xref: /freebsd/sys/kern/vfs_bio.c (revision d2387d42b8da231a5b95cbc313825fb2aadf26f6)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  */
14 
15 /*
16  * this file contains a new buffer I/O scheme implementing a coherent
17  * VM object and buffer cache scheme.  Pains have been taken to make
18  * sure that the performance degradation associated with schemes such
19  * as this is not realized.
20  *
21  * Author:  John S. Dyson
22  * Significant help during the development and debugging phases
23  * had been provided by David Greenman, also of the FreeBSD core team.
24  *
25  * see man buf(9) for more info.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bio.h>
34 #include <sys/conf.h>
35 #include <sys/buf.h>
36 #include <sys/devicestat.h>
37 #include <sys/eventhandler.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mount.h>
41 #include <sys/mutex.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sysctl.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include "opt_directio.h"
58 #include "opt_swap.h"
59 
60 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61 
62 struct	bio_ops bioops;		/* I/O operation notification */
63 
64 static int ibwrite(struct buf *);
65 
66 struct	buf_ops buf_ops_bio = {
67 	"buf_ops_bio",
68 	ibwrite
69 };
70 
71 /*
72  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
73  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
74  */
75 struct buf *buf;		/* buffer header pool */
76 
77 static struct proc *bufdaemonproc;
78 
79 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
80 		vm_offset_t to);
81 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
82 		vm_offset_t to);
83 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84 			       int pageno, vm_page_t m);
85 static void vfs_clean_pages(struct buf * bp);
86 static void vfs_setdirty(struct buf *bp);
87 static void vfs_vmio_release(struct buf *bp);
88 static void vfs_backgroundwritedone(struct buf *bp);
89 static int vfs_bio_clcheck(struct vnode *vp, int size,
90 		daddr_t lblkno, daddr_t blkno);
91 static int flushbufqueues(int flushdeps);
92 static void buf_daemon(void);
93 void bremfreel(struct buf * bp);
94 
95 int vmiodirenable = TRUE;
96 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
97     "Use the VM system for directory writes");
98 int runningbufspace;
99 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
100     "Amount of presently outstanding async buffer io");
101 static int bufspace;
102 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
103     "KVA memory used for bufs");
104 static int maxbufspace;
105 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
106     "Maximum allowed value of bufspace (including buf_daemon)");
107 static int bufmallocspace;
108 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
109     "Amount of malloced memory for buffers");
110 static int maxbufmallocspace;
111 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
112     "Maximum amount of malloced memory for buffers");
113 static int lobufspace;
114 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
115     "Minimum amount of buffers we want to have");
116 static int hibufspace;
117 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
118     "Maximum allowed value of bufspace (excluding buf_daemon)");
119 static int bufreusecnt;
120 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
121     "Number of times we have reused a buffer");
122 static int buffreekvacnt;
123 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
124     "Number of times we have freed the KVA space from some buffer");
125 static int bufdefragcnt;
126 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
127     "Number of times we have had to repeat buffer allocation to defragment");
128 static int lorunningspace;
129 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
130     "Minimum preferred space used for in-progress I/O");
131 static int hirunningspace;
132 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
133     "Maximum amount of space to use for in-progress I/O");
134 static int dirtybufferflushes;
135 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
136     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
137 static int altbufferflushes;
138 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
139     0, "Number of fsync flushes to limit dirty buffers");
140 static int recursiveflushes;
141 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
142     0, "Number of flushes skipped due to being recursive");
143 static int numdirtybuffers;
144 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
145     "Number of buffers that are dirty (has unwritten changes) at the moment");
146 static int lodirtybuffers;
147 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
148     "How many buffers we want to have free before bufdaemon can sleep");
149 static int hidirtybuffers;
150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
151     "When the number of dirty buffers is considered severe");
152 static int dirtybufthresh;
153 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
154     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
155 static int numfreebuffers;
156 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
157     "Number of free buffers");
158 static int lofreebuffers;
159 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
160    "XXX Unused");
161 static int hifreebuffers;
162 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
163    "XXX Complicatedly unused");
164 static int getnewbufcalls;
165 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
166    "Number of calls to getnewbuf");
167 static int getnewbufrestarts;
168 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
169     "Number of times getnewbuf has had to restart a buffer aquisition");
170 static int dobkgrdwrite = 1;
171 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
172     "Do background writes (honoring the BV_BKGRDWRITE flag)?");
173 
174 /*
175  * Wakeup point for bufdaemon, as well as indicator of whether it is already
176  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
177  * is idling.
178  */
179 static int bd_request;
180 
181 /*
182  * This lock synchronizes access to bd_request.
183  */
184 static struct mtx bdlock;
185 
186 /*
187  * bogus page -- for I/O to/from partially complete buffers
188  * this is a temporary solution to the problem, but it is not
189  * really that bad.  it would be better to split the buffer
190  * for input in the case of buffers partially already in memory,
191  * but the code is intricate enough already.
192  */
193 vm_page_t bogus_page;
194 
195 /*
196  * Synchronization (sleep/wakeup) variable for active buffer space requests.
197  * Set when wait starts, cleared prior to wakeup().
198  * Used in runningbufwakeup() and waitrunningbufspace().
199  */
200 static int runningbufreq;
201 
202 /*
203  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
204  * waitrunningbufspace().
205  */
206 static struct mtx rbreqlock;
207 
208 /*
209  * Synchronization (sleep/wakeup) variable for buffer requests.
210  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
211  * by and/or.
212  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
213  * getnewbuf(), and getblk().
214  */
215 static int needsbuffer;
216 
217 /*
218  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
219  */
220 static struct mtx nblock;
221 
222 /*
223  * Lock that protects against bwait()/bdone()/B_DONE races.
224  */
225 
226 static struct mtx bdonelock;
227 
228 /*
229  * Definitions for the buffer free lists.
230  */
231 #define BUFFER_QUEUES	5	/* number of free buffer queues */
232 
233 #define QUEUE_NONE	0	/* on no queue */
234 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
235 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
236 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
237 #define QUEUE_EMPTY	4	/* empty buffer headers */
238 
239 /* Queues for free buffers with various properties */
240 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
241 
242 /* Lock for the bufqueues */
243 static struct mtx bqlock;
244 
245 /*
246  * Single global constant for BUF_WMESG, to avoid getting multiple references.
247  * buf_wmesg is referred from macros.
248  */
249 const char *buf_wmesg = BUF_WMESG;
250 
251 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
252 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
253 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
254 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
255 
256 #ifdef DIRECTIO
257 extern void ffs_rawread_setup(void);
258 #endif /* DIRECTIO */
259 /*
260  *	numdirtywakeup:
261  *
262  *	If someone is blocked due to there being too many dirty buffers,
263  *	and numdirtybuffers is now reasonable, wake them up.
264  */
265 
266 static __inline void
267 numdirtywakeup(int level)
268 {
269 	if (numdirtybuffers <= level) {
270 		mtx_lock(&nblock);
271 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
272 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
273 			wakeup(&needsbuffer);
274 		}
275 		mtx_unlock(&nblock);
276 	}
277 }
278 
279 /*
280  *	bufspacewakeup:
281  *
282  *	Called when buffer space is potentially available for recovery.
283  *	getnewbuf() will block on this flag when it is unable to free
284  *	sufficient buffer space.  Buffer space becomes recoverable when
285  *	bp's get placed back in the queues.
286  */
287 
288 static __inline void
289 bufspacewakeup(void)
290 {
291 	/*
292 	 * If someone is waiting for BUF space, wake them up.  Even
293 	 * though we haven't freed the kva space yet, the waiting
294 	 * process will be able to now.
295 	 */
296 	mtx_lock(&nblock);
297 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
298 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
299 		wakeup(&needsbuffer);
300 	}
301 	mtx_unlock(&nblock);
302 }
303 
304 /*
305  * runningbufwakeup() - in-progress I/O accounting.
306  *
307  */
308 static __inline void
309 runningbufwakeup(struct buf *bp)
310 {
311 	if (bp->b_runningbufspace) {
312 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
313 		bp->b_runningbufspace = 0;
314 		mtx_lock(&rbreqlock);
315 		if (runningbufreq && runningbufspace <= lorunningspace) {
316 			runningbufreq = 0;
317 			wakeup(&runningbufreq);
318 		}
319 		mtx_unlock(&rbreqlock);
320 	}
321 }
322 
323 /*
324  *	bufcountwakeup:
325  *
326  *	Called when a buffer has been added to one of the free queues to
327  *	account for the buffer and to wakeup anyone waiting for free buffers.
328  *	This typically occurs when large amounts of metadata are being handled
329  *	by the buffer cache ( else buffer space runs out first, usually ).
330  */
331 
332 static __inline void
333 bufcountwakeup(void)
334 {
335 	atomic_add_int(&numfreebuffers, 1);
336 	mtx_lock(&nblock);
337 	if (needsbuffer) {
338 		needsbuffer &= ~VFS_BIO_NEED_ANY;
339 		if (numfreebuffers >= hifreebuffers)
340 			needsbuffer &= ~VFS_BIO_NEED_FREE;
341 		wakeup(&needsbuffer);
342 	}
343 	mtx_unlock(&nblock);
344 }
345 
346 /*
347  *	waitrunningbufspace()
348  *
349  *	runningbufspace is a measure of the amount of I/O currently
350  *	running.  This routine is used in async-write situations to
351  *	prevent creating huge backups of pending writes to a device.
352  *	Only asynchronous writes are governed by this function.
353  *
354  *	Reads will adjust runningbufspace, but will not block based on it.
355  *	The read load has a side effect of reducing the allowed write load.
356  *
357  *	This does NOT turn an async write into a sync write.  It waits
358  *	for earlier writes to complete and generally returns before the
359  *	caller's write has reached the device.
360  */
361 static __inline void
362 waitrunningbufspace(void)
363 {
364 	mtx_lock(&rbreqlock);
365 	while (runningbufspace > hirunningspace) {
366 		++runningbufreq;
367 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
368 	}
369 	mtx_unlock(&rbreqlock);
370 }
371 
372 
373 /*
374  *	vfs_buf_test_cache:
375  *
376  *	Called when a buffer is extended.  This function clears the B_CACHE
377  *	bit if the newly extended portion of the buffer does not contain
378  *	valid data.
379  */
380 static __inline__
381 void
382 vfs_buf_test_cache(struct buf *bp,
383 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
384 		  vm_page_t m)
385 {
386 	GIANT_REQUIRED;
387 
388 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
389 	if (bp->b_flags & B_CACHE) {
390 		int base = (foff + off) & PAGE_MASK;
391 		if (vm_page_is_valid(m, base, size) == 0)
392 			bp->b_flags &= ~B_CACHE;
393 	}
394 }
395 
396 /* Wake up the buffer deamon if necessary */
397 static __inline__
398 void
399 bd_wakeup(int dirtybuflevel)
400 {
401 	mtx_lock(&bdlock);
402 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
403 		bd_request = 1;
404 		wakeup(&bd_request);
405 	}
406 	mtx_unlock(&bdlock);
407 }
408 
409 /*
410  * bd_speedup - speedup the buffer cache flushing code
411  */
412 
413 static __inline__
414 void
415 bd_speedup(void)
416 {
417 	bd_wakeup(1);
418 }
419 
420 /*
421  * Calculating buffer cache scaling values and reserve space for buffer
422  * headers.  This is called during low level kernel initialization and
423  * may be called more then once.  We CANNOT write to the memory area
424  * being reserved at this time.
425  */
426 caddr_t
427 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
428 {
429 	/*
430 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
431 	 * PAGE_SIZE is >= 1K)
432 	 */
433 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
434 
435 	/*
436 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
437 	 * For the first 64MB of ram nominally allocate sufficient buffers to
438 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
439 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
440 	 * the buffer cache we limit the eventual kva reservation to
441 	 * maxbcache bytes.
442 	 *
443 	 * factor represents the 1/4 x ram conversion.
444 	 */
445 	if (nbuf == 0) {
446 		int factor = 4 * BKVASIZE / 1024;
447 
448 		nbuf = 50;
449 		if (physmem_est > 4096)
450 			nbuf += min((physmem_est - 4096) / factor,
451 			    65536 / factor);
452 		if (physmem_est > 65536)
453 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
454 
455 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
456 			nbuf = maxbcache / BKVASIZE;
457 	}
458 
459 #if 0
460 	/*
461 	 * Do not allow the buffer_map to be more then 1/2 the size of the
462 	 * kernel_map.
463 	 */
464 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
465 	    (BKVASIZE * 2)) {
466 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
467 		    (BKVASIZE * 2);
468 		printf("Warning: nbufs capped at %d\n", nbuf);
469 	}
470 #endif
471 
472 	/*
473 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
474 	 * We have no less then 16 and no more then 256.
475 	 */
476 	nswbuf = max(min(nbuf/4, 256), 16);
477 #ifdef NSWBUF_MIN
478 	if (nswbuf < NSWBUF_MIN)
479 		nswbuf = NSWBUF_MIN;
480 #endif
481 #ifdef DIRECTIO
482 	ffs_rawread_setup();
483 #endif
484 
485 	/*
486 	 * Reserve space for the buffer cache buffers
487 	 */
488 	swbuf = (void *)v;
489 	v = (caddr_t)(swbuf + nswbuf);
490 	buf = (void *)v;
491 	v = (caddr_t)(buf + nbuf);
492 
493 	return(v);
494 }
495 
496 /* Initialize the buffer subsystem.  Called before use of any buffers. */
497 void
498 bufinit(void)
499 {
500 	struct buf *bp;
501 	int i;
502 
503 	GIANT_REQUIRED;
504 
505 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
506 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
507 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
508 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
509 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
510 
511 	/* next, make a null set of free lists */
512 	for (i = 0; i < BUFFER_QUEUES; i++)
513 		TAILQ_INIT(&bufqueues[i]);
514 
515 	/* finally, initialize each buffer header and stick on empty q */
516 	for (i = 0; i < nbuf; i++) {
517 		bp = &buf[i];
518 		bzero(bp, sizeof *bp);
519 		bp->b_flags = B_INVAL;	/* we're just an empty header */
520 		bp->b_dev = NODEV;
521 		bp->b_rcred = NOCRED;
522 		bp->b_wcred = NOCRED;
523 		bp->b_qindex = QUEUE_EMPTY;
524 		bp->b_vflags = 0;
525 		bp->b_xflags = 0;
526 		LIST_INIT(&bp->b_dep);
527 		BUF_LOCKINIT(bp);
528 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
529 	}
530 
531 	/*
532 	 * maxbufspace is the absolute maximum amount of buffer space we are
533 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
534 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
535 	 * used by most other processes.  The differential is required to
536 	 * ensure that buf_daemon is able to run when other processes might
537 	 * be blocked waiting for buffer space.
538 	 *
539 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
540 	 * this may result in KVM fragmentation which is not handled optimally
541 	 * by the system.
542 	 */
543 	maxbufspace = nbuf * BKVASIZE;
544 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
545 	lobufspace = hibufspace - MAXBSIZE;
546 
547 	lorunningspace = 512 * 1024;
548 	hirunningspace = 1024 * 1024;
549 
550 /*
551  * Limit the amount of malloc memory since it is wired permanently into
552  * the kernel space.  Even though this is accounted for in the buffer
553  * allocation, we don't want the malloced region to grow uncontrolled.
554  * The malloc scheme improves memory utilization significantly on average
555  * (small) directories.
556  */
557 	maxbufmallocspace = hibufspace / 20;
558 
559 /*
560  * Reduce the chance of a deadlock occuring by limiting the number
561  * of delayed-write dirty buffers we allow to stack up.
562  */
563 	hidirtybuffers = nbuf / 4 + 20;
564 	dirtybufthresh = hidirtybuffers * 9 / 10;
565 	numdirtybuffers = 0;
566 /*
567  * To support extreme low-memory systems, make sure hidirtybuffers cannot
568  * eat up all available buffer space.  This occurs when our minimum cannot
569  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
570  * BKVASIZE'd (8K) buffers.
571  */
572 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
573 		hidirtybuffers >>= 1;
574 	}
575 	lodirtybuffers = hidirtybuffers / 2;
576 
577 /*
578  * Try to keep the number of free buffers in the specified range,
579  * and give special processes (e.g. like buf_daemon) access to an
580  * emergency reserve.
581  */
582 	lofreebuffers = nbuf / 18 + 5;
583 	hifreebuffers = 2 * lofreebuffers;
584 	numfreebuffers = nbuf;
585 
586 /*
587  * Maximum number of async ops initiated per buf_daemon loop.  This is
588  * somewhat of a hack at the moment, we really need to limit ourselves
589  * based on the number of bytes of I/O in-transit that were initiated
590  * from buf_daemon.
591  */
592 
593 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
594 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
595 }
596 
597 /*
598  * bfreekva() - free the kva allocation for a buffer.
599  *
600  *	Must be called at splbio() or higher as this is the only locking for
601  *	buffer_map.
602  *
603  *	Since this call frees up buffer space, we call bufspacewakeup().
604  */
605 static void
606 bfreekva(struct buf * bp)
607 {
608 	GIANT_REQUIRED;
609 
610 	if (bp->b_kvasize) {
611 		atomic_add_int(&buffreekvacnt, 1);
612 		atomic_subtract_int(&bufspace, bp->b_kvasize);
613 		vm_map_delete(buffer_map,
614 		    (vm_offset_t) bp->b_kvabase,
615 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
616 		);
617 		bp->b_kvasize = 0;
618 		bufspacewakeup();
619 	}
620 }
621 
622 /*
623  *	bremfree:
624  *
625  *	Remove the buffer from the appropriate free list.
626  */
627 void
628 bremfree(struct buf * bp)
629 {
630 	mtx_lock(&bqlock);
631 	bremfreel(bp);
632 	mtx_unlock(&bqlock);
633 }
634 
635 void
636 bremfreel(struct buf * bp)
637 {
638 	int s = splbio();
639 	int old_qindex = bp->b_qindex;
640 
641 	GIANT_REQUIRED;
642 
643 	if (bp->b_qindex != QUEUE_NONE) {
644 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
645 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
646 		bp->b_qindex = QUEUE_NONE;
647 	} else {
648 		if (BUF_REFCNT(bp) <= 1)
649 			panic("bremfree: removing a buffer not on a queue");
650 	}
651 
652 	/*
653 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
654 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
655 	 * the buffer was free and we must decrement numfreebuffers.
656 	 */
657 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
658 		switch(old_qindex) {
659 		case QUEUE_DIRTY:
660 		case QUEUE_CLEAN:
661 		case QUEUE_EMPTY:
662 		case QUEUE_EMPTYKVA:
663 			atomic_subtract_int(&numfreebuffers, 1);
664 			break;
665 		default:
666 			break;
667 		}
668 	}
669 	splx(s);
670 }
671 
672 
673 /*
674  * Get a buffer with the specified data.  Look in the cache first.  We
675  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
676  * is set, the buffer is valid and we do not have to do anything ( see
677  * getblk() ).  This is really just a special case of breadn().
678  */
679 int
680 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
681     struct buf ** bpp)
682 {
683 
684 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
685 }
686 
687 /*
688  * Operates like bread, but also starts asynchronous I/O on
689  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
690  * to initiating I/O . If B_CACHE is set, the buffer is valid
691  * and we do not have to do anything.
692  */
693 int
694 breadn(struct vnode * vp, daddr_t blkno, int size,
695     daddr_t * rablkno, int *rabsize,
696     int cnt, struct ucred * cred, struct buf ** bpp)
697 {
698 	struct buf *bp, *rabp;
699 	int i;
700 	int rv = 0, readwait = 0;
701 
702 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
703 
704 	/* if not found in cache, do some I/O */
705 	if ((bp->b_flags & B_CACHE) == 0) {
706 		if (curthread != PCPU_GET(idlethread))
707 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
708 		bp->b_iocmd = BIO_READ;
709 		bp->b_flags &= ~B_INVAL;
710 		bp->b_ioflags &= ~BIO_ERROR;
711 		if (bp->b_rcred == NOCRED && cred != NOCRED)
712 			bp->b_rcred = crhold(cred);
713 		vfs_busy_pages(bp, 0);
714 		bp->b_iooffset = dbtob(bp->b_blkno);
715 		if (vp->v_type == VCHR)
716 			VOP_SPECSTRATEGY(vp, bp);
717 		else
718 			VOP_STRATEGY(vp, bp);
719 		++readwait;
720 	}
721 
722 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
723 		if (inmem(vp, *rablkno))
724 			continue;
725 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
726 
727 		if ((rabp->b_flags & B_CACHE) == 0) {
728 			if (curthread != PCPU_GET(idlethread))
729 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
730 			rabp->b_flags |= B_ASYNC;
731 			rabp->b_flags &= ~B_INVAL;
732 			rabp->b_ioflags &= ~BIO_ERROR;
733 			rabp->b_iocmd = BIO_READ;
734 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
735 				rabp->b_rcred = crhold(cred);
736 			vfs_busy_pages(rabp, 0);
737 			BUF_KERNPROC(rabp);
738 			rabp->b_iooffset = dbtob(rabp->b_blkno);
739 			if (vp->v_type == VCHR)
740 				VOP_SPECSTRATEGY(vp, rabp);
741 			else
742 				VOP_STRATEGY(vp, rabp);
743 		} else {
744 			brelse(rabp);
745 		}
746 	}
747 
748 	if (readwait) {
749 		rv = bufwait(bp);
750 	}
751 	return (rv);
752 }
753 
754 /*
755  * Write, release buffer on completion.  (Done by iodone
756  * if async).  Do not bother writing anything if the buffer
757  * is invalid.
758  *
759  * Note that we set B_CACHE here, indicating that buffer is
760  * fully valid and thus cacheable.  This is true even of NFS
761  * now so we set it generally.  This could be set either here
762  * or in biodone() since the I/O is synchronous.  We put it
763  * here.
764  */
765 int
766 bwrite(struct buf * bp)
767 {
768 
769 	KASSERT(bp->b_op != NULL && bp->b_op->bop_write != NULL,
770 	    ("Martian buffer %p in bwrite: nobody to write it.", bp));
771 	return (bp->b_op->bop_write(bp));
772 }
773 
774 static int
775 ibwrite(struct buf * bp)
776 {
777 	int oldflags, s;
778 	struct buf *newbp;
779 
780 	if (bp->b_flags & B_INVAL) {
781 		brelse(bp);
782 		return (0);
783 	}
784 
785 	oldflags = bp->b_flags;
786 
787 	if (BUF_REFCNT(bp) == 0)
788 		panic("ibwrite: buffer is not busy???");
789 	s = splbio();
790 	/*
791 	 * If a background write is already in progress, delay
792 	 * writing this block if it is asynchronous. Otherwise
793 	 * wait for the background write to complete.
794 	 */
795 	VI_LOCK(bp->b_vp);
796 	if (bp->b_vflags & BV_BKGRDINPROG) {
797 		if (bp->b_flags & B_ASYNC) {
798 			VI_UNLOCK(bp->b_vp);
799 			splx(s);
800 			bdwrite(bp);
801 			return (0);
802 		}
803 		bp->b_vflags |= BV_BKGRDWAIT;
804 		msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
805 		if (bp->b_vflags & BV_BKGRDINPROG)
806 			panic("ibwrite: still writing");
807 	}
808 	VI_UNLOCK(bp->b_vp);
809 
810 	/* Mark the buffer clean */
811 	bundirty(bp);
812 
813 	/*
814 	 * If this buffer is marked for background writing and we
815 	 * do not have to wait for it, make a copy and write the
816 	 * copy so as to leave this buffer ready for further use.
817 	 *
818 	 * This optimization eats a lot of memory.  If we have a page
819 	 * or buffer shortfall we can't do it.
820 	 */
821 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
822 	    (bp->b_flags & B_ASYNC) &&
823 	    !vm_page_count_severe() &&
824 	    !buf_dirty_count_severe()) {
825 		if (bp->b_iodone != NULL) {
826 			printf("bp->b_iodone = %p\n", bp->b_iodone);
827 			panic("ibwrite: need chained iodone");
828 		}
829 
830 		/* get a new block */
831 		newbp = geteblk(bp->b_bufsize);
832 
833 		/*
834 		 * set it to be identical to the old block.  We have to
835 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
836 		 * to avoid confusing the splay tree and gbincore().
837 		 */
838 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
839 		newbp->b_lblkno = bp->b_lblkno;
840 		newbp->b_xflags |= BX_BKGRDMARKER;
841 		VI_LOCK(bp->b_vp);
842 		bp->b_vflags |= BV_BKGRDINPROG;
843 		bgetvp(bp->b_vp, newbp);
844 		VI_UNLOCK(bp->b_vp);
845 		newbp->b_blkno = bp->b_blkno;
846 		newbp->b_offset = bp->b_offset;
847 		newbp->b_iodone = vfs_backgroundwritedone;
848 		newbp->b_flags |= B_ASYNC;
849 		newbp->b_flags &= ~B_INVAL;
850 
851 		/* move over the dependencies */
852 		if (LIST_FIRST(&bp->b_dep) != NULL)
853 			buf_movedeps(bp, newbp);
854 
855 		/*
856 		 * Initiate write on the copy, release the original to
857 		 * the B_LOCKED queue so that it cannot go away until
858 		 * the background write completes. If not locked it could go
859 		 * away and then be reconstituted while it was being written.
860 		 * If the reconstituted buffer were written, we could end up
861 		 * with two background copies being written at the same time.
862 		 */
863 		bqrelse(bp);
864 		bp = newbp;
865 	}
866 
867 	bp->b_flags &= ~B_DONE;
868 	bp->b_ioflags &= ~BIO_ERROR;
869 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
870 	bp->b_iocmd = BIO_WRITE;
871 
872 	VI_LOCK(bp->b_vp);
873 	bp->b_vp->v_numoutput++;
874 	VI_UNLOCK(bp->b_vp);
875 	vfs_busy_pages(bp, 1);
876 
877 	/*
878 	 * Normal bwrites pipeline writes
879 	 */
880 	bp->b_runningbufspace = bp->b_bufsize;
881 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
882 
883 	if (curthread != PCPU_GET(idlethread))
884 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
885 	splx(s);
886 	if (oldflags & B_ASYNC)
887 		BUF_KERNPROC(bp);
888 	bp->b_iooffset = dbtob(bp->b_blkno);
889 	if (bp->b_vp->v_type == VCHR) {
890 		if (!buf_prewrite(bp->b_vp, bp))
891 			VOP_SPECSTRATEGY(bp->b_vp, bp);
892 	} else {
893 		VOP_STRATEGY(bp->b_vp, bp);
894 	}
895 
896 	if ((oldflags & B_ASYNC) == 0) {
897 		int rtval = bufwait(bp);
898 		brelse(bp);
899 		return (rtval);
900 	} else {
901 		/*
902 		 * don't allow the async write to saturate the I/O
903 		 * system.  We will not deadlock here because
904 		 * we are blocking waiting for I/O that is already in-progress
905 		 * to complete. We do not block here if it is the update
906 		 * or syncer daemon trying to clean up as that can lead
907 		 * to deadlock.
908 		 */
909 		if (curthread->td_proc != bufdaemonproc &&
910 		    curthread->td_proc != updateproc)
911 			waitrunningbufspace();
912 	}
913 
914 	return (0);
915 }
916 
917 /*
918  * Complete a background write started from bwrite.
919  */
920 static void
921 vfs_backgroundwritedone(bp)
922 	struct buf *bp;
923 {
924 	struct buf *origbp;
925 
926 	/*
927 	 * Find the original buffer that we are writing.
928 	 */
929 	VI_LOCK(bp->b_vp);
930 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
931 		panic("backgroundwritedone: lost buffer");
932 
933 	/*
934 	 * Clear the BV_BKGRDINPROG flag in the original buffer
935 	 * and awaken it if it is waiting for the write to complete.
936 	 * If BV_BKGRDINPROG is not set in the original buffer it must
937 	 * have been released and re-instantiated - which is not legal.
938 	 */
939 	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
940 	    ("backgroundwritedone: lost buffer2"));
941 	origbp->b_vflags &= ~BV_BKGRDINPROG;
942 	if (origbp->b_vflags & BV_BKGRDWAIT) {
943 		origbp->b_vflags &= ~BV_BKGRDWAIT;
944 		wakeup(&origbp->b_xflags);
945 	}
946 	VI_UNLOCK(bp->b_vp);
947 	/*
948 	 * Process dependencies then return any unfinished ones.
949 	 */
950 	if (LIST_FIRST(&bp->b_dep) != NULL)
951 		buf_complete(bp);
952 	if (LIST_FIRST(&bp->b_dep) != NULL)
953 		buf_movedeps(bp, origbp);
954 
955 	/*
956 	 * This buffer is marked B_NOCACHE, so when it is released
957 	 * by biodone, it will be tossed. We mark it with BIO_READ
958 	 * to avoid biodone doing a second vwakeup.
959 	 */
960 	bp->b_flags |= B_NOCACHE;
961 	bp->b_iocmd = BIO_READ;
962 	bp->b_flags &= ~(B_CACHE | B_DONE);
963 	bp->b_iodone = 0;
964 	bufdone(bp);
965 }
966 
967 /*
968  * Delayed write. (Buffer is marked dirty).  Do not bother writing
969  * anything if the buffer is marked invalid.
970  *
971  * Note that since the buffer must be completely valid, we can safely
972  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
973  * biodone() in order to prevent getblk from writing the buffer
974  * out synchronously.
975  */
976 void
977 bdwrite(struct buf * bp)
978 {
979 	struct thread *td = curthread;
980 	struct vnode *vp;
981 	struct buf *nbp;
982 
983 	GIANT_REQUIRED;
984 
985 	if (BUF_REFCNT(bp) == 0)
986 		panic("bdwrite: buffer is not busy");
987 
988 	if (bp->b_flags & B_INVAL) {
989 		brelse(bp);
990 		return;
991 	}
992 
993 	/*
994 	 * If we have too many dirty buffers, don't create any more.
995 	 * If we are wildly over our limit, then force a complete
996 	 * cleanup. Otherwise, just keep the situation from getting
997 	 * out of control. Note that we have to avoid a recursive
998 	 * disaster and not try to clean up after our own cleanup!
999 	 */
1000 	vp = bp->b_vp;
1001 	VI_LOCK(vp);
1002 	if (td->td_pflags & TDP_COWINPROGRESS) {
1003 		recursiveflushes++;
1004 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
1005 		VI_UNLOCK(vp);
1006 		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1007 		VI_LOCK(vp);
1008 		altbufferflushes++;
1009 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1010 		/*
1011 		 * Try to find a buffer to flush.
1012 		 */
1013 		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1014 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1015 			    buf_countdeps(nbp, 0) ||
1016 			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1017 				continue;
1018 			if (bp == nbp)
1019 				panic("bdwrite: found ourselves");
1020 			VI_UNLOCK(vp);
1021 			if (nbp->b_flags & B_CLUSTEROK) {
1022 				vfs_bio_awrite(nbp);
1023 			} else {
1024 				bremfree(nbp);
1025 				bawrite(nbp);
1026 			}
1027 			VI_LOCK(vp);
1028 			dirtybufferflushes++;
1029 			break;
1030 		}
1031 	}
1032 	VI_UNLOCK(vp);
1033 
1034 	bdirty(bp);
1035 	/*
1036 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1037 	 * true even of NFS now.
1038 	 */
1039 	bp->b_flags |= B_CACHE;
1040 
1041 	/*
1042 	 * This bmap keeps the system from needing to do the bmap later,
1043 	 * perhaps when the system is attempting to do a sync.  Since it
1044 	 * is likely that the indirect block -- or whatever other datastructure
1045 	 * that the filesystem needs is still in memory now, it is a good
1046 	 * thing to do this.  Note also, that if the pageout daemon is
1047 	 * requesting a sync -- there might not be enough memory to do
1048 	 * the bmap then...  So, this is important to do.
1049 	 */
1050 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1051 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1052 	}
1053 
1054 	/*
1055 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1056 	 */
1057 	vfs_setdirty(bp);
1058 
1059 	/*
1060 	 * We need to do this here to satisfy the vnode_pager and the
1061 	 * pageout daemon, so that it thinks that the pages have been
1062 	 * "cleaned".  Note that since the pages are in a delayed write
1063 	 * buffer -- the VFS layer "will" see that the pages get written
1064 	 * out on the next sync, or perhaps the cluster will be completed.
1065 	 */
1066 	vfs_clean_pages(bp);
1067 	bqrelse(bp);
1068 
1069 	/*
1070 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1071 	 * buffers (midpoint between our recovery point and our stall
1072 	 * point).
1073 	 */
1074 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1075 
1076 	/*
1077 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1078 	 * due to the softdep code.
1079 	 */
1080 }
1081 
1082 /*
1083  *	bdirty:
1084  *
1085  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1086  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1087  *	itself to properly update it in the dirty/clean lists.  We mark it
1088  *	B_DONE to ensure that any asynchronization of the buffer properly
1089  *	clears B_DONE ( else a panic will occur later ).
1090  *
1091  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1092  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1093  *	should only be called if the buffer is known-good.
1094  *
1095  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1096  *	count.
1097  *
1098  *	Must be called at splbio().
1099  *	The buffer must be on QUEUE_NONE.
1100  */
1101 void
1102 bdirty(bp)
1103 	struct buf *bp;
1104 {
1105 	KASSERT(bp->b_qindex == QUEUE_NONE,
1106 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1107 	bp->b_flags &= ~(B_RELBUF);
1108 	bp->b_iocmd = BIO_WRITE;
1109 
1110 	if ((bp->b_flags & B_DELWRI) == 0) {
1111 		bp->b_flags |= B_DONE | B_DELWRI;
1112 		reassignbuf(bp, bp->b_vp);
1113 		atomic_add_int(&numdirtybuffers, 1);
1114 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1115 	}
1116 }
1117 
1118 /*
1119  *	bundirty:
1120  *
1121  *	Clear B_DELWRI for buffer.
1122  *
1123  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1124  *	count.
1125  *
1126  *	Must be called at splbio().
1127  *	The buffer must be on QUEUE_NONE.
1128  */
1129 
1130 void
1131 bundirty(bp)
1132 	struct buf *bp;
1133 {
1134 	KASSERT(bp->b_qindex == QUEUE_NONE,
1135 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1136 
1137 	if (bp->b_flags & B_DELWRI) {
1138 		bp->b_flags &= ~B_DELWRI;
1139 		reassignbuf(bp, bp->b_vp);
1140 		atomic_subtract_int(&numdirtybuffers, 1);
1141 		numdirtywakeup(lodirtybuffers);
1142 	}
1143 	/*
1144 	 * Since it is now being written, we can clear its deferred write flag.
1145 	 */
1146 	bp->b_flags &= ~B_DEFERRED;
1147 }
1148 
1149 /*
1150  *	bawrite:
1151  *
1152  *	Asynchronous write.  Start output on a buffer, but do not wait for
1153  *	it to complete.  The buffer is released when the output completes.
1154  *
1155  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1156  *	B_INVAL buffers.  Not us.
1157  */
1158 void
1159 bawrite(struct buf * bp)
1160 {
1161 	bp->b_flags |= B_ASYNC;
1162 	(void) bwrite(bp);
1163 }
1164 
1165 /*
1166  *	bwillwrite:
1167  *
1168  *	Called prior to the locking of any vnodes when we are expecting to
1169  *	write.  We do not want to starve the buffer cache with too many
1170  *	dirty buffers so we block here.  By blocking prior to the locking
1171  *	of any vnodes we attempt to avoid the situation where a locked vnode
1172  *	prevents the various system daemons from flushing related buffers.
1173  */
1174 
1175 void
1176 bwillwrite(void)
1177 {
1178 	if (numdirtybuffers >= hidirtybuffers) {
1179 		int s;
1180 
1181 		mtx_lock(&Giant);
1182 		s = splbio();
1183 		mtx_lock(&nblock);
1184 		while (numdirtybuffers >= hidirtybuffers) {
1185 			bd_wakeup(1);
1186 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1187 			msleep(&needsbuffer, &nblock,
1188 			    (PRIBIO + 4), "flswai", 0);
1189 		}
1190 		splx(s);
1191 		mtx_unlock(&nblock);
1192 		mtx_unlock(&Giant);
1193 	}
1194 }
1195 
1196 /*
1197  * Return true if we have too many dirty buffers.
1198  */
1199 int
1200 buf_dirty_count_severe(void)
1201 {
1202 	return(numdirtybuffers >= hidirtybuffers);
1203 }
1204 
1205 /*
1206  *	brelse:
1207  *
1208  *	Release a busy buffer and, if requested, free its resources.  The
1209  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1210  *	to be accessed later as a cache entity or reused for other purposes.
1211  */
1212 void
1213 brelse(struct buf * bp)
1214 {
1215 	int s;
1216 
1217 	GIANT_REQUIRED;
1218 
1219 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1220 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1221 
1222 	s = splbio();
1223 
1224 	if (bp->b_iocmd == BIO_WRITE &&
1225 	    (bp->b_ioflags & BIO_ERROR) &&
1226 	    !(bp->b_flags & B_INVAL)) {
1227 		/*
1228 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1229 		 * pages from being scrapped.  If B_INVAL is set then
1230 		 * this case is not run and the next case is run to
1231 		 * destroy the buffer.  B_INVAL can occur if the buffer
1232 		 * is outside the range supported by the underlying device.
1233 		 */
1234 		bp->b_ioflags &= ~BIO_ERROR;
1235 		bdirty(bp);
1236 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1237 	    (bp->b_ioflags & BIO_ERROR) ||
1238 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1239 		/*
1240 		 * Either a failed I/O or we were asked to free or not
1241 		 * cache the buffer.
1242 		 */
1243 		bp->b_flags |= B_INVAL;
1244 		if (LIST_FIRST(&bp->b_dep) != NULL)
1245 			buf_deallocate(bp);
1246 		if (bp->b_flags & B_DELWRI) {
1247 			atomic_subtract_int(&numdirtybuffers, 1);
1248 			numdirtywakeup(lodirtybuffers);
1249 		}
1250 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1251 		if ((bp->b_flags & B_VMIO) == 0) {
1252 			if (bp->b_bufsize)
1253 				allocbuf(bp, 0);
1254 			if (bp->b_vp)
1255 				brelvp(bp);
1256 		}
1257 	}
1258 
1259 	/*
1260 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1261 	 * is called with B_DELWRI set, the underlying pages may wind up
1262 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1263 	 * because pages associated with a B_DELWRI bp are marked clean.
1264 	 *
1265 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1266 	 * if B_DELWRI is set.
1267 	 *
1268 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1269 	 * on pages to return pages to the VM page queues.
1270 	 */
1271 	if (bp->b_flags & B_DELWRI)
1272 		bp->b_flags &= ~B_RELBUF;
1273 	else if (vm_page_count_severe()) {
1274 		/*
1275 		 * XXX This lock may not be necessary since BKGRDINPROG
1276 		 * cannot be set while we hold the buf lock, it can only be
1277 		 * cleared if it is already pending.
1278 		 */
1279 		if (bp->b_vp) {
1280 			VI_LOCK(bp->b_vp);
1281 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1282 				bp->b_flags |= B_RELBUF;
1283 			VI_UNLOCK(bp->b_vp);
1284 		} else
1285 			bp->b_flags |= B_RELBUF;
1286 	}
1287 
1288 	/*
1289 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1290 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1291 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1292 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1293 	 *
1294 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1295 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1296 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1297 	 *
1298 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1299 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1300 	 * the commit state and we cannot afford to lose the buffer. If the
1301 	 * buffer has a background write in progress, we need to keep it
1302 	 * around to prevent it from being reconstituted and starting a second
1303 	 * background write.
1304 	 */
1305 	if ((bp->b_flags & B_VMIO)
1306 	    && !(bp->b_vp->v_mount != NULL &&
1307 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1308 		 !vn_isdisk(bp->b_vp, NULL) &&
1309 		 (bp->b_flags & B_DELWRI))
1310 	    ) {
1311 
1312 		int i, j, resid;
1313 		vm_page_t m;
1314 		off_t foff;
1315 		vm_pindex_t poff;
1316 		vm_object_t obj;
1317 
1318 		obj = bp->b_object;
1319 
1320 		/*
1321 		 * Get the base offset and length of the buffer.  Note that
1322 		 * in the VMIO case if the buffer block size is not
1323 		 * page-aligned then b_data pointer may not be page-aligned.
1324 		 * But our b_pages[] array *IS* page aligned.
1325 		 *
1326 		 * block sizes less then DEV_BSIZE (usually 512) are not
1327 		 * supported due to the page granularity bits (m->valid,
1328 		 * m->dirty, etc...).
1329 		 *
1330 		 * See man buf(9) for more information
1331 		 */
1332 		resid = bp->b_bufsize;
1333 		foff = bp->b_offset;
1334 		VM_OBJECT_LOCK(obj);
1335 		for (i = 0; i < bp->b_npages; i++) {
1336 			int had_bogus = 0;
1337 
1338 			m = bp->b_pages[i];
1339 			vm_page_lock_queues();
1340 			vm_page_flag_clear(m, PG_ZERO);
1341 			vm_page_unlock_queues();
1342 
1343 			/*
1344 			 * If we hit a bogus page, fixup *all* the bogus pages
1345 			 * now.
1346 			 */
1347 			if (m == bogus_page) {
1348 				poff = OFF_TO_IDX(bp->b_offset);
1349 				had_bogus = 1;
1350 
1351 				for (j = i; j < bp->b_npages; j++) {
1352 					vm_page_t mtmp;
1353 					mtmp = bp->b_pages[j];
1354 					if (mtmp == bogus_page) {
1355 						mtmp = vm_page_lookup(obj, poff + j);
1356 						if (!mtmp) {
1357 							panic("brelse: page missing\n");
1358 						}
1359 						bp->b_pages[j] = mtmp;
1360 					}
1361 				}
1362 
1363 				if ((bp->b_flags & B_INVAL) == 0) {
1364 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1365 				}
1366 				m = bp->b_pages[i];
1367 			}
1368 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1369 				int poffset = foff & PAGE_MASK;
1370 				int presid = resid > (PAGE_SIZE - poffset) ?
1371 					(PAGE_SIZE - poffset) : resid;
1372 
1373 				KASSERT(presid >= 0, ("brelse: extra page"));
1374 				vm_page_lock_queues();
1375 				vm_page_set_invalid(m, poffset, presid);
1376 				vm_page_unlock_queues();
1377 				if (had_bogus)
1378 					printf("avoided corruption bug in bogus_page/brelse code\n");
1379 			}
1380 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1381 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1382 		}
1383 		VM_OBJECT_UNLOCK(obj);
1384 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1385 			vfs_vmio_release(bp);
1386 
1387 	} else if (bp->b_flags & B_VMIO) {
1388 
1389 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1390 			vfs_vmio_release(bp);
1391 		}
1392 
1393 	}
1394 
1395 	if (bp->b_qindex != QUEUE_NONE)
1396 		panic("brelse: free buffer onto another queue???");
1397 	if (BUF_REFCNT(bp) > 1) {
1398 		/* do not release to free list */
1399 		BUF_UNLOCK(bp);
1400 		splx(s);
1401 		return;
1402 	}
1403 
1404 	/* enqueue */
1405 	mtx_lock(&bqlock);
1406 
1407 	/* buffers with no memory */
1408 	if (bp->b_bufsize == 0) {
1409 		bp->b_flags |= B_INVAL;
1410 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1411 		if (bp->b_vflags & BV_BKGRDINPROG)
1412 			panic("losing buffer 1");
1413 		if (bp->b_kvasize) {
1414 			bp->b_qindex = QUEUE_EMPTYKVA;
1415 		} else {
1416 			bp->b_qindex = QUEUE_EMPTY;
1417 		}
1418 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1419 		bp->b_dev = NODEV;
1420 	/* buffers with junk contents */
1421 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1422 	    (bp->b_ioflags & BIO_ERROR)) {
1423 		bp->b_flags |= B_INVAL;
1424 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1425 		if (bp->b_vflags & BV_BKGRDINPROG)
1426 			panic("losing buffer 2");
1427 		bp->b_qindex = QUEUE_CLEAN;
1428 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1429 		bp->b_dev = NODEV;
1430 	/* remaining buffers */
1431 	} else {
1432 		if (bp->b_flags & B_DELWRI)
1433 			bp->b_qindex = QUEUE_DIRTY;
1434 		else
1435 			bp->b_qindex = QUEUE_CLEAN;
1436 		if (bp->b_flags & B_AGE)
1437 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1438 		else
1439 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1440 	}
1441 	mtx_unlock(&bqlock);
1442 
1443 	/*
1444 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1445 	 * placed the buffer on the correct queue.  We must also disassociate
1446 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1447 	 * find it.
1448 	 */
1449 	if (bp->b_flags & B_INVAL) {
1450 		if (bp->b_flags & B_DELWRI)
1451 			bundirty(bp);
1452 		if (bp->b_vp)
1453 			brelvp(bp);
1454 	}
1455 
1456 	/*
1457 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1458 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1459 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1460 	 * if B_INVAL is set ).
1461 	 */
1462 
1463 	if (!(bp->b_flags & B_DELWRI))
1464 		bufcountwakeup();
1465 
1466 	/*
1467 	 * Something we can maybe free or reuse
1468 	 */
1469 	if (bp->b_bufsize || bp->b_kvasize)
1470 		bufspacewakeup();
1471 
1472 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1473 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1474 		panic("brelse: not dirty");
1475 	/* unlock */
1476 	BUF_UNLOCK(bp);
1477 	splx(s);
1478 }
1479 
1480 /*
1481  * Release a buffer back to the appropriate queue but do not try to free
1482  * it.  The buffer is expected to be used again soon.
1483  *
1484  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1485  * biodone() to requeue an async I/O on completion.  It is also used when
1486  * known good buffers need to be requeued but we think we may need the data
1487  * again soon.
1488  *
1489  * XXX we should be able to leave the B_RELBUF hint set on completion.
1490  */
1491 void
1492 bqrelse(struct buf * bp)
1493 {
1494 	int s;
1495 
1496 	s = splbio();
1497 
1498 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1499 
1500 	if (bp->b_qindex != QUEUE_NONE)
1501 		panic("bqrelse: free buffer onto another queue???");
1502 	if (BUF_REFCNT(bp) > 1) {
1503 		/* do not release to free list */
1504 		BUF_UNLOCK(bp);
1505 		splx(s);
1506 		return;
1507 	}
1508 	mtx_lock(&bqlock);
1509 	/* buffers with stale but valid contents */
1510 	if (bp->b_flags & B_DELWRI) {
1511 		bp->b_qindex = QUEUE_DIRTY;
1512 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1513 	} else {
1514 		/*
1515 		 * XXX This lock may not be necessary since BKGRDINPROG
1516 		 * cannot be set while we hold the buf lock, it can only be
1517 		 * cleared if it is already pending.
1518 		 */
1519 		VI_LOCK(bp->b_vp);
1520 		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1521 			VI_UNLOCK(bp->b_vp);
1522 			bp->b_qindex = QUEUE_CLEAN;
1523 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1524 			    b_freelist);
1525 		} else {
1526 			/*
1527 			 * We are too low on memory, we have to try to free
1528 			 * the buffer (most importantly: the wired pages
1529 			 * making up its backing store) *now*.
1530 			 */
1531 			VI_UNLOCK(bp->b_vp);
1532 			mtx_unlock(&bqlock);
1533 			splx(s);
1534 			brelse(bp);
1535 			return;
1536 		}
1537 	}
1538 	mtx_unlock(&bqlock);
1539 
1540 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1541 		bufcountwakeup();
1542 
1543 	/*
1544 	 * Something we can maybe free or reuse.
1545 	 */
1546 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1547 		bufspacewakeup();
1548 
1549 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1550 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1551 		panic("bqrelse: not dirty");
1552 	/* unlock */
1553 	BUF_UNLOCK(bp);
1554 	splx(s);
1555 }
1556 
1557 /* Give pages used by the bp back to the VM system (where possible) */
1558 static void
1559 vfs_vmio_release(bp)
1560 	struct buf *bp;
1561 {
1562 	int i;
1563 	vm_page_t m;
1564 
1565 	GIANT_REQUIRED;
1566 	VM_OBJECT_LOCK(bp->b_object);
1567 	vm_page_lock_queues();
1568 	for (i = 0; i < bp->b_npages; i++) {
1569 		m = bp->b_pages[i];
1570 		bp->b_pages[i] = NULL;
1571 		/*
1572 		 * In order to keep page LRU ordering consistent, put
1573 		 * everything on the inactive queue.
1574 		 */
1575 		vm_page_unwire(m, 0);
1576 		/*
1577 		 * We don't mess with busy pages, it is
1578 		 * the responsibility of the process that
1579 		 * busied the pages to deal with them.
1580 		 */
1581 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1582 			continue;
1583 
1584 		if (m->wire_count == 0) {
1585 			vm_page_flag_clear(m, PG_ZERO);
1586 			/*
1587 			 * Might as well free the page if we can and it has
1588 			 * no valid data.  We also free the page if the
1589 			 * buffer was used for direct I/O
1590 			 */
1591 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1592 			    m->hold_count == 0) {
1593 				vm_page_busy(m);
1594 				pmap_remove_all(m);
1595 				vm_page_free(m);
1596 			} else if (bp->b_flags & B_DIRECT) {
1597 				vm_page_try_to_free(m);
1598 			} else if (vm_page_count_severe()) {
1599 				vm_page_try_to_cache(m);
1600 			}
1601 		}
1602 	}
1603 	vm_page_unlock_queues();
1604 	VM_OBJECT_UNLOCK(bp->b_object);
1605 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1606 
1607 	if (bp->b_bufsize) {
1608 		bufspacewakeup();
1609 		bp->b_bufsize = 0;
1610 	}
1611 	bp->b_npages = 0;
1612 	bp->b_flags &= ~B_VMIO;
1613 	if (bp->b_vp)
1614 		brelvp(bp);
1615 }
1616 
1617 /*
1618  * Check to see if a block at a particular lbn is available for a clustered
1619  * write.
1620  */
1621 static int
1622 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1623 {
1624 	struct buf *bpa;
1625 	int match;
1626 
1627 	match = 0;
1628 
1629 	/* If the buf isn't in core skip it */
1630 	if ((bpa = gbincore(vp, lblkno)) == NULL)
1631 		return (0);
1632 
1633 	/* If the buf is busy we don't want to wait for it */
1634 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1635 		return (0);
1636 
1637 	/* Only cluster with valid clusterable delayed write buffers */
1638 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1639 	    (B_DELWRI | B_CLUSTEROK))
1640 		goto done;
1641 
1642 	if (bpa->b_bufsize != size)
1643 		goto done;
1644 
1645 	/*
1646 	 * Check to see if it is in the expected place on disk and that the
1647 	 * block has been mapped.
1648 	 */
1649 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1650 		match = 1;
1651 done:
1652 	BUF_UNLOCK(bpa);
1653 	return (match);
1654 }
1655 
1656 /*
1657  *	vfs_bio_awrite:
1658  *
1659  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1660  *	This is much better then the old way of writing only one buffer at
1661  *	a time.  Note that we may not be presented with the buffers in the
1662  *	correct order, so we search for the cluster in both directions.
1663  */
1664 int
1665 vfs_bio_awrite(struct buf * bp)
1666 {
1667 	int i;
1668 	int j;
1669 	daddr_t lblkno = bp->b_lblkno;
1670 	struct vnode *vp = bp->b_vp;
1671 	int s;
1672 	int ncl;
1673 	int nwritten;
1674 	int size;
1675 	int maxcl;
1676 
1677 	s = splbio();
1678 	/*
1679 	 * right now we support clustered writing only to regular files.  If
1680 	 * we find a clusterable block we could be in the middle of a cluster
1681 	 * rather then at the beginning.
1682 	 */
1683 	if ((vp->v_type == VREG) &&
1684 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1685 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1686 
1687 		size = vp->v_mount->mnt_stat.f_iosize;
1688 		maxcl = MAXPHYS / size;
1689 
1690 		VI_LOCK(vp);
1691 		for (i = 1; i < maxcl; i++)
1692 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1693 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1694 				break;
1695 
1696 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1697 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1698 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1699 				break;
1700 
1701 		VI_UNLOCK(vp);
1702 		--j;
1703 		ncl = i + j;
1704 		/*
1705 		 * this is a possible cluster write
1706 		 */
1707 		if (ncl != 1) {
1708 			BUF_UNLOCK(bp);
1709 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1710 			splx(s);
1711 			return nwritten;
1712 		}
1713 	}
1714 
1715 	bremfree(bp);
1716 	bp->b_flags |= B_ASYNC;
1717 
1718 	splx(s);
1719 	/*
1720 	 * default (old) behavior, writing out only one block
1721 	 *
1722 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1723 	 */
1724 	nwritten = bp->b_bufsize;
1725 	(void) bwrite(bp);
1726 
1727 	return nwritten;
1728 }
1729 
1730 /*
1731  *	getnewbuf:
1732  *
1733  *	Find and initialize a new buffer header, freeing up existing buffers
1734  *	in the bufqueues as necessary.  The new buffer is returned locked.
1735  *
1736  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1737  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1738  *
1739  *	We block if:
1740  *		We have insufficient buffer headers
1741  *		We have insufficient buffer space
1742  *		buffer_map is too fragmented ( space reservation fails )
1743  *		If we have to flush dirty buffers ( but we try to avoid this )
1744  *
1745  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1746  *	Instead we ask the buf daemon to do it for us.  We attempt to
1747  *	avoid piecemeal wakeups of the pageout daemon.
1748  */
1749 
1750 static struct buf *
1751 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1752 {
1753 	struct buf *bp;
1754 	struct buf *nbp;
1755 	int defrag = 0;
1756 	int nqindex;
1757 	static int flushingbufs;
1758 
1759 	GIANT_REQUIRED;
1760 
1761 	/*
1762 	 * We can't afford to block since we might be holding a vnode lock,
1763 	 * which may prevent system daemons from running.  We deal with
1764 	 * low-memory situations by proactively returning memory and running
1765 	 * async I/O rather then sync I/O.
1766 	 */
1767 
1768 	atomic_add_int(&getnewbufcalls, 1);
1769 	atomic_subtract_int(&getnewbufrestarts, 1);
1770 restart:
1771 	atomic_add_int(&getnewbufrestarts, 1);
1772 
1773 	/*
1774 	 * Setup for scan.  If we do not have enough free buffers,
1775 	 * we setup a degenerate case that immediately fails.  Note
1776 	 * that if we are specially marked process, we are allowed to
1777 	 * dip into our reserves.
1778 	 *
1779 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1780 	 *
1781 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1782 	 * However, there are a number of cases (defragging, reusing, ...)
1783 	 * where we cannot backup.
1784 	 */
1785 	mtx_lock(&bqlock);
1786 	nqindex = QUEUE_EMPTYKVA;
1787 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1788 
1789 	if (nbp == NULL) {
1790 		/*
1791 		 * If no EMPTYKVA buffers and we are either
1792 		 * defragging or reusing, locate a CLEAN buffer
1793 		 * to free or reuse.  If bufspace useage is low
1794 		 * skip this step so we can allocate a new buffer.
1795 		 */
1796 		if (defrag || bufspace >= lobufspace) {
1797 			nqindex = QUEUE_CLEAN;
1798 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1799 		}
1800 
1801 		/*
1802 		 * If we could not find or were not allowed to reuse a
1803 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1804 		 * buffer.  We can only use an EMPTY buffer if allocating
1805 		 * its KVA would not otherwise run us out of buffer space.
1806 		 */
1807 		if (nbp == NULL && defrag == 0 &&
1808 		    bufspace + maxsize < hibufspace) {
1809 			nqindex = QUEUE_EMPTY;
1810 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1811 		}
1812 	}
1813 
1814 	/*
1815 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1816 	 * depending.
1817 	 */
1818 
1819 	while ((bp = nbp) != NULL) {
1820 		int qindex = nqindex;
1821 
1822 		/*
1823 		 * Calculate next bp ( we can only use it if we do not block
1824 		 * or do other fancy things ).
1825 		 */
1826 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1827 			switch(qindex) {
1828 			case QUEUE_EMPTY:
1829 				nqindex = QUEUE_EMPTYKVA;
1830 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1831 					break;
1832 				/* FALLTHROUGH */
1833 			case QUEUE_EMPTYKVA:
1834 				nqindex = QUEUE_CLEAN;
1835 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1836 					break;
1837 				/* FALLTHROUGH */
1838 			case QUEUE_CLEAN:
1839 				/*
1840 				 * nbp is NULL.
1841 				 */
1842 				break;
1843 			}
1844 		}
1845 		if (bp->b_vp) {
1846 			VI_LOCK(bp->b_vp);
1847 			if (bp->b_vflags & BV_BKGRDINPROG) {
1848 				VI_UNLOCK(bp->b_vp);
1849 				continue;
1850 			}
1851 			VI_UNLOCK(bp->b_vp);
1852 		}
1853 
1854 		/*
1855 		 * Sanity Checks
1856 		 */
1857 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1858 
1859 		/*
1860 		 * Note: we no longer distinguish between VMIO and non-VMIO
1861 		 * buffers.
1862 		 */
1863 
1864 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1865 
1866 		/*
1867 		 * If we are defragging then we need a buffer with
1868 		 * b_kvasize != 0.  XXX this situation should no longer
1869 		 * occur, if defrag is non-zero the buffer's b_kvasize
1870 		 * should also be non-zero at this point.  XXX
1871 		 */
1872 		if (defrag && bp->b_kvasize == 0) {
1873 			printf("Warning: defrag empty buffer %p\n", bp);
1874 			continue;
1875 		}
1876 
1877 		/*
1878 		 * Start freeing the bp.  This is somewhat involved.  nbp
1879 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1880 		 */
1881 
1882 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1883 			panic("getnewbuf: locked buf");
1884 		bremfreel(bp);
1885 		mtx_unlock(&bqlock);
1886 
1887 		if (qindex == QUEUE_CLEAN) {
1888 			if (bp->b_flags & B_VMIO) {
1889 				bp->b_flags &= ~B_ASYNC;
1890 				vfs_vmio_release(bp);
1891 			}
1892 			if (bp->b_vp)
1893 				brelvp(bp);
1894 		}
1895 
1896 		/*
1897 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1898 		 * the scan from this point on.
1899 		 *
1900 		 * Get the rest of the buffer freed up.  b_kva* is still
1901 		 * valid after this operation.
1902 		 */
1903 
1904 		if (bp->b_rcred != NOCRED) {
1905 			crfree(bp->b_rcred);
1906 			bp->b_rcred = NOCRED;
1907 		}
1908 		if (bp->b_wcred != NOCRED) {
1909 			crfree(bp->b_wcred);
1910 			bp->b_wcred = NOCRED;
1911 		}
1912 		if (LIST_FIRST(&bp->b_dep) != NULL)
1913 			buf_deallocate(bp);
1914 		if (bp->b_vflags & BV_BKGRDINPROG)
1915 			panic("losing buffer 3");
1916 
1917 		if (bp->b_bufsize)
1918 			allocbuf(bp, 0);
1919 
1920 		bp->b_flags = 0;
1921 		bp->b_ioflags = 0;
1922 		bp->b_xflags = 0;
1923 		bp->b_vflags = 0;
1924 		bp->b_dev = NODEV;
1925 		bp->b_vp = NULL;
1926 		bp->b_blkno = bp->b_lblkno = 0;
1927 		bp->b_offset = NOOFFSET;
1928 		bp->b_iodone = 0;
1929 		bp->b_error = 0;
1930 		bp->b_resid = 0;
1931 		bp->b_bcount = 0;
1932 		bp->b_npages = 0;
1933 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1934 		bp->b_magic = B_MAGIC_BIO;
1935 		bp->b_op = &buf_ops_bio;
1936 		bp->b_object = NULL;
1937 
1938 		LIST_INIT(&bp->b_dep);
1939 
1940 		/*
1941 		 * If we are defragging then free the buffer.
1942 		 */
1943 		if (defrag) {
1944 			bp->b_flags |= B_INVAL;
1945 			bfreekva(bp);
1946 			brelse(bp);
1947 			defrag = 0;
1948 			goto restart;
1949 		}
1950 
1951 		/*
1952 		 * If we are overcomitted then recover the buffer and its
1953 		 * KVM space.  This occurs in rare situations when multiple
1954 		 * processes are blocked in getnewbuf() or allocbuf().
1955 		 */
1956 		if (bufspace >= hibufspace)
1957 			flushingbufs = 1;
1958 		if (flushingbufs && bp->b_kvasize != 0) {
1959 			bp->b_flags |= B_INVAL;
1960 			bfreekva(bp);
1961 			brelse(bp);
1962 			goto restart;
1963 		}
1964 		if (bufspace < lobufspace)
1965 			flushingbufs = 0;
1966 		break;
1967 	}
1968 
1969 	/*
1970 	 * If we exhausted our list, sleep as appropriate.  We may have to
1971 	 * wakeup various daemons and write out some dirty buffers.
1972 	 *
1973 	 * Generally we are sleeping due to insufficient buffer space.
1974 	 */
1975 
1976 	if (bp == NULL) {
1977 		int flags;
1978 		char *waitmsg;
1979 
1980 		mtx_unlock(&bqlock);
1981 		if (defrag) {
1982 			flags = VFS_BIO_NEED_BUFSPACE;
1983 			waitmsg = "nbufkv";
1984 		} else if (bufspace >= hibufspace) {
1985 			waitmsg = "nbufbs";
1986 			flags = VFS_BIO_NEED_BUFSPACE;
1987 		} else {
1988 			waitmsg = "newbuf";
1989 			flags = VFS_BIO_NEED_ANY;
1990 		}
1991 
1992 		bd_speedup();	/* heeeelp */
1993 
1994 		mtx_lock(&nblock);
1995 		needsbuffer |= flags;
1996 		while (needsbuffer & flags) {
1997 			if (msleep(&needsbuffer, &nblock,
1998 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1999 				mtx_unlock(&nblock);
2000 				return (NULL);
2001 			}
2002 		}
2003 		mtx_unlock(&nblock);
2004 	} else {
2005 		/*
2006 		 * We finally have a valid bp.  We aren't quite out of the
2007 		 * woods, we still have to reserve kva space.  In order
2008 		 * to keep fragmentation sane we only allocate kva in
2009 		 * BKVASIZE chunks.
2010 		 */
2011 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2012 
2013 		if (maxsize != bp->b_kvasize) {
2014 			vm_offset_t addr = 0;
2015 
2016 			bfreekva(bp);
2017 
2018 			if (vm_map_findspace(buffer_map,
2019 				vm_map_min(buffer_map), maxsize, &addr)) {
2020 				/*
2021 				 * Uh oh.  Buffer map is to fragmented.  We
2022 				 * must defragment the map.
2023 				 */
2024 				atomic_add_int(&bufdefragcnt, 1);
2025 				defrag = 1;
2026 				bp->b_flags |= B_INVAL;
2027 				brelse(bp);
2028 				goto restart;
2029 			}
2030 			if (addr) {
2031 				vm_map_insert(buffer_map, NULL, 0,
2032 					addr, addr + maxsize,
2033 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2034 
2035 				bp->b_kvabase = (caddr_t) addr;
2036 				bp->b_kvasize = maxsize;
2037 				atomic_add_int(&bufspace, bp->b_kvasize);
2038 				atomic_add_int(&bufreusecnt, 1);
2039 			}
2040 		}
2041 		bp->b_saveaddr = bp->b_kvabase;
2042 		bp->b_data = bp->b_saveaddr;
2043 	}
2044 	return(bp);
2045 }
2046 
2047 /*
2048  *	buf_daemon:
2049  *
2050  *	buffer flushing daemon.  Buffers are normally flushed by the
2051  *	update daemon but if it cannot keep up this process starts to
2052  *	take the load in an attempt to prevent getnewbuf() from blocking.
2053  */
2054 
2055 static struct kproc_desc buf_kp = {
2056 	"bufdaemon",
2057 	buf_daemon,
2058 	&bufdaemonproc
2059 };
2060 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2061 
2062 static void
2063 buf_daemon()
2064 {
2065 	int s;
2066 
2067 	mtx_lock(&Giant);
2068 
2069 	/*
2070 	 * This process needs to be suspended prior to shutdown sync.
2071 	 */
2072 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2073 	    SHUTDOWN_PRI_LAST);
2074 
2075 	/*
2076 	 * This process is allowed to take the buffer cache to the limit
2077 	 */
2078 	s = splbio();
2079 	mtx_lock(&bdlock);
2080 
2081 	for (;;) {
2082 		bd_request = 0;
2083 		mtx_unlock(&bdlock);
2084 
2085 		kthread_suspend_check(bufdaemonproc);
2086 
2087 		/*
2088 		 * Do the flush.  Limit the amount of in-transit I/O we
2089 		 * allow to build up, otherwise we would completely saturate
2090 		 * the I/O system.  Wakeup any waiting processes before we
2091 		 * normally would so they can run in parallel with our drain.
2092 		 */
2093 		while (numdirtybuffers > lodirtybuffers) {
2094 			if (flushbufqueues(0) == 0) {
2095 				/*
2096 				 * Could not find any buffers without rollback
2097 				 * dependencies, so just write the first one
2098 				 * in the hopes of eventually making progress.
2099 				 */
2100 				flushbufqueues(1);
2101 				break;
2102 			}
2103 			waitrunningbufspace();
2104 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2105 		}
2106 
2107 		/*
2108 		 * Only clear bd_request if we have reached our low water
2109 		 * mark.  The buf_daemon normally waits 1 second and
2110 		 * then incrementally flushes any dirty buffers that have
2111 		 * built up, within reason.
2112 		 *
2113 		 * If we were unable to hit our low water mark and couldn't
2114 		 * find any flushable buffers, we sleep half a second.
2115 		 * Otherwise we loop immediately.
2116 		 */
2117 		mtx_lock(&bdlock);
2118 		if (numdirtybuffers <= lodirtybuffers) {
2119 			/*
2120 			 * We reached our low water mark, reset the
2121 			 * request and sleep until we are needed again.
2122 			 * The sleep is just so the suspend code works.
2123 			 */
2124 			bd_request = 0;
2125 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2126 		} else {
2127 			/*
2128 			 * We couldn't find any flushable dirty buffers but
2129 			 * still have too many dirty buffers, we
2130 			 * have to sleep and try again.  (rare)
2131 			 */
2132 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2133 		}
2134 	}
2135 }
2136 
2137 /*
2138  *	flushbufqueues:
2139  *
2140  *	Try to flush a buffer in the dirty queue.  We must be careful to
2141  *	free up B_INVAL buffers instead of write them, which NFS is
2142  *	particularly sensitive to.
2143  */
2144 int flushwithdeps = 0;
2145 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2146     0, "Number of buffers flushed with dependecies that require rollbacks");
2147 static int
2148 flushbufqueues(int flushdeps)
2149 {
2150 	struct thread *td = curthread;
2151 	struct vnode *vp;
2152 	struct mount *mp;
2153 	struct buf *bp;
2154 	int hasdeps;
2155 
2156 	mtx_lock(&bqlock);
2157 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2158 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2159 			continue;
2160 		KASSERT((bp->b_flags & B_DELWRI),
2161 		    ("unexpected clean buffer %p", bp));
2162 		VI_LOCK(bp->b_vp);
2163 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2164 			VI_UNLOCK(bp->b_vp);
2165 			BUF_UNLOCK(bp);
2166 			continue;
2167 		}
2168 		VI_UNLOCK(bp->b_vp);
2169 		if (bp->b_flags & B_INVAL) {
2170 			bremfreel(bp);
2171 			mtx_unlock(&bqlock);
2172 			brelse(bp);
2173 			return (1);
2174 		}
2175 
2176 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2177 			if (flushdeps == 0) {
2178 				BUF_UNLOCK(bp);
2179 				continue;
2180 			}
2181 			hasdeps = 1;
2182 		} else
2183 			hasdeps = 0;
2184 		/*
2185 		 * We must hold the lock on a vnode before writing
2186 		 * one of its buffers. Otherwise we may confuse, or
2187 		 * in the case of a snapshot vnode, deadlock the
2188 		 * system.
2189 		 *
2190 		 * The lock order here is the reverse of the normal
2191 		 * of vnode followed by buf lock.  This is ok because
2192 		 * the NOWAIT will prevent deadlock.
2193 		 */
2194 		vp = bp->b_vp;
2195 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2196 			BUF_UNLOCK(bp);
2197 			continue;
2198 		}
2199 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2200 			mtx_unlock(&bqlock);
2201 			vfs_bio_awrite(bp);
2202 			vn_finished_write(mp);
2203 			VOP_UNLOCK(vp, 0, td);
2204 			flushwithdeps += hasdeps;
2205 			return (1);
2206 		}
2207 		vn_finished_write(mp);
2208 		BUF_UNLOCK(bp);
2209 	}
2210 	mtx_unlock(&bqlock);
2211 	return (0);
2212 }
2213 
2214 /*
2215  * Check to see if a block is currently memory resident.
2216  */
2217 struct buf *
2218 incore(struct vnode * vp, daddr_t blkno)
2219 {
2220 	struct buf *bp;
2221 
2222 	int s = splbio();
2223 	VI_LOCK(vp);
2224 	bp = gbincore(vp, blkno);
2225 	VI_UNLOCK(vp);
2226 	splx(s);
2227 	return (bp);
2228 }
2229 
2230 /*
2231  * Returns true if no I/O is needed to access the
2232  * associated VM object.  This is like incore except
2233  * it also hunts around in the VM system for the data.
2234  */
2235 
2236 int
2237 inmem(struct vnode * vp, daddr_t blkno)
2238 {
2239 	vm_object_t obj;
2240 	vm_offset_t toff, tinc, size;
2241 	vm_page_t m;
2242 	vm_ooffset_t off;
2243 
2244 	GIANT_REQUIRED;
2245 	ASSERT_VOP_LOCKED(vp, "inmem");
2246 
2247 	if (incore(vp, blkno))
2248 		return 1;
2249 	if (vp->v_mount == NULL)
2250 		return 0;
2251 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2252 		return 0;
2253 
2254 	size = PAGE_SIZE;
2255 	if (size > vp->v_mount->mnt_stat.f_iosize)
2256 		size = vp->v_mount->mnt_stat.f_iosize;
2257 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2258 
2259 	VM_OBJECT_LOCK(obj);
2260 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2261 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2262 		if (!m)
2263 			goto notinmem;
2264 		tinc = size;
2265 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2266 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2267 		if (vm_page_is_valid(m,
2268 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2269 			goto notinmem;
2270 	}
2271 	VM_OBJECT_UNLOCK(obj);
2272 	return 1;
2273 
2274 notinmem:
2275 	VM_OBJECT_UNLOCK(obj);
2276 	return (0);
2277 }
2278 
2279 /*
2280  *	vfs_setdirty:
2281  *
2282  *	Sets the dirty range for a buffer based on the status of the dirty
2283  *	bits in the pages comprising the buffer.
2284  *
2285  *	The range is limited to the size of the buffer.
2286  *
2287  *	This routine is primarily used by NFS, but is generalized for the
2288  *	B_VMIO case.
2289  */
2290 static void
2291 vfs_setdirty(struct buf *bp)
2292 {
2293 	int i;
2294 	vm_object_t object;
2295 
2296 	GIANT_REQUIRED;
2297 	/*
2298 	 * Degenerate case - empty buffer
2299 	 */
2300 
2301 	if (bp->b_bufsize == 0)
2302 		return;
2303 
2304 	/*
2305 	 * We qualify the scan for modified pages on whether the
2306 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2307 	 * is not cleared simply by protecting pages off.
2308 	 */
2309 
2310 	if ((bp->b_flags & B_VMIO) == 0)
2311 		return;
2312 
2313 	object = bp->b_pages[0]->object;
2314 	VM_OBJECT_LOCK(object);
2315 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2316 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2317 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2318 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2319 
2320 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2321 		vm_offset_t boffset;
2322 		vm_offset_t eoffset;
2323 
2324 		vm_page_lock_queues();
2325 		/*
2326 		 * test the pages to see if they have been modified directly
2327 		 * by users through the VM system.
2328 		 */
2329 		for (i = 0; i < bp->b_npages; i++) {
2330 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2331 			vm_page_test_dirty(bp->b_pages[i]);
2332 		}
2333 
2334 		/*
2335 		 * Calculate the encompassing dirty range, boffset and eoffset,
2336 		 * (eoffset - boffset) bytes.
2337 		 */
2338 
2339 		for (i = 0; i < bp->b_npages; i++) {
2340 			if (bp->b_pages[i]->dirty)
2341 				break;
2342 		}
2343 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2344 
2345 		for (i = bp->b_npages - 1; i >= 0; --i) {
2346 			if (bp->b_pages[i]->dirty) {
2347 				break;
2348 			}
2349 		}
2350 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2351 
2352 		vm_page_unlock_queues();
2353 		/*
2354 		 * Fit it to the buffer.
2355 		 */
2356 
2357 		if (eoffset > bp->b_bcount)
2358 			eoffset = bp->b_bcount;
2359 
2360 		/*
2361 		 * If we have a good dirty range, merge with the existing
2362 		 * dirty range.
2363 		 */
2364 
2365 		if (boffset < eoffset) {
2366 			if (bp->b_dirtyoff > boffset)
2367 				bp->b_dirtyoff = boffset;
2368 			if (bp->b_dirtyend < eoffset)
2369 				bp->b_dirtyend = eoffset;
2370 		}
2371 	}
2372 	VM_OBJECT_UNLOCK(object);
2373 }
2374 
2375 /*
2376  *	getblk:
2377  *
2378  *	Get a block given a specified block and offset into a file/device.
2379  *	The buffers B_DONE bit will be cleared on return, making it almost
2380  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2381  *	return.  The caller should clear B_INVAL prior to initiating a
2382  *	READ.
2383  *
2384  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2385  *	an existing buffer.
2386  *
2387  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2388  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2389  *	and then cleared based on the backing VM.  If the previous buffer is
2390  *	non-0-sized but invalid, B_CACHE will be cleared.
2391  *
2392  *	If getblk() must create a new buffer, the new buffer is returned with
2393  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2394  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2395  *	backing VM.
2396  *
2397  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2398  *	B_CACHE bit is clear.
2399  *
2400  *	What this means, basically, is that the caller should use B_CACHE to
2401  *	determine whether the buffer is fully valid or not and should clear
2402  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2403  *	the buffer by loading its data area with something, the caller needs
2404  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2405  *	the caller should set B_CACHE ( as an optimization ), else the caller
2406  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2407  *	a write attempt or if it was a successfull read.  If the caller
2408  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2409  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2410  */
2411 struct buf *
2412 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2413     int flags)
2414 {
2415 	struct buf *bp;
2416 	int s;
2417 	int error;
2418 	ASSERT_VOP_LOCKED(vp, "getblk");
2419 
2420 	if (size > MAXBSIZE)
2421 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2422 
2423 	s = splbio();
2424 loop:
2425 	/*
2426 	 * Block if we are low on buffers.   Certain processes are allowed
2427 	 * to completely exhaust the buffer cache.
2428          *
2429          * If this check ever becomes a bottleneck it may be better to
2430          * move it into the else, when gbincore() fails.  At the moment
2431          * it isn't a problem.
2432 	 *
2433 	 * XXX remove if 0 sections (clean this up after its proven)
2434          */
2435 	if (numfreebuffers == 0) {
2436 		if (curthread == PCPU_GET(idlethread))
2437 			return NULL;
2438 		mtx_lock(&nblock);
2439 		needsbuffer |= VFS_BIO_NEED_ANY;
2440 		mtx_unlock(&nblock);
2441 	}
2442 
2443 	VI_LOCK(vp);
2444 	if ((bp = gbincore(vp, blkno))) {
2445 		int lockflags;
2446 		/*
2447 		 * Buffer is in-core.  If the buffer is not busy, it must
2448 		 * be on a queue.
2449 		 */
2450 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2451 
2452 		if (flags & GB_LOCK_NOWAIT)
2453 			lockflags |= LK_NOWAIT;
2454 
2455 		error = BUF_TIMELOCK(bp, lockflags,
2456 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2457 
2458 		/*
2459 		 * If we slept and got the lock we have to restart in case
2460 		 * the buffer changed identities.
2461 		 */
2462 		if (error == ENOLCK)
2463 			goto loop;
2464 		/* We timed out or were interrupted. */
2465 		else if (error)
2466 			return (NULL);
2467 
2468 		/*
2469 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2470 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2471 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2472 		 * backing VM cache.
2473 		 */
2474 		if (bp->b_flags & B_INVAL)
2475 			bp->b_flags &= ~B_CACHE;
2476 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2477 			bp->b_flags |= B_CACHE;
2478 		bremfree(bp);
2479 
2480 		/*
2481 		 * check for size inconsistancies for non-VMIO case.
2482 		 */
2483 
2484 		if (bp->b_bcount != size) {
2485 			if ((bp->b_flags & B_VMIO) == 0 ||
2486 			    (size > bp->b_kvasize)) {
2487 				if (bp->b_flags & B_DELWRI) {
2488 					bp->b_flags |= B_NOCACHE;
2489 					bwrite(bp);
2490 				} else {
2491 					if ((bp->b_flags & B_VMIO) &&
2492 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2493 						bp->b_flags |= B_RELBUF;
2494 						brelse(bp);
2495 					} else {
2496 						bp->b_flags |= B_NOCACHE;
2497 						bwrite(bp);
2498 					}
2499 				}
2500 				goto loop;
2501 			}
2502 		}
2503 
2504 		/*
2505 		 * If the size is inconsistant in the VMIO case, we can resize
2506 		 * the buffer.  This might lead to B_CACHE getting set or
2507 		 * cleared.  If the size has not changed, B_CACHE remains
2508 		 * unchanged from its previous state.
2509 		 */
2510 
2511 		if (bp->b_bcount != size)
2512 			allocbuf(bp, size);
2513 
2514 		KASSERT(bp->b_offset != NOOFFSET,
2515 		    ("getblk: no buffer offset"));
2516 
2517 		/*
2518 		 * A buffer with B_DELWRI set and B_CACHE clear must
2519 		 * be committed before we can return the buffer in
2520 		 * order to prevent the caller from issuing a read
2521 		 * ( due to B_CACHE not being set ) and overwriting
2522 		 * it.
2523 		 *
2524 		 * Most callers, including NFS and FFS, need this to
2525 		 * operate properly either because they assume they
2526 		 * can issue a read if B_CACHE is not set, or because
2527 		 * ( for example ) an uncached B_DELWRI might loop due
2528 		 * to softupdates re-dirtying the buffer.  In the latter
2529 		 * case, B_CACHE is set after the first write completes,
2530 		 * preventing further loops.
2531 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2532 		 * above while extending the buffer, we cannot allow the
2533 		 * buffer to remain with B_CACHE set after the write
2534 		 * completes or it will represent a corrupt state.  To
2535 		 * deal with this we set B_NOCACHE to scrap the buffer
2536 		 * after the write.
2537 		 *
2538 		 * We might be able to do something fancy, like setting
2539 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2540 		 * so the below call doesn't set B_CACHE, but that gets real
2541 		 * confusing.  This is much easier.
2542 		 */
2543 
2544 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2545 			bp->b_flags |= B_NOCACHE;
2546 			bwrite(bp);
2547 			goto loop;
2548 		}
2549 
2550 		splx(s);
2551 		bp->b_flags &= ~B_DONE;
2552 	} else {
2553 		int bsize, maxsize, vmio;
2554 		off_t offset;
2555 
2556 		/*
2557 		 * Buffer is not in-core, create new buffer.  The buffer
2558 		 * returned by getnewbuf() is locked.  Note that the returned
2559 		 * buffer is also considered valid (not marked B_INVAL).
2560 		 */
2561 		VI_UNLOCK(vp);
2562 		/*
2563 		 * If the user does not want us to create the buffer, bail out
2564 		 * here.
2565 		 */
2566 		if (flags & GB_NOCREAT) {
2567 			splx(s);
2568 			return NULL;
2569 		}
2570 		if (vn_isdisk(vp, NULL))
2571 			bsize = DEV_BSIZE;
2572 		else if (vp->v_mountedhere)
2573 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2574 		else if (vp->v_mount)
2575 			bsize = vp->v_mount->mnt_stat.f_iosize;
2576 		else
2577 			bsize = size;
2578 
2579 		offset = blkno * bsize;
2580 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2581 		    (vp->v_vflag & VV_OBJBUF);
2582 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2583 		maxsize = imax(maxsize, bsize);
2584 
2585 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2586 			if (slpflag || slptimeo) {
2587 				splx(s);
2588 				return NULL;
2589 			}
2590 			goto loop;
2591 		}
2592 
2593 		/*
2594 		 * This code is used to make sure that a buffer is not
2595 		 * created while the getnewbuf routine is blocked.
2596 		 * This can be a problem whether the vnode is locked or not.
2597 		 * If the buffer is created out from under us, we have to
2598 		 * throw away the one we just created.  There is now window
2599 		 * race because we are safely running at splbio() from the
2600 		 * point of the duplicate buffer creation through to here,
2601 		 * and we've locked the buffer.
2602 		 *
2603 		 * Note: this must occur before we associate the buffer
2604 		 * with the vp especially considering limitations in
2605 		 * the splay tree implementation when dealing with duplicate
2606 		 * lblkno's.
2607 		 */
2608 		VI_LOCK(vp);
2609 		if (gbincore(vp, blkno)) {
2610 			VI_UNLOCK(vp);
2611 			bp->b_flags |= B_INVAL;
2612 			brelse(bp);
2613 			goto loop;
2614 		}
2615 
2616 		/*
2617 		 * Insert the buffer into the hash, so that it can
2618 		 * be found by incore.
2619 		 */
2620 		bp->b_blkno = bp->b_lblkno = blkno;
2621 		bp->b_offset = offset;
2622 
2623 		bgetvp(vp, bp);
2624 		VI_UNLOCK(vp);
2625 
2626 		/*
2627 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2628 		 * buffer size starts out as 0, B_CACHE will be set by
2629 		 * allocbuf() for the VMIO case prior to it testing the
2630 		 * backing store for validity.
2631 		 */
2632 
2633 		if (vmio) {
2634 			bp->b_flags |= B_VMIO;
2635 #if defined(VFS_BIO_DEBUG)
2636 			if (vn_canvmio(vp) != TRUE)
2637 				printf("getblk: VMIO on vnode type %d\n",
2638 					vp->v_type);
2639 #endif
2640 			VOP_GETVOBJECT(vp, &bp->b_object);
2641 		} else {
2642 			bp->b_flags &= ~B_VMIO;
2643 			bp->b_object = NULL;
2644 		}
2645 
2646 		allocbuf(bp, size);
2647 
2648 		splx(s);
2649 		bp->b_flags &= ~B_DONE;
2650 	}
2651 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2652 	return (bp);
2653 }
2654 
2655 /*
2656  * Get an empty, disassociated buffer of given size.  The buffer is initially
2657  * set to B_INVAL.
2658  */
2659 struct buf *
2660 geteblk(int size)
2661 {
2662 	struct buf *bp;
2663 	int s;
2664 	int maxsize;
2665 
2666 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2667 
2668 	s = splbio();
2669 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2670 		continue;
2671 	splx(s);
2672 	allocbuf(bp, size);
2673 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2674 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2675 	return (bp);
2676 }
2677 
2678 
2679 /*
2680  * This code constitutes the buffer memory from either anonymous system
2681  * memory (in the case of non-VMIO operations) or from an associated
2682  * VM object (in the case of VMIO operations).  This code is able to
2683  * resize a buffer up or down.
2684  *
2685  * Note that this code is tricky, and has many complications to resolve
2686  * deadlock or inconsistant data situations.  Tread lightly!!!
2687  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2688  * the caller.  Calling this code willy nilly can result in the loss of data.
2689  *
2690  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2691  * B_CACHE for the non-VMIO case.
2692  */
2693 
2694 int
2695 allocbuf(struct buf *bp, int size)
2696 {
2697 	int newbsize, mbsize;
2698 	int i;
2699 
2700 	GIANT_REQUIRED;
2701 
2702 	if (BUF_REFCNT(bp) == 0)
2703 		panic("allocbuf: buffer not busy");
2704 
2705 	if (bp->b_kvasize < size)
2706 		panic("allocbuf: buffer too small");
2707 
2708 	if ((bp->b_flags & B_VMIO) == 0) {
2709 		caddr_t origbuf;
2710 		int origbufsize;
2711 		/*
2712 		 * Just get anonymous memory from the kernel.  Don't
2713 		 * mess with B_CACHE.
2714 		 */
2715 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2716 		if (bp->b_flags & B_MALLOC)
2717 			newbsize = mbsize;
2718 		else
2719 			newbsize = round_page(size);
2720 
2721 		if (newbsize < bp->b_bufsize) {
2722 			/*
2723 			 * malloced buffers are not shrunk
2724 			 */
2725 			if (bp->b_flags & B_MALLOC) {
2726 				if (newbsize) {
2727 					bp->b_bcount = size;
2728 				} else {
2729 					free(bp->b_data, M_BIOBUF);
2730 					if (bp->b_bufsize) {
2731 						atomic_subtract_int(
2732 						    &bufmallocspace,
2733 						    bp->b_bufsize);
2734 						bufspacewakeup();
2735 						bp->b_bufsize = 0;
2736 					}
2737 					bp->b_saveaddr = bp->b_kvabase;
2738 					bp->b_data = bp->b_saveaddr;
2739 					bp->b_bcount = 0;
2740 					bp->b_flags &= ~B_MALLOC;
2741 				}
2742 				return 1;
2743 			}
2744 			vm_hold_free_pages(
2745 			    bp,
2746 			    (vm_offset_t) bp->b_data + newbsize,
2747 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2748 		} else if (newbsize > bp->b_bufsize) {
2749 			/*
2750 			 * We only use malloced memory on the first allocation.
2751 			 * and revert to page-allocated memory when the buffer
2752 			 * grows.
2753 			 */
2754 			/*
2755 			 * There is a potential smp race here that could lead
2756 			 * to bufmallocspace slightly passing the max.  It
2757 			 * is probably extremely rare and not worth worrying
2758 			 * over.
2759 			 */
2760 			if ( (bufmallocspace < maxbufmallocspace) &&
2761 				(bp->b_bufsize == 0) &&
2762 				(mbsize <= PAGE_SIZE/2)) {
2763 
2764 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2765 				bp->b_bufsize = mbsize;
2766 				bp->b_bcount = size;
2767 				bp->b_flags |= B_MALLOC;
2768 				atomic_add_int(&bufmallocspace, mbsize);
2769 				return 1;
2770 			}
2771 			origbuf = NULL;
2772 			origbufsize = 0;
2773 			/*
2774 			 * If the buffer is growing on its other-than-first allocation,
2775 			 * then we revert to the page-allocation scheme.
2776 			 */
2777 			if (bp->b_flags & B_MALLOC) {
2778 				origbuf = bp->b_data;
2779 				origbufsize = bp->b_bufsize;
2780 				bp->b_data = bp->b_kvabase;
2781 				if (bp->b_bufsize) {
2782 					atomic_subtract_int(&bufmallocspace,
2783 					    bp->b_bufsize);
2784 					bufspacewakeup();
2785 					bp->b_bufsize = 0;
2786 				}
2787 				bp->b_flags &= ~B_MALLOC;
2788 				newbsize = round_page(newbsize);
2789 			}
2790 			vm_hold_load_pages(
2791 			    bp,
2792 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2793 			    (vm_offset_t) bp->b_data + newbsize);
2794 			if (origbuf) {
2795 				bcopy(origbuf, bp->b_data, origbufsize);
2796 				free(origbuf, M_BIOBUF);
2797 			}
2798 		}
2799 	} else {
2800 		int desiredpages;
2801 
2802 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2803 		desiredpages = (size == 0) ? 0 :
2804 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2805 
2806 		if (bp->b_flags & B_MALLOC)
2807 			panic("allocbuf: VMIO buffer can't be malloced");
2808 		/*
2809 		 * Set B_CACHE initially if buffer is 0 length or will become
2810 		 * 0-length.
2811 		 */
2812 		if (size == 0 || bp->b_bufsize == 0)
2813 			bp->b_flags |= B_CACHE;
2814 
2815 		if (newbsize < bp->b_bufsize) {
2816 			/*
2817 			 * DEV_BSIZE aligned new buffer size is less then the
2818 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2819 			 * if we have to remove any pages.
2820 			 */
2821 			if (desiredpages < bp->b_npages) {
2822 				vm_page_t m;
2823 
2824 				vm_page_lock_queues();
2825 				for (i = desiredpages; i < bp->b_npages; i++) {
2826 					/*
2827 					 * the page is not freed here -- it
2828 					 * is the responsibility of
2829 					 * vnode_pager_setsize
2830 					 */
2831 					m = bp->b_pages[i];
2832 					KASSERT(m != bogus_page,
2833 					    ("allocbuf: bogus page found"));
2834 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2835 						vm_page_lock_queues();
2836 
2837 					bp->b_pages[i] = NULL;
2838 					vm_page_unwire(m, 0);
2839 				}
2840 				vm_page_unlock_queues();
2841 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2842 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2843 				bp->b_npages = desiredpages;
2844 			}
2845 		} else if (size > bp->b_bcount) {
2846 			/*
2847 			 * We are growing the buffer, possibly in a
2848 			 * byte-granular fashion.
2849 			 */
2850 			struct vnode *vp;
2851 			vm_object_t obj;
2852 			vm_offset_t toff;
2853 			vm_offset_t tinc;
2854 
2855 			/*
2856 			 * Step 1, bring in the VM pages from the object,
2857 			 * allocating them if necessary.  We must clear
2858 			 * B_CACHE if these pages are not valid for the
2859 			 * range covered by the buffer.
2860 			 */
2861 
2862 			vp = bp->b_vp;
2863 			obj = bp->b_object;
2864 
2865 			VM_OBJECT_LOCK(obj);
2866 			while (bp->b_npages < desiredpages) {
2867 				vm_page_t m;
2868 				vm_pindex_t pi;
2869 
2870 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2871 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2872 					/*
2873 					 * note: must allocate system pages
2874 					 * since blocking here could intefere
2875 					 * with paging I/O, no matter which
2876 					 * process we are.
2877 					 */
2878 					m = vm_page_alloc(obj, pi,
2879 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2880 					if (m == NULL) {
2881 						atomic_add_int(&vm_pageout_deficit,
2882 						    desiredpages - bp->b_npages);
2883 						VM_OBJECT_UNLOCK(obj);
2884 						VM_WAIT;
2885 						VM_OBJECT_LOCK(obj);
2886 					} else {
2887 						vm_page_lock_queues();
2888 						vm_page_wakeup(m);
2889 						vm_page_unlock_queues();
2890 						bp->b_flags &= ~B_CACHE;
2891 						bp->b_pages[bp->b_npages] = m;
2892 						++bp->b_npages;
2893 					}
2894 					continue;
2895 				}
2896 
2897 				/*
2898 				 * We found a page.  If we have to sleep on it,
2899 				 * retry because it might have gotten freed out
2900 				 * from under us.
2901 				 *
2902 				 * We can only test PG_BUSY here.  Blocking on
2903 				 * m->busy might lead to a deadlock:
2904 				 *
2905 				 *  vm_fault->getpages->cluster_read->allocbuf
2906 				 *
2907 				 */
2908 				vm_page_lock_queues();
2909 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2910 					continue;
2911 
2912 				/*
2913 				 * We have a good page.  Should we wakeup the
2914 				 * page daemon?
2915 				 */
2916 				if ((curproc != pageproc) &&
2917 				    ((m->queue - m->pc) == PQ_CACHE) &&
2918 				    ((cnt.v_free_count + cnt.v_cache_count) <
2919 					(cnt.v_free_min + cnt.v_cache_min))) {
2920 					pagedaemon_wakeup();
2921 				}
2922 				vm_page_flag_clear(m, PG_ZERO);
2923 				vm_page_wire(m);
2924 				vm_page_unlock_queues();
2925 				bp->b_pages[bp->b_npages] = m;
2926 				++bp->b_npages;
2927 			}
2928 
2929 			/*
2930 			 * Step 2.  We've loaded the pages into the buffer,
2931 			 * we have to figure out if we can still have B_CACHE
2932 			 * set.  Note that B_CACHE is set according to the
2933 			 * byte-granular range ( bcount and size ), new the
2934 			 * aligned range ( newbsize ).
2935 			 *
2936 			 * The VM test is against m->valid, which is DEV_BSIZE
2937 			 * aligned.  Needless to say, the validity of the data
2938 			 * needs to also be DEV_BSIZE aligned.  Note that this
2939 			 * fails with NFS if the server or some other client
2940 			 * extends the file's EOF.  If our buffer is resized,
2941 			 * B_CACHE may remain set! XXX
2942 			 */
2943 
2944 			toff = bp->b_bcount;
2945 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2946 
2947 			while ((bp->b_flags & B_CACHE) && toff < size) {
2948 				vm_pindex_t pi;
2949 
2950 				if (tinc > (size - toff))
2951 					tinc = size - toff;
2952 
2953 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2954 				    PAGE_SHIFT;
2955 
2956 				vfs_buf_test_cache(
2957 				    bp,
2958 				    bp->b_offset,
2959 				    toff,
2960 				    tinc,
2961 				    bp->b_pages[pi]
2962 				);
2963 				toff += tinc;
2964 				tinc = PAGE_SIZE;
2965 			}
2966 			VM_OBJECT_UNLOCK(obj);
2967 
2968 			/*
2969 			 * Step 3, fixup the KVM pmap.  Remember that
2970 			 * bp->b_data is relative to bp->b_offset, but
2971 			 * bp->b_offset may be offset into the first page.
2972 			 */
2973 
2974 			bp->b_data = (caddr_t)
2975 			    trunc_page((vm_offset_t)bp->b_data);
2976 			pmap_qenter(
2977 			    (vm_offset_t)bp->b_data,
2978 			    bp->b_pages,
2979 			    bp->b_npages
2980 			);
2981 
2982 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2983 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2984 		}
2985 	}
2986 	if (newbsize < bp->b_bufsize)
2987 		bufspacewakeup();
2988 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2989 	bp->b_bcount = size;		/* requested buffer size	*/
2990 	return 1;
2991 }
2992 
2993 void
2994 biodone(struct bio *bp)
2995 {
2996 	mtx_lock(&bdonelock);
2997 	bp->bio_flags |= BIO_DONE;
2998 	if (bp->bio_done == NULL)
2999 		wakeup(bp);
3000 	mtx_unlock(&bdonelock);
3001 	if (bp->bio_done != NULL)
3002 		bp->bio_done(bp);
3003 }
3004 
3005 /*
3006  * Wait for a BIO to finish.
3007  *
3008  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3009  * case is not yet clear.
3010  */
3011 int
3012 biowait(struct bio *bp, const char *wchan)
3013 {
3014 
3015 	mtx_lock(&bdonelock);
3016 	while ((bp->bio_flags & BIO_DONE) == 0)
3017 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3018 	mtx_unlock(&bdonelock);
3019 	if (bp->bio_error != 0)
3020 		return (bp->bio_error);
3021 	if (!(bp->bio_flags & BIO_ERROR))
3022 		return (0);
3023 	return (EIO);
3024 }
3025 
3026 void
3027 biofinish(struct bio *bp, struct devstat *stat, int error)
3028 {
3029 
3030 	if (error) {
3031 		bp->bio_error = error;
3032 		bp->bio_flags |= BIO_ERROR;
3033 	}
3034 	if (stat != NULL)
3035 		devstat_end_transaction_bio(stat, bp);
3036 	biodone(bp);
3037 }
3038 
3039 /*
3040  *	bufwait:
3041  *
3042  *	Wait for buffer I/O completion, returning error status.  The buffer
3043  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3044  *	error and cleared.
3045  */
3046 int
3047 bufwait(register struct buf * bp)
3048 {
3049 	int s;
3050 
3051 	s = splbio();
3052 	if (bp->b_iocmd == BIO_READ)
3053 		bwait(bp, PRIBIO, "biord");
3054 	else
3055 		bwait(bp, PRIBIO, "biowr");
3056 	splx(s);
3057 	if (bp->b_flags & B_EINTR) {
3058 		bp->b_flags &= ~B_EINTR;
3059 		return (EINTR);
3060 	}
3061 	if (bp->b_ioflags & BIO_ERROR) {
3062 		return (bp->b_error ? bp->b_error : EIO);
3063 	} else {
3064 		return (0);
3065 	}
3066 }
3067 
3068  /*
3069   * Call back function from struct bio back up to struct buf.
3070   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3071   */
3072 static void
3073 bufdonebio(struct bio *bp)
3074 {
3075 
3076 	/* Device drivers may or may not hold giant, hold it here. */
3077 	mtx_lock(&Giant);
3078 	bufdone(bp->bio_caller2);
3079 	mtx_unlock(&Giant);
3080 }
3081 
3082 void
3083 dev_strategy(struct buf *bp)
3084 {
3085 	struct cdevsw *csw;
3086 
3087 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3088 		panic("b_iocmd botch");
3089 	bp->b_io.bio_done = bufdonebio;
3090 	bp->b_io.bio_caller2 = bp;
3091 	csw = devsw(bp->b_io.bio_dev);
3092 	KASSERT(bp->b_io.bio_dev->si_refcount > 0,
3093 	    ("dev_strategy on un-referenced dev_t (%s)",
3094 	    devtoname(bp->b_io.bio_dev)));
3095 	cdevsw_ref(csw);
3096 	(*devsw(bp->b_io.bio_dev)->d_strategy)(&bp->b_io);
3097 	cdevsw_rel(csw);
3098 }
3099 
3100 /*
3101  *	bufdone:
3102  *
3103  *	Finish I/O on a buffer, optionally calling a completion function.
3104  *	This is usually called from an interrupt so process blocking is
3105  *	not allowed.
3106  *
3107  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3108  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3109  *	assuming B_INVAL is clear.
3110  *
3111  *	For the VMIO case, we set B_CACHE if the op was a read and no
3112  *	read error occured, or if the op was a write.  B_CACHE is never
3113  *	set if the buffer is invalid or otherwise uncacheable.
3114  *
3115  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3116  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3117  *	in the biodone routine.
3118  */
3119 void
3120 bufdone(struct buf *bp)
3121 {
3122 	int s;
3123 	void    (*biodone)(struct buf *);
3124 
3125 
3126 	s = splbio();
3127 
3128 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3129 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3130 
3131 	bp->b_flags |= B_DONE;
3132 	runningbufwakeup(bp);
3133 
3134 	if (bp->b_iocmd == BIO_DELETE) {
3135 		brelse(bp);
3136 		splx(s);
3137 		return;
3138 	}
3139 
3140 	if (bp->b_iocmd == BIO_WRITE) {
3141 		vwakeup(bp);
3142 	}
3143 
3144 	/* call optional completion function if requested */
3145 	if (bp->b_iodone != NULL) {
3146 		biodone = bp->b_iodone;
3147 		bp->b_iodone = NULL;
3148 		(*biodone) (bp);
3149 		splx(s);
3150 		return;
3151 	}
3152 	if (LIST_FIRST(&bp->b_dep) != NULL)
3153 		buf_complete(bp);
3154 
3155 	if (bp->b_flags & B_VMIO) {
3156 		int i;
3157 		vm_ooffset_t foff;
3158 		vm_page_t m;
3159 		vm_object_t obj;
3160 		int iosize;
3161 		struct vnode *vp = bp->b_vp;
3162 
3163 		obj = bp->b_object;
3164 
3165 #if defined(VFS_BIO_DEBUG)
3166 		mp_fixme("usecount and vflag accessed without locks.");
3167 		if (vp->v_usecount == 0) {
3168 			panic("biodone: zero vnode ref count");
3169 		}
3170 
3171 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3172 			panic("biodone: vnode is not setup for merged cache");
3173 		}
3174 #endif
3175 
3176 		foff = bp->b_offset;
3177 		KASSERT(bp->b_offset != NOOFFSET,
3178 		    ("biodone: no buffer offset"));
3179 
3180 		VM_OBJECT_LOCK(obj);
3181 #if defined(VFS_BIO_DEBUG)
3182 		if (obj->paging_in_progress < bp->b_npages) {
3183 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3184 			    obj->paging_in_progress, bp->b_npages);
3185 		}
3186 #endif
3187 
3188 		/*
3189 		 * Set B_CACHE if the op was a normal read and no error
3190 		 * occured.  B_CACHE is set for writes in the b*write()
3191 		 * routines.
3192 		 */
3193 		iosize = bp->b_bcount - bp->b_resid;
3194 		if (bp->b_iocmd == BIO_READ &&
3195 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3196 		    !(bp->b_ioflags & BIO_ERROR)) {
3197 			bp->b_flags |= B_CACHE;
3198 		}
3199 		vm_page_lock_queues();
3200 		for (i = 0; i < bp->b_npages; i++) {
3201 			int bogusflag = 0;
3202 			int resid;
3203 
3204 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3205 			if (resid > iosize)
3206 				resid = iosize;
3207 
3208 			/*
3209 			 * cleanup bogus pages, restoring the originals
3210 			 */
3211 			m = bp->b_pages[i];
3212 			if (m == bogus_page) {
3213 				bogusflag = 1;
3214 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3215 				if (m == NULL)
3216 					panic("biodone: page disappeared!");
3217 				bp->b_pages[i] = m;
3218 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3219 			}
3220 #if defined(VFS_BIO_DEBUG)
3221 			if (OFF_TO_IDX(foff) != m->pindex) {
3222 				printf(
3223 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3224 				    (intmax_t)foff, (uintmax_t)m->pindex);
3225 			}
3226 #endif
3227 
3228 			/*
3229 			 * In the write case, the valid and clean bits are
3230 			 * already changed correctly ( see bdwrite() ), so we
3231 			 * only need to do this here in the read case.
3232 			 */
3233 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3234 				vfs_page_set_valid(bp, foff, i, m);
3235 			}
3236 			vm_page_flag_clear(m, PG_ZERO);
3237 
3238 			/*
3239 			 * when debugging new filesystems or buffer I/O methods, this
3240 			 * is the most common error that pops up.  if you see this, you
3241 			 * have not set the page busy flag correctly!!!
3242 			 */
3243 			if (m->busy == 0) {
3244 				printf("biodone: page busy < 0, "
3245 				    "pindex: %d, foff: 0x(%x,%x), "
3246 				    "resid: %d, index: %d\n",
3247 				    (int) m->pindex, (int)(foff >> 32),
3248 						(int) foff & 0xffffffff, resid, i);
3249 				if (!vn_isdisk(vp, NULL))
3250 					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3251 					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3252 					    (intmax_t) bp->b_lblkno,
3253 					    bp->b_flags, bp->b_npages);
3254 				else
3255 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3256 					    (intmax_t) bp->b_lblkno,
3257 					    bp->b_flags, bp->b_npages);
3258 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3259 				    (u_long)m->valid, (u_long)m->dirty,
3260 				    m->wire_count);
3261 				panic("biodone: page busy < 0\n");
3262 			}
3263 			vm_page_io_finish(m);
3264 			vm_object_pip_subtract(obj, 1);
3265 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3266 			iosize -= resid;
3267 		}
3268 		vm_page_unlock_queues();
3269 		vm_object_pip_wakeupn(obj, 0);
3270 		VM_OBJECT_UNLOCK(obj);
3271 	}
3272 
3273 	/*
3274 	 * For asynchronous completions, release the buffer now. The brelse
3275 	 * will do a wakeup there if necessary - so no need to do a wakeup
3276 	 * here in the async case. The sync case always needs to do a wakeup.
3277 	 */
3278 
3279 	if (bp->b_flags & B_ASYNC) {
3280 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3281 			brelse(bp);
3282 		else
3283 			bqrelse(bp);
3284 	} else {
3285 		bdone(bp);
3286 	}
3287 	splx(s);
3288 }
3289 
3290 /*
3291  * This routine is called in lieu of iodone in the case of
3292  * incomplete I/O.  This keeps the busy status for pages
3293  * consistant.
3294  */
3295 void
3296 vfs_unbusy_pages(struct buf * bp)
3297 {
3298 	int i;
3299 
3300 	runningbufwakeup(bp);
3301 	if (bp->b_flags & B_VMIO) {
3302 		vm_object_t obj;
3303 
3304 		obj = bp->b_object;
3305 		VM_OBJECT_LOCK(obj);
3306 		vm_page_lock_queues();
3307 		for (i = 0; i < bp->b_npages; i++) {
3308 			vm_page_t m = bp->b_pages[i];
3309 
3310 			if (m == bogus_page) {
3311 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3312 				if (!m) {
3313 					panic("vfs_unbusy_pages: page missing\n");
3314 				}
3315 				bp->b_pages[i] = m;
3316 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3317 			}
3318 			vm_object_pip_subtract(obj, 1);
3319 			vm_page_flag_clear(m, PG_ZERO);
3320 			vm_page_io_finish(m);
3321 		}
3322 		vm_page_unlock_queues();
3323 		vm_object_pip_wakeupn(obj, 0);
3324 		VM_OBJECT_UNLOCK(obj);
3325 	}
3326 }
3327 
3328 /*
3329  * vfs_page_set_valid:
3330  *
3331  *	Set the valid bits in a page based on the supplied offset.   The
3332  *	range is restricted to the buffer's size.
3333  *
3334  *	This routine is typically called after a read completes.
3335  */
3336 static void
3337 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3338 {
3339 	vm_ooffset_t soff, eoff;
3340 
3341 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3342 	/*
3343 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3344 	 * page boundry or cross the end of the buffer.  The end of the
3345 	 * buffer, in this case, is our file EOF, not the allocation size
3346 	 * of the buffer.
3347 	 */
3348 	soff = off;
3349 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3350 	if (eoff > bp->b_offset + bp->b_bcount)
3351 		eoff = bp->b_offset + bp->b_bcount;
3352 
3353 	/*
3354 	 * Set valid range.  This is typically the entire buffer and thus the
3355 	 * entire page.
3356 	 */
3357 	if (eoff > soff) {
3358 		vm_page_set_validclean(
3359 		    m,
3360 		   (vm_offset_t) (soff & PAGE_MASK),
3361 		   (vm_offset_t) (eoff - soff)
3362 		);
3363 	}
3364 }
3365 
3366 /*
3367  * This routine is called before a device strategy routine.
3368  * It is used to tell the VM system that paging I/O is in
3369  * progress, and treat the pages associated with the buffer
3370  * almost as being PG_BUSY.  Also the object paging_in_progress
3371  * flag is handled to make sure that the object doesn't become
3372  * inconsistant.
3373  *
3374  * Since I/O has not been initiated yet, certain buffer flags
3375  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3376  * and should be ignored.
3377  */
3378 void
3379 vfs_busy_pages(struct buf * bp, int clear_modify)
3380 {
3381 	int i, bogus;
3382 
3383 	if (bp->b_flags & B_VMIO) {
3384 		vm_object_t obj;
3385 		vm_ooffset_t foff;
3386 
3387 		obj = bp->b_object;
3388 		foff = bp->b_offset;
3389 		KASSERT(bp->b_offset != NOOFFSET,
3390 		    ("vfs_busy_pages: no buffer offset"));
3391 		vfs_setdirty(bp);
3392 		VM_OBJECT_LOCK(obj);
3393 retry:
3394 		vm_page_lock_queues();
3395 		for (i = 0; i < bp->b_npages; i++) {
3396 			vm_page_t m = bp->b_pages[i];
3397 
3398 			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3399 				goto retry;
3400 		}
3401 		bogus = 0;
3402 		for (i = 0; i < bp->b_npages; i++) {
3403 			vm_page_t m = bp->b_pages[i];
3404 
3405 			vm_page_flag_clear(m, PG_ZERO);
3406 			if ((bp->b_flags & B_CLUSTER) == 0) {
3407 				vm_object_pip_add(obj, 1);
3408 				vm_page_io_start(m);
3409 			}
3410 			/*
3411 			 * When readying a buffer for a read ( i.e
3412 			 * clear_modify == 0 ), it is important to do
3413 			 * bogus_page replacement for valid pages in
3414 			 * partially instantiated buffers.  Partially
3415 			 * instantiated buffers can, in turn, occur when
3416 			 * reconstituting a buffer from its VM backing store
3417 			 * base.  We only have to do this if B_CACHE is
3418 			 * clear ( which causes the I/O to occur in the
3419 			 * first place ).  The replacement prevents the read
3420 			 * I/O from overwriting potentially dirty VM-backed
3421 			 * pages.  XXX bogus page replacement is, uh, bogus.
3422 			 * It may not work properly with small-block devices.
3423 			 * We need to find a better way.
3424 			 */
3425 			pmap_remove_all(m);
3426 			if (clear_modify)
3427 				vfs_page_set_valid(bp, foff, i, m);
3428 			else if (m->valid == VM_PAGE_BITS_ALL &&
3429 				(bp->b_flags & B_CACHE) == 0) {
3430 				bp->b_pages[i] = bogus_page;
3431 				bogus++;
3432 			}
3433 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3434 		}
3435 		vm_page_unlock_queues();
3436 		VM_OBJECT_UNLOCK(obj);
3437 		if (bogus)
3438 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3439 	}
3440 }
3441 
3442 /*
3443  * Tell the VM system that the pages associated with this buffer
3444  * are clean.  This is used for delayed writes where the data is
3445  * going to go to disk eventually without additional VM intevention.
3446  *
3447  * Note that while we only really need to clean through to b_bcount, we
3448  * just go ahead and clean through to b_bufsize.
3449  */
3450 static void
3451 vfs_clean_pages(struct buf * bp)
3452 {
3453 	int i;
3454 
3455 	if (bp->b_flags & B_VMIO) {
3456 		vm_ooffset_t foff;
3457 
3458 		foff = bp->b_offset;
3459 		KASSERT(bp->b_offset != NOOFFSET,
3460 		    ("vfs_clean_pages: no buffer offset"));
3461 		VM_OBJECT_LOCK(bp->b_object);
3462 		vm_page_lock_queues();
3463 		for (i = 0; i < bp->b_npages; i++) {
3464 			vm_page_t m = bp->b_pages[i];
3465 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3466 			vm_ooffset_t eoff = noff;
3467 
3468 			if (eoff > bp->b_offset + bp->b_bufsize)
3469 				eoff = bp->b_offset + bp->b_bufsize;
3470 			vfs_page_set_valid(bp, foff, i, m);
3471 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3472 			foff = noff;
3473 		}
3474 		vm_page_unlock_queues();
3475 		VM_OBJECT_UNLOCK(bp->b_object);
3476 	}
3477 }
3478 
3479 /*
3480  *	vfs_bio_set_validclean:
3481  *
3482  *	Set the range within the buffer to valid and clean.  The range is
3483  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3484  *	itself may be offset from the beginning of the first page.
3485  *
3486  */
3487 
3488 void
3489 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3490 {
3491 	if (bp->b_flags & B_VMIO) {
3492 		int i;
3493 		int n;
3494 
3495 		/*
3496 		 * Fixup base to be relative to beginning of first page.
3497 		 * Set initial n to be the maximum number of bytes in the
3498 		 * first page that can be validated.
3499 		 */
3500 
3501 		base += (bp->b_offset & PAGE_MASK);
3502 		n = PAGE_SIZE - (base & PAGE_MASK);
3503 
3504 		VM_OBJECT_LOCK(bp->b_object);
3505 		vm_page_lock_queues();
3506 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3507 			vm_page_t m = bp->b_pages[i];
3508 
3509 			if (n > size)
3510 				n = size;
3511 
3512 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3513 			base += n;
3514 			size -= n;
3515 			n = PAGE_SIZE;
3516 		}
3517 		vm_page_unlock_queues();
3518 		VM_OBJECT_UNLOCK(bp->b_object);
3519 	}
3520 }
3521 
3522 /*
3523  *	vfs_bio_clrbuf:
3524  *
3525  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3526  *	to clear BIO_ERROR and B_INVAL.
3527  *
3528  *	Note that while we only theoretically need to clear through b_bcount,
3529  *	we go ahead and clear through b_bufsize.
3530  */
3531 
3532 void
3533 vfs_bio_clrbuf(struct buf *bp)
3534 {
3535 	int i, mask = 0;
3536 	caddr_t sa, ea;
3537 
3538 	GIANT_REQUIRED;
3539 
3540 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3541 		bp->b_flags &= ~B_INVAL;
3542 		bp->b_ioflags &= ~BIO_ERROR;
3543 		VM_OBJECT_LOCK(bp->b_object);
3544 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3545 		    (bp->b_offset & PAGE_MASK) == 0) {
3546 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3547 			if (bp->b_pages[0] != bogus_page)
3548 				VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3549 			if ((bp->b_pages[0]->valid & mask) == mask)
3550 				goto unlock;
3551 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3552 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3553 				bzero(bp->b_data, bp->b_bufsize);
3554 				bp->b_pages[0]->valid |= mask;
3555 				goto unlock;
3556 			}
3557 		}
3558 		ea = sa = bp->b_data;
3559 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3560 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3561 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3562 			ea = (caddr_t)(vm_offset_t)ulmin(
3563 			    (u_long)(vm_offset_t)ea,
3564 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3565 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3566 			if (bp->b_pages[i] != bogus_page)
3567 				VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3568 			if ((bp->b_pages[i]->valid & mask) == mask)
3569 				continue;
3570 			if ((bp->b_pages[i]->valid & mask) == 0) {
3571 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3572 					bzero(sa, ea - sa);
3573 				}
3574 			} else {
3575 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3576 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3577 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3578 						bzero(sa, DEV_BSIZE);
3579 				}
3580 			}
3581 			bp->b_pages[i]->valid |= mask;
3582 			vm_page_lock_queues();
3583 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3584 			vm_page_unlock_queues();
3585 		}
3586 unlock:
3587 		VM_OBJECT_UNLOCK(bp->b_object);
3588 		bp->b_resid = 0;
3589 	} else {
3590 		clrbuf(bp);
3591 	}
3592 }
3593 
3594 /*
3595  * vm_hold_load_pages and vm_hold_free_pages get pages into
3596  * a buffers address space.  The pages are anonymous and are
3597  * not associated with a file object.
3598  */
3599 static void
3600 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3601 {
3602 	vm_offset_t pg;
3603 	vm_page_t p;
3604 	int index;
3605 
3606 	to = round_page(to);
3607 	from = round_page(from);
3608 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3609 
3610 	VM_OBJECT_LOCK(kernel_object);
3611 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3612 tryagain:
3613 		/*
3614 		 * note: must allocate system pages since blocking here
3615 		 * could intefere with paging I/O, no matter which
3616 		 * process we are.
3617 		 */
3618 		p = vm_page_alloc(kernel_object,
3619 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3620 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3621 		if (!p) {
3622 			atomic_add_int(&vm_pageout_deficit,
3623 			    (to - pg) >> PAGE_SHIFT);
3624 			VM_OBJECT_UNLOCK(kernel_object);
3625 			VM_WAIT;
3626 			VM_OBJECT_LOCK(kernel_object);
3627 			goto tryagain;
3628 		}
3629 		p->valid = VM_PAGE_BITS_ALL;
3630 		pmap_qenter(pg, &p, 1);
3631 		bp->b_pages[index] = p;
3632 		vm_page_lock_queues();
3633 		vm_page_wakeup(p);
3634 		vm_page_unlock_queues();
3635 	}
3636 	VM_OBJECT_UNLOCK(kernel_object);
3637 	bp->b_npages = index;
3638 }
3639 
3640 /* Return pages associated with this buf to the vm system */
3641 static void
3642 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3643 {
3644 	vm_offset_t pg;
3645 	vm_page_t p;
3646 	int index, newnpages;
3647 
3648 	GIANT_REQUIRED;
3649 
3650 	from = round_page(from);
3651 	to = round_page(to);
3652 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3653 
3654 	VM_OBJECT_LOCK(kernel_object);
3655 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3656 		p = bp->b_pages[index];
3657 		if (p && (index < bp->b_npages)) {
3658 			if (p->busy) {
3659 				printf(
3660 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3661 				    (intmax_t)bp->b_blkno,
3662 				    (intmax_t)bp->b_lblkno);
3663 			}
3664 			bp->b_pages[index] = NULL;
3665 			pmap_qremove(pg, 1);
3666 			vm_page_lock_queues();
3667 			vm_page_busy(p);
3668 			vm_page_unwire(p, 0);
3669 			vm_page_free(p);
3670 			vm_page_unlock_queues();
3671 		}
3672 	}
3673 	VM_OBJECT_UNLOCK(kernel_object);
3674 	bp->b_npages = newnpages;
3675 }
3676 
3677 /*
3678  * Map an IO request into kernel virtual address space.
3679  *
3680  * All requests are (re)mapped into kernel VA space.
3681  * Notice that we use b_bufsize for the size of the buffer
3682  * to be mapped.  b_bcount might be modified by the driver.
3683  *
3684  * Note that even if the caller determines that the address space should
3685  * be valid, a race or a smaller-file mapped into a larger space may
3686  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3687  * check the return value.
3688  */
3689 int
3690 vmapbuf(struct buf *bp)
3691 {
3692 	caddr_t addr, kva;
3693 	vm_prot_t prot;
3694 	int pidx, i;
3695 	struct vm_page *m;
3696 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3697 
3698 	GIANT_REQUIRED;
3699 
3700 	if (bp->b_bufsize < 0)
3701 		return (-1);
3702 	prot = (bp->b_iocmd == BIO_READ) ? VM_PROT_READ | VM_PROT_WRITE :
3703 	    VM_PROT_READ;
3704 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3705 	     addr < bp->b_data + bp->b_bufsize;
3706 	     addr += PAGE_SIZE, pidx++) {
3707 		/*
3708 		 * Do the vm_fault if needed; do the copy-on-write thing
3709 		 * when reading stuff off device into memory.
3710 		 *
3711 		 * NOTE! Must use pmap_extract() because addr may be in
3712 		 * the userland address space, and kextract is only guarenteed
3713 		 * to work for the kernland address space (see: sparc64 port).
3714 		 */
3715 retry:
3716 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3717 		    prot) < 0) {
3718 			vm_page_lock_queues();
3719 			for (i = 0; i < pidx; ++i) {
3720 				vm_page_unhold(bp->b_pages[i]);
3721 				bp->b_pages[i] = NULL;
3722 			}
3723 			vm_page_unlock_queues();
3724 			return(-1);
3725 		}
3726 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3727 		if (m == NULL)
3728 			goto retry;
3729 		bp->b_pages[pidx] = m;
3730 	}
3731 	if (pidx > btoc(MAXPHYS))
3732 		panic("vmapbuf: mapped more than MAXPHYS");
3733 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3734 
3735 	kva = bp->b_saveaddr;
3736 	bp->b_npages = pidx;
3737 	bp->b_saveaddr = bp->b_data;
3738 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3739 	return(0);
3740 }
3741 
3742 /*
3743  * Free the io map PTEs associated with this IO operation.
3744  * We also invalidate the TLB entries and restore the original b_addr.
3745  */
3746 void
3747 vunmapbuf(struct buf *bp)
3748 {
3749 	int pidx;
3750 	int npages;
3751 
3752 	npages = bp->b_npages;
3753 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3754 		     npages);
3755 	vm_page_lock_queues();
3756 	for (pidx = 0; pidx < npages; pidx++)
3757 		vm_page_unhold(bp->b_pages[pidx]);
3758 	vm_page_unlock_queues();
3759 
3760 	bp->b_data = bp->b_saveaddr;
3761 }
3762 
3763 void
3764 bdone(struct buf *bp)
3765 {
3766 	mtx_lock(&bdonelock);
3767 	bp->b_flags |= B_DONE;
3768 	wakeup(bp);
3769 	mtx_unlock(&bdonelock);
3770 }
3771 
3772 void
3773 bwait(struct buf *bp, u_char pri, const char *wchan)
3774 {
3775 	mtx_lock(&bdonelock);
3776 	while ((bp->b_flags & B_DONE) == 0)
3777 		msleep(bp, &bdonelock, pri, wchan, 0);
3778 	mtx_unlock(&bdonelock);
3779 }
3780 
3781 #include "opt_ddb.h"
3782 #ifdef DDB
3783 #include <ddb/ddb.h>
3784 
3785 /* DDB command to show buffer data */
3786 DB_SHOW_COMMAND(buffer, db_show_buffer)
3787 {
3788 	/* get args */
3789 	struct buf *bp = (struct buf *)addr;
3790 
3791 	if (!have_addr) {
3792 		db_printf("usage: show buffer <addr>\n");
3793 		return;
3794 	}
3795 
3796 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3797 	db_printf(
3798 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3799 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3800 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3801 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3802 	    (intmax_t)bp->b_blkno);
3803 	if (bp->b_npages) {
3804 		int i;
3805 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3806 		for (i = 0; i < bp->b_npages; i++) {
3807 			vm_page_t m;
3808 			m = bp->b_pages[i];
3809 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3810 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3811 			if ((i + 1) < bp->b_npages)
3812 				db_printf(",");
3813 		}
3814 		db_printf("\n");
3815 	}
3816 }
3817 #endif /* DDB */
3818