 		 * buffer is also considered valid (not marked B_INVAL).
3195 		 */
3196 		BO_UNLOCK(bo);
3197 		/*
3198 		 * If the user does not want us to create the buffer, bail out
3199 		 * here.
3200 		 */
3201 		if (flags & GB_NOCREAT)
3202 			return NULL;
3203 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3204 		offset = blkno * bsize;
3205 		vmio = vp->v_object != NULL;
3206 		if (vmio) {
3207 			maxsize = size + (offset & PAGE_MASK);
3208 		} else {
3209 			maxsize = size;
3210 			/* Do not allow non-VMIO notmapped buffers. */
3211 			flags &= ~GB_UNMAPPED;
3212 		}
3213 		maxsize = imax(maxsize, bsize);
3214 
3215 		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3216 		if (bp == NULL) {
3217 			if (slpflag || slptimeo)
3218 				return NULL;
3219 			goto loop;
3220 		}
3221 
3222 		/*
3223 		 * This code is used to make sure that a buffer is not
3224 		 * created while the getnewbuf routine is blocked.
3225 		 * This can be a problem whether the vnode is locked or not.
3226 		 * If the buffer is created out from under us, we have to
3227 		 * throw away the one we just created.
3228 		 *
3229 		 * Note: this must occur before we associate the buffer
3230 		 * with the vp especially considering limitations in
3231 		 * the splay tree implementation when dealing with duplicate
3232 		 * lblkno's.
3233 		 */
3234 		BO_LOCK(bo);
3235 		if (gbincore(bo, blkno)) {
3236 			BO_UNLOCK(bo);
3237 			bp->b_flags |= B_INVAL;
3238 			brelse(bp);
3239 			goto loop;
3240 		}
3241 
3242 		/*
3243 		 * Insert the buffer into the hash, so that it can
3244 		 * be found by incore.
3245 		 */
3246 		bp->b_blkno = bp->b_lblkno = blkno;
3247 		bp->b_offset = offset;
3248 		bgetvp(vp, bp);
3249 		BO_UNLOCK(bo);
3250 
3251 		/*
3252 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3253 		 * buffer size starts out as 0, B_CACHE will be set by
3254 		 * allocbuf() for the VMIO case prior to it testing the
3255 		 * backing store for validity.
3256 		 */
3257 
3258 		if (vmio) {
3259 			bp->b_flags |= B_VMIO;
3260 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3261 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3262 			    bp, vp->v_object, bp->b_bufobj->bo_object));
3263 		} else {
3264 			bp->b_flags &= ~B_VMIO;
3265 			KASSERT(bp->b_bufobj->bo_object == NULL,
3266 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3267 			    bp, bp->b_bufobj->bo_object));
3268 			BUF_CHECK_MAPPED(bp);
3269 		}
3270 
3271 		allocbuf(bp, size);
3272 		bp->b_flags &= ~B_DONE;
3273 	}
3274 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3275 	BUF_ASSERT_HELD(bp);
3276 end:
3277 	KASSERT(bp->b_bufobj == bo,
3278 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3279 	return (bp);
3280 }
3281 
3282 /*
3283  * Get an empty, disassociated buffer of given size.  The buffer is initially
3284  * set to B_INVAL.
3285  */
3286 struct buf *
3287 geteblk(int size, int flags)
3288 {
3289 	struct buf *bp;
3290 	int maxsize;
3291 
3292 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3293 	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3294 		if ((flags & GB_NOWAIT_BD) &&
3295 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3296 			return (NULL);
3297 	}
3298 	allocbuf(bp, size);
3299 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3300 	BUF_ASSERT_HELD(bp);
3301 	return (bp);
3302 }
3303 
3304 
3305 /*
3306  * This code constitutes the buffer memory from either anonymous system
3307  * memory (in the case of non-VMIO operations) or from an associated
3308  * VM object (in the case of VMIO operations).  This code is able to
3309  * resize a buffer up or down.
3310  *
3311  * Note that this code is tricky, and has many complications to resolve
3312  * deadlock or inconsistant data situations.  Tread lightly!!!
3313  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3314  * the caller.  Calling this code willy nilly can result in the loss of data.
3315  *
3316  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3317  * B_CACHE for the non-VMIO case.
3318  */
3319 
3320 int
3321 allocbuf(struct buf *bp, int size)
3322 {
3323 	int newbsize, mbsize;
3324 	int i;
3325 
3326 	BUF_ASSERT_HELD(bp);
3327 
3328 	if (bp->b_kvasize < size)
3329 		panic("allocbuf: buffer too small");
3330 
3331 	if ((bp->b_flags & B_VMIO) == 0) {
3332 		caddr_t origbuf;
3333 		int origbufsize;
3334 		/*
3335 		 * Just get anonymous memory from the kernel.  Don't
3336 		 * mess with B_CACHE.
3337 		 */
3338 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3339 		if (bp->b_flags & B_MALLOC)
3340 			newbsize = mbsize;
3341 		else
3342 			newbsize = round_page(size);
3343 
3344 		if (newbsize < bp->b_bufsize) {
3345 			/*
3346 			 * malloced buffers are not shrunk
3347 			 */
3348 			if (bp->b_flags & B_MALLOC) {
3349 				if (newbsize) {
3350 					bp->b_bcount = size;
3351 				} else {
3352 					free(bp->b_data, M_BIOBUF);
3353 					if (bp->b_bufsize) {
3354 						atomic_subtract_long(
3355 						    &bufmallocspace,
3356 						    bp->b_bufsize);
3357 						bufspacewakeup();
3358 						bp->b_bufsize = 0;
3359 					}
3360 					bp->b_saveaddr = bp->b_kvabase;
3361 					bp->b_data = bp->b_saveaddr;
3362 					bp->b_bcount = 0;
3363 					bp->b_flags &= ~B_MALLOC;
3364 				}
3365 				return 1;
3366 			}
3367 			vm_hold_free_pages(bp, newbsize);
3368 		} else if (newbsize > bp->b_bufsize) {
3369 			/*
3370 			 * We only use malloced memory on the first allocation.
3371 			 * and revert to page-allocated memory when the buffer
3372 			 * grows.
3373 			 */
3374 			/*
3375 			 * There is a potential smp race here that could lead
3376 			 * to bufmallocspace slightly passing the max.  It
3377 			 * is probably extremely rare and not worth worrying
3378 			 * over.
3379 			 */
3380 			if ( (bufmallocspace < maxbufmallocspace) &&
3381 				(bp->b_bufsize == 0) &&
3382 				(mbsize <= PAGE_SIZE/2)) {
3383 
3384 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3385 				bp->b_bufsize = mbsize;
3386 				bp->b_bcount = size;
3387 				bp->b_flags |= B_MALLOC;
3388 				atomic_add_long(&bufmallocspace, mbsize);
3389 				return 1;
3390 			}
3391 			origbuf = NULL;
3392 			origbufsize = 0;
3393 			/*
3394 			 * If the buffer is growing on its other-than-first allocation,
3395 			 * then we revert to the page-allocation scheme.
3396 			 */
3397 			if (bp->b_flags & B_MALLOC) {
3398 				origbuf = bp->b_data;
3399 				origbufsize = bp->b_bufsize;
3400 				bp->b_data = bp->b_kvabase;
3401 				if (bp->b_bufsize) {
3402 					atomic_subtract_long(&bufmallocspace,
3403 					    bp->b_bufsize);
3404 					bufspacewakeup();
3405 					bp->b_bufsize = 0;
3406 				}
3407 				bp->b_flags &= ~B_MALLOC;
3408 				newbsize = round_page(newbsize);
3409 			}
3410 			vm_hold_load_pages(
3411 			    bp,
3412 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3413 			    (vm_offset_t) bp->b_data + newbsize);
3414 			if (origbuf) {
3415 				bcopy(origbuf, bp->b_data, origbufsize);
3416 				free(origbuf, M_BIOBUF);
3417 			}
3418 		}
3419 	} else {
3420 		int desiredpages;
3421 
3422 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3423 		desiredpages = (size == 0) ? 0 :
3424 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3425 
3426 		if (bp->b_flags & B_MALLOC)
3427 			panic("allocbuf: VMIO buffer can't be malloced");
3428 		/*
3429 		 * Set B_CACHE initially if buffer is 0 length or will become
3430 		 * 0-length.
3431 		 */
3432 		if (size == 0 || bp->b_bufsize == 0)
3433 			bp->b_flags |= B_CACHE;
3434 
3435 		if (newbsize < bp->b_bufsize) {
3436 			/*
3437 			 * DEV_BSIZE aligned new buffer size is less then the
3438 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3439 			 * if we have to remove any pages.
3440 			 */
3441 			if (desiredpages < bp->b_npages) {
3442 				vm_page_t m;
3443 
3444 				if ((bp->b_flags & B_UNMAPPED) == 0) {
3445 					BUF_CHECK_MAPPED(bp);
3446 					pmap_qremove((vm_offset_t)trunc_page(
3447 					    (vm_offset_t)bp->b_data) +
3448 					    (desiredpages << PAGE_SHIFT),
3449 					    (bp->b_npages - desiredpages));
3450 				} else
3451 					BUF_CHECK_UNMAPPED(bp);
3452 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3453 				for (i = desiredpages; i < bp->b_npages; i++) {
3454 					/*
3455 					 * the page is not freed here -- it
3456 					 * is the responsibility of
3457 					 * vnode_pager_setsize
3458 					 */
3459 					m = bp->b_pages[i];
3460 					KASSERT(m != bogus_page,
3461 					    ("allocbuf: bogus page found"));
3462 					while (vm_page_sleep_if_busy(m, TRUE,
3463 					    "biodep"))
3464 						continue;
3465 
3466 					bp->b_pages[i] = NULL;
3467 					vm_page_lock(m);
3468 					vm_page_unwire(m, 0);
3469 					vm_page_unlock(m);
3470 				}
3471 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3472 				bp->b_npages = desiredpages;
3473 			}
3474 		} else if (size > bp->b_bcount) {
3475 			/*
3476 			 * We are growing the buffer, possibly in a
3477 			 * byte-granular fashion.
3478 			 */
3479 			vm_object_t obj;
3480 			vm_offset_t toff;
3481 			vm_offset_t tinc;
3482 
3483 			/*
3484 			 * Step 1, bring in the VM pages from the object,
3485 			 * allocating them if necessary.  We must clear
3486 			 * B_CACHE if these pages are not valid for the
3487 			 * range covered by the buffer.
3488 			 */
3489 
3490 			obj = bp->b_bufobj->bo_object;
3491 
3492 			VM_OBJECT_WLOCK(obj);
3493 			while (bp->b_npages < desiredpages) {
3494 				vm_page_t m;
3495 
3496 				/*
3497 				 * We must allocate system pages since blocking
3498 				 * here could interfere with paging I/O, no
3499 				 * matter which process we are.
3500 				 *
3501 				 * We can only test VPO_BUSY here.  Blocking on
3502 				 * m->busy might lead to a deadlock:
3503 				 *  vm_fault->getpages->cluster_read->allocbuf
3504 				 * Thus, we specify VM_ALLOC_IGN_SBUSY.
3505 				 */
3506 				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3507 				    bp->b_npages, VM_ALLOC_NOBUSY |
3508 				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3509 				    VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
3510 				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3511 				if (m->valid == 0)
3512 					bp->b_flags &= ~B_CACHE;
3513 				bp->b_pages[bp->b_npages] = m;
3514 				++bp->b_npages;
3515 			}
3516 
3517 			/*
3518 			 * Step 2.  We've loaded the pages into the buffer,
3519 			 * we have to figure out if we can still have B_CACHE
3520 			 * set.  Note that B_CACHE is set according to the
3521 			 * byte-granular range ( bcount and size ), new the
3522 			 * aligned range ( newbsize ).
3523 			 *
3524 			 * The VM test is against m->valid, which is DEV_BSIZE
3525 			 * aligned.  Needless to say, the validity of the data
3526 			 * needs to also be DEV_BSIZE aligned.  Note that this
3527 			 * fails with NFS if the server or some other client
3528 			 * extends the file's EOF.  If our buffer is resized,
3529 			 * B_CACHE may remain set! XXX
3530 			 */
3531 
3532 			toff = bp->b_bcount;
3533 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3534 
3535 			while ((bp->b_flags & B_CACHE) && toff < size) {
3536 				vm_pindex_t pi;
3537 
3538 				if (tinc > (size - toff))
3539 					tinc = size - toff;
3540 
3541 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3542 				    PAGE_SHIFT;
3543 
3544 				vfs_buf_test_cache(
3545 				    bp,
3546 				    bp->b_offset,
3547 				    toff,
3548 				    tinc,
3549 				    bp->b_pages[pi]
3550 				);
3551 				toff += tinc;
3552 				tinc = PAGE_SIZE;
3553 			}
3554 			VM_OBJECT_WUNLOCK(obj);
3555 
3556 			/*
3557 			 * Step 3, fixup the KVM pmap.
3558 			 */
3559 			if ((bp->b_flags & B_UNMAPPED) == 0)
3560 				bpmap_qenter(bp);
3561 			else
3562 				BUF_CHECK_UNMAPPED(bp);
3563 		}
3564 	}
3565 	if (newbsize < bp->b_bufsize)
3566 		bufspacewakeup();
3567 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3568 	bp->b_bcount = size;		/* requested buffer size	*/
3569 	return 1;
3570 }
3571 
3572 extern int inflight_transient_maps;
3573 
3574 void
3575 biodone(struct bio *bp)
3576 {
3577 	struct mtx *mtxp;
3578 	void (*done)(struct bio *);
3579 	vm_offset_t start, end;
3580 	int transient;
3581 
3582 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3583 	mtx_lock(mtxp);
3584 	bp->bio_flags |= BIO_DONE;
3585 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3586 		start = trunc_page((vm_offset_t)bp->bio_data);
3587 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3588 		transient = 1;
3589 	} else {
3590 		transient = 0;
3591 		start = end = 0;
3592 	}
3593 	done = bp->bio_done;
3594 	if (done == NULL)
3595 		wakeup(bp);
3596 	mtx_unlock(mtxp);
3597 	if (done != NULL)
3598 		done(bp);
3599 	if (transient) {
3600 		pmap_qremove(start, OFF_TO_IDX(end - start));
3601 		vm_map_remove(bio_transient_map, start, end);
3602 		atomic_add_int(&inflight_transient_maps, -1);
3603 	}
3604 }
3605 
3606 /*
3607  * Wait for a BIO to finish.
3608  *
3609  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3610  * case is not yet clear.
3611  */
3612 int
3613 biowait(struct bio *bp, const char *wchan)
3614 {
3615 	struct mtx *mtxp;
3616 
3617 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3618 	mtx_lock(mtxp);
3619 	while ((bp->bio_flags & BIO_DONE) == 0)
3620 		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3621 	mtx_unlock(mtxp);
3622 	if (bp->bio_error != 0)
3623 		return (bp->bio_error);
3624 	if (!(bp->bio_flags & BIO_ERROR))
3625 		return (0);
3626 	return (EIO);
3627 }
3628 
3629 void
3630 biofinish(struct bio *bp, struct devstat *stat, int error)
3631 {
3632 
3633 	if (error) {
3634 		bp->bio_error = error;
3635 		bp->bio_flags |= BIO_ERROR;
3636 	}
3637 	if (stat != NULL)
3638 		devstat_end_transaction_bio(stat, bp);
3639 	biodone(bp);
3640 }
3641 
3642 /*
3643  *	bufwait:
3644  *
3645  *	Wait for buffer I/O completion, returning error status.  The buffer
3646  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3647  *	error and cleared.
3648  */
3649 int
3650 bufwait(struct buf *bp)
3651 {
3652 	if (bp->b_iocmd == BIO_READ)
3653 		bwait(bp, PRIBIO, "biord");
3654 	else
3655 		bwait(bp, PRIBIO, "biowr");
3656 	if (bp->b_flags & B_EINTR) {
3657 		bp->b_flags &= ~B_EINTR;
3658 		return (EINTR);
3659 	}
3660 	if (bp->b_ioflags & BIO_ERROR) {
3661 		return (bp->b_error ? bp->b_error : EIO);
3662 	} else {
3663 		return (0);
3664 	}
3665 }
3666 
3667  /*
3668   * Call back function from struct bio back up to struct buf.
3669   */
3670 static void
3671 bufdonebio(struct bio *bip)
3672 {
3673 	struct buf *bp;
3674 
3675 	bp = bip->bio_caller2;
3676 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3677 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3678 	bp->b_ioflags = bip->bio_flags;
3679 	bp->b_error = bip->bio_error;
3680 	if (bp->b_error)
3681 		bp->b_ioflags |= BIO_ERROR;
3682 	bufdone(bp);
3683 	g_destroy_bio(bip);
3684 }
3685 
3686 void
3687 dev_strategy(struct cdev *dev, struct buf *bp)
3688 {
3689 	struct cdevsw *csw;
3690 	int ref;
3691 
3692 	KASSERT(dev->si_refcount > 0,
3693 	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3694 	    devtoname(dev), dev));
3695 
3696 	csw = dev_refthread(dev, &ref);
3697 	dev_strategy_csw(dev, csw, bp);
3698 	dev_relthread(dev, ref);
3699 }
3700 
3701 void
3702 dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3703 {
3704 	struct bio *bip;
3705 
3706 	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3707 	    ("b_iocmd botch"));
3708 	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3709 	    dev->si_threadcount > 0,
3710 	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3711 	    dev));
3712 	if (csw == NULL) {
3713 		bp->b_error = ENXIO;
3714 		bp->b_ioflags = BIO_ERROR;
3715 		bufdone(bp);
3716 		return;
3717 	}
3718 	for (;;) {
3719 		bip = g_new_bio();
3720 		if (bip != NULL)
3721 			break;
3722 		/* Try again later */
3723 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3724 	}
3725 	bip->bio_cmd = bp->b_iocmd;
3726 	bip->bio_offset = bp->b_iooffset;
3727 	bip->bio_length = bp->b_bcount;
3728 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3729 	bdata2bio(bp, bip);
3730 	bip->bio_done = bufdonebio;
3731 	bip->bio_caller2 = bp;
3732 	bip->bio_dev = dev;
3733 	(*csw->d_strategy)(bip);
3734 }
3735 
3736 /*
3737  *	bufdone:
3738  *
3739  *	Finish I/O on a buffer, optionally calling a completion function.
3740  *	This is usually called from an interrupt so process blocking is
3741  *	not allowed.
3742  *
3743  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3744  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3745  *	assuming B_INVAL is clear.
3746  *
3747  *	For the VMIO case, we set B_CACHE if the op was a read and no
3748  *	read error occured, or if the op was a write.  B_CACHE is never
3749  *	set if the buffer is invalid or otherwise uncacheable.
3750  *
3751  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3752  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3753  *	in the biodone routine.
3754  */
3755 void
3756 bufdone(struct buf *bp)
3757 {
3758 	struct bufobj *dropobj;
3759 	void    (*biodone)(struct buf *);
3760 
3761 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3762 	dropobj = NULL;
3763 
3764 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3765 	BUF_ASSERT_HELD(bp);
3766 
3767 	runningbufwakeup(bp);
3768 	if (bp->b_iocmd == BIO_WRITE)
3769 		dropobj = bp->b_bufobj;
3770 	/* call optional completion function if requested */
3771 	if (bp->b_iodone != NULL) {
3772 		biodone = bp->b_iodone;
3773 		bp->b_iodone = NULL;
3774 		(*biodone) (bp);
3775 		if (dropobj)
3776 			bufobj_wdrop(dropobj);
3777 		return;
3778 	}
3779 
3780 	bufdone_finish(bp);
3781 
3782 	if (dropobj)
3783 		bufobj_wdrop(dropobj);
3784 }
3785 
3786 void
3787 bufdone_finish(struct buf *bp)
3788 {
3789 	BUF_ASSERT_HELD(bp);
3790 
3791 	if (!LIST_EMPTY(&bp->b_dep))
3792 		buf_complete(bp);
3793 
3794 	if (bp->b_flags & B_VMIO) {
3795 		vm_ooffset_t foff;
3796 		vm_page_t m;
3797 		vm_object_t obj;
3798 		struct vnode *vp;
3799 		int bogus, i, iosize;
3800 
3801 		obj = bp->b_bufobj->bo_object;
3802 		KASSERT(obj->paging_in_progress >= bp->b_npages,
3803 		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3804 		    obj->paging_in_progress, bp->b_npages));
3805 
3806 		vp = bp->b_vp;
3807 		KASSERT(vp->v_holdcnt > 0,
3808 		    ("biodone_finish: vnode %p has zero hold count", vp));
3809 		KASSERT(vp->v_object != NULL,
3810 		    ("biodone_finish: vnode %p has no vm_object", vp));
3811 
3812 		foff = bp->b_offset;
3813 		KASSERT(bp->b_offset != NOOFFSET,
3814 		    ("biodone_finish: bp %p has no buffer offset", bp));
3815 
3816 		/*
3817 		 * Set B_CACHE if the op was a normal read and no error
3818 		 * occured.  B_CACHE is set for writes in the b*write()
3819 		 * routines.
3820 		 */
3821 		iosize = bp->b_bcount - bp->b_resid;
3822 		if (bp->b_iocmd == BIO_READ &&
3823 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3824 		    !(bp->b_ioflags & BIO_ERROR)) {
3825 			bp->b_flags |= B_CACHE;
3826 		}
3827 		bogus = 0;
3828 		VM_OBJECT_WLOCK(obj);
3829 		for (i = 0; i < bp->b_npages; i++) {
3830 			int bogusflag = 0;
3831 			int resid;
3832 
3833 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3834 			if (resid > iosize)
3835 				resid = iosize;
3836 
3837 			/*
3838 			 * cleanup bogus pages, restoring the originals
3839 			 */
3840 			m = bp->b_pages[i];
3841 			if (m == bogus_page) {
3842 				bogus = bogusflag = 1;
3843 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3844 				if (m == NULL)
3845 					panic("biodone: page disappeared!");
3846 				bp->b_pages[i] = m;
3847 			}
3848 			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3849 			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3850 			    (intmax_t)foff, (uintmax_t)m->pindex));
3851 
3852 			/*
3853 			 * In the write case, the valid and clean bits are
3854 			 * already changed correctly ( see bdwrite() ), so we
3855 			 * only need to do this here in the read case.
3856 			 */
3857 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3858 				KASSERT((m->dirty & vm_page_bits(foff &
3859 				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3860 				    " page %p has unexpected dirty bits", m));
3861 				vfs_page_set_valid(bp, foff, m);
3862 			}
3863 
3864 			vm_page_io_finish(m);
3865 			vm_object_pip_subtract(obj, 1);
3866 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3867 			iosize -= resid;
3868 		}
3869 		vm_object_pip_wakeupn(obj, 0);
3870 		VM_OBJECT_WUNLOCK(obj);
3871 		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3872 			BUF_CHECK_MAPPED(bp);
3873 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3874 			    bp->b_pages, bp->b_npages);
3875 		}
3876 	}
3877 
3878 	/*
3879 	 * For asynchronous completions, release the buffer now. The brelse
3880 	 * will do a wakeup there if necessary - so no need to do a wakeup
3881 	 * here in the async case. The sync case always needs to do a wakeup.
3882 	 */
3883 
3884 	if (bp->b_flags & B_ASYNC) {
3885 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3886 			brelse(bp);
3887 		else
3888 			bqrelse(bp);
3889 	} else
3890 		bdone(bp);
3891 }
3892 
3893 /*
3894  * This routine is called in lieu of iodone in the case of
3895  * incomplete I/O.  This keeps the busy status for pages
3896  * consistant.
3897  */
3898 void
3899 vfs_unbusy_pages(struct buf *bp)
3900 {
3901 	int i;
3902 	vm_object_t obj;
3903 	vm_page_t m;
3904 
3905 	runningbufwakeup(bp);
3906 	if (!(bp->b_flags & B_VMIO))
3907 		return;
3908 
3909 	obj = bp->b_bufobj->bo_object;
3910 	VM_OBJECT_WLOCK(obj);
3911 	for (i = 0; i < bp->b_npages; i++) {
3912 		m = bp->b_pages[i];
3913 		if (m == bogus_page) {
3914 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3915 			if (!m)
3916 				panic("vfs_unbusy_pages: page missing\n");
3917 			bp->b_pages[i] = m;
3918 			if ((bp->b_flags & B_UNMAPPED) == 0) {
3919 				BUF_CHECK_MAPPED(bp);
3920 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3921 				    bp->b_pages, bp->b_npages);
3922 			} else
3923 				BUF_CHECK_UNMAPPED(bp);
3924 		}
3925 		vm_object_pip_subtract(obj, 1);
3926 		vm_page_io_finish(m);
3927 	}
3928 	vm_object_pip_wakeupn(obj, 0);
3929 	VM_OBJECT_WUNLOCK(obj);
3930 }
3931 
3932 /*
3933  * vfs_page_set_valid:
3934  *
3935  *	Set the valid bits in a page based on the supplied offset.   The
3936  *	range is restricted to the buffer's size.
3937  *
3938  *	This routine is typically called after a read completes.
3939  */
3940 static void
3941 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3942 {
3943 	vm_ooffset_t eoff;
3944 
3945 	/*
3946 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3947 	 * page boundary and eoff is not greater than the end of the buffer.
3948 	 * The end of the buffer, in this case, is our file EOF, not the
3949 	 * allocation size of the buffer.
3950 	 */
3951 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3952 	if (eoff > bp->b_offset + bp->b_bcount)
3953 		eoff = bp->b_offset + bp->b_bcount;
3954 
3955 	/*
3956 	 * Set valid range.  This is typically the entire buffer and thus the
3957 	 * entire page.
3958 	 */
3959 	if (eoff > off)
3960 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3961 }
3962 
3963 /*
3964  * vfs_page_set_validclean:
3965  *
3966  *	Set the valid bits and clear the dirty bits in a page based on the
3967  *	supplied offset.   The range is restricted to the buffer's size.
3968  */
3969 static void
3970 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3971 {
3972 	vm_ooffset_t soff, eoff;
3973 
3974 	/*
3975 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3976 	 * page boundry or cross the end of the buffer.  The end of the
3977 	 * buffer, in this case, is our file EOF, not the allocation size
3978 	 * of the buffer.
3979 	 */
3980 	soff = off;
3981 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3982 	if (eoff > bp->b_offset + bp->b_bcount)
3983 		eoff = bp->b_offset + bp->b_bcount;
3984 
3985 	/*
3986 	 * Set valid range.  This is typically the entire buffer and thus the
3987 	 * entire page.
3988 	 */
3989 	if (eoff > soff) {
3990 		vm_page_set_validclean(
3991 		    m,
3992 		   (vm_offset_t) (soff & PAGE_MASK),
3993 		   (vm_offset_t) (eoff - soff)
3994 		);
3995 	}
3996 }
3997 
3998 /*
3999  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
4000  * any page is busy, drain the flag.
4001  */
4002 static void
4003 vfs_drain_busy_pages(struct buf *bp)
4004 {
4005 	vm_page_t m;
4006 	int i, last_busied;
4007 
4008 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4009 	last_busied = 0;
4010 	for (i = 0; i < bp->b_npages; i++) {
4011 		m = bp->b_pages[i];
4012 		if ((m->oflags & VPO_BUSY) != 0) {
4013 			for (; last_busied < i; last_busied++)
4014 				vm_page_busy(bp->b_pages[last_busied]);
4015 			while ((m->oflags & VPO_BUSY) != 0)
4016 				vm_page_sleep(m, "vbpage");
4017 		}
4018 	}
4019 	for (i = 0; i < last_busied; i++)
4020 		vm_page_wakeup(bp->b_pages[i]);
4021 }
4022 
4023 /*
4024  * This routine is called before a device strategy routine.
4025  * It is used to tell the VM system that paging I/O is in
4026  * progress, and treat the pages associated with the buffer
4027  * almost as being VPO_BUSY.  Also the object paging_in_progress
4028  * flag is handled to make sure that the object doesn't become
4029  * inconsistant.
4030  *
4031  * Since I/O has not been initiated yet, certain buffer flags
4032  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4033  * and should be ignored.
4034  */
4035 void
4036 vfs_busy_pages(struct buf *bp, int clear_modify)
4037 {
4038 	int i, bogus;
4039 	vm_object_t obj;
4040 	vm_ooffset_t foff;
4041 	vm_page_t m;
4042 
4043 	if (!(bp->b_flags & B_VMIO))
4044 		return;
4045 
4046 	obj = bp->b_bufobj->bo_object;
4047 	foff = bp->b_offset;
4048 	KASSERT(bp->b_offset != NOOFFSET,
4049 	    ("vfs_busy_pages: no buffer offset"));
4050 	VM_OBJECT_WLOCK(obj);
4051 	vfs_drain_busy_pages(bp);
4052 	if (bp->b_bufsize != 0)
4053 		vfs_setdirty_locked_object(bp);
4054 	bogus = 0;
4055 	for (i = 0; i < bp->b_npages; i++) {
4056 		m = bp->b_pages[i];
4057 
4058 		if ((bp->b_flags & B_CLUSTER) == 0) {
4059 			vm_object_pip_add(obj, 1);
4060 			vm_page_io_start(m);
4061 		}
4062 		/*
4063 		 * When readying a buffer for a read ( i.e
4064 		 * clear_modify == 0 ), it is important to do
4065 		 * bogus_page replacement for valid pages in
4066 		 * partially instantiated buffers.  Partially
4067 		 * instantiated buffers can, in turn, occur when
4068 		 * reconstituting a buffer from its VM backing store
4069 		 * base.  We only have to do this if B_CACHE is
4070 		 * clear ( which causes the I/O to occur in the
4071 		 * first place ).  The replacement prevents the read
4072 		 * I/O from overwriting potentially dirty VM-backed
4073 		 * pages.  XXX bogus page replacement is, uh, bogus.
4074 		 * It may not work properly with small-block devices.
4075 		 * We need to find a better way.
4076 		 */
4077 		if (clear_modify) {
4078 			pmap_remove_write(m);
4079 			vfs_page_set_validclean(bp, foff, m);
4080 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4081 		    (bp->b_flags & B_CACHE) == 0) {
4082 			bp->b_pages[i] = bogus_page;
4083 			bogus++;
4084 		}
4085 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4086 	}
4087 	VM_OBJECT_WUNLOCK(obj);
4088 	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4089 		BUF_CHECK_MAPPED(bp);
4090 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4091 		    bp->b_pages, bp->b_npages);
4092 	}
4093 }
4094 
4095 /*
4096  *	vfs_bio_set_valid:
4097  *
4098  *	Set the range within the buffer to valid.  The range is
4099  *	relative to the beginning of the buffer, b_offset.  Note that
4100  *	b_offset itself may be offset from the beginning of the first
4101  *	page.
4102  */
4103 void
4104 vfs_bio_set_valid(struct buf *bp, int base, int size)
4105 {
4106 	int i, n;
4107 	vm_page_t m;
4108 
4109 	if (!(bp->b_flags & B_VMIO))
4110 		return;
4111 
4112 	/*
4113 	 * Fixup base to be relative to beginning of first page.
4114 	 * Set initial n to be the maximum number of bytes in the
4115 	 * first page that can be validated.
4116 	 */
4117 	base += (bp->b_offset & PAGE_MASK);
4118 	n = PAGE_SIZE - (base & PAGE_MASK);
4119 
4120 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4121 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4122 		m = bp->b_pages[i];
4123 		if (n > size)
4124 			n = size;
4125 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4126 		base += n;
4127 		size -= n;
4128 		n = PAGE_SIZE;
4129 	}
4130 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4131 }
4132 
4133 /*
4134  *	vfs_bio_clrbuf:
4135  *
4136  *	If the specified buffer is a non-VMIO buffer, clear the entire
4137  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4138  *	validate only the previously invalid portions of the buffer.
4139  *	This routine essentially fakes an I/O, so we need to clear
4140  *	BIO_ERROR and B_INVAL.
4141  *
4142  *	Note that while we only theoretically need to clear through b_bcount,
4143  *	we go ahead and clear through b_bufsize.
4144  */
4145 void
4146 vfs_bio_clrbuf(struct buf *bp)
4147 {
4148 	int i, j, mask, sa, ea, slide;
4149 
4150 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4151 		clrbuf(bp);
4152 		return;
4153 	}
4154 	bp->b_flags &= ~B_INVAL;
4155 	bp->b_ioflags &= ~BIO_ERROR;
4156 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4157 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4158 	    (bp->b_offset & PAGE_MASK) == 0) {
4159 		if (bp->b_pages[0] == bogus_page)
4160 			goto unlock;
4161 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4162 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4163 		if ((bp->b_pages[0]->valid & mask) == mask)
4164 			goto unlock;
4165 		if ((bp->b_pages[0]->valid & mask) == 0) {
4166 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4167 			bp->b_pages[0]->valid |= mask;
4168 			goto unlock;
4169 		}
4170 	}
4171 	sa = bp->b_offset & PAGE_MASK;
4172 	slide = 0;
4173 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4174 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4175 		ea = slide & PAGE_MASK;
4176 		if (ea == 0)
4177 			ea = PAGE_SIZE;
4178 		if (bp->b_pages[i] == bogus_page)
4179 			continue;
4180 		j = sa / DEV_BSIZE;
4181 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4182 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4183 		if ((bp->b_pages[i]->valid & mask) == mask)
4184 			continue;
4185 		if ((bp->b_pages[i]->valid & mask) == 0)
4186 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4187 		else {
4188 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4189 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4190 					pmap_zero_page_area(bp->b_pages[i],
4191 					    sa, DEV_BSIZE);
4192 				}
4193 			}
4194 		}
4195 		bp->b_pages[i]->valid |= mask;
4196 	}
4197 unlock:
4198 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4199 	bp->b_resid = 0;
4200 }
4201 
4202 void
4203 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4204 {
4205 	vm_page_t m;
4206 	int i, n;
4207 
4208 	if ((bp->b_flags & B_UNMAPPED) == 0) {
4209 		BUF_CHECK_MAPPED(bp);
4210 		bzero(bp->b_data + base, size);
4211 	} else {
4212 		BUF_CHECK_UNMAPPED(bp);
4213 		n = PAGE_SIZE - (base & PAGE_MASK);
4214 		VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4215 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4216 			m = bp->b_pages[i];
4217 			if (n > size)
4218 				n = size;
4219 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4220 			base += n;
4221 			size -= n;
4222 			n = PAGE_SIZE;
4223 		}
4224 		VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4225 	}
4226 }
4227 
4228 /*
4229  * vm_hold_load_pages and vm_hold_free_pages get pages into
4230  * a buffers address space.  The pages are anonymous and are
4231  * not associated with a file object.
4232  */
4233 static void
4234 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4235 {
4236 	vm_offset_t pg;
4237 	vm_page_t p;
4238 	int index;
4239 
4240 	BUF_CHECK_MAPPED(bp);
4241 
4242 	to = round_page(to);
4243 	from = round_page(from);
4244 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4245 
4246 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4247 tryagain:
4248 		/*
4249 		 * note: must allocate system pages since blocking here
4250 		 * could interfere with paging I/O, no matter which
4251 		 * process we are.
4252 		 */
4253 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4254 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4255 		if (p == NULL) {
4256 			VM_WAIT;
4257 			goto tryagain;
4258 		}
4259 		pmap_qenter(pg, &p, 1);
4260 		bp->b_pages[index] = p;
4261 	}
4262 	bp->b_npages = index;
4263 }
4264 
4265 /* Return pages associated with this buf to the vm system */
4266 static void
4267 vm_hold_free_pages(struct buf *bp, int newbsize)
4268 {
4269 	vm_offset_t from;
4270 	vm_page_t p;
4271 	int index, newnpages;
4272 
4273 	BUF_CHECK_MAPPED(bp);
4274 
4275 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4276 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4277 	if (bp->b_npages > newnpages)
4278 		pmap_qremove(from, bp->b_npages - newnpages);
4279 	for (index = newnpages; index < bp->b_npages; index++) {
4280 		p = bp->b_pages[index];
4281 		bp->b_pages[index] = NULL;
4282 		if (p->busy != 0)
4283 			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4284 			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4285 		p->wire_count--;
4286 		vm_page_free(p);
4287 		atomic_subtract_int(&cnt.v_wire_count, 1);
4288 	}
4289 	bp->b_npages = newnpages;
4290 }
4291 
4292 /*
4293  * Map an IO request into kernel virtual address space.
4294  *
4295  * All requests are (re)mapped into kernel VA space.
4296  * Notice that we use b_bufsize for the size of the buffer
4297  * to be mapped.  b_bcount might be modified by the driver.
4298  *
4299  * Note that even if the caller determines that the address space should
4300  * be valid, a race or a smaller-file mapped into a larger space may
4301  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4302  * check the return value.
4303  */
4304 int
4305 vmapbuf(struct buf *bp, int mapbuf)
4306 {
4307 	caddr_t kva;
4308 	vm_prot_t prot;
4309 	int pidx;
4310 
4311 	if (bp->b_bufsize < 0)
4312 		return (-1);
4313 	prot = VM_PROT_READ;
4314 	if (bp->b_iocmd == BIO_READ)
4315 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4316 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4317 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4318 	    btoc(MAXPHYS))) < 0)
4319 		return (-1);
4320 	bp->b_npages = pidx;
4321 	if (mapbuf || !unmapped_buf_allowed) {
4322 		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4323 		kva = bp->b_saveaddr;
4324 		bp->b_saveaddr = bp->b_data;
4325 		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4326 		bp->b_flags &= ~B_UNMAPPED;
4327 	} else {
4328 		bp->b_flags |= B_UNMAPPED;
4329 		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4330 		bp->b_saveaddr = bp->b_data;
4331 		bp->b_data = unmapped_buf;
4332 	}
4333 	return(0);
4334 }
4335 
4336 /*
4337  * Free the io map PTEs associated with this IO operation.
4338  * We also invalidate the TLB entries and restore the original b_addr.
4339  */
4340 void
4341 vunmapbuf(struct buf *bp)
4342 {
4343 	int npages;
4344 
4345 	npages = bp->b_npages;
4346 	if (bp->b_flags & B_UNMAPPED)
4347 		bp->b_flags &= ~B_UNMAPPED;
4348 	else
4349 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4350 	vm_page_unhold_pages(bp->b_pages, npages);
4351 
4352 	bp->b_data = bp->b_saveaddr;
4353 }
4354 
4355 void
4356 bdone(struct buf *bp)
4357 {
4358 	struct mtx *mtxp;
4359 
4360 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4361 	mtx_lock(mtxp);
4362 	bp->b_flags |= B_DONE;
4363 	wakeup(bp);
4364 	mtx_unlock(mtxp);
4365 }
4366 
4367 void
4368 bwait(struct buf *bp, u_char pri, const char *wchan)
4369 {
4370 	struct mtx *mtxp;
4371 
4372 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4373 	mtx_lock(mtxp);
4374 	while ((bp->b_flags & B_DONE) == 0)
4375 		msleep(bp, mtxp, pri, wchan, 0);
4376 	mtx_unlock(mtxp);
4377 }
4378 
4379 int
4380 bufsync(struct bufobj *bo, int waitfor)
4381 {
4382 
4383 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4384 }
4385 
4386 void
4387 bufstrategy(struct bufobj *bo, struct buf *bp)
4388 {
4389 	int i = 0;
4390 	struct vnode *vp;
4391 
4392 	vp = bp->b_vp;
4393 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4394 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4395 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4396 	i = VOP_STRATEGY(vp, bp);
4397 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4398 }
4399 
4400 void
4401 bufobj_wrefl(struct bufobj *bo)
4402 {
4403 
4404 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4405 	ASSERT_BO_LOCKED(bo);
4406 	bo->bo_numoutput++;
4407 }
4408 
4409 void
4410 bufobj_wref(struct bufobj *bo)
4411 {
4412 
4413 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4414 	BO_LOCK(bo);
4415 	bo->bo_numoutput++;
4416 	BO_UNLOCK(bo);
4417 }
4418 
4419 void
4420 bufobj_wdrop(struct bufobj *bo)
4421 {
4422 
4423 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4424 	BO_LOCK(bo);
4425 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4426 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4427 		bo->bo_flag &= ~BO_WWAIT;
4428 		wakeup(&bo->bo_numoutput);
4429 	}
4430 	BO_UNLOCK(bo);
4431 }
4432 
4433 int
4434 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4435 {
4436 	int error;
4437 
4438 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4439 	ASSERT_BO_LOCKED(bo);
4440 	error = 0;
4441 	while (bo->bo_numoutput) {
4442 		bo->bo_flag |= BO_WWAIT;
4443 		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
4444 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4445 		if (error)
4446 			break;
4447 	}
4448 	return (error);
4449 }
4450 
4451 void
4452 bpin(struct buf *bp)
4453 {
4454 	struct mtx *mtxp;
4455 
4456 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4457 	mtx_lock(mtxp);
4458 	bp->b_pin_count++;
4459 	mtx_unlock(mtxp);
4460 }
4461 
4462 void
4463 bunpin(struct buf *bp)
4464 {
4465 	struct mtx *mtxp;
4466 
4467 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4468 	mtx_lock(mtxp);
4469 	if (--bp->b_pin_count == 0)
4470 		wakeup(bp);
4471 	mtx_unlock(mtxp);
4472 }
4473 
4474 void
4475 bunpin_wait(struct buf *bp)
4476 {
4477 	struct mtx *mtxp;
4478 
4479 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4480 	mtx_lock(mtxp);
4481 	while (bp->b_pin_count > 0)
4482 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4483 	mtx_unlock(mtxp);
4484 }
4485 
4486 /*
4487  * Set bio_data or bio_ma for struct bio from the struct buf.
4488  */
4489 void
4490 bdata2bio(struct buf *bp, struct bio *bip)
4491 {
4492 
4493 	if ((bp->b_flags & B_UNMAPPED) != 0) {
4494 		KASSERT(unmapped_buf_allowed, ("unmapped"));
4495 		bip->bio_ma = bp->b_pages;
4496 		bip->bio_ma_n = bp->b_npages;
4497 		bip->bio_data = unmapped_buf;
4498 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4499 		bip->bio_flags |= BIO_UNMAPPED;
4500 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4501 		    PAGE_SIZE == bp->b_npages,
4502 		    ("Buffer %p too short: %d %d %d", bp, bip->bio_ma_offset,
4503 		    bip->bio_length, bip->bio_ma_n));
4504 	} else {
4505 		bip->bio_data = bp->b_data;
4506 		bip->bio_ma = NULL;
4507 	}
4508 }
4509 
4510 #include "opt_ddb.h"
4511 #ifdef DDB
4512 #include <ddb/ddb.h>
4513 
4514 /* DDB command to show buffer data */
4515 DB_SHOW_COMMAND(buffer, db_show_buffer)
4516 {
4517 	/* get args */
4518 	struct buf *bp = (struct buf *)addr;
4519 
4520 	if (!have_addr) {
4521 		db_printf("usage: show buffer <addr>\n");
4522 		return;
4523 	}
4524 
4525 	db_printf("buf at %p\n", bp);
4526 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4527 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4528 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4529 	db_printf(
4530 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4531 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4532 	    "b_dep = %p\n",
4533 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4534 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4535 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4536 	if (bp->b_npages) {
4537 		int i;
4538 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4539 		for (i = 0; i < bp->b_npages; i++) {
4540 			vm_page_t m;
4541 			m = bp->b_pages[i];
4542 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4543 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4544 			if ((i + 1) < bp->b_npages)
4545 				db_printf(",");
4546 		}
4547 		db_printf("\n");
4548 	}
4549 	db_printf(" ");
4550 	BUF_LOCKPRINTINFO(bp);
4551 }
4552 
4553 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4554 {
4555 	struct buf *bp;
4556 	int i;
4557 
4558 	for (i = 0; i < nbuf; i++) {
4559 		bp = &buf[i];
4560 		if (BUF_ISLOCKED(bp)) {
4561 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4562 			db_printf("\n");
4563 		}
4564 	}
4565 }
4566 
4567 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4568 {
4569 	struct vnode *vp;
4570 	struct buf *bp;
4571 
4572 	if (!have_addr) {
4573 		db_printf("usage: show vnodebufs <addr>\n");
4574 		return;
4575 	}
4576 	vp = (struct vnode *)addr;
4577 	db_printf("Clean buffers:\n");
4578 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4579 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4580 		db_printf("\n");
4581 	}
4582 	db_printf("Dirty buffers:\n");
4583 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4584 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4585 		db_printf("\n");
4586 	}
4587 }
4588 
4589 DB_COMMAND(countfreebufs, db_coundfreebufs)
4590 {
4591 	struct buf *bp;
4592 	int i, used = 0, nfree = 0;
4593 
4594 	if (have_addr) {
4595 		db_printf("usage: countfreebufs\n");
4596 		return;
4597 	}
4598 
4599 	for (i = 0; i < nbuf; i++) {
4600 		bp = &buf[i];
4601 		if ((bp->b_vflags & BV_INFREECNT) != 0)
4602 			nfree++;
4603 		else
4604 			used++;
4605 	}
4606 
4607 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4608 	    nfree + used);
4609 	db_printf("numfreebuffers is %d\n", numfreebuffers);
4610 }
4611 #endif /* DDB */
4612