xref: /freebsd/sys/kern/vfs_bio.c (revision cec50dea12481dc578c0805c887ab2097e1c06c5)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  */
14 
15 /*
16  * this file contains a new buffer I/O scheme implementing a coherent
17  * VM object and buffer cache scheme.  Pains have been taken to make
18  * sure that the performance degradation associated with schemes such
19  * as this is not realized.
20  *
21  * Author:  John S. Dyson
22  * Significant help during the development and debugging phases
23  * had been provided by David Greenman, also of the FreeBSD core team.
24  *
25  * see man buf(9) for more info.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bio.h>
34 #include <sys/conf.h>
35 #include <sys/buf.h>
36 #include <sys/devicestat.h>
37 #include <sys/eventhandler.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mount.h>
41 #include <sys/mutex.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sysctl.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include "opt_directio.h"
58 #include "opt_swap.h"
59 
60 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61 
62 struct	bio_ops bioops;		/* I/O operation notification */
63 
64 static int ibwrite(struct buf *);
65 
66 struct	buf_ops buf_ops_bio = {
67 	"buf_ops_bio",
68 	ibwrite
69 };
70 
71 /*
72  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
73  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
74  */
75 struct buf *buf;		/* buffer header pool */
76 
77 static struct proc *bufdaemonproc;
78 
79 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
80 		vm_offset_t to);
81 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
82 		vm_offset_t to);
83 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84 			       int pageno, vm_page_t m);
85 static void vfs_clean_pages(struct buf *bp);
86 static void vfs_setdirty(struct buf *bp);
87 static void vfs_vmio_release(struct buf *bp);
88 static void vfs_backgroundwritedone(struct buf *bp);
89 static int vfs_bio_clcheck(struct vnode *vp, int size,
90 		daddr_t lblkno, daddr_t blkno);
91 static int flushbufqueues(int flushdeps);
92 static void buf_daemon(void);
93 void bremfreel(struct buf *bp);
94 
95 int vmiodirenable = TRUE;
96 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
97     "Use the VM system for directory writes");
98 int runningbufspace;
99 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
100     "Amount of presently outstanding async buffer io");
101 static int bufspace;
102 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
103     "KVA memory used for bufs");
104 static int maxbufspace;
105 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
106     "Maximum allowed value of bufspace (including buf_daemon)");
107 static int bufmallocspace;
108 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
109     "Amount of malloced memory for buffers");
110 static int maxbufmallocspace;
111 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
112     "Maximum amount of malloced memory for buffers");
113 static int lobufspace;
114 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
115     "Minimum amount of buffers we want to have");
116 static int hibufspace;
117 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
118     "Maximum allowed value of bufspace (excluding buf_daemon)");
119 static int bufreusecnt;
120 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
121     "Number of times we have reused a buffer");
122 static int buffreekvacnt;
123 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
124     "Number of times we have freed the KVA space from some buffer");
125 static int bufdefragcnt;
126 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
127     "Number of times we have had to repeat buffer allocation to defragment");
128 static int lorunningspace;
129 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
130     "Minimum preferred space used for in-progress I/O");
131 static int hirunningspace;
132 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
133     "Maximum amount of space to use for in-progress I/O");
134 static int dirtybufferflushes;
135 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
136     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
137 static int altbufferflushes;
138 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
139     0, "Number of fsync flushes to limit dirty buffers");
140 static int recursiveflushes;
141 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
142     0, "Number of flushes skipped due to being recursive");
143 static int numdirtybuffers;
144 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
145     "Number of buffers that are dirty (has unwritten changes) at the moment");
146 static int lodirtybuffers;
147 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
148     "How many buffers we want to have free before bufdaemon can sleep");
149 static int hidirtybuffers;
150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
151     "When the number of dirty buffers is considered severe");
152 static int dirtybufthresh;
153 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
154     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
155 static int numfreebuffers;
156 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
157     "Number of free buffers");
158 static int lofreebuffers;
159 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
160    "XXX Unused");
161 static int hifreebuffers;
162 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
163    "XXX Complicatedly unused");
164 static int getnewbufcalls;
165 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
166    "Number of calls to getnewbuf");
167 static int getnewbufrestarts;
168 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
169     "Number of times getnewbuf has had to restart a buffer aquisition");
170 static int dobkgrdwrite = 1;
171 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
172     "Do background writes (honoring the BV_BKGRDWRITE flag)?");
173 
174 /*
175  * Wakeup point for bufdaemon, as well as indicator of whether it is already
176  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
177  * is idling.
178  */
179 static int bd_request;
180 
181 /*
182  * This lock synchronizes access to bd_request.
183  */
184 static struct mtx bdlock;
185 
186 /*
187  * bogus page -- for I/O to/from partially complete buffers
188  * this is a temporary solution to the problem, but it is not
189  * really that bad.  it would be better to split the buffer
190  * for input in the case of buffers partially already in memory,
191  * but the code is intricate enough already.
192  */
193 vm_page_t bogus_page;
194 
195 /*
196  * Synchronization (sleep/wakeup) variable for active buffer space requests.
197  * Set when wait starts, cleared prior to wakeup().
198  * Used in runningbufwakeup() and waitrunningbufspace().
199  */
200 static int runningbufreq;
201 
202 /*
203  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
204  * waitrunningbufspace().
205  */
206 static struct mtx rbreqlock;
207 
208 /*
209  * Synchronization (sleep/wakeup) variable for buffer requests.
210  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
211  * by and/or.
212  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
213  * getnewbuf(), and getblk().
214  */
215 static int needsbuffer;
216 
217 /*
218  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
219  */
220 static struct mtx nblock;
221 
222 /*
223  * Lock that protects against bwait()/bdone()/B_DONE races.
224  */
225 
226 static struct mtx bdonelock;
227 
228 /*
229  * Definitions for the buffer free lists.
230  */
231 #define BUFFER_QUEUES	5	/* number of free buffer queues */
232 
233 #define QUEUE_NONE	0	/* on no queue */
234 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
235 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
236 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
237 #define QUEUE_EMPTY	4	/* empty buffer headers */
238 
239 /* Queues for free buffers with various properties */
240 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
241 
242 /* Lock for the bufqueues */
243 static struct mtx bqlock;
244 
245 /*
246  * Single global constant for BUF_WMESG, to avoid getting multiple references.
247  * buf_wmesg is referred from macros.
248  */
249 const char *buf_wmesg = BUF_WMESG;
250 
251 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
252 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
253 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
254 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
255 
256 #ifdef DIRECTIO
257 extern void ffs_rawread_setup(void);
258 #endif /* DIRECTIO */
259 /*
260  *	numdirtywakeup:
261  *
262  *	If someone is blocked due to there being too many dirty buffers,
263  *	and numdirtybuffers is now reasonable, wake them up.
264  */
265 
266 static __inline void
267 numdirtywakeup(int level)
268 {
269 
270 	if (numdirtybuffers <= level) {
271 		mtx_lock(&nblock);
272 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
273 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
274 			wakeup(&needsbuffer);
275 		}
276 		mtx_unlock(&nblock);
277 	}
278 }
279 
280 /*
281  *	bufspacewakeup:
282  *
283  *	Called when buffer space is potentially available for recovery.
284  *	getnewbuf() will block on this flag when it is unable to free
285  *	sufficient buffer space.  Buffer space becomes recoverable when
286  *	bp's get placed back in the queues.
287  */
288 
289 static __inline void
290 bufspacewakeup(void)
291 {
292 
293 	/*
294 	 * If someone is waiting for BUF space, wake them up.  Even
295 	 * though we haven't freed the kva space yet, the waiting
296 	 * process will be able to now.
297 	 */
298 	mtx_lock(&nblock);
299 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
300 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
301 		wakeup(&needsbuffer);
302 	}
303 	mtx_unlock(&nblock);
304 }
305 
306 /*
307  * runningbufwakeup() - in-progress I/O accounting.
308  *
309  */
310 static __inline void
311 runningbufwakeup(struct buf *bp)
312 {
313 
314 	if (bp->b_runningbufspace) {
315 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
316 		bp->b_runningbufspace = 0;
317 		mtx_lock(&rbreqlock);
318 		if (runningbufreq && runningbufspace <= lorunningspace) {
319 			runningbufreq = 0;
320 			wakeup(&runningbufreq);
321 		}
322 		mtx_unlock(&rbreqlock);
323 	}
324 }
325 
326 /*
327  *	bufcountwakeup:
328  *
329  *	Called when a buffer has been added to one of the free queues to
330  *	account for the buffer and to wakeup anyone waiting for free buffers.
331  *	This typically occurs when large amounts of metadata are being handled
332  *	by the buffer cache ( else buffer space runs out first, usually ).
333  */
334 
335 static __inline void
336 bufcountwakeup(void)
337 {
338 
339 	atomic_add_int(&numfreebuffers, 1);
340 	mtx_lock(&nblock);
341 	if (needsbuffer) {
342 		needsbuffer &= ~VFS_BIO_NEED_ANY;
343 		if (numfreebuffers >= hifreebuffers)
344 			needsbuffer &= ~VFS_BIO_NEED_FREE;
345 		wakeup(&needsbuffer);
346 	}
347 	mtx_unlock(&nblock);
348 }
349 
350 /*
351  *	waitrunningbufspace()
352  *
353  *	runningbufspace is a measure of the amount of I/O currently
354  *	running.  This routine is used in async-write situations to
355  *	prevent creating huge backups of pending writes to a device.
356  *	Only asynchronous writes are governed by this function.
357  *
358  *	Reads will adjust runningbufspace, but will not block based on it.
359  *	The read load has a side effect of reducing the allowed write load.
360  *
361  *	This does NOT turn an async write into a sync write.  It waits
362  *	for earlier writes to complete and generally returns before the
363  *	caller's write has reached the device.
364  */
365 static __inline void
366 waitrunningbufspace(void)
367 {
368 
369 	mtx_lock(&rbreqlock);
370 	while (runningbufspace > hirunningspace) {
371 		++runningbufreq;
372 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
373 	}
374 	mtx_unlock(&rbreqlock);
375 }
376 
377 
378 /*
379  *	vfs_buf_test_cache:
380  *
381  *	Called when a buffer is extended.  This function clears the B_CACHE
382  *	bit if the newly extended portion of the buffer does not contain
383  *	valid data.
384  */
385 static __inline
386 void
387 vfs_buf_test_cache(struct buf *bp,
388 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
389 		  vm_page_t m)
390 {
391 
392 	GIANT_REQUIRED;
393 
394 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
395 	if (bp->b_flags & B_CACHE) {
396 		int base = (foff + off) & PAGE_MASK;
397 		if (vm_page_is_valid(m, base, size) == 0)
398 			bp->b_flags &= ~B_CACHE;
399 	}
400 }
401 
402 /* Wake up the buffer deamon if necessary */
403 static __inline
404 void
405 bd_wakeup(int dirtybuflevel)
406 {
407 
408 	mtx_lock(&bdlock);
409 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
410 		bd_request = 1;
411 		wakeup(&bd_request);
412 	}
413 	mtx_unlock(&bdlock);
414 }
415 
416 /*
417  * bd_speedup - speedup the buffer cache flushing code
418  */
419 
420 static __inline
421 void
422 bd_speedup(void)
423 {
424 
425 	bd_wakeup(1);
426 }
427 
428 /*
429  * Calculating buffer cache scaling values and reserve space for buffer
430  * headers.  This is called during low level kernel initialization and
431  * may be called more then once.  We CANNOT write to the memory area
432  * being reserved at this time.
433  */
434 caddr_t
435 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
436 {
437 
438 	/*
439 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
440 	 * PAGE_SIZE is >= 1K)
441 	 */
442 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
443 
444 	/*
445 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
446 	 * For the first 64MB of ram nominally allocate sufficient buffers to
447 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
448 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
449 	 * the buffer cache we limit the eventual kva reservation to
450 	 * maxbcache bytes.
451 	 *
452 	 * factor represents the 1/4 x ram conversion.
453 	 */
454 	if (nbuf == 0) {
455 		int factor = 4 * BKVASIZE / 1024;
456 
457 		nbuf = 50;
458 		if (physmem_est > 4096)
459 			nbuf += min((physmem_est - 4096) / factor,
460 			    65536 / factor);
461 		if (physmem_est > 65536)
462 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
463 
464 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
465 			nbuf = maxbcache / BKVASIZE;
466 	}
467 
468 #if 0
469 	/*
470 	 * Do not allow the buffer_map to be more then 1/2 the size of the
471 	 * kernel_map.
472 	 */
473 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
474 	    (BKVASIZE * 2)) {
475 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
476 		    (BKVASIZE * 2);
477 		printf("Warning: nbufs capped at %d\n", nbuf);
478 	}
479 #endif
480 
481 	/*
482 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
483 	 * We have no less then 16 and no more then 256.
484 	 */
485 	nswbuf = max(min(nbuf/4, 256), 16);
486 #ifdef NSWBUF_MIN
487 	if (nswbuf < NSWBUF_MIN)
488 		nswbuf = NSWBUF_MIN;
489 #endif
490 #ifdef DIRECTIO
491 	ffs_rawread_setup();
492 #endif
493 
494 	/*
495 	 * Reserve space for the buffer cache buffers
496 	 */
497 	swbuf = (void *)v;
498 	v = (caddr_t)(swbuf + nswbuf);
499 	buf = (void *)v;
500 	v = (caddr_t)(buf + nbuf);
501 
502 	return(v);
503 }
504 
505 /* Initialize the buffer subsystem.  Called before use of any buffers. */
506 void
507 bufinit(void)
508 {
509 	struct buf *bp;
510 	int i;
511 
512 	GIANT_REQUIRED;
513 
514 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
515 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
516 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
517 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
518 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
519 
520 	/* next, make a null set of free lists */
521 	for (i = 0; i < BUFFER_QUEUES; i++)
522 		TAILQ_INIT(&bufqueues[i]);
523 
524 	/* finally, initialize each buffer header and stick on empty q */
525 	for (i = 0; i < nbuf; i++) {
526 		bp = &buf[i];
527 		bzero(bp, sizeof *bp);
528 		bp->b_flags = B_INVAL;	/* we're just an empty header */
529 		bp->b_dev = NULL;
530 		bp->b_rcred = NOCRED;
531 		bp->b_wcred = NOCRED;
532 		bp->b_qindex = QUEUE_EMPTY;
533 		bp->b_vflags = 0;
534 		bp->b_xflags = 0;
535 		LIST_INIT(&bp->b_dep);
536 		BUF_LOCKINIT(bp);
537 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
538 	}
539 
540 	/*
541 	 * maxbufspace is the absolute maximum amount of buffer space we are
542 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
543 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
544 	 * used by most other processes.  The differential is required to
545 	 * ensure that buf_daemon is able to run when other processes might
546 	 * be blocked waiting for buffer space.
547 	 *
548 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
549 	 * this may result in KVM fragmentation which is not handled optimally
550 	 * by the system.
551 	 */
552 	maxbufspace = nbuf * BKVASIZE;
553 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
554 	lobufspace = hibufspace - MAXBSIZE;
555 
556 	lorunningspace = 512 * 1024;
557 	hirunningspace = 1024 * 1024;
558 
559 /*
560  * Limit the amount of malloc memory since it is wired permanently into
561  * the kernel space.  Even though this is accounted for in the buffer
562  * allocation, we don't want the malloced region to grow uncontrolled.
563  * The malloc scheme improves memory utilization significantly on average
564  * (small) directories.
565  */
566 	maxbufmallocspace = hibufspace / 20;
567 
568 /*
569  * Reduce the chance of a deadlock occuring by limiting the number
570  * of delayed-write dirty buffers we allow to stack up.
571  */
572 	hidirtybuffers = nbuf / 4 + 20;
573 	dirtybufthresh = hidirtybuffers * 9 / 10;
574 	numdirtybuffers = 0;
575 /*
576  * To support extreme low-memory systems, make sure hidirtybuffers cannot
577  * eat up all available buffer space.  This occurs when our minimum cannot
578  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
579  * BKVASIZE'd (8K) buffers.
580  */
581 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
582 		hidirtybuffers >>= 1;
583 	}
584 	lodirtybuffers = hidirtybuffers / 2;
585 
586 /*
587  * Try to keep the number of free buffers in the specified range,
588  * and give special processes (e.g. like buf_daemon) access to an
589  * emergency reserve.
590  */
591 	lofreebuffers = nbuf / 18 + 5;
592 	hifreebuffers = 2 * lofreebuffers;
593 	numfreebuffers = nbuf;
594 
595 /*
596  * Maximum number of async ops initiated per buf_daemon loop.  This is
597  * somewhat of a hack at the moment, we really need to limit ourselves
598  * based on the number of bytes of I/O in-transit that were initiated
599  * from buf_daemon.
600  */
601 
602 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
603 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
604 }
605 
606 /*
607  * bfreekva() - free the kva allocation for a buffer.
608  *
609  *	Must be called at splbio() or higher as this is the only locking for
610  *	buffer_map.
611  *
612  *	Since this call frees up buffer space, we call bufspacewakeup().
613  */
614 static void
615 bfreekva(struct buf *bp)
616 {
617 
618 	GIANT_REQUIRED;
619 
620 	if (bp->b_kvasize) {
621 		atomic_add_int(&buffreekvacnt, 1);
622 		atomic_subtract_int(&bufspace, bp->b_kvasize);
623 		vm_map_delete(buffer_map,
624 		    (vm_offset_t) bp->b_kvabase,
625 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
626 		);
627 		bp->b_kvasize = 0;
628 		bufspacewakeup();
629 	}
630 }
631 
632 /*
633  *	bremfree:
634  *
635  *	Remove the buffer from the appropriate free list.
636  */
637 void
638 bremfree(struct buf *bp)
639 {
640 
641 	mtx_lock(&bqlock);
642 	bremfreel(bp);
643 	mtx_unlock(&bqlock);
644 }
645 
646 void
647 bremfreel(struct buf *bp)
648 {
649 	int s = splbio();
650 	int old_qindex = bp->b_qindex;
651 
652 	GIANT_REQUIRED;
653 
654 	if (bp->b_qindex != QUEUE_NONE) {
655 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
656 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
657 		bp->b_qindex = QUEUE_NONE;
658 	} else {
659 		if (BUF_REFCNT(bp) <= 1)
660 			panic("bremfree: removing a buffer not on a queue");
661 	}
662 
663 	/*
664 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
665 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
666 	 * the buffer was free and we must decrement numfreebuffers.
667 	 */
668 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
669 		switch(old_qindex) {
670 		case QUEUE_DIRTY:
671 		case QUEUE_CLEAN:
672 		case QUEUE_EMPTY:
673 		case QUEUE_EMPTYKVA:
674 			atomic_subtract_int(&numfreebuffers, 1);
675 			break;
676 		default:
677 			break;
678 		}
679 	}
680 	splx(s);
681 }
682 
683 
684 /*
685  * Get a buffer with the specified data.  Look in the cache first.  We
686  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
687  * is set, the buffer is valid and we do not have to do anything ( see
688  * getblk() ).  This is really just a special case of breadn().
689  */
690 int
691 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
692     struct buf **bpp)
693 {
694 
695 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
696 }
697 
698 /*
699  * Operates like bread, but also starts asynchronous I/O on
700  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
701  * to initiating I/O . If B_CACHE is set, the buffer is valid
702  * and we do not have to do anything.
703  */
704 int
705 breadn(struct vnode * vp, daddr_t blkno, int size,
706     daddr_t * rablkno, int *rabsize,
707     int cnt, struct ucred * cred, struct buf **bpp)
708 {
709 	struct buf *bp, *rabp;
710 	int i;
711 	int rv = 0, readwait = 0;
712 
713 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
714 
715 	/* if not found in cache, do some I/O */
716 	if ((bp->b_flags & B_CACHE) == 0) {
717 		if (curthread != PCPU_GET(idlethread))
718 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
719 		bp->b_iocmd = BIO_READ;
720 		bp->b_flags &= ~B_INVAL;
721 		bp->b_ioflags &= ~BIO_ERROR;
722 		if (bp->b_rcred == NOCRED && cred != NOCRED)
723 			bp->b_rcred = crhold(cred);
724 		vfs_busy_pages(bp, 0);
725 		bp->b_iooffset = dbtob(bp->b_blkno);
726 		if (vp->v_type == VCHR)
727 			VOP_SPECSTRATEGY(vp, bp);
728 		else
729 			VOP_STRATEGY(vp, bp);
730 		++readwait;
731 	}
732 
733 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
734 		if (inmem(vp, *rablkno))
735 			continue;
736 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
737 
738 		if ((rabp->b_flags & B_CACHE) == 0) {
739 			if (curthread != PCPU_GET(idlethread))
740 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
741 			rabp->b_flags |= B_ASYNC;
742 			rabp->b_flags &= ~B_INVAL;
743 			rabp->b_ioflags &= ~BIO_ERROR;
744 			rabp->b_iocmd = BIO_READ;
745 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
746 				rabp->b_rcred = crhold(cred);
747 			vfs_busy_pages(rabp, 0);
748 			BUF_KERNPROC(rabp);
749 			rabp->b_iooffset = dbtob(rabp->b_blkno);
750 			if (vp->v_type == VCHR)
751 				VOP_SPECSTRATEGY(vp, rabp);
752 			else
753 				VOP_STRATEGY(vp, rabp);
754 		} else {
755 			brelse(rabp);
756 		}
757 	}
758 
759 	if (readwait) {
760 		rv = bufwait(bp);
761 	}
762 	return (rv);
763 }
764 
765 /*
766  * Write, release buffer on completion.  (Done by iodone
767  * if async).  Do not bother writing anything if the buffer
768  * is invalid.
769  *
770  * Note that we set B_CACHE here, indicating that buffer is
771  * fully valid and thus cacheable.  This is true even of NFS
772  * now so we set it generally.  This could be set either here
773  * or in biodone() since the I/O is synchronous.  We put it
774  * here.
775  */
776 int
777 bwrite(struct buf *bp)
778 {
779 
780 	KASSERT(bp->b_op != NULL && bp->b_op->bop_write != NULL,
781 	    ("Martian buffer %p in bwrite: nobody to write it.", bp));
782 	return (bp->b_op->bop_write(bp));
783 }
784 
785 static int
786 ibwrite(struct buf *bp)
787 {
788 	int oldflags, s;
789 	struct buf *newbp;
790 
791 	if (bp->b_flags & B_INVAL) {
792 		brelse(bp);
793 		return (0);
794 	}
795 
796 	oldflags = bp->b_flags;
797 
798 	if (BUF_REFCNT(bp) == 0)
799 		panic("ibwrite: buffer is not busy???");
800 	s = splbio();
801 	/*
802 	 * If a background write is already in progress, delay
803 	 * writing this block if it is asynchronous. Otherwise
804 	 * wait for the background write to complete.
805 	 */
806 	VI_LOCK(bp->b_vp);
807 	if (bp->b_vflags & BV_BKGRDINPROG) {
808 		if (bp->b_flags & B_ASYNC) {
809 			VI_UNLOCK(bp->b_vp);
810 			splx(s);
811 			bdwrite(bp);
812 			return (0);
813 		}
814 		bp->b_vflags |= BV_BKGRDWAIT;
815 		msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
816 		if (bp->b_vflags & BV_BKGRDINPROG)
817 			panic("ibwrite: still writing");
818 	}
819 	VI_UNLOCK(bp->b_vp);
820 
821 	/* Mark the buffer clean */
822 	bundirty(bp);
823 
824 	/*
825 	 * If this buffer is marked for background writing and we
826 	 * do not have to wait for it, make a copy and write the
827 	 * copy so as to leave this buffer ready for further use.
828 	 *
829 	 * This optimization eats a lot of memory.  If we have a page
830 	 * or buffer shortfall we can't do it.
831 	 */
832 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
833 	    (bp->b_flags & B_ASYNC) &&
834 	    !vm_page_count_severe() &&
835 	    !buf_dirty_count_severe()) {
836 		if (bp->b_iodone != NULL) {
837 			printf("bp->b_iodone = %p\n", bp->b_iodone);
838 			panic("ibwrite: need chained iodone");
839 		}
840 
841 		/* get a new block */
842 		newbp = geteblk(bp->b_bufsize);
843 
844 		/*
845 		 * set it to be identical to the old block.  We have to
846 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
847 		 * to avoid confusing the splay tree and gbincore().
848 		 */
849 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
850 		newbp->b_lblkno = bp->b_lblkno;
851 		newbp->b_xflags |= BX_BKGRDMARKER;
852 		VI_LOCK(bp->b_vp);
853 		bp->b_vflags |= BV_BKGRDINPROG;
854 		bgetvp(bp->b_vp, newbp);
855 		VI_UNLOCK(bp->b_vp);
856 		newbp->b_blkno = bp->b_blkno;
857 		newbp->b_offset = bp->b_offset;
858 		newbp->b_iodone = vfs_backgroundwritedone;
859 		newbp->b_flags |= B_ASYNC;
860 		newbp->b_flags &= ~B_INVAL;
861 
862 		/* move over the dependencies */
863 		if (LIST_FIRST(&bp->b_dep) != NULL)
864 			buf_movedeps(bp, newbp);
865 
866 		/*
867 		 * Initiate write on the copy, release the original to
868 		 * the B_LOCKED queue so that it cannot go away until
869 		 * the background write completes. If not locked it could go
870 		 * away and then be reconstituted while it was being written.
871 		 * If the reconstituted buffer were written, we could end up
872 		 * with two background copies being written at the same time.
873 		 */
874 		bqrelse(bp);
875 		bp = newbp;
876 	}
877 
878 	bp->b_flags &= ~B_DONE;
879 	bp->b_ioflags &= ~BIO_ERROR;
880 	bp->b_flags |= B_CACHE;
881 	bp->b_iocmd = BIO_WRITE;
882 
883 	VI_LOCK(bp->b_vp);
884 	bp->b_vp->v_numoutput++;
885 	VI_UNLOCK(bp->b_vp);
886 	vfs_busy_pages(bp, 1);
887 
888 	/*
889 	 * Normal bwrites pipeline writes
890 	 */
891 	bp->b_runningbufspace = bp->b_bufsize;
892 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
893 
894 	if (curthread != PCPU_GET(idlethread))
895 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
896 	splx(s);
897 	if (oldflags & B_ASYNC)
898 		BUF_KERNPROC(bp);
899 	bp->b_iooffset = dbtob(bp->b_blkno);
900 	if (bp->b_vp->v_type == VCHR) {
901 		if (!buf_prewrite(bp->b_vp, bp))
902 			VOP_SPECSTRATEGY(bp->b_vp, bp);
903 	} else {
904 		VOP_STRATEGY(bp->b_vp, bp);
905 	}
906 
907 	if ((oldflags & B_ASYNC) == 0) {
908 		int rtval = bufwait(bp);
909 		brelse(bp);
910 		return (rtval);
911 	} else {
912 		/*
913 		 * don't allow the async write to saturate the I/O
914 		 * system.  We will not deadlock here because
915 		 * we are blocking waiting for I/O that is already in-progress
916 		 * to complete. We do not block here if it is the update
917 		 * or syncer daemon trying to clean up as that can lead
918 		 * to deadlock.
919 		 */
920 		if (curthread->td_proc != bufdaemonproc &&
921 		    curthread->td_proc != updateproc)
922 			waitrunningbufspace();
923 	}
924 
925 	return (0);
926 }
927 
928 /*
929  * Complete a background write started from bwrite.
930  */
931 static void
932 vfs_backgroundwritedone(struct buf *bp)
933 {
934 	struct buf *origbp;
935 
936 	/*
937 	 * Find the original buffer that we are writing.
938 	 */
939 	VI_LOCK(bp->b_vp);
940 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
941 		panic("backgroundwritedone: lost buffer");
942 
943 	/*
944 	 * Clear the BV_BKGRDINPROG flag in the original buffer
945 	 * and awaken it if it is waiting for the write to complete.
946 	 * If BV_BKGRDINPROG is not set in the original buffer it must
947 	 * have been released and re-instantiated - which is not legal.
948 	 */
949 	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
950 	    ("backgroundwritedone: lost buffer2"));
951 	origbp->b_vflags &= ~BV_BKGRDINPROG;
952 	if (origbp->b_vflags & BV_BKGRDWAIT) {
953 		origbp->b_vflags &= ~BV_BKGRDWAIT;
954 		wakeup(&origbp->b_xflags);
955 	}
956 	VI_UNLOCK(bp->b_vp);
957 	/*
958 	 * Process dependencies then return any unfinished ones.
959 	 */
960 	if (LIST_FIRST(&bp->b_dep) != NULL)
961 		buf_complete(bp);
962 	if (LIST_FIRST(&bp->b_dep) != NULL)
963 		buf_movedeps(bp, origbp);
964 
965 	/*
966 	 * This buffer is marked B_NOCACHE, so when it is released
967 	 * by biodone, it will be tossed. We mark it with BIO_READ
968 	 * to avoid biodone doing a second vwakeup.
969 	 */
970 	bp->b_flags |= B_NOCACHE;
971 	bp->b_iocmd = BIO_READ;
972 	bp->b_flags &= ~(B_CACHE | B_DONE);
973 	bp->b_iodone = 0;
974 	bufdone(bp);
975 }
976 
977 /*
978  * Delayed write. (Buffer is marked dirty).  Do not bother writing
979  * anything if the buffer is marked invalid.
980  *
981  * Note that since the buffer must be completely valid, we can safely
982  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
983  * biodone() in order to prevent getblk from writing the buffer
984  * out synchronously.
985  */
986 void
987 bdwrite(struct buf *bp)
988 {
989 	struct thread *td = curthread;
990 	struct vnode *vp;
991 	struct buf *nbp;
992 
993 	GIANT_REQUIRED;
994 
995 	if (BUF_REFCNT(bp) == 0)
996 		panic("bdwrite: buffer is not busy");
997 
998 	if (bp->b_flags & B_INVAL) {
999 		brelse(bp);
1000 		return;
1001 	}
1002 
1003 	/*
1004 	 * If we have too many dirty buffers, don't create any more.
1005 	 * If we are wildly over our limit, then force a complete
1006 	 * cleanup. Otherwise, just keep the situation from getting
1007 	 * out of control. Note that we have to avoid a recursive
1008 	 * disaster and not try to clean up after our own cleanup!
1009 	 */
1010 	vp = bp->b_vp;
1011 	VI_LOCK(vp);
1012 	if (td->td_pflags & TDP_COWINPROGRESS) {
1013 		recursiveflushes++;
1014 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
1015 		VI_UNLOCK(vp);
1016 		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1017 		VI_LOCK(vp);
1018 		altbufferflushes++;
1019 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1020 		/*
1021 		 * Try to find a buffer to flush.
1022 		 */
1023 		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1024 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1025 			    buf_countdeps(nbp, 0) ||
1026 			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1027 				continue;
1028 			if (bp == nbp)
1029 				panic("bdwrite: found ourselves");
1030 			VI_UNLOCK(vp);
1031 			if (nbp->b_flags & B_CLUSTEROK) {
1032 				vfs_bio_awrite(nbp);
1033 			} else {
1034 				bremfree(nbp);
1035 				bawrite(nbp);
1036 			}
1037 			VI_LOCK(vp);
1038 			dirtybufferflushes++;
1039 			break;
1040 		}
1041 	}
1042 	VI_UNLOCK(vp);
1043 
1044 	bdirty(bp);
1045 	/*
1046 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1047 	 * true even of NFS now.
1048 	 */
1049 	bp->b_flags |= B_CACHE;
1050 
1051 	/*
1052 	 * This bmap keeps the system from needing to do the bmap later,
1053 	 * perhaps when the system is attempting to do a sync.  Since it
1054 	 * is likely that the indirect block -- or whatever other datastructure
1055 	 * that the filesystem needs is still in memory now, it is a good
1056 	 * thing to do this.  Note also, that if the pageout daemon is
1057 	 * requesting a sync -- there might not be enough memory to do
1058 	 * the bmap then...  So, this is important to do.
1059 	 */
1060 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1061 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1062 	}
1063 
1064 	/*
1065 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1066 	 */
1067 	vfs_setdirty(bp);
1068 
1069 	/*
1070 	 * We need to do this here to satisfy the vnode_pager and the
1071 	 * pageout daemon, so that it thinks that the pages have been
1072 	 * "cleaned".  Note that since the pages are in a delayed write
1073 	 * buffer -- the VFS layer "will" see that the pages get written
1074 	 * out on the next sync, or perhaps the cluster will be completed.
1075 	 */
1076 	vfs_clean_pages(bp);
1077 	bqrelse(bp);
1078 
1079 	/*
1080 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1081 	 * buffers (midpoint between our recovery point and our stall
1082 	 * point).
1083 	 */
1084 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1085 
1086 	/*
1087 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1088 	 * due to the softdep code.
1089 	 */
1090 }
1091 
1092 /*
1093  *	bdirty:
1094  *
1095  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1096  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1097  *	itself to properly update it in the dirty/clean lists.  We mark it
1098  *	B_DONE to ensure that any asynchronization of the buffer properly
1099  *	clears B_DONE ( else a panic will occur later ).
1100  *
1101  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1102  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1103  *	should only be called if the buffer is known-good.
1104  *
1105  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1106  *	count.
1107  *
1108  *	Must be called at splbio().
1109  *	The buffer must be on QUEUE_NONE.
1110  */
1111 void
1112 bdirty(struct buf *bp)
1113 {
1114 
1115 	KASSERT(bp->b_qindex == QUEUE_NONE,
1116 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1117 	bp->b_flags &= ~(B_RELBUF);
1118 	bp->b_iocmd = BIO_WRITE;
1119 
1120 	if ((bp->b_flags & B_DELWRI) == 0) {
1121 		bp->b_flags |= B_DONE | B_DELWRI;
1122 		reassignbuf(bp);
1123 		atomic_add_int(&numdirtybuffers, 1);
1124 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1125 	}
1126 }
1127 
1128 /*
1129  *	bundirty:
1130  *
1131  *	Clear B_DELWRI for buffer.
1132  *
1133  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1134  *	count.
1135  *
1136  *	Must be called at splbio().
1137  *	The buffer must be on QUEUE_NONE.
1138  */
1139 
1140 void
1141 bundirty(struct buf *bp)
1142 {
1143 
1144 	KASSERT(bp->b_qindex == QUEUE_NONE,
1145 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1146 
1147 	if (bp->b_flags & B_DELWRI) {
1148 		bp->b_flags &= ~B_DELWRI;
1149 		reassignbuf(bp);
1150 		atomic_subtract_int(&numdirtybuffers, 1);
1151 		numdirtywakeup(lodirtybuffers);
1152 	}
1153 	/*
1154 	 * Since it is now being written, we can clear its deferred write flag.
1155 	 */
1156 	bp->b_flags &= ~B_DEFERRED;
1157 }
1158 
1159 /*
1160  *	bawrite:
1161  *
1162  *	Asynchronous write.  Start output on a buffer, but do not wait for
1163  *	it to complete.  The buffer is released when the output completes.
1164  *
1165  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1166  *	B_INVAL buffers.  Not us.
1167  */
1168 void
1169 bawrite(struct buf *bp)
1170 {
1171 
1172 	bp->b_flags |= B_ASYNC;
1173 	(void) bwrite(bp);
1174 }
1175 
1176 /*
1177  *	bwillwrite:
1178  *
1179  *	Called prior to the locking of any vnodes when we are expecting to
1180  *	write.  We do not want to starve the buffer cache with too many
1181  *	dirty buffers so we block here.  By blocking prior to the locking
1182  *	of any vnodes we attempt to avoid the situation where a locked vnode
1183  *	prevents the various system daemons from flushing related buffers.
1184  */
1185 
1186 void
1187 bwillwrite(void)
1188 {
1189 
1190 	if (numdirtybuffers >= hidirtybuffers) {
1191 		int s;
1192 
1193 		mtx_lock(&Giant);
1194 		s = splbio();
1195 		mtx_lock(&nblock);
1196 		while (numdirtybuffers >= hidirtybuffers) {
1197 			bd_wakeup(1);
1198 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1199 			msleep(&needsbuffer, &nblock,
1200 			    (PRIBIO + 4), "flswai", 0);
1201 		}
1202 		splx(s);
1203 		mtx_unlock(&nblock);
1204 		mtx_unlock(&Giant);
1205 	}
1206 }
1207 
1208 /*
1209  * Return true if we have too many dirty buffers.
1210  */
1211 int
1212 buf_dirty_count_severe(void)
1213 {
1214 
1215 	return(numdirtybuffers >= hidirtybuffers);
1216 }
1217 
1218 /*
1219  *	brelse:
1220  *
1221  *	Release a busy buffer and, if requested, free its resources.  The
1222  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1223  *	to be accessed later as a cache entity or reused for other purposes.
1224  */
1225 void
1226 brelse(struct buf *bp)
1227 {
1228 	int s;
1229 
1230 	GIANT_REQUIRED;
1231 
1232 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1233 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1234 
1235 	s = splbio();
1236 
1237 	if (bp->b_iocmd == BIO_WRITE &&
1238 	    (bp->b_ioflags & BIO_ERROR) &&
1239 	    !(bp->b_flags & B_INVAL)) {
1240 		/*
1241 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1242 		 * pages from being scrapped.  If B_INVAL is set then
1243 		 * this case is not run and the next case is run to
1244 		 * destroy the buffer.  B_INVAL can occur if the buffer
1245 		 * is outside the range supported by the underlying device.
1246 		 */
1247 		bp->b_ioflags &= ~BIO_ERROR;
1248 		bdirty(bp);
1249 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1250 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1251 		/*
1252 		 * Either a failed I/O or we were asked to free or not
1253 		 * cache the buffer.
1254 		 */
1255 		bp->b_flags |= B_INVAL;
1256 		if (LIST_FIRST(&bp->b_dep) != NULL)
1257 			buf_deallocate(bp);
1258 		if (bp->b_flags & B_DELWRI) {
1259 			atomic_subtract_int(&numdirtybuffers, 1);
1260 			numdirtywakeup(lodirtybuffers);
1261 		}
1262 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1263 		if ((bp->b_flags & B_VMIO) == 0) {
1264 			if (bp->b_bufsize)
1265 				allocbuf(bp, 0);
1266 			if (bp->b_vp)
1267 				brelvp(bp);
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1273 	 * is called with B_DELWRI set, the underlying pages may wind up
1274 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1275 	 * because pages associated with a B_DELWRI bp are marked clean.
1276 	 *
1277 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1278 	 * if B_DELWRI is set.
1279 	 *
1280 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1281 	 * on pages to return pages to the VM page queues.
1282 	 */
1283 	if (bp->b_flags & B_DELWRI)
1284 		bp->b_flags &= ~B_RELBUF;
1285 	else if (vm_page_count_severe()) {
1286 		/*
1287 		 * XXX This lock may not be necessary since BKGRDINPROG
1288 		 * cannot be set while we hold the buf lock, it can only be
1289 		 * cleared if it is already pending.
1290 		 */
1291 		if (bp->b_vp) {
1292 			VI_LOCK(bp->b_vp);
1293 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1294 				bp->b_flags |= B_RELBUF;
1295 			VI_UNLOCK(bp->b_vp);
1296 		} else
1297 			bp->b_flags |= B_RELBUF;
1298 	}
1299 
1300 	/*
1301 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1302 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1303 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1304 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1305 	 *
1306 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1307 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1308 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1309 	 *
1310 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1311 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1312 	 * the commit state and we cannot afford to lose the buffer. If the
1313 	 * buffer has a background write in progress, we need to keep it
1314 	 * around to prevent it from being reconstituted and starting a second
1315 	 * background write.
1316 	 */
1317 	if ((bp->b_flags & B_VMIO)
1318 	    && !(bp->b_vp->v_mount != NULL &&
1319 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1320 		 !vn_isdisk(bp->b_vp, NULL) &&
1321 		 (bp->b_flags & B_DELWRI))
1322 	    ) {
1323 
1324 		int i, j, resid;
1325 		vm_page_t m;
1326 		off_t foff;
1327 		vm_pindex_t poff;
1328 		vm_object_t obj;
1329 
1330 		obj = bp->b_object;
1331 
1332 		/*
1333 		 * Get the base offset and length of the buffer.  Note that
1334 		 * in the VMIO case if the buffer block size is not
1335 		 * page-aligned then b_data pointer may not be page-aligned.
1336 		 * But our b_pages[] array *IS* page aligned.
1337 		 *
1338 		 * block sizes less then DEV_BSIZE (usually 512) are not
1339 		 * supported due to the page granularity bits (m->valid,
1340 		 * m->dirty, etc...).
1341 		 *
1342 		 * See man buf(9) for more information
1343 		 */
1344 		resid = bp->b_bufsize;
1345 		foff = bp->b_offset;
1346 		VM_OBJECT_LOCK(obj);
1347 		for (i = 0; i < bp->b_npages; i++) {
1348 			int had_bogus = 0;
1349 
1350 			m = bp->b_pages[i];
1351 
1352 			/*
1353 			 * If we hit a bogus page, fixup *all* the bogus pages
1354 			 * now.
1355 			 */
1356 			if (m == bogus_page) {
1357 				poff = OFF_TO_IDX(bp->b_offset);
1358 				had_bogus = 1;
1359 
1360 				for (j = i; j < bp->b_npages; j++) {
1361 					vm_page_t mtmp;
1362 					mtmp = bp->b_pages[j];
1363 					if (mtmp == bogus_page) {
1364 						mtmp = vm_page_lookup(obj, poff + j);
1365 						if (!mtmp) {
1366 							panic("brelse: page missing\n");
1367 						}
1368 						bp->b_pages[j] = mtmp;
1369 					}
1370 				}
1371 
1372 				if ((bp->b_flags & B_INVAL) == 0) {
1373 					pmap_qenter(
1374 					    trunc_page((vm_offset_t)bp->b_data),					    bp->b_pages, bp->b_npages);
1375 				}
1376 				m = bp->b_pages[i];
1377 			}
1378 			if ((bp->b_flags & B_NOCACHE) ||
1379 			    (bp->b_ioflags & BIO_ERROR)) {
1380 				int poffset = foff & PAGE_MASK;
1381 				int presid = resid > (PAGE_SIZE - poffset) ?
1382 					(PAGE_SIZE - poffset) : resid;
1383 
1384 				KASSERT(presid >= 0, ("brelse: extra page"));
1385 				vm_page_lock_queues();
1386 				vm_page_set_invalid(m, poffset, presid);
1387 				vm_page_unlock_queues();
1388 				if (had_bogus)
1389 					printf("avoided corruption bug in bogus_page/brelse code\n");
1390 			}
1391 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1392 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1393 		}
1394 		VM_OBJECT_UNLOCK(obj);
1395 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1396 			vfs_vmio_release(bp);
1397 
1398 	} else if (bp->b_flags & B_VMIO) {
1399 
1400 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1401 			vfs_vmio_release(bp);
1402 		}
1403 
1404 	}
1405 
1406 	if (bp->b_qindex != QUEUE_NONE)
1407 		panic("brelse: free buffer onto another queue???");
1408 	if (BUF_REFCNT(bp) > 1) {
1409 		/* do not release to free list */
1410 		BUF_UNLOCK(bp);
1411 		splx(s);
1412 		return;
1413 	}
1414 
1415 	/* enqueue */
1416 	mtx_lock(&bqlock);
1417 
1418 	/* buffers with no memory */
1419 	if (bp->b_bufsize == 0) {
1420 		bp->b_flags |= B_INVAL;
1421 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1422 		if (bp->b_vflags & BV_BKGRDINPROG)
1423 			panic("losing buffer 1");
1424 		if (bp->b_kvasize) {
1425 			bp->b_qindex = QUEUE_EMPTYKVA;
1426 		} else {
1427 			bp->b_qindex = QUEUE_EMPTY;
1428 		}
1429 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1430 		bp->b_dev = NULL;
1431 	/* buffers with junk contents */
1432 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1433 	    (bp->b_ioflags & BIO_ERROR)) {
1434 		bp->b_flags |= B_INVAL;
1435 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1436 		if (bp->b_vflags & BV_BKGRDINPROG)
1437 			panic("losing buffer 2");
1438 		bp->b_qindex = QUEUE_CLEAN;
1439 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1440 		bp->b_dev = NULL;
1441 	/* remaining buffers */
1442 	} else {
1443 		if (bp->b_flags & B_DELWRI)
1444 			bp->b_qindex = QUEUE_DIRTY;
1445 		else
1446 			bp->b_qindex = QUEUE_CLEAN;
1447 		if (bp->b_flags & B_AGE)
1448 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1449 		else
1450 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1451 	}
1452 	mtx_unlock(&bqlock);
1453 
1454 	/*
1455 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1456 	 * placed the buffer on the correct queue.  We must also disassociate
1457 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1458 	 * find it.
1459 	 */
1460 	if (bp->b_flags & B_INVAL) {
1461 		if (bp->b_flags & B_DELWRI)
1462 			bundirty(bp);
1463 		if (bp->b_vp)
1464 			brelvp(bp);
1465 	}
1466 
1467 	/*
1468 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1469 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1470 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1471 	 * if B_INVAL is set ).
1472 	 */
1473 
1474 	if (!(bp->b_flags & B_DELWRI))
1475 		bufcountwakeup();
1476 
1477 	/*
1478 	 * Something we can maybe free or reuse
1479 	 */
1480 	if (bp->b_bufsize || bp->b_kvasize)
1481 		bufspacewakeup();
1482 
1483 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1484 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1485 		panic("brelse: not dirty");
1486 	/* unlock */
1487 	BUF_UNLOCK(bp);
1488 	splx(s);
1489 }
1490 
1491 /*
1492  * Release a buffer back to the appropriate queue but do not try to free
1493  * it.  The buffer is expected to be used again soon.
1494  *
1495  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1496  * biodone() to requeue an async I/O on completion.  It is also used when
1497  * known good buffers need to be requeued but we think we may need the data
1498  * again soon.
1499  *
1500  * XXX we should be able to leave the B_RELBUF hint set on completion.
1501  */
1502 void
1503 bqrelse(struct buf *bp)
1504 {
1505 	int s;
1506 
1507 	s = splbio();
1508 
1509 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1510 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1511 
1512 	if (bp->b_qindex != QUEUE_NONE)
1513 		panic("bqrelse: free buffer onto another queue???");
1514 	if (BUF_REFCNT(bp) > 1) {
1515 		/* do not release to free list */
1516 		BUF_UNLOCK(bp);
1517 		splx(s);
1518 		return;
1519 	}
1520 	mtx_lock(&bqlock);
1521 	/* buffers with stale but valid contents */
1522 	if (bp->b_flags & B_DELWRI) {
1523 		bp->b_qindex = QUEUE_DIRTY;
1524 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1525 	} else {
1526 		/*
1527 		 * XXX This lock may not be necessary since BKGRDINPROG
1528 		 * cannot be set while we hold the buf lock, it can only be
1529 		 * cleared if it is already pending.
1530 		 */
1531 		VI_LOCK(bp->b_vp);
1532 		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1533 			VI_UNLOCK(bp->b_vp);
1534 			bp->b_qindex = QUEUE_CLEAN;
1535 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1536 			    b_freelist);
1537 		} else {
1538 			/*
1539 			 * We are too low on memory, we have to try to free
1540 			 * the buffer (most importantly: the wired pages
1541 			 * making up its backing store) *now*.
1542 			 */
1543 			VI_UNLOCK(bp->b_vp);
1544 			mtx_unlock(&bqlock);
1545 			splx(s);
1546 			brelse(bp);
1547 			return;
1548 		}
1549 	}
1550 	mtx_unlock(&bqlock);
1551 
1552 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1553 		bufcountwakeup();
1554 
1555 	/*
1556 	 * Something we can maybe free or reuse.
1557 	 */
1558 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1559 		bufspacewakeup();
1560 
1561 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1562 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1563 		panic("bqrelse: not dirty");
1564 	/* unlock */
1565 	BUF_UNLOCK(bp);
1566 	splx(s);
1567 }
1568 
1569 /* Give pages used by the bp back to the VM system (where possible) */
1570 static void
1571 vfs_vmio_release(struct buf *bp)
1572 {
1573 	int i;
1574 	vm_page_t m;
1575 
1576 	GIANT_REQUIRED;
1577 	VM_OBJECT_LOCK(bp->b_object);
1578 	vm_page_lock_queues();
1579 	for (i = 0; i < bp->b_npages; i++) {
1580 		m = bp->b_pages[i];
1581 		bp->b_pages[i] = NULL;
1582 		/*
1583 		 * In order to keep page LRU ordering consistent, put
1584 		 * everything on the inactive queue.
1585 		 */
1586 		vm_page_unwire(m, 0);
1587 		/*
1588 		 * We don't mess with busy pages, it is
1589 		 * the responsibility of the process that
1590 		 * busied the pages to deal with them.
1591 		 */
1592 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1593 			continue;
1594 
1595 		if (m->wire_count == 0) {
1596 			/*
1597 			 * Might as well free the page if we can and it has
1598 			 * no valid data.  We also free the page if the
1599 			 * buffer was used for direct I/O
1600 			 */
1601 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1602 			    m->hold_count == 0) {
1603 				vm_page_busy(m);
1604 				pmap_remove_all(m);
1605 				vm_page_free(m);
1606 			} else if (bp->b_flags & B_DIRECT) {
1607 				vm_page_try_to_free(m);
1608 			} else if (vm_page_count_severe()) {
1609 				vm_page_try_to_cache(m);
1610 			}
1611 		}
1612 	}
1613 	vm_page_unlock_queues();
1614 	VM_OBJECT_UNLOCK(bp->b_object);
1615 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1616 
1617 	if (bp->b_bufsize) {
1618 		bufspacewakeup();
1619 		bp->b_bufsize = 0;
1620 	}
1621 	bp->b_npages = 0;
1622 	bp->b_flags &= ~B_VMIO;
1623 	if (bp->b_vp)
1624 		brelvp(bp);
1625 }
1626 
1627 /*
1628  * Check to see if a block at a particular lbn is available for a clustered
1629  * write.
1630  */
1631 static int
1632 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1633 {
1634 	struct buf *bpa;
1635 	int match;
1636 
1637 	match = 0;
1638 
1639 	/* If the buf isn't in core skip it */
1640 	if ((bpa = gbincore(vp, lblkno)) == NULL)
1641 		return (0);
1642 
1643 	/* If the buf is busy we don't want to wait for it */
1644 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1645 		return (0);
1646 
1647 	/* Only cluster with valid clusterable delayed write buffers */
1648 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1649 	    (B_DELWRI | B_CLUSTEROK))
1650 		goto done;
1651 
1652 	if (bpa->b_bufsize != size)
1653 		goto done;
1654 
1655 	/*
1656 	 * Check to see if it is in the expected place on disk and that the
1657 	 * block has been mapped.
1658 	 */
1659 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1660 		match = 1;
1661 done:
1662 	BUF_UNLOCK(bpa);
1663 	return (match);
1664 }
1665 
1666 /*
1667  *	vfs_bio_awrite:
1668  *
1669  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1670  *	This is much better then the old way of writing only one buffer at
1671  *	a time.  Note that we may not be presented with the buffers in the
1672  *	correct order, so we search for the cluster in both directions.
1673  */
1674 int
1675 vfs_bio_awrite(struct buf *bp)
1676 {
1677 	int i;
1678 	int j;
1679 	daddr_t lblkno = bp->b_lblkno;
1680 	struct vnode *vp = bp->b_vp;
1681 	int s;
1682 	int ncl;
1683 	int nwritten;
1684 	int size;
1685 	int maxcl;
1686 
1687 	s = splbio();
1688 	/*
1689 	 * right now we support clustered writing only to regular files.  If
1690 	 * we find a clusterable block we could be in the middle of a cluster
1691 	 * rather then at the beginning.
1692 	 */
1693 	if ((vp->v_type == VREG) &&
1694 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1695 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1696 
1697 		size = vp->v_mount->mnt_stat.f_iosize;
1698 		maxcl = MAXPHYS / size;
1699 
1700 		VI_LOCK(vp);
1701 		for (i = 1; i < maxcl; i++)
1702 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1703 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1704 				break;
1705 
1706 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1707 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1708 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1709 				break;
1710 
1711 		VI_UNLOCK(vp);
1712 		--j;
1713 		ncl = i + j;
1714 		/*
1715 		 * this is a possible cluster write
1716 		 */
1717 		if (ncl != 1) {
1718 			BUF_UNLOCK(bp);
1719 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1720 			splx(s);
1721 			return nwritten;
1722 		}
1723 	}
1724 
1725 	bremfree(bp);
1726 	bp->b_flags |= B_ASYNC;
1727 
1728 	splx(s);
1729 	/*
1730 	 * default (old) behavior, writing out only one block
1731 	 *
1732 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1733 	 */
1734 	nwritten = bp->b_bufsize;
1735 	(void) bwrite(bp);
1736 
1737 	return nwritten;
1738 }
1739 
1740 /*
1741  *	getnewbuf:
1742  *
1743  *	Find and initialize a new buffer header, freeing up existing buffers
1744  *	in the bufqueues as necessary.  The new buffer is returned locked.
1745  *
1746  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1747  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1748  *
1749  *	We block if:
1750  *		We have insufficient buffer headers
1751  *		We have insufficient buffer space
1752  *		buffer_map is too fragmented ( space reservation fails )
1753  *		If we have to flush dirty buffers ( but we try to avoid this )
1754  *
1755  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1756  *	Instead we ask the buf daemon to do it for us.  We attempt to
1757  *	avoid piecemeal wakeups of the pageout daemon.
1758  */
1759 
1760 static struct buf *
1761 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1762 {
1763 	struct buf *bp;
1764 	struct buf *nbp;
1765 	int defrag = 0;
1766 	int nqindex;
1767 	static int flushingbufs;
1768 
1769 	GIANT_REQUIRED;
1770 
1771 	/*
1772 	 * We can't afford to block since we might be holding a vnode lock,
1773 	 * which may prevent system daemons from running.  We deal with
1774 	 * low-memory situations by proactively returning memory and running
1775 	 * async I/O rather then sync I/O.
1776 	 */
1777 
1778 	atomic_add_int(&getnewbufcalls, 1);
1779 	atomic_subtract_int(&getnewbufrestarts, 1);
1780 restart:
1781 	atomic_add_int(&getnewbufrestarts, 1);
1782 
1783 	/*
1784 	 * Setup for scan.  If we do not have enough free buffers,
1785 	 * we setup a degenerate case that immediately fails.  Note
1786 	 * that if we are specially marked process, we are allowed to
1787 	 * dip into our reserves.
1788 	 *
1789 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1790 	 *
1791 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1792 	 * However, there are a number of cases (defragging, reusing, ...)
1793 	 * where we cannot backup.
1794 	 */
1795 	mtx_lock(&bqlock);
1796 	nqindex = QUEUE_EMPTYKVA;
1797 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1798 
1799 	if (nbp == NULL) {
1800 		/*
1801 		 * If no EMPTYKVA buffers and we are either
1802 		 * defragging or reusing, locate a CLEAN buffer
1803 		 * to free or reuse.  If bufspace useage is low
1804 		 * skip this step so we can allocate a new buffer.
1805 		 */
1806 		if (defrag || bufspace >= lobufspace) {
1807 			nqindex = QUEUE_CLEAN;
1808 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1809 		}
1810 
1811 		/*
1812 		 * If we could not find or were not allowed to reuse a
1813 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1814 		 * buffer.  We can only use an EMPTY buffer if allocating
1815 		 * its KVA would not otherwise run us out of buffer space.
1816 		 */
1817 		if (nbp == NULL && defrag == 0 &&
1818 		    bufspace + maxsize < hibufspace) {
1819 			nqindex = QUEUE_EMPTY;
1820 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1826 	 * depending.
1827 	 */
1828 
1829 	while ((bp = nbp) != NULL) {
1830 		int qindex = nqindex;
1831 
1832 		/*
1833 		 * Calculate next bp ( we can only use it if we do not block
1834 		 * or do other fancy things ).
1835 		 */
1836 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1837 			switch(qindex) {
1838 			case QUEUE_EMPTY:
1839 				nqindex = QUEUE_EMPTYKVA;
1840 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1841 					break;
1842 				/* FALLTHROUGH */
1843 			case QUEUE_EMPTYKVA:
1844 				nqindex = QUEUE_CLEAN;
1845 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1846 					break;
1847 				/* FALLTHROUGH */
1848 			case QUEUE_CLEAN:
1849 				/*
1850 				 * nbp is NULL.
1851 				 */
1852 				break;
1853 			}
1854 		}
1855 		if (bp->b_vp) {
1856 			VI_LOCK(bp->b_vp);
1857 			if (bp->b_vflags & BV_BKGRDINPROG) {
1858 				VI_UNLOCK(bp->b_vp);
1859 				continue;
1860 			}
1861 			VI_UNLOCK(bp->b_vp);
1862 		}
1863 
1864 		/*
1865 		 * Sanity Checks
1866 		 */
1867 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1868 
1869 		/*
1870 		 * Note: we no longer distinguish between VMIO and non-VMIO
1871 		 * buffers.
1872 		 */
1873 
1874 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1875 
1876 		/*
1877 		 * If we are defragging then we need a buffer with
1878 		 * b_kvasize != 0.  XXX this situation should no longer
1879 		 * occur, if defrag is non-zero the buffer's b_kvasize
1880 		 * should also be non-zero at this point.  XXX
1881 		 */
1882 		if (defrag && bp->b_kvasize == 0) {
1883 			printf("Warning: defrag empty buffer %p\n", bp);
1884 			continue;
1885 		}
1886 
1887 		/*
1888 		 * Start freeing the bp.  This is somewhat involved.  nbp
1889 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1890 		 */
1891 
1892 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1893 			panic("getnewbuf: locked buf");
1894 		bremfreel(bp);
1895 		mtx_unlock(&bqlock);
1896 
1897 		if (qindex == QUEUE_CLEAN) {
1898 			if (bp->b_flags & B_VMIO) {
1899 				bp->b_flags &= ~B_ASYNC;
1900 				vfs_vmio_release(bp);
1901 			}
1902 			if (bp->b_vp)
1903 				brelvp(bp);
1904 		}
1905 
1906 		/*
1907 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1908 		 * the scan from this point on.
1909 		 *
1910 		 * Get the rest of the buffer freed up.  b_kva* is still
1911 		 * valid after this operation.
1912 		 */
1913 
1914 		if (bp->b_rcred != NOCRED) {
1915 			crfree(bp->b_rcred);
1916 			bp->b_rcred = NOCRED;
1917 		}
1918 		if (bp->b_wcred != NOCRED) {
1919 			crfree(bp->b_wcred);
1920 			bp->b_wcred = NOCRED;
1921 		}
1922 		if (LIST_FIRST(&bp->b_dep) != NULL)
1923 			buf_deallocate(bp);
1924 		if (bp->b_vflags & BV_BKGRDINPROG)
1925 			panic("losing buffer 3");
1926 
1927 		if (bp->b_bufsize)
1928 			allocbuf(bp, 0);
1929 
1930 		bp->b_flags = 0;
1931 		bp->b_ioflags = 0;
1932 		bp->b_xflags = 0;
1933 		bp->b_vflags = 0;
1934 		bp->b_dev = NULL;
1935 		bp->b_vp = NULL;
1936 		bp->b_blkno = bp->b_lblkno = 0;
1937 		bp->b_offset = NOOFFSET;
1938 		bp->b_iodone = 0;
1939 		bp->b_error = 0;
1940 		bp->b_resid = 0;
1941 		bp->b_bcount = 0;
1942 		bp->b_npages = 0;
1943 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1944 		bp->b_magic = B_MAGIC_BIO;
1945 		bp->b_op = &buf_ops_bio;
1946 		bp->b_object = NULL;
1947 
1948 		LIST_INIT(&bp->b_dep);
1949 
1950 		/*
1951 		 * If we are defragging then free the buffer.
1952 		 */
1953 		if (defrag) {
1954 			bp->b_flags |= B_INVAL;
1955 			bfreekva(bp);
1956 			brelse(bp);
1957 			defrag = 0;
1958 			goto restart;
1959 		}
1960 
1961 		/*
1962 		 * If we are overcomitted then recover the buffer and its
1963 		 * KVM space.  This occurs in rare situations when multiple
1964 		 * processes are blocked in getnewbuf() or allocbuf().
1965 		 */
1966 		if (bufspace >= hibufspace)
1967 			flushingbufs = 1;
1968 		if (flushingbufs && bp->b_kvasize != 0) {
1969 			bp->b_flags |= B_INVAL;
1970 			bfreekva(bp);
1971 			brelse(bp);
1972 			goto restart;
1973 		}
1974 		if (bufspace < lobufspace)
1975 			flushingbufs = 0;
1976 		break;
1977 	}
1978 
1979 	/*
1980 	 * If we exhausted our list, sleep as appropriate.  We may have to
1981 	 * wakeup various daemons and write out some dirty buffers.
1982 	 *
1983 	 * Generally we are sleeping due to insufficient buffer space.
1984 	 */
1985 
1986 	if (bp == NULL) {
1987 		int flags;
1988 		char *waitmsg;
1989 
1990 		mtx_unlock(&bqlock);
1991 		if (defrag) {
1992 			flags = VFS_BIO_NEED_BUFSPACE;
1993 			waitmsg = "nbufkv";
1994 		} else if (bufspace >= hibufspace) {
1995 			waitmsg = "nbufbs";
1996 			flags = VFS_BIO_NEED_BUFSPACE;
1997 		} else {
1998 			waitmsg = "newbuf";
1999 			flags = VFS_BIO_NEED_ANY;
2000 		}
2001 
2002 		bd_speedup();	/* heeeelp */
2003 
2004 		mtx_lock(&nblock);
2005 		needsbuffer |= flags;
2006 		while (needsbuffer & flags) {
2007 			if (msleep(&needsbuffer, &nblock,
2008 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2009 				mtx_unlock(&nblock);
2010 				return (NULL);
2011 			}
2012 		}
2013 		mtx_unlock(&nblock);
2014 	} else {
2015 		/*
2016 		 * We finally have a valid bp.  We aren't quite out of the
2017 		 * woods, we still have to reserve kva space.  In order
2018 		 * to keep fragmentation sane we only allocate kva in
2019 		 * BKVASIZE chunks.
2020 		 */
2021 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2022 
2023 		if (maxsize != bp->b_kvasize) {
2024 			vm_offset_t addr = 0;
2025 
2026 			bfreekva(bp);
2027 
2028 			if (vm_map_findspace(buffer_map,
2029 				vm_map_min(buffer_map), maxsize, &addr)) {
2030 				/*
2031 				 * Uh oh.  Buffer map is to fragmented.  We
2032 				 * must defragment the map.
2033 				 */
2034 				atomic_add_int(&bufdefragcnt, 1);
2035 				defrag = 1;
2036 				bp->b_flags |= B_INVAL;
2037 				brelse(bp);
2038 				goto restart;
2039 			}
2040 			if (addr) {
2041 				vm_map_insert(buffer_map, NULL, 0,
2042 					addr, addr + maxsize,
2043 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2044 
2045 				bp->b_kvabase = (caddr_t) addr;
2046 				bp->b_kvasize = maxsize;
2047 				atomic_add_int(&bufspace, bp->b_kvasize);
2048 				atomic_add_int(&bufreusecnt, 1);
2049 			}
2050 		}
2051 		bp->b_saveaddr = bp->b_kvabase;
2052 		bp->b_data = bp->b_saveaddr;
2053 	}
2054 	return(bp);
2055 }
2056 
2057 /*
2058  *	buf_daemon:
2059  *
2060  *	buffer flushing daemon.  Buffers are normally flushed by the
2061  *	update daemon but if it cannot keep up this process starts to
2062  *	take the load in an attempt to prevent getnewbuf() from blocking.
2063  */
2064 
2065 static struct kproc_desc buf_kp = {
2066 	"bufdaemon",
2067 	buf_daemon,
2068 	&bufdaemonproc
2069 };
2070 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2071 
2072 static void
2073 buf_daemon()
2074 {
2075 	int s;
2076 
2077 	mtx_lock(&Giant);
2078 
2079 	/*
2080 	 * This process needs to be suspended prior to shutdown sync.
2081 	 */
2082 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2083 	    SHUTDOWN_PRI_LAST);
2084 
2085 	/*
2086 	 * This process is allowed to take the buffer cache to the limit
2087 	 */
2088 	s = splbio();
2089 	mtx_lock(&bdlock);
2090 
2091 	for (;;) {
2092 		bd_request = 0;
2093 		mtx_unlock(&bdlock);
2094 
2095 		kthread_suspend_check(bufdaemonproc);
2096 
2097 		/*
2098 		 * Do the flush.  Limit the amount of in-transit I/O we
2099 		 * allow to build up, otherwise we would completely saturate
2100 		 * the I/O system.  Wakeup any waiting processes before we
2101 		 * normally would so they can run in parallel with our drain.
2102 		 */
2103 		while (numdirtybuffers > lodirtybuffers) {
2104 			if (flushbufqueues(0) == 0) {
2105 				/*
2106 				 * Could not find any buffers without rollback
2107 				 * dependencies, so just write the first one
2108 				 * in the hopes of eventually making progress.
2109 				 */
2110 				flushbufqueues(1);
2111 				break;
2112 			}
2113 			waitrunningbufspace();
2114 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2115 		}
2116 
2117 		/*
2118 		 * Only clear bd_request if we have reached our low water
2119 		 * mark.  The buf_daemon normally waits 1 second and
2120 		 * then incrementally flushes any dirty buffers that have
2121 		 * built up, within reason.
2122 		 *
2123 		 * If we were unable to hit our low water mark and couldn't
2124 		 * find any flushable buffers, we sleep half a second.
2125 		 * Otherwise we loop immediately.
2126 		 */
2127 		mtx_lock(&bdlock);
2128 		if (numdirtybuffers <= lodirtybuffers) {
2129 			/*
2130 			 * We reached our low water mark, reset the
2131 			 * request and sleep until we are needed again.
2132 			 * The sleep is just so the suspend code works.
2133 			 */
2134 			bd_request = 0;
2135 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2136 		} else {
2137 			/*
2138 			 * We couldn't find any flushable dirty buffers but
2139 			 * still have too many dirty buffers, we
2140 			 * have to sleep and try again.  (rare)
2141 			 */
2142 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2143 		}
2144 	}
2145 }
2146 
2147 /*
2148  *	flushbufqueues:
2149  *
2150  *	Try to flush a buffer in the dirty queue.  We must be careful to
2151  *	free up B_INVAL buffers instead of write them, which NFS is
2152  *	particularly sensitive to.
2153  */
2154 int flushwithdeps = 0;
2155 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2156     0, "Number of buffers flushed with dependecies that require rollbacks");
2157 
2158 static int
2159 flushbufqueues(int flushdeps)
2160 {
2161 	struct thread *td = curthread;
2162 	struct vnode *vp;
2163 	struct mount *mp;
2164 	struct buf *bp;
2165 	int hasdeps;
2166 
2167 	mtx_lock(&bqlock);
2168 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2169 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2170 			continue;
2171 		KASSERT((bp->b_flags & B_DELWRI),
2172 		    ("unexpected clean buffer %p", bp));
2173 		VI_LOCK(bp->b_vp);
2174 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2175 			VI_UNLOCK(bp->b_vp);
2176 			BUF_UNLOCK(bp);
2177 			continue;
2178 		}
2179 		VI_UNLOCK(bp->b_vp);
2180 		if (bp->b_flags & B_INVAL) {
2181 			bremfreel(bp);
2182 			mtx_unlock(&bqlock);
2183 			brelse(bp);
2184 			return (1);
2185 		}
2186 
2187 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2188 			if (flushdeps == 0) {
2189 				BUF_UNLOCK(bp);
2190 				continue;
2191 			}
2192 			hasdeps = 1;
2193 		} else
2194 			hasdeps = 0;
2195 		/*
2196 		 * We must hold the lock on a vnode before writing
2197 		 * one of its buffers. Otherwise we may confuse, or
2198 		 * in the case of a snapshot vnode, deadlock the
2199 		 * system.
2200 		 *
2201 		 * The lock order here is the reverse of the normal
2202 		 * of vnode followed by buf lock.  This is ok because
2203 		 * the NOWAIT will prevent deadlock.
2204 		 */
2205 		vp = bp->b_vp;
2206 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2207 			BUF_UNLOCK(bp);
2208 			continue;
2209 		}
2210 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2211 			mtx_unlock(&bqlock);
2212 			vfs_bio_awrite(bp);
2213 			vn_finished_write(mp);
2214 			VOP_UNLOCK(vp, 0, td);
2215 			flushwithdeps += hasdeps;
2216 			return (1);
2217 		}
2218 		vn_finished_write(mp);
2219 		BUF_UNLOCK(bp);
2220 	}
2221 	mtx_unlock(&bqlock);
2222 	return (0);
2223 }
2224 
2225 /*
2226  * Check to see if a block is currently memory resident.
2227  */
2228 struct buf *
2229 incore(struct vnode * vp, daddr_t blkno)
2230 {
2231 	struct buf *bp;
2232 
2233 	int s = splbio();
2234 	VI_LOCK(vp);
2235 	bp = gbincore(vp, blkno);
2236 	VI_UNLOCK(vp);
2237 	splx(s);
2238 	return (bp);
2239 }
2240 
2241 /*
2242  * Returns true if no I/O is needed to access the
2243  * associated VM object.  This is like incore except
2244  * it also hunts around in the VM system for the data.
2245  */
2246 
2247 int
2248 inmem(struct vnode * vp, daddr_t blkno)
2249 {
2250 	vm_object_t obj;
2251 	vm_offset_t toff, tinc, size;
2252 	vm_page_t m;
2253 	vm_ooffset_t off;
2254 
2255 	GIANT_REQUIRED;
2256 	ASSERT_VOP_LOCKED(vp, "inmem");
2257 
2258 	if (incore(vp, blkno))
2259 		return 1;
2260 	if (vp->v_mount == NULL)
2261 		return 0;
2262 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2263 		return 0;
2264 
2265 	size = PAGE_SIZE;
2266 	if (size > vp->v_mount->mnt_stat.f_iosize)
2267 		size = vp->v_mount->mnt_stat.f_iosize;
2268 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2269 
2270 	VM_OBJECT_LOCK(obj);
2271 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2272 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2273 		if (!m)
2274 			goto notinmem;
2275 		tinc = size;
2276 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2277 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2278 		if (vm_page_is_valid(m,
2279 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2280 			goto notinmem;
2281 	}
2282 	VM_OBJECT_UNLOCK(obj);
2283 	return 1;
2284 
2285 notinmem:
2286 	VM_OBJECT_UNLOCK(obj);
2287 	return (0);
2288 }
2289 
2290 /*
2291  *	vfs_setdirty:
2292  *
2293  *	Sets the dirty range for a buffer based on the status of the dirty
2294  *	bits in the pages comprising the buffer.
2295  *
2296  *	The range is limited to the size of the buffer.
2297  *
2298  *	This routine is primarily used by NFS, but is generalized for the
2299  *	B_VMIO case.
2300  */
2301 static void
2302 vfs_setdirty(struct buf *bp)
2303 {
2304 	int i;
2305 	vm_object_t object;
2306 
2307 	GIANT_REQUIRED;
2308 	/*
2309 	 * Degenerate case - empty buffer
2310 	 */
2311 
2312 	if (bp->b_bufsize == 0)
2313 		return;
2314 
2315 	/*
2316 	 * We qualify the scan for modified pages on whether the
2317 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2318 	 * is not cleared simply by protecting pages off.
2319 	 */
2320 
2321 	if ((bp->b_flags & B_VMIO) == 0)
2322 		return;
2323 
2324 	object = bp->b_pages[0]->object;
2325 	VM_OBJECT_LOCK(object);
2326 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2327 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2328 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2329 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2330 
2331 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2332 		vm_offset_t boffset;
2333 		vm_offset_t eoffset;
2334 
2335 		vm_page_lock_queues();
2336 		/*
2337 		 * test the pages to see if they have been modified directly
2338 		 * by users through the VM system.
2339 		 */
2340 		for (i = 0; i < bp->b_npages; i++)
2341 			vm_page_test_dirty(bp->b_pages[i]);
2342 
2343 		/*
2344 		 * Calculate the encompassing dirty range, boffset and eoffset,
2345 		 * (eoffset - boffset) bytes.
2346 		 */
2347 
2348 		for (i = 0; i < bp->b_npages; i++) {
2349 			if (bp->b_pages[i]->dirty)
2350 				break;
2351 		}
2352 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2353 
2354 		for (i = bp->b_npages - 1; i >= 0; --i) {
2355 			if (bp->b_pages[i]->dirty) {
2356 				break;
2357 			}
2358 		}
2359 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2360 
2361 		vm_page_unlock_queues();
2362 		/*
2363 		 * Fit it to the buffer.
2364 		 */
2365 
2366 		if (eoffset > bp->b_bcount)
2367 			eoffset = bp->b_bcount;
2368 
2369 		/*
2370 		 * If we have a good dirty range, merge with the existing
2371 		 * dirty range.
2372 		 */
2373 
2374 		if (boffset < eoffset) {
2375 			if (bp->b_dirtyoff > boffset)
2376 				bp->b_dirtyoff = boffset;
2377 			if (bp->b_dirtyend < eoffset)
2378 				bp->b_dirtyend = eoffset;
2379 		}
2380 	}
2381 	VM_OBJECT_UNLOCK(object);
2382 }
2383 
2384 /*
2385  *	getblk:
2386  *
2387  *	Get a block given a specified block and offset into a file/device.
2388  *	The buffers B_DONE bit will be cleared on return, making it almost
2389  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2390  *	return.  The caller should clear B_INVAL prior to initiating a
2391  *	READ.
2392  *
2393  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2394  *	an existing buffer.
2395  *
2396  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2397  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2398  *	and then cleared based on the backing VM.  If the previous buffer is
2399  *	non-0-sized but invalid, B_CACHE will be cleared.
2400  *
2401  *	If getblk() must create a new buffer, the new buffer is returned with
2402  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2403  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2404  *	backing VM.
2405  *
2406  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2407  *	B_CACHE bit is clear.
2408  *
2409  *	What this means, basically, is that the caller should use B_CACHE to
2410  *	determine whether the buffer is fully valid or not and should clear
2411  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2412  *	the buffer by loading its data area with something, the caller needs
2413  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2414  *	the caller should set B_CACHE ( as an optimization ), else the caller
2415  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2416  *	a write attempt or if it was a successfull read.  If the caller
2417  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2418  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2419  */
2420 struct buf *
2421 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2422     int flags)
2423 {
2424 	struct buf *bp;
2425 	int s;
2426 	int error;
2427 	ASSERT_VOP_LOCKED(vp, "getblk");
2428 
2429 	if (size > MAXBSIZE)
2430 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2431 
2432 	s = splbio();
2433 loop:
2434 	/*
2435 	 * Block if we are low on buffers.   Certain processes are allowed
2436 	 * to completely exhaust the buffer cache.
2437          *
2438          * If this check ever becomes a bottleneck it may be better to
2439          * move it into the else, when gbincore() fails.  At the moment
2440          * it isn't a problem.
2441 	 *
2442 	 * XXX remove if 0 sections (clean this up after its proven)
2443          */
2444 	if (numfreebuffers == 0) {
2445 		if (curthread == PCPU_GET(idlethread))
2446 			return NULL;
2447 		mtx_lock(&nblock);
2448 		needsbuffer |= VFS_BIO_NEED_ANY;
2449 		mtx_unlock(&nblock);
2450 	}
2451 
2452 	VI_LOCK(vp);
2453 	if ((bp = gbincore(vp, blkno))) {
2454 		int lockflags;
2455 		/*
2456 		 * Buffer is in-core.  If the buffer is not busy, it must
2457 		 * be on a queue.
2458 		 */
2459 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2460 
2461 		if (flags & GB_LOCK_NOWAIT)
2462 			lockflags |= LK_NOWAIT;
2463 
2464 		error = BUF_TIMELOCK(bp, lockflags,
2465 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2466 
2467 		/*
2468 		 * If we slept and got the lock we have to restart in case
2469 		 * the buffer changed identities.
2470 		 */
2471 		if (error == ENOLCK)
2472 			goto loop;
2473 		/* We timed out or were interrupted. */
2474 		else if (error)
2475 			return (NULL);
2476 
2477 		/*
2478 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2479 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2480 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2481 		 * backing VM cache.
2482 		 */
2483 		if (bp->b_flags & B_INVAL)
2484 			bp->b_flags &= ~B_CACHE;
2485 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2486 			bp->b_flags |= B_CACHE;
2487 		bremfree(bp);
2488 
2489 		/*
2490 		 * check for size inconsistancies for non-VMIO case.
2491 		 */
2492 
2493 		if (bp->b_bcount != size) {
2494 			if ((bp->b_flags & B_VMIO) == 0 ||
2495 			    (size > bp->b_kvasize)) {
2496 				if (bp->b_flags & B_DELWRI) {
2497 					bp->b_flags |= B_NOCACHE;
2498 					bwrite(bp);
2499 				} else {
2500 					if ((bp->b_flags & B_VMIO) &&
2501 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2502 						bp->b_flags |= B_RELBUF;
2503 						brelse(bp);
2504 					} else {
2505 						bp->b_flags |= B_NOCACHE;
2506 						bwrite(bp);
2507 					}
2508 				}
2509 				goto loop;
2510 			}
2511 		}
2512 
2513 		/*
2514 		 * If the size is inconsistant in the VMIO case, we can resize
2515 		 * the buffer.  This might lead to B_CACHE getting set or
2516 		 * cleared.  If the size has not changed, B_CACHE remains
2517 		 * unchanged from its previous state.
2518 		 */
2519 
2520 		if (bp->b_bcount != size)
2521 			allocbuf(bp, size);
2522 
2523 		KASSERT(bp->b_offset != NOOFFSET,
2524 		    ("getblk: no buffer offset"));
2525 
2526 		/*
2527 		 * A buffer with B_DELWRI set and B_CACHE clear must
2528 		 * be committed before we can return the buffer in
2529 		 * order to prevent the caller from issuing a read
2530 		 * ( due to B_CACHE not being set ) and overwriting
2531 		 * it.
2532 		 *
2533 		 * Most callers, including NFS and FFS, need this to
2534 		 * operate properly either because they assume they
2535 		 * can issue a read if B_CACHE is not set, or because
2536 		 * ( for example ) an uncached B_DELWRI might loop due
2537 		 * to softupdates re-dirtying the buffer.  In the latter
2538 		 * case, B_CACHE is set after the first write completes,
2539 		 * preventing further loops.
2540 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2541 		 * above while extending the buffer, we cannot allow the
2542 		 * buffer to remain with B_CACHE set after the write
2543 		 * completes or it will represent a corrupt state.  To
2544 		 * deal with this we set B_NOCACHE to scrap the buffer
2545 		 * after the write.
2546 		 *
2547 		 * We might be able to do something fancy, like setting
2548 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2549 		 * so the below call doesn't set B_CACHE, but that gets real
2550 		 * confusing.  This is much easier.
2551 		 */
2552 
2553 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2554 			bp->b_flags |= B_NOCACHE;
2555 			bwrite(bp);
2556 			goto loop;
2557 		}
2558 
2559 		splx(s);
2560 		bp->b_flags &= ~B_DONE;
2561 	} else {
2562 		int bsize, maxsize, vmio;
2563 		off_t offset;
2564 
2565 		/*
2566 		 * Buffer is not in-core, create new buffer.  The buffer
2567 		 * returned by getnewbuf() is locked.  Note that the returned
2568 		 * buffer is also considered valid (not marked B_INVAL).
2569 		 */
2570 		VI_UNLOCK(vp);
2571 		/*
2572 		 * If the user does not want us to create the buffer, bail out
2573 		 * here.
2574 		 */
2575 		if (flags & GB_NOCREAT) {
2576 			splx(s);
2577 			return NULL;
2578 		}
2579 		if (vn_isdisk(vp, NULL))
2580 			bsize = DEV_BSIZE;
2581 		else if (vp->v_mountedhere)
2582 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2583 		else if (vp->v_mount)
2584 			bsize = vp->v_mount->mnt_stat.f_iosize;
2585 		else
2586 			bsize = size;
2587 
2588 		if (vp->v_bsize != bsize) {
2589 #if 0
2590 			printf("WARNING: Wrong block size on vnode: %d should be %d\n", vp->v_bsize, bsize);
2591 #endif
2592 			vp->v_bsize = bsize;
2593 		}
2594 
2595 		offset = blkno * bsize;
2596 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2597 		    (vp->v_vflag & VV_OBJBUF);
2598 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2599 		maxsize = imax(maxsize, bsize);
2600 
2601 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2602 			if (slpflag || slptimeo) {
2603 				splx(s);
2604 				return NULL;
2605 			}
2606 			goto loop;
2607 		}
2608 
2609 		/*
2610 		 * This code is used to make sure that a buffer is not
2611 		 * created while the getnewbuf routine is blocked.
2612 		 * This can be a problem whether the vnode is locked or not.
2613 		 * If the buffer is created out from under us, we have to
2614 		 * throw away the one we just created.  There is now window
2615 		 * race because we are safely running at splbio() from the
2616 		 * point of the duplicate buffer creation through to here,
2617 		 * and we've locked the buffer.
2618 		 *
2619 		 * Note: this must occur before we associate the buffer
2620 		 * with the vp especially considering limitations in
2621 		 * the splay tree implementation when dealing with duplicate
2622 		 * lblkno's.
2623 		 */
2624 		VI_LOCK(vp);
2625 		if (gbincore(vp, blkno)) {
2626 			VI_UNLOCK(vp);
2627 			bp->b_flags |= B_INVAL;
2628 			brelse(bp);
2629 			goto loop;
2630 		}
2631 
2632 		/*
2633 		 * Insert the buffer into the hash, so that it can
2634 		 * be found by incore.
2635 		 */
2636 		bp->b_blkno = bp->b_lblkno = blkno;
2637 		bp->b_offset = offset;
2638 
2639 		bgetvp(vp, bp);
2640 		VI_UNLOCK(vp);
2641 
2642 		/*
2643 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2644 		 * buffer size starts out as 0, B_CACHE will be set by
2645 		 * allocbuf() for the VMIO case prior to it testing the
2646 		 * backing store for validity.
2647 		 */
2648 
2649 		if (vmio) {
2650 			bp->b_flags |= B_VMIO;
2651 #if defined(VFS_BIO_DEBUG)
2652 			if (vn_canvmio(vp) != TRUE)
2653 				printf("getblk: VMIO on vnode type %d\n",
2654 					vp->v_type);
2655 #endif
2656 			VOP_GETVOBJECT(vp, &bp->b_object);
2657 		} else {
2658 			bp->b_flags &= ~B_VMIO;
2659 			bp->b_object = NULL;
2660 		}
2661 
2662 		allocbuf(bp, size);
2663 
2664 		splx(s);
2665 		bp->b_flags &= ~B_DONE;
2666 	}
2667 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2668 	return (bp);
2669 }
2670 
2671 /*
2672  * Get an empty, disassociated buffer of given size.  The buffer is initially
2673  * set to B_INVAL.
2674  */
2675 struct buf *
2676 geteblk(int size)
2677 {
2678 	struct buf *bp;
2679 	int s;
2680 	int maxsize;
2681 
2682 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2683 
2684 	s = splbio();
2685 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2686 		continue;
2687 	splx(s);
2688 	allocbuf(bp, size);
2689 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2690 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2691 	return (bp);
2692 }
2693 
2694 
2695 /*
2696  * This code constitutes the buffer memory from either anonymous system
2697  * memory (in the case of non-VMIO operations) or from an associated
2698  * VM object (in the case of VMIO operations).  This code is able to
2699  * resize a buffer up or down.
2700  *
2701  * Note that this code is tricky, and has many complications to resolve
2702  * deadlock or inconsistant data situations.  Tread lightly!!!
2703  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2704  * the caller.  Calling this code willy nilly can result in the loss of data.
2705  *
2706  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2707  * B_CACHE for the non-VMIO case.
2708  */
2709 
2710 int
2711 allocbuf(struct buf *bp, int size)
2712 {
2713 	int newbsize, mbsize;
2714 	int i;
2715 
2716 	GIANT_REQUIRED;
2717 
2718 	if (BUF_REFCNT(bp) == 0)
2719 		panic("allocbuf: buffer not busy");
2720 
2721 	if (bp->b_kvasize < size)
2722 		panic("allocbuf: buffer too small");
2723 
2724 	if ((bp->b_flags & B_VMIO) == 0) {
2725 		caddr_t origbuf;
2726 		int origbufsize;
2727 		/*
2728 		 * Just get anonymous memory from the kernel.  Don't
2729 		 * mess with B_CACHE.
2730 		 */
2731 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2732 		if (bp->b_flags & B_MALLOC)
2733 			newbsize = mbsize;
2734 		else
2735 			newbsize = round_page(size);
2736 
2737 		if (newbsize < bp->b_bufsize) {
2738 			/*
2739 			 * malloced buffers are not shrunk
2740 			 */
2741 			if (bp->b_flags & B_MALLOC) {
2742 				if (newbsize) {
2743 					bp->b_bcount = size;
2744 				} else {
2745 					free(bp->b_data, M_BIOBUF);
2746 					if (bp->b_bufsize) {
2747 						atomic_subtract_int(
2748 						    &bufmallocspace,
2749 						    bp->b_bufsize);
2750 						bufspacewakeup();
2751 						bp->b_bufsize = 0;
2752 					}
2753 					bp->b_saveaddr = bp->b_kvabase;
2754 					bp->b_data = bp->b_saveaddr;
2755 					bp->b_bcount = 0;
2756 					bp->b_flags &= ~B_MALLOC;
2757 				}
2758 				return 1;
2759 			}
2760 			vm_hold_free_pages(
2761 			    bp,
2762 			    (vm_offset_t) bp->b_data + newbsize,
2763 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2764 		} else if (newbsize > bp->b_bufsize) {
2765 			/*
2766 			 * We only use malloced memory on the first allocation.
2767 			 * and revert to page-allocated memory when the buffer
2768 			 * grows.
2769 			 */
2770 			/*
2771 			 * There is a potential smp race here that could lead
2772 			 * to bufmallocspace slightly passing the max.  It
2773 			 * is probably extremely rare and not worth worrying
2774 			 * over.
2775 			 */
2776 			if ( (bufmallocspace < maxbufmallocspace) &&
2777 				(bp->b_bufsize == 0) &&
2778 				(mbsize <= PAGE_SIZE/2)) {
2779 
2780 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2781 				bp->b_bufsize = mbsize;
2782 				bp->b_bcount = size;
2783 				bp->b_flags |= B_MALLOC;
2784 				atomic_add_int(&bufmallocspace, mbsize);
2785 				return 1;
2786 			}
2787 			origbuf = NULL;
2788 			origbufsize = 0;
2789 			/*
2790 			 * If the buffer is growing on its other-than-first allocation,
2791 			 * then we revert to the page-allocation scheme.
2792 			 */
2793 			if (bp->b_flags & B_MALLOC) {
2794 				origbuf = bp->b_data;
2795 				origbufsize = bp->b_bufsize;
2796 				bp->b_data = bp->b_kvabase;
2797 				if (bp->b_bufsize) {
2798 					atomic_subtract_int(&bufmallocspace,
2799 					    bp->b_bufsize);
2800 					bufspacewakeup();
2801 					bp->b_bufsize = 0;
2802 				}
2803 				bp->b_flags &= ~B_MALLOC;
2804 				newbsize = round_page(newbsize);
2805 			}
2806 			vm_hold_load_pages(
2807 			    bp,
2808 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2809 			    (vm_offset_t) bp->b_data + newbsize);
2810 			if (origbuf) {
2811 				bcopy(origbuf, bp->b_data, origbufsize);
2812 				free(origbuf, M_BIOBUF);
2813 			}
2814 		}
2815 	} else {
2816 		int desiredpages;
2817 
2818 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2819 		desiredpages = (size == 0) ? 0 :
2820 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2821 
2822 		if (bp->b_flags & B_MALLOC)
2823 			panic("allocbuf: VMIO buffer can't be malloced");
2824 		/*
2825 		 * Set B_CACHE initially if buffer is 0 length or will become
2826 		 * 0-length.
2827 		 */
2828 		if (size == 0 || bp->b_bufsize == 0)
2829 			bp->b_flags |= B_CACHE;
2830 
2831 		if (newbsize < bp->b_bufsize) {
2832 			/*
2833 			 * DEV_BSIZE aligned new buffer size is less then the
2834 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2835 			 * if we have to remove any pages.
2836 			 */
2837 			if (desiredpages < bp->b_npages) {
2838 				vm_page_t m;
2839 
2840 				vm_page_lock_queues();
2841 				for (i = desiredpages; i < bp->b_npages; i++) {
2842 					/*
2843 					 * the page is not freed here -- it
2844 					 * is the responsibility of
2845 					 * vnode_pager_setsize
2846 					 */
2847 					m = bp->b_pages[i];
2848 					KASSERT(m != bogus_page,
2849 					    ("allocbuf: bogus page found"));
2850 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2851 						vm_page_lock_queues();
2852 
2853 					bp->b_pages[i] = NULL;
2854 					vm_page_unwire(m, 0);
2855 				}
2856 				vm_page_unlock_queues();
2857 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2858 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2859 				bp->b_npages = desiredpages;
2860 			}
2861 		} else if (size > bp->b_bcount) {
2862 			/*
2863 			 * We are growing the buffer, possibly in a
2864 			 * byte-granular fashion.
2865 			 */
2866 			struct vnode *vp;
2867 			vm_object_t obj;
2868 			vm_offset_t toff;
2869 			vm_offset_t tinc;
2870 
2871 			/*
2872 			 * Step 1, bring in the VM pages from the object,
2873 			 * allocating them if necessary.  We must clear
2874 			 * B_CACHE if these pages are not valid for the
2875 			 * range covered by the buffer.
2876 			 */
2877 
2878 			vp = bp->b_vp;
2879 			obj = bp->b_object;
2880 
2881 			VM_OBJECT_LOCK(obj);
2882 			while (bp->b_npages < desiredpages) {
2883 				vm_page_t m;
2884 				vm_pindex_t pi;
2885 
2886 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2887 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2888 					/*
2889 					 * note: must allocate system pages
2890 					 * since blocking here could intefere
2891 					 * with paging I/O, no matter which
2892 					 * process we are.
2893 					 */
2894 					m = vm_page_alloc(obj, pi,
2895 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2896 					if (m == NULL) {
2897 						atomic_add_int(&vm_pageout_deficit,
2898 						    desiredpages - bp->b_npages);
2899 						VM_OBJECT_UNLOCK(obj);
2900 						VM_WAIT;
2901 						VM_OBJECT_LOCK(obj);
2902 					} else {
2903 						vm_page_lock_queues();
2904 						vm_page_wakeup(m);
2905 						vm_page_unlock_queues();
2906 						bp->b_flags &= ~B_CACHE;
2907 						bp->b_pages[bp->b_npages] = m;
2908 						++bp->b_npages;
2909 					}
2910 					continue;
2911 				}
2912 
2913 				/*
2914 				 * We found a page.  If we have to sleep on it,
2915 				 * retry because it might have gotten freed out
2916 				 * from under us.
2917 				 *
2918 				 * We can only test PG_BUSY here.  Blocking on
2919 				 * m->busy might lead to a deadlock:
2920 				 *
2921 				 *  vm_fault->getpages->cluster_read->allocbuf
2922 				 *
2923 				 */
2924 				vm_page_lock_queues();
2925 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2926 					continue;
2927 
2928 				/*
2929 				 * We have a good page.  Should we wakeup the
2930 				 * page daemon?
2931 				 */
2932 				if ((curproc != pageproc) &&
2933 				    ((m->queue - m->pc) == PQ_CACHE) &&
2934 				    ((cnt.v_free_count + cnt.v_cache_count) <
2935 					(cnt.v_free_min + cnt.v_cache_min))) {
2936 					pagedaemon_wakeup();
2937 				}
2938 				vm_page_wire(m);
2939 				vm_page_unlock_queues();
2940 				bp->b_pages[bp->b_npages] = m;
2941 				++bp->b_npages;
2942 			}
2943 
2944 			/*
2945 			 * Step 2.  We've loaded the pages into the buffer,
2946 			 * we have to figure out if we can still have B_CACHE
2947 			 * set.  Note that B_CACHE is set according to the
2948 			 * byte-granular range ( bcount and size ), new the
2949 			 * aligned range ( newbsize ).
2950 			 *
2951 			 * The VM test is against m->valid, which is DEV_BSIZE
2952 			 * aligned.  Needless to say, the validity of the data
2953 			 * needs to also be DEV_BSIZE aligned.  Note that this
2954 			 * fails with NFS if the server or some other client
2955 			 * extends the file's EOF.  If our buffer is resized,
2956 			 * B_CACHE may remain set! XXX
2957 			 */
2958 
2959 			toff = bp->b_bcount;
2960 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2961 
2962 			while ((bp->b_flags & B_CACHE) && toff < size) {
2963 				vm_pindex_t pi;
2964 
2965 				if (tinc > (size - toff))
2966 					tinc = size - toff;
2967 
2968 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2969 				    PAGE_SHIFT;
2970 
2971 				vfs_buf_test_cache(
2972 				    bp,
2973 				    bp->b_offset,
2974 				    toff,
2975 				    tinc,
2976 				    bp->b_pages[pi]
2977 				);
2978 				toff += tinc;
2979 				tinc = PAGE_SIZE;
2980 			}
2981 			VM_OBJECT_UNLOCK(obj);
2982 
2983 			/*
2984 			 * Step 3, fixup the KVM pmap.  Remember that
2985 			 * bp->b_data is relative to bp->b_offset, but
2986 			 * bp->b_offset may be offset into the first page.
2987 			 */
2988 
2989 			bp->b_data = (caddr_t)
2990 			    trunc_page((vm_offset_t)bp->b_data);
2991 			pmap_qenter(
2992 			    (vm_offset_t)bp->b_data,
2993 			    bp->b_pages,
2994 			    bp->b_npages
2995 			);
2996 
2997 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2998 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2999 		}
3000 	}
3001 	if (newbsize < bp->b_bufsize)
3002 		bufspacewakeup();
3003 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3004 	bp->b_bcount = size;		/* requested buffer size	*/
3005 	return 1;
3006 }
3007 
3008 void
3009 biodone(struct bio *bp)
3010 {
3011 
3012 	mtx_lock(&bdonelock);
3013 	bp->bio_flags |= BIO_DONE;
3014 	if (bp->bio_done == NULL)
3015 		wakeup(bp);
3016 	mtx_unlock(&bdonelock);
3017 	if (bp->bio_done != NULL)
3018 		bp->bio_done(bp);
3019 }
3020 
3021 /*
3022  * Wait for a BIO to finish.
3023  *
3024  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3025  * case is not yet clear.
3026  */
3027 int
3028 biowait(struct bio *bp, const char *wchan)
3029 {
3030 
3031 	mtx_lock(&bdonelock);
3032 	while ((bp->bio_flags & BIO_DONE) == 0)
3033 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3034 	mtx_unlock(&bdonelock);
3035 	if (bp->bio_error != 0)
3036 		return (bp->bio_error);
3037 	if (!(bp->bio_flags & BIO_ERROR))
3038 		return (0);
3039 	return (EIO);
3040 }
3041 
3042 void
3043 biofinish(struct bio *bp, struct devstat *stat, int error)
3044 {
3045 
3046 	if (error) {
3047 		bp->bio_error = error;
3048 		bp->bio_flags |= BIO_ERROR;
3049 	}
3050 	if (stat != NULL)
3051 		devstat_end_transaction_bio(stat, bp);
3052 	biodone(bp);
3053 }
3054 
3055 /*
3056  *	bufwait:
3057  *
3058  *	Wait for buffer I/O completion, returning error status.  The buffer
3059  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3060  *	error and cleared.
3061  */
3062 int
3063 bufwait(struct buf *bp)
3064 {
3065 	int s;
3066 
3067 	s = splbio();
3068 	if (bp->b_iocmd == BIO_READ)
3069 		bwait(bp, PRIBIO, "biord");
3070 	else
3071 		bwait(bp, PRIBIO, "biowr");
3072 	splx(s);
3073 	if (bp->b_flags & B_EINTR) {
3074 		bp->b_flags &= ~B_EINTR;
3075 		return (EINTR);
3076 	}
3077 	if (bp->b_ioflags & BIO_ERROR) {
3078 		return (bp->b_error ? bp->b_error : EIO);
3079 	} else {
3080 		return (0);
3081 	}
3082 }
3083 
3084  /*
3085   * Call back function from struct bio back up to struct buf.
3086   */
3087 static void
3088 bufdonebio(struct bio *bp)
3089 {
3090 
3091 	/* Device drivers may or may not hold giant, hold it here. */
3092 	mtx_lock(&Giant);
3093 	bufdone(bp->bio_caller2);
3094 	mtx_unlock(&Giant);
3095 }
3096 
3097 void
3098 dev_strategy(struct buf *bp)
3099 {
3100 	struct cdevsw *csw;
3101 
3102 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3103 		panic("b_iocmd botch");
3104 	bp->b_io.bio_done = bufdonebio;
3105 	bp->b_io.bio_caller2 = bp;
3106 	csw = devsw(bp->b_io.bio_dev);
3107 	KASSERT(bp->b_io.bio_dev->si_refcount > 0,
3108 	    ("dev_strategy on un-referenced struct cdev *(%s)",
3109 	    devtoname(bp->b_io.bio_dev)));
3110 	cdevsw_ref(csw);
3111 	(*devsw(bp->b_io.bio_dev)->d_strategy)(&bp->b_io);
3112 	cdevsw_rel(csw);
3113 }
3114 
3115 /*
3116  *	bufdone:
3117  *
3118  *	Finish I/O on a buffer, optionally calling a completion function.
3119  *	This is usually called from an interrupt so process blocking is
3120  *	not allowed.
3121  *
3122  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3123  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3124  *	assuming B_INVAL is clear.
3125  *
3126  *	For the VMIO case, we set B_CACHE if the op was a read and no
3127  *	read error occured, or if the op was a write.  B_CACHE is never
3128  *	set if the buffer is invalid or otherwise uncacheable.
3129  *
3130  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3131  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3132  *	in the biodone routine.
3133  */
3134 void
3135 bufdone(struct buf *bp)
3136 {
3137 	int s;
3138 	void    (*biodone)(struct buf *);
3139 
3140 
3141 	s = splbio();
3142 
3143 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3144 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3145 
3146 	bp->b_flags |= B_DONE;
3147 	runningbufwakeup(bp);
3148 
3149 	if (bp->b_iocmd == BIO_WRITE) {
3150 		vwakeup(bp);
3151 	}
3152 
3153 	/* call optional completion function if requested */
3154 	if (bp->b_iodone != NULL) {
3155 		biodone = bp->b_iodone;
3156 		bp->b_iodone = NULL;
3157 		(*biodone) (bp);
3158 		splx(s);
3159 		return;
3160 	}
3161 	if (LIST_FIRST(&bp->b_dep) != NULL)
3162 		buf_complete(bp);
3163 
3164 	if (bp->b_flags & B_VMIO) {
3165 		int i;
3166 		vm_ooffset_t foff;
3167 		vm_page_t m;
3168 		vm_object_t obj;
3169 		int iosize;
3170 		struct vnode *vp = bp->b_vp;
3171 
3172 		obj = bp->b_object;
3173 
3174 #if defined(VFS_BIO_DEBUG)
3175 		mp_fixme("usecount and vflag accessed without locks.");
3176 		if (vp->v_usecount == 0) {
3177 			panic("biodone: zero vnode ref count");
3178 		}
3179 
3180 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3181 			panic("biodone: vnode is not setup for merged cache");
3182 		}
3183 #endif
3184 
3185 		foff = bp->b_offset;
3186 		KASSERT(bp->b_offset != NOOFFSET,
3187 		    ("biodone: no buffer offset"));
3188 
3189 		VM_OBJECT_LOCK(obj);
3190 #if defined(VFS_BIO_DEBUG)
3191 		if (obj->paging_in_progress < bp->b_npages) {
3192 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3193 			    obj->paging_in_progress, bp->b_npages);
3194 		}
3195 #endif
3196 
3197 		/*
3198 		 * Set B_CACHE if the op was a normal read and no error
3199 		 * occured.  B_CACHE is set for writes in the b*write()
3200 		 * routines.
3201 		 */
3202 		iosize = bp->b_bcount - bp->b_resid;
3203 		if (bp->b_iocmd == BIO_READ &&
3204 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3205 		    !(bp->b_ioflags & BIO_ERROR)) {
3206 			bp->b_flags |= B_CACHE;
3207 		}
3208 		vm_page_lock_queues();
3209 		for (i = 0; i < bp->b_npages; i++) {
3210 			int bogusflag = 0;
3211 			int resid;
3212 
3213 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3214 			if (resid > iosize)
3215 				resid = iosize;
3216 
3217 			/*
3218 			 * cleanup bogus pages, restoring the originals
3219 			 */
3220 			m = bp->b_pages[i];
3221 			if (m == bogus_page) {
3222 				bogusflag = 1;
3223 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3224 				if (m == NULL)
3225 					panic("biodone: page disappeared!");
3226 				bp->b_pages[i] = m;
3227 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3228 			}
3229 #if defined(VFS_BIO_DEBUG)
3230 			if (OFF_TO_IDX(foff) != m->pindex) {
3231 				printf(
3232 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3233 				    (intmax_t)foff, (uintmax_t)m->pindex);
3234 			}
3235 #endif
3236 
3237 			/*
3238 			 * In the write case, the valid and clean bits are
3239 			 * already changed correctly ( see bdwrite() ), so we
3240 			 * only need to do this here in the read case.
3241 			 */
3242 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3243 				vfs_page_set_valid(bp, foff, i, m);
3244 			}
3245 
3246 			/*
3247 			 * when debugging new filesystems or buffer I/O methods, this
3248 			 * is the most common error that pops up.  if you see this, you
3249 			 * have not set the page busy flag correctly!!!
3250 			 */
3251 			if (m->busy == 0) {
3252 				printf("biodone: page busy < 0, "
3253 				    "pindex: %d, foff: 0x(%x,%x), "
3254 				    "resid: %d, index: %d\n",
3255 				    (int) m->pindex, (int)(foff >> 32),
3256 						(int) foff & 0xffffffff, resid, i);
3257 				if (!vn_isdisk(vp, NULL))
3258 					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3259 					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3260 					    (intmax_t) bp->b_lblkno,
3261 					    bp->b_flags, bp->b_npages);
3262 				else
3263 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3264 					    (intmax_t) bp->b_lblkno,
3265 					    bp->b_flags, bp->b_npages);
3266 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3267 				    (u_long)m->valid, (u_long)m->dirty,
3268 				    m->wire_count);
3269 				panic("biodone: page busy < 0\n");
3270 			}
3271 			vm_page_io_finish(m);
3272 			vm_object_pip_subtract(obj, 1);
3273 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3274 			iosize -= resid;
3275 		}
3276 		vm_page_unlock_queues();
3277 		vm_object_pip_wakeupn(obj, 0);
3278 		VM_OBJECT_UNLOCK(obj);
3279 	}
3280 
3281 	/*
3282 	 * For asynchronous completions, release the buffer now. The brelse
3283 	 * will do a wakeup there if necessary - so no need to do a wakeup
3284 	 * here in the async case. The sync case always needs to do a wakeup.
3285 	 */
3286 
3287 	if (bp->b_flags & B_ASYNC) {
3288 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3289 			brelse(bp);
3290 		else
3291 			bqrelse(bp);
3292 	} else {
3293 		bdone(bp);
3294 	}
3295 	splx(s);
3296 }
3297 
3298 /*
3299  * This routine is called in lieu of iodone in the case of
3300  * incomplete I/O.  This keeps the busy status for pages
3301  * consistant.
3302  */
3303 void
3304 vfs_unbusy_pages(struct buf *bp)
3305 {
3306 	int i;
3307 	vm_object_t obj;
3308 	vm_page_t m;
3309 
3310 	runningbufwakeup(bp);
3311 	if (!(bp->b_flags & B_VMIO))
3312 		return;
3313 
3314 	obj = bp->b_object;
3315 	VM_OBJECT_LOCK(obj);
3316 	vm_page_lock_queues();
3317 	for (i = 0; i < bp->b_npages; i++) {
3318 		m = bp->b_pages[i];
3319 		if (m == bogus_page) {
3320 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3321 			if (!m) {
3322 				panic("vfs_unbusy_pages: page missing\n");
3323 			}
3324 			bp->b_pages[i] = m;
3325 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3326 		}
3327 		vm_object_pip_subtract(obj, 1);
3328 		vm_page_io_finish(m);
3329 	}
3330 	vm_page_unlock_queues();
3331 	vm_object_pip_wakeupn(obj, 0);
3332 	VM_OBJECT_UNLOCK(obj);
3333 }
3334 
3335 /*
3336  * vfs_page_set_valid:
3337  *
3338  *	Set the valid bits in a page based on the supplied offset.   The
3339  *	range is restricted to the buffer's size.
3340  *
3341  *	This routine is typically called after a read completes.
3342  */
3343 static void
3344 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3345 {
3346 	vm_ooffset_t soff, eoff;
3347 
3348 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3349 	/*
3350 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3351 	 * page boundry or cross the end of the buffer.  The end of the
3352 	 * buffer, in this case, is our file EOF, not the allocation size
3353 	 * of the buffer.
3354 	 */
3355 	soff = off;
3356 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3357 	if (eoff > bp->b_offset + bp->b_bcount)
3358 		eoff = bp->b_offset + bp->b_bcount;
3359 
3360 	/*
3361 	 * Set valid range.  This is typically the entire buffer and thus the
3362 	 * entire page.
3363 	 */
3364 	if (eoff > soff) {
3365 		vm_page_set_validclean(
3366 		    m,
3367 		   (vm_offset_t) (soff & PAGE_MASK),
3368 		   (vm_offset_t) (eoff - soff)
3369 		);
3370 	}
3371 }
3372 
3373 /*
3374  * This routine is called before a device strategy routine.
3375  * It is used to tell the VM system that paging I/O is in
3376  * progress, and treat the pages associated with the buffer
3377  * almost as being PG_BUSY.  Also the object paging_in_progress
3378  * flag is handled to make sure that the object doesn't become
3379  * inconsistant.
3380  *
3381  * Since I/O has not been initiated yet, certain buffer flags
3382  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3383  * and should be ignored.
3384  */
3385 void
3386 vfs_busy_pages(struct buf *bp, int clear_modify)
3387 {
3388 	int i, bogus;
3389 	vm_object_t obj;
3390 	vm_ooffset_t foff;
3391 	vm_page_t m;
3392 
3393 	if (!(bp->b_flags & B_VMIO))
3394 		return;
3395 
3396 	obj = bp->b_object;
3397 	foff = bp->b_offset;
3398 	KASSERT(bp->b_offset != NOOFFSET,
3399 	    ("vfs_busy_pages: no buffer offset"));
3400 	vfs_setdirty(bp);
3401 	VM_OBJECT_LOCK(obj);
3402 retry:
3403 	vm_page_lock_queues();
3404 	for (i = 0; i < bp->b_npages; i++) {
3405 		m = bp->b_pages[i];
3406 
3407 		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3408 			goto retry;
3409 	}
3410 	bogus = 0;
3411 	for (i = 0; i < bp->b_npages; i++) {
3412 		m = bp->b_pages[i];
3413 
3414 		if ((bp->b_flags & B_CLUSTER) == 0) {
3415 			vm_object_pip_add(obj, 1);
3416 			vm_page_io_start(m);
3417 		}
3418 		/*
3419 		 * When readying a buffer for a read ( i.e
3420 		 * clear_modify == 0 ), it is important to do
3421 		 * bogus_page replacement for valid pages in
3422 		 * partially instantiated buffers.  Partially
3423 		 * instantiated buffers can, in turn, occur when
3424 		 * reconstituting a buffer from its VM backing store
3425 		 * base.  We only have to do this if B_CACHE is
3426 		 * clear ( which causes the I/O to occur in the
3427 		 * first place ).  The replacement prevents the read
3428 		 * I/O from overwriting potentially dirty VM-backed
3429 		 * pages.  XXX bogus page replacement is, uh, bogus.
3430 		 * It may not work properly with small-block devices.
3431 		 * We need to find a better way.
3432 		 */
3433 		pmap_remove_all(m);
3434 		if (clear_modify)
3435 			vfs_page_set_valid(bp, foff, i, m);
3436 		else if (m->valid == VM_PAGE_BITS_ALL &&
3437 			(bp->b_flags & B_CACHE) == 0) {
3438 			bp->b_pages[i] = bogus_page;
3439 			bogus++;
3440 		}
3441 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3442 	}
3443 	vm_page_unlock_queues();
3444 	VM_OBJECT_UNLOCK(obj);
3445 	if (bogus)
3446 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3447 		    bp->b_pages, bp->b_npages);
3448 }
3449 
3450 /*
3451  * Tell the VM system that the pages associated with this buffer
3452  * are clean.  This is used for delayed writes where the data is
3453  * going to go to disk eventually without additional VM intevention.
3454  *
3455  * Note that while we only really need to clean through to b_bcount, we
3456  * just go ahead and clean through to b_bufsize.
3457  */
3458 static void
3459 vfs_clean_pages(struct buf *bp)
3460 {
3461 	int i;
3462 	vm_ooffset_t foff, noff, eoff;
3463 	vm_page_t m;
3464 
3465 	if (!(bp->b_flags & B_VMIO))
3466 		return;
3467 
3468 	foff = bp->b_offset;
3469 	KASSERT(bp->b_offset != NOOFFSET,
3470 	    ("vfs_clean_pages: no buffer offset"));
3471 	VM_OBJECT_LOCK(bp->b_object);
3472 	vm_page_lock_queues();
3473 	for (i = 0; i < bp->b_npages; i++) {
3474 		m = bp->b_pages[i];
3475 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3476 		eoff = noff;
3477 
3478 		if (eoff > bp->b_offset + bp->b_bufsize)
3479 			eoff = bp->b_offset + bp->b_bufsize;
3480 		vfs_page_set_valid(bp, foff, i, m);
3481 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3482 		foff = noff;
3483 	}
3484 	vm_page_unlock_queues();
3485 	VM_OBJECT_UNLOCK(bp->b_object);
3486 }
3487 
3488 /*
3489  *	vfs_bio_set_validclean:
3490  *
3491  *	Set the range within the buffer to valid and clean.  The range is
3492  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3493  *	itself may be offset from the beginning of the first page.
3494  *
3495  */
3496 
3497 void
3498 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3499 {
3500 	int i, n;
3501 	vm_page_t m;
3502 
3503 	if (!(bp->b_flags & B_VMIO))
3504 		return;
3505 
3506 	/*
3507 	 * Fixup base to be relative to beginning of first page.
3508 	 * Set initial n to be the maximum number of bytes in the
3509 	 * first page that can be validated.
3510 	 */
3511 
3512 	base += (bp->b_offset & PAGE_MASK);
3513 	n = PAGE_SIZE - (base & PAGE_MASK);
3514 
3515 	VM_OBJECT_LOCK(bp->b_object);
3516 	vm_page_lock_queues();
3517 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3518 		m = bp->b_pages[i];
3519 
3520 		if (n > size)
3521 			n = size;
3522 
3523 		vm_page_set_validclean(m, base & PAGE_MASK, n);
3524 		base += n;
3525 		size -= n;
3526 		n = PAGE_SIZE;
3527 	}
3528 	vm_page_unlock_queues();
3529 	VM_OBJECT_UNLOCK(bp->b_object);
3530 }
3531 
3532 /*
3533  *	vfs_bio_clrbuf:
3534  *
3535  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3536  *	to clear BIO_ERROR and B_INVAL.
3537  *
3538  *	Note that while we only theoretically need to clear through b_bcount,
3539  *	we go ahead and clear through b_bufsize.
3540  */
3541 
3542 void
3543 vfs_bio_clrbuf(struct buf *bp)
3544 {
3545 	int i, j, mask = 0;
3546 	caddr_t sa, ea;
3547 
3548 	GIANT_REQUIRED;
3549 
3550 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3551 		clrbuf(bp);
3552 		return;
3553 	}
3554 	bp->b_flags &= ~B_INVAL;
3555 	bp->b_ioflags &= ~BIO_ERROR;
3556 	VM_OBJECT_LOCK(bp->b_object);
3557 	if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3558 	    (bp->b_offset & PAGE_MASK) == 0) {
3559 		if (bp->b_pages[0] == bogus_page)
3560 			goto unlock;
3561 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3562 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3563 		if ((bp->b_pages[0]->valid & mask) == mask)
3564 			goto unlock;
3565 		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3566 		    ((bp->b_pages[0]->valid & mask) == 0)) {
3567 			bzero(bp->b_data, bp->b_bufsize);
3568 			bp->b_pages[0]->valid |= mask;
3569 			goto unlock;
3570 		}
3571 	}
3572 	ea = sa = bp->b_data;
3573 	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3574 		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3575 		ea = (caddr_t)(vm_offset_t)ulmin(
3576 		    (u_long)(vm_offset_t)ea,
3577 		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3578 		if (bp->b_pages[i] == bogus_page)
3579 			continue;
3580 		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3581 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3582 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3583 		if ((bp->b_pages[i]->valid & mask) == mask)
3584 			continue;
3585 		if ((bp->b_pages[i]->valid & mask) == 0) {
3586 			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3587 				bzero(sa, ea - sa);
3588 		} else {
3589 			for (; sa < ea; sa += DEV_BSIZE, j++) {
3590 				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3591 					(bp->b_pages[i]->valid & (1<<j)) == 0)
3592 					bzero(sa, DEV_BSIZE);
3593 			}
3594 		}
3595 		bp->b_pages[i]->valid |= mask;
3596 	}
3597 unlock:
3598 	VM_OBJECT_UNLOCK(bp->b_object);
3599 	bp->b_resid = 0;
3600 }
3601 
3602 /*
3603  * vm_hold_load_pages and vm_hold_free_pages get pages into
3604  * a buffers address space.  The pages are anonymous and are
3605  * not associated with a file object.
3606  */
3607 static void
3608 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3609 {
3610 	vm_offset_t pg;
3611 	vm_page_t p;
3612 	int index;
3613 
3614 	to = round_page(to);
3615 	from = round_page(from);
3616 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3617 
3618 	VM_OBJECT_LOCK(kernel_object);
3619 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3620 tryagain:
3621 		/*
3622 		 * note: must allocate system pages since blocking here
3623 		 * could intefere with paging I/O, no matter which
3624 		 * process we are.
3625 		 */
3626 		p = vm_page_alloc(kernel_object,
3627 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3628 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3629 		if (!p) {
3630 			atomic_add_int(&vm_pageout_deficit,
3631 			    (to - pg) >> PAGE_SHIFT);
3632 			VM_OBJECT_UNLOCK(kernel_object);
3633 			VM_WAIT;
3634 			VM_OBJECT_LOCK(kernel_object);
3635 			goto tryagain;
3636 		}
3637 		p->valid = VM_PAGE_BITS_ALL;
3638 		pmap_qenter(pg, &p, 1);
3639 		bp->b_pages[index] = p;
3640 		vm_page_lock_queues();
3641 		vm_page_wakeup(p);
3642 		vm_page_unlock_queues();
3643 	}
3644 	VM_OBJECT_UNLOCK(kernel_object);
3645 	bp->b_npages = index;
3646 }
3647 
3648 /* Return pages associated with this buf to the vm system */
3649 static void
3650 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3651 {
3652 	vm_offset_t pg;
3653 	vm_page_t p;
3654 	int index, newnpages;
3655 
3656 	GIANT_REQUIRED;
3657 
3658 	from = round_page(from);
3659 	to = round_page(to);
3660 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3661 
3662 	VM_OBJECT_LOCK(kernel_object);
3663 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3664 		p = bp->b_pages[index];
3665 		if (p && (index < bp->b_npages)) {
3666 			if (p->busy) {
3667 				printf(
3668 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3669 				    (intmax_t)bp->b_blkno,
3670 				    (intmax_t)bp->b_lblkno);
3671 			}
3672 			bp->b_pages[index] = NULL;
3673 			pmap_qremove(pg, 1);
3674 			vm_page_lock_queues();
3675 			vm_page_busy(p);
3676 			vm_page_unwire(p, 0);
3677 			vm_page_free(p);
3678 			vm_page_unlock_queues();
3679 		}
3680 	}
3681 	VM_OBJECT_UNLOCK(kernel_object);
3682 	bp->b_npages = newnpages;
3683 }
3684 
3685 /*
3686  * Map an IO request into kernel virtual address space.
3687  *
3688  * All requests are (re)mapped into kernel VA space.
3689  * Notice that we use b_bufsize for the size of the buffer
3690  * to be mapped.  b_bcount might be modified by the driver.
3691  *
3692  * Note that even if the caller determines that the address space should
3693  * be valid, a race or a smaller-file mapped into a larger space may
3694  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3695  * check the return value.
3696  */
3697 int
3698 vmapbuf(struct buf *bp)
3699 {
3700 	caddr_t addr, kva;
3701 	vm_prot_t prot;
3702 	int pidx, i;
3703 	struct vm_page *m;
3704 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3705 
3706 	if (bp->b_bufsize < 0)
3707 		return (-1);
3708 	prot = VM_PROT_READ;
3709 	if (bp->b_iocmd == BIO_READ)
3710 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3711 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3712 	     addr < bp->b_data + bp->b_bufsize;
3713 	     addr += PAGE_SIZE, pidx++) {
3714 		/*
3715 		 * Do the vm_fault if needed; do the copy-on-write thing
3716 		 * when reading stuff off device into memory.
3717 		 *
3718 		 * NOTE! Must use pmap_extract() because addr may be in
3719 		 * the userland address space, and kextract is only guarenteed
3720 		 * to work for the kernland address space (see: sparc64 port).
3721 		 */
3722 retry:
3723 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3724 		    prot) < 0) {
3725 			vm_page_lock_queues();
3726 			for (i = 0; i < pidx; ++i) {
3727 				vm_page_unhold(bp->b_pages[i]);
3728 				bp->b_pages[i] = NULL;
3729 			}
3730 			vm_page_unlock_queues();
3731 			return(-1);
3732 		}
3733 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3734 		if (m == NULL)
3735 			goto retry;
3736 		bp->b_pages[pidx] = m;
3737 	}
3738 	if (pidx > btoc(MAXPHYS))
3739 		panic("vmapbuf: mapped more than MAXPHYS");
3740 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3741 
3742 	kva = bp->b_saveaddr;
3743 	bp->b_npages = pidx;
3744 	bp->b_saveaddr = bp->b_data;
3745 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3746 	return(0);
3747 }
3748 
3749 /*
3750  * Free the io map PTEs associated with this IO operation.
3751  * We also invalidate the TLB entries and restore the original b_addr.
3752  */
3753 void
3754 vunmapbuf(struct buf *bp)
3755 {
3756 	int pidx;
3757 	int npages;
3758 
3759 	npages = bp->b_npages;
3760 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3761 	vm_page_lock_queues();
3762 	for (pidx = 0; pidx < npages; pidx++)
3763 		vm_page_unhold(bp->b_pages[pidx]);
3764 	vm_page_unlock_queues();
3765 
3766 	bp->b_data = bp->b_saveaddr;
3767 }
3768 
3769 void
3770 bdone(struct buf *bp)
3771 {
3772 
3773 	mtx_lock(&bdonelock);
3774 	bp->b_flags |= B_DONE;
3775 	wakeup(bp);
3776 	mtx_unlock(&bdonelock);
3777 }
3778 
3779 void
3780 bwait(struct buf *bp, u_char pri, const char *wchan)
3781 {
3782 
3783 	mtx_lock(&bdonelock);
3784 	while ((bp->b_flags & B_DONE) == 0)
3785 		msleep(bp, &bdonelock, pri, wchan, 0);
3786 	mtx_unlock(&bdonelock);
3787 }
3788 
3789 #include "opt_ddb.h"
3790 #ifdef DDB
3791 #include <ddb/ddb.h>
3792 
3793 /* DDB command to show buffer data */
3794 DB_SHOW_COMMAND(buffer, db_show_buffer)
3795 {
3796 	/* get args */
3797 	struct buf *bp = (struct buf *)addr;
3798 
3799 	if (!have_addr) {
3800 		db_printf("usage: show buffer <addr>\n");
3801 		return;
3802 	}
3803 
3804 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3805 	db_printf(
3806 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3807 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3808 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3809 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3810 	    (intmax_t)bp->b_blkno);
3811 	if (bp->b_npages) {
3812 		int i;
3813 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3814 		for (i = 0; i < bp->b_npages; i++) {
3815 			vm_page_t m;
3816 			m = bp->b_pages[i];
3817 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3818 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3819 			if ((i + 1) < bp->b_npages)
3820 				db_printf(",");
3821 		}
3822 		db_printf("\n");
3823 	}
3824 }
3825 #endif /* DDB */
3826