xref: /freebsd/sys/kern/vfs_bio.c (revision cf7d8dea39cb00887476ad1a42480bce00b0b842)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * this file contains a new buffer I/O scheme implementing a coherent
30  * VM object and buffer cache scheme.  Pains have been taken to make
31  * sure that the performance degradation associated with schemes such
32  * as this is not realized.
33  *
34  * Author:  John S. Dyson
35  * Significant help during the development and debugging phases
36  * had been provided by David Greenman, also of the FreeBSD core team.
37  *
38  * see man buf(9) for more info.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bio.h>
47 #include <sys/conf.h>
48 #include <sys/buf.h>
49 #include <sys/devicestat.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fail.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/proc.h>
60 #include <sys/resourcevar.h>
61 #include <sys/sysctl.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 #include <geom/geom.h>
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_pageout.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_extern.h>
72 #include <vm/vm_map.h>
73 #include "opt_compat.h"
74 #include "opt_directio.h"
75 #include "opt_swap.h"
76 
77 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78 
79 struct	bio_ops bioops;		/* I/O operation notification */
80 
81 struct	buf_ops buf_ops_bio = {
82 	.bop_name	=	"buf_ops_bio",
83 	.bop_write	=	bufwrite,
84 	.bop_strategy	=	bufstrategy,
85 	.bop_sync	=	bufsync,
86 	.bop_bdflush	=	bufbdflush,
87 };
88 
89 /*
90  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92  */
93 struct buf *buf;		/* buffer header pool */
94 
95 static struct proc *bufdaemonproc;
96 
97 static int inmem(struct vnode *vp, daddr_t blkno);
98 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
99 		vm_offset_t to);
100 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
101 		vm_offset_t to);
102 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
103 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
104 		vm_page_t m);
105 static void vfs_clean_pages(struct buf *bp);
106 static void vfs_setdirty(struct buf *bp);
107 static void vfs_setdirty_locked_object(struct buf *bp);
108 static void vfs_vmio_release(struct buf *bp);
109 static int vfs_bio_clcheck(struct vnode *vp, int size,
110 		daddr_t lblkno, daddr_t blkno);
111 static int buf_do_flush(struct vnode *vp);
112 static int flushbufqueues(struct vnode *, int, int);
113 static void buf_daemon(void);
114 static void bremfreel(struct buf *bp);
115 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
116     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
117 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
118 #endif
119 
120 int vmiodirenable = TRUE;
121 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
122     "Use the VM system for directory writes");
123 long runningbufspace;
124 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
125     "Amount of presently outstanding async buffer io");
126 static long bufspace;
127 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
128     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
129 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
130     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
131 #else
132 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
133     "Virtual memory used for buffers");
134 #endif
135 static long maxbufspace;
136 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
137     "Maximum allowed value of bufspace (including buf_daemon)");
138 static long bufmallocspace;
139 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
140     "Amount of malloced memory for buffers");
141 static long maxbufmallocspace;
142 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
143     "Maximum amount of malloced memory for buffers");
144 static long lobufspace;
145 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
146     "Minimum amount of buffers we want to have");
147 long hibufspace;
148 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
149     "Maximum allowed value of bufspace (excluding buf_daemon)");
150 static int bufreusecnt;
151 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
152     "Number of times we have reused a buffer");
153 static int buffreekvacnt;
154 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
155     "Number of times we have freed the KVA space from some buffer");
156 static int bufdefragcnt;
157 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
158     "Number of times we have had to repeat buffer allocation to defragment");
159 static long lorunningspace;
160 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
161     "Minimum preferred space used for in-progress I/O");
162 static long hirunningspace;
163 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164     "Maximum amount of space to use for in-progress I/O");
165 int dirtybufferflushes;
166 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
167     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
168 int bdwriteskip;
169 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
170     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
171 int altbufferflushes;
172 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
173     0, "Number of fsync flushes to limit dirty buffers");
174 static int recursiveflushes;
175 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
176     0, "Number of flushes skipped due to being recursive");
177 static int numdirtybuffers;
178 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
179     "Number of buffers that are dirty (has unwritten changes) at the moment");
180 static int lodirtybuffers;
181 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
182     "How many buffers we want to have free before bufdaemon can sleep");
183 static int hidirtybuffers;
184 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
185     "When the number of dirty buffers is considered severe");
186 int dirtybufthresh;
187 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
188     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
189 static int numfreebuffers;
190 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
191     "Number of free buffers");
192 static int lofreebuffers;
193 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
194    "XXX Unused");
195 static int hifreebuffers;
196 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
197    "XXX Complicatedly unused");
198 static int getnewbufcalls;
199 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
200    "Number of calls to getnewbuf");
201 static int getnewbufrestarts;
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
203     "Number of times getnewbuf has had to restart a buffer aquisition");
204 static int flushbufqtarget = 100;
205 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
206     "Amount of work to do in flushbufqueues when helping bufdaemon");
207 static long notbufdflashes;
208 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
209     "Number of dirty buffer flushes done by the bufdaemon helpers");
210 
211 /*
212  * Wakeup point for bufdaemon, as well as indicator of whether it is already
213  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
214  * is idling.
215  */
216 static int bd_request;
217 
218 /*
219  * Request for the buf daemon to write more buffers than is indicated by
220  * lodirtybuf.  This may be necessary to push out excess dependencies or
221  * defragment the address space where a simple count of the number of dirty
222  * buffers is insufficient to characterize the demand for flushing them.
223  */
224 static int bd_speedupreq;
225 
226 /*
227  * This lock synchronizes access to bd_request.
228  */
229 static struct mtx bdlock;
230 
231 /*
232  * bogus page -- for I/O to/from partially complete buffers
233  * this is a temporary solution to the problem, but it is not
234  * really that bad.  it would be better to split the buffer
235  * for input in the case of buffers partially already in memory,
236  * but the code is intricate enough already.
237  */
238 vm_page_t bogus_page;
239 
240 /*
241  * Synchronization (sleep/wakeup) variable for active buffer space requests.
242  * Set when wait starts, cleared prior to wakeup().
243  * Used in runningbufwakeup() and waitrunningbufspace().
244  */
245 static int runningbufreq;
246 
247 /*
248  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
249  * waitrunningbufspace().
250  */
251 static struct mtx rbreqlock;
252 
253 /*
254  * Synchronization (sleep/wakeup) variable for buffer requests.
255  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
256  * by and/or.
257  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
258  * getnewbuf(), and getblk().
259  */
260 static int needsbuffer;
261 
262 /*
263  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
264  */
265 static struct mtx nblock;
266 
267 /*
268  * Definitions for the buffer free lists.
269  */
270 #define BUFFER_QUEUES	6	/* number of free buffer queues */
271 
272 #define QUEUE_NONE	0	/* on no queue */
273 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
274 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
275 #define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
276 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
277 #define QUEUE_EMPTY	5	/* empty buffer headers */
278 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
279 
280 /* Queues for free buffers with various properties */
281 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
282 
283 /* Lock for the bufqueues */
284 static struct mtx bqlock;
285 
286 /*
287  * Single global constant for BUF_WMESG, to avoid getting multiple references.
288  * buf_wmesg is referred from macros.
289  */
290 const char *buf_wmesg = BUF_WMESG;
291 
292 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
293 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
294 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
295 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
296 
297 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
298     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
299 static int
300 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
301 {
302 	long lvalue;
303 	int ivalue;
304 
305 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
306 		return (sysctl_handle_long(oidp, arg1, arg2, req));
307 	lvalue = *(long *)arg1;
308 	if (lvalue > INT_MAX)
309 		/* On overflow, still write out a long to trigger ENOMEM. */
310 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
311 	ivalue = lvalue;
312 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
313 }
314 #endif
315 
316 #ifdef DIRECTIO
317 extern void ffs_rawread_setup(void);
318 #endif /* DIRECTIO */
319 /*
320  *	numdirtywakeup:
321  *
322  *	If someone is blocked due to there being too many dirty buffers,
323  *	and numdirtybuffers is now reasonable, wake them up.
324  */
325 
326 static __inline void
327 numdirtywakeup(int level)
328 {
329 
330 	if (numdirtybuffers <= level) {
331 		mtx_lock(&nblock);
332 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
333 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
334 			wakeup(&needsbuffer);
335 		}
336 		mtx_unlock(&nblock);
337 	}
338 }
339 
340 /*
341  *	bufspacewakeup:
342  *
343  *	Called when buffer space is potentially available for recovery.
344  *	getnewbuf() will block on this flag when it is unable to free
345  *	sufficient buffer space.  Buffer space becomes recoverable when
346  *	bp's get placed back in the queues.
347  */
348 
349 static __inline void
350 bufspacewakeup(void)
351 {
352 
353 	/*
354 	 * If someone is waiting for BUF space, wake them up.  Even
355 	 * though we haven't freed the kva space yet, the waiting
356 	 * process will be able to now.
357 	 */
358 	mtx_lock(&nblock);
359 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
360 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
361 		wakeup(&needsbuffer);
362 	}
363 	mtx_unlock(&nblock);
364 }
365 
366 /*
367  * runningbufwakeup() - in-progress I/O accounting.
368  *
369  */
370 void
371 runningbufwakeup(struct buf *bp)
372 {
373 
374 	if (bp->b_runningbufspace) {
375 		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
376 		bp->b_runningbufspace = 0;
377 		mtx_lock(&rbreqlock);
378 		if (runningbufreq && runningbufspace <= lorunningspace) {
379 			runningbufreq = 0;
380 			wakeup(&runningbufreq);
381 		}
382 		mtx_unlock(&rbreqlock);
383 	}
384 }
385 
386 /*
387  *	bufcountwakeup:
388  *
389  *	Called when a buffer has been added to one of the free queues to
390  *	account for the buffer and to wakeup anyone waiting for free buffers.
391  *	This typically occurs when large amounts of metadata are being handled
392  *	by the buffer cache ( else buffer space runs out first, usually ).
393  */
394 
395 static __inline void
396 bufcountwakeup(void)
397 {
398 
399 	atomic_add_int(&numfreebuffers, 1);
400 	mtx_lock(&nblock);
401 	if (needsbuffer) {
402 		needsbuffer &= ~VFS_BIO_NEED_ANY;
403 		if (numfreebuffers >= hifreebuffers)
404 			needsbuffer &= ~VFS_BIO_NEED_FREE;
405 		wakeup(&needsbuffer);
406 	}
407 	mtx_unlock(&nblock);
408 }
409 
410 /*
411  *	waitrunningbufspace()
412  *
413  *	runningbufspace is a measure of the amount of I/O currently
414  *	running.  This routine is used in async-write situations to
415  *	prevent creating huge backups of pending writes to a device.
416  *	Only asynchronous writes are governed by this function.
417  *
418  *	Reads will adjust runningbufspace, but will not block based on it.
419  *	The read load has a side effect of reducing the allowed write load.
420  *
421  *	This does NOT turn an async write into a sync write.  It waits
422  *	for earlier writes to complete and generally returns before the
423  *	caller's write has reached the device.
424  */
425 void
426 waitrunningbufspace(void)
427 {
428 
429 	mtx_lock(&rbreqlock);
430 	while (runningbufspace > hirunningspace) {
431 		++runningbufreq;
432 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
433 	}
434 	mtx_unlock(&rbreqlock);
435 }
436 
437 
438 /*
439  *	vfs_buf_test_cache:
440  *
441  *	Called when a buffer is extended.  This function clears the B_CACHE
442  *	bit if the newly extended portion of the buffer does not contain
443  *	valid data.
444  */
445 static __inline
446 void
447 vfs_buf_test_cache(struct buf *bp,
448 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
449 		  vm_page_t m)
450 {
451 
452 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
453 	if (bp->b_flags & B_CACHE) {
454 		int base = (foff + off) & PAGE_MASK;
455 		if (vm_page_is_valid(m, base, size) == 0)
456 			bp->b_flags &= ~B_CACHE;
457 	}
458 }
459 
460 /* Wake up the buffer daemon if necessary */
461 static __inline
462 void
463 bd_wakeup(int dirtybuflevel)
464 {
465 
466 	mtx_lock(&bdlock);
467 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
468 		bd_request = 1;
469 		wakeup(&bd_request);
470 	}
471 	mtx_unlock(&bdlock);
472 }
473 
474 /*
475  * bd_speedup - speedup the buffer cache flushing code
476  */
477 
478 void
479 bd_speedup(void)
480 {
481 	int needwake;
482 
483 	mtx_lock(&bdlock);
484 	needwake = 0;
485 	if (bd_speedupreq == 0 || bd_request == 0)
486 		needwake = 1;
487 	bd_speedupreq = 1;
488 	bd_request = 1;
489 	if (needwake)
490 		wakeup(&bd_request);
491 	mtx_unlock(&bdlock);
492 }
493 
494 /*
495  * Calculating buffer cache scaling values and reserve space for buffer
496  * headers.  This is called during low level kernel initialization and
497  * may be called more then once.  We CANNOT write to the memory area
498  * being reserved at this time.
499  */
500 caddr_t
501 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
502 {
503 	int tuned_nbuf;
504 	long maxbuf;
505 
506 	/*
507 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
508 	 * PAGE_SIZE is >= 1K)
509 	 */
510 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
511 
512 	/*
513 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
514 	 * For the first 64MB of ram nominally allocate sufficient buffers to
515 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
516 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
517 	 * the buffer cache we limit the eventual kva reservation to
518 	 * maxbcache bytes.
519 	 *
520 	 * factor represents the 1/4 x ram conversion.
521 	 */
522 	if (nbuf == 0) {
523 		int factor = 4 * BKVASIZE / 1024;
524 
525 		nbuf = 50;
526 		if (physmem_est > 4096)
527 			nbuf += min((physmem_est - 4096) / factor,
528 			    65536 / factor);
529 		if (physmem_est > 65536)
530 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
531 
532 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
533 			nbuf = maxbcache / BKVASIZE;
534 		tuned_nbuf = 1;
535 	} else
536 		tuned_nbuf = 0;
537 
538 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
539 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
540 	if (nbuf > maxbuf) {
541 		if (!tuned_nbuf)
542 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
543 			    maxbuf);
544 		nbuf = maxbuf;
545 	}
546 
547 	/*
548 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
549 	 * We have no less then 16 and no more then 256.
550 	 */
551 	nswbuf = max(min(nbuf/4, 256), 16);
552 #ifdef NSWBUF_MIN
553 	if (nswbuf < NSWBUF_MIN)
554 		nswbuf = NSWBUF_MIN;
555 #endif
556 #ifdef DIRECTIO
557 	ffs_rawread_setup();
558 #endif
559 
560 	/*
561 	 * Reserve space for the buffer cache buffers
562 	 */
563 	swbuf = (void *)v;
564 	v = (caddr_t)(swbuf + nswbuf);
565 	buf = (void *)v;
566 	v = (caddr_t)(buf + nbuf);
567 
568 	return(v);
569 }
570 
571 /* Initialize the buffer subsystem.  Called before use of any buffers. */
572 void
573 bufinit(void)
574 {
575 	struct buf *bp;
576 	int i;
577 
578 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
579 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
580 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
581 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
582 
583 	/* next, make a null set of free lists */
584 	for (i = 0; i < BUFFER_QUEUES; i++)
585 		TAILQ_INIT(&bufqueues[i]);
586 
587 	/* finally, initialize each buffer header and stick on empty q */
588 	for (i = 0; i < nbuf; i++) {
589 		bp = &buf[i];
590 		bzero(bp, sizeof *bp);
591 		bp->b_flags = B_INVAL;	/* we're just an empty header */
592 		bp->b_rcred = NOCRED;
593 		bp->b_wcred = NOCRED;
594 		bp->b_qindex = QUEUE_EMPTY;
595 		bp->b_vflags = 0;
596 		bp->b_xflags = 0;
597 		LIST_INIT(&bp->b_dep);
598 		BUF_LOCKINIT(bp);
599 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
600 	}
601 
602 	/*
603 	 * maxbufspace is the absolute maximum amount of buffer space we are
604 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
605 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
606 	 * used by most other processes.  The differential is required to
607 	 * ensure that buf_daemon is able to run when other processes might
608 	 * be blocked waiting for buffer space.
609 	 *
610 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
611 	 * this may result in KVM fragmentation which is not handled optimally
612 	 * by the system.
613 	 */
614 	maxbufspace = (long)nbuf * BKVASIZE;
615 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
616 	lobufspace = hibufspace - MAXBSIZE;
617 
618 	lorunningspace = 512 * 1024;
619 	hirunningspace = 1024 * 1024;
620 
621 /*
622  * Limit the amount of malloc memory since it is wired permanently into
623  * the kernel space.  Even though this is accounted for in the buffer
624  * allocation, we don't want the malloced region to grow uncontrolled.
625  * The malloc scheme improves memory utilization significantly on average
626  * (small) directories.
627  */
628 	maxbufmallocspace = hibufspace / 20;
629 
630 /*
631  * Reduce the chance of a deadlock occuring by limiting the number
632  * of delayed-write dirty buffers we allow to stack up.
633  */
634 	hidirtybuffers = nbuf / 4 + 20;
635 	dirtybufthresh = hidirtybuffers * 9 / 10;
636 	numdirtybuffers = 0;
637 /*
638  * To support extreme low-memory systems, make sure hidirtybuffers cannot
639  * eat up all available buffer space.  This occurs when our minimum cannot
640  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
641  * BKVASIZE'd (8K) buffers.
642  */
643 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
644 		hidirtybuffers >>= 1;
645 	}
646 	lodirtybuffers = hidirtybuffers / 2;
647 
648 /*
649  * Try to keep the number of free buffers in the specified range,
650  * and give special processes (e.g. like buf_daemon) access to an
651  * emergency reserve.
652  */
653 	lofreebuffers = nbuf / 18 + 5;
654 	hifreebuffers = 2 * lofreebuffers;
655 	numfreebuffers = nbuf;
656 
657 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
658 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
659 }
660 
661 /*
662  * bfreekva() - free the kva allocation for a buffer.
663  *
664  *	Since this call frees up buffer space, we call bufspacewakeup().
665  */
666 static void
667 bfreekva(struct buf *bp)
668 {
669 
670 	if (bp->b_kvasize) {
671 		atomic_add_int(&buffreekvacnt, 1);
672 		atomic_subtract_long(&bufspace, bp->b_kvasize);
673 		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
674 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
675 		bp->b_kvasize = 0;
676 		bufspacewakeup();
677 	}
678 }
679 
680 /*
681  *	bremfree:
682  *
683  *	Mark the buffer for removal from the appropriate free list in brelse.
684  *
685  */
686 void
687 bremfree(struct buf *bp)
688 {
689 
690 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
691 	KASSERT((bp->b_flags & B_REMFREE) == 0,
692 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
693 	KASSERT(bp->b_qindex != QUEUE_NONE,
694 	    ("bremfree: buffer %p not on a queue.", bp));
695 	BUF_ASSERT_HELD(bp);
696 
697 	bp->b_flags |= B_REMFREE;
698 	/* Fixup numfreebuffers count.  */
699 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
700 		atomic_subtract_int(&numfreebuffers, 1);
701 }
702 
703 /*
704  *	bremfreef:
705  *
706  *	Force an immediate removal from a free list.  Used only in nfs when
707  *	it abuses the b_freelist pointer.
708  */
709 void
710 bremfreef(struct buf *bp)
711 {
712 	mtx_lock(&bqlock);
713 	bremfreel(bp);
714 	mtx_unlock(&bqlock);
715 }
716 
717 /*
718  *	bremfreel:
719  *
720  *	Removes a buffer from the free list, must be called with the
721  *	bqlock held.
722  */
723 static void
724 bremfreel(struct buf *bp)
725 {
726 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
727 	    bp, bp->b_vp, bp->b_flags);
728 	KASSERT(bp->b_qindex != QUEUE_NONE,
729 	    ("bremfreel: buffer %p not on a queue.", bp));
730 	BUF_ASSERT_HELD(bp);
731 	mtx_assert(&bqlock, MA_OWNED);
732 
733 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
734 	bp->b_qindex = QUEUE_NONE;
735 	/*
736 	 * If this was a delayed bremfree() we only need to remove the buffer
737 	 * from the queue and return the stats are already done.
738 	 */
739 	if (bp->b_flags & B_REMFREE) {
740 		bp->b_flags &= ~B_REMFREE;
741 		return;
742 	}
743 	/*
744 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
745 	 * delayed-write, the buffer was free and we must decrement
746 	 * numfreebuffers.
747 	 */
748 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
749 		atomic_subtract_int(&numfreebuffers, 1);
750 }
751 
752 
753 /*
754  * Get a buffer with the specified data.  Look in the cache first.  We
755  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
756  * is set, the buffer is valid and we do not have to do anything ( see
757  * getblk() ).  This is really just a special case of breadn().
758  */
759 int
760 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
761     struct buf **bpp)
762 {
763 
764 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
765 }
766 
767 /*
768  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
769  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
770  * the buffer is valid and we do not have to do anything.
771  */
772 void
773 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
774     int cnt, struct ucred * cred)
775 {
776 	struct buf *rabp;
777 	int i;
778 
779 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
780 		if (inmem(vp, *rablkno))
781 			continue;
782 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
783 
784 		if ((rabp->b_flags & B_CACHE) == 0) {
785 			if (!TD_IS_IDLETHREAD(curthread))
786 				curthread->td_ru.ru_inblock++;
787 			rabp->b_flags |= B_ASYNC;
788 			rabp->b_flags &= ~B_INVAL;
789 			rabp->b_ioflags &= ~BIO_ERROR;
790 			rabp->b_iocmd = BIO_READ;
791 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
792 				rabp->b_rcred = crhold(cred);
793 			vfs_busy_pages(rabp, 0);
794 			BUF_KERNPROC(rabp);
795 			rabp->b_iooffset = dbtob(rabp->b_blkno);
796 			bstrategy(rabp);
797 		} else {
798 			brelse(rabp);
799 		}
800 	}
801 }
802 
803 /*
804  * Operates like bread, but also starts asynchronous I/O on
805  * read-ahead blocks.
806  */
807 int
808 breadn(struct vnode * vp, daddr_t blkno, int size,
809     daddr_t * rablkno, int *rabsize,
810     int cnt, struct ucred * cred, struct buf **bpp)
811 {
812 	struct buf *bp;
813 	int rv = 0, readwait = 0;
814 
815 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
816 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
817 
818 	/* if not found in cache, do some I/O */
819 	if ((bp->b_flags & B_CACHE) == 0) {
820 		if (!TD_IS_IDLETHREAD(curthread))
821 			curthread->td_ru.ru_inblock++;
822 		bp->b_iocmd = BIO_READ;
823 		bp->b_flags &= ~B_INVAL;
824 		bp->b_ioflags &= ~BIO_ERROR;
825 		if (bp->b_rcred == NOCRED && cred != NOCRED)
826 			bp->b_rcred = crhold(cred);
827 		vfs_busy_pages(bp, 0);
828 		bp->b_iooffset = dbtob(bp->b_blkno);
829 		bstrategy(bp);
830 		++readwait;
831 	}
832 
833 	breada(vp, rablkno, rabsize, cnt, cred);
834 
835 	if (readwait) {
836 		rv = bufwait(bp);
837 	}
838 	return (rv);
839 }
840 
841 /*
842  * Write, release buffer on completion.  (Done by iodone
843  * if async).  Do not bother writing anything if the buffer
844  * is invalid.
845  *
846  * Note that we set B_CACHE here, indicating that buffer is
847  * fully valid and thus cacheable.  This is true even of NFS
848  * now so we set it generally.  This could be set either here
849  * or in biodone() since the I/O is synchronous.  We put it
850  * here.
851  */
852 int
853 bufwrite(struct buf *bp)
854 {
855 	int oldflags;
856 	struct vnode *vp;
857 	int vp_md;
858 
859 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
860 	if (bp->b_flags & B_INVAL) {
861 		brelse(bp);
862 		return (0);
863 	}
864 
865 	oldflags = bp->b_flags;
866 
867 	BUF_ASSERT_HELD(bp);
868 
869 	if (bp->b_pin_count > 0)
870 		bunpin_wait(bp);
871 
872 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
873 	    ("FFS background buffer should not get here %p", bp));
874 
875 	vp = bp->b_vp;
876 	if (vp)
877 		vp_md = vp->v_vflag & VV_MD;
878 	else
879 		vp_md = 0;
880 
881 	/* Mark the buffer clean */
882 	bundirty(bp);
883 
884 	bp->b_flags &= ~B_DONE;
885 	bp->b_ioflags &= ~BIO_ERROR;
886 	bp->b_flags |= B_CACHE;
887 	bp->b_iocmd = BIO_WRITE;
888 
889 	bufobj_wref(bp->b_bufobj);
890 	vfs_busy_pages(bp, 1);
891 
892 	/*
893 	 * Normal bwrites pipeline writes
894 	 */
895 	bp->b_runningbufspace = bp->b_bufsize;
896 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
897 
898 	if (!TD_IS_IDLETHREAD(curthread))
899 		curthread->td_ru.ru_oublock++;
900 	if (oldflags & B_ASYNC)
901 		BUF_KERNPROC(bp);
902 	bp->b_iooffset = dbtob(bp->b_blkno);
903 	bstrategy(bp);
904 
905 	if ((oldflags & B_ASYNC) == 0) {
906 		int rtval = bufwait(bp);
907 		brelse(bp);
908 		return (rtval);
909 	} else {
910 		/*
911 		 * don't allow the async write to saturate the I/O
912 		 * system.  We will not deadlock here because
913 		 * we are blocking waiting for I/O that is already in-progress
914 		 * to complete. We do not block here if it is the update
915 		 * or syncer daemon trying to clean up as that can lead
916 		 * to deadlock.
917 		 */
918 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
919 			waitrunningbufspace();
920 	}
921 
922 	return (0);
923 }
924 
925 void
926 bufbdflush(struct bufobj *bo, struct buf *bp)
927 {
928 	struct buf *nbp;
929 
930 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
931 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
932 		altbufferflushes++;
933 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
934 		BO_LOCK(bo);
935 		/*
936 		 * Try to find a buffer to flush.
937 		 */
938 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
939 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
940 			    BUF_LOCK(nbp,
941 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
942 				continue;
943 			if (bp == nbp)
944 				panic("bdwrite: found ourselves");
945 			BO_UNLOCK(bo);
946 			/* Don't countdeps with the bo lock held. */
947 			if (buf_countdeps(nbp, 0)) {
948 				BO_LOCK(bo);
949 				BUF_UNLOCK(nbp);
950 				continue;
951 			}
952 			if (nbp->b_flags & B_CLUSTEROK) {
953 				vfs_bio_awrite(nbp);
954 			} else {
955 				bremfree(nbp);
956 				bawrite(nbp);
957 			}
958 			dirtybufferflushes++;
959 			break;
960 		}
961 		if (nbp == NULL)
962 			BO_UNLOCK(bo);
963 	}
964 }
965 
966 /*
967  * Delayed write. (Buffer is marked dirty).  Do not bother writing
968  * anything if the buffer is marked invalid.
969  *
970  * Note that since the buffer must be completely valid, we can safely
971  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
972  * biodone() in order to prevent getblk from writing the buffer
973  * out synchronously.
974  */
975 void
976 bdwrite(struct buf *bp)
977 {
978 	struct thread *td = curthread;
979 	struct vnode *vp;
980 	struct bufobj *bo;
981 
982 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
983 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
984 	BUF_ASSERT_HELD(bp);
985 
986 	if (bp->b_flags & B_INVAL) {
987 		brelse(bp);
988 		return;
989 	}
990 
991 	/*
992 	 * If we have too many dirty buffers, don't create any more.
993 	 * If we are wildly over our limit, then force a complete
994 	 * cleanup. Otherwise, just keep the situation from getting
995 	 * out of control. Note that we have to avoid a recursive
996 	 * disaster and not try to clean up after our own cleanup!
997 	 */
998 	vp = bp->b_vp;
999 	bo = bp->b_bufobj;
1000 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1001 		td->td_pflags |= TDP_INBDFLUSH;
1002 		BO_BDFLUSH(bo, bp);
1003 		td->td_pflags &= ~TDP_INBDFLUSH;
1004 	} else
1005 		recursiveflushes++;
1006 
1007 	bdirty(bp);
1008 	/*
1009 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1010 	 * true even of NFS now.
1011 	 */
1012 	bp->b_flags |= B_CACHE;
1013 
1014 	/*
1015 	 * This bmap keeps the system from needing to do the bmap later,
1016 	 * perhaps when the system is attempting to do a sync.  Since it
1017 	 * is likely that the indirect block -- or whatever other datastructure
1018 	 * that the filesystem needs is still in memory now, it is a good
1019 	 * thing to do this.  Note also, that if the pageout daemon is
1020 	 * requesting a sync -- there might not be enough memory to do
1021 	 * the bmap then...  So, this is important to do.
1022 	 */
1023 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1024 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1025 	}
1026 
1027 	/*
1028 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1029 	 */
1030 	vfs_setdirty(bp);
1031 
1032 	/*
1033 	 * We need to do this here to satisfy the vnode_pager and the
1034 	 * pageout daemon, so that it thinks that the pages have been
1035 	 * "cleaned".  Note that since the pages are in a delayed write
1036 	 * buffer -- the VFS layer "will" see that the pages get written
1037 	 * out on the next sync, or perhaps the cluster will be completed.
1038 	 */
1039 	vfs_clean_pages(bp);
1040 	bqrelse(bp);
1041 
1042 	/*
1043 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1044 	 * buffers (midpoint between our recovery point and our stall
1045 	 * point).
1046 	 */
1047 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1048 
1049 	/*
1050 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1051 	 * due to the softdep code.
1052 	 */
1053 }
1054 
1055 /*
1056  *	bdirty:
1057  *
1058  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1059  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1060  *	itself to properly update it in the dirty/clean lists.  We mark it
1061  *	B_DONE to ensure that any asynchronization of the buffer properly
1062  *	clears B_DONE ( else a panic will occur later ).
1063  *
1064  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1065  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1066  *	should only be called if the buffer is known-good.
1067  *
1068  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1069  *	count.
1070  *
1071  *	The buffer must be on QUEUE_NONE.
1072  */
1073 void
1074 bdirty(struct buf *bp)
1075 {
1076 
1077 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1078 	    bp, bp->b_vp, bp->b_flags);
1079 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1080 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1081 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1082 	BUF_ASSERT_HELD(bp);
1083 	bp->b_flags &= ~(B_RELBUF);
1084 	bp->b_iocmd = BIO_WRITE;
1085 
1086 	if ((bp->b_flags & B_DELWRI) == 0) {
1087 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1088 		reassignbuf(bp);
1089 		atomic_add_int(&numdirtybuffers, 1);
1090 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1091 	}
1092 }
1093 
1094 /*
1095  *	bundirty:
1096  *
1097  *	Clear B_DELWRI for buffer.
1098  *
1099  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1100  *	count.
1101  *
1102  *	The buffer must be on QUEUE_NONE.
1103  */
1104 
1105 void
1106 bundirty(struct buf *bp)
1107 {
1108 
1109 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1110 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1111 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1112 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1113 	BUF_ASSERT_HELD(bp);
1114 
1115 	if (bp->b_flags & B_DELWRI) {
1116 		bp->b_flags &= ~B_DELWRI;
1117 		reassignbuf(bp);
1118 		atomic_subtract_int(&numdirtybuffers, 1);
1119 		numdirtywakeup(lodirtybuffers);
1120 	}
1121 	/*
1122 	 * Since it is now being written, we can clear its deferred write flag.
1123 	 */
1124 	bp->b_flags &= ~B_DEFERRED;
1125 }
1126 
1127 /*
1128  *	bawrite:
1129  *
1130  *	Asynchronous write.  Start output on a buffer, but do not wait for
1131  *	it to complete.  The buffer is released when the output completes.
1132  *
1133  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1134  *	B_INVAL buffers.  Not us.
1135  */
1136 void
1137 bawrite(struct buf *bp)
1138 {
1139 
1140 	bp->b_flags |= B_ASYNC;
1141 	(void) bwrite(bp);
1142 }
1143 
1144 /*
1145  *	bwillwrite:
1146  *
1147  *	Called prior to the locking of any vnodes when we are expecting to
1148  *	write.  We do not want to starve the buffer cache with too many
1149  *	dirty buffers so we block here.  By blocking prior to the locking
1150  *	of any vnodes we attempt to avoid the situation where a locked vnode
1151  *	prevents the various system daemons from flushing related buffers.
1152  */
1153 
1154 void
1155 bwillwrite(void)
1156 {
1157 
1158 	if (numdirtybuffers >= hidirtybuffers) {
1159 		mtx_lock(&nblock);
1160 		while (numdirtybuffers >= hidirtybuffers) {
1161 			bd_wakeup(1);
1162 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1163 			msleep(&needsbuffer, &nblock,
1164 			    (PRIBIO + 4), "flswai", 0);
1165 		}
1166 		mtx_unlock(&nblock);
1167 	}
1168 }
1169 
1170 /*
1171  * Return true if we have too many dirty buffers.
1172  */
1173 int
1174 buf_dirty_count_severe(void)
1175 {
1176 
1177 	return(numdirtybuffers >= hidirtybuffers);
1178 }
1179 
1180 static __noinline int
1181 buf_vm_page_count_severe(void)
1182 {
1183 
1184 	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1185 
1186 	return vm_page_count_severe();
1187 }
1188 
1189 /*
1190  *	brelse:
1191  *
1192  *	Release a busy buffer and, if requested, free its resources.  The
1193  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1194  *	to be accessed later as a cache entity or reused for other purposes.
1195  */
1196 void
1197 brelse(struct buf *bp)
1198 {
1199 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1200 	    bp, bp->b_vp, bp->b_flags);
1201 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1202 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1203 
1204 	if (bp->b_flags & B_MANAGED) {
1205 		bqrelse(bp);
1206 		return;
1207 	}
1208 
1209 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1210 	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1211 		/*
1212 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1213 		 * pages from being scrapped.  If the error is anything
1214 		 * other than an I/O error (EIO), assume that retrying
1215 		 * is futile.
1216 		 */
1217 		bp->b_ioflags &= ~BIO_ERROR;
1218 		bdirty(bp);
1219 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1220 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1221 		/*
1222 		 * Either a failed I/O or we were asked to free or not
1223 		 * cache the buffer.
1224 		 */
1225 		bp->b_flags |= B_INVAL;
1226 		if (!LIST_EMPTY(&bp->b_dep))
1227 			buf_deallocate(bp);
1228 		if (bp->b_flags & B_DELWRI) {
1229 			atomic_subtract_int(&numdirtybuffers, 1);
1230 			numdirtywakeup(lodirtybuffers);
1231 		}
1232 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1233 		if ((bp->b_flags & B_VMIO) == 0) {
1234 			if (bp->b_bufsize)
1235 				allocbuf(bp, 0);
1236 			if (bp->b_vp)
1237 				brelvp(bp);
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1243 	 * is called with B_DELWRI set, the underlying pages may wind up
1244 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1245 	 * because pages associated with a B_DELWRI bp are marked clean.
1246 	 *
1247 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1248 	 * if B_DELWRI is set.
1249 	 *
1250 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1251 	 * on pages to return pages to the VM page queues.
1252 	 */
1253 	if (bp->b_flags & B_DELWRI)
1254 		bp->b_flags &= ~B_RELBUF;
1255 	else if (buf_vm_page_count_severe()) {
1256 		/*
1257 		 * The locking of the BO_LOCK is not necessary since
1258 		 * BKGRDINPROG cannot be set while we hold the buf
1259 		 * lock, it can only be cleared if it is already
1260 		 * pending.
1261 		 */
1262 		if (bp->b_vp) {
1263 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1264 				bp->b_flags |= B_RELBUF;
1265 		} else
1266 			bp->b_flags |= B_RELBUF;
1267 	}
1268 
1269 	/*
1270 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1271 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1272 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1273 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1274 	 *
1275 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1276 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1277 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1278 	 *
1279 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1280 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1281 	 * the commit state and we cannot afford to lose the buffer. If the
1282 	 * buffer has a background write in progress, we need to keep it
1283 	 * around to prevent it from being reconstituted and starting a second
1284 	 * background write.
1285 	 */
1286 	if ((bp->b_flags & B_VMIO)
1287 	    && !(bp->b_vp->v_mount != NULL &&
1288 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1289 		 !vn_isdisk(bp->b_vp, NULL) &&
1290 		 (bp->b_flags & B_DELWRI))
1291 	    ) {
1292 
1293 		int i, j, resid;
1294 		vm_page_t m;
1295 		off_t foff;
1296 		vm_pindex_t poff;
1297 		vm_object_t obj;
1298 
1299 		obj = bp->b_bufobj->bo_object;
1300 
1301 		/*
1302 		 * Get the base offset and length of the buffer.  Note that
1303 		 * in the VMIO case if the buffer block size is not
1304 		 * page-aligned then b_data pointer may not be page-aligned.
1305 		 * But our b_pages[] array *IS* page aligned.
1306 		 *
1307 		 * block sizes less then DEV_BSIZE (usually 512) are not
1308 		 * supported due to the page granularity bits (m->valid,
1309 		 * m->dirty, etc...).
1310 		 *
1311 		 * See man buf(9) for more information
1312 		 */
1313 		resid = bp->b_bufsize;
1314 		foff = bp->b_offset;
1315 		VM_OBJECT_LOCK(obj);
1316 		for (i = 0; i < bp->b_npages; i++) {
1317 			int had_bogus = 0;
1318 
1319 			m = bp->b_pages[i];
1320 
1321 			/*
1322 			 * If we hit a bogus page, fixup *all* the bogus pages
1323 			 * now.
1324 			 */
1325 			if (m == bogus_page) {
1326 				poff = OFF_TO_IDX(bp->b_offset);
1327 				had_bogus = 1;
1328 
1329 				for (j = i; j < bp->b_npages; j++) {
1330 					vm_page_t mtmp;
1331 					mtmp = bp->b_pages[j];
1332 					if (mtmp == bogus_page) {
1333 						mtmp = vm_page_lookup(obj, poff + j);
1334 						if (!mtmp) {
1335 							panic("brelse: page missing\n");
1336 						}
1337 						bp->b_pages[j] = mtmp;
1338 					}
1339 				}
1340 
1341 				if ((bp->b_flags & B_INVAL) == 0) {
1342 					pmap_qenter(
1343 					    trunc_page((vm_offset_t)bp->b_data),
1344 					    bp->b_pages, bp->b_npages);
1345 				}
1346 				m = bp->b_pages[i];
1347 			}
1348 			if ((bp->b_flags & B_NOCACHE) ||
1349 			    (bp->b_ioflags & BIO_ERROR &&
1350 			     bp->b_iocmd == BIO_READ)) {
1351 				int poffset = foff & PAGE_MASK;
1352 				int presid = resid > (PAGE_SIZE - poffset) ?
1353 					(PAGE_SIZE - poffset) : resid;
1354 
1355 				KASSERT(presid >= 0, ("brelse: extra page"));
1356 				vm_page_set_invalid(m, poffset, presid);
1357 				if (had_bogus)
1358 					printf("avoided corruption bug in bogus_page/brelse code\n");
1359 			}
1360 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1361 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1362 		}
1363 		VM_OBJECT_UNLOCK(obj);
1364 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1365 			vfs_vmio_release(bp);
1366 
1367 	} else if (bp->b_flags & B_VMIO) {
1368 
1369 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1370 			vfs_vmio_release(bp);
1371 		}
1372 
1373 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1374 		if (bp->b_bufsize != 0)
1375 			allocbuf(bp, 0);
1376 		if (bp->b_vp != NULL)
1377 			brelvp(bp);
1378 	}
1379 
1380 	if (BUF_LOCKRECURSED(bp)) {
1381 		/* do not release to free list */
1382 		BUF_UNLOCK(bp);
1383 		return;
1384 	}
1385 
1386 	/* enqueue */
1387 	mtx_lock(&bqlock);
1388 	/* Handle delayed bremfree() processing. */
1389 	if (bp->b_flags & B_REMFREE)
1390 		bremfreel(bp);
1391 	if (bp->b_qindex != QUEUE_NONE)
1392 		panic("brelse: free buffer onto another queue???");
1393 
1394 	/*
1395 	 * If the buffer has junk contents signal it and eventually
1396 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1397 	 * doesn't find it.
1398 	 */
1399 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1400 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1401 		bp->b_flags |= B_INVAL;
1402 	if (bp->b_flags & B_INVAL) {
1403 		if (bp->b_flags & B_DELWRI)
1404 			bundirty(bp);
1405 		if (bp->b_vp)
1406 			brelvp(bp);
1407 	}
1408 
1409 	/* buffers with no memory */
1410 	if (bp->b_bufsize == 0) {
1411 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1412 		if (bp->b_vflags & BV_BKGRDINPROG)
1413 			panic("losing buffer 1");
1414 		if (bp->b_kvasize) {
1415 			bp->b_qindex = QUEUE_EMPTYKVA;
1416 		} else {
1417 			bp->b_qindex = QUEUE_EMPTY;
1418 		}
1419 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1420 	/* buffers with junk contents */
1421 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1422 	    (bp->b_ioflags & BIO_ERROR)) {
1423 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1424 		if (bp->b_vflags & BV_BKGRDINPROG)
1425 			panic("losing buffer 2");
1426 		bp->b_qindex = QUEUE_CLEAN;
1427 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1428 	/* remaining buffers */
1429 	} else {
1430 		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1431 		    (B_DELWRI|B_NEEDSGIANT))
1432 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1433 		else if (bp->b_flags & B_DELWRI)
1434 			bp->b_qindex = QUEUE_DIRTY;
1435 		else
1436 			bp->b_qindex = QUEUE_CLEAN;
1437 		if (bp->b_flags & B_AGE)
1438 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1439 		else
1440 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1441 	}
1442 	mtx_unlock(&bqlock);
1443 
1444 	/*
1445 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1446 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1447 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1448 	 * if B_INVAL is set ).
1449 	 */
1450 
1451 	if (!(bp->b_flags & B_DELWRI))
1452 		bufcountwakeup();
1453 
1454 	/*
1455 	 * Something we can maybe free or reuse
1456 	 */
1457 	if (bp->b_bufsize || bp->b_kvasize)
1458 		bufspacewakeup();
1459 
1460 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1461 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1462 		panic("brelse: not dirty");
1463 	/* unlock */
1464 	BUF_UNLOCK(bp);
1465 }
1466 
1467 /*
1468  * Release a buffer back to the appropriate queue but do not try to free
1469  * it.  The buffer is expected to be used again soon.
1470  *
1471  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1472  * biodone() to requeue an async I/O on completion.  It is also used when
1473  * known good buffers need to be requeued but we think we may need the data
1474  * again soon.
1475  *
1476  * XXX we should be able to leave the B_RELBUF hint set on completion.
1477  */
1478 void
1479 bqrelse(struct buf *bp)
1480 {
1481 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1482 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1483 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1484 
1485 	if (BUF_LOCKRECURSED(bp)) {
1486 		/* do not release to free list */
1487 		BUF_UNLOCK(bp);
1488 		return;
1489 	}
1490 
1491 	if (bp->b_flags & B_MANAGED) {
1492 		if (bp->b_flags & B_REMFREE) {
1493 			mtx_lock(&bqlock);
1494 			bremfreel(bp);
1495 			mtx_unlock(&bqlock);
1496 		}
1497 		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1498 		BUF_UNLOCK(bp);
1499 		return;
1500 	}
1501 
1502 	mtx_lock(&bqlock);
1503 	/* Handle delayed bremfree() processing. */
1504 	if (bp->b_flags & B_REMFREE)
1505 		bremfreel(bp);
1506 	if (bp->b_qindex != QUEUE_NONE)
1507 		panic("bqrelse: free buffer onto another queue???");
1508 	/* buffers with stale but valid contents */
1509 	if (bp->b_flags & B_DELWRI) {
1510 		if (bp->b_flags & B_NEEDSGIANT)
1511 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1512 		else
1513 			bp->b_qindex = QUEUE_DIRTY;
1514 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1515 	} else {
1516 		/*
1517 		 * The locking of the BO_LOCK for checking of the
1518 		 * BV_BKGRDINPROG is not necessary since the
1519 		 * BV_BKGRDINPROG cannot be set while we hold the buf
1520 		 * lock, it can only be cleared if it is already
1521 		 * pending.
1522 		 */
1523 		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1524 			bp->b_qindex = QUEUE_CLEAN;
1525 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1526 			    b_freelist);
1527 		} else {
1528 			/*
1529 			 * We are too low on memory, we have to try to free
1530 			 * the buffer (most importantly: the wired pages
1531 			 * making up its backing store) *now*.
1532 			 */
1533 			mtx_unlock(&bqlock);
1534 			brelse(bp);
1535 			return;
1536 		}
1537 	}
1538 	mtx_unlock(&bqlock);
1539 
1540 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1541 		bufcountwakeup();
1542 
1543 	/*
1544 	 * Something we can maybe free or reuse.
1545 	 */
1546 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1547 		bufspacewakeup();
1548 
1549 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1550 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1551 		panic("bqrelse: not dirty");
1552 	/* unlock */
1553 	BUF_UNLOCK(bp);
1554 }
1555 
1556 /* Give pages used by the bp back to the VM system (where possible) */
1557 static void
1558 vfs_vmio_release(struct buf *bp)
1559 {
1560 	int i;
1561 	vm_page_t m;
1562 
1563 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1564 	for (i = 0; i < bp->b_npages; i++) {
1565 		m = bp->b_pages[i];
1566 		bp->b_pages[i] = NULL;
1567 		/*
1568 		 * In order to keep page LRU ordering consistent, put
1569 		 * everything on the inactive queue.
1570 		 */
1571 		vm_page_lock(m);
1572 		vm_page_unwire(m, 0);
1573 		/*
1574 		 * We don't mess with busy pages, it is
1575 		 * the responsibility of the process that
1576 		 * busied the pages to deal with them.
1577 		 */
1578 		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1579 		    m->wire_count == 0) {
1580 			/*
1581 			 * Might as well free the page if we can and it has
1582 			 * no valid data.  We also free the page if the
1583 			 * buffer was used for direct I/O
1584 			 */
1585 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1586 			    m->hold_count == 0) {
1587 				vm_page_free(m);
1588 			} else if (bp->b_flags & B_DIRECT) {
1589 				vm_page_try_to_free(m);
1590 			} else if (buf_vm_page_count_severe()) {
1591 				vm_page_try_to_cache(m);
1592 			}
1593 		}
1594 		vm_page_unlock(m);
1595 	}
1596 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1597 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1598 
1599 	if (bp->b_bufsize) {
1600 		bufspacewakeup();
1601 		bp->b_bufsize = 0;
1602 	}
1603 	bp->b_npages = 0;
1604 	bp->b_flags &= ~B_VMIO;
1605 	if (bp->b_vp)
1606 		brelvp(bp);
1607 }
1608 
1609 /*
1610  * Check to see if a block at a particular lbn is available for a clustered
1611  * write.
1612  */
1613 static int
1614 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1615 {
1616 	struct buf *bpa;
1617 	int match;
1618 
1619 	match = 0;
1620 
1621 	/* If the buf isn't in core skip it */
1622 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1623 		return (0);
1624 
1625 	/* If the buf is busy we don't want to wait for it */
1626 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1627 		return (0);
1628 
1629 	/* Only cluster with valid clusterable delayed write buffers */
1630 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1631 	    (B_DELWRI | B_CLUSTEROK))
1632 		goto done;
1633 
1634 	if (bpa->b_bufsize != size)
1635 		goto done;
1636 
1637 	/*
1638 	 * Check to see if it is in the expected place on disk and that the
1639 	 * block has been mapped.
1640 	 */
1641 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1642 		match = 1;
1643 done:
1644 	BUF_UNLOCK(bpa);
1645 	return (match);
1646 }
1647 
1648 /*
1649  *	vfs_bio_awrite:
1650  *
1651  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1652  *	This is much better then the old way of writing only one buffer at
1653  *	a time.  Note that we may not be presented with the buffers in the
1654  *	correct order, so we search for the cluster in both directions.
1655  */
1656 int
1657 vfs_bio_awrite(struct buf *bp)
1658 {
1659 	struct bufobj *bo;
1660 	int i;
1661 	int j;
1662 	daddr_t lblkno = bp->b_lblkno;
1663 	struct vnode *vp = bp->b_vp;
1664 	int ncl;
1665 	int nwritten;
1666 	int size;
1667 	int maxcl;
1668 
1669 	bo = &vp->v_bufobj;
1670 	/*
1671 	 * right now we support clustered writing only to regular files.  If
1672 	 * we find a clusterable block we could be in the middle of a cluster
1673 	 * rather then at the beginning.
1674 	 */
1675 	if ((vp->v_type == VREG) &&
1676 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1677 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1678 
1679 		size = vp->v_mount->mnt_stat.f_iosize;
1680 		maxcl = MAXPHYS / size;
1681 
1682 		BO_LOCK(bo);
1683 		for (i = 1; i < maxcl; i++)
1684 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1685 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1686 				break;
1687 
1688 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1689 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1690 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1691 				break;
1692 		BO_UNLOCK(bo);
1693 		--j;
1694 		ncl = i + j;
1695 		/*
1696 		 * this is a possible cluster write
1697 		 */
1698 		if (ncl != 1) {
1699 			BUF_UNLOCK(bp);
1700 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1701 			return nwritten;
1702 		}
1703 	}
1704 	bremfree(bp);
1705 	bp->b_flags |= B_ASYNC;
1706 	/*
1707 	 * default (old) behavior, writing out only one block
1708 	 *
1709 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1710 	 */
1711 	nwritten = bp->b_bufsize;
1712 	(void) bwrite(bp);
1713 
1714 	return nwritten;
1715 }
1716 
1717 /*
1718  *	getnewbuf:
1719  *
1720  *	Find and initialize a new buffer header, freeing up existing buffers
1721  *	in the bufqueues as necessary.  The new buffer is returned locked.
1722  *
1723  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1724  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1725  *
1726  *	We block if:
1727  *		We have insufficient buffer headers
1728  *		We have insufficient buffer space
1729  *		buffer_map is too fragmented ( space reservation fails )
1730  *		If we have to flush dirty buffers ( but we try to avoid this )
1731  *
1732  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1733  *	Instead we ask the buf daemon to do it for us.  We attempt to
1734  *	avoid piecemeal wakeups of the pageout daemon.
1735  */
1736 
1737 static struct buf *
1738 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1739     int gbflags)
1740 {
1741 	struct thread *td;
1742 	struct buf *bp;
1743 	struct buf *nbp;
1744 	int defrag = 0;
1745 	int nqindex;
1746 	static int flushingbufs;
1747 
1748 	td = curthread;
1749 	/*
1750 	 * We can't afford to block since we might be holding a vnode lock,
1751 	 * which may prevent system daemons from running.  We deal with
1752 	 * low-memory situations by proactively returning memory and running
1753 	 * async I/O rather then sync I/O.
1754 	 */
1755 	atomic_add_int(&getnewbufcalls, 1);
1756 	atomic_subtract_int(&getnewbufrestarts, 1);
1757 restart:
1758 	atomic_add_int(&getnewbufrestarts, 1);
1759 
1760 	/*
1761 	 * Setup for scan.  If we do not have enough free buffers,
1762 	 * we setup a degenerate case that immediately fails.  Note
1763 	 * that if we are specially marked process, we are allowed to
1764 	 * dip into our reserves.
1765 	 *
1766 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1767 	 *
1768 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1769 	 * However, there are a number of cases (defragging, reusing, ...)
1770 	 * where we cannot backup.
1771 	 */
1772 	mtx_lock(&bqlock);
1773 	nqindex = QUEUE_EMPTYKVA;
1774 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1775 
1776 	if (nbp == NULL) {
1777 		/*
1778 		 * If no EMPTYKVA buffers and we are either
1779 		 * defragging or reusing, locate a CLEAN buffer
1780 		 * to free or reuse.  If bufspace useage is low
1781 		 * skip this step so we can allocate a new buffer.
1782 		 */
1783 		if (defrag || bufspace >= lobufspace) {
1784 			nqindex = QUEUE_CLEAN;
1785 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1786 		}
1787 
1788 		/*
1789 		 * If we could not find or were not allowed to reuse a
1790 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1791 		 * buffer.  We can only use an EMPTY buffer if allocating
1792 		 * its KVA would not otherwise run us out of buffer space.
1793 		 */
1794 		if (nbp == NULL && defrag == 0 &&
1795 		    bufspace + maxsize < hibufspace) {
1796 			nqindex = QUEUE_EMPTY;
1797 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1803 	 * depending.
1804 	 */
1805 
1806 	while ((bp = nbp) != NULL) {
1807 		int qindex = nqindex;
1808 
1809 		/*
1810 		 * Calculate next bp ( we can only use it if we do not block
1811 		 * or do other fancy things ).
1812 		 */
1813 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1814 			switch(qindex) {
1815 			case QUEUE_EMPTY:
1816 				nqindex = QUEUE_EMPTYKVA;
1817 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1818 					break;
1819 				/* FALLTHROUGH */
1820 			case QUEUE_EMPTYKVA:
1821 				nqindex = QUEUE_CLEAN;
1822 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1823 					break;
1824 				/* FALLTHROUGH */
1825 			case QUEUE_CLEAN:
1826 				/*
1827 				 * nbp is NULL.
1828 				 */
1829 				break;
1830 			}
1831 		}
1832 		/*
1833 		 * If we are defragging then we need a buffer with
1834 		 * b_kvasize != 0.  XXX this situation should no longer
1835 		 * occur, if defrag is non-zero the buffer's b_kvasize
1836 		 * should also be non-zero at this point.  XXX
1837 		 */
1838 		if (defrag && bp->b_kvasize == 0) {
1839 			printf("Warning: defrag empty buffer %p\n", bp);
1840 			continue;
1841 		}
1842 
1843 		/*
1844 		 * Start freeing the bp.  This is somewhat involved.  nbp
1845 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1846 		 */
1847 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1848 			continue;
1849 		if (bp->b_vp) {
1850 			BO_LOCK(bp->b_bufobj);
1851 			if (bp->b_vflags & BV_BKGRDINPROG) {
1852 				BO_UNLOCK(bp->b_bufobj);
1853 				BUF_UNLOCK(bp);
1854 				continue;
1855 			}
1856 			BO_UNLOCK(bp->b_bufobj);
1857 		}
1858 		CTR6(KTR_BUF,
1859 		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1860 		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1861 		    bp->b_kvasize, bp->b_bufsize, qindex);
1862 
1863 		/*
1864 		 * Sanity Checks
1865 		 */
1866 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1867 
1868 		/*
1869 		 * Note: we no longer distinguish between VMIO and non-VMIO
1870 		 * buffers.
1871 		 */
1872 
1873 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1874 
1875 		bremfreel(bp);
1876 		mtx_unlock(&bqlock);
1877 
1878 		if (qindex == QUEUE_CLEAN) {
1879 			if (bp->b_flags & B_VMIO) {
1880 				bp->b_flags &= ~B_ASYNC;
1881 				vfs_vmio_release(bp);
1882 			}
1883 			if (bp->b_vp)
1884 				brelvp(bp);
1885 		}
1886 
1887 		/*
1888 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1889 		 * the scan from this point on.
1890 		 *
1891 		 * Get the rest of the buffer freed up.  b_kva* is still
1892 		 * valid after this operation.
1893 		 */
1894 
1895 		if (bp->b_rcred != NOCRED) {
1896 			crfree(bp->b_rcred);
1897 			bp->b_rcred = NOCRED;
1898 		}
1899 		if (bp->b_wcred != NOCRED) {
1900 			crfree(bp->b_wcred);
1901 			bp->b_wcred = NOCRED;
1902 		}
1903 		if (!LIST_EMPTY(&bp->b_dep))
1904 			buf_deallocate(bp);
1905 		if (bp->b_vflags & BV_BKGRDINPROG)
1906 			panic("losing buffer 3");
1907 		KASSERT(bp->b_vp == NULL,
1908 		    ("bp: %p still has vnode %p.  qindex: %d",
1909 		    bp, bp->b_vp, qindex));
1910 		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1911 		   ("bp: %p still on a buffer list. xflags %X",
1912 		    bp, bp->b_xflags));
1913 
1914 		if (bp->b_bufsize)
1915 			allocbuf(bp, 0);
1916 
1917 		bp->b_flags = 0;
1918 		bp->b_ioflags = 0;
1919 		bp->b_xflags = 0;
1920 		bp->b_vflags = 0;
1921 		bp->b_vp = NULL;
1922 		bp->b_blkno = bp->b_lblkno = 0;
1923 		bp->b_offset = NOOFFSET;
1924 		bp->b_iodone = 0;
1925 		bp->b_error = 0;
1926 		bp->b_resid = 0;
1927 		bp->b_bcount = 0;
1928 		bp->b_npages = 0;
1929 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1930 		bp->b_bufobj = NULL;
1931 		bp->b_pin_count = 0;
1932 		bp->b_fsprivate1 = NULL;
1933 		bp->b_fsprivate2 = NULL;
1934 		bp->b_fsprivate3 = NULL;
1935 
1936 		LIST_INIT(&bp->b_dep);
1937 
1938 		/*
1939 		 * If we are defragging then free the buffer.
1940 		 */
1941 		if (defrag) {
1942 			bp->b_flags |= B_INVAL;
1943 			bfreekva(bp);
1944 			brelse(bp);
1945 			defrag = 0;
1946 			goto restart;
1947 		}
1948 
1949 		/*
1950 		 * Notify any waiters for the buffer lock about
1951 		 * identity change by freeing the buffer.
1952 		 */
1953 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1954 			bp->b_flags |= B_INVAL;
1955 			bfreekva(bp);
1956 			brelse(bp);
1957 			goto restart;
1958 		}
1959 
1960 		/*
1961 		 * If we are overcomitted then recover the buffer and its
1962 		 * KVM space.  This occurs in rare situations when multiple
1963 		 * processes are blocked in getnewbuf() or allocbuf().
1964 		 */
1965 		if (bufspace >= hibufspace)
1966 			flushingbufs = 1;
1967 		if (flushingbufs && bp->b_kvasize != 0) {
1968 			bp->b_flags |= B_INVAL;
1969 			bfreekva(bp);
1970 			brelse(bp);
1971 			goto restart;
1972 		}
1973 		if (bufspace < lobufspace)
1974 			flushingbufs = 0;
1975 		break;
1976 	}
1977 
1978 	/*
1979 	 * If we exhausted our list, sleep as appropriate.  We may have to
1980 	 * wakeup various daemons and write out some dirty buffers.
1981 	 *
1982 	 * Generally we are sleeping due to insufficient buffer space.
1983 	 */
1984 
1985 	if (bp == NULL) {
1986 		int flags, norunbuf;
1987 		char *waitmsg;
1988 		int fl;
1989 
1990 		if (defrag) {
1991 			flags = VFS_BIO_NEED_BUFSPACE;
1992 			waitmsg = "nbufkv";
1993 		} else if (bufspace >= hibufspace) {
1994 			waitmsg = "nbufbs";
1995 			flags = VFS_BIO_NEED_BUFSPACE;
1996 		} else {
1997 			waitmsg = "newbuf";
1998 			flags = VFS_BIO_NEED_ANY;
1999 		}
2000 		mtx_lock(&nblock);
2001 		needsbuffer |= flags;
2002 		mtx_unlock(&nblock);
2003 		mtx_unlock(&bqlock);
2004 
2005 		bd_speedup();	/* heeeelp */
2006 		if (gbflags & GB_NOWAIT_BD)
2007 			return (NULL);
2008 
2009 		mtx_lock(&nblock);
2010 		while (needsbuffer & flags) {
2011 			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2012 				mtx_unlock(&nblock);
2013 				/*
2014 				 * getblk() is called with a vnode
2015 				 * locked, and some majority of the
2016 				 * dirty buffers may as well belong to
2017 				 * the vnode. Flushing the buffers
2018 				 * there would make a progress that
2019 				 * cannot be achieved by the
2020 				 * buf_daemon, that cannot lock the
2021 				 * vnode.
2022 				 */
2023 				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2024 				    (td->td_pflags & TDP_NORUNNINGBUF);
2025 				/* play bufdaemon */
2026 				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2027 				fl = buf_do_flush(vp);
2028 				td->td_pflags &= norunbuf;
2029 				mtx_lock(&nblock);
2030 				if (fl != 0)
2031 					continue;
2032 				if ((needsbuffer & flags) == 0)
2033 					break;
2034 			}
2035 			if (msleep(&needsbuffer, &nblock,
2036 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2037 				mtx_unlock(&nblock);
2038 				return (NULL);
2039 			}
2040 		}
2041 		mtx_unlock(&nblock);
2042 	} else {
2043 		/*
2044 		 * We finally have a valid bp.  We aren't quite out of the
2045 		 * woods, we still have to reserve kva space.  In order
2046 		 * to keep fragmentation sane we only allocate kva in
2047 		 * BKVASIZE chunks.
2048 		 */
2049 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2050 
2051 		if (maxsize != bp->b_kvasize) {
2052 			vm_offset_t addr = 0;
2053 
2054 			bfreekva(bp);
2055 
2056 			vm_map_lock(buffer_map);
2057 			if (vm_map_findspace(buffer_map,
2058 				vm_map_min(buffer_map), maxsize, &addr)) {
2059 				/*
2060 				 * Uh oh.  Buffer map is to fragmented.  We
2061 				 * must defragment the map.
2062 				 */
2063 				atomic_add_int(&bufdefragcnt, 1);
2064 				vm_map_unlock(buffer_map);
2065 				defrag = 1;
2066 				bp->b_flags |= B_INVAL;
2067 				brelse(bp);
2068 				goto restart;
2069 			}
2070 			if (addr) {
2071 				vm_map_insert(buffer_map, NULL, 0,
2072 					addr, addr + maxsize,
2073 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2074 
2075 				bp->b_kvabase = (caddr_t) addr;
2076 				bp->b_kvasize = maxsize;
2077 				atomic_add_long(&bufspace, bp->b_kvasize);
2078 				atomic_add_int(&bufreusecnt, 1);
2079 			}
2080 			vm_map_unlock(buffer_map);
2081 		}
2082 		bp->b_saveaddr = bp->b_kvabase;
2083 		bp->b_data = bp->b_saveaddr;
2084 	}
2085 	return(bp);
2086 }
2087 
2088 /*
2089  *	buf_daemon:
2090  *
2091  *	buffer flushing daemon.  Buffers are normally flushed by the
2092  *	update daemon but if it cannot keep up this process starts to
2093  *	take the load in an attempt to prevent getnewbuf() from blocking.
2094  */
2095 
2096 static struct kproc_desc buf_kp = {
2097 	"bufdaemon",
2098 	buf_daemon,
2099 	&bufdaemonproc
2100 };
2101 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2102 
2103 static int
2104 buf_do_flush(struct vnode *vp)
2105 {
2106 	int flushed;
2107 
2108 	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2109 	/* The list empty check here is slightly racy */
2110 	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2111 		mtx_lock(&Giant);
2112 		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2113 		mtx_unlock(&Giant);
2114 	}
2115 	if (flushed == 0) {
2116 		/*
2117 		 * Could not find any buffers without rollback
2118 		 * dependencies, so just write the first one
2119 		 * in the hopes of eventually making progress.
2120 		 */
2121 		flushbufqueues(vp, QUEUE_DIRTY, 1);
2122 		if (!TAILQ_EMPTY(
2123 			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2124 			mtx_lock(&Giant);
2125 			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2126 			mtx_unlock(&Giant);
2127 		}
2128 	}
2129 	return (flushed);
2130 }
2131 
2132 static void
2133 buf_daemon()
2134 {
2135 	int lodirtysave;
2136 
2137 	/*
2138 	 * This process needs to be suspended prior to shutdown sync.
2139 	 */
2140 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2141 	    SHUTDOWN_PRI_LAST);
2142 
2143 	/*
2144 	 * This process is allowed to take the buffer cache to the limit
2145 	 */
2146 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2147 	mtx_lock(&bdlock);
2148 	for (;;) {
2149 		bd_request = 0;
2150 		mtx_unlock(&bdlock);
2151 
2152 		kproc_suspend_check(bufdaemonproc);
2153 		lodirtysave = lodirtybuffers;
2154 		if (bd_speedupreq) {
2155 			lodirtybuffers = numdirtybuffers / 2;
2156 			bd_speedupreq = 0;
2157 		}
2158 		/*
2159 		 * Do the flush.  Limit the amount of in-transit I/O we
2160 		 * allow to build up, otherwise we would completely saturate
2161 		 * the I/O system.  Wakeup any waiting processes before we
2162 		 * normally would so they can run in parallel with our drain.
2163 		 */
2164 		while (numdirtybuffers > lodirtybuffers) {
2165 			if (buf_do_flush(NULL) == 0)
2166 				break;
2167 			uio_yield();
2168 		}
2169 		lodirtybuffers = lodirtysave;
2170 
2171 		/*
2172 		 * Only clear bd_request if we have reached our low water
2173 		 * mark.  The buf_daemon normally waits 1 second and
2174 		 * then incrementally flushes any dirty buffers that have
2175 		 * built up, within reason.
2176 		 *
2177 		 * If we were unable to hit our low water mark and couldn't
2178 		 * find any flushable buffers, we sleep half a second.
2179 		 * Otherwise we loop immediately.
2180 		 */
2181 		mtx_lock(&bdlock);
2182 		if (numdirtybuffers <= lodirtybuffers) {
2183 			/*
2184 			 * We reached our low water mark, reset the
2185 			 * request and sleep until we are needed again.
2186 			 * The sleep is just so the suspend code works.
2187 			 */
2188 			bd_request = 0;
2189 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2190 		} else {
2191 			/*
2192 			 * We couldn't find any flushable dirty buffers but
2193 			 * still have too many dirty buffers, we
2194 			 * have to sleep and try again.  (rare)
2195 			 */
2196 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2197 		}
2198 	}
2199 }
2200 
2201 /*
2202  *	flushbufqueues:
2203  *
2204  *	Try to flush a buffer in the dirty queue.  We must be careful to
2205  *	free up B_INVAL buffers instead of write them, which NFS is
2206  *	particularly sensitive to.
2207  */
2208 static int flushwithdeps = 0;
2209 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2210     0, "Number of buffers flushed with dependecies that require rollbacks");
2211 
2212 static int
2213 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2214 {
2215 	struct buf *sentinel;
2216 	struct vnode *vp;
2217 	struct mount *mp;
2218 	struct buf *bp;
2219 	int hasdeps;
2220 	int flushed;
2221 	int target;
2222 
2223 	if (lvp == NULL) {
2224 		target = numdirtybuffers - lodirtybuffers;
2225 		if (flushdeps && target > 2)
2226 			target /= 2;
2227 	} else
2228 		target = flushbufqtarget;
2229 	flushed = 0;
2230 	bp = NULL;
2231 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2232 	sentinel->b_qindex = QUEUE_SENTINEL;
2233 	mtx_lock(&bqlock);
2234 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2235 	while (flushed != target) {
2236 		bp = TAILQ_NEXT(sentinel, b_freelist);
2237 		if (bp != NULL) {
2238 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2239 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2240 			    b_freelist);
2241 		} else
2242 			break;
2243 		/*
2244 		 * Skip sentinels inserted by other invocations of the
2245 		 * flushbufqueues(), taking care to not reorder them.
2246 		 */
2247 		if (bp->b_qindex == QUEUE_SENTINEL)
2248 			continue;
2249 		/*
2250 		 * Only flush the buffers that belong to the
2251 		 * vnode locked by the curthread.
2252 		 */
2253 		if (lvp != NULL && bp->b_vp != lvp)
2254 			continue;
2255 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2256 			continue;
2257 		if (bp->b_pin_count > 0) {
2258 			BUF_UNLOCK(bp);
2259 			continue;
2260 		}
2261 		BO_LOCK(bp->b_bufobj);
2262 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2263 		    (bp->b_flags & B_DELWRI) == 0) {
2264 			BO_UNLOCK(bp->b_bufobj);
2265 			BUF_UNLOCK(bp);
2266 			continue;
2267 		}
2268 		BO_UNLOCK(bp->b_bufobj);
2269 		if (bp->b_flags & B_INVAL) {
2270 			bremfreel(bp);
2271 			mtx_unlock(&bqlock);
2272 			brelse(bp);
2273 			flushed++;
2274 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2275 			mtx_lock(&bqlock);
2276 			continue;
2277 		}
2278 
2279 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2280 			if (flushdeps == 0) {
2281 				BUF_UNLOCK(bp);
2282 				continue;
2283 			}
2284 			hasdeps = 1;
2285 		} else
2286 			hasdeps = 0;
2287 		/*
2288 		 * We must hold the lock on a vnode before writing
2289 		 * one of its buffers. Otherwise we may confuse, or
2290 		 * in the case of a snapshot vnode, deadlock the
2291 		 * system.
2292 		 *
2293 		 * The lock order here is the reverse of the normal
2294 		 * of vnode followed by buf lock.  This is ok because
2295 		 * the NOWAIT will prevent deadlock.
2296 		 */
2297 		vp = bp->b_vp;
2298 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2299 			BUF_UNLOCK(bp);
2300 			continue;
2301 		}
2302 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2303 			mtx_unlock(&bqlock);
2304 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2305 			    bp, bp->b_vp, bp->b_flags);
2306 			if (curproc == bufdaemonproc)
2307 				vfs_bio_awrite(bp);
2308 			else {
2309 				bremfree(bp);
2310 				bwrite(bp);
2311 				notbufdflashes++;
2312 			}
2313 			vn_finished_write(mp);
2314 			VOP_UNLOCK(vp, 0);
2315 			flushwithdeps += hasdeps;
2316 			flushed++;
2317 
2318 			/*
2319 			 * Sleeping on runningbufspace while holding
2320 			 * vnode lock leads to deadlock.
2321 			 */
2322 			if (curproc == bufdaemonproc)
2323 				waitrunningbufspace();
2324 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2325 			mtx_lock(&bqlock);
2326 			continue;
2327 		}
2328 		vn_finished_write(mp);
2329 		BUF_UNLOCK(bp);
2330 	}
2331 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2332 	mtx_unlock(&bqlock);
2333 	free(sentinel, M_TEMP);
2334 	return (flushed);
2335 }
2336 
2337 /*
2338  * Check to see if a block is currently memory resident.
2339  */
2340 struct buf *
2341 incore(struct bufobj *bo, daddr_t blkno)
2342 {
2343 	struct buf *bp;
2344 
2345 	BO_LOCK(bo);
2346 	bp = gbincore(bo, blkno);
2347 	BO_UNLOCK(bo);
2348 	return (bp);
2349 }
2350 
2351 /*
2352  * Returns true if no I/O is needed to access the
2353  * associated VM object.  This is like incore except
2354  * it also hunts around in the VM system for the data.
2355  */
2356 
2357 static int
2358 inmem(struct vnode * vp, daddr_t blkno)
2359 {
2360 	vm_object_t obj;
2361 	vm_offset_t toff, tinc, size;
2362 	vm_page_t m;
2363 	vm_ooffset_t off;
2364 
2365 	ASSERT_VOP_LOCKED(vp, "inmem");
2366 
2367 	if (incore(&vp->v_bufobj, blkno))
2368 		return 1;
2369 	if (vp->v_mount == NULL)
2370 		return 0;
2371 	obj = vp->v_object;
2372 	if (obj == NULL)
2373 		return (0);
2374 
2375 	size = PAGE_SIZE;
2376 	if (size > vp->v_mount->mnt_stat.f_iosize)
2377 		size = vp->v_mount->mnt_stat.f_iosize;
2378 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2379 
2380 	VM_OBJECT_LOCK(obj);
2381 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2382 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2383 		if (!m)
2384 			goto notinmem;
2385 		tinc = size;
2386 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2387 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2388 		if (vm_page_is_valid(m,
2389 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2390 			goto notinmem;
2391 	}
2392 	VM_OBJECT_UNLOCK(obj);
2393 	return 1;
2394 
2395 notinmem:
2396 	VM_OBJECT_UNLOCK(obj);
2397 	return (0);
2398 }
2399 
2400 /*
2401  *	vfs_setdirty:
2402  *
2403  *	Sets the dirty range for a buffer based on the status of the dirty
2404  *	bits in the pages comprising the buffer.
2405  *
2406  *	The range is limited to the size of the buffer.
2407  *
2408  *	This routine is primarily used by NFS, but is generalized for the
2409  *	B_VMIO case.
2410  */
2411 static void
2412 vfs_setdirty(struct buf *bp)
2413 {
2414 
2415 	/*
2416 	 * Degenerate case - empty buffer
2417 	 */
2418 	if (bp->b_bufsize == 0)
2419 		return;
2420 
2421 	if ((bp->b_flags & B_VMIO) == 0)
2422 		return;
2423 
2424 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2425 	vfs_setdirty_locked_object(bp);
2426 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2427 }
2428 
2429 static void
2430 vfs_setdirty_locked_object(struct buf *bp)
2431 {
2432 	vm_object_t object;
2433 	int i;
2434 
2435 	object = bp->b_bufobj->bo_object;
2436 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2437 
2438 	/*
2439 	 * We qualify the scan for modified pages on whether the
2440 	 * object has been flushed yet.
2441 	 */
2442 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2443 		vm_offset_t boffset;
2444 		vm_offset_t eoffset;
2445 
2446 		/*
2447 		 * test the pages to see if they have been modified directly
2448 		 * by users through the VM system.
2449 		 */
2450 		for (i = 0; i < bp->b_npages; i++)
2451 			vm_page_test_dirty(bp->b_pages[i]);
2452 
2453 		/*
2454 		 * Calculate the encompassing dirty range, boffset and eoffset,
2455 		 * (eoffset - boffset) bytes.
2456 		 */
2457 
2458 		for (i = 0; i < bp->b_npages; i++) {
2459 			if (bp->b_pages[i]->dirty)
2460 				break;
2461 		}
2462 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2463 
2464 		for (i = bp->b_npages - 1; i >= 0; --i) {
2465 			if (bp->b_pages[i]->dirty) {
2466 				break;
2467 			}
2468 		}
2469 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2470 
2471 		/*
2472 		 * Fit it to the buffer.
2473 		 */
2474 
2475 		if (eoffset > bp->b_bcount)
2476 			eoffset = bp->b_bcount;
2477 
2478 		/*
2479 		 * If we have a good dirty range, merge with the existing
2480 		 * dirty range.
2481 		 */
2482 
2483 		if (boffset < eoffset) {
2484 			if (bp->b_dirtyoff > boffset)
2485 				bp->b_dirtyoff = boffset;
2486 			if (bp->b_dirtyend < eoffset)
2487 				bp->b_dirtyend = eoffset;
2488 		}
2489 	}
2490 }
2491 
2492 /*
2493  *	getblk:
2494  *
2495  *	Get a block given a specified block and offset into a file/device.
2496  *	The buffers B_DONE bit will be cleared on return, making it almost
2497  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2498  *	return.  The caller should clear B_INVAL prior to initiating a
2499  *	READ.
2500  *
2501  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2502  *	an existing buffer.
2503  *
2504  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2505  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2506  *	and then cleared based on the backing VM.  If the previous buffer is
2507  *	non-0-sized but invalid, B_CACHE will be cleared.
2508  *
2509  *	If getblk() must create a new buffer, the new buffer is returned with
2510  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2511  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2512  *	backing VM.
2513  *
2514  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2515  *	B_CACHE bit is clear.
2516  *
2517  *	What this means, basically, is that the caller should use B_CACHE to
2518  *	determine whether the buffer is fully valid or not and should clear
2519  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2520  *	the buffer by loading its data area with something, the caller needs
2521  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2522  *	the caller should set B_CACHE ( as an optimization ), else the caller
2523  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2524  *	a write attempt or if it was a successfull read.  If the caller
2525  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2526  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2527  */
2528 struct buf *
2529 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2530     int flags)
2531 {
2532 	struct buf *bp;
2533 	struct bufobj *bo;
2534 	int error;
2535 
2536 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2537 	ASSERT_VOP_LOCKED(vp, "getblk");
2538 	if (size > MAXBSIZE)
2539 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2540 
2541 	bo = &vp->v_bufobj;
2542 loop:
2543 	/*
2544 	 * Block if we are low on buffers.   Certain processes are allowed
2545 	 * to completely exhaust the buffer cache.
2546          *
2547          * If this check ever becomes a bottleneck it may be better to
2548          * move it into the else, when gbincore() fails.  At the moment
2549          * it isn't a problem.
2550 	 *
2551 	 * XXX remove if 0 sections (clean this up after its proven)
2552          */
2553 	if (numfreebuffers == 0) {
2554 		if (TD_IS_IDLETHREAD(curthread))
2555 			return NULL;
2556 		mtx_lock(&nblock);
2557 		needsbuffer |= VFS_BIO_NEED_ANY;
2558 		mtx_unlock(&nblock);
2559 	}
2560 
2561 	BO_LOCK(bo);
2562 	bp = gbincore(bo, blkno);
2563 	if (bp != NULL) {
2564 		int lockflags;
2565 		/*
2566 		 * Buffer is in-core.  If the buffer is not busy, it must
2567 		 * be on a queue.
2568 		 */
2569 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2570 
2571 		if (flags & GB_LOCK_NOWAIT)
2572 			lockflags |= LK_NOWAIT;
2573 
2574 		error = BUF_TIMELOCK(bp, lockflags,
2575 		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2576 
2577 		/*
2578 		 * If we slept and got the lock we have to restart in case
2579 		 * the buffer changed identities.
2580 		 */
2581 		if (error == ENOLCK)
2582 			goto loop;
2583 		/* We timed out or were interrupted. */
2584 		else if (error)
2585 			return (NULL);
2586 
2587 		/*
2588 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2589 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2590 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2591 		 * backing VM cache.
2592 		 */
2593 		if (bp->b_flags & B_INVAL)
2594 			bp->b_flags &= ~B_CACHE;
2595 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2596 			bp->b_flags |= B_CACHE;
2597 		bremfree(bp);
2598 
2599 		/*
2600 		 * check for size inconsistancies for non-VMIO case.
2601 		 */
2602 
2603 		if (bp->b_bcount != size) {
2604 			if ((bp->b_flags & B_VMIO) == 0 ||
2605 			    (size > bp->b_kvasize)) {
2606 				if (bp->b_flags & B_DELWRI) {
2607 					/*
2608 					 * If buffer is pinned and caller does
2609 					 * not want sleep  waiting for it to be
2610 					 * unpinned, bail out
2611 					 * */
2612 					if (bp->b_pin_count > 0) {
2613 						if (flags & GB_LOCK_NOWAIT) {
2614 							bqrelse(bp);
2615 							return (NULL);
2616 						} else {
2617 							bunpin_wait(bp);
2618 						}
2619 					}
2620 					bp->b_flags |= B_NOCACHE;
2621 					bwrite(bp);
2622 				} else {
2623 					if (LIST_EMPTY(&bp->b_dep)) {
2624 						bp->b_flags |= B_RELBUF;
2625 						brelse(bp);
2626 					} else {
2627 						bp->b_flags |= B_NOCACHE;
2628 						bwrite(bp);
2629 					}
2630 				}
2631 				goto loop;
2632 			}
2633 		}
2634 
2635 		/*
2636 		 * If the size is inconsistant in the VMIO case, we can resize
2637 		 * the buffer.  This might lead to B_CACHE getting set or
2638 		 * cleared.  If the size has not changed, B_CACHE remains
2639 		 * unchanged from its previous state.
2640 		 */
2641 
2642 		if (bp->b_bcount != size)
2643 			allocbuf(bp, size);
2644 
2645 		KASSERT(bp->b_offset != NOOFFSET,
2646 		    ("getblk: no buffer offset"));
2647 
2648 		/*
2649 		 * A buffer with B_DELWRI set and B_CACHE clear must
2650 		 * be committed before we can return the buffer in
2651 		 * order to prevent the caller from issuing a read
2652 		 * ( due to B_CACHE not being set ) and overwriting
2653 		 * it.
2654 		 *
2655 		 * Most callers, including NFS and FFS, need this to
2656 		 * operate properly either because they assume they
2657 		 * can issue a read if B_CACHE is not set, or because
2658 		 * ( for example ) an uncached B_DELWRI might loop due
2659 		 * to softupdates re-dirtying the buffer.  In the latter
2660 		 * case, B_CACHE is set after the first write completes,
2661 		 * preventing further loops.
2662 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2663 		 * above while extending the buffer, we cannot allow the
2664 		 * buffer to remain with B_CACHE set after the write
2665 		 * completes or it will represent a corrupt state.  To
2666 		 * deal with this we set B_NOCACHE to scrap the buffer
2667 		 * after the write.
2668 		 *
2669 		 * We might be able to do something fancy, like setting
2670 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2671 		 * so the below call doesn't set B_CACHE, but that gets real
2672 		 * confusing.  This is much easier.
2673 		 */
2674 
2675 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2676 			bp->b_flags |= B_NOCACHE;
2677 			bwrite(bp);
2678 			goto loop;
2679 		}
2680 		bp->b_flags &= ~B_DONE;
2681 	} else {
2682 		int bsize, maxsize, vmio;
2683 		off_t offset;
2684 
2685 		/*
2686 		 * Buffer is not in-core, create new buffer.  The buffer
2687 		 * returned by getnewbuf() is locked.  Note that the returned
2688 		 * buffer is also considered valid (not marked B_INVAL).
2689 		 */
2690 		BO_UNLOCK(bo);
2691 		/*
2692 		 * If the user does not want us to create the buffer, bail out
2693 		 * here.
2694 		 */
2695 		if (flags & GB_NOCREAT)
2696 			return NULL;
2697 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2698 		offset = blkno * bsize;
2699 		vmio = vp->v_object != NULL;
2700 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2701 		maxsize = imax(maxsize, bsize);
2702 
2703 		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2704 		if (bp == NULL) {
2705 			if (slpflag || slptimeo)
2706 				return NULL;
2707 			goto loop;
2708 		}
2709 
2710 		/*
2711 		 * This code is used to make sure that a buffer is not
2712 		 * created while the getnewbuf routine is blocked.
2713 		 * This can be a problem whether the vnode is locked or not.
2714 		 * If the buffer is created out from under us, we have to
2715 		 * throw away the one we just created.
2716 		 *
2717 		 * Note: this must occur before we associate the buffer
2718 		 * with the vp especially considering limitations in
2719 		 * the splay tree implementation when dealing with duplicate
2720 		 * lblkno's.
2721 		 */
2722 		BO_LOCK(bo);
2723 		if (gbincore(bo, blkno)) {
2724 			BO_UNLOCK(bo);
2725 			bp->b_flags |= B_INVAL;
2726 			brelse(bp);
2727 			goto loop;
2728 		}
2729 
2730 		/*
2731 		 * Insert the buffer into the hash, so that it can
2732 		 * be found by incore.
2733 		 */
2734 		bp->b_blkno = bp->b_lblkno = blkno;
2735 		bp->b_offset = offset;
2736 		bgetvp(vp, bp);
2737 		BO_UNLOCK(bo);
2738 
2739 		/*
2740 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2741 		 * buffer size starts out as 0, B_CACHE will be set by
2742 		 * allocbuf() for the VMIO case prior to it testing the
2743 		 * backing store for validity.
2744 		 */
2745 
2746 		if (vmio) {
2747 			bp->b_flags |= B_VMIO;
2748 #if defined(VFS_BIO_DEBUG)
2749 			if (vn_canvmio(vp) != TRUE)
2750 				printf("getblk: VMIO on vnode type %d\n",
2751 					vp->v_type);
2752 #endif
2753 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2754 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2755 			    bp, vp->v_object, bp->b_bufobj->bo_object));
2756 		} else {
2757 			bp->b_flags &= ~B_VMIO;
2758 			KASSERT(bp->b_bufobj->bo_object == NULL,
2759 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2760 			    bp, bp->b_bufobj->bo_object));
2761 		}
2762 
2763 		allocbuf(bp, size);
2764 		bp->b_flags &= ~B_DONE;
2765 	}
2766 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2767 	BUF_ASSERT_HELD(bp);
2768 	KASSERT(bp->b_bufobj == bo,
2769 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2770 	return (bp);
2771 }
2772 
2773 /*
2774  * Get an empty, disassociated buffer of given size.  The buffer is initially
2775  * set to B_INVAL.
2776  */
2777 struct buf *
2778 geteblk(int size, int flags)
2779 {
2780 	struct buf *bp;
2781 	int maxsize;
2782 
2783 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2784 	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2785 		if ((flags & GB_NOWAIT_BD) &&
2786 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2787 			return (NULL);
2788 	}
2789 	allocbuf(bp, size);
2790 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2791 	BUF_ASSERT_HELD(bp);
2792 	return (bp);
2793 }
2794 
2795 
2796 /*
2797  * This code constitutes the buffer memory from either anonymous system
2798  * memory (in the case of non-VMIO operations) or from an associated
2799  * VM object (in the case of VMIO operations).  This code is able to
2800  * resize a buffer up or down.
2801  *
2802  * Note that this code is tricky, and has many complications to resolve
2803  * deadlock or inconsistant data situations.  Tread lightly!!!
2804  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2805  * the caller.  Calling this code willy nilly can result in the loss of data.
2806  *
2807  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2808  * B_CACHE for the non-VMIO case.
2809  */
2810 
2811 int
2812 allocbuf(struct buf *bp, int size)
2813 {
2814 	int newbsize, mbsize;
2815 	int i;
2816 
2817 	BUF_ASSERT_HELD(bp);
2818 
2819 	if (bp->b_kvasize < size)
2820 		panic("allocbuf: buffer too small");
2821 
2822 	if ((bp->b_flags & B_VMIO) == 0) {
2823 		caddr_t origbuf;
2824 		int origbufsize;
2825 		/*
2826 		 * Just get anonymous memory from the kernel.  Don't
2827 		 * mess with B_CACHE.
2828 		 */
2829 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2830 		if (bp->b_flags & B_MALLOC)
2831 			newbsize = mbsize;
2832 		else
2833 			newbsize = round_page(size);
2834 
2835 		if (newbsize < bp->b_bufsize) {
2836 			/*
2837 			 * malloced buffers are not shrunk
2838 			 */
2839 			if (bp->b_flags & B_MALLOC) {
2840 				if (newbsize) {
2841 					bp->b_bcount = size;
2842 				} else {
2843 					free(bp->b_data, M_BIOBUF);
2844 					if (bp->b_bufsize) {
2845 						atomic_subtract_long(
2846 						    &bufmallocspace,
2847 						    bp->b_bufsize);
2848 						bufspacewakeup();
2849 						bp->b_bufsize = 0;
2850 					}
2851 					bp->b_saveaddr = bp->b_kvabase;
2852 					bp->b_data = bp->b_saveaddr;
2853 					bp->b_bcount = 0;
2854 					bp->b_flags &= ~B_MALLOC;
2855 				}
2856 				return 1;
2857 			}
2858 			vm_hold_free_pages(
2859 			    bp,
2860 			    (vm_offset_t) bp->b_data + newbsize,
2861 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2862 		} else if (newbsize > bp->b_bufsize) {
2863 			/*
2864 			 * We only use malloced memory on the first allocation.
2865 			 * and revert to page-allocated memory when the buffer
2866 			 * grows.
2867 			 */
2868 			/*
2869 			 * There is a potential smp race here that could lead
2870 			 * to bufmallocspace slightly passing the max.  It
2871 			 * is probably extremely rare and not worth worrying
2872 			 * over.
2873 			 */
2874 			if ( (bufmallocspace < maxbufmallocspace) &&
2875 				(bp->b_bufsize == 0) &&
2876 				(mbsize <= PAGE_SIZE/2)) {
2877 
2878 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2879 				bp->b_bufsize = mbsize;
2880 				bp->b_bcount = size;
2881 				bp->b_flags |= B_MALLOC;
2882 				atomic_add_long(&bufmallocspace, mbsize);
2883 				return 1;
2884 			}
2885 			origbuf = NULL;
2886 			origbufsize = 0;
2887 			/*
2888 			 * If the buffer is growing on its other-than-first allocation,
2889 			 * then we revert to the page-allocation scheme.
2890 			 */
2891 			if (bp->b_flags & B_MALLOC) {
2892 				origbuf = bp->b_data;
2893 				origbufsize = bp->b_bufsize;
2894 				bp->b_data = bp->b_kvabase;
2895 				if (bp->b_bufsize) {
2896 					atomic_subtract_long(&bufmallocspace,
2897 					    bp->b_bufsize);
2898 					bufspacewakeup();
2899 					bp->b_bufsize = 0;
2900 				}
2901 				bp->b_flags &= ~B_MALLOC;
2902 				newbsize = round_page(newbsize);
2903 			}
2904 			vm_hold_load_pages(
2905 			    bp,
2906 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2907 			    (vm_offset_t) bp->b_data + newbsize);
2908 			if (origbuf) {
2909 				bcopy(origbuf, bp->b_data, origbufsize);
2910 				free(origbuf, M_BIOBUF);
2911 			}
2912 		}
2913 	} else {
2914 		int desiredpages;
2915 
2916 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2917 		desiredpages = (size == 0) ? 0 :
2918 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2919 
2920 		if (bp->b_flags & B_MALLOC)
2921 			panic("allocbuf: VMIO buffer can't be malloced");
2922 		/*
2923 		 * Set B_CACHE initially if buffer is 0 length or will become
2924 		 * 0-length.
2925 		 */
2926 		if (size == 0 || bp->b_bufsize == 0)
2927 			bp->b_flags |= B_CACHE;
2928 
2929 		if (newbsize < bp->b_bufsize) {
2930 			/*
2931 			 * DEV_BSIZE aligned new buffer size is less then the
2932 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2933 			 * if we have to remove any pages.
2934 			 */
2935 			if (desiredpages < bp->b_npages) {
2936 				vm_page_t m;
2937 
2938 				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2939 				for (i = desiredpages; i < bp->b_npages; i++) {
2940 					/*
2941 					 * the page is not freed here -- it
2942 					 * is the responsibility of
2943 					 * vnode_pager_setsize
2944 					 */
2945 					m = bp->b_pages[i];
2946 					KASSERT(m != bogus_page,
2947 					    ("allocbuf: bogus page found"));
2948 					while (vm_page_sleep_if_busy(m, TRUE,
2949 					    "biodep"))
2950 						continue;
2951 
2952 					bp->b_pages[i] = NULL;
2953 					vm_page_lock(m);
2954 					vm_page_unwire(m, 0);
2955 					vm_page_unlock(m);
2956 				}
2957 				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2958 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2959 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2960 				bp->b_npages = desiredpages;
2961 			}
2962 		} else if (size > bp->b_bcount) {
2963 			/*
2964 			 * We are growing the buffer, possibly in a
2965 			 * byte-granular fashion.
2966 			 */
2967 			vm_object_t obj;
2968 			vm_offset_t toff;
2969 			vm_offset_t tinc;
2970 
2971 			/*
2972 			 * Step 1, bring in the VM pages from the object,
2973 			 * allocating them if necessary.  We must clear
2974 			 * B_CACHE if these pages are not valid for the
2975 			 * range covered by the buffer.
2976 			 */
2977 
2978 			obj = bp->b_bufobj->bo_object;
2979 
2980 			VM_OBJECT_LOCK(obj);
2981 			while (bp->b_npages < desiredpages) {
2982 				vm_page_t m;
2983 				vm_pindex_t pi;
2984 
2985 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2986 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2987 					/*
2988 					 * note: must allocate system pages
2989 					 * since blocking here could intefere
2990 					 * with paging I/O, no matter which
2991 					 * process we are.
2992 					 */
2993 					m = vm_page_alloc(obj, pi,
2994 					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2995 					    VM_ALLOC_WIRED);
2996 					if (m == NULL) {
2997 						atomic_add_int(&vm_pageout_deficit,
2998 						    desiredpages - bp->b_npages);
2999 						VM_OBJECT_UNLOCK(obj);
3000 						VM_WAIT;
3001 						VM_OBJECT_LOCK(obj);
3002 					} else {
3003 						if (m->valid == 0)
3004 							bp->b_flags &= ~B_CACHE;
3005 						bp->b_pages[bp->b_npages] = m;
3006 						++bp->b_npages;
3007 					}
3008 					continue;
3009 				}
3010 
3011 				/*
3012 				 * We found a page.  If we have to sleep on it,
3013 				 * retry because it might have gotten freed out
3014 				 * from under us.
3015 				 *
3016 				 * We can only test VPO_BUSY here.  Blocking on
3017 				 * m->busy might lead to a deadlock:
3018 				 *
3019 				 *  vm_fault->getpages->cluster_read->allocbuf
3020 				 *
3021 				 */
3022 				if ((m->oflags & VPO_BUSY) != 0) {
3023 					/*
3024 					 * Reference the page before unlocking
3025 					 * and sleeping so that the page daemon
3026 					 * is less likely to reclaim it.
3027 					 */
3028 					vm_page_lock_queues();
3029 					vm_page_flag_set(m, PG_REFERENCED);
3030 					vm_page_sleep(m, "pgtblk");
3031 					continue;
3032 				}
3033 
3034 				/*
3035 				 * We have a good page.
3036 				 */
3037 				vm_page_lock(m);
3038 				vm_page_wire(m);
3039 				vm_page_unlock(m);
3040 				bp->b_pages[bp->b_npages] = m;
3041 				++bp->b_npages;
3042 			}
3043 
3044 			/*
3045 			 * Step 2.  We've loaded the pages into the buffer,
3046 			 * we have to figure out if we can still have B_CACHE
3047 			 * set.  Note that B_CACHE is set according to the
3048 			 * byte-granular range ( bcount and size ), new the
3049 			 * aligned range ( newbsize ).
3050 			 *
3051 			 * The VM test is against m->valid, which is DEV_BSIZE
3052 			 * aligned.  Needless to say, the validity of the data
3053 			 * needs to also be DEV_BSIZE aligned.  Note that this
3054 			 * fails with NFS if the server or some other client
3055 			 * extends the file's EOF.  If our buffer is resized,
3056 			 * B_CACHE may remain set! XXX
3057 			 */
3058 
3059 			toff = bp->b_bcount;
3060 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3061 
3062 			while ((bp->b_flags & B_CACHE) && toff < size) {
3063 				vm_pindex_t pi;
3064 
3065 				if (tinc > (size - toff))
3066 					tinc = size - toff;
3067 
3068 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3069 				    PAGE_SHIFT;
3070 
3071 				vfs_buf_test_cache(
3072 				    bp,
3073 				    bp->b_offset,
3074 				    toff,
3075 				    tinc,
3076 				    bp->b_pages[pi]
3077 				);
3078 				toff += tinc;
3079 				tinc = PAGE_SIZE;
3080 			}
3081 			VM_OBJECT_UNLOCK(obj);
3082 
3083 			/*
3084 			 * Step 3, fixup the KVM pmap.  Remember that
3085 			 * bp->b_data is relative to bp->b_offset, but
3086 			 * bp->b_offset may be offset into the first page.
3087 			 */
3088 
3089 			bp->b_data = (caddr_t)
3090 			    trunc_page((vm_offset_t)bp->b_data);
3091 			pmap_qenter(
3092 			    (vm_offset_t)bp->b_data,
3093 			    bp->b_pages,
3094 			    bp->b_npages
3095 			);
3096 
3097 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3098 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3099 		}
3100 	}
3101 	if (newbsize < bp->b_bufsize)
3102 		bufspacewakeup();
3103 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3104 	bp->b_bcount = size;		/* requested buffer size	*/
3105 	return 1;
3106 }
3107 
3108 void
3109 biodone(struct bio *bp)
3110 {
3111 	struct mtx *mtxp;
3112 	void (*done)(struct bio *);
3113 
3114 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3115 	mtx_lock(mtxp);
3116 	bp->bio_flags |= BIO_DONE;
3117 	done = bp->bio_done;
3118 	if (done == NULL)
3119 		wakeup(bp);
3120 	mtx_unlock(mtxp);
3121 	if (done != NULL)
3122 		done(bp);
3123 }
3124 
3125 /*
3126  * Wait for a BIO to finish.
3127  *
3128  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3129  * case is not yet clear.
3130  */
3131 int
3132 biowait(struct bio *bp, const char *wchan)
3133 {
3134 	struct mtx *mtxp;
3135 
3136 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3137 	mtx_lock(mtxp);
3138 	while ((bp->bio_flags & BIO_DONE) == 0)
3139 		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3140 	mtx_unlock(mtxp);
3141 	if (bp->bio_error != 0)
3142 		return (bp->bio_error);
3143 	if (!(bp->bio_flags & BIO_ERROR))
3144 		return (0);
3145 	return (EIO);
3146 }
3147 
3148 void
3149 biofinish(struct bio *bp, struct devstat *stat, int error)
3150 {
3151 
3152 	if (error) {
3153 		bp->bio_error = error;
3154 		bp->bio_flags |= BIO_ERROR;
3155 	}
3156 	if (stat != NULL)
3157 		devstat_end_transaction_bio(stat, bp);
3158 	biodone(bp);
3159 }
3160 
3161 /*
3162  *	bufwait:
3163  *
3164  *	Wait for buffer I/O completion, returning error status.  The buffer
3165  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3166  *	error and cleared.
3167  */
3168 int
3169 bufwait(struct buf *bp)
3170 {
3171 	if (bp->b_iocmd == BIO_READ)
3172 		bwait(bp, PRIBIO, "biord");
3173 	else
3174 		bwait(bp, PRIBIO, "biowr");
3175 	if (bp->b_flags & B_EINTR) {
3176 		bp->b_flags &= ~B_EINTR;
3177 		return (EINTR);
3178 	}
3179 	if (bp->b_ioflags & BIO_ERROR) {
3180 		return (bp->b_error ? bp->b_error : EIO);
3181 	} else {
3182 		return (0);
3183 	}
3184 }
3185 
3186  /*
3187   * Call back function from struct bio back up to struct buf.
3188   */
3189 static void
3190 bufdonebio(struct bio *bip)
3191 {
3192 	struct buf *bp;
3193 
3194 	bp = bip->bio_caller2;
3195 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3196 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3197 	bp->b_ioflags = bip->bio_flags;
3198 	bp->b_error = bip->bio_error;
3199 	if (bp->b_error)
3200 		bp->b_ioflags |= BIO_ERROR;
3201 	bufdone(bp);
3202 	g_destroy_bio(bip);
3203 }
3204 
3205 void
3206 dev_strategy(struct cdev *dev, struct buf *bp)
3207 {
3208 	struct cdevsw *csw;
3209 	struct bio *bip;
3210 
3211 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3212 		panic("b_iocmd botch");
3213 	for (;;) {
3214 		bip = g_new_bio();
3215 		if (bip != NULL)
3216 			break;
3217 		/* Try again later */
3218 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3219 	}
3220 	bip->bio_cmd = bp->b_iocmd;
3221 	bip->bio_offset = bp->b_iooffset;
3222 	bip->bio_length = bp->b_bcount;
3223 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3224 	bip->bio_data = bp->b_data;
3225 	bip->bio_done = bufdonebio;
3226 	bip->bio_caller2 = bp;
3227 	bip->bio_dev = dev;
3228 	KASSERT(dev->si_refcount > 0,
3229 	    ("dev_strategy on un-referenced struct cdev *(%s)",
3230 	    devtoname(dev)));
3231 	csw = dev_refthread(dev);
3232 	if (csw == NULL) {
3233 		g_destroy_bio(bip);
3234 		bp->b_error = ENXIO;
3235 		bp->b_ioflags = BIO_ERROR;
3236 		bufdone(bp);
3237 		return;
3238 	}
3239 	(*csw->d_strategy)(bip);
3240 	dev_relthread(dev);
3241 }
3242 
3243 /*
3244  *	bufdone:
3245  *
3246  *	Finish I/O on a buffer, optionally calling a completion function.
3247  *	This is usually called from an interrupt so process blocking is
3248  *	not allowed.
3249  *
3250  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3251  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3252  *	assuming B_INVAL is clear.
3253  *
3254  *	For the VMIO case, we set B_CACHE if the op was a read and no
3255  *	read error occured, or if the op was a write.  B_CACHE is never
3256  *	set if the buffer is invalid or otherwise uncacheable.
3257  *
3258  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3259  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3260  *	in the biodone routine.
3261  */
3262 void
3263 bufdone(struct buf *bp)
3264 {
3265 	struct bufobj *dropobj;
3266 	void    (*biodone)(struct buf *);
3267 
3268 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3269 	dropobj = NULL;
3270 
3271 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3272 	BUF_ASSERT_HELD(bp);
3273 
3274 	runningbufwakeup(bp);
3275 	if (bp->b_iocmd == BIO_WRITE)
3276 		dropobj = bp->b_bufobj;
3277 	/* call optional completion function if requested */
3278 	if (bp->b_iodone != NULL) {
3279 		biodone = bp->b_iodone;
3280 		bp->b_iodone = NULL;
3281 		(*biodone) (bp);
3282 		if (dropobj)
3283 			bufobj_wdrop(dropobj);
3284 		return;
3285 	}
3286 
3287 	bufdone_finish(bp);
3288 
3289 	if (dropobj)
3290 		bufobj_wdrop(dropobj);
3291 }
3292 
3293 void
3294 bufdone_finish(struct buf *bp)
3295 {
3296 	BUF_ASSERT_HELD(bp);
3297 
3298 	if (!LIST_EMPTY(&bp->b_dep))
3299 		buf_complete(bp);
3300 
3301 	if (bp->b_flags & B_VMIO) {
3302 		int i;
3303 		vm_ooffset_t foff;
3304 		vm_page_t m;
3305 		vm_object_t obj;
3306 		int iosize;
3307 		struct vnode *vp = bp->b_vp;
3308 
3309 		obj = bp->b_bufobj->bo_object;
3310 
3311 #if defined(VFS_BIO_DEBUG)
3312 		mp_fixme("usecount and vflag accessed without locks.");
3313 		if (vp->v_usecount == 0) {
3314 			panic("biodone: zero vnode ref count");
3315 		}
3316 
3317 		KASSERT(vp->v_object != NULL,
3318 			("biodone: vnode %p has no vm_object", vp));
3319 #endif
3320 
3321 		foff = bp->b_offset;
3322 		KASSERT(bp->b_offset != NOOFFSET,
3323 		    ("biodone: no buffer offset"));
3324 
3325 		VM_OBJECT_LOCK(obj);
3326 #if defined(VFS_BIO_DEBUG)
3327 		if (obj->paging_in_progress < bp->b_npages) {
3328 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3329 			    obj->paging_in_progress, bp->b_npages);
3330 		}
3331 #endif
3332 
3333 		/*
3334 		 * Set B_CACHE if the op was a normal read and no error
3335 		 * occured.  B_CACHE is set for writes in the b*write()
3336 		 * routines.
3337 		 */
3338 		iosize = bp->b_bcount - bp->b_resid;
3339 		if (bp->b_iocmd == BIO_READ &&
3340 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3341 		    !(bp->b_ioflags & BIO_ERROR)) {
3342 			bp->b_flags |= B_CACHE;
3343 		}
3344 		for (i = 0; i < bp->b_npages; i++) {
3345 			int bogusflag = 0;
3346 			int resid;
3347 
3348 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3349 			if (resid > iosize)
3350 				resid = iosize;
3351 
3352 			/*
3353 			 * cleanup bogus pages, restoring the originals
3354 			 */
3355 			m = bp->b_pages[i];
3356 			if (m == bogus_page) {
3357 				bogusflag = 1;
3358 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3359 				if (m == NULL)
3360 					panic("biodone: page disappeared!");
3361 				bp->b_pages[i] = m;
3362 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3363 				    bp->b_pages, bp->b_npages);
3364 			}
3365 #if defined(VFS_BIO_DEBUG)
3366 			if (OFF_TO_IDX(foff) != m->pindex) {
3367 				printf(
3368 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3369 				    (intmax_t)foff, (uintmax_t)m->pindex);
3370 			}
3371 #endif
3372 
3373 			/*
3374 			 * In the write case, the valid and clean bits are
3375 			 * already changed correctly ( see bdwrite() ), so we
3376 			 * only need to do this here in the read case.
3377 			 */
3378 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3379 				KASSERT((m->dirty & vm_page_bits(foff &
3380 				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3381 				    " page %p has unexpected dirty bits", m));
3382 				vfs_page_set_valid(bp, foff, m);
3383 			}
3384 
3385 			/*
3386 			 * when debugging new filesystems or buffer I/O methods, this
3387 			 * is the most common error that pops up.  if you see this, you
3388 			 * have not set the page busy flag correctly!!!
3389 			 */
3390 			if (m->busy == 0) {
3391 				printf("biodone: page busy < 0, "
3392 				    "pindex: %d, foff: 0x(%x,%x), "
3393 				    "resid: %d, index: %d\n",
3394 				    (int) m->pindex, (int)(foff >> 32),
3395 						(int) foff & 0xffffffff, resid, i);
3396 				if (!vn_isdisk(vp, NULL))
3397 					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3398 					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3399 					    (intmax_t) bp->b_lblkno,
3400 					    bp->b_flags, bp->b_npages);
3401 				else
3402 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3403 					    (intmax_t) bp->b_lblkno,
3404 					    bp->b_flags, bp->b_npages);
3405 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3406 				    (u_long)m->valid, (u_long)m->dirty,
3407 				    m->wire_count);
3408 				panic("biodone: page busy < 0\n");
3409 			}
3410 			vm_page_io_finish(m);
3411 			vm_object_pip_subtract(obj, 1);
3412 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3413 			iosize -= resid;
3414 		}
3415 		vm_object_pip_wakeupn(obj, 0);
3416 		VM_OBJECT_UNLOCK(obj);
3417 	}
3418 
3419 	/*
3420 	 * For asynchronous completions, release the buffer now. The brelse
3421 	 * will do a wakeup there if necessary - so no need to do a wakeup
3422 	 * here in the async case. The sync case always needs to do a wakeup.
3423 	 */
3424 
3425 	if (bp->b_flags & B_ASYNC) {
3426 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3427 			brelse(bp);
3428 		else
3429 			bqrelse(bp);
3430 	} else
3431 		bdone(bp);
3432 }
3433 
3434 /*
3435  * This routine is called in lieu of iodone in the case of
3436  * incomplete I/O.  This keeps the busy status for pages
3437  * consistant.
3438  */
3439 void
3440 vfs_unbusy_pages(struct buf *bp)
3441 {
3442 	int i;
3443 	vm_object_t obj;
3444 	vm_page_t m;
3445 
3446 	runningbufwakeup(bp);
3447 	if (!(bp->b_flags & B_VMIO))
3448 		return;
3449 
3450 	obj = bp->b_bufobj->bo_object;
3451 	VM_OBJECT_LOCK(obj);
3452 	for (i = 0; i < bp->b_npages; i++) {
3453 		m = bp->b_pages[i];
3454 		if (m == bogus_page) {
3455 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3456 			if (!m)
3457 				panic("vfs_unbusy_pages: page missing\n");
3458 			bp->b_pages[i] = m;
3459 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3460 			    bp->b_pages, bp->b_npages);
3461 		}
3462 		vm_object_pip_subtract(obj, 1);
3463 		vm_page_io_finish(m);
3464 	}
3465 	vm_object_pip_wakeupn(obj, 0);
3466 	VM_OBJECT_UNLOCK(obj);
3467 }
3468 
3469 /*
3470  * vfs_page_set_valid:
3471  *
3472  *	Set the valid bits in a page based on the supplied offset.   The
3473  *	range is restricted to the buffer's size.
3474  *
3475  *	This routine is typically called after a read completes.
3476  */
3477 static void
3478 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3479 {
3480 	vm_ooffset_t eoff;
3481 
3482 	/*
3483 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3484 	 * page boundary and eoff is not greater than the end of the buffer.
3485 	 * The end of the buffer, in this case, is our file EOF, not the
3486 	 * allocation size of the buffer.
3487 	 */
3488 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3489 	if (eoff > bp->b_offset + bp->b_bcount)
3490 		eoff = bp->b_offset + bp->b_bcount;
3491 
3492 	/*
3493 	 * Set valid range.  This is typically the entire buffer and thus the
3494 	 * entire page.
3495 	 */
3496 	if (eoff > off)
3497 		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3498 }
3499 
3500 /*
3501  * vfs_page_set_validclean:
3502  *
3503  *	Set the valid bits and clear the dirty bits in a page based on the
3504  *	supplied offset.   The range is restricted to the buffer's size.
3505  */
3506 static void
3507 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3508 {
3509 	vm_ooffset_t soff, eoff;
3510 
3511 	/*
3512 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3513 	 * page boundry or cross the end of the buffer.  The end of the
3514 	 * buffer, in this case, is our file EOF, not the allocation size
3515 	 * of the buffer.
3516 	 */
3517 	soff = off;
3518 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3519 	if (eoff > bp->b_offset + bp->b_bcount)
3520 		eoff = bp->b_offset + bp->b_bcount;
3521 
3522 	/*
3523 	 * Set valid range.  This is typically the entire buffer and thus the
3524 	 * entire page.
3525 	 */
3526 	if (eoff > soff) {
3527 		vm_page_set_validclean(
3528 		    m,
3529 		   (vm_offset_t) (soff & PAGE_MASK),
3530 		   (vm_offset_t) (eoff - soff)
3531 		);
3532 	}
3533 }
3534 
3535 /*
3536  * This routine is called before a device strategy routine.
3537  * It is used to tell the VM system that paging I/O is in
3538  * progress, and treat the pages associated with the buffer
3539  * almost as being VPO_BUSY.  Also the object paging_in_progress
3540  * flag is handled to make sure that the object doesn't become
3541  * inconsistant.
3542  *
3543  * Since I/O has not been initiated yet, certain buffer flags
3544  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3545  * and should be ignored.
3546  */
3547 void
3548 vfs_busy_pages(struct buf *bp, int clear_modify)
3549 {
3550 	int i, bogus;
3551 	vm_object_t obj;
3552 	vm_ooffset_t foff;
3553 	vm_page_t m;
3554 
3555 	if (!(bp->b_flags & B_VMIO))
3556 		return;
3557 
3558 	obj = bp->b_bufobj->bo_object;
3559 	foff = bp->b_offset;
3560 	KASSERT(bp->b_offset != NOOFFSET,
3561 	    ("vfs_busy_pages: no buffer offset"));
3562 	VM_OBJECT_LOCK(obj);
3563 	if (bp->b_bufsize != 0)
3564 		vfs_setdirty_locked_object(bp);
3565 retry:
3566 	for (i = 0; i < bp->b_npages; i++) {
3567 		m = bp->b_pages[i];
3568 
3569 		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3570 			goto retry;
3571 	}
3572 	bogus = 0;
3573 	for (i = 0; i < bp->b_npages; i++) {
3574 		m = bp->b_pages[i];
3575 
3576 		if ((bp->b_flags & B_CLUSTER) == 0) {
3577 			vm_object_pip_add(obj, 1);
3578 			vm_page_io_start(m);
3579 		}
3580 		/*
3581 		 * When readying a buffer for a read ( i.e
3582 		 * clear_modify == 0 ), it is important to do
3583 		 * bogus_page replacement for valid pages in
3584 		 * partially instantiated buffers.  Partially
3585 		 * instantiated buffers can, in turn, occur when
3586 		 * reconstituting a buffer from its VM backing store
3587 		 * base.  We only have to do this if B_CACHE is
3588 		 * clear ( which causes the I/O to occur in the
3589 		 * first place ).  The replacement prevents the read
3590 		 * I/O from overwriting potentially dirty VM-backed
3591 		 * pages.  XXX bogus page replacement is, uh, bogus.
3592 		 * It may not work properly with small-block devices.
3593 		 * We need to find a better way.
3594 		 */
3595 		if (clear_modify) {
3596 			pmap_remove_write(m);
3597 			vfs_page_set_validclean(bp, foff, m);
3598 		} else if (m->valid == VM_PAGE_BITS_ALL &&
3599 		    (bp->b_flags & B_CACHE) == 0) {
3600 			bp->b_pages[i] = bogus_page;
3601 			bogus++;
3602 		}
3603 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3604 	}
3605 	VM_OBJECT_UNLOCK(obj);
3606 	if (bogus)
3607 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3608 		    bp->b_pages, bp->b_npages);
3609 }
3610 
3611 /*
3612  * Tell the VM system that the pages associated with this buffer
3613  * are clean.  This is used for delayed writes where the data is
3614  * going to go to disk eventually without additional VM intevention.
3615  *
3616  * Note that while we only really need to clean through to b_bcount, we
3617  * just go ahead and clean through to b_bufsize.
3618  */
3619 static void
3620 vfs_clean_pages(struct buf *bp)
3621 {
3622 	int i;
3623 	vm_ooffset_t foff, noff, eoff;
3624 	vm_page_t m;
3625 
3626 	if (!(bp->b_flags & B_VMIO))
3627 		return;
3628 
3629 	foff = bp->b_offset;
3630 	KASSERT(bp->b_offset != NOOFFSET,
3631 	    ("vfs_clean_pages: no buffer offset"));
3632 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3633 	for (i = 0; i < bp->b_npages; i++) {
3634 		m = bp->b_pages[i];
3635 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3636 		eoff = noff;
3637 
3638 		if (eoff > bp->b_offset + bp->b_bufsize)
3639 			eoff = bp->b_offset + bp->b_bufsize;
3640 		vfs_page_set_validclean(bp, foff, m);
3641 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3642 		foff = noff;
3643 	}
3644 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3645 }
3646 
3647 /*
3648  *	vfs_bio_set_valid:
3649  *
3650  *	Set the range within the buffer to valid.  The range is
3651  *	relative to the beginning of the buffer, b_offset.  Note that
3652  *	b_offset itself may be offset from the beginning of the first
3653  *	page.
3654  */
3655 void
3656 vfs_bio_set_valid(struct buf *bp, int base, int size)
3657 {
3658 	int i, n;
3659 	vm_page_t m;
3660 
3661 	if (!(bp->b_flags & B_VMIO))
3662 		return;
3663 
3664 	/*
3665 	 * Fixup base to be relative to beginning of first page.
3666 	 * Set initial n to be the maximum number of bytes in the
3667 	 * first page that can be validated.
3668 	 */
3669 	base += (bp->b_offset & PAGE_MASK);
3670 	n = PAGE_SIZE - (base & PAGE_MASK);
3671 
3672 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3673 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3674 		m = bp->b_pages[i];
3675 		if (n > size)
3676 			n = size;
3677 		vm_page_set_valid(m, base & PAGE_MASK, n);
3678 		base += n;
3679 		size -= n;
3680 		n = PAGE_SIZE;
3681 	}
3682 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3683 }
3684 
3685 /*
3686  *	vfs_bio_clrbuf:
3687  *
3688  *	If the specified buffer is a non-VMIO buffer, clear the entire
3689  *	buffer.  If the specified buffer is a VMIO buffer, clear and
3690  *	validate only the previously invalid portions of the buffer.
3691  *	This routine essentially fakes an I/O, so we need to clear
3692  *	BIO_ERROR and B_INVAL.
3693  *
3694  *	Note that while we only theoretically need to clear through b_bcount,
3695  *	we go ahead and clear through b_bufsize.
3696  */
3697 void
3698 vfs_bio_clrbuf(struct buf *bp)
3699 {
3700 	int i, j, mask;
3701 	caddr_t sa, ea;
3702 
3703 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3704 		clrbuf(bp);
3705 		return;
3706 	}
3707 	bp->b_flags &= ~B_INVAL;
3708 	bp->b_ioflags &= ~BIO_ERROR;
3709 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3710 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3711 	    (bp->b_offset & PAGE_MASK) == 0) {
3712 		if (bp->b_pages[0] == bogus_page)
3713 			goto unlock;
3714 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3715 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3716 		if ((bp->b_pages[0]->valid & mask) == mask)
3717 			goto unlock;
3718 		if ((bp->b_pages[0]->valid & mask) == 0) {
3719 			bzero(bp->b_data, bp->b_bufsize);
3720 			bp->b_pages[0]->valid |= mask;
3721 			goto unlock;
3722 		}
3723 	}
3724 	ea = sa = bp->b_data;
3725 	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3726 		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3727 		ea = (caddr_t)(vm_offset_t)ulmin(
3728 		    (u_long)(vm_offset_t)ea,
3729 		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3730 		if (bp->b_pages[i] == bogus_page)
3731 			continue;
3732 		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3733 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3734 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3735 		if ((bp->b_pages[i]->valid & mask) == mask)
3736 			continue;
3737 		if ((bp->b_pages[i]->valid & mask) == 0)
3738 			bzero(sa, ea - sa);
3739 		else {
3740 			for (; sa < ea; sa += DEV_BSIZE, j++) {
3741 				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3742 					bzero(sa, DEV_BSIZE);
3743 			}
3744 		}
3745 		bp->b_pages[i]->valid |= mask;
3746 	}
3747 unlock:
3748 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3749 	bp->b_resid = 0;
3750 }
3751 
3752 /*
3753  * vm_hold_load_pages and vm_hold_free_pages get pages into
3754  * a buffers address space.  The pages are anonymous and are
3755  * not associated with a file object.
3756  */
3757 static void
3758 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3759 {
3760 	vm_offset_t pg;
3761 	vm_page_t p;
3762 	int index;
3763 
3764 	to = round_page(to);
3765 	from = round_page(from);
3766 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3767 
3768 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3769 tryagain:
3770 		/*
3771 		 * note: must allocate system pages since blocking here
3772 		 * could interfere with paging I/O, no matter which
3773 		 * process we are.
3774 		 */
3775 		p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
3776 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3777 		if (!p) {
3778 			atomic_add_int(&vm_pageout_deficit,
3779 			    (to - pg) >> PAGE_SHIFT);
3780 			VM_WAIT;
3781 			goto tryagain;
3782 		}
3783 		pmap_qenter(pg, &p, 1);
3784 		bp->b_pages[index] = p;
3785 	}
3786 	bp->b_npages = index;
3787 }
3788 
3789 /* Return pages associated with this buf to the vm system */
3790 static void
3791 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3792 {
3793 	vm_offset_t pg;
3794 	vm_page_t p;
3795 	int index, newnpages;
3796 
3797 	from = round_page(from);
3798 	to = round_page(to);
3799 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3800 
3801 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3802 		p = bp->b_pages[index];
3803 		if (p && (index < bp->b_npages)) {
3804 			if (p->busy) {
3805 				printf(
3806 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3807 				    (intmax_t)bp->b_blkno,
3808 				    (intmax_t)bp->b_lblkno);
3809 			}
3810 			bp->b_pages[index] = NULL;
3811 			pmap_qremove(pg, 1);
3812 			p->wire_count--;
3813 			vm_page_free(p);
3814 			atomic_subtract_int(&cnt.v_wire_count, 1);
3815 		}
3816 	}
3817 	bp->b_npages = newnpages;
3818 }
3819 
3820 /*
3821  * Map an IO request into kernel virtual address space.
3822  *
3823  * All requests are (re)mapped into kernel VA space.
3824  * Notice that we use b_bufsize for the size of the buffer
3825  * to be mapped.  b_bcount might be modified by the driver.
3826  *
3827  * Note that even if the caller determines that the address space should
3828  * be valid, a race or a smaller-file mapped into a larger space may
3829  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3830  * check the return value.
3831  */
3832 int
3833 vmapbuf(struct buf *bp)
3834 {
3835 	caddr_t addr, kva;
3836 	vm_prot_t prot;
3837 	int pidx, i;
3838 	struct vm_page *m;
3839 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3840 
3841 	if (bp->b_bufsize < 0)
3842 		return (-1);
3843 	prot = VM_PROT_READ;
3844 	if (bp->b_iocmd == BIO_READ)
3845 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3846 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3847 	     addr < bp->b_data + bp->b_bufsize;
3848 	     addr += PAGE_SIZE, pidx++) {
3849 		/*
3850 		 * Do the vm_fault if needed; do the copy-on-write thing
3851 		 * when reading stuff off device into memory.
3852 		 *
3853 		 * NOTE! Must use pmap_extract() because addr may be in
3854 		 * the userland address space, and kextract is only guarenteed
3855 		 * to work for the kernland address space (see: sparc64 port).
3856 		 */
3857 retry:
3858 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3859 		    prot) < 0) {
3860 			for (i = 0; i < pidx; ++i) {
3861 				vm_page_lock(bp->b_pages[i]);
3862 				vm_page_unhold(bp->b_pages[i]);
3863 				vm_page_unlock(bp->b_pages[i]);
3864 				bp->b_pages[i] = NULL;
3865 			}
3866 			return(-1);
3867 		}
3868 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3869 		if (m == NULL)
3870 			goto retry;
3871 		bp->b_pages[pidx] = m;
3872 	}
3873 	if (pidx > btoc(MAXPHYS))
3874 		panic("vmapbuf: mapped more than MAXPHYS");
3875 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3876 
3877 	kva = bp->b_saveaddr;
3878 	bp->b_npages = pidx;
3879 	bp->b_saveaddr = bp->b_data;
3880 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3881 	return(0);
3882 }
3883 
3884 /*
3885  * Free the io map PTEs associated with this IO operation.
3886  * We also invalidate the TLB entries and restore the original b_addr.
3887  */
3888 void
3889 vunmapbuf(struct buf *bp)
3890 {
3891 	int pidx;
3892 	int npages;
3893 
3894 	npages = bp->b_npages;
3895 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3896 	for (pidx = 0; pidx < npages; pidx++) {
3897 		vm_page_lock(bp->b_pages[pidx]);
3898 		vm_page_unhold(bp->b_pages[pidx]);
3899 		vm_page_unlock(bp->b_pages[pidx]);
3900 	}
3901 
3902 	bp->b_data = bp->b_saveaddr;
3903 }
3904 
3905 void
3906 bdone(struct buf *bp)
3907 {
3908 	struct mtx *mtxp;
3909 
3910 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3911 	mtx_lock(mtxp);
3912 	bp->b_flags |= B_DONE;
3913 	wakeup(bp);
3914 	mtx_unlock(mtxp);
3915 }
3916 
3917 void
3918 bwait(struct buf *bp, u_char pri, const char *wchan)
3919 {
3920 	struct mtx *mtxp;
3921 
3922 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3923 	mtx_lock(mtxp);
3924 	while ((bp->b_flags & B_DONE) == 0)
3925 		msleep(bp, mtxp, pri, wchan, 0);
3926 	mtx_unlock(mtxp);
3927 }
3928 
3929 int
3930 bufsync(struct bufobj *bo, int waitfor)
3931 {
3932 
3933 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3934 }
3935 
3936 void
3937 bufstrategy(struct bufobj *bo, struct buf *bp)
3938 {
3939 	int i = 0;
3940 	struct vnode *vp;
3941 
3942 	vp = bp->b_vp;
3943 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3944 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3945 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3946 	i = VOP_STRATEGY(vp, bp);
3947 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3948 }
3949 
3950 void
3951 bufobj_wrefl(struct bufobj *bo)
3952 {
3953 
3954 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3955 	ASSERT_BO_LOCKED(bo);
3956 	bo->bo_numoutput++;
3957 }
3958 
3959 void
3960 bufobj_wref(struct bufobj *bo)
3961 {
3962 
3963 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3964 	BO_LOCK(bo);
3965 	bo->bo_numoutput++;
3966 	BO_UNLOCK(bo);
3967 }
3968 
3969 void
3970 bufobj_wdrop(struct bufobj *bo)
3971 {
3972 
3973 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3974 	BO_LOCK(bo);
3975 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3976 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3977 		bo->bo_flag &= ~BO_WWAIT;
3978 		wakeup(&bo->bo_numoutput);
3979 	}
3980 	BO_UNLOCK(bo);
3981 }
3982 
3983 int
3984 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3985 {
3986 	int error;
3987 
3988 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3989 	ASSERT_BO_LOCKED(bo);
3990 	error = 0;
3991 	while (bo->bo_numoutput) {
3992 		bo->bo_flag |= BO_WWAIT;
3993 		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3994 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3995 		if (error)
3996 			break;
3997 	}
3998 	return (error);
3999 }
4000 
4001 void
4002 bpin(struct buf *bp)
4003 {
4004 	struct mtx *mtxp;
4005 
4006 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4007 	mtx_lock(mtxp);
4008 	bp->b_pin_count++;
4009 	mtx_unlock(mtxp);
4010 }
4011 
4012 void
4013 bunpin(struct buf *bp)
4014 {
4015 	struct mtx *mtxp;
4016 
4017 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4018 	mtx_lock(mtxp);
4019 	if (--bp->b_pin_count == 0)
4020 		wakeup(bp);
4021 	mtx_unlock(mtxp);
4022 }
4023 
4024 void
4025 bunpin_wait(struct buf *bp)
4026 {
4027 	struct mtx *mtxp;
4028 
4029 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4030 	mtx_lock(mtxp);
4031 	while (bp->b_pin_count > 0)
4032 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4033 	mtx_unlock(mtxp);
4034 }
4035 
4036 #include "opt_ddb.h"
4037 #ifdef DDB
4038 #include <ddb/ddb.h>
4039 
4040 /* DDB command to show buffer data */
4041 DB_SHOW_COMMAND(buffer, db_show_buffer)
4042 {
4043 	/* get args */
4044 	struct buf *bp = (struct buf *)addr;
4045 
4046 	if (!have_addr) {
4047 		db_printf("usage: show buffer <addr>\n");
4048 		return;
4049 	}
4050 
4051 	db_printf("buf at %p\n", bp);
4052 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4053 	db_printf(
4054 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4055 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4056 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4057 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4058 	    bp->b_dep.lh_first);
4059 	if (bp->b_npages) {
4060 		int i;
4061 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4062 		for (i = 0; i < bp->b_npages; i++) {
4063 			vm_page_t m;
4064 			m = bp->b_pages[i];
4065 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4066 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4067 			if ((i + 1) < bp->b_npages)
4068 				db_printf(",");
4069 		}
4070 		db_printf("\n");
4071 	}
4072 	db_printf(" ");
4073 	lockmgr_printinfo(&bp->b_lock);
4074 }
4075 
4076 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4077 {
4078 	struct buf *bp;
4079 	int i;
4080 
4081 	for (i = 0; i < nbuf; i++) {
4082 		bp = &buf[i];
4083 		if (BUF_ISLOCKED(bp)) {
4084 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4085 			db_printf("\n");
4086 		}
4087 	}
4088 }
4089 
4090 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4091 {
4092 	struct vnode *vp;
4093 	struct buf *bp;
4094 
4095 	if (!have_addr) {
4096 		db_printf("usage: show vnodebufs <addr>\n");
4097 		return;
4098 	}
4099 	vp = (struct vnode *)addr;
4100 	db_printf("Clean buffers:\n");
4101 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4102 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4103 		db_printf("\n");
4104 	}
4105 	db_printf("Dirty buffers:\n");
4106 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4107 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4108 		db_printf("\n");
4109 	}
4110 }
4111 #endif /* DDB */
4112