xref: /freebsd/sys/kern/vfs_bio.c (revision b52f49a9a0f22207ad5130ad8faba08de3ed23d8)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  */
14 
15 /*
16  * this file contains a new buffer I/O scheme implementing a coherent
17  * VM object and buffer cache scheme.  Pains have been taken to make
18  * sure that the performance degradation associated with schemes such
19  * as this is not realized.
20  *
21  * Author:  John S. Dyson
22  * Significant help during the development and debugging phases
23  * had been provided by David Greenman, also of the FreeBSD core team.
24  *
25  * see man buf(9) for more info.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/mutex.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/proc.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include "opt_directio.h"
57 #include "opt_swap.h"
58 
59 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
60 
61 struct	bio_ops bioops;		/* I/O operation notification */
62 
63 struct	buf_ops buf_ops_bio = {
64 	"buf_ops_bio",
65 	bwrite
66 };
67 
68 /*
69  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
70  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
71  */
72 struct buf *buf;		/* buffer header pool */
73 
74 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
75 		vm_offset_t to);
76 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
77 		vm_offset_t to);
78 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
79 			       int pageno, vm_page_t m);
80 static void vfs_clean_pages(struct buf * bp);
81 static void vfs_setdirty(struct buf *bp);
82 static void vfs_vmio_release(struct buf *bp);
83 static void vfs_backgroundwritedone(struct buf *bp);
84 static int vfs_bio_clcheck(struct vnode *vp, int size,
85 		daddr_t lblkno, daddr_t blkno);
86 static int flushbufqueues(int flushdeps);
87 static void buf_daemon(void);
88 void bremfreel(struct buf * bp);
89 
90 int vmiodirenable = TRUE;
91 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
92     "Use the VM system for directory writes");
93 int runningbufspace;
94 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
95     "Amount of presently outstanding async buffer io");
96 static int bufspace;
97 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
98     "KVA memory used for bufs");
99 static int maxbufspace;
100 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
101     "Maximum allowed value of bufspace (including buf_daemon)");
102 static int bufmallocspace;
103 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
104     "Amount of malloced memory for buffers");
105 static int maxbufmallocspace;
106 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
107     "Maximum amount of malloced memory for buffers");
108 static int lobufspace;
109 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
110     "Minimum amount of buffers we want to have");
111 static int hibufspace;
112 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
113     "Maximum allowed value of bufspace (excluding buf_daemon)");
114 static int bufreusecnt;
115 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
116     "Number of times we have reused a buffer");
117 static int buffreekvacnt;
118 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
119     "Number of times we have freed the KVA space from some buffer");
120 static int bufdefragcnt;
121 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
122     "Number of times we have had to repeat buffer allocation to defragment");
123 static int lorunningspace;
124 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
125     "Minimum preferred space used for in-progress I/O");
126 static int hirunningspace;
127 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
128     "Maximum amount of space to use for in-progress I/O");
129 static int dirtybufferflushes;
130 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
131     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
132 static int altbufferflushes;
133 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
134     0, "Number of fsync flushes to limit dirty buffers");
135 static int recursiveflushes;
136 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
137     0, "Number of flushes skipped due to being recursive");
138 static int numdirtybuffers;
139 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
140     "Number of buffers that are dirty (has unwritten changes) at the moment");
141 static int lodirtybuffers;
142 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
143     "How many buffers we want to have free before bufdaemon can sleep");
144 static int hidirtybuffers;
145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
146     "When the number of dirty buffers is considered severe");
147 static int dirtybufthresh;
148 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
149     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
150 static int numfreebuffers;
151 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
152     "Number of free buffers");
153 static int lofreebuffers;
154 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
155    "XXX Unused");
156 static int hifreebuffers;
157 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
158    "XXX Complicatedly unused");
159 static int getnewbufcalls;
160 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
161    "Number of calls to getnewbuf");
162 static int getnewbufrestarts;
163 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
164     "Number of times getnewbuf has had to restart a buffer aquisition");
165 static int dobkgrdwrite = 1;
166 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
167     "Do background writes (honoring the BX_BKGRDWRITE flag)?");
168 
169 /*
170  * Wakeup point for bufdaemon, as well as indicator of whether it is already
171  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
172  * is idling.
173  */
174 static int bd_request;
175 
176 /*
177  * This lock synchronizes access to bd_request.
178  */
179 static struct mtx bdlock;
180 
181 /*
182  * bogus page -- for I/O to/from partially complete buffers
183  * this is a temporary solution to the problem, but it is not
184  * really that bad.  it would be better to split the buffer
185  * for input in the case of buffers partially already in memory,
186  * but the code is intricate enough already.
187  */
188 vm_page_t bogus_page;
189 
190 /*
191  * Synchronization (sleep/wakeup) variable for active buffer space requests.
192  * Set when wait starts, cleared prior to wakeup().
193  * Used in runningbufwakeup() and waitrunningbufspace().
194  */
195 static int runningbufreq;
196 
197 /*
198  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
199  * waitrunningbufspace().
200  */
201 static struct mtx rbreqlock;
202 
203 /*
204  * Synchronization (sleep/wakeup) variable for buffer requests.
205  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
206  * by and/or.
207  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
208  * getnewbuf(), and getblk().
209  */
210 static int needsbuffer;
211 
212 /*
213  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
214  */
215 static struct mtx nblock;
216 
217 /*
218  * Lock that protects against bwait()/bdone()/B_DONE races.
219  */
220 
221 static struct mtx bdonelock;
222 
223 /*
224  * Definitions for the buffer free lists.
225  */
226 #define BUFFER_QUEUES	6	/* number of free buffer queues */
227 
228 #define QUEUE_NONE	0	/* on no queue */
229 #define QUEUE_LOCKED	1	/* locked buffers */
230 #define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
231 #define QUEUE_DIRTY	3	/* B_DELWRI buffers */
232 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
233 #define QUEUE_EMPTY	5	/* empty buffer headers */
234 
235 /* Queues for free buffers with various properties */
236 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
237 
238 /* Lock for the bufqueues */
239 static struct mtx bqlock;
240 
241 /*
242  * Single global constant for BUF_WMESG, to avoid getting multiple references.
243  * buf_wmesg is referred from macros.
244  */
245 const char *buf_wmesg = BUF_WMESG;
246 
247 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
248 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
249 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
250 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
251 
252 #ifdef DIRECTIO
253 extern void ffs_rawread_setup(void);
254 #endif /* DIRECTIO */
255 /*
256  *	numdirtywakeup:
257  *
258  *	If someone is blocked due to there being too many dirty buffers,
259  *	and numdirtybuffers is now reasonable, wake them up.
260  */
261 
262 static __inline void
263 numdirtywakeup(int level)
264 {
265 	if (numdirtybuffers <= level) {
266 		mtx_lock(&nblock);
267 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
268 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
269 			wakeup(&needsbuffer);
270 		}
271 		mtx_unlock(&nblock);
272 	}
273 }
274 
275 /*
276  *	bufspacewakeup:
277  *
278  *	Called when buffer space is potentially available for recovery.
279  *	getnewbuf() will block on this flag when it is unable to free
280  *	sufficient buffer space.  Buffer space becomes recoverable when
281  *	bp's get placed back in the queues.
282  */
283 
284 static __inline void
285 bufspacewakeup(void)
286 {
287 	/*
288 	 * If someone is waiting for BUF space, wake them up.  Even
289 	 * though we haven't freed the kva space yet, the waiting
290 	 * process will be able to now.
291 	 */
292 	mtx_lock(&nblock);
293 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
294 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
295 		wakeup(&needsbuffer);
296 	}
297 	mtx_unlock(&nblock);
298 }
299 
300 /*
301  * runningbufwakeup() - in-progress I/O accounting.
302  *
303  */
304 static __inline void
305 runningbufwakeup(struct buf *bp)
306 {
307 	if (bp->b_runningbufspace) {
308 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
309 		bp->b_runningbufspace = 0;
310 		mtx_lock(&rbreqlock);
311 		if (runningbufreq && runningbufspace <= lorunningspace) {
312 			runningbufreq = 0;
313 			wakeup(&runningbufreq);
314 		}
315 		mtx_unlock(&rbreqlock);
316 	}
317 }
318 
319 /*
320  *	bufcountwakeup:
321  *
322  *	Called when a buffer has been added to one of the free queues to
323  *	account for the buffer and to wakeup anyone waiting for free buffers.
324  *	This typically occurs when large amounts of metadata are being handled
325  *	by the buffer cache ( else buffer space runs out first, usually ).
326  */
327 
328 static __inline void
329 bufcountwakeup(void)
330 {
331 	atomic_add_int(&numfreebuffers, 1);
332 	mtx_lock(&nblock);
333 	if (needsbuffer) {
334 		needsbuffer &= ~VFS_BIO_NEED_ANY;
335 		if (numfreebuffers >= hifreebuffers)
336 			needsbuffer &= ~VFS_BIO_NEED_FREE;
337 		wakeup(&needsbuffer);
338 	}
339 	mtx_unlock(&nblock);
340 }
341 
342 /*
343  *	waitrunningbufspace()
344  *
345  *	runningbufspace is a measure of the amount of I/O currently
346  *	running.  This routine is used in async-write situations to
347  *	prevent creating huge backups of pending writes to a device.
348  *	Only asynchronous writes are governed by this function.
349  *
350  *	Reads will adjust runningbufspace, but will not block based on it.
351  *	The read load has a side effect of reducing the allowed write load.
352  *
353  *	This does NOT turn an async write into a sync write.  It waits
354  *	for earlier writes to complete and generally returns before the
355  *	caller's write has reached the device.
356  */
357 static __inline void
358 waitrunningbufspace(void)
359 {
360 	mtx_lock(&rbreqlock);
361 	while (runningbufspace > hirunningspace) {
362 		++runningbufreq;
363 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
364 	}
365 	mtx_unlock(&rbreqlock);
366 }
367 
368 
369 /*
370  *	vfs_buf_test_cache:
371  *
372  *	Called when a buffer is extended.  This function clears the B_CACHE
373  *	bit if the newly extended portion of the buffer does not contain
374  *	valid data.
375  */
376 static __inline__
377 void
378 vfs_buf_test_cache(struct buf *bp,
379 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
380 		  vm_page_t m)
381 {
382 	GIANT_REQUIRED;
383 
384 	if (bp->b_flags & B_CACHE) {
385 		int base = (foff + off) & PAGE_MASK;
386 		if (vm_page_is_valid(m, base, size) == 0)
387 			bp->b_flags &= ~B_CACHE;
388 	}
389 }
390 
391 /* Wake up the buffer deamon if necessary */
392 static __inline__
393 void
394 bd_wakeup(int dirtybuflevel)
395 {
396 	mtx_lock(&bdlock);
397 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
398 		bd_request = 1;
399 		wakeup(&bd_request);
400 	}
401 	mtx_unlock(&bdlock);
402 }
403 
404 /*
405  * bd_speedup - speedup the buffer cache flushing code
406  */
407 
408 static __inline__
409 void
410 bd_speedup(void)
411 {
412 	bd_wakeup(1);
413 }
414 
415 /*
416  * Calculating buffer cache scaling values and reserve space for buffer
417  * headers.  This is called during low level kernel initialization and
418  * may be called more then once.  We CANNOT write to the memory area
419  * being reserved at this time.
420  */
421 caddr_t
422 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
423 {
424 	/*
425 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
426 	 * PAGE_SIZE is >= 1K)
427 	 */
428 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
429 
430 	/*
431 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
432 	 * For the first 64MB of ram nominally allocate sufficient buffers to
433 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
434 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
435 	 * the buffer cache we limit the eventual kva reservation to
436 	 * maxbcache bytes.
437 	 *
438 	 * factor represents the 1/4 x ram conversion.
439 	 */
440 	if (nbuf == 0) {
441 		int factor = 4 * BKVASIZE / 1024;
442 
443 		nbuf = 50;
444 		if (physmem_est > 4096)
445 			nbuf += min((physmem_est - 4096) / factor,
446 			    65536 / factor);
447 		if (physmem_est > 65536)
448 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
449 
450 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
451 			nbuf = maxbcache / BKVASIZE;
452 	}
453 
454 #if 0
455 	/*
456 	 * Do not allow the buffer_map to be more then 1/2 the size of the
457 	 * kernel_map.
458 	 */
459 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
460 	    (BKVASIZE * 2)) {
461 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
462 		    (BKVASIZE * 2);
463 		printf("Warning: nbufs capped at %d\n", nbuf);
464 	}
465 #endif
466 
467 	/*
468 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
469 	 * We have no less then 16 and no more then 256.
470 	 */
471 	nswbuf = max(min(nbuf/4, 256), 16);
472 #ifdef NSWBUF_MIN
473 	if (nswbuf < NSWBUF_MIN)
474 		nswbuf = NSWBUF_MIN;
475 #endif
476 #ifdef DIRECTIO
477 	ffs_rawread_setup();
478 #endif
479 
480 	/*
481 	 * Reserve space for the buffer cache buffers
482 	 */
483 	swbuf = (void *)v;
484 	v = (caddr_t)(swbuf + nswbuf);
485 	buf = (void *)v;
486 	v = (caddr_t)(buf + nbuf);
487 
488 	return(v);
489 }
490 
491 /* Initialize the buffer subsystem.  Called before use of any buffers. */
492 void
493 bufinit(void)
494 {
495 	struct buf *bp;
496 	vm_offset_t bogus_offset;
497 	int i;
498 
499 	GIANT_REQUIRED;
500 
501 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
502 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
503 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
504 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
505 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
506 
507 	/* next, make a null set of free lists */
508 	for (i = 0; i < BUFFER_QUEUES; i++)
509 		TAILQ_INIT(&bufqueues[i]);
510 
511 	/* finally, initialize each buffer header and stick on empty q */
512 	for (i = 0; i < nbuf; i++) {
513 		bp = &buf[i];
514 		bzero(bp, sizeof *bp);
515 		bp->b_flags = B_INVAL;	/* we're just an empty header */
516 		bp->b_dev = NODEV;
517 		bp->b_rcred = NOCRED;
518 		bp->b_wcred = NOCRED;
519 		bp->b_qindex = QUEUE_EMPTY;
520 		bp->b_vflags = 0;
521 		bp->b_xflags = 0;
522 		LIST_INIT(&bp->b_dep);
523 		BUF_LOCKINIT(bp);
524 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
525 	}
526 
527 	/*
528 	 * maxbufspace is the absolute maximum amount of buffer space we are
529 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
530 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
531 	 * used by most other processes.  The differential is required to
532 	 * ensure that buf_daemon is able to run when other processes might
533 	 * be blocked waiting for buffer space.
534 	 *
535 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
536 	 * this may result in KVM fragmentation which is not handled optimally
537 	 * by the system.
538 	 */
539 	maxbufspace = nbuf * BKVASIZE;
540 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
541 	lobufspace = hibufspace - MAXBSIZE;
542 
543 	lorunningspace = 512 * 1024;
544 	hirunningspace = 1024 * 1024;
545 
546 /*
547  * Limit the amount of malloc memory since it is wired permanently into
548  * the kernel space.  Even though this is accounted for in the buffer
549  * allocation, we don't want the malloced region to grow uncontrolled.
550  * The malloc scheme improves memory utilization significantly on average
551  * (small) directories.
552  */
553 	maxbufmallocspace = hibufspace / 20;
554 
555 /*
556  * Reduce the chance of a deadlock occuring by limiting the number
557  * of delayed-write dirty buffers we allow to stack up.
558  */
559 	hidirtybuffers = nbuf / 4 + 20;
560 	dirtybufthresh = hidirtybuffers * 9 / 10;
561 	numdirtybuffers = 0;
562 /*
563  * To support extreme low-memory systems, make sure hidirtybuffers cannot
564  * eat up all available buffer space.  This occurs when our minimum cannot
565  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
566  * BKVASIZE'd (8K) buffers.
567  */
568 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
569 		hidirtybuffers >>= 1;
570 	}
571 	lodirtybuffers = hidirtybuffers / 2;
572 
573 /*
574  * Try to keep the number of free buffers in the specified range,
575  * and give special processes (e.g. like buf_daemon) access to an
576  * emergency reserve.
577  */
578 	lofreebuffers = nbuf / 18 + 5;
579 	hifreebuffers = 2 * lofreebuffers;
580 	numfreebuffers = nbuf;
581 
582 /*
583  * Maximum number of async ops initiated per buf_daemon loop.  This is
584  * somewhat of a hack at the moment, we really need to limit ourselves
585  * based on the number of bytes of I/O in-transit that were initiated
586  * from buf_daemon.
587  */
588 
589 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
590 	VM_OBJECT_LOCK(kernel_object);
591 	bogus_page = vm_page_alloc(kernel_object,
592 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
593 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
594 	VM_OBJECT_UNLOCK(kernel_object);
595 }
596 
597 /*
598  * bfreekva() - free the kva allocation for a buffer.
599  *
600  *	Must be called at splbio() or higher as this is the only locking for
601  *	buffer_map.
602  *
603  *	Since this call frees up buffer space, we call bufspacewakeup().
604  */
605 static void
606 bfreekva(struct buf * bp)
607 {
608 	GIANT_REQUIRED;
609 
610 	if (bp->b_kvasize) {
611 		atomic_add_int(&buffreekvacnt, 1);
612 		atomic_subtract_int(&bufspace, bp->b_kvasize);
613 		vm_map_delete(buffer_map,
614 		    (vm_offset_t) bp->b_kvabase,
615 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
616 		);
617 		bp->b_kvasize = 0;
618 		bufspacewakeup();
619 	}
620 }
621 
622 /*
623  *	bremfree:
624  *
625  *	Remove the buffer from the appropriate free list.
626  */
627 void
628 bremfree(struct buf * bp)
629 {
630 	mtx_lock(&bqlock);
631 	bremfreel(bp);
632 	mtx_unlock(&bqlock);
633 }
634 
635 void
636 bremfreel(struct buf * bp)
637 {
638 	int s = splbio();
639 	int old_qindex = bp->b_qindex;
640 
641 	GIANT_REQUIRED;
642 
643 	if (bp->b_qindex != QUEUE_NONE) {
644 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
645 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
646 		bp->b_qindex = QUEUE_NONE;
647 	} else {
648 		if (BUF_REFCNT(bp) <= 1)
649 			panic("bremfree: removing a buffer not on a queue");
650 	}
651 
652 	/*
653 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
654 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
655 	 * the buffer was free and we must decrement numfreebuffers.
656 	 */
657 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
658 		switch(old_qindex) {
659 		case QUEUE_DIRTY:
660 		case QUEUE_CLEAN:
661 		case QUEUE_EMPTY:
662 		case QUEUE_EMPTYKVA:
663 			atomic_subtract_int(&numfreebuffers, 1);
664 			break;
665 		default:
666 			break;
667 		}
668 	}
669 	splx(s);
670 }
671 
672 
673 /*
674  * Get a buffer with the specified data.  Look in the cache first.  We
675  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
676  * is set, the buffer is valid and we do not have to do anything ( see
677  * getblk() ).  This is really just a special case of breadn().
678  */
679 int
680 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
681     struct buf ** bpp)
682 {
683 
684 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
685 }
686 
687 /*
688  * Operates like bread, but also starts asynchronous I/O on
689  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
690  * to initiating I/O . If B_CACHE is set, the buffer is valid
691  * and we do not have to do anything.
692  */
693 int
694 breadn(struct vnode * vp, daddr_t blkno, int size,
695     daddr_t * rablkno, int *rabsize,
696     int cnt, struct ucred * cred, struct buf ** bpp)
697 {
698 	struct buf *bp, *rabp;
699 	int i;
700 	int rv = 0, readwait = 0;
701 
702 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
703 
704 	/* if not found in cache, do some I/O */
705 	if ((bp->b_flags & B_CACHE) == 0) {
706 		if (curthread != PCPU_GET(idlethread))
707 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
708 		bp->b_iocmd = BIO_READ;
709 		bp->b_flags &= ~B_INVAL;
710 		bp->b_ioflags &= ~BIO_ERROR;
711 		if (bp->b_rcred == NOCRED && cred != NOCRED)
712 			bp->b_rcred = crhold(cred);
713 		vfs_busy_pages(bp, 0);
714 		if (vp->v_type == VCHR)
715 			VOP_SPECSTRATEGY(vp, bp);
716 		else
717 			VOP_STRATEGY(vp, bp);
718 		++readwait;
719 	}
720 
721 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
722 		if (inmem(vp, *rablkno))
723 			continue;
724 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
725 
726 		if ((rabp->b_flags & B_CACHE) == 0) {
727 			if (curthread != PCPU_GET(idlethread))
728 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
729 			rabp->b_flags |= B_ASYNC;
730 			rabp->b_flags &= ~B_INVAL;
731 			rabp->b_ioflags &= ~BIO_ERROR;
732 			rabp->b_iocmd = BIO_READ;
733 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
734 				rabp->b_rcred = crhold(cred);
735 			vfs_busy_pages(rabp, 0);
736 			BUF_KERNPROC(rabp);
737 			if (vp->v_type == VCHR)
738 				VOP_SPECSTRATEGY(vp, rabp);
739 			else
740 				VOP_STRATEGY(vp, rabp);
741 		} else {
742 			brelse(rabp);
743 		}
744 	}
745 
746 	if (readwait) {
747 		rv = bufwait(bp);
748 	}
749 	return (rv);
750 }
751 
752 /*
753  * Write, release buffer on completion.  (Done by iodone
754  * if async).  Do not bother writing anything if the buffer
755  * is invalid.
756  *
757  * Note that we set B_CACHE here, indicating that buffer is
758  * fully valid and thus cacheable.  This is true even of NFS
759  * now so we set it generally.  This could be set either here
760  * or in biodone() since the I/O is synchronous.  We put it
761  * here.
762  */
763 
764 int
765 bwrite(struct buf * bp)
766 {
767 	int oldflags, s;
768 	struct buf *newbp;
769 
770 	if (bp->b_flags & B_INVAL) {
771 		brelse(bp);
772 		return (0);
773 	}
774 
775 	oldflags = bp->b_flags;
776 
777 	if (BUF_REFCNT(bp) == 0)
778 		panic("bwrite: buffer is not busy???");
779 	s = splbio();
780 	/*
781 	 * If a background write is already in progress, delay
782 	 * writing this block if it is asynchronous. Otherwise
783 	 * wait for the background write to complete.
784 	 */
785 	if (bp->b_xflags & BX_BKGRDINPROG) {
786 		if (bp->b_flags & B_ASYNC) {
787 			splx(s);
788 			bdwrite(bp);
789 			return (0);
790 		}
791 		bp->b_xflags |= BX_BKGRDWAIT;
792 		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
793 		if (bp->b_xflags & BX_BKGRDINPROG)
794 			panic("bwrite: still writing");
795 	}
796 
797 	/* Mark the buffer clean */
798 	bundirty(bp);
799 
800 	/*
801 	 * If this buffer is marked for background writing and we
802 	 * do not have to wait for it, make a copy and write the
803 	 * copy so as to leave this buffer ready for further use.
804 	 *
805 	 * This optimization eats a lot of memory.  If we have a page
806 	 * or buffer shortfall we can't do it.
807 	 */
808 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
809 	    (bp->b_flags & B_ASYNC) &&
810 	    !vm_page_count_severe() &&
811 	    !buf_dirty_count_severe()) {
812 		if (bp->b_iodone != NULL) {
813 			printf("bp->b_iodone = %p\n", bp->b_iodone);
814 			panic("bwrite: need chained iodone");
815 		}
816 
817 		/* get a new block */
818 		newbp = geteblk(bp->b_bufsize);
819 
820 		/*
821 		 * set it to be identical to the old block.  We have to
822 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
823 		 * to avoid confusing the splay tree and gbincore().
824 		 */
825 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
826 		newbp->b_lblkno = bp->b_lblkno;
827 		newbp->b_xflags |= BX_BKGRDMARKER;
828 		/* XXX The BX_ flags need to be protected as well */
829 		VI_LOCK(bp->b_vp);
830 		bgetvp(bp->b_vp, newbp);
831 		VI_UNLOCK(bp->b_vp);
832 		newbp->b_blkno = bp->b_blkno;
833 		newbp->b_offset = bp->b_offset;
834 		newbp->b_iodone = vfs_backgroundwritedone;
835 		newbp->b_flags |= B_ASYNC;
836 		newbp->b_flags &= ~B_INVAL;
837 
838 		/* move over the dependencies */
839 		if (LIST_FIRST(&bp->b_dep) != NULL)
840 			buf_movedeps(bp, newbp);
841 
842 		/*
843 		 * Initiate write on the copy, release the original to
844 		 * the B_LOCKED queue so that it cannot go away until
845 		 * the background write completes. If not locked it could go
846 		 * away and then be reconstituted while it was being written.
847 		 * If the reconstituted buffer were written, we could end up
848 		 * with two background copies being written at the same time.
849 		 */
850 		bp->b_xflags |= BX_BKGRDINPROG;
851 		bp->b_flags |= B_LOCKED;
852 		bqrelse(bp);
853 		bp = newbp;
854 	}
855 
856 	bp->b_flags &= ~B_DONE;
857 	bp->b_ioflags &= ~BIO_ERROR;
858 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
859 	bp->b_iocmd = BIO_WRITE;
860 
861 	VI_LOCK(bp->b_vp);
862 	bp->b_vp->v_numoutput++;
863 	VI_UNLOCK(bp->b_vp);
864 	vfs_busy_pages(bp, 1);
865 
866 	/*
867 	 * Normal bwrites pipeline writes
868 	 */
869 	bp->b_runningbufspace = bp->b_bufsize;
870 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
871 
872 	if (curthread != PCPU_GET(idlethread))
873 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
874 	splx(s);
875 	if (oldflags & B_ASYNC)
876 		BUF_KERNPROC(bp);
877 	if (bp->b_vp->v_type == VCHR)
878 		VOP_SPECSTRATEGY(bp->b_vp, bp);
879 	else
880 		VOP_STRATEGY(bp->b_vp, bp);
881 
882 	if ((oldflags & B_ASYNC) == 0) {
883 		int rtval = bufwait(bp);
884 		brelse(bp);
885 		return (rtval);
886 	} else {
887 		/*
888 		 * don't allow the async write to saturate the I/O
889 		 * system.  We will not deadlock here because
890 		 * we are blocking waiting for I/O that is already in-progress
891 		 * to complete.
892 		 */
893 		waitrunningbufspace();
894 	}
895 
896 	return (0);
897 }
898 
899 /*
900  * Complete a background write started from bwrite.
901  */
902 static void
903 vfs_backgroundwritedone(bp)
904 	struct buf *bp;
905 {
906 	struct buf *origbp;
907 
908 	/*
909 	 * Find the original buffer that we are writing.
910 	 */
911 	VI_LOCK(bp->b_vp);
912 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
913 		panic("backgroundwritedone: lost buffer");
914 	VI_UNLOCK(bp->b_vp);
915 	/*
916 	 * Process dependencies then return any unfinished ones.
917 	 */
918 	if (LIST_FIRST(&bp->b_dep) != NULL)
919 		buf_complete(bp);
920 	if (LIST_FIRST(&bp->b_dep) != NULL)
921 		buf_movedeps(bp, origbp);
922 
923 	/* XXX Find out if origbp can disappear or get inconsistent */
924 	/*
925 	 * Clear the BX_BKGRDINPROG flag in the original buffer
926 	 * and awaken it if it is waiting for the write to complete.
927 	 * If BX_BKGRDINPROG is not set in the original buffer it must
928 	 * have been released and re-instantiated - which is not legal.
929 	 */
930 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
931 	    ("backgroundwritedone: lost buffer2"));
932 	origbp->b_xflags &= ~BX_BKGRDINPROG;
933 	if (origbp->b_xflags & BX_BKGRDWAIT) {
934 		origbp->b_xflags &= ~BX_BKGRDWAIT;
935 		wakeup(&origbp->b_xflags);
936 	}
937 	/*
938 	 * Clear the B_LOCKED flag and remove it from the locked
939 	 * queue if it currently resides there.
940 	 */
941 	origbp->b_flags &= ~B_LOCKED;
942 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
943 		bremfree(origbp);
944 		bqrelse(origbp);
945 	}
946 	/*
947 	 * This buffer is marked B_NOCACHE, so when it is released
948 	 * by biodone, it will be tossed. We mark it with BIO_READ
949 	 * to avoid biodone doing a second vwakeup.
950 	 */
951 	bp->b_flags |= B_NOCACHE;
952 	bp->b_iocmd = BIO_READ;
953 	bp->b_flags &= ~(B_CACHE | B_DONE);
954 	bp->b_iodone = 0;
955 	bufdone(bp);
956 }
957 
958 /*
959  * Delayed write. (Buffer is marked dirty).  Do not bother writing
960  * anything if the buffer is marked invalid.
961  *
962  * Note that since the buffer must be completely valid, we can safely
963  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
964  * biodone() in order to prevent getblk from writing the buffer
965  * out synchronously.
966  */
967 void
968 bdwrite(struct buf * bp)
969 {
970 	struct thread *td = curthread;
971 	struct vnode *vp;
972 	struct buf *nbp;
973 
974 	GIANT_REQUIRED;
975 
976 	if (BUF_REFCNT(bp) == 0)
977 		panic("bdwrite: buffer is not busy");
978 
979 	if (bp->b_flags & B_INVAL) {
980 		brelse(bp);
981 		return;
982 	}
983 
984 	/*
985 	 * If we have too many dirty buffers, don't create any more.
986 	 * If we are wildly over our limit, then force a complete
987 	 * cleanup. Otherwise, just keep the situation from getting
988 	 * out of control. Note that we have to avoid a recursive
989 	 * disaster and not try to clean up after our own cleanup!
990 	 */
991 	vp = bp->b_vp;
992 	VI_LOCK(vp);
993 	if (td->td_proc->p_flag & P_COWINPROGRESS) {
994 		recursiveflushes++;
995 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
996 		VI_UNLOCK(vp);
997 		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
998 		VI_LOCK(vp);
999 		altbufferflushes++;
1000 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1001 		/*
1002 		 * Try to find a buffer to flush.
1003 		 */
1004 		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1005 			if ((nbp->b_xflags & BX_BKGRDINPROG) ||
1006 			    buf_countdeps(nbp, 0) ||
1007 			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1008 				continue;
1009 			if (bp == nbp)
1010 				panic("bdwrite: found ourselves");
1011 			VI_UNLOCK(vp);
1012 			if (nbp->b_flags & B_CLUSTEROK) {
1013 				vfs_bio_awrite(nbp);
1014 			} else {
1015 				bremfree(nbp);
1016 				bawrite(nbp);
1017 			}
1018 			VI_LOCK(vp);
1019 			dirtybufferflushes++;
1020 			break;
1021 		}
1022 	}
1023 	VI_UNLOCK(vp);
1024 
1025 	bdirty(bp);
1026 	/*
1027 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1028 	 * true even of NFS now.
1029 	 */
1030 	bp->b_flags |= B_CACHE;
1031 
1032 	/*
1033 	 * This bmap keeps the system from needing to do the bmap later,
1034 	 * perhaps when the system is attempting to do a sync.  Since it
1035 	 * is likely that the indirect block -- or whatever other datastructure
1036 	 * that the filesystem needs is still in memory now, it is a good
1037 	 * thing to do this.  Note also, that if the pageout daemon is
1038 	 * requesting a sync -- there might not be enough memory to do
1039 	 * the bmap then...  So, this is important to do.
1040 	 */
1041 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1042 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1043 	}
1044 
1045 	/*
1046 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1047 	 */
1048 	vfs_setdirty(bp);
1049 
1050 	/*
1051 	 * We need to do this here to satisfy the vnode_pager and the
1052 	 * pageout daemon, so that it thinks that the pages have been
1053 	 * "cleaned".  Note that since the pages are in a delayed write
1054 	 * buffer -- the VFS layer "will" see that the pages get written
1055 	 * out on the next sync, or perhaps the cluster will be completed.
1056 	 */
1057 	vfs_clean_pages(bp);
1058 	bqrelse(bp);
1059 
1060 	/*
1061 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1062 	 * buffers (midpoint between our recovery point and our stall
1063 	 * point).
1064 	 */
1065 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1066 
1067 	/*
1068 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1069 	 * due to the softdep code.
1070 	 */
1071 }
1072 
1073 /*
1074  *	bdirty:
1075  *
1076  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1077  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1078  *	itself to properly update it in the dirty/clean lists.  We mark it
1079  *	B_DONE to ensure that any asynchronization of the buffer properly
1080  *	clears B_DONE ( else a panic will occur later ).
1081  *
1082  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1083  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1084  *	should only be called if the buffer is known-good.
1085  *
1086  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1087  *	count.
1088  *
1089  *	Must be called at splbio().
1090  *	The buffer must be on QUEUE_NONE.
1091  */
1092 void
1093 bdirty(bp)
1094 	struct buf *bp;
1095 {
1096 	KASSERT(bp->b_qindex == QUEUE_NONE,
1097 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1098 	bp->b_flags &= ~(B_RELBUF);
1099 	bp->b_iocmd = BIO_WRITE;
1100 
1101 	if ((bp->b_flags & B_DELWRI) == 0) {
1102 		bp->b_flags |= B_DONE | B_DELWRI;
1103 		reassignbuf(bp, bp->b_vp);
1104 		atomic_add_int(&numdirtybuffers, 1);
1105 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1106 	}
1107 }
1108 
1109 /*
1110  *	bundirty:
1111  *
1112  *	Clear B_DELWRI for buffer.
1113  *
1114  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1115  *	count.
1116  *
1117  *	Must be called at splbio().
1118  *	The buffer must be on QUEUE_NONE.
1119  */
1120 
1121 void
1122 bundirty(bp)
1123 	struct buf *bp;
1124 {
1125 	KASSERT(bp->b_qindex == QUEUE_NONE,
1126 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1127 
1128 	if (bp->b_flags & B_DELWRI) {
1129 		bp->b_flags &= ~B_DELWRI;
1130 		reassignbuf(bp, bp->b_vp);
1131 		atomic_subtract_int(&numdirtybuffers, 1);
1132 		numdirtywakeup(lodirtybuffers);
1133 	}
1134 	/*
1135 	 * Since it is now being written, we can clear its deferred write flag.
1136 	 */
1137 	bp->b_flags &= ~B_DEFERRED;
1138 }
1139 
1140 /*
1141  *	bawrite:
1142  *
1143  *	Asynchronous write.  Start output on a buffer, but do not wait for
1144  *	it to complete.  The buffer is released when the output completes.
1145  *
1146  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1147  *	B_INVAL buffers.  Not us.
1148  */
1149 void
1150 bawrite(struct buf * bp)
1151 {
1152 	bp->b_flags |= B_ASYNC;
1153 	(void) BUF_WRITE(bp);
1154 }
1155 
1156 /*
1157  *	bwillwrite:
1158  *
1159  *	Called prior to the locking of any vnodes when we are expecting to
1160  *	write.  We do not want to starve the buffer cache with too many
1161  *	dirty buffers so we block here.  By blocking prior to the locking
1162  *	of any vnodes we attempt to avoid the situation where a locked vnode
1163  *	prevents the various system daemons from flushing related buffers.
1164  */
1165 
1166 void
1167 bwillwrite(void)
1168 {
1169 	if (numdirtybuffers >= hidirtybuffers) {
1170 		int s;
1171 
1172 		mtx_lock(&Giant);
1173 		s = splbio();
1174 		mtx_lock(&nblock);
1175 		while (numdirtybuffers >= hidirtybuffers) {
1176 			bd_wakeup(1);
1177 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1178 			msleep(&needsbuffer, &nblock,
1179 			    (PRIBIO + 4), "flswai", 0);
1180 		}
1181 		splx(s);
1182 		mtx_unlock(&nblock);
1183 		mtx_unlock(&Giant);
1184 	}
1185 }
1186 
1187 /*
1188  * Return true if we have too many dirty buffers.
1189  */
1190 int
1191 buf_dirty_count_severe(void)
1192 {
1193 	return(numdirtybuffers >= hidirtybuffers);
1194 }
1195 
1196 /*
1197  *	brelse:
1198  *
1199  *	Release a busy buffer and, if requested, free its resources.  The
1200  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1201  *	to be accessed later as a cache entity or reused for other purposes.
1202  */
1203 void
1204 brelse(struct buf * bp)
1205 {
1206 	int s;
1207 
1208 	GIANT_REQUIRED;
1209 
1210 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1211 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1212 
1213 	s = splbio();
1214 
1215 	if (bp->b_flags & B_LOCKED)
1216 		bp->b_ioflags &= ~BIO_ERROR;
1217 
1218 	if (bp->b_iocmd == BIO_WRITE &&
1219 	    (bp->b_ioflags & BIO_ERROR) &&
1220 	    !(bp->b_flags & B_INVAL)) {
1221 		/*
1222 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1223 		 * pages from being scrapped.  If B_INVAL is set then
1224 		 * this case is not run and the next case is run to
1225 		 * destroy the buffer.  B_INVAL can occur if the buffer
1226 		 * is outside the range supported by the underlying device.
1227 		 */
1228 		bp->b_ioflags &= ~BIO_ERROR;
1229 		bdirty(bp);
1230 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1231 	    (bp->b_ioflags & BIO_ERROR) ||
1232 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1233 		/*
1234 		 * Either a failed I/O or we were asked to free or not
1235 		 * cache the buffer.
1236 		 */
1237 		bp->b_flags |= B_INVAL;
1238 		if (LIST_FIRST(&bp->b_dep) != NULL)
1239 			buf_deallocate(bp);
1240 		if (bp->b_flags & B_DELWRI) {
1241 			atomic_subtract_int(&numdirtybuffers, 1);
1242 			numdirtywakeup(lodirtybuffers);
1243 		}
1244 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1245 		if ((bp->b_flags & B_VMIO) == 0) {
1246 			if (bp->b_bufsize)
1247 				allocbuf(bp, 0);
1248 			if (bp->b_vp)
1249 				brelvp(bp);
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1255 	 * is called with B_DELWRI set, the underlying pages may wind up
1256 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1257 	 * because pages associated with a B_DELWRI bp are marked clean.
1258 	 *
1259 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1260 	 * if B_DELWRI is set.
1261 	 *
1262 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1263 	 * on pages to return pages to the VM page queues.
1264 	 */
1265 	if (bp->b_flags & B_DELWRI)
1266 		bp->b_flags &= ~B_RELBUF;
1267 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1268 		bp->b_flags |= B_RELBUF;
1269 
1270 	/*
1271 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1272 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1273 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1274 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1275 	 *
1276 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1277 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1278 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1279 	 *
1280 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1281 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1282 	 * the commit state and we cannot afford to lose the buffer. If the
1283 	 * buffer has a background write in progress, we need to keep it
1284 	 * around to prevent it from being reconstituted and starting a second
1285 	 * background write.
1286 	 */
1287 	if ((bp->b_flags & B_VMIO)
1288 	    && !(bp->b_vp->v_mount != NULL &&
1289 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1290 		 !vn_isdisk(bp->b_vp, NULL) &&
1291 		 (bp->b_flags & B_DELWRI))
1292 	    ) {
1293 
1294 		int i, j, resid;
1295 		vm_page_t m;
1296 		off_t foff;
1297 		vm_pindex_t poff;
1298 		vm_object_t obj;
1299 		struct vnode *vp;
1300 
1301 		vp = bp->b_vp;
1302 		obj = bp->b_object;
1303 
1304 		/*
1305 		 * Get the base offset and length of the buffer.  Note that
1306 		 * in the VMIO case if the buffer block size is not
1307 		 * page-aligned then b_data pointer may not be page-aligned.
1308 		 * But our b_pages[] array *IS* page aligned.
1309 		 *
1310 		 * block sizes less then DEV_BSIZE (usually 512) are not
1311 		 * supported due to the page granularity bits (m->valid,
1312 		 * m->dirty, etc...).
1313 		 *
1314 		 * See man buf(9) for more information
1315 		 */
1316 		resid = bp->b_bufsize;
1317 		foff = bp->b_offset;
1318 		if (obj != NULL)
1319 			VM_OBJECT_LOCK(obj);
1320 		for (i = 0; i < bp->b_npages; i++) {
1321 			int had_bogus = 0;
1322 
1323 			m = bp->b_pages[i];
1324 			vm_page_lock_queues();
1325 			vm_page_flag_clear(m, PG_ZERO);
1326 			vm_page_unlock_queues();
1327 
1328 			/*
1329 			 * If we hit a bogus page, fixup *all* the bogus pages
1330 			 * now.
1331 			 */
1332 			if (m == bogus_page) {
1333 				poff = OFF_TO_IDX(bp->b_offset);
1334 				had_bogus = 1;
1335 
1336 				for (j = i; j < bp->b_npages; j++) {
1337 					vm_page_t mtmp;
1338 					mtmp = bp->b_pages[j];
1339 					if (mtmp == bogus_page) {
1340 						mtmp = vm_page_lookup(obj, poff + j);
1341 						if (!mtmp) {
1342 							panic("brelse: page missing\n");
1343 						}
1344 						bp->b_pages[j] = mtmp;
1345 					}
1346 				}
1347 
1348 				if ((bp->b_flags & B_INVAL) == 0) {
1349 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1350 				}
1351 				m = bp->b_pages[i];
1352 			}
1353 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1354 				int poffset = foff & PAGE_MASK;
1355 				int presid = resid > (PAGE_SIZE - poffset) ?
1356 					(PAGE_SIZE - poffset) : resid;
1357 
1358 				KASSERT(presid >= 0, ("brelse: extra page"));
1359 				vm_page_set_invalid(m, poffset, presid);
1360 				if (had_bogus)
1361 					printf("avoided corruption bug in bogus_page/brelse code\n");
1362 			}
1363 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1364 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1365 		}
1366 		if (obj != NULL)
1367 			VM_OBJECT_UNLOCK(obj);
1368 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1369 			vfs_vmio_release(bp);
1370 
1371 	} else if (bp->b_flags & B_VMIO) {
1372 
1373 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1374 			vfs_vmio_release(bp);
1375 		}
1376 
1377 	}
1378 
1379 	if (bp->b_qindex != QUEUE_NONE)
1380 		panic("brelse: free buffer onto another queue???");
1381 	if (BUF_REFCNT(bp) > 1) {
1382 		/* do not release to free list */
1383 		BUF_UNLOCK(bp);
1384 		splx(s);
1385 		return;
1386 	}
1387 
1388 	/* enqueue */
1389 	mtx_lock(&bqlock);
1390 
1391 	/* buffers with no memory */
1392 	if (bp->b_bufsize == 0) {
1393 		bp->b_flags |= B_INVAL;
1394 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1395 		if (bp->b_xflags & BX_BKGRDINPROG)
1396 			panic("losing buffer 1");
1397 		if (bp->b_kvasize) {
1398 			bp->b_qindex = QUEUE_EMPTYKVA;
1399 		} else {
1400 			bp->b_qindex = QUEUE_EMPTY;
1401 		}
1402 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1403 		bp->b_dev = NODEV;
1404 	/* buffers with junk contents */
1405 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1406 	    (bp->b_ioflags & BIO_ERROR)) {
1407 		bp->b_flags |= B_INVAL;
1408 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1409 		if (bp->b_xflags & BX_BKGRDINPROG)
1410 			panic("losing buffer 2");
1411 		bp->b_qindex = QUEUE_CLEAN;
1412 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1413 		bp->b_dev = NODEV;
1414 
1415 	/* buffers that are locked */
1416 	} else if (bp->b_flags & B_LOCKED) {
1417 		bp->b_qindex = QUEUE_LOCKED;
1418 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1419 
1420 	/* remaining buffers */
1421 	} else {
1422 		if (bp->b_flags & B_DELWRI)
1423 			bp->b_qindex = QUEUE_DIRTY;
1424 		else
1425 			bp->b_qindex = QUEUE_CLEAN;
1426 		if (bp->b_flags & B_AGE)
1427 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1428 		else
1429 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1430 	}
1431 	mtx_unlock(&bqlock);
1432 
1433 	/*
1434 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1435 	 * placed the buffer on the correct queue.  We must also disassociate
1436 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1437 	 * find it.
1438 	 */
1439 	if (bp->b_flags & B_INVAL) {
1440 		if (bp->b_flags & B_DELWRI)
1441 			bundirty(bp);
1442 		if (bp->b_vp)
1443 			brelvp(bp);
1444 	}
1445 
1446 	/*
1447 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1448 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1449 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1450 	 * if B_INVAL is set ).
1451 	 */
1452 
1453 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1454 		bufcountwakeup();
1455 
1456 	/*
1457 	 * Something we can maybe free or reuse
1458 	 */
1459 	if (bp->b_bufsize || bp->b_kvasize)
1460 		bufspacewakeup();
1461 
1462 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1463 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1464 		panic("brelse: not dirty");
1465 	/* unlock */
1466 	BUF_UNLOCK(bp);
1467 	splx(s);
1468 }
1469 
1470 /*
1471  * Release a buffer back to the appropriate queue but do not try to free
1472  * it.  The buffer is expected to be used again soon.
1473  *
1474  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1475  * biodone() to requeue an async I/O on completion.  It is also used when
1476  * known good buffers need to be requeued but we think we may need the data
1477  * again soon.
1478  *
1479  * XXX we should be able to leave the B_RELBUF hint set on completion.
1480  */
1481 void
1482 bqrelse(struct buf * bp)
1483 {
1484 	int s;
1485 
1486 	s = splbio();
1487 
1488 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1489 
1490 	if (bp->b_qindex != QUEUE_NONE)
1491 		panic("bqrelse: free buffer onto another queue???");
1492 	if (BUF_REFCNT(bp) > 1) {
1493 		/* do not release to free list */
1494 		BUF_UNLOCK(bp);
1495 		splx(s);
1496 		return;
1497 	}
1498 	mtx_lock(&bqlock);
1499 	if (bp->b_flags & B_LOCKED) {
1500 		bp->b_ioflags &= ~BIO_ERROR;
1501 		bp->b_qindex = QUEUE_LOCKED;
1502 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1503 		/* buffers with stale but valid contents */
1504 	} else if (bp->b_flags & B_DELWRI) {
1505 		bp->b_qindex = QUEUE_DIRTY;
1506 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1507 	} else if (vm_page_count_severe()) {
1508 		/*
1509 		 * We are too low on memory, we have to try to free the
1510 		 * buffer (most importantly: the wired pages making up its
1511 		 * backing store) *now*.
1512 		 */
1513 		mtx_unlock(&bqlock);
1514 		splx(s);
1515 		brelse(bp);
1516 		return;
1517 	} else {
1518 		bp->b_qindex = QUEUE_CLEAN;
1519 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1520 	}
1521 	mtx_unlock(&bqlock);
1522 
1523 	if ((bp->b_flags & B_LOCKED) == 0 &&
1524 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1525 		bufcountwakeup();
1526 	}
1527 
1528 	/*
1529 	 * Something we can maybe free or reuse.
1530 	 */
1531 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1532 		bufspacewakeup();
1533 
1534 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1535 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1536 		panic("bqrelse: not dirty");
1537 	/* unlock */
1538 	BUF_UNLOCK(bp);
1539 	splx(s);
1540 }
1541 
1542 /* Give pages used by the bp back to the VM system (where possible) */
1543 static void
1544 vfs_vmio_release(bp)
1545 	struct buf *bp;
1546 {
1547 	int i;
1548 	vm_page_t m;
1549 
1550 	GIANT_REQUIRED;
1551 	if (bp->b_object != NULL)
1552 		VM_OBJECT_LOCK(bp->b_object);
1553 	vm_page_lock_queues();
1554 	for (i = 0; i < bp->b_npages; i++) {
1555 		m = bp->b_pages[i];
1556 		bp->b_pages[i] = NULL;
1557 		/*
1558 		 * In order to keep page LRU ordering consistent, put
1559 		 * everything on the inactive queue.
1560 		 */
1561 		vm_page_unwire(m, 0);
1562 		/*
1563 		 * We don't mess with busy pages, it is
1564 		 * the responsibility of the process that
1565 		 * busied the pages to deal with them.
1566 		 */
1567 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1568 			continue;
1569 
1570 		if (m->wire_count == 0) {
1571 			vm_page_flag_clear(m, PG_ZERO);
1572 			/*
1573 			 * Might as well free the page if we can and it has
1574 			 * no valid data.  We also free the page if the
1575 			 * buffer was used for direct I/O
1576 			 */
1577 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1578 			    m->hold_count == 0) {
1579 				vm_page_busy(m);
1580 				pmap_remove_all(m);
1581 				vm_page_free(m);
1582 			} else if (bp->b_flags & B_DIRECT) {
1583 				vm_page_try_to_free(m);
1584 			} else if (vm_page_count_severe()) {
1585 				vm_page_try_to_cache(m);
1586 			}
1587 		}
1588 	}
1589 	vm_page_unlock_queues();
1590 	if (bp->b_object != NULL)
1591 		VM_OBJECT_UNLOCK(bp->b_object);
1592 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1593 
1594 	if (bp->b_bufsize) {
1595 		bufspacewakeup();
1596 		bp->b_bufsize = 0;
1597 	}
1598 	bp->b_npages = 0;
1599 	bp->b_flags &= ~B_VMIO;
1600 	if (bp->b_vp)
1601 		brelvp(bp);
1602 }
1603 
1604 /*
1605  * Check to see if a block at a particular lbn is available for a clustered
1606  * write.
1607  */
1608 static int
1609 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1610 {
1611 	struct buf *bpa;
1612 	int match;
1613 
1614 	match = 0;
1615 
1616 	/* If the buf isn't in core skip it */
1617 	if ((bpa = gbincore(vp, lblkno)) == NULL)
1618 		return (0);
1619 
1620 	/* If the buf is busy we don't want to wait for it */
1621 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1622 		return (0);
1623 
1624 	/* Only cluster with valid clusterable delayed write buffers */
1625 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1626 	    (B_DELWRI | B_CLUSTEROK))
1627 		goto done;
1628 
1629 	if (bpa->b_bufsize != size)
1630 		goto done;
1631 
1632 	/*
1633 	 * Check to see if it is in the expected place on disk and that the
1634 	 * block has been mapped.
1635 	 */
1636 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1637 		match = 1;
1638 done:
1639 	BUF_UNLOCK(bpa);
1640 	return (match);
1641 }
1642 
1643 /*
1644  *	vfs_bio_awrite:
1645  *
1646  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1647  *	This is much better then the old way of writing only one buffer at
1648  *	a time.  Note that we may not be presented with the buffers in the
1649  *	correct order, so we search for the cluster in both directions.
1650  */
1651 int
1652 vfs_bio_awrite(struct buf * bp)
1653 {
1654 	int i;
1655 	int j;
1656 	daddr_t lblkno = bp->b_lblkno;
1657 	struct vnode *vp = bp->b_vp;
1658 	int s;
1659 	int ncl;
1660 	int nwritten;
1661 	int size;
1662 	int maxcl;
1663 
1664 	s = splbio();
1665 	/*
1666 	 * right now we support clustered writing only to regular files.  If
1667 	 * we find a clusterable block we could be in the middle of a cluster
1668 	 * rather then at the beginning.
1669 	 */
1670 	if ((vp->v_type == VREG) &&
1671 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1672 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1673 
1674 		size = vp->v_mount->mnt_stat.f_iosize;
1675 		maxcl = MAXPHYS / size;
1676 
1677 		VI_LOCK(vp);
1678 		for (i = 1; i < maxcl; i++)
1679 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1680 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1681 				break;
1682 
1683 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1684 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1685 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1686 				break;
1687 
1688 		VI_UNLOCK(vp);
1689 		--j;
1690 		ncl = i + j;
1691 		/*
1692 		 * this is a possible cluster write
1693 		 */
1694 		if (ncl != 1) {
1695 			BUF_UNLOCK(bp);
1696 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1697 			splx(s);
1698 			return nwritten;
1699 		}
1700 	}
1701 
1702 	bremfree(bp);
1703 	bp->b_flags |= B_ASYNC;
1704 
1705 	splx(s);
1706 	/*
1707 	 * default (old) behavior, writing out only one block
1708 	 *
1709 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1710 	 */
1711 	nwritten = bp->b_bufsize;
1712 	(void) BUF_WRITE(bp);
1713 
1714 	return nwritten;
1715 }
1716 
1717 /*
1718  *	getnewbuf:
1719  *
1720  *	Find and initialize a new buffer header, freeing up existing buffers
1721  *	in the bufqueues as necessary.  The new buffer is returned locked.
1722  *
1723  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1724  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1725  *
1726  *	We block if:
1727  *		We have insufficient buffer headers
1728  *		We have insufficient buffer space
1729  *		buffer_map is too fragmented ( space reservation fails )
1730  *		If we have to flush dirty buffers ( but we try to avoid this )
1731  *
1732  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1733  *	Instead we ask the buf daemon to do it for us.  We attempt to
1734  *	avoid piecemeal wakeups of the pageout daemon.
1735  */
1736 
1737 static struct buf *
1738 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1739 {
1740 	struct buf *bp;
1741 	struct buf *nbp;
1742 	int defrag = 0;
1743 	int nqindex;
1744 	static int flushingbufs;
1745 
1746 	GIANT_REQUIRED;
1747 
1748 	/*
1749 	 * We can't afford to block since we might be holding a vnode lock,
1750 	 * which may prevent system daemons from running.  We deal with
1751 	 * low-memory situations by proactively returning memory and running
1752 	 * async I/O rather then sync I/O.
1753 	 */
1754 
1755 	atomic_add_int(&getnewbufcalls, 1);
1756 	atomic_subtract_int(&getnewbufrestarts, 1);
1757 restart:
1758 	atomic_add_int(&getnewbufrestarts, 1);
1759 
1760 	/*
1761 	 * Setup for scan.  If we do not have enough free buffers,
1762 	 * we setup a degenerate case that immediately fails.  Note
1763 	 * that if we are specially marked process, we are allowed to
1764 	 * dip into our reserves.
1765 	 *
1766 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1767 	 *
1768 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1769 	 * However, there are a number of cases (defragging, reusing, ...)
1770 	 * where we cannot backup.
1771 	 */
1772 	mtx_lock(&bqlock);
1773 	nqindex = QUEUE_EMPTYKVA;
1774 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1775 
1776 	if (nbp == NULL) {
1777 		/*
1778 		 * If no EMPTYKVA buffers and we are either
1779 		 * defragging or reusing, locate a CLEAN buffer
1780 		 * to free or reuse.  If bufspace useage is low
1781 		 * skip this step so we can allocate a new buffer.
1782 		 */
1783 		if (defrag || bufspace >= lobufspace) {
1784 			nqindex = QUEUE_CLEAN;
1785 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1786 		}
1787 
1788 		/*
1789 		 * If we could not find or were not allowed to reuse a
1790 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1791 		 * buffer.  We can only use an EMPTY buffer if allocating
1792 		 * its KVA would not otherwise run us out of buffer space.
1793 		 */
1794 		if (nbp == NULL && defrag == 0 &&
1795 		    bufspace + maxsize < hibufspace) {
1796 			nqindex = QUEUE_EMPTY;
1797 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1803 	 * depending.
1804 	 */
1805 
1806 	while ((bp = nbp) != NULL) {
1807 		int qindex = nqindex;
1808 
1809 		/*
1810 		 * Calculate next bp ( we can only use it if we do not block
1811 		 * or do other fancy things ).
1812 		 */
1813 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1814 			switch(qindex) {
1815 			case QUEUE_EMPTY:
1816 				nqindex = QUEUE_EMPTYKVA;
1817 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1818 					break;
1819 				/* FALLTHROUGH */
1820 			case QUEUE_EMPTYKVA:
1821 				nqindex = QUEUE_CLEAN;
1822 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1823 					break;
1824 				/* FALLTHROUGH */
1825 			case QUEUE_CLEAN:
1826 				/*
1827 				 * nbp is NULL.
1828 				 */
1829 				break;
1830 			}
1831 		}
1832 
1833 		/*
1834 		 * Sanity Checks
1835 		 */
1836 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1837 
1838 		/*
1839 		 * Note: we no longer distinguish between VMIO and non-VMIO
1840 		 * buffers.
1841 		 */
1842 
1843 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1844 
1845 		/*
1846 		 * If we are defragging then we need a buffer with
1847 		 * b_kvasize != 0.  XXX this situation should no longer
1848 		 * occur, if defrag is non-zero the buffer's b_kvasize
1849 		 * should also be non-zero at this point.  XXX
1850 		 */
1851 		if (defrag && bp->b_kvasize == 0) {
1852 			printf("Warning: defrag empty buffer %p\n", bp);
1853 			continue;
1854 		}
1855 
1856 		/*
1857 		 * Start freeing the bp.  This is somewhat involved.  nbp
1858 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1859 		 */
1860 
1861 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1862 			panic("getnewbuf: locked buf");
1863 		bremfreel(bp);
1864 		mtx_unlock(&bqlock);
1865 
1866 		if (qindex == QUEUE_CLEAN) {
1867 			if (bp->b_flags & B_VMIO) {
1868 				bp->b_flags &= ~B_ASYNC;
1869 				vfs_vmio_release(bp);
1870 			}
1871 			if (bp->b_vp)
1872 				brelvp(bp);
1873 		}
1874 
1875 		/*
1876 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1877 		 * the scan from this point on.
1878 		 *
1879 		 * Get the rest of the buffer freed up.  b_kva* is still
1880 		 * valid after this operation.
1881 		 */
1882 
1883 		if (bp->b_rcred != NOCRED) {
1884 			crfree(bp->b_rcred);
1885 			bp->b_rcred = NOCRED;
1886 		}
1887 		if (bp->b_wcred != NOCRED) {
1888 			crfree(bp->b_wcred);
1889 			bp->b_wcred = NOCRED;
1890 		}
1891 		if (LIST_FIRST(&bp->b_dep) != NULL)
1892 			buf_deallocate(bp);
1893 		if (bp->b_xflags & BX_BKGRDINPROG)
1894 			panic("losing buffer 3");
1895 
1896 		if (bp->b_bufsize)
1897 			allocbuf(bp, 0);
1898 
1899 		bp->b_flags = 0;
1900 		bp->b_ioflags = 0;
1901 		bp->b_xflags = 0;
1902 		bp->b_vflags = 0;
1903 		bp->b_dev = NODEV;
1904 		bp->b_vp = NULL;
1905 		bp->b_blkno = bp->b_lblkno = 0;
1906 		bp->b_offset = NOOFFSET;
1907 		bp->b_iodone = 0;
1908 		bp->b_error = 0;
1909 		bp->b_resid = 0;
1910 		bp->b_bcount = 0;
1911 		bp->b_npages = 0;
1912 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1913 		bp->b_magic = B_MAGIC_BIO;
1914 		bp->b_op = &buf_ops_bio;
1915 		bp->b_object = NULL;
1916 
1917 		LIST_INIT(&bp->b_dep);
1918 
1919 		/*
1920 		 * If we are defragging then free the buffer.
1921 		 */
1922 		if (defrag) {
1923 			bp->b_flags |= B_INVAL;
1924 			bfreekva(bp);
1925 			brelse(bp);
1926 			defrag = 0;
1927 			goto restart;
1928 		}
1929 
1930 		/*
1931 		 * If we are overcomitted then recover the buffer and its
1932 		 * KVM space.  This occurs in rare situations when multiple
1933 		 * processes are blocked in getnewbuf() or allocbuf().
1934 		 */
1935 		if (bufspace >= hibufspace)
1936 			flushingbufs = 1;
1937 		if (flushingbufs && bp->b_kvasize != 0) {
1938 			bp->b_flags |= B_INVAL;
1939 			bfreekva(bp);
1940 			brelse(bp);
1941 			goto restart;
1942 		}
1943 		if (bufspace < lobufspace)
1944 			flushingbufs = 0;
1945 		break;
1946 	}
1947 
1948 	/*
1949 	 * If we exhausted our list, sleep as appropriate.  We may have to
1950 	 * wakeup various daemons and write out some dirty buffers.
1951 	 *
1952 	 * Generally we are sleeping due to insufficient buffer space.
1953 	 */
1954 
1955 	if (bp == NULL) {
1956 		int flags;
1957 		char *waitmsg;
1958 
1959 		mtx_unlock(&bqlock);
1960 		if (defrag) {
1961 			flags = VFS_BIO_NEED_BUFSPACE;
1962 			waitmsg = "nbufkv";
1963 		} else if (bufspace >= hibufspace) {
1964 			waitmsg = "nbufbs";
1965 			flags = VFS_BIO_NEED_BUFSPACE;
1966 		} else {
1967 			waitmsg = "newbuf";
1968 			flags = VFS_BIO_NEED_ANY;
1969 		}
1970 
1971 		bd_speedup();	/* heeeelp */
1972 
1973 		mtx_lock(&nblock);
1974 		needsbuffer |= flags;
1975 		while (needsbuffer & flags) {
1976 			if (msleep(&needsbuffer, &nblock,
1977 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1978 				mtx_unlock(&nblock);
1979 				return (NULL);
1980 			}
1981 		}
1982 		mtx_unlock(&nblock);
1983 	} else {
1984 		/*
1985 		 * We finally have a valid bp.  We aren't quite out of the
1986 		 * woods, we still have to reserve kva space.  In order
1987 		 * to keep fragmentation sane we only allocate kva in
1988 		 * BKVASIZE chunks.
1989 		 */
1990 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1991 
1992 		if (maxsize != bp->b_kvasize) {
1993 			vm_offset_t addr = 0;
1994 
1995 			bfreekva(bp);
1996 
1997 			if (vm_map_findspace(buffer_map,
1998 				vm_map_min(buffer_map), maxsize, &addr)) {
1999 				/*
2000 				 * Uh oh.  Buffer map is to fragmented.  We
2001 				 * must defragment the map.
2002 				 */
2003 				atomic_add_int(&bufdefragcnt, 1);
2004 				defrag = 1;
2005 				bp->b_flags |= B_INVAL;
2006 				brelse(bp);
2007 				goto restart;
2008 			}
2009 			if (addr) {
2010 				vm_map_insert(buffer_map, NULL, 0,
2011 					addr, addr + maxsize,
2012 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2013 
2014 				bp->b_kvabase = (caddr_t) addr;
2015 				bp->b_kvasize = maxsize;
2016 				atomic_add_int(&bufspace, bp->b_kvasize);
2017 				atomic_add_int(&bufreusecnt, 1);
2018 			}
2019 		}
2020 		bp->b_saveaddr = bp->b_kvabase;
2021 		bp->b_data = bp->b_saveaddr;
2022 	}
2023 	return(bp);
2024 }
2025 
2026 /*
2027  *	buf_daemon:
2028  *
2029  *	buffer flushing daemon.  Buffers are normally flushed by the
2030  *	update daemon but if it cannot keep up this process starts to
2031  *	take the load in an attempt to prevent getnewbuf() from blocking.
2032  */
2033 
2034 static struct proc *bufdaemonproc;
2035 
2036 static struct kproc_desc buf_kp = {
2037 	"bufdaemon",
2038 	buf_daemon,
2039 	&bufdaemonproc
2040 };
2041 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2042 
2043 static void
2044 buf_daemon()
2045 {
2046 	int s;
2047 
2048 	mtx_lock(&Giant);
2049 
2050 	/*
2051 	 * This process needs to be suspended prior to shutdown sync.
2052 	 */
2053 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2054 	    SHUTDOWN_PRI_LAST);
2055 
2056 	/*
2057 	 * This process is allowed to take the buffer cache to the limit
2058 	 */
2059 	s = splbio();
2060 	mtx_lock(&bdlock);
2061 
2062 	for (;;) {
2063 		bd_request = 0;
2064 		mtx_unlock(&bdlock);
2065 
2066 		kthread_suspend_check(bufdaemonproc);
2067 
2068 		/*
2069 		 * Do the flush.  Limit the amount of in-transit I/O we
2070 		 * allow to build up, otherwise we would completely saturate
2071 		 * the I/O system.  Wakeup any waiting processes before we
2072 		 * normally would so they can run in parallel with our drain.
2073 		 */
2074 		while (numdirtybuffers > lodirtybuffers) {
2075 			if (flushbufqueues(0) == 0) {
2076 				/*
2077 				 * Could not find any buffers without rollback
2078 				 * dependencies, so just write the first one
2079 				 * in the hopes of eventually making progress.
2080 				 */
2081 				flushbufqueues(1);
2082 				break;
2083 			}
2084 			waitrunningbufspace();
2085 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2086 		}
2087 
2088 		/*
2089 		 * Only clear bd_request if we have reached our low water
2090 		 * mark.  The buf_daemon normally waits 1 second and
2091 		 * then incrementally flushes any dirty buffers that have
2092 		 * built up, within reason.
2093 		 *
2094 		 * If we were unable to hit our low water mark and couldn't
2095 		 * find any flushable buffers, we sleep half a second.
2096 		 * Otherwise we loop immediately.
2097 		 */
2098 		mtx_lock(&bdlock);
2099 		if (numdirtybuffers <= lodirtybuffers) {
2100 			/*
2101 			 * We reached our low water mark, reset the
2102 			 * request and sleep until we are needed again.
2103 			 * The sleep is just so the suspend code works.
2104 			 */
2105 			bd_request = 0;
2106 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2107 		} else {
2108 			/*
2109 			 * We couldn't find any flushable dirty buffers but
2110 			 * still have too many dirty buffers, we
2111 			 * have to sleep and try again.  (rare)
2112 			 */
2113 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2114 		}
2115 	}
2116 }
2117 
2118 /*
2119  *	flushbufqueues:
2120  *
2121  *	Try to flush a buffer in the dirty queue.  We must be careful to
2122  *	free up B_INVAL buffers instead of write them, which NFS is
2123  *	particularly sensitive to.
2124  */
2125 int flushwithdeps = 0;
2126 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2127     0, "Number of buffers flushed with dependecies that require rollbacks");
2128 static int
2129 flushbufqueues(int flushdeps)
2130 {
2131 	struct thread *td = curthread;
2132 	struct vnode *vp;
2133 	struct buf *bp;
2134 	int hasdeps;
2135 
2136 	mtx_lock(&bqlock);
2137 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2138 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2139 			continue;
2140 		KASSERT((bp->b_flags & B_DELWRI),
2141 		    ("unexpected clean buffer %p", bp));
2142 		if ((bp->b_xflags & BX_BKGRDINPROG) != 0) {
2143 			BUF_UNLOCK(bp);
2144 			continue;
2145 		}
2146 		if (bp->b_flags & B_INVAL) {
2147 			bremfreel(bp);
2148 			mtx_unlock(&bqlock);
2149 			brelse(bp);
2150 			return (1);
2151 		}
2152 
2153 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2154 			if (flushdeps == 0) {
2155 				BUF_UNLOCK(bp);
2156 				continue;
2157 			}
2158 			hasdeps = 1;
2159 		} else
2160 			hasdeps = 0;
2161 		/*
2162 		 * We must hold the lock on a vnode before writing
2163 		 * one of its buffers. Otherwise we may confuse, or
2164 		 * in the case of a snapshot vnode, deadlock the
2165 		 * system.
2166 		 *
2167 		 * The lock order here is the reverse of the normal
2168 		 * of vnode followed by buf lock.  This is ok because
2169 		 * the NOWAIT will prevent deadlock.
2170 		 */
2171 		if ((vp = bp->b_vp) == NULL ||
2172 		    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2173 			mtx_unlock(&bqlock);
2174 			vfs_bio_awrite(bp);
2175 			if (vp != NULL)
2176 				VOP_UNLOCK(vp, 0, td);
2177 			flushwithdeps += hasdeps;
2178 			return (1);
2179 		}
2180 		BUF_UNLOCK(bp);
2181 	}
2182 	mtx_unlock(&bqlock);
2183 	return (0);
2184 }
2185 
2186 /*
2187  * Check to see if a block is currently memory resident.
2188  */
2189 struct buf *
2190 incore(struct vnode * vp, daddr_t blkno)
2191 {
2192 	struct buf *bp;
2193 
2194 	int s = splbio();
2195 	VI_LOCK(vp);
2196 	bp = gbincore(vp, blkno);
2197 	VI_UNLOCK(vp);
2198 	splx(s);
2199 	return (bp);
2200 }
2201 
2202 /*
2203  * Returns true if no I/O is needed to access the
2204  * associated VM object.  This is like incore except
2205  * it also hunts around in the VM system for the data.
2206  */
2207 
2208 int
2209 inmem(struct vnode * vp, daddr_t blkno)
2210 {
2211 	vm_object_t obj;
2212 	vm_offset_t toff, tinc, size;
2213 	vm_page_t m;
2214 	vm_ooffset_t off;
2215 
2216 	GIANT_REQUIRED;
2217 	ASSERT_VOP_LOCKED(vp, "inmem");
2218 
2219 	if (incore(vp, blkno))
2220 		return 1;
2221 	if (vp->v_mount == NULL)
2222 		return 0;
2223 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2224 		return 0;
2225 
2226 	size = PAGE_SIZE;
2227 	if (size > vp->v_mount->mnt_stat.f_iosize)
2228 		size = vp->v_mount->mnt_stat.f_iosize;
2229 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2230 
2231 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2232 		VM_OBJECT_LOCK(obj);
2233 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2234 		VM_OBJECT_UNLOCK(obj);
2235 		if (!m)
2236 			goto notinmem;
2237 		tinc = size;
2238 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2239 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2240 		if (vm_page_is_valid(m,
2241 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2242 			goto notinmem;
2243 	}
2244 	return 1;
2245 
2246 notinmem:
2247 	return (0);
2248 }
2249 
2250 /*
2251  *	vfs_setdirty:
2252  *
2253  *	Sets the dirty range for a buffer based on the status of the dirty
2254  *	bits in the pages comprising the buffer.
2255  *
2256  *	The range is limited to the size of the buffer.
2257  *
2258  *	This routine is primarily used by NFS, but is generalized for the
2259  *	B_VMIO case.
2260  */
2261 static void
2262 vfs_setdirty(struct buf *bp)
2263 {
2264 	int i;
2265 	vm_object_t object;
2266 
2267 	GIANT_REQUIRED;
2268 	/*
2269 	 * Degenerate case - empty buffer
2270 	 */
2271 
2272 	if (bp->b_bufsize == 0)
2273 		return;
2274 
2275 	/*
2276 	 * We qualify the scan for modified pages on whether the
2277 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2278 	 * is not cleared simply by protecting pages off.
2279 	 */
2280 
2281 	if ((bp->b_flags & B_VMIO) == 0)
2282 		return;
2283 
2284 	object = bp->b_pages[0]->object;
2285 	VM_OBJECT_LOCK(object);
2286 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2287 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2288 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2289 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2290 
2291 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2292 		vm_offset_t boffset;
2293 		vm_offset_t eoffset;
2294 
2295 		vm_page_lock_queues();
2296 		/*
2297 		 * test the pages to see if they have been modified directly
2298 		 * by users through the VM system.
2299 		 */
2300 		for (i = 0; i < bp->b_npages; i++) {
2301 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2302 			vm_page_test_dirty(bp->b_pages[i]);
2303 		}
2304 
2305 		/*
2306 		 * Calculate the encompassing dirty range, boffset and eoffset,
2307 		 * (eoffset - boffset) bytes.
2308 		 */
2309 
2310 		for (i = 0; i < bp->b_npages; i++) {
2311 			if (bp->b_pages[i]->dirty)
2312 				break;
2313 		}
2314 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2315 
2316 		for (i = bp->b_npages - 1; i >= 0; --i) {
2317 			if (bp->b_pages[i]->dirty) {
2318 				break;
2319 			}
2320 		}
2321 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2322 
2323 		vm_page_unlock_queues();
2324 		/*
2325 		 * Fit it to the buffer.
2326 		 */
2327 
2328 		if (eoffset > bp->b_bcount)
2329 			eoffset = bp->b_bcount;
2330 
2331 		/*
2332 		 * If we have a good dirty range, merge with the existing
2333 		 * dirty range.
2334 		 */
2335 
2336 		if (boffset < eoffset) {
2337 			if (bp->b_dirtyoff > boffset)
2338 				bp->b_dirtyoff = boffset;
2339 			if (bp->b_dirtyend < eoffset)
2340 				bp->b_dirtyend = eoffset;
2341 		}
2342 	}
2343 	VM_OBJECT_UNLOCK(object);
2344 }
2345 
2346 /*
2347  *	getblk:
2348  *
2349  *	Get a block given a specified block and offset into a file/device.
2350  *	The buffers B_DONE bit will be cleared on return, making it almost
2351  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2352  *	return.  The caller should clear B_INVAL prior to initiating a
2353  *	READ.
2354  *
2355  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2356  *	an existing buffer.
2357  *
2358  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2359  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2360  *	and then cleared based on the backing VM.  If the previous buffer is
2361  *	non-0-sized but invalid, B_CACHE will be cleared.
2362  *
2363  *	If getblk() must create a new buffer, the new buffer is returned with
2364  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2365  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2366  *	backing VM.
2367  *
2368  *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2369  *	B_CACHE bit is clear.
2370  *
2371  *	What this means, basically, is that the caller should use B_CACHE to
2372  *	determine whether the buffer is fully valid or not and should clear
2373  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2374  *	the buffer by loading its data area with something, the caller needs
2375  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2376  *	the caller should set B_CACHE ( as an optimization ), else the caller
2377  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2378  *	a write attempt or if it was a successfull read.  If the caller
2379  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2380  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2381  */
2382 struct buf *
2383 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2384     int flags)
2385 {
2386 	struct buf *bp;
2387 	int s;
2388 	int error;
2389 	ASSERT_VOP_LOCKED(vp, "getblk");
2390 
2391 	if (size > MAXBSIZE)
2392 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2393 
2394 	s = splbio();
2395 loop:
2396 	/*
2397 	 * Block if we are low on buffers.   Certain processes are allowed
2398 	 * to completely exhaust the buffer cache.
2399          *
2400          * If this check ever becomes a bottleneck it may be better to
2401          * move it into the else, when gbincore() fails.  At the moment
2402          * it isn't a problem.
2403 	 *
2404 	 * XXX remove if 0 sections (clean this up after its proven)
2405          */
2406 	if (numfreebuffers == 0) {
2407 		if (curthread == PCPU_GET(idlethread))
2408 			return NULL;
2409 		mtx_lock(&nblock);
2410 		needsbuffer |= VFS_BIO_NEED_ANY;
2411 		mtx_unlock(&nblock);
2412 	}
2413 
2414 	VI_LOCK(vp);
2415 	if ((bp = gbincore(vp, blkno))) {
2416 		int lockflags;
2417 		/*
2418 		 * Buffer is in-core.  If the buffer is not busy, it must
2419 		 * be on a queue.
2420 		 */
2421 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2422 
2423 		if (flags & GB_LOCK_NOWAIT)
2424 			lockflags |= LK_NOWAIT;
2425 
2426 		error = BUF_TIMELOCK(bp, lockflags,
2427 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2428 
2429 		/*
2430 		 * If we slept and got the lock we have to restart in case
2431 		 * the buffer changed identities.
2432 		 */
2433 		if (error == ENOLCK)
2434 			goto loop;
2435 		/* We timed out or were interrupted. */
2436 		else if (error)
2437 			return (NULL);
2438 
2439 		/*
2440 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2441 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2442 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2443 		 * backing VM cache.
2444 		 */
2445 		if (bp->b_flags & B_INVAL)
2446 			bp->b_flags &= ~B_CACHE;
2447 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2448 			bp->b_flags |= B_CACHE;
2449 		bremfree(bp);
2450 
2451 		/*
2452 		 * check for size inconsistancies for non-VMIO case.
2453 		 */
2454 
2455 		if (bp->b_bcount != size) {
2456 			if ((bp->b_flags & B_VMIO) == 0 ||
2457 			    (size > bp->b_kvasize)) {
2458 				if (bp->b_flags & B_DELWRI) {
2459 					bp->b_flags |= B_NOCACHE;
2460 					BUF_WRITE(bp);
2461 				} else {
2462 					if ((bp->b_flags & B_VMIO) &&
2463 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2464 						bp->b_flags |= B_RELBUF;
2465 						brelse(bp);
2466 					} else {
2467 						bp->b_flags |= B_NOCACHE;
2468 						BUF_WRITE(bp);
2469 					}
2470 				}
2471 				goto loop;
2472 			}
2473 		}
2474 
2475 		/*
2476 		 * If the size is inconsistant in the VMIO case, we can resize
2477 		 * the buffer.  This might lead to B_CACHE getting set or
2478 		 * cleared.  If the size has not changed, B_CACHE remains
2479 		 * unchanged from its previous state.
2480 		 */
2481 
2482 		if (bp->b_bcount != size)
2483 			allocbuf(bp, size);
2484 
2485 		KASSERT(bp->b_offset != NOOFFSET,
2486 		    ("getblk: no buffer offset"));
2487 
2488 		/*
2489 		 * A buffer with B_DELWRI set and B_CACHE clear must
2490 		 * be committed before we can return the buffer in
2491 		 * order to prevent the caller from issuing a read
2492 		 * ( due to B_CACHE not being set ) and overwriting
2493 		 * it.
2494 		 *
2495 		 * Most callers, including NFS and FFS, need this to
2496 		 * operate properly either because they assume they
2497 		 * can issue a read if B_CACHE is not set, or because
2498 		 * ( for example ) an uncached B_DELWRI might loop due
2499 		 * to softupdates re-dirtying the buffer.  In the latter
2500 		 * case, B_CACHE is set after the first write completes,
2501 		 * preventing further loops.
2502 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2503 		 * above while extending the buffer, we cannot allow the
2504 		 * buffer to remain with B_CACHE set after the write
2505 		 * completes or it will represent a corrupt state.  To
2506 		 * deal with this we set B_NOCACHE to scrap the buffer
2507 		 * after the write.
2508 		 *
2509 		 * We might be able to do something fancy, like setting
2510 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2511 		 * so the below call doesn't set B_CACHE, but that gets real
2512 		 * confusing.  This is much easier.
2513 		 */
2514 
2515 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2516 			bp->b_flags |= B_NOCACHE;
2517 			BUF_WRITE(bp);
2518 			goto loop;
2519 		}
2520 
2521 		splx(s);
2522 		bp->b_flags &= ~B_DONE;
2523 	} else {
2524 		int bsize, maxsize, vmio;
2525 		off_t offset;
2526 
2527 		/*
2528 		 * Buffer is not in-core, create new buffer.  The buffer
2529 		 * returned by getnewbuf() is locked.  Note that the returned
2530 		 * buffer is also considered valid (not marked B_INVAL).
2531 		 */
2532 		VI_UNLOCK(vp);
2533 		if (vn_isdisk(vp, NULL))
2534 			bsize = DEV_BSIZE;
2535 		else if (vp->v_mountedhere)
2536 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2537 		else if (vp->v_mount)
2538 			bsize = vp->v_mount->mnt_stat.f_iosize;
2539 		else
2540 			bsize = size;
2541 
2542 		offset = blkno * bsize;
2543 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2544 		    (vp->v_vflag & VV_OBJBUF);
2545 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2546 		maxsize = imax(maxsize, bsize);
2547 
2548 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2549 			if (slpflag || slptimeo) {
2550 				splx(s);
2551 				return NULL;
2552 			}
2553 			goto loop;
2554 		}
2555 
2556 		/*
2557 		 * This code is used to make sure that a buffer is not
2558 		 * created while the getnewbuf routine is blocked.
2559 		 * This can be a problem whether the vnode is locked or not.
2560 		 * If the buffer is created out from under us, we have to
2561 		 * throw away the one we just created.  There is now window
2562 		 * race because we are safely running at splbio() from the
2563 		 * point of the duplicate buffer creation through to here,
2564 		 * and we've locked the buffer.
2565 		 *
2566 		 * Note: this must occur before we associate the buffer
2567 		 * with the vp especially considering limitations in
2568 		 * the splay tree implementation when dealing with duplicate
2569 		 * lblkno's.
2570 		 */
2571 		VI_LOCK(vp);
2572 		if (gbincore(vp, blkno)) {
2573 			VI_UNLOCK(vp);
2574 			bp->b_flags |= B_INVAL;
2575 			brelse(bp);
2576 			goto loop;
2577 		}
2578 
2579 		/*
2580 		 * Insert the buffer into the hash, so that it can
2581 		 * be found by incore.
2582 		 */
2583 		bp->b_blkno = bp->b_lblkno = blkno;
2584 		bp->b_offset = offset;
2585 
2586 		bgetvp(vp, bp);
2587 		VI_UNLOCK(vp);
2588 
2589 		/*
2590 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2591 		 * buffer size starts out as 0, B_CACHE will be set by
2592 		 * allocbuf() for the VMIO case prior to it testing the
2593 		 * backing store for validity.
2594 		 */
2595 
2596 		if (vmio) {
2597 			bp->b_flags |= B_VMIO;
2598 #if defined(VFS_BIO_DEBUG)
2599 			if (vp->v_type != VREG)
2600 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2601 #endif
2602 			VOP_GETVOBJECT(vp, &bp->b_object);
2603 		} else {
2604 			bp->b_flags &= ~B_VMIO;
2605 			bp->b_object = NULL;
2606 		}
2607 
2608 		allocbuf(bp, size);
2609 
2610 		splx(s);
2611 		bp->b_flags &= ~B_DONE;
2612 	}
2613 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2614 	return (bp);
2615 }
2616 
2617 /*
2618  * Get an empty, disassociated buffer of given size.  The buffer is initially
2619  * set to B_INVAL.
2620  */
2621 struct buf *
2622 geteblk(int size)
2623 {
2624 	struct buf *bp;
2625 	int s;
2626 	int maxsize;
2627 
2628 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2629 
2630 	s = splbio();
2631 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2632 		continue;
2633 	splx(s);
2634 	allocbuf(bp, size);
2635 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2636 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2637 	return (bp);
2638 }
2639 
2640 
2641 /*
2642  * This code constitutes the buffer memory from either anonymous system
2643  * memory (in the case of non-VMIO operations) or from an associated
2644  * VM object (in the case of VMIO operations).  This code is able to
2645  * resize a buffer up or down.
2646  *
2647  * Note that this code is tricky, and has many complications to resolve
2648  * deadlock or inconsistant data situations.  Tread lightly!!!
2649  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2650  * the caller.  Calling this code willy nilly can result in the loss of data.
2651  *
2652  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2653  * B_CACHE for the non-VMIO case.
2654  */
2655 
2656 int
2657 allocbuf(struct buf *bp, int size)
2658 {
2659 	int newbsize, mbsize;
2660 	int i;
2661 
2662 	GIANT_REQUIRED;
2663 
2664 	if (BUF_REFCNT(bp) == 0)
2665 		panic("allocbuf: buffer not busy");
2666 
2667 	if (bp->b_kvasize < size)
2668 		panic("allocbuf: buffer too small");
2669 
2670 	if ((bp->b_flags & B_VMIO) == 0) {
2671 		caddr_t origbuf;
2672 		int origbufsize;
2673 		/*
2674 		 * Just get anonymous memory from the kernel.  Don't
2675 		 * mess with B_CACHE.
2676 		 */
2677 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2678 		if (bp->b_flags & B_MALLOC)
2679 			newbsize = mbsize;
2680 		else
2681 			newbsize = round_page(size);
2682 
2683 		if (newbsize < bp->b_bufsize) {
2684 			/*
2685 			 * malloced buffers are not shrunk
2686 			 */
2687 			if (bp->b_flags & B_MALLOC) {
2688 				if (newbsize) {
2689 					bp->b_bcount = size;
2690 				} else {
2691 					free(bp->b_data, M_BIOBUF);
2692 					if (bp->b_bufsize) {
2693 						atomic_subtract_int(
2694 						    &bufmallocspace,
2695 						    bp->b_bufsize);
2696 						bufspacewakeup();
2697 						bp->b_bufsize = 0;
2698 					}
2699 					bp->b_saveaddr = bp->b_kvabase;
2700 					bp->b_data = bp->b_saveaddr;
2701 					bp->b_bcount = 0;
2702 					bp->b_flags &= ~B_MALLOC;
2703 				}
2704 				return 1;
2705 			}
2706 			vm_hold_free_pages(
2707 			    bp,
2708 			    (vm_offset_t) bp->b_data + newbsize,
2709 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2710 		} else if (newbsize > bp->b_bufsize) {
2711 			/*
2712 			 * We only use malloced memory on the first allocation.
2713 			 * and revert to page-allocated memory when the buffer
2714 			 * grows.
2715 			 */
2716 			/*
2717 			 * There is a potential smp race here that could lead
2718 			 * to bufmallocspace slightly passing the max.  It
2719 			 * is probably extremely rare and not worth worrying
2720 			 * over.
2721 			 */
2722 			if ( (bufmallocspace < maxbufmallocspace) &&
2723 				(bp->b_bufsize == 0) &&
2724 				(mbsize <= PAGE_SIZE/2)) {
2725 
2726 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2727 				bp->b_bufsize = mbsize;
2728 				bp->b_bcount = size;
2729 				bp->b_flags |= B_MALLOC;
2730 				atomic_add_int(&bufmallocspace, mbsize);
2731 				return 1;
2732 			}
2733 			origbuf = NULL;
2734 			origbufsize = 0;
2735 			/*
2736 			 * If the buffer is growing on its other-than-first allocation,
2737 			 * then we revert to the page-allocation scheme.
2738 			 */
2739 			if (bp->b_flags & B_MALLOC) {
2740 				origbuf = bp->b_data;
2741 				origbufsize = bp->b_bufsize;
2742 				bp->b_data = bp->b_kvabase;
2743 				if (bp->b_bufsize) {
2744 					atomic_subtract_int(&bufmallocspace,
2745 					    bp->b_bufsize);
2746 					bufspacewakeup();
2747 					bp->b_bufsize = 0;
2748 				}
2749 				bp->b_flags &= ~B_MALLOC;
2750 				newbsize = round_page(newbsize);
2751 			}
2752 			vm_hold_load_pages(
2753 			    bp,
2754 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2755 			    (vm_offset_t) bp->b_data + newbsize);
2756 			if (origbuf) {
2757 				bcopy(origbuf, bp->b_data, origbufsize);
2758 				free(origbuf, M_BIOBUF);
2759 			}
2760 		}
2761 	} else {
2762 		int desiredpages;
2763 
2764 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2765 		desiredpages = (size == 0) ? 0 :
2766 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2767 
2768 		if (bp->b_flags & B_MALLOC)
2769 			panic("allocbuf: VMIO buffer can't be malloced");
2770 		/*
2771 		 * Set B_CACHE initially if buffer is 0 length or will become
2772 		 * 0-length.
2773 		 */
2774 		if (size == 0 || bp->b_bufsize == 0)
2775 			bp->b_flags |= B_CACHE;
2776 
2777 		if (newbsize < bp->b_bufsize) {
2778 			/*
2779 			 * DEV_BSIZE aligned new buffer size is less then the
2780 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2781 			 * if we have to remove any pages.
2782 			 */
2783 			if (desiredpages < bp->b_npages) {
2784 				vm_page_t m;
2785 
2786 				vm_page_lock_queues();
2787 				for (i = desiredpages; i < bp->b_npages; i++) {
2788 					/*
2789 					 * the page is not freed here -- it
2790 					 * is the responsibility of
2791 					 * vnode_pager_setsize
2792 					 */
2793 					m = bp->b_pages[i];
2794 					KASSERT(m != bogus_page,
2795 					    ("allocbuf: bogus page found"));
2796 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2797 						vm_page_lock_queues();
2798 
2799 					bp->b_pages[i] = NULL;
2800 					vm_page_unwire(m, 0);
2801 				}
2802 				vm_page_unlock_queues();
2803 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2804 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2805 				bp->b_npages = desiredpages;
2806 			}
2807 		} else if (size > bp->b_bcount) {
2808 			/*
2809 			 * We are growing the buffer, possibly in a
2810 			 * byte-granular fashion.
2811 			 */
2812 			struct vnode *vp;
2813 			vm_object_t obj;
2814 			vm_offset_t toff;
2815 			vm_offset_t tinc;
2816 
2817 			/*
2818 			 * Step 1, bring in the VM pages from the object,
2819 			 * allocating them if necessary.  We must clear
2820 			 * B_CACHE if these pages are not valid for the
2821 			 * range covered by the buffer.
2822 			 */
2823 
2824 			vp = bp->b_vp;
2825 			obj = bp->b_object;
2826 
2827 			VM_OBJECT_LOCK(obj);
2828 			while (bp->b_npages < desiredpages) {
2829 				vm_page_t m;
2830 				vm_pindex_t pi;
2831 
2832 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2833 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2834 					/*
2835 					 * note: must allocate system pages
2836 					 * since blocking here could intefere
2837 					 * with paging I/O, no matter which
2838 					 * process we are.
2839 					 */
2840 					m = vm_page_alloc(obj, pi,
2841 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2842 					if (m == NULL) {
2843 						atomic_add_int(&vm_pageout_deficit,
2844 						    desiredpages - bp->b_npages);
2845 						VM_OBJECT_UNLOCK(obj);
2846 						VM_WAIT;
2847 						VM_OBJECT_LOCK(obj);
2848 					} else {
2849 						vm_page_lock_queues();
2850 						vm_page_wakeup(m);
2851 						vm_page_unlock_queues();
2852 						bp->b_flags &= ~B_CACHE;
2853 						bp->b_pages[bp->b_npages] = m;
2854 						++bp->b_npages;
2855 					}
2856 					continue;
2857 				}
2858 
2859 				/*
2860 				 * We found a page.  If we have to sleep on it,
2861 				 * retry because it might have gotten freed out
2862 				 * from under us.
2863 				 *
2864 				 * We can only test PG_BUSY here.  Blocking on
2865 				 * m->busy might lead to a deadlock:
2866 				 *
2867 				 *  vm_fault->getpages->cluster_read->allocbuf
2868 				 *
2869 				 */
2870 				vm_page_lock_queues();
2871 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2872 					continue;
2873 
2874 				/*
2875 				 * We have a good page.  Should we wakeup the
2876 				 * page daemon?
2877 				 */
2878 				if ((curproc != pageproc) &&
2879 				    ((m->queue - m->pc) == PQ_CACHE) &&
2880 				    ((cnt.v_free_count + cnt.v_cache_count) <
2881 					(cnt.v_free_min + cnt.v_cache_min))) {
2882 					pagedaemon_wakeup();
2883 				}
2884 				vm_page_flag_clear(m, PG_ZERO);
2885 				vm_page_wire(m);
2886 				vm_page_unlock_queues();
2887 				bp->b_pages[bp->b_npages] = m;
2888 				++bp->b_npages;
2889 			}
2890 			VM_OBJECT_UNLOCK(obj);
2891 
2892 			/*
2893 			 * Step 2.  We've loaded the pages into the buffer,
2894 			 * we have to figure out if we can still have B_CACHE
2895 			 * set.  Note that B_CACHE is set according to the
2896 			 * byte-granular range ( bcount and size ), new the
2897 			 * aligned range ( newbsize ).
2898 			 *
2899 			 * The VM test is against m->valid, which is DEV_BSIZE
2900 			 * aligned.  Needless to say, the validity of the data
2901 			 * needs to also be DEV_BSIZE aligned.  Note that this
2902 			 * fails with NFS if the server or some other client
2903 			 * extends the file's EOF.  If our buffer is resized,
2904 			 * B_CACHE may remain set! XXX
2905 			 */
2906 
2907 			toff = bp->b_bcount;
2908 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2909 
2910 			while ((bp->b_flags & B_CACHE) && toff < size) {
2911 				vm_pindex_t pi;
2912 
2913 				if (tinc > (size - toff))
2914 					tinc = size - toff;
2915 
2916 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2917 				    PAGE_SHIFT;
2918 
2919 				vfs_buf_test_cache(
2920 				    bp,
2921 				    bp->b_offset,
2922 				    toff,
2923 				    tinc,
2924 				    bp->b_pages[pi]
2925 				);
2926 				toff += tinc;
2927 				tinc = PAGE_SIZE;
2928 			}
2929 
2930 			/*
2931 			 * Step 3, fixup the KVM pmap.  Remember that
2932 			 * bp->b_data is relative to bp->b_offset, but
2933 			 * bp->b_offset may be offset into the first page.
2934 			 */
2935 
2936 			bp->b_data = (caddr_t)
2937 			    trunc_page((vm_offset_t)bp->b_data);
2938 			pmap_qenter(
2939 			    (vm_offset_t)bp->b_data,
2940 			    bp->b_pages,
2941 			    bp->b_npages
2942 			);
2943 
2944 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2945 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2946 		}
2947 	}
2948 	if (newbsize < bp->b_bufsize)
2949 		bufspacewakeup();
2950 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2951 	bp->b_bcount = size;		/* requested buffer size	*/
2952 	return 1;
2953 }
2954 
2955 void
2956 biodone(struct bio *bp)
2957 {
2958 	mtx_lock(&bdonelock);
2959 	bp->bio_flags |= BIO_DONE;
2960 	if (bp->bio_done == NULL)
2961 		wakeup(bp);
2962 	mtx_unlock(&bdonelock);
2963 	if (bp->bio_done != NULL)
2964 		bp->bio_done(bp);
2965 }
2966 
2967 /*
2968  * Wait for a BIO to finish.
2969  *
2970  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2971  * case is not yet clear.
2972  */
2973 int
2974 biowait(struct bio *bp, const char *wchan)
2975 {
2976 
2977 	mtx_lock(&bdonelock);
2978 	while ((bp->bio_flags & BIO_DONE) == 0)
2979 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2980 	mtx_unlock(&bdonelock);
2981 	if (bp->bio_error != 0)
2982 		return (bp->bio_error);
2983 	if (!(bp->bio_flags & BIO_ERROR))
2984 		return (0);
2985 	return (EIO);
2986 }
2987 
2988 void
2989 biofinish(struct bio *bp, struct devstat *stat, int error)
2990 {
2991 
2992 	if (error) {
2993 		bp->bio_error = error;
2994 		bp->bio_flags |= BIO_ERROR;
2995 	}
2996 	if (stat != NULL)
2997 		devstat_end_transaction_bio(stat, bp);
2998 	biodone(bp);
2999 }
3000 
3001 /*
3002  *	bufwait:
3003  *
3004  *	Wait for buffer I/O completion, returning error status.  The buffer
3005  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3006  *	error and cleared.
3007  */
3008 int
3009 bufwait(register struct buf * bp)
3010 {
3011 	int s;
3012 
3013 	s = splbio();
3014 	if (bp->b_iocmd == BIO_READ)
3015 		bwait(bp, PRIBIO, "biord");
3016 	else
3017 		bwait(bp, PRIBIO, "biowr");
3018 	splx(s);
3019 	if (bp->b_flags & B_EINTR) {
3020 		bp->b_flags &= ~B_EINTR;
3021 		return (EINTR);
3022 	}
3023 	if (bp->b_ioflags & BIO_ERROR) {
3024 		return (bp->b_error ? bp->b_error : EIO);
3025 	} else {
3026 		return (0);
3027 	}
3028 }
3029 
3030  /*
3031   * Call back function from struct bio back up to struct buf.
3032   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3033   */
3034 void
3035 bufdonebio(struct bio *bp)
3036 {
3037 	bufdone(bp->bio_caller2);
3038 }
3039 
3040 /*
3041  *	bufdone:
3042  *
3043  *	Finish I/O on a buffer, optionally calling a completion function.
3044  *	This is usually called from an interrupt so process blocking is
3045  *	not allowed.
3046  *
3047  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3048  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3049  *	assuming B_INVAL is clear.
3050  *
3051  *	For the VMIO case, we set B_CACHE if the op was a read and no
3052  *	read error occured, or if the op was a write.  B_CACHE is never
3053  *	set if the buffer is invalid or otherwise uncacheable.
3054  *
3055  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3056  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3057  *	in the biodone routine.
3058  */
3059 void
3060 bufdone(struct buf *bp)
3061 {
3062 	int s;
3063 	void    (*biodone)(struct buf *);
3064 
3065 	GIANT_REQUIRED;
3066 
3067 	s = splbio();
3068 
3069 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3070 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3071 
3072 	bp->b_flags |= B_DONE;
3073 	runningbufwakeup(bp);
3074 
3075 	if (bp->b_iocmd == BIO_DELETE) {
3076 		brelse(bp);
3077 		splx(s);
3078 		return;
3079 	}
3080 
3081 	if (bp->b_iocmd == BIO_WRITE) {
3082 		vwakeup(bp);
3083 	}
3084 
3085 	/* call optional completion function if requested */
3086 	if (bp->b_iodone != NULL) {
3087 		biodone = bp->b_iodone;
3088 		bp->b_iodone = NULL;
3089 		(*biodone) (bp);
3090 		splx(s);
3091 		return;
3092 	}
3093 	if (LIST_FIRST(&bp->b_dep) != NULL)
3094 		buf_complete(bp);
3095 
3096 	if (bp->b_flags & B_VMIO) {
3097 		int i;
3098 		vm_ooffset_t foff;
3099 		vm_page_t m;
3100 		vm_object_t obj;
3101 		int iosize;
3102 		struct vnode *vp = bp->b_vp;
3103 
3104 		obj = bp->b_object;
3105 
3106 #if defined(VFS_BIO_DEBUG)
3107 		mp_fixme("usecount and vflag accessed without locks.");
3108 		if (vp->v_usecount == 0) {
3109 			panic("biodone: zero vnode ref count");
3110 		}
3111 
3112 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3113 			panic("biodone: vnode is not setup for merged cache");
3114 		}
3115 #endif
3116 
3117 		foff = bp->b_offset;
3118 		KASSERT(bp->b_offset != NOOFFSET,
3119 		    ("biodone: no buffer offset"));
3120 
3121 		if (obj != NULL)
3122 			VM_OBJECT_LOCK(obj);
3123 #if defined(VFS_BIO_DEBUG)
3124 		if (obj->paging_in_progress < bp->b_npages) {
3125 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3126 			    obj->paging_in_progress, bp->b_npages);
3127 		}
3128 #endif
3129 
3130 		/*
3131 		 * Set B_CACHE if the op was a normal read and no error
3132 		 * occured.  B_CACHE is set for writes in the b*write()
3133 		 * routines.
3134 		 */
3135 		iosize = bp->b_bcount - bp->b_resid;
3136 		if (bp->b_iocmd == BIO_READ &&
3137 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3138 		    !(bp->b_ioflags & BIO_ERROR)) {
3139 			bp->b_flags |= B_CACHE;
3140 		}
3141 		vm_page_lock_queues();
3142 		for (i = 0; i < bp->b_npages; i++) {
3143 			int bogusflag = 0;
3144 			int resid;
3145 
3146 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3147 			if (resid > iosize)
3148 				resid = iosize;
3149 
3150 			/*
3151 			 * cleanup bogus pages, restoring the originals
3152 			 */
3153 			m = bp->b_pages[i];
3154 			if (m == bogus_page) {
3155 				bogusflag = 1;
3156 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3157 				if (m == NULL)
3158 					panic("biodone: page disappeared!");
3159 				bp->b_pages[i] = m;
3160 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3161 			}
3162 #if defined(VFS_BIO_DEBUG)
3163 			if (OFF_TO_IDX(foff) != m->pindex) {
3164 				printf(
3165 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3166 				    (intmax_t)foff, (uintmax_t)m->pindex);
3167 			}
3168 #endif
3169 
3170 			/*
3171 			 * In the write case, the valid and clean bits are
3172 			 * already changed correctly ( see bdwrite() ), so we
3173 			 * only need to do this here in the read case.
3174 			 */
3175 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3176 				vfs_page_set_valid(bp, foff, i, m);
3177 			}
3178 			vm_page_flag_clear(m, PG_ZERO);
3179 
3180 			/*
3181 			 * when debugging new filesystems or buffer I/O methods, this
3182 			 * is the most common error that pops up.  if you see this, you
3183 			 * have not set the page busy flag correctly!!!
3184 			 */
3185 			if (m->busy == 0) {
3186 				printf("biodone: page busy < 0, "
3187 				    "pindex: %d, foff: 0x(%x,%x), "
3188 				    "resid: %d, index: %d\n",
3189 				    (int) m->pindex, (int)(foff >> 32),
3190 						(int) foff & 0xffffffff, resid, i);
3191 				if (!vn_isdisk(vp, NULL))
3192 					printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n",
3193 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3194 					    (intmax_t) bp->b_lblkno,
3195 					    bp->b_flags, bp->b_npages);
3196 				else
3197 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3198 					    (intmax_t) bp->b_lblkno,
3199 					    bp->b_flags, bp->b_npages);
3200 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3201 				    m->valid, m->dirty, m->wire_count);
3202 				panic("biodone: page busy < 0\n");
3203 			}
3204 			vm_page_io_finish(m);
3205 			vm_object_pip_subtract(obj, 1);
3206 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3207 			iosize -= resid;
3208 		}
3209 		vm_page_unlock_queues();
3210 		if (obj != NULL) {
3211 			vm_object_pip_wakeupn(obj, 0);
3212 			VM_OBJECT_UNLOCK(obj);
3213 		}
3214 	}
3215 
3216 	/*
3217 	 * For asynchronous completions, release the buffer now. The brelse
3218 	 * will do a wakeup there if necessary - so no need to do a wakeup
3219 	 * here in the async case. The sync case always needs to do a wakeup.
3220 	 */
3221 
3222 	if (bp->b_flags & B_ASYNC) {
3223 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3224 			brelse(bp);
3225 		else
3226 			bqrelse(bp);
3227 	} else {
3228 		bdone(bp);
3229 	}
3230 	splx(s);
3231 }
3232 
3233 /*
3234  * This routine is called in lieu of iodone in the case of
3235  * incomplete I/O.  This keeps the busy status for pages
3236  * consistant.
3237  */
3238 void
3239 vfs_unbusy_pages(struct buf * bp)
3240 {
3241 	int i;
3242 
3243 	GIANT_REQUIRED;
3244 
3245 	runningbufwakeup(bp);
3246 	if (bp->b_flags & B_VMIO) {
3247 		vm_object_t obj;
3248 
3249 		obj = bp->b_object;
3250 		VM_OBJECT_LOCK(obj);
3251 		vm_page_lock_queues();
3252 		for (i = 0; i < bp->b_npages; i++) {
3253 			vm_page_t m = bp->b_pages[i];
3254 
3255 			if (m == bogus_page) {
3256 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3257 				if (!m) {
3258 					panic("vfs_unbusy_pages: page missing\n");
3259 				}
3260 				bp->b_pages[i] = m;
3261 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3262 			}
3263 			vm_object_pip_subtract(obj, 1);
3264 			vm_page_flag_clear(m, PG_ZERO);
3265 			vm_page_io_finish(m);
3266 		}
3267 		vm_page_unlock_queues();
3268 		vm_object_pip_wakeupn(obj, 0);
3269 		VM_OBJECT_UNLOCK(obj);
3270 	}
3271 }
3272 
3273 /*
3274  * vfs_page_set_valid:
3275  *
3276  *	Set the valid bits in a page based on the supplied offset.   The
3277  *	range is restricted to the buffer's size.
3278  *
3279  *	This routine is typically called after a read completes.
3280  */
3281 static void
3282 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3283 {
3284 	vm_ooffset_t soff, eoff;
3285 
3286 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3287 	/*
3288 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3289 	 * page boundry or cross the end of the buffer.  The end of the
3290 	 * buffer, in this case, is our file EOF, not the allocation size
3291 	 * of the buffer.
3292 	 */
3293 	soff = off;
3294 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3295 	if (eoff > bp->b_offset + bp->b_bcount)
3296 		eoff = bp->b_offset + bp->b_bcount;
3297 
3298 	/*
3299 	 * Set valid range.  This is typically the entire buffer and thus the
3300 	 * entire page.
3301 	 */
3302 	if (eoff > soff) {
3303 		vm_page_set_validclean(
3304 		    m,
3305 		   (vm_offset_t) (soff & PAGE_MASK),
3306 		   (vm_offset_t) (eoff - soff)
3307 		);
3308 	}
3309 }
3310 
3311 /*
3312  * This routine is called before a device strategy routine.
3313  * It is used to tell the VM system that paging I/O is in
3314  * progress, and treat the pages associated with the buffer
3315  * almost as being PG_BUSY.  Also the object paging_in_progress
3316  * flag is handled to make sure that the object doesn't become
3317  * inconsistant.
3318  *
3319  * Since I/O has not been initiated yet, certain buffer flags
3320  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3321  * and should be ignored.
3322  */
3323 void
3324 vfs_busy_pages(struct buf * bp, int clear_modify)
3325 {
3326 	int i, bogus;
3327 
3328 	if (bp->b_flags & B_VMIO) {
3329 		vm_object_t obj;
3330 		vm_ooffset_t foff;
3331 
3332 		obj = bp->b_object;
3333 		foff = bp->b_offset;
3334 		KASSERT(bp->b_offset != NOOFFSET,
3335 		    ("vfs_busy_pages: no buffer offset"));
3336 		vfs_setdirty(bp);
3337 		if (obj != NULL)
3338 			VM_OBJECT_LOCK(obj);
3339 retry:
3340 		vm_page_lock_queues();
3341 		for (i = 0; i < bp->b_npages; i++) {
3342 			vm_page_t m = bp->b_pages[i];
3343 
3344 			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3345 				goto retry;
3346 		}
3347 		bogus = 0;
3348 		for (i = 0; i < bp->b_npages; i++) {
3349 			vm_page_t m = bp->b_pages[i];
3350 
3351 			vm_page_flag_clear(m, PG_ZERO);
3352 			if ((bp->b_flags & B_CLUSTER) == 0) {
3353 				vm_object_pip_add(obj, 1);
3354 				vm_page_io_start(m);
3355 			}
3356 			/*
3357 			 * When readying a buffer for a read ( i.e
3358 			 * clear_modify == 0 ), it is important to do
3359 			 * bogus_page replacement for valid pages in
3360 			 * partially instantiated buffers.  Partially
3361 			 * instantiated buffers can, in turn, occur when
3362 			 * reconstituting a buffer from its VM backing store
3363 			 * base.  We only have to do this if B_CACHE is
3364 			 * clear ( which causes the I/O to occur in the
3365 			 * first place ).  The replacement prevents the read
3366 			 * I/O from overwriting potentially dirty VM-backed
3367 			 * pages.  XXX bogus page replacement is, uh, bogus.
3368 			 * It may not work properly with small-block devices.
3369 			 * We need to find a better way.
3370 			 */
3371 			pmap_remove_all(m);
3372 			if (clear_modify)
3373 				vfs_page_set_valid(bp, foff, i, m);
3374 			else if (m->valid == VM_PAGE_BITS_ALL &&
3375 				(bp->b_flags & B_CACHE) == 0) {
3376 				bp->b_pages[i] = bogus_page;
3377 				bogus++;
3378 			}
3379 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3380 		}
3381 		vm_page_unlock_queues();
3382 		if (obj != NULL)
3383 			VM_OBJECT_UNLOCK(obj);
3384 		if (bogus)
3385 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3386 	}
3387 }
3388 
3389 /*
3390  * Tell the VM system that the pages associated with this buffer
3391  * are clean.  This is used for delayed writes where the data is
3392  * going to go to disk eventually without additional VM intevention.
3393  *
3394  * Note that while we only really need to clean through to b_bcount, we
3395  * just go ahead and clean through to b_bufsize.
3396  */
3397 static void
3398 vfs_clean_pages(struct buf * bp)
3399 {
3400 	int i;
3401 
3402 	GIANT_REQUIRED;
3403 
3404 	if (bp->b_flags & B_VMIO) {
3405 		vm_ooffset_t foff;
3406 
3407 		foff = bp->b_offset;
3408 		KASSERT(bp->b_offset != NOOFFSET,
3409 		    ("vfs_clean_pages: no buffer offset"));
3410 		vm_page_lock_queues();
3411 		for (i = 0; i < bp->b_npages; i++) {
3412 			vm_page_t m = bp->b_pages[i];
3413 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3414 			vm_ooffset_t eoff = noff;
3415 
3416 			if (eoff > bp->b_offset + bp->b_bufsize)
3417 				eoff = bp->b_offset + bp->b_bufsize;
3418 			vfs_page_set_valid(bp, foff, i, m);
3419 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3420 			foff = noff;
3421 		}
3422 		vm_page_unlock_queues();
3423 	}
3424 }
3425 
3426 /*
3427  *	vfs_bio_set_validclean:
3428  *
3429  *	Set the range within the buffer to valid and clean.  The range is
3430  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3431  *	itself may be offset from the beginning of the first page.
3432  *
3433  */
3434 
3435 void
3436 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3437 {
3438 	if (bp->b_flags & B_VMIO) {
3439 		int i;
3440 		int n;
3441 
3442 		/*
3443 		 * Fixup base to be relative to beginning of first page.
3444 		 * Set initial n to be the maximum number of bytes in the
3445 		 * first page that can be validated.
3446 		 */
3447 
3448 		base += (bp->b_offset & PAGE_MASK);
3449 		n = PAGE_SIZE - (base & PAGE_MASK);
3450 
3451 		vm_page_lock_queues();
3452 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3453 			vm_page_t m = bp->b_pages[i];
3454 
3455 			if (n > size)
3456 				n = size;
3457 
3458 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3459 			base += n;
3460 			size -= n;
3461 			n = PAGE_SIZE;
3462 		}
3463 		vm_page_unlock_queues();
3464 	}
3465 }
3466 
3467 /*
3468  *	vfs_bio_clrbuf:
3469  *
3470  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3471  *	to clear BIO_ERROR and B_INVAL.
3472  *
3473  *	Note that while we only theoretically need to clear through b_bcount,
3474  *	we go ahead and clear through b_bufsize.
3475  */
3476 
3477 void
3478 vfs_bio_clrbuf(struct buf *bp)
3479 {
3480 	int i, mask = 0;
3481 	caddr_t sa, ea;
3482 
3483 	GIANT_REQUIRED;
3484 
3485 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3486 		bp->b_flags &= ~B_INVAL;
3487 		bp->b_ioflags &= ~BIO_ERROR;
3488 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3489 		    (bp->b_offset & PAGE_MASK) == 0) {
3490 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3491 			if ((bp->b_pages[0]->valid & mask) == mask) {
3492 				bp->b_resid = 0;
3493 				return;
3494 			}
3495 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3496 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3497 				bzero(bp->b_data, bp->b_bufsize);
3498 				bp->b_pages[0]->valid |= mask;
3499 				bp->b_resid = 0;
3500 				return;
3501 			}
3502 		}
3503 		ea = sa = bp->b_data;
3504 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3505 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3506 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3507 			ea = (caddr_t)(vm_offset_t)ulmin(
3508 			    (u_long)(vm_offset_t)ea,
3509 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3510 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3511 			if ((bp->b_pages[i]->valid & mask) == mask)
3512 				continue;
3513 			if ((bp->b_pages[i]->valid & mask) == 0) {
3514 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3515 					bzero(sa, ea - sa);
3516 				}
3517 			} else {
3518 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3519 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3520 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3521 						bzero(sa, DEV_BSIZE);
3522 				}
3523 			}
3524 			bp->b_pages[i]->valid |= mask;
3525 			vm_page_lock_queues();
3526 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3527 			vm_page_unlock_queues();
3528 		}
3529 		bp->b_resid = 0;
3530 	} else {
3531 		clrbuf(bp);
3532 	}
3533 }
3534 
3535 /*
3536  * vm_hold_load_pages and vm_hold_free_pages get pages into
3537  * a buffers address space.  The pages are anonymous and are
3538  * not associated with a file object.
3539  */
3540 static void
3541 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3542 {
3543 	vm_offset_t pg;
3544 	vm_page_t p;
3545 	int index;
3546 
3547 	GIANT_REQUIRED;
3548 
3549 	to = round_page(to);
3550 	from = round_page(from);
3551 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3552 
3553 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3554 tryagain:
3555 		/*
3556 		 * note: must allocate system pages since blocking here
3557 		 * could intefere with paging I/O, no matter which
3558 		 * process we are.
3559 		 */
3560 		VM_OBJECT_LOCK(kernel_object);
3561 		p = vm_page_alloc(kernel_object,
3562 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3563 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3564 		VM_OBJECT_UNLOCK(kernel_object);
3565 		if (!p) {
3566 			atomic_add_int(&vm_pageout_deficit,
3567 			    (to - pg) >> PAGE_SHIFT);
3568 			VM_WAIT;
3569 			goto tryagain;
3570 		}
3571 		vm_page_lock_queues();
3572 		p->valid = VM_PAGE_BITS_ALL;
3573 		vm_page_unlock_queues();
3574 		pmap_qenter(pg, &p, 1);
3575 		bp->b_pages[index] = p;
3576 		vm_page_lock_queues();
3577 		vm_page_wakeup(p);
3578 		vm_page_unlock_queues();
3579 	}
3580 	bp->b_npages = index;
3581 }
3582 
3583 /* Return pages associated with this buf to the vm system */
3584 static void
3585 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3586 {
3587 	vm_offset_t pg;
3588 	vm_page_t p;
3589 	int index, newnpages;
3590 
3591 	GIANT_REQUIRED;
3592 
3593 	from = round_page(from);
3594 	to = round_page(to);
3595 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3596 
3597 	if (bp->b_object != NULL)
3598 		VM_OBJECT_LOCK(bp->b_object);
3599 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3600 		p = bp->b_pages[index];
3601 		if (p && (index < bp->b_npages)) {
3602 			if (p->busy) {
3603 				printf(
3604 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3605 				    (intmax_t)bp->b_blkno,
3606 				    (intmax_t)bp->b_lblkno);
3607 			}
3608 			bp->b_pages[index] = NULL;
3609 			pmap_qremove(pg, 1);
3610 			vm_page_lock_queues();
3611 			vm_page_busy(p);
3612 			vm_page_unwire(p, 0);
3613 			vm_page_free(p);
3614 			vm_page_unlock_queues();
3615 		}
3616 	}
3617 	if (bp->b_object != NULL)
3618 		VM_OBJECT_UNLOCK(bp->b_object);
3619 	bp->b_npages = newnpages;
3620 }
3621 
3622 /*
3623  * Map an IO request into kernel virtual address space.
3624  *
3625  * All requests are (re)mapped into kernel VA space.
3626  * Notice that we use b_bufsize for the size of the buffer
3627  * to be mapped.  b_bcount might be modified by the driver.
3628  *
3629  * Note that even if the caller determines that the address space should
3630  * be valid, a race or a smaller-file mapped into a larger space may
3631  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3632  * check the return value.
3633  */
3634 int
3635 vmapbuf(struct buf *bp)
3636 {
3637 	caddr_t addr, kva;
3638 	vm_paddr_t pa;
3639 	int pidx, i;
3640 	struct vm_page *m;
3641 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3642 
3643 	GIANT_REQUIRED;
3644 
3645 	if ((bp->b_flags & B_PHYS) == 0)
3646 		panic("vmapbuf");
3647 	if (bp->b_bufsize < 0)
3648 		return (-1);
3649 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3650 	     addr < bp->b_data + bp->b_bufsize;
3651 	     addr += PAGE_SIZE, pidx++) {
3652 		/*
3653 		 * Do the vm_fault if needed; do the copy-on-write thing
3654 		 * when reading stuff off device into memory.
3655 		 *
3656 		 * NOTE! Must use pmap_extract() because addr may be in
3657 		 * the userland address space, and kextract is only guarenteed
3658 		 * to work for the kernland address space (see: sparc64 port).
3659 		 */
3660 retry:
3661 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3662 			(bp->b_iocmd == BIO_READ) ?
3663 			(VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ);
3664 		if (i < 0) {
3665 			vm_page_lock_queues();
3666 			for (i = 0; i < pidx; ++i) {
3667 				vm_page_unhold(bp->b_pages[i]);
3668 				bp->b_pages[i] = NULL;
3669 			}
3670 			vm_page_unlock_queues();
3671 			return(-1);
3672 		}
3673 		pa = pmap_extract(pmap, (vm_offset_t)addr);
3674 		if (pa == 0) {
3675 			printf("vmapbuf: warning, race against user address during I/O");
3676 			goto retry;
3677 		}
3678 		m = PHYS_TO_VM_PAGE(pa);
3679 		vm_page_lock_queues();
3680 		vm_page_hold(m);
3681 		vm_page_unlock_queues();
3682 		bp->b_pages[pidx] = m;
3683 	}
3684 	if (pidx > btoc(MAXPHYS))
3685 		panic("vmapbuf: mapped more than MAXPHYS");
3686 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3687 
3688 	kva = bp->b_saveaddr;
3689 	bp->b_npages = pidx;
3690 	bp->b_saveaddr = bp->b_data;
3691 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3692 	return(0);
3693 }
3694 
3695 /*
3696  * Free the io map PTEs associated with this IO operation.
3697  * We also invalidate the TLB entries and restore the original b_addr.
3698  */
3699 void
3700 vunmapbuf(struct buf *bp)
3701 {
3702 	int pidx;
3703 	int npages;
3704 
3705 	GIANT_REQUIRED;
3706 
3707 	if ((bp->b_flags & B_PHYS) == 0)
3708 		panic("vunmapbuf");
3709 
3710 	npages = bp->b_npages;
3711 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3712 		     npages);
3713 	vm_page_lock_queues();
3714 	for (pidx = 0; pidx < npages; pidx++)
3715 		vm_page_unhold(bp->b_pages[pidx]);
3716 	vm_page_unlock_queues();
3717 
3718 	bp->b_data = bp->b_saveaddr;
3719 }
3720 
3721 void
3722 bdone(struct buf *bp)
3723 {
3724 	mtx_lock(&bdonelock);
3725 	bp->b_flags |= B_DONE;
3726 	wakeup(bp);
3727 	mtx_unlock(&bdonelock);
3728 }
3729 
3730 void
3731 bwait(struct buf *bp, u_char pri, const char *wchan)
3732 {
3733 	mtx_lock(&bdonelock);
3734 	while ((bp->b_flags & B_DONE) == 0)
3735 		msleep(bp, &bdonelock, pri, wchan, 0);
3736 	mtx_unlock(&bdonelock);
3737 }
3738 
3739 #include "opt_ddb.h"
3740 #ifdef DDB
3741 #include <ddb/ddb.h>
3742 
3743 /* DDB command to show buffer data */
3744 DB_SHOW_COMMAND(buffer, db_show_buffer)
3745 {
3746 	/* get args */
3747 	struct buf *bp = (struct buf *)addr;
3748 
3749 	if (!have_addr) {
3750 		db_printf("usage: show buffer <addr>\n");
3751 		return;
3752 	}
3753 
3754 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3755 	db_printf(
3756 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3757 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3758 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3759 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3760 	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3761 	if (bp->b_npages) {
3762 		int i;
3763 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3764 		for (i = 0; i < bp->b_npages; i++) {
3765 			vm_page_t m;
3766 			m = bp->b_pages[i];
3767 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3768 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3769 			if ((i + 1) < bp->b_npages)
3770 				db_printf(",");
3771 		}
3772 		db_printf("\n");
3773 	}
3774 }
3775 #endif /* DDB */
3776