1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/stdint.h> 33 #include <sys/bio.h> 34 #include <sys/buf.h> 35 #include <sys/devicestat.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mount.h> 40 #include <sys/mutex.h> 41 #include <sys/kernel.h> 42 #include <sys/kthread.h> 43 #include <sys/proc.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 58 59 struct bio_ops bioops; /* I/O operation notification */ 60 61 struct buf_ops buf_ops_bio = { 62 "buf_ops_bio", 63 bwrite 64 }; 65 66 /* 67 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 68 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 69 */ 70 struct buf *buf; /* buffer header pool */ 71 struct mtx buftimelock; /* Interlock on setting prio and timo */ 72 73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 74 vm_offset_t to); 75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 76 vm_offset_t to); 77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 78 int pageno, vm_page_t m); 79 static void vfs_clean_pages(struct buf * bp); 80 static void vfs_setdirty(struct buf *bp); 81 static void vfs_vmio_release(struct buf *bp); 82 static void vfs_backgroundwritedone(struct buf *bp); 83 static int flushbufqueues(void); 84 static void buf_daemon(void); 85 86 int vmiodirenable = TRUE; 87 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 88 "Use the VM system for directory writes"); 89 int runningbufspace; 90 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 91 "Amount of presently outstanding async buffer io"); 92 static int bufspace; 93 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 94 "KVA memory used for bufs"); 95 static int maxbufspace; 96 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 97 "Maximum allowed value of bufspace (including buf_daemon)"); 98 static int bufmallocspace; 99 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 100 "Amount of malloced memory for buffers"); 101 static int maxbufmallocspace; 102 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 103 "Maximum amount of malloced memory for buffers"); 104 static int lobufspace; 105 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 106 "Minimum amount of buffers we want to have"); 107 static int hibufspace; 108 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 109 "Maximum allowed value of bufspace (excluding buf_daemon)"); 110 static int bufreusecnt; 111 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 112 "Number of times we have reused a buffer"); 113 static int buffreekvacnt; 114 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 115 "Number of times we have freed the KVA space from some buffer"); 116 static int bufdefragcnt; 117 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 118 "Number of times we have had to repeat buffer allocation to defragment"); 119 static int lorunningspace; 120 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 121 "Minimum preferred space used for in-progress I/O"); 122 static int hirunningspace; 123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 124 "Maximum amount of space to use for in-progress I/O"); 125 static int numdirtybuffers; 126 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 127 "Number of buffers that are dirty (has unwritten changes) at the moment"); 128 static int lodirtybuffers; 129 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 130 "How many buffers we want to have free before bufdaemon can sleep"); 131 static int hidirtybuffers; 132 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 133 "When the number of dirty buffers is considered severe"); 134 static int numfreebuffers; 135 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 136 "Number of free buffers"); 137 static int lofreebuffers; 138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 139 "XXX Unused"); 140 static int hifreebuffers; 141 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 142 "XXX Complicatedly unused"); 143 static int getnewbufcalls; 144 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 145 "Number of calls to getnewbuf"); 146 static int getnewbufrestarts; 147 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 148 "Number of times getnewbuf has had to restart a buffer aquisition"); 149 static int dobkgrdwrite = 1; 150 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 151 "Do background writes (honoring the BX_BKGRDWRITE flag)?"); 152 153 /* 154 * Wakeup point for bufdaemon, as well as indicator of whether it is already 155 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 156 * is idling. 157 */ 158 static int bd_request; 159 160 /* 161 * bogus page -- for I/O to/from partially complete buffers 162 * this is a temporary solution to the problem, but it is not 163 * really that bad. it would be better to split the buffer 164 * for input in the case of buffers partially already in memory, 165 * but the code is intricate enough already. 166 */ 167 vm_page_t bogus_page; 168 169 /* 170 * Offset for bogus_page. 171 * XXX bogus_offset should be local to bufinit 172 */ 173 static vm_offset_t bogus_offset; 174 175 /* 176 * Synchronization (sleep/wakeup) variable for active buffer space requests. 177 * Set when wait starts, cleared prior to wakeup(). 178 * Used in runningbufwakeup() and waitrunningbufspace(). 179 */ 180 static int runningbufreq; 181 182 /* 183 * Synchronization (sleep/wakeup) variable for buffer requests. 184 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 185 * by and/or. 186 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(), 187 * getnewbuf(), and getblk(). 188 */ 189 static int needsbuffer; 190 191 #ifdef USE_BUFHASH 192 /* 193 * Mask for index into the buffer hash table, which needs to be power of 2 in 194 * size. Set in kern_vfs_bio_buffer_alloc. 195 */ 196 static int bufhashmask; 197 198 /* 199 * Hash table for all buffers, with a linked list hanging from each table 200 * entry. Set in kern_vfs_bio_buffer_alloc, initialized in buf_init. 201 */ 202 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl; 203 204 /* 205 * Somewhere to store buffers when they are not in another list, to always 206 * have them in a list (and thus being able to use the same set of operations 207 * on them.) 208 */ 209 static struct bufhashhdr invalhash; 210 211 #endif 212 213 /* 214 * Definitions for the buffer free lists. 215 */ 216 #define BUFFER_QUEUES 6 /* number of free buffer queues */ 217 218 #define QUEUE_NONE 0 /* on no queue */ 219 #define QUEUE_LOCKED 1 /* locked buffers */ 220 #define QUEUE_CLEAN 2 /* non-B_DELWRI buffers */ 221 #define QUEUE_DIRTY 3 /* B_DELWRI buffers */ 222 #define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */ 223 #define QUEUE_EMPTY 5 /* empty buffer headers */ 224 225 /* Queues for free buffers with various properties */ 226 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 227 /* 228 * Single global constant for BUF_WMESG, to avoid getting multiple references. 229 * buf_wmesg is referred from macros. 230 */ 231 const char *buf_wmesg = BUF_WMESG; 232 233 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 234 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 235 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 236 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 237 238 #ifdef USE_BUFHASH 239 /* 240 * Buffer hash table code. Note that the logical block scans linearly, which 241 * gives us some L1 cache locality. 242 */ 243 244 static __inline 245 struct bufhashhdr * 246 bufhash(struct vnode *vnp, daddr_t bn) 247 { 248 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 249 } 250 251 #endif 252 253 /* 254 * numdirtywakeup: 255 * 256 * If someone is blocked due to there being too many dirty buffers, 257 * and numdirtybuffers is now reasonable, wake them up. 258 */ 259 260 static __inline void 261 numdirtywakeup(int level) 262 { 263 if (numdirtybuffers <= level) { 264 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 265 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 266 wakeup(&needsbuffer); 267 } 268 } 269 } 270 271 /* 272 * bufspacewakeup: 273 * 274 * Called when buffer space is potentially available for recovery. 275 * getnewbuf() will block on this flag when it is unable to free 276 * sufficient buffer space. Buffer space becomes recoverable when 277 * bp's get placed back in the queues. 278 */ 279 280 static __inline void 281 bufspacewakeup(void) 282 { 283 /* 284 * If someone is waiting for BUF space, wake them up. Even 285 * though we haven't freed the kva space yet, the waiting 286 * process will be able to now. 287 */ 288 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 289 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 290 wakeup(&needsbuffer); 291 } 292 } 293 294 /* 295 * runningbufwakeup() - in-progress I/O accounting. 296 * 297 */ 298 static __inline void 299 runningbufwakeup(struct buf *bp) 300 { 301 if (bp->b_runningbufspace) { 302 runningbufspace -= bp->b_runningbufspace; 303 bp->b_runningbufspace = 0; 304 if (runningbufreq && runningbufspace <= lorunningspace) { 305 runningbufreq = 0; 306 wakeup(&runningbufreq); 307 } 308 } 309 } 310 311 /* 312 * bufcountwakeup: 313 * 314 * Called when a buffer has been added to one of the free queues to 315 * account for the buffer and to wakeup anyone waiting for free buffers. 316 * This typically occurs when large amounts of metadata are being handled 317 * by the buffer cache ( else buffer space runs out first, usually ). 318 */ 319 320 static __inline void 321 bufcountwakeup(void) 322 { 323 ++numfreebuffers; 324 if (needsbuffer) { 325 needsbuffer &= ~VFS_BIO_NEED_ANY; 326 if (numfreebuffers >= hifreebuffers) 327 needsbuffer &= ~VFS_BIO_NEED_FREE; 328 wakeup(&needsbuffer); 329 } 330 } 331 332 /* 333 * waitrunningbufspace() 334 * 335 * runningbufspace is a measure of the amount of I/O currently 336 * running. This routine is used in async-write situations to 337 * prevent creating huge backups of pending writes to a device. 338 * Only asynchronous writes are governed by this function. 339 * 340 * Reads will adjust runningbufspace, but will not block based on it. 341 * The read load has a side effect of reducing the allowed write load. 342 * 343 * This does NOT turn an async write into a sync write. It waits 344 * for earlier writes to complete and generally returns before the 345 * caller's write has reached the device. 346 */ 347 static __inline void 348 waitrunningbufspace(void) 349 { 350 /* 351 * XXX race against wakeup interrupt, currently 352 * protected by Giant. FIXME! 353 */ 354 while (runningbufspace > hirunningspace) { 355 ++runningbufreq; 356 tsleep(&runningbufreq, PVM, "wdrain", 0); 357 } 358 } 359 360 361 /* 362 * vfs_buf_test_cache: 363 * 364 * Called when a buffer is extended. This function clears the B_CACHE 365 * bit if the newly extended portion of the buffer does not contain 366 * valid data. 367 */ 368 static __inline__ 369 void 370 vfs_buf_test_cache(struct buf *bp, 371 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 372 vm_page_t m) 373 { 374 GIANT_REQUIRED; 375 376 if (bp->b_flags & B_CACHE) { 377 int base = (foff + off) & PAGE_MASK; 378 if (vm_page_is_valid(m, base, size) == 0) 379 bp->b_flags &= ~B_CACHE; 380 } 381 } 382 383 /* Wake up the buffer deamon if necessary */ 384 static __inline__ 385 void 386 bd_wakeup(int dirtybuflevel) 387 { 388 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 389 bd_request = 1; 390 wakeup(&bd_request); 391 } 392 } 393 394 /* 395 * bd_speedup - speedup the buffer cache flushing code 396 */ 397 398 static __inline__ 399 void 400 bd_speedup(void) 401 { 402 bd_wakeup(1); 403 } 404 405 /* 406 * Calculating buffer cache scaling values and reserve space for buffer 407 * headers. This is called during low level kernel initialization and 408 * may be called more then once. We CANNOT write to the memory area 409 * being reserved at this time. 410 */ 411 caddr_t 412 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 413 { 414 /* 415 * physmem_est is in pages. Convert it to kilobytes (assumes 416 * PAGE_SIZE is >= 1K) 417 */ 418 physmem_est = physmem_est * (PAGE_SIZE / 1024); 419 420 /* 421 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 422 * For the first 64MB of ram nominally allocate sufficient buffers to 423 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 424 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing 425 * the buffer cache we limit the eventual kva reservation to 426 * maxbcache bytes. 427 * 428 * factor represents the 1/4 x ram conversion. 429 */ 430 if (nbuf == 0) { 431 int factor = 4 * BKVASIZE / 1024; 432 433 nbuf = 50; 434 if (physmem_est > 4096) 435 nbuf += min((physmem_est - 4096) / factor, 436 65536 / factor); 437 if (physmem_est > 65536) 438 nbuf += (physmem_est - 65536) * 2 / (factor * 5); 439 440 if (maxbcache && nbuf > maxbcache / BKVASIZE) 441 nbuf = maxbcache / BKVASIZE; 442 } 443 444 #if 0 445 /* 446 * Do not allow the buffer_map to be more then 1/2 the size of the 447 * kernel_map. 448 */ 449 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 450 (BKVASIZE * 2)) { 451 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 452 (BKVASIZE * 2); 453 printf("Warning: nbufs capped at %d\n", nbuf); 454 } 455 #endif 456 457 /* 458 * swbufs are used as temporary holders for I/O, such as paging I/O. 459 * We have no less then 16 and no more then 256. 460 */ 461 nswbuf = max(min(nbuf/4, 256), 16); 462 463 /* 464 * Reserve space for the buffer cache buffers 465 */ 466 swbuf = (void *)v; 467 v = (caddr_t)(swbuf + nswbuf); 468 buf = (void *)v; 469 v = (caddr_t)(buf + nbuf); 470 471 #ifdef USE_BUFHASH 472 /* 473 * Calculate the hash table size and reserve space 474 */ 475 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 476 ; 477 bufhashtbl = (void *)v; 478 v = (caddr_t)(bufhashtbl + bufhashmask); 479 --bufhashmask; 480 #endif 481 return(v); 482 } 483 484 /* Initialize the buffer subsystem. Called before use of any buffers. */ 485 void 486 bufinit(void) 487 { 488 struct buf *bp; 489 int i; 490 491 GIANT_REQUIRED; 492 493 #ifdef USE_BUFHASH 494 LIST_INIT(&invalhash); 495 #endif 496 mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF); 497 498 #ifdef USE_BUFHASH 499 for (i = 0; i <= bufhashmask; i++) 500 LIST_INIT(&bufhashtbl[i]); 501 #endif 502 503 /* next, make a null set of free lists */ 504 for (i = 0; i < BUFFER_QUEUES; i++) 505 TAILQ_INIT(&bufqueues[i]); 506 507 /* finally, initialize each buffer header and stick on empty q */ 508 for (i = 0; i < nbuf; i++) { 509 bp = &buf[i]; 510 bzero(bp, sizeof *bp); 511 bp->b_flags = B_INVAL; /* we're just an empty header */ 512 bp->b_dev = NODEV; 513 bp->b_rcred = NOCRED; 514 bp->b_wcred = NOCRED; 515 bp->b_qindex = QUEUE_EMPTY; 516 bp->b_xflags = 0; 517 LIST_INIT(&bp->b_dep); 518 BUF_LOCKINIT(bp); 519 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 520 #ifdef USE_BUFHASH 521 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 522 #endif 523 } 524 525 /* 526 * maxbufspace is the absolute maximum amount of buffer space we are 527 * allowed to reserve in KVM and in real terms. The absolute maximum 528 * is nominally used by buf_daemon. hibufspace is the nominal maximum 529 * used by most other processes. The differential is required to 530 * ensure that buf_daemon is able to run when other processes might 531 * be blocked waiting for buffer space. 532 * 533 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 534 * this may result in KVM fragmentation which is not handled optimally 535 * by the system. 536 */ 537 maxbufspace = nbuf * BKVASIZE; 538 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 539 lobufspace = hibufspace - MAXBSIZE; 540 541 lorunningspace = 512 * 1024; 542 hirunningspace = 1024 * 1024; 543 544 /* 545 * Limit the amount of malloc memory since it is wired permanently into 546 * the kernel space. Even though this is accounted for in the buffer 547 * allocation, we don't want the malloced region to grow uncontrolled. 548 * The malloc scheme improves memory utilization significantly on average 549 * (small) directories. 550 */ 551 maxbufmallocspace = hibufspace / 20; 552 553 /* 554 * Reduce the chance of a deadlock occuring by limiting the number 555 * of delayed-write dirty buffers we allow to stack up. 556 */ 557 hidirtybuffers = nbuf / 4 + 20; 558 numdirtybuffers = 0; 559 /* 560 * To support extreme low-memory systems, make sure hidirtybuffers cannot 561 * eat up all available buffer space. This occurs when our minimum cannot 562 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 563 * BKVASIZE'd (8K) buffers. 564 */ 565 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 566 hidirtybuffers >>= 1; 567 } 568 lodirtybuffers = hidirtybuffers / 2; 569 570 /* 571 * Try to keep the number of free buffers in the specified range, 572 * and give special processes (e.g. like buf_daemon) access to an 573 * emergency reserve. 574 */ 575 lofreebuffers = nbuf / 18 + 5; 576 hifreebuffers = 2 * lofreebuffers; 577 numfreebuffers = nbuf; 578 579 /* 580 * Maximum number of async ops initiated per buf_daemon loop. This is 581 * somewhat of a hack at the moment, we really need to limit ourselves 582 * based on the number of bytes of I/O in-transit that were initiated 583 * from buf_daemon. 584 */ 585 586 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 587 bogus_page = vm_page_alloc(kernel_object, 588 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 589 VM_ALLOC_NORMAL); 590 cnt.v_wire_count++; 591 } 592 593 /* 594 * bfreekva() - free the kva allocation for a buffer. 595 * 596 * Must be called at splbio() or higher as this is the only locking for 597 * buffer_map. 598 * 599 * Since this call frees up buffer space, we call bufspacewakeup(). 600 */ 601 static void 602 bfreekva(struct buf * bp) 603 { 604 GIANT_REQUIRED; 605 606 if (bp->b_kvasize) { 607 ++buffreekvacnt; 608 bufspace -= bp->b_kvasize; 609 vm_map_delete(buffer_map, 610 (vm_offset_t) bp->b_kvabase, 611 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 612 ); 613 bp->b_kvasize = 0; 614 bufspacewakeup(); 615 } 616 } 617 618 /* 619 * bremfree: 620 * 621 * Remove the buffer from the appropriate free list. 622 */ 623 void 624 bremfree(struct buf * bp) 625 { 626 int s = splbio(); 627 int old_qindex = bp->b_qindex; 628 629 GIANT_REQUIRED; 630 631 if (bp->b_qindex != QUEUE_NONE) { 632 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 633 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 634 bp->b_qindex = QUEUE_NONE; 635 } else { 636 if (BUF_REFCNT(bp) <= 1) 637 panic("bremfree: removing a buffer not on a queue"); 638 } 639 640 /* 641 * Fixup numfreebuffers count. If the buffer is invalid or not 642 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 643 * the buffer was free and we must decrement numfreebuffers. 644 */ 645 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 646 switch(old_qindex) { 647 case QUEUE_DIRTY: 648 case QUEUE_CLEAN: 649 case QUEUE_EMPTY: 650 case QUEUE_EMPTYKVA: 651 --numfreebuffers; 652 break; 653 default: 654 break; 655 } 656 } 657 splx(s); 658 } 659 660 661 /* 662 * Get a buffer with the specified data. Look in the cache first. We 663 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 664 * is set, the buffer is valid and we do not have to do anything ( see 665 * getblk() ). This is really just a special case of breadn(). 666 */ 667 int 668 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 669 struct buf ** bpp) 670 { 671 672 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 673 } 674 675 /* 676 * Operates like bread, but also starts asynchronous I/O on 677 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 678 * to initiating I/O . If B_CACHE is set, the buffer is valid 679 * and we do not have to do anything. 680 */ 681 int 682 breadn(struct vnode * vp, daddr_t blkno, int size, 683 daddr_t * rablkno, int *rabsize, 684 int cnt, struct ucred * cred, struct buf ** bpp) 685 { 686 struct buf *bp, *rabp; 687 int i; 688 int rv = 0, readwait = 0; 689 690 *bpp = bp = getblk(vp, blkno, size, 0, 0); 691 692 /* if not found in cache, do some I/O */ 693 if ((bp->b_flags & B_CACHE) == 0) { 694 if (curthread != PCPU_GET(idlethread)) 695 curthread->td_proc->p_stats->p_ru.ru_inblock++; 696 bp->b_iocmd = BIO_READ; 697 bp->b_flags &= ~B_INVAL; 698 bp->b_ioflags &= ~BIO_ERROR; 699 if (bp->b_rcred == NOCRED && cred != NOCRED) 700 bp->b_rcred = crhold(cred); 701 vfs_busy_pages(bp, 0); 702 VOP_STRATEGY(vp, bp); 703 ++readwait; 704 } 705 706 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 707 if (inmem(vp, *rablkno)) 708 continue; 709 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 710 711 if ((rabp->b_flags & B_CACHE) == 0) { 712 if (curthread != PCPU_GET(idlethread)) 713 curthread->td_proc->p_stats->p_ru.ru_inblock++; 714 rabp->b_flags |= B_ASYNC; 715 rabp->b_flags &= ~B_INVAL; 716 rabp->b_ioflags &= ~BIO_ERROR; 717 rabp->b_iocmd = BIO_READ; 718 if (rabp->b_rcred == NOCRED && cred != NOCRED) 719 rabp->b_rcred = crhold(cred); 720 vfs_busy_pages(rabp, 0); 721 BUF_KERNPROC(rabp); 722 VOP_STRATEGY(vp, rabp); 723 } else { 724 brelse(rabp); 725 } 726 } 727 728 if (readwait) { 729 rv = bufwait(bp); 730 } 731 return (rv); 732 } 733 734 /* 735 * Write, release buffer on completion. (Done by iodone 736 * if async). Do not bother writing anything if the buffer 737 * is invalid. 738 * 739 * Note that we set B_CACHE here, indicating that buffer is 740 * fully valid and thus cacheable. This is true even of NFS 741 * now so we set it generally. This could be set either here 742 * or in biodone() since the I/O is synchronous. We put it 743 * here. 744 */ 745 746 int 747 bwrite(struct buf * bp) 748 { 749 int oldflags, s; 750 struct buf *newbp; 751 752 if (bp->b_flags & B_INVAL) { 753 brelse(bp); 754 return (0); 755 } 756 757 oldflags = bp->b_flags; 758 759 if (BUF_REFCNT(bp) == 0) 760 panic("bwrite: buffer is not busy???"); 761 s = splbio(); 762 /* 763 * If a background write is already in progress, delay 764 * writing this block if it is asynchronous. Otherwise 765 * wait for the background write to complete. 766 */ 767 if (bp->b_xflags & BX_BKGRDINPROG) { 768 if (bp->b_flags & B_ASYNC) { 769 splx(s); 770 bdwrite(bp); 771 return (0); 772 } 773 bp->b_xflags |= BX_BKGRDWAIT; 774 tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0); 775 if (bp->b_xflags & BX_BKGRDINPROG) 776 panic("bwrite: still writing"); 777 } 778 779 /* Mark the buffer clean */ 780 bundirty(bp); 781 782 /* 783 * If this buffer is marked for background writing and we 784 * do not have to wait for it, make a copy and write the 785 * copy so as to leave this buffer ready for further use. 786 * 787 * This optimization eats a lot of memory. If we have a page 788 * or buffer shortfall we can't do it. 789 */ 790 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 791 (bp->b_flags & B_ASYNC) && 792 !vm_page_count_severe() && 793 !buf_dirty_count_severe()) { 794 if (bp->b_iodone != NULL) { 795 printf("bp->b_iodone = %p\n", bp->b_iodone); 796 panic("bwrite: need chained iodone"); 797 } 798 799 /* get a new block */ 800 newbp = geteblk(bp->b_bufsize); 801 802 /* 803 * set it to be identical to the old block. We have to 804 * set b_lblkno and BKGRDMARKER before calling bgetvp() 805 * to avoid confusing the splay tree and gbincore(). 806 */ 807 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 808 newbp->b_lblkno = bp->b_lblkno; 809 newbp->b_xflags |= BX_BKGRDMARKER; 810 bgetvp(bp->b_vp, newbp); 811 newbp->b_blkno = bp->b_blkno; 812 newbp->b_offset = bp->b_offset; 813 newbp->b_iodone = vfs_backgroundwritedone; 814 newbp->b_flags |= B_ASYNC; 815 newbp->b_flags &= ~B_INVAL; 816 817 /* move over the dependencies */ 818 if (LIST_FIRST(&bp->b_dep) != NULL) 819 buf_movedeps(bp, newbp); 820 821 /* 822 * Initiate write on the copy, release the original to 823 * the B_LOCKED queue so that it cannot go away until 824 * the background write completes. If not locked it could go 825 * away and then be reconstituted while it was being written. 826 * If the reconstituted buffer were written, we could end up 827 * with two background copies being written at the same time. 828 */ 829 bp->b_xflags |= BX_BKGRDINPROG; 830 bp->b_flags |= B_LOCKED; 831 bqrelse(bp); 832 bp = newbp; 833 } 834 835 bp->b_flags &= ~B_DONE; 836 bp->b_ioflags &= ~BIO_ERROR; 837 bp->b_flags |= B_WRITEINPROG | B_CACHE; 838 bp->b_iocmd = BIO_WRITE; 839 840 VI_LOCK(bp->b_vp); 841 bp->b_vp->v_numoutput++; 842 VI_UNLOCK(bp->b_vp); 843 vfs_busy_pages(bp, 1); 844 845 /* 846 * Normal bwrites pipeline writes 847 */ 848 bp->b_runningbufspace = bp->b_bufsize; 849 runningbufspace += bp->b_runningbufspace; 850 851 if (curthread != PCPU_GET(idlethread)) 852 curthread->td_proc->p_stats->p_ru.ru_oublock++; 853 splx(s); 854 if (oldflags & B_ASYNC) 855 BUF_KERNPROC(bp); 856 BUF_STRATEGY(bp); 857 858 if ((oldflags & B_ASYNC) == 0) { 859 int rtval = bufwait(bp); 860 brelse(bp); 861 return (rtval); 862 } else if ((oldflags & B_NOWDRAIN) == 0) { 863 /* 864 * don't allow the async write to saturate the I/O 865 * system. Deadlocks can occur only if a device strategy 866 * routine (like in MD) turns around and issues another 867 * high-level write, in which case B_NOWDRAIN is expected 868 * to be set. Otherwise we will not deadlock here because 869 * we are blocking waiting for I/O that is already in-progress 870 * to complete. 871 */ 872 waitrunningbufspace(); 873 } 874 875 return (0); 876 } 877 878 /* 879 * Complete a background write started from bwrite. 880 */ 881 static void 882 vfs_backgroundwritedone(bp) 883 struct buf *bp; 884 { 885 struct buf *origbp; 886 887 /* 888 * Find the original buffer that we are writing. 889 */ 890 VI_LOCK(bp->b_vp); 891 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 892 panic("backgroundwritedone: lost buffer"); 893 VI_UNLOCK(bp->b_vp); 894 /* 895 * Process dependencies then return any unfinished ones. 896 */ 897 if (LIST_FIRST(&bp->b_dep) != NULL) 898 buf_complete(bp); 899 if (LIST_FIRST(&bp->b_dep) != NULL) 900 buf_movedeps(bp, origbp); 901 /* 902 * Clear the BX_BKGRDINPROG flag in the original buffer 903 * and awaken it if it is waiting for the write to complete. 904 * If BX_BKGRDINPROG is not set in the original buffer it must 905 * have been released and re-instantiated - which is not legal. 906 */ 907 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), 908 ("backgroundwritedone: lost buffer2")); 909 origbp->b_xflags &= ~BX_BKGRDINPROG; 910 if (origbp->b_xflags & BX_BKGRDWAIT) { 911 origbp->b_xflags &= ~BX_BKGRDWAIT; 912 wakeup(&origbp->b_xflags); 913 } 914 /* 915 * Clear the B_LOCKED flag and remove it from the locked 916 * queue if it currently resides there. 917 */ 918 origbp->b_flags &= ~B_LOCKED; 919 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 920 bremfree(origbp); 921 bqrelse(origbp); 922 } 923 /* 924 * This buffer is marked B_NOCACHE, so when it is released 925 * by biodone, it will be tossed. We mark it with BIO_READ 926 * to avoid biodone doing a second vwakeup. 927 */ 928 bp->b_flags |= B_NOCACHE; 929 bp->b_iocmd = BIO_READ; 930 bp->b_flags &= ~(B_CACHE | B_DONE); 931 bp->b_iodone = 0; 932 bufdone(bp); 933 } 934 935 /* 936 * Delayed write. (Buffer is marked dirty). Do not bother writing 937 * anything if the buffer is marked invalid. 938 * 939 * Note that since the buffer must be completely valid, we can safely 940 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 941 * biodone() in order to prevent getblk from writing the buffer 942 * out synchronously. 943 */ 944 void 945 bdwrite(struct buf * bp) 946 { 947 GIANT_REQUIRED; 948 949 if (BUF_REFCNT(bp) == 0) 950 panic("bdwrite: buffer is not busy"); 951 952 if (bp->b_flags & B_INVAL) { 953 brelse(bp); 954 return; 955 } 956 bdirty(bp); 957 958 /* 959 * Set B_CACHE, indicating that the buffer is fully valid. This is 960 * true even of NFS now. 961 */ 962 bp->b_flags |= B_CACHE; 963 964 /* 965 * This bmap keeps the system from needing to do the bmap later, 966 * perhaps when the system is attempting to do a sync. Since it 967 * is likely that the indirect block -- or whatever other datastructure 968 * that the filesystem needs is still in memory now, it is a good 969 * thing to do this. Note also, that if the pageout daemon is 970 * requesting a sync -- there might not be enough memory to do 971 * the bmap then... So, this is important to do. 972 */ 973 if (bp->b_lblkno == bp->b_blkno) { 974 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 975 } 976 977 /* 978 * Set the *dirty* buffer range based upon the VM system dirty pages. 979 */ 980 vfs_setdirty(bp); 981 982 /* 983 * We need to do this here to satisfy the vnode_pager and the 984 * pageout daemon, so that it thinks that the pages have been 985 * "cleaned". Note that since the pages are in a delayed write 986 * buffer -- the VFS layer "will" see that the pages get written 987 * out on the next sync, or perhaps the cluster will be completed. 988 */ 989 vfs_clean_pages(bp); 990 bqrelse(bp); 991 992 /* 993 * Wakeup the buffer flushing daemon if we have a lot of dirty 994 * buffers (midpoint between our recovery point and our stall 995 * point). 996 */ 997 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 998 999 /* 1000 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1001 * due to the softdep code. 1002 */ 1003 } 1004 1005 /* 1006 * bdirty: 1007 * 1008 * Turn buffer into delayed write request. We must clear BIO_READ and 1009 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 1010 * itself to properly update it in the dirty/clean lists. We mark it 1011 * B_DONE to ensure that any asynchronization of the buffer properly 1012 * clears B_DONE ( else a panic will occur later ). 1013 * 1014 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 1015 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 1016 * should only be called if the buffer is known-good. 1017 * 1018 * Since the buffer is not on a queue, we do not update the numfreebuffers 1019 * count. 1020 * 1021 * Must be called at splbio(). 1022 * The buffer must be on QUEUE_NONE. 1023 */ 1024 void 1025 bdirty(bp) 1026 struct buf *bp; 1027 { 1028 KASSERT(bp->b_qindex == QUEUE_NONE, 1029 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1030 bp->b_flags &= ~(B_RELBUF); 1031 bp->b_iocmd = BIO_WRITE; 1032 1033 if ((bp->b_flags & B_DELWRI) == 0) { 1034 bp->b_flags |= B_DONE | B_DELWRI; 1035 reassignbuf(bp, bp->b_vp); 1036 ++numdirtybuffers; 1037 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1038 } 1039 } 1040 1041 /* 1042 * bundirty: 1043 * 1044 * Clear B_DELWRI for buffer. 1045 * 1046 * Since the buffer is not on a queue, we do not update the numfreebuffers 1047 * count. 1048 * 1049 * Must be called at splbio(). 1050 * The buffer must be on QUEUE_NONE. 1051 */ 1052 1053 void 1054 bundirty(bp) 1055 struct buf *bp; 1056 { 1057 KASSERT(bp->b_qindex == QUEUE_NONE, 1058 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1059 1060 if (bp->b_flags & B_DELWRI) { 1061 bp->b_flags &= ~B_DELWRI; 1062 reassignbuf(bp, bp->b_vp); 1063 --numdirtybuffers; 1064 numdirtywakeup(lodirtybuffers); 1065 } 1066 /* 1067 * Since it is now being written, we can clear its deferred write flag. 1068 */ 1069 bp->b_flags &= ~B_DEFERRED; 1070 } 1071 1072 /* 1073 * bawrite: 1074 * 1075 * Asynchronous write. Start output on a buffer, but do not wait for 1076 * it to complete. The buffer is released when the output completes. 1077 * 1078 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1079 * B_INVAL buffers. Not us. 1080 */ 1081 void 1082 bawrite(struct buf * bp) 1083 { 1084 bp->b_flags |= B_ASYNC; 1085 (void) BUF_WRITE(bp); 1086 } 1087 1088 /* 1089 * bwillwrite: 1090 * 1091 * Called prior to the locking of any vnodes when we are expecting to 1092 * write. We do not want to starve the buffer cache with too many 1093 * dirty buffers so we block here. By blocking prior to the locking 1094 * of any vnodes we attempt to avoid the situation where a locked vnode 1095 * prevents the various system daemons from flushing related buffers. 1096 */ 1097 1098 void 1099 bwillwrite(void) 1100 { 1101 if (numdirtybuffers >= hidirtybuffers) { 1102 int s; 1103 1104 mtx_lock(&Giant); 1105 s = splbio(); 1106 while (numdirtybuffers >= hidirtybuffers) { 1107 bd_wakeup(1); 1108 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1109 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); 1110 } 1111 splx(s); 1112 mtx_unlock(&Giant); 1113 } 1114 } 1115 1116 /* 1117 * Return true if we have too many dirty buffers. 1118 */ 1119 int 1120 buf_dirty_count_severe(void) 1121 { 1122 return(numdirtybuffers >= hidirtybuffers); 1123 } 1124 1125 /* 1126 * brelse: 1127 * 1128 * Release a busy buffer and, if requested, free its resources. The 1129 * buffer will be stashed in the appropriate bufqueue[] allowing it 1130 * to be accessed later as a cache entity or reused for other purposes. 1131 */ 1132 void 1133 brelse(struct buf * bp) 1134 { 1135 int s; 1136 1137 GIANT_REQUIRED; 1138 1139 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1140 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1141 1142 s = splbio(); 1143 1144 if (bp->b_flags & B_LOCKED) 1145 bp->b_ioflags &= ~BIO_ERROR; 1146 1147 if (bp->b_iocmd == BIO_WRITE && 1148 (bp->b_ioflags & BIO_ERROR) && 1149 !(bp->b_flags & B_INVAL)) { 1150 /* 1151 * Failed write, redirty. Must clear BIO_ERROR to prevent 1152 * pages from being scrapped. If B_INVAL is set then 1153 * this case is not run and the next case is run to 1154 * destroy the buffer. B_INVAL can occur if the buffer 1155 * is outside the range supported by the underlying device. 1156 */ 1157 bp->b_ioflags &= ~BIO_ERROR; 1158 bdirty(bp); 1159 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1160 (bp->b_ioflags & BIO_ERROR) || 1161 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1162 /* 1163 * Either a failed I/O or we were asked to free or not 1164 * cache the buffer. 1165 */ 1166 bp->b_flags |= B_INVAL; 1167 if (LIST_FIRST(&bp->b_dep) != NULL) 1168 buf_deallocate(bp); 1169 if (bp->b_flags & B_DELWRI) { 1170 --numdirtybuffers; 1171 numdirtywakeup(lodirtybuffers); 1172 } 1173 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1174 if ((bp->b_flags & B_VMIO) == 0) { 1175 if (bp->b_bufsize) 1176 allocbuf(bp, 0); 1177 if (bp->b_vp) 1178 brelvp(bp); 1179 } 1180 } 1181 1182 /* 1183 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1184 * is called with B_DELWRI set, the underlying pages may wind up 1185 * getting freed causing a previous write (bdwrite()) to get 'lost' 1186 * because pages associated with a B_DELWRI bp are marked clean. 1187 * 1188 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1189 * if B_DELWRI is set. 1190 * 1191 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1192 * on pages to return pages to the VM page queues. 1193 */ 1194 if (bp->b_flags & B_DELWRI) 1195 bp->b_flags &= ~B_RELBUF; 1196 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1197 bp->b_flags |= B_RELBUF; 1198 1199 /* 1200 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1201 * constituted, not even NFS buffers now. Two flags effect this. If 1202 * B_INVAL, the struct buf is invalidated but the VM object is kept 1203 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1204 * 1205 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1206 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1207 * buffer is also B_INVAL because it hits the re-dirtying code above. 1208 * 1209 * Normally we can do this whether a buffer is B_DELWRI or not. If 1210 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1211 * the commit state and we cannot afford to lose the buffer. If the 1212 * buffer has a background write in progress, we need to keep it 1213 * around to prevent it from being reconstituted and starting a second 1214 * background write. 1215 */ 1216 if ((bp->b_flags & B_VMIO) 1217 && !(bp->b_vp->v_mount != NULL && 1218 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1219 !vn_isdisk(bp->b_vp, NULL) && 1220 (bp->b_flags & B_DELWRI)) 1221 ) { 1222 1223 int i, j, resid; 1224 vm_page_t m; 1225 off_t foff; 1226 vm_pindex_t poff; 1227 vm_object_t obj; 1228 struct vnode *vp; 1229 1230 vp = bp->b_vp; 1231 obj = bp->b_object; 1232 1233 /* 1234 * Get the base offset and length of the buffer. Note that 1235 * in the VMIO case if the buffer block size is not 1236 * page-aligned then b_data pointer may not be page-aligned. 1237 * But our b_pages[] array *IS* page aligned. 1238 * 1239 * block sizes less then DEV_BSIZE (usually 512) are not 1240 * supported due to the page granularity bits (m->valid, 1241 * m->dirty, etc...). 1242 * 1243 * See man buf(9) for more information 1244 */ 1245 resid = bp->b_bufsize; 1246 foff = bp->b_offset; 1247 1248 for (i = 0; i < bp->b_npages; i++) { 1249 int had_bogus = 0; 1250 1251 m = bp->b_pages[i]; 1252 vm_page_flag_clear(m, PG_ZERO); 1253 1254 /* 1255 * If we hit a bogus page, fixup *all* the bogus pages 1256 * now. 1257 */ 1258 if (m == bogus_page) { 1259 poff = OFF_TO_IDX(bp->b_offset); 1260 had_bogus = 1; 1261 1262 for (j = i; j < bp->b_npages; j++) { 1263 vm_page_t mtmp; 1264 mtmp = bp->b_pages[j]; 1265 if (mtmp == bogus_page) { 1266 mtmp = vm_page_lookup(obj, poff + j); 1267 if (!mtmp) { 1268 panic("brelse: page missing\n"); 1269 } 1270 bp->b_pages[j] = mtmp; 1271 } 1272 } 1273 1274 if ((bp->b_flags & B_INVAL) == 0) { 1275 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1276 } 1277 m = bp->b_pages[i]; 1278 } 1279 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1280 int poffset = foff & PAGE_MASK; 1281 int presid = resid > (PAGE_SIZE - poffset) ? 1282 (PAGE_SIZE - poffset) : resid; 1283 1284 KASSERT(presid >= 0, ("brelse: extra page")); 1285 vm_page_set_invalid(m, poffset, presid); 1286 if (had_bogus) 1287 printf("avoided corruption bug in bogus_page/brelse code\n"); 1288 } 1289 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1290 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1291 } 1292 1293 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1294 vfs_vmio_release(bp); 1295 1296 } else if (bp->b_flags & B_VMIO) { 1297 1298 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1299 vfs_vmio_release(bp); 1300 } 1301 1302 } 1303 1304 if (bp->b_qindex != QUEUE_NONE) 1305 panic("brelse: free buffer onto another queue???"); 1306 if (BUF_REFCNT(bp) > 1) { 1307 /* do not release to free list */ 1308 BUF_UNLOCK(bp); 1309 splx(s); 1310 return; 1311 } 1312 1313 /* enqueue */ 1314 1315 /* buffers with no memory */ 1316 if (bp->b_bufsize == 0) { 1317 bp->b_flags |= B_INVAL; 1318 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1319 if (bp->b_xflags & BX_BKGRDINPROG) 1320 panic("losing buffer 1"); 1321 if (bp->b_kvasize) { 1322 bp->b_qindex = QUEUE_EMPTYKVA; 1323 } else { 1324 bp->b_qindex = QUEUE_EMPTY; 1325 } 1326 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1327 #ifdef USE_BUFHASH 1328 LIST_REMOVE(bp, b_hash); 1329 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1330 #endif 1331 bp->b_dev = NODEV; 1332 /* buffers with junk contents */ 1333 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1334 (bp->b_ioflags & BIO_ERROR)) { 1335 bp->b_flags |= B_INVAL; 1336 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1337 if (bp->b_xflags & BX_BKGRDINPROG) 1338 panic("losing buffer 2"); 1339 bp->b_qindex = QUEUE_CLEAN; 1340 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1341 #ifdef USE_BUFHASH 1342 LIST_REMOVE(bp, b_hash); 1343 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1344 #endif 1345 bp->b_dev = NODEV; 1346 1347 /* buffers that are locked */ 1348 } else if (bp->b_flags & B_LOCKED) { 1349 bp->b_qindex = QUEUE_LOCKED; 1350 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1351 1352 /* remaining buffers */ 1353 } else { 1354 if (bp->b_flags & B_DELWRI) 1355 bp->b_qindex = QUEUE_DIRTY; 1356 else 1357 bp->b_qindex = QUEUE_CLEAN; 1358 if (bp->b_flags & B_AGE) 1359 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1360 else 1361 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1362 } 1363 1364 /* 1365 * If B_INVAL and B_DELWRI is set, clear B_DELWRI. We have already 1366 * placed the buffer on the correct queue. We must also disassociate 1367 * the device and vnode for a B_INVAL buffer so gbincore() doesn't 1368 * find it. 1369 */ 1370 if (bp->b_flags & B_INVAL) { 1371 if (bp->b_flags & B_DELWRI) 1372 bundirty(bp); 1373 if (bp->b_vp) 1374 brelvp(bp); 1375 } 1376 1377 /* 1378 * Fixup numfreebuffers count. The bp is on an appropriate queue 1379 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1380 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1381 * if B_INVAL is set ). 1382 */ 1383 1384 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1385 bufcountwakeup(); 1386 1387 /* 1388 * Something we can maybe free or reuse 1389 */ 1390 if (bp->b_bufsize || bp->b_kvasize) 1391 bufspacewakeup(); 1392 1393 /* unlock */ 1394 BUF_UNLOCK(bp); 1395 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1396 B_DIRECT | B_NOWDRAIN); 1397 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1398 panic("brelse: not dirty"); 1399 splx(s); 1400 } 1401 1402 /* 1403 * Release a buffer back to the appropriate queue but do not try to free 1404 * it. The buffer is expected to be used again soon. 1405 * 1406 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1407 * biodone() to requeue an async I/O on completion. It is also used when 1408 * known good buffers need to be requeued but we think we may need the data 1409 * again soon. 1410 * 1411 * XXX we should be able to leave the B_RELBUF hint set on completion. 1412 */ 1413 void 1414 bqrelse(struct buf * bp) 1415 { 1416 int s; 1417 1418 s = splbio(); 1419 1420 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1421 1422 if (bp->b_qindex != QUEUE_NONE) 1423 panic("bqrelse: free buffer onto another queue???"); 1424 if (BUF_REFCNT(bp) > 1) { 1425 /* do not release to free list */ 1426 BUF_UNLOCK(bp); 1427 splx(s); 1428 return; 1429 } 1430 if (bp->b_flags & B_LOCKED) { 1431 bp->b_ioflags &= ~BIO_ERROR; 1432 bp->b_qindex = QUEUE_LOCKED; 1433 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1434 /* buffers with stale but valid contents */ 1435 } else if (bp->b_flags & B_DELWRI) { 1436 bp->b_qindex = QUEUE_DIRTY; 1437 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1438 } else if (vm_page_count_severe()) { 1439 /* 1440 * We are too low on memory, we have to try to free the 1441 * buffer (most importantly: the wired pages making up its 1442 * backing store) *now*. 1443 */ 1444 splx(s); 1445 brelse(bp); 1446 return; 1447 } else { 1448 bp->b_qindex = QUEUE_CLEAN; 1449 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1450 } 1451 1452 if ((bp->b_flags & B_LOCKED) == 0 && 1453 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1454 bufcountwakeup(); 1455 } 1456 1457 /* 1458 * Something we can maybe free or reuse. 1459 */ 1460 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1461 bufspacewakeup(); 1462 1463 /* unlock */ 1464 BUF_UNLOCK(bp); 1465 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1466 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1467 panic("bqrelse: not dirty"); 1468 splx(s); 1469 } 1470 1471 /* Give pages used by the bp back to the VM system (where possible) */ 1472 static void 1473 vfs_vmio_release(bp) 1474 struct buf *bp; 1475 { 1476 int i; 1477 vm_page_t m; 1478 1479 GIANT_REQUIRED; 1480 vm_page_lock_queues(); 1481 for (i = 0; i < bp->b_npages; i++) { 1482 m = bp->b_pages[i]; 1483 bp->b_pages[i] = NULL; 1484 /* 1485 * In order to keep page LRU ordering consistent, put 1486 * everything on the inactive queue. 1487 */ 1488 vm_page_unwire(m, 0); 1489 /* 1490 * We don't mess with busy pages, it is 1491 * the responsibility of the process that 1492 * busied the pages to deal with them. 1493 */ 1494 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1495 continue; 1496 1497 if (m->wire_count == 0) { 1498 vm_page_flag_clear(m, PG_ZERO); 1499 /* 1500 * Might as well free the page if we can and it has 1501 * no valid data. We also free the page if the 1502 * buffer was used for direct I/O 1503 */ 1504 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1505 m->hold_count == 0) { 1506 vm_page_busy(m); 1507 vm_page_protect(m, VM_PROT_NONE); 1508 vm_page_free(m); 1509 } else if (bp->b_flags & B_DIRECT) { 1510 vm_page_try_to_free(m); 1511 } else if (vm_page_count_severe()) { 1512 vm_page_try_to_cache(m); 1513 } 1514 } 1515 } 1516 vm_page_unlock_queues(); 1517 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1518 1519 if (bp->b_bufsize) { 1520 bufspacewakeup(); 1521 bp->b_bufsize = 0; 1522 } 1523 bp->b_npages = 0; 1524 bp->b_flags &= ~B_VMIO; 1525 if (bp->b_vp) 1526 brelvp(bp); 1527 } 1528 1529 #ifdef USE_BUFHASH 1530 /* 1531 * XXX MOVED TO VFS_SUBR.C 1532 * 1533 * Check to see if a block is currently memory resident. 1534 */ 1535 struct buf * 1536 gbincore(struct vnode * vp, daddr_t blkno) 1537 { 1538 struct buf *bp; 1539 struct bufhashhdr *bh; 1540 1541 bh = bufhash(vp, blkno); 1542 1543 /* Search hash chain */ 1544 LIST_FOREACH(bp, bh, b_hash) { 1545 /* hit */ 1546 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1547 (bp->b_flags & B_INVAL) == 0) { 1548 break; 1549 } 1550 } 1551 return (bp); 1552 } 1553 #endif 1554 1555 /* 1556 * vfs_bio_awrite: 1557 * 1558 * Implement clustered async writes for clearing out B_DELWRI buffers. 1559 * This is much better then the old way of writing only one buffer at 1560 * a time. Note that we may not be presented with the buffers in the 1561 * correct order, so we search for the cluster in both directions. 1562 */ 1563 int 1564 vfs_bio_awrite(struct buf * bp) 1565 { 1566 int i; 1567 int j; 1568 daddr_t lblkno = bp->b_lblkno; 1569 struct vnode *vp = bp->b_vp; 1570 int s; 1571 int ncl; 1572 struct buf *bpa; 1573 int nwritten; 1574 int size; 1575 int maxcl; 1576 1577 s = splbio(); 1578 /* 1579 * right now we support clustered writing only to regular files. If 1580 * we find a clusterable block we could be in the middle of a cluster 1581 * rather then at the beginning. 1582 */ 1583 if ((vp->v_type == VREG) && 1584 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1585 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1586 1587 size = vp->v_mount->mnt_stat.f_iosize; 1588 maxcl = MAXPHYS / size; 1589 1590 VI_LOCK(vp); 1591 for (i = 1; i < maxcl; i++) { 1592 if ((bpa = gbincore(vp, lblkno + i)) && 1593 BUF_REFCNT(bpa) == 0 && 1594 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1595 (B_DELWRI | B_CLUSTEROK)) && 1596 (bpa->b_bufsize == size)) { 1597 if ((bpa->b_blkno == bpa->b_lblkno) || 1598 (bpa->b_blkno != 1599 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1600 break; 1601 } else { 1602 break; 1603 } 1604 } 1605 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1606 if ((bpa = gbincore(vp, lblkno - j)) && 1607 BUF_REFCNT(bpa) == 0 && 1608 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1609 (B_DELWRI | B_CLUSTEROK)) && 1610 (bpa->b_bufsize == size)) { 1611 if ((bpa->b_blkno == bpa->b_lblkno) || 1612 (bpa->b_blkno != 1613 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1614 break; 1615 } else { 1616 break; 1617 } 1618 } 1619 VI_UNLOCK(vp); 1620 --j; 1621 ncl = i + j; 1622 /* 1623 * this is a possible cluster write 1624 */ 1625 if (ncl != 1) { 1626 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1627 splx(s); 1628 return nwritten; 1629 } 1630 } 1631 1632 BUF_LOCK(bp, LK_EXCLUSIVE); 1633 bremfree(bp); 1634 bp->b_flags |= B_ASYNC; 1635 1636 splx(s); 1637 /* 1638 * default (old) behavior, writing out only one block 1639 * 1640 * XXX returns b_bufsize instead of b_bcount for nwritten? 1641 */ 1642 nwritten = bp->b_bufsize; 1643 (void) BUF_WRITE(bp); 1644 1645 return nwritten; 1646 } 1647 1648 /* 1649 * getnewbuf: 1650 * 1651 * Find and initialize a new buffer header, freeing up existing buffers 1652 * in the bufqueues as necessary. The new buffer is returned locked. 1653 * 1654 * Important: B_INVAL is not set. If the caller wishes to throw the 1655 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1656 * 1657 * We block if: 1658 * We have insufficient buffer headers 1659 * We have insufficient buffer space 1660 * buffer_map is too fragmented ( space reservation fails ) 1661 * If we have to flush dirty buffers ( but we try to avoid this ) 1662 * 1663 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1664 * Instead we ask the buf daemon to do it for us. We attempt to 1665 * avoid piecemeal wakeups of the pageout daemon. 1666 */ 1667 1668 static struct buf * 1669 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1670 { 1671 struct buf *bp; 1672 struct buf *nbp; 1673 int defrag = 0; 1674 int nqindex; 1675 static int flushingbufs; 1676 1677 GIANT_REQUIRED; 1678 1679 /* 1680 * We can't afford to block since we might be holding a vnode lock, 1681 * which may prevent system daemons from running. We deal with 1682 * low-memory situations by proactively returning memory and running 1683 * async I/O rather then sync I/O. 1684 */ 1685 1686 ++getnewbufcalls; 1687 --getnewbufrestarts; 1688 restart: 1689 ++getnewbufrestarts; 1690 1691 /* 1692 * Setup for scan. If we do not have enough free buffers, 1693 * we setup a degenerate case that immediately fails. Note 1694 * that if we are specially marked process, we are allowed to 1695 * dip into our reserves. 1696 * 1697 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1698 * 1699 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1700 * However, there are a number of cases (defragging, reusing, ...) 1701 * where we cannot backup. 1702 */ 1703 nqindex = QUEUE_EMPTYKVA; 1704 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1705 1706 if (nbp == NULL) { 1707 /* 1708 * If no EMPTYKVA buffers and we are either 1709 * defragging or reusing, locate a CLEAN buffer 1710 * to free or reuse. If bufspace useage is low 1711 * skip this step so we can allocate a new buffer. 1712 */ 1713 if (defrag || bufspace >= lobufspace) { 1714 nqindex = QUEUE_CLEAN; 1715 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1716 } 1717 1718 /* 1719 * If we could not find or were not allowed to reuse a 1720 * CLEAN buffer, check to see if it is ok to use an EMPTY 1721 * buffer. We can only use an EMPTY buffer if allocating 1722 * its KVA would not otherwise run us out of buffer space. 1723 */ 1724 if (nbp == NULL && defrag == 0 && 1725 bufspace + maxsize < hibufspace) { 1726 nqindex = QUEUE_EMPTY; 1727 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1728 } 1729 } 1730 1731 /* 1732 * Run scan, possibly freeing data and/or kva mappings on the fly 1733 * depending. 1734 */ 1735 1736 while ((bp = nbp) != NULL) { 1737 int qindex = nqindex; 1738 1739 /* 1740 * Calculate next bp ( we can only use it if we do not block 1741 * or do other fancy things ). 1742 */ 1743 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1744 switch(qindex) { 1745 case QUEUE_EMPTY: 1746 nqindex = QUEUE_EMPTYKVA; 1747 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1748 break; 1749 /* FALLTHROUGH */ 1750 case QUEUE_EMPTYKVA: 1751 nqindex = QUEUE_CLEAN; 1752 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1753 break; 1754 /* FALLTHROUGH */ 1755 case QUEUE_CLEAN: 1756 /* 1757 * nbp is NULL. 1758 */ 1759 break; 1760 } 1761 } 1762 1763 /* 1764 * Sanity Checks 1765 */ 1766 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1767 1768 /* 1769 * Note: we no longer distinguish between VMIO and non-VMIO 1770 * buffers. 1771 */ 1772 1773 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1774 1775 /* 1776 * If we are defragging then we need a buffer with 1777 * b_kvasize != 0. XXX this situation should no longer 1778 * occur, if defrag is non-zero the buffer's b_kvasize 1779 * should also be non-zero at this point. XXX 1780 */ 1781 if (defrag && bp->b_kvasize == 0) { 1782 printf("Warning: defrag empty buffer %p\n", bp); 1783 continue; 1784 } 1785 1786 /* 1787 * Start freeing the bp. This is somewhat involved. nbp 1788 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1789 */ 1790 1791 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1792 panic("getnewbuf: locked buf"); 1793 bremfree(bp); 1794 1795 if (qindex == QUEUE_CLEAN) { 1796 if (bp->b_flags & B_VMIO) { 1797 bp->b_flags &= ~B_ASYNC; 1798 vfs_vmio_release(bp); 1799 } 1800 if (bp->b_vp) 1801 brelvp(bp); 1802 } 1803 1804 /* 1805 * NOTE: nbp is now entirely invalid. We can only restart 1806 * the scan from this point on. 1807 * 1808 * Get the rest of the buffer freed up. b_kva* is still 1809 * valid after this operation. 1810 */ 1811 1812 if (bp->b_rcred != NOCRED) { 1813 crfree(bp->b_rcred); 1814 bp->b_rcred = NOCRED; 1815 } 1816 if (bp->b_wcred != NOCRED) { 1817 crfree(bp->b_wcred); 1818 bp->b_wcred = NOCRED; 1819 } 1820 if (LIST_FIRST(&bp->b_dep) != NULL) 1821 buf_deallocate(bp); 1822 if (bp->b_xflags & BX_BKGRDINPROG) 1823 panic("losing buffer 3"); 1824 #ifdef USE_BUFHASH 1825 LIST_REMOVE(bp, b_hash); 1826 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1827 #endif 1828 1829 if (bp->b_bufsize) 1830 allocbuf(bp, 0); 1831 1832 bp->b_flags = 0; 1833 bp->b_ioflags = 0; 1834 bp->b_xflags = 0; 1835 bp->b_dev = NODEV; 1836 bp->b_vp = NULL; 1837 bp->b_blkno = bp->b_lblkno = 0; 1838 bp->b_offset = NOOFFSET; 1839 bp->b_iodone = 0; 1840 bp->b_error = 0; 1841 bp->b_resid = 0; 1842 bp->b_bcount = 0; 1843 bp->b_npages = 0; 1844 bp->b_dirtyoff = bp->b_dirtyend = 0; 1845 bp->b_magic = B_MAGIC_BIO; 1846 bp->b_op = &buf_ops_bio; 1847 bp->b_object = NULL; 1848 1849 LIST_INIT(&bp->b_dep); 1850 1851 /* 1852 * If we are defragging then free the buffer. 1853 */ 1854 if (defrag) { 1855 bp->b_flags |= B_INVAL; 1856 bfreekva(bp); 1857 brelse(bp); 1858 defrag = 0; 1859 goto restart; 1860 } 1861 1862 /* 1863 * If we are overcomitted then recover the buffer and its 1864 * KVM space. This occurs in rare situations when multiple 1865 * processes are blocked in getnewbuf() or allocbuf(). 1866 */ 1867 if (bufspace >= hibufspace) 1868 flushingbufs = 1; 1869 if (flushingbufs && bp->b_kvasize != 0) { 1870 bp->b_flags |= B_INVAL; 1871 bfreekva(bp); 1872 brelse(bp); 1873 goto restart; 1874 } 1875 if (bufspace < lobufspace) 1876 flushingbufs = 0; 1877 break; 1878 } 1879 1880 /* 1881 * If we exhausted our list, sleep as appropriate. We may have to 1882 * wakeup various daemons and write out some dirty buffers. 1883 * 1884 * Generally we are sleeping due to insufficient buffer space. 1885 */ 1886 1887 if (bp == NULL) { 1888 int flags; 1889 char *waitmsg; 1890 1891 if (defrag) { 1892 flags = VFS_BIO_NEED_BUFSPACE; 1893 waitmsg = "nbufkv"; 1894 } else if (bufspace >= hibufspace) { 1895 waitmsg = "nbufbs"; 1896 flags = VFS_BIO_NEED_BUFSPACE; 1897 } else { 1898 waitmsg = "newbuf"; 1899 flags = VFS_BIO_NEED_ANY; 1900 } 1901 1902 bd_speedup(); /* heeeelp */ 1903 1904 needsbuffer |= flags; 1905 while (needsbuffer & flags) { 1906 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1907 waitmsg, slptimeo)) 1908 return (NULL); 1909 } 1910 } else { 1911 /* 1912 * We finally have a valid bp. We aren't quite out of the 1913 * woods, we still have to reserve kva space. In order 1914 * to keep fragmentation sane we only allocate kva in 1915 * BKVASIZE chunks. 1916 */ 1917 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1918 1919 if (maxsize != bp->b_kvasize) { 1920 vm_offset_t addr = 0; 1921 1922 bfreekva(bp); 1923 1924 if (vm_map_findspace(buffer_map, 1925 vm_map_min(buffer_map), maxsize, &addr)) { 1926 /* 1927 * Uh oh. Buffer map is to fragmented. We 1928 * must defragment the map. 1929 */ 1930 ++bufdefragcnt; 1931 defrag = 1; 1932 bp->b_flags |= B_INVAL; 1933 brelse(bp); 1934 goto restart; 1935 } 1936 if (addr) { 1937 vm_map_insert(buffer_map, NULL, 0, 1938 addr, addr + maxsize, 1939 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1940 1941 bp->b_kvabase = (caddr_t) addr; 1942 bp->b_kvasize = maxsize; 1943 bufspace += bp->b_kvasize; 1944 ++bufreusecnt; 1945 } 1946 } 1947 bp->b_data = bp->b_kvabase; 1948 } 1949 return(bp); 1950 } 1951 1952 /* 1953 * buf_daemon: 1954 * 1955 * buffer flushing daemon. Buffers are normally flushed by the 1956 * update daemon but if it cannot keep up this process starts to 1957 * take the load in an attempt to prevent getnewbuf() from blocking. 1958 */ 1959 1960 static struct proc *bufdaemonproc; 1961 1962 static struct kproc_desc buf_kp = { 1963 "bufdaemon", 1964 buf_daemon, 1965 &bufdaemonproc 1966 }; 1967 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1968 1969 static void 1970 buf_daemon() 1971 { 1972 int s; 1973 1974 mtx_lock(&Giant); 1975 1976 /* 1977 * This process needs to be suspended prior to shutdown sync. 1978 */ 1979 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 1980 SHUTDOWN_PRI_LAST); 1981 1982 /* 1983 * This process is allowed to take the buffer cache to the limit 1984 */ 1985 s = splbio(); 1986 1987 for (;;) { 1988 kthread_suspend_check(bufdaemonproc); 1989 1990 bd_request = 0; 1991 1992 /* 1993 * Do the flush. Limit the amount of in-transit I/O we 1994 * allow to build up, otherwise we would completely saturate 1995 * the I/O system. Wakeup any waiting processes before we 1996 * normally would so they can run in parallel with our drain. 1997 */ 1998 while (numdirtybuffers > lodirtybuffers) { 1999 if (flushbufqueues() == 0) 2000 break; 2001 waitrunningbufspace(); 2002 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 2003 } 2004 2005 /* 2006 * Only clear bd_request if we have reached our low water 2007 * mark. The buf_daemon normally waits 1 second and 2008 * then incrementally flushes any dirty buffers that have 2009 * built up, within reason. 2010 * 2011 * If we were unable to hit our low water mark and couldn't 2012 * find any flushable buffers, we sleep half a second. 2013 * Otherwise we loop immediately. 2014 */ 2015 if (numdirtybuffers <= lodirtybuffers) { 2016 /* 2017 * We reached our low water mark, reset the 2018 * request and sleep until we are needed again. 2019 * The sleep is just so the suspend code works. 2020 */ 2021 bd_request = 0; 2022 tsleep(&bd_request, PVM, "psleep", hz); 2023 } else { 2024 /* 2025 * We couldn't find any flushable dirty buffers but 2026 * still have too many dirty buffers, we 2027 * have to sleep and try again. (rare) 2028 */ 2029 tsleep(&bd_request, PVM, "qsleep", hz / 2); 2030 } 2031 } 2032 } 2033 2034 /* 2035 * flushbufqueues: 2036 * 2037 * Try to flush a buffer in the dirty queue. We must be careful to 2038 * free up B_INVAL buffers instead of write them, which NFS is 2039 * particularly sensitive to. 2040 */ 2041 2042 static int 2043 flushbufqueues(void) 2044 { 2045 struct thread *td = curthread; 2046 struct vnode *vp; 2047 struct buf *bp; 2048 int r = 0; 2049 2050 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 2051 2052 while (bp) { 2053 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 2054 if ((bp->b_flags & B_DELWRI) != 0 && 2055 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 2056 if (bp->b_flags & B_INVAL) { 2057 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2058 panic("flushbufqueues: locked buf"); 2059 bremfree(bp); 2060 brelse(bp); 2061 ++r; 2062 break; 2063 } 2064 if (LIST_FIRST(&bp->b_dep) != NULL && 2065 (bp->b_flags & B_DEFERRED) == 0 && 2066 buf_countdeps(bp, 0)) { 2067 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 2068 bp, b_freelist); 2069 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 2070 bp, b_freelist); 2071 bp->b_flags |= B_DEFERRED; 2072 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 2073 continue; 2074 } 2075 /* 2076 * We must hold the lock on a vnode before writing 2077 * one of its buffers. Otherwise we may confuse, or 2078 * in the case of a snapshot vnode, deadlock the 2079 * system. Rather than blocking waiting for the 2080 * vnode, we just push on to the next buffer. 2081 */ 2082 if ((vp = bp->b_vp) == NULL || 2083 vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) { 2084 vfs_bio_awrite(bp); 2085 ++r; 2086 if (vp != NULL) 2087 VOP_UNLOCK(vp, 0, td); 2088 break; 2089 } 2090 } 2091 bp = TAILQ_NEXT(bp, b_freelist); 2092 } 2093 return (r); 2094 } 2095 2096 /* 2097 * Check to see if a block is currently memory resident. 2098 */ 2099 struct buf * 2100 incore(struct vnode * vp, daddr_t blkno) 2101 { 2102 struct buf *bp; 2103 2104 int s = splbio(); 2105 VI_LOCK(vp); 2106 bp = gbincore(vp, blkno); 2107 VI_UNLOCK(vp); 2108 splx(s); 2109 return (bp); 2110 } 2111 2112 /* 2113 * Returns true if no I/O is needed to access the 2114 * associated VM object. This is like incore except 2115 * it also hunts around in the VM system for the data. 2116 */ 2117 2118 int 2119 inmem(struct vnode * vp, daddr_t blkno) 2120 { 2121 vm_object_t obj; 2122 vm_offset_t toff, tinc, size; 2123 vm_page_t m; 2124 vm_ooffset_t off; 2125 2126 GIANT_REQUIRED; 2127 ASSERT_VOP_LOCKED(vp, "inmem"); 2128 2129 if (incore(vp, blkno)) 2130 return 1; 2131 if (vp->v_mount == NULL) 2132 return 0; 2133 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0) 2134 return 0; 2135 2136 size = PAGE_SIZE; 2137 if (size > vp->v_mount->mnt_stat.f_iosize) 2138 size = vp->v_mount->mnt_stat.f_iosize; 2139 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2140 2141 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2142 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2143 if (!m) 2144 goto notinmem; 2145 tinc = size; 2146 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2147 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2148 if (vm_page_is_valid(m, 2149 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2150 goto notinmem; 2151 } 2152 return 1; 2153 2154 notinmem: 2155 return (0); 2156 } 2157 2158 /* 2159 * vfs_setdirty: 2160 * 2161 * Sets the dirty range for a buffer based on the status of the dirty 2162 * bits in the pages comprising the buffer. 2163 * 2164 * The range is limited to the size of the buffer. 2165 * 2166 * This routine is primarily used by NFS, but is generalized for the 2167 * B_VMIO case. 2168 */ 2169 static void 2170 vfs_setdirty(struct buf *bp) 2171 { 2172 int i; 2173 vm_object_t object; 2174 2175 GIANT_REQUIRED; 2176 /* 2177 * Degenerate case - empty buffer 2178 */ 2179 2180 if (bp->b_bufsize == 0) 2181 return; 2182 2183 /* 2184 * We qualify the scan for modified pages on whether the 2185 * object has been flushed yet. The OBJ_WRITEABLE flag 2186 * is not cleared simply by protecting pages off. 2187 */ 2188 2189 if ((bp->b_flags & B_VMIO) == 0) 2190 return; 2191 2192 object = bp->b_pages[0]->object; 2193 2194 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2195 printf("Warning: object %p writeable but not mightbedirty\n", object); 2196 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2197 printf("Warning: object %p mightbedirty but not writeable\n", object); 2198 2199 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2200 vm_offset_t boffset; 2201 vm_offset_t eoffset; 2202 2203 /* 2204 * test the pages to see if they have been modified directly 2205 * by users through the VM system. 2206 */ 2207 for (i = 0; i < bp->b_npages; i++) { 2208 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2209 vm_page_test_dirty(bp->b_pages[i]); 2210 } 2211 2212 /* 2213 * Calculate the encompassing dirty range, boffset and eoffset, 2214 * (eoffset - boffset) bytes. 2215 */ 2216 2217 for (i = 0; i < bp->b_npages; i++) { 2218 if (bp->b_pages[i]->dirty) 2219 break; 2220 } 2221 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2222 2223 for (i = bp->b_npages - 1; i >= 0; --i) { 2224 if (bp->b_pages[i]->dirty) { 2225 break; 2226 } 2227 } 2228 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2229 2230 /* 2231 * Fit it to the buffer. 2232 */ 2233 2234 if (eoffset > bp->b_bcount) 2235 eoffset = bp->b_bcount; 2236 2237 /* 2238 * If we have a good dirty range, merge with the existing 2239 * dirty range. 2240 */ 2241 2242 if (boffset < eoffset) { 2243 if (bp->b_dirtyoff > boffset) 2244 bp->b_dirtyoff = boffset; 2245 if (bp->b_dirtyend < eoffset) 2246 bp->b_dirtyend = eoffset; 2247 } 2248 } 2249 } 2250 2251 /* 2252 * getblk: 2253 * 2254 * Get a block given a specified block and offset into a file/device. 2255 * The buffers B_DONE bit will be cleared on return, making it almost 2256 * ready for an I/O initiation. B_INVAL may or may not be set on 2257 * return. The caller should clear B_INVAL prior to initiating a 2258 * READ. 2259 * 2260 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2261 * an existing buffer. 2262 * 2263 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2264 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2265 * and then cleared based on the backing VM. If the previous buffer is 2266 * non-0-sized but invalid, B_CACHE will be cleared. 2267 * 2268 * If getblk() must create a new buffer, the new buffer is returned with 2269 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2270 * case it is returned with B_INVAL clear and B_CACHE set based on the 2271 * backing VM. 2272 * 2273 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2274 * B_CACHE bit is clear. 2275 * 2276 * What this means, basically, is that the caller should use B_CACHE to 2277 * determine whether the buffer is fully valid or not and should clear 2278 * B_INVAL prior to issuing a read. If the caller intends to validate 2279 * the buffer by loading its data area with something, the caller needs 2280 * to clear B_INVAL. If the caller does this without issuing an I/O, 2281 * the caller should set B_CACHE ( as an optimization ), else the caller 2282 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2283 * a write attempt or if it was a successfull read. If the caller 2284 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2285 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2286 */ 2287 struct buf * 2288 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2289 { 2290 struct buf *bp; 2291 int s; 2292 #ifdef USE_BUFHASH 2293 struct bufhashhdr *bh; 2294 #endif 2295 ASSERT_VOP_LOCKED(vp, "getblk"); 2296 2297 if (size > MAXBSIZE) 2298 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2299 2300 s = splbio(); 2301 loop: 2302 /* 2303 * Block if we are low on buffers. Certain processes are allowed 2304 * to completely exhaust the buffer cache. 2305 * 2306 * If this check ever becomes a bottleneck it may be better to 2307 * move it into the else, when gbincore() fails. At the moment 2308 * it isn't a problem. 2309 * 2310 * XXX remove if 0 sections (clean this up after its proven) 2311 */ 2312 if (numfreebuffers == 0) { 2313 if (curthread == PCPU_GET(idlethread)) 2314 return NULL; 2315 needsbuffer |= VFS_BIO_NEED_ANY; 2316 } 2317 2318 VI_LOCK(vp); 2319 if ((bp = gbincore(vp, blkno))) { 2320 VI_UNLOCK(vp); 2321 /* 2322 * Buffer is in-core. If the buffer is not busy, it must 2323 * be on a queue. 2324 */ 2325 2326 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2327 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2328 "getblk", slpflag, slptimeo) == ENOLCK) 2329 goto loop; 2330 splx(s); 2331 return (struct buf *) NULL; 2332 } 2333 2334 /* 2335 * The buffer is locked. B_CACHE is cleared if the buffer is 2336 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 2337 * and for a VMIO buffer B_CACHE is adjusted according to the 2338 * backing VM cache. 2339 */ 2340 if (bp->b_flags & B_INVAL) 2341 bp->b_flags &= ~B_CACHE; 2342 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2343 bp->b_flags |= B_CACHE; 2344 bremfree(bp); 2345 2346 /* 2347 * check for size inconsistancies for non-VMIO case. 2348 */ 2349 2350 if (bp->b_bcount != size) { 2351 if ((bp->b_flags & B_VMIO) == 0 || 2352 (size > bp->b_kvasize)) { 2353 if (bp->b_flags & B_DELWRI) { 2354 bp->b_flags |= B_NOCACHE; 2355 BUF_WRITE(bp); 2356 } else { 2357 if ((bp->b_flags & B_VMIO) && 2358 (LIST_FIRST(&bp->b_dep) == NULL)) { 2359 bp->b_flags |= B_RELBUF; 2360 brelse(bp); 2361 } else { 2362 bp->b_flags |= B_NOCACHE; 2363 BUF_WRITE(bp); 2364 } 2365 } 2366 goto loop; 2367 } 2368 } 2369 2370 /* 2371 * If the size is inconsistant in the VMIO case, we can resize 2372 * the buffer. This might lead to B_CACHE getting set or 2373 * cleared. If the size has not changed, B_CACHE remains 2374 * unchanged from its previous state. 2375 */ 2376 2377 if (bp->b_bcount != size) 2378 allocbuf(bp, size); 2379 2380 KASSERT(bp->b_offset != NOOFFSET, 2381 ("getblk: no buffer offset")); 2382 2383 /* 2384 * A buffer with B_DELWRI set and B_CACHE clear must 2385 * be committed before we can return the buffer in 2386 * order to prevent the caller from issuing a read 2387 * ( due to B_CACHE not being set ) and overwriting 2388 * it. 2389 * 2390 * Most callers, including NFS and FFS, need this to 2391 * operate properly either because they assume they 2392 * can issue a read if B_CACHE is not set, or because 2393 * ( for example ) an uncached B_DELWRI might loop due 2394 * to softupdates re-dirtying the buffer. In the latter 2395 * case, B_CACHE is set after the first write completes, 2396 * preventing further loops. 2397 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2398 * above while extending the buffer, we cannot allow the 2399 * buffer to remain with B_CACHE set after the write 2400 * completes or it will represent a corrupt state. To 2401 * deal with this we set B_NOCACHE to scrap the buffer 2402 * after the write. 2403 * 2404 * We might be able to do something fancy, like setting 2405 * B_CACHE in bwrite() except if B_DELWRI is already set, 2406 * so the below call doesn't set B_CACHE, but that gets real 2407 * confusing. This is much easier. 2408 */ 2409 2410 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2411 bp->b_flags |= B_NOCACHE; 2412 BUF_WRITE(bp); 2413 goto loop; 2414 } 2415 2416 splx(s); 2417 bp->b_flags &= ~B_DONE; 2418 } else { 2419 int bsize, maxsize, vmio; 2420 off_t offset; 2421 2422 /* 2423 * Buffer is not in-core, create new buffer. The buffer 2424 * returned by getnewbuf() is locked. Note that the returned 2425 * buffer is also considered valid (not marked B_INVAL). 2426 */ 2427 VI_UNLOCK(vp); 2428 if (vn_isdisk(vp, NULL)) 2429 bsize = DEV_BSIZE; 2430 else if (vp->v_mountedhere) 2431 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2432 else if (vp->v_mount) 2433 bsize = vp->v_mount->mnt_stat.f_iosize; 2434 else 2435 bsize = size; 2436 2437 offset = blkno * bsize; 2438 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && 2439 (vp->v_vflag & VV_OBJBUF); 2440 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2441 maxsize = imax(maxsize, bsize); 2442 2443 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2444 if (slpflag || slptimeo) { 2445 splx(s); 2446 return NULL; 2447 } 2448 goto loop; 2449 } 2450 2451 /* 2452 * This code is used to make sure that a buffer is not 2453 * created while the getnewbuf routine is blocked. 2454 * This can be a problem whether the vnode is locked or not. 2455 * If the buffer is created out from under us, we have to 2456 * throw away the one we just created. There is now window 2457 * race because we are safely running at splbio() from the 2458 * point of the duplicate buffer creation through to here, 2459 * and we've locked the buffer. 2460 * 2461 * Note: this must occur before we associate the buffer 2462 * with the vp especially considering limitations in 2463 * the splay tree implementation when dealing with duplicate 2464 * lblkno's. 2465 */ 2466 VI_LOCK(vp); 2467 if (gbincore(vp, blkno)) { 2468 VI_UNLOCK(vp); 2469 bp->b_flags |= B_INVAL; 2470 brelse(bp); 2471 goto loop; 2472 } 2473 VI_UNLOCK(vp); 2474 2475 /* 2476 * Insert the buffer into the hash, so that it can 2477 * be found by incore. 2478 */ 2479 bp->b_blkno = bp->b_lblkno = blkno; 2480 bp->b_offset = offset; 2481 2482 bgetvp(vp, bp); 2483 #ifdef USE_BUFHASH 2484 LIST_REMOVE(bp, b_hash); 2485 bh = bufhash(vp, blkno); 2486 LIST_INSERT_HEAD(bh, bp, b_hash); 2487 #endif 2488 2489 /* 2490 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2491 * buffer size starts out as 0, B_CACHE will be set by 2492 * allocbuf() for the VMIO case prior to it testing the 2493 * backing store for validity. 2494 */ 2495 2496 if (vmio) { 2497 bp->b_flags |= B_VMIO; 2498 #if defined(VFS_BIO_DEBUG) 2499 if (vp->v_type != VREG) 2500 printf("getblk: vmioing file type %d???\n", vp->v_type); 2501 #endif 2502 VOP_GETVOBJECT(vp, &bp->b_object); 2503 } else { 2504 bp->b_flags &= ~B_VMIO; 2505 bp->b_object = NULL; 2506 } 2507 2508 allocbuf(bp, size); 2509 2510 splx(s); 2511 bp->b_flags &= ~B_DONE; 2512 } 2513 KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp)); 2514 return (bp); 2515 } 2516 2517 /* 2518 * Get an empty, disassociated buffer of given size. The buffer is initially 2519 * set to B_INVAL. 2520 */ 2521 struct buf * 2522 geteblk(int size) 2523 { 2524 struct buf *bp; 2525 int s; 2526 int maxsize; 2527 2528 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2529 2530 s = splbio(); 2531 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2532 continue; 2533 splx(s); 2534 allocbuf(bp, size); 2535 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2536 KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp)); 2537 return (bp); 2538 } 2539 2540 2541 /* 2542 * This code constitutes the buffer memory from either anonymous system 2543 * memory (in the case of non-VMIO operations) or from an associated 2544 * VM object (in the case of VMIO operations). This code is able to 2545 * resize a buffer up or down. 2546 * 2547 * Note that this code is tricky, and has many complications to resolve 2548 * deadlock or inconsistant data situations. Tread lightly!!! 2549 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2550 * the caller. Calling this code willy nilly can result in the loss of data. 2551 * 2552 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2553 * B_CACHE for the non-VMIO case. 2554 */ 2555 2556 int 2557 allocbuf(struct buf *bp, int size) 2558 { 2559 int newbsize, mbsize; 2560 int i; 2561 2562 GIANT_REQUIRED; 2563 2564 if (BUF_REFCNT(bp) == 0) 2565 panic("allocbuf: buffer not busy"); 2566 2567 if (bp->b_kvasize < size) 2568 panic("allocbuf: buffer too small"); 2569 2570 if ((bp->b_flags & B_VMIO) == 0) { 2571 caddr_t origbuf; 2572 int origbufsize; 2573 /* 2574 * Just get anonymous memory from the kernel. Don't 2575 * mess with B_CACHE. 2576 */ 2577 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2578 if (bp->b_flags & B_MALLOC) 2579 newbsize = mbsize; 2580 else 2581 newbsize = round_page(size); 2582 2583 if (newbsize < bp->b_bufsize) { 2584 /* 2585 * malloced buffers are not shrunk 2586 */ 2587 if (bp->b_flags & B_MALLOC) { 2588 if (newbsize) { 2589 bp->b_bcount = size; 2590 } else { 2591 free(bp->b_data, M_BIOBUF); 2592 if (bp->b_bufsize) { 2593 bufmallocspace -= bp->b_bufsize; 2594 bufspacewakeup(); 2595 bp->b_bufsize = 0; 2596 } 2597 bp->b_data = bp->b_kvabase; 2598 bp->b_bcount = 0; 2599 bp->b_flags &= ~B_MALLOC; 2600 } 2601 return 1; 2602 } 2603 vm_hold_free_pages( 2604 bp, 2605 (vm_offset_t) bp->b_data + newbsize, 2606 (vm_offset_t) bp->b_data + bp->b_bufsize); 2607 } else if (newbsize > bp->b_bufsize) { 2608 /* 2609 * We only use malloced memory on the first allocation. 2610 * and revert to page-allocated memory when the buffer 2611 * grows. 2612 */ 2613 if ( (bufmallocspace < maxbufmallocspace) && 2614 (bp->b_bufsize == 0) && 2615 (mbsize <= PAGE_SIZE/2)) { 2616 2617 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2618 bp->b_bufsize = mbsize; 2619 bp->b_bcount = size; 2620 bp->b_flags |= B_MALLOC; 2621 bufmallocspace += mbsize; 2622 return 1; 2623 } 2624 origbuf = NULL; 2625 origbufsize = 0; 2626 /* 2627 * If the buffer is growing on its other-than-first allocation, 2628 * then we revert to the page-allocation scheme. 2629 */ 2630 if (bp->b_flags & B_MALLOC) { 2631 origbuf = bp->b_data; 2632 origbufsize = bp->b_bufsize; 2633 bp->b_data = bp->b_kvabase; 2634 if (bp->b_bufsize) { 2635 bufmallocspace -= bp->b_bufsize; 2636 bufspacewakeup(); 2637 bp->b_bufsize = 0; 2638 } 2639 bp->b_flags &= ~B_MALLOC; 2640 newbsize = round_page(newbsize); 2641 } 2642 vm_hold_load_pages( 2643 bp, 2644 (vm_offset_t) bp->b_data + bp->b_bufsize, 2645 (vm_offset_t) bp->b_data + newbsize); 2646 if (origbuf) { 2647 bcopy(origbuf, bp->b_data, origbufsize); 2648 free(origbuf, M_BIOBUF); 2649 } 2650 } 2651 } else { 2652 int desiredpages; 2653 2654 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2655 desiredpages = (size == 0) ? 0 : 2656 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2657 2658 if (bp->b_flags & B_MALLOC) 2659 panic("allocbuf: VMIO buffer can't be malloced"); 2660 /* 2661 * Set B_CACHE initially if buffer is 0 length or will become 2662 * 0-length. 2663 */ 2664 if (size == 0 || bp->b_bufsize == 0) 2665 bp->b_flags |= B_CACHE; 2666 2667 if (newbsize < bp->b_bufsize) { 2668 /* 2669 * DEV_BSIZE aligned new buffer size is less then the 2670 * DEV_BSIZE aligned existing buffer size. Figure out 2671 * if we have to remove any pages. 2672 */ 2673 if (desiredpages < bp->b_npages) { 2674 vm_page_t m; 2675 2676 vm_page_lock_queues(); 2677 for (i = desiredpages; i < bp->b_npages; i++) { 2678 /* 2679 * the page is not freed here -- it 2680 * is the responsibility of 2681 * vnode_pager_setsize 2682 */ 2683 m = bp->b_pages[i]; 2684 KASSERT(m != bogus_page, 2685 ("allocbuf: bogus page found")); 2686 while (vm_page_sleep_if_busy(m, TRUE, "biodep")) 2687 vm_page_lock_queues(); 2688 2689 bp->b_pages[i] = NULL; 2690 vm_page_unwire(m, 0); 2691 } 2692 vm_page_unlock_queues(); 2693 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2694 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2695 bp->b_npages = desiredpages; 2696 } 2697 } else if (size > bp->b_bcount) { 2698 /* 2699 * We are growing the buffer, possibly in a 2700 * byte-granular fashion. 2701 */ 2702 struct vnode *vp; 2703 vm_object_t obj; 2704 vm_offset_t toff; 2705 vm_offset_t tinc; 2706 2707 /* 2708 * Step 1, bring in the VM pages from the object, 2709 * allocating them if necessary. We must clear 2710 * B_CACHE if these pages are not valid for the 2711 * range covered by the buffer. 2712 */ 2713 2714 vp = bp->b_vp; 2715 obj = bp->b_object; 2716 2717 while (bp->b_npages < desiredpages) { 2718 vm_page_t m; 2719 vm_pindex_t pi; 2720 2721 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2722 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2723 /* 2724 * note: must allocate system pages 2725 * since blocking here could intefere 2726 * with paging I/O, no matter which 2727 * process we are. 2728 */ 2729 m = vm_page_alloc(obj, pi, 2730 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 2731 if (m == NULL) { 2732 VM_WAIT; 2733 vm_pageout_deficit += desiredpages - bp->b_npages; 2734 } else { 2735 vm_page_lock_queues(); 2736 vm_page_wakeup(m); 2737 vm_page_unlock_queues(); 2738 bp->b_flags &= ~B_CACHE; 2739 bp->b_pages[bp->b_npages] = m; 2740 ++bp->b_npages; 2741 } 2742 continue; 2743 } 2744 2745 /* 2746 * We found a page. If we have to sleep on it, 2747 * retry because it might have gotten freed out 2748 * from under us. 2749 * 2750 * We can only test PG_BUSY here. Blocking on 2751 * m->busy might lead to a deadlock: 2752 * 2753 * vm_fault->getpages->cluster_read->allocbuf 2754 * 2755 */ 2756 vm_page_lock_queues(); 2757 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk")) 2758 continue; 2759 2760 /* 2761 * We have a good page. Should we wakeup the 2762 * page daemon? 2763 */ 2764 if ((curproc != pageproc) && 2765 ((m->queue - m->pc) == PQ_CACHE) && 2766 ((cnt.v_free_count + cnt.v_cache_count) < 2767 (cnt.v_free_min + cnt.v_cache_min))) { 2768 pagedaemon_wakeup(); 2769 } 2770 vm_page_flag_clear(m, PG_ZERO); 2771 vm_page_wire(m); 2772 vm_page_unlock_queues(); 2773 bp->b_pages[bp->b_npages] = m; 2774 ++bp->b_npages; 2775 } 2776 2777 /* 2778 * Step 2. We've loaded the pages into the buffer, 2779 * we have to figure out if we can still have B_CACHE 2780 * set. Note that B_CACHE is set according to the 2781 * byte-granular range ( bcount and size ), new the 2782 * aligned range ( newbsize ). 2783 * 2784 * The VM test is against m->valid, which is DEV_BSIZE 2785 * aligned. Needless to say, the validity of the data 2786 * needs to also be DEV_BSIZE aligned. Note that this 2787 * fails with NFS if the server or some other client 2788 * extends the file's EOF. If our buffer is resized, 2789 * B_CACHE may remain set! XXX 2790 */ 2791 2792 toff = bp->b_bcount; 2793 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2794 2795 while ((bp->b_flags & B_CACHE) && toff < size) { 2796 vm_pindex_t pi; 2797 2798 if (tinc > (size - toff)) 2799 tinc = size - toff; 2800 2801 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2802 PAGE_SHIFT; 2803 2804 vfs_buf_test_cache( 2805 bp, 2806 bp->b_offset, 2807 toff, 2808 tinc, 2809 bp->b_pages[pi] 2810 ); 2811 toff += tinc; 2812 tinc = PAGE_SIZE; 2813 } 2814 2815 /* 2816 * Step 3, fixup the KVM pmap. Remember that 2817 * bp->b_data is relative to bp->b_offset, but 2818 * bp->b_offset may be offset into the first page. 2819 */ 2820 2821 bp->b_data = (caddr_t) 2822 trunc_page((vm_offset_t)bp->b_data); 2823 pmap_qenter( 2824 (vm_offset_t)bp->b_data, 2825 bp->b_pages, 2826 bp->b_npages 2827 ); 2828 2829 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2830 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2831 } 2832 } 2833 if (newbsize < bp->b_bufsize) 2834 bufspacewakeup(); 2835 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2836 bp->b_bcount = size; /* requested buffer size */ 2837 return 1; 2838 } 2839 2840 void 2841 biodone(struct bio *bp) 2842 { 2843 bp->bio_flags |= BIO_DONE; 2844 if (bp->bio_done != NULL) 2845 bp->bio_done(bp); 2846 else 2847 wakeup(bp); 2848 } 2849 2850 /* 2851 * Wait for a BIO to finish. 2852 * 2853 * XXX: resort to a timeout for now. The optimal locking (if any) for this 2854 * case is not yet clear. 2855 */ 2856 int 2857 biowait(struct bio *bp, const char *wchan) 2858 { 2859 2860 while ((bp->bio_flags & BIO_DONE) == 0) 2861 msleep(bp, NULL, PRIBIO, wchan, hz / 10); 2862 if (bp->bio_error != 0) 2863 return (bp->bio_error); 2864 if (!(bp->bio_flags & BIO_ERROR)) 2865 return (0); 2866 return (EIO); 2867 } 2868 2869 void 2870 biofinish(struct bio *bp, struct devstat *stat, int error) 2871 { 2872 2873 if (error) { 2874 bp->bio_error = error; 2875 bp->bio_flags |= BIO_ERROR; 2876 } 2877 if (stat != NULL) 2878 devstat_end_transaction_bio(stat, bp); 2879 biodone(bp); 2880 } 2881 2882 void 2883 bioq_init(struct bio_queue_head *head) 2884 { 2885 TAILQ_INIT(&head->queue); 2886 head->last_pblkno = 0; 2887 head->insert_point = NULL; 2888 head->switch_point = NULL; 2889 } 2890 2891 void 2892 bioq_remove(struct bio_queue_head *head, struct bio *bp) 2893 { 2894 if (bp == head->switch_point) 2895 head->switch_point = TAILQ_NEXT(bp, bio_queue); 2896 if (bp == head->insert_point) { 2897 head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue); 2898 if (head->insert_point == NULL) 2899 head->last_pblkno = 0; 2900 } else if (bp == TAILQ_FIRST(&head->queue)) 2901 head->last_pblkno = bp->bio_pblkno; 2902 TAILQ_REMOVE(&head->queue, bp, bio_queue); 2903 if (TAILQ_FIRST(&head->queue) == head->switch_point) 2904 head->switch_point = NULL; 2905 } 2906 2907 /* 2908 * bufwait: 2909 * 2910 * Wait for buffer I/O completion, returning error status. The buffer 2911 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2912 * error and cleared. 2913 */ 2914 int 2915 bufwait(register struct buf * bp) 2916 { 2917 int s; 2918 2919 s = splbio(); 2920 while ((bp->b_flags & B_DONE) == 0) { 2921 if (bp->b_iocmd == BIO_READ) 2922 tsleep(bp, PRIBIO, "biord", 0); 2923 else 2924 tsleep(bp, PRIBIO, "biowr", 0); 2925 } 2926 splx(s); 2927 if (bp->b_flags & B_EINTR) { 2928 bp->b_flags &= ~B_EINTR; 2929 return (EINTR); 2930 } 2931 if (bp->b_ioflags & BIO_ERROR) { 2932 return (bp->b_error ? bp->b_error : EIO); 2933 } else { 2934 return (0); 2935 } 2936 } 2937 2938 /* 2939 * Call back function from struct bio back up to struct buf. 2940 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 2941 */ 2942 void 2943 bufdonebio(struct bio *bp) 2944 { 2945 bufdone(bp->bio_caller2); 2946 } 2947 2948 /* 2949 * bufdone: 2950 * 2951 * Finish I/O on a buffer, optionally calling a completion function. 2952 * This is usually called from an interrupt so process blocking is 2953 * not allowed. 2954 * 2955 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2956 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2957 * assuming B_INVAL is clear. 2958 * 2959 * For the VMIO case, we set B_CACHE if the op was a read and no 2960 * read error occured, or if the op was a write. B_CACHE is never 2961 * set if the buffer is invalid or otherwise uncacheable. 2962 * 2963 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2964 * initiator to leave B_INVAL set to brelse the buffer out of existance 2965 * in the biodone routine. 2966 */ 2967 void 2968 bufdone(struct buf *bp) 2969 { 2970 int s; 2971 void (*biodone)(struct buf *); 2972 2973 GIANT_REQUIRED; 2974 2975 s = splbio(); 2976 2977 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2978 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2979 2980 bp->b_flags |= B_DONE; 2981 runningbufwakeup(bp); 2982 2983 if (bp->b_iocmd == BIO_DELETE) { 2984 brelse(bp); 2985 splx(s); 2986 return; 2987 } 2988 2989 if (bp->b_iocmd == BIO_WRITE) { 2990 vwakeup(bp); 2991 } 2992 2993 /* call optional completion function if requested */ 2994 if (bp->b_iodone != NULL) { 2995 biodone = bp->b_iodone; 2996 bp->b_iodone = NULL; 2997 (*biodone) (bp); 2998 splx(s); 2999 return; 3000 } 3001 if (LIST_FIRST(&bp->b_dep) != NULL) 3002 buf_complete(bp); 3003 3004 if (bp->b_flags & B_VMIO) { 3005 int i; 3006 vm_ooffset_t foff; 3007 vm_page_t m; 3008 vm_object_t obj; 3009 int iosize; 3010 struct vnode *vp = bp->b_vp; 3011 3012 obj = bp->b_object; 3013 3014 #if defined(VFS_BIO_DEBUG) 3015 mp_fixme("usecount and vflag accessed without locks."); 3016 if (vp->v_usecount == 0) { 3017 panic("biodone: zero vnode ref count"); 3018 } 3019 3020 if ((vp->v_vflag & VV_OBJBUF) == 0) { 3021 panic("biodone: vnode is not setup for merged cache"); 3022 } 3023 #endif 3024 3025 foff = bp->b_offset; 3026 KASSERT(bp->b_offset != NOOFFSET, 3027 ("biodone: no buffer offset")); 3028 3029 #if defined(VFS_BIO_DEBUG) 3030 if (obj->paging_in_progress < bp->b_npages) { 3031 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 3032 obj->paging_in_progress, bp->b_npages); 3033 } 3034 #endif 3035 3036 /* 3037 * Set B_CACHE if the op was a normal read and no error 3038 * occured. B_CACHE is set for writes in the b*write() 3039 * routines. 3040 */ 3041 iosize = bp->b_bcount - bp->b_resid; 3042 if (bp->b_iocmd == BIO_READ && 3043 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 3044 !(bp->b_ioflags & BIO_ERROR)) { 3045 bp->b_flags |= B_CACHE; 3046 } 3047 vm_page_lock_queues(); 3048 for (i = 0; i < bp->b_npages; i++) { 3049 int bogusflag = 0; 3050 int resid; 3051 3052 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3053 if (resid > iosize) 3054 resid = iosize; 3055 3056 /* 3057 * cleanup bogus pages, restoring the originals 3058 */ 3059 m = bp->b_pages[i]; 3060 if (m == bogus_page) { 3061 bogusflag = 1; 3062 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3063 if (m == NULL) 3064 panic("biodone: page disappeared!"); 3065 bp->b_pages[i] = m; 3066 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3067 } 3068 #if defined(VFS_BIO_DEBUG) 3069 if (OFF_TO_IDX(foff) != m->pindex) { 3070 printf( 3071 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n", 3072 (intmax_t)foff, (uintmax_t)m->pindex); 3073 } 3074 #endif 3075 3076 /* 3077 * In the write case, the valid and clean bits are 3078 * already changed correctly ( see bdwrite() ), so we 3079 * only need to do this here in the read case. 3080 */ 3081 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 3082 vfs_page_set_valid(bp, foff, i, m); 3083 } 3084 vm_page_flag_clear(m, PG_ZERO); 3085 3086 /* 3087 * when debugging new filesystems or buffer I/O methods, this 3088 * is the most common error that pops up. if you see this, you 3089 * have not set the page busy flag correctly!!! 3090 */ 3091 if (m->busy == 0) { 3092 printf("biodone: page busy < 0, " 3093 "pindex: %d, foff: 0x(%x,%x), " 3094 "resid: %d, index: %d\n", 3095 (int) m->pindex, (int)(foff >> 32), 3096 (int) foff & 0xffffffff, resid, i); 3097 if (!vn_isdisk(vp, NULL)) 3098 printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n", 3099 bp->b_vp->v_mount->mnt_stat.f_iosize, 3100 (intmax_t) bp->b_lblkno, 3101 bp->b_flags, bp->b_npages); 3102 else 3103 printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n", 3104 (intmax_t) bp->b_lblkno, 3105 bp->b_flags, bp->b_npages); 3106 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3107 m->valid, m->dirty, m->wire_count); 3108 panic("biodone: page busy < 0\n"); 3109 } 3110 vm_page_io_finish(m); 3111 vm_object_pip_subtract(obj, 1); 3112 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3113 iosize -= resid; 3114 } 3115 vm_page_unlock_queues(); 3116 if (obj) 3117 vm_object_pip_wakeupn(obj, 0); 3118 } 3119 3120 /* 3121 * For asynchronous completions, release the buffer now. The brelse 3122 * will do a wakeup there if necessary - so no need to do a wakeup 3123 * here in the async case. The sync case always needs to do a wakeup. 3124 */ 3125 3126 if (bp->b_flags & B_ASYNC) { 3127 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 3128 brelse(bp); 3129 else 3130 bqrelse(bp); 3131 } else { 3132 wakeup(bp); 3133 } 3134 splx(s); 3135 } 3136 3137 /* 3138 * This routine is called in lieu of iodone in the case of 3139 * incomplete I/O. This keeps the busy status for pages 3140 * consistant. 3141 */ 3142 void 3143 vfs_unbusy_pages(struct buf * bp) 3144 { 3145 int i; 3146 3147 GIANT_REQUIRED; 3148 3149 runningbufwakeup(bp); 3150 if (bp->b_flags & B_VMIO) { 3151 vm_object_t obj; 3152 3153 obj = bp->b_object; 3154 vm_page_lock_queues(); 3155 for (i = 0; i < bp->b_npages; i++) { 3156 vm_page_t m = bp->b_pages[i]; 3157 3158 if (m == bogus_page) { 3159 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3160 if (!m) { 3161 panic("vfs_unbusy_pages: page missing\n"); 3162 } 3163 bp->b_pages[i] = m; 3164 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3165 } 3166 vm_object_pip_subtract(obj, 1); 3167 vm_page_flag_clear(m, PG_ZERO); 3168 vm_page_io_finish(m); 3169 } 3170 vm_page_unlock_queues(); 3171 vm_object_pip_wakeupn(obj, 0); 3172 } 3173 } 3174 3175 /* 3176 * vfs_page_set_valid: 3177 * 3178 * Set the valid bits in a page based on the supplied offset. The 3179 * range is restricted to the buffer's size. 3180 * 3181 * This routine is typically called after a read completes. 3182 */ 3183 static void 3184 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3185 { 3186 vm_ooffset_t soff, eoff; 3187 3188 GIANT_REQUIRED; 3189 /* 3190 * Start and end offsets in buffer. eoff - soff may not cross a 3191 * page boundry or cross the end of the buffer. The end of the 3192 * buffer, in this case, is our file EOF, not the allocation size 3193 * of the buffer. 3194 */ 3195 soff = off; 3196 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3197 if (eoff > bp->b_offset + bp->b_bcount) 3198 eoff = bp->b_offset + bp->b_bcount; 3199 3200 /* 3201 * Set valid range. This is typically the entire buffer and thus the 3202 * entire page. 3203 */ 3204 if (eoff > soff) { 3205 vm_page_set_validclean( 3206 m, 3207 (vm_offset_t) (soff & PAGE_MASK), 3208 (vm_offset_t) (eoff - soff) 3209 ); 3210 } 3211 } 3212 3213 /* 3214 * This routine is called before a device strategy routine. 3215 * It is used to tell the VM system that paging I/O is in 3216 * progress, and treat the pages associated with the buffer 3217 * almost as being PG_BUSY. Also the object paging_in_progress 3218 * flag is handled to make sure that the object doesn't become 3219 * inconsistant. 3220 * 3221 * Since I/O has not been initiated yet, certain buffer flags 3222 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 3223 * and should be ignored. 3224 */ 3225 void 3226 vfs_busy_pages(struct buf * bp, int clear_modify) 3227 { 3228 int i, bogus; 3229 3230 if (bp->b_flags & B_VMIO) { 3231 vm_object_t obj; 3232 vm_ooffset_t foff; 3233 3234 obj = bp->b_object; 3235 foff = bp->b_offset; 3236 KASSERT(bp->b_offset != NOOFFSET, 3237 ("vfs_busy_pages: no buffer offset")); 3238 vfs_setdirty(bp); 3239 retry: 3240 vm_page_lock_queues(); 3241 for (i = 0; i < bp->b_npages; i++) { 3242 vm_page_t m = bp->b_pages[i]; 3243 3244 if (vm_page_sleep_if_busy(m, FALSE, "vbpage")) 3245 goto retry; 3246 } 3247 bogus = 0; 3248 for (i = 0; i < bp->b_npages; i++) { 3249 vm_page_t m = bp->b_pages[i]; 3250 3251 vm_page_flag_clear(m, PG_ZERO); 3252 if ((bp->b_flags & B_CLUSTER) == 0) { 3253 vm_object_pip_add(obj, 1); 3254 vm_page_io_start(m); 3255 } 3256 /* 3257 * When readying a buffer for a read ( i.e 3258 * clear_modify == 0 ), it is important to do 3259 * bogus_page replacement for valid pages in 3260 * partially instantiated buffers. Partially 3261 * instantiated buffers can, in turn, occur when 3262 * reconstituting a buffer from its VM backing store 3263 * base. We only have to do this if B_CACHE is 3264 * clear ( which causes the I/O to occur in the 3265 * first place ). The replacement prevents the read 3266 * I/O from overwriting potentially dirty VM-backed 3267 * pages. XXX bogus page replacement is, uh, bogus. 3268 * It may not work properly with small-block devices. 3269 * We need to find a better way. 3270 */ 3271 vm_page_protect(m, VM_PROT_NONE); 3272 if (clear_modify) 3273 vfs_page_set_valid(bp, foff, i, m); 3274 else if (m->valid == VM_PAGE_BITS_ALL && 3275 (bp->b_flags & B_CACHE) == 0) { 3276 bp->b_pages[i] = bogus_page; 3277 bogus++; 3278 } 3279 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3280 } 3281 vm_page_unlock_queues(); 3282 if (bogus) 3283 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3284 } 3285 } 3286 3287 /* 3288 * Tell the VM system that the pages associated with this buffer 3289 * are clean. This is used for delayed writes where the data is 3290 * going to go to disk eventually without additional VM intevention. 3291 * 3292 * Note that while we only really need to clean through to b_bcount, we 3293 * just go ahead and clean through to b_bufsize. 3294 */ 3295 static void 3296 vfs_clean_pages(struct buf * bp) 3297 { 3298 int i; 3299 3300 GIANT_REQUIRED; 3301 3302 if (bp->b_flags & B_VMIO) { 3303 vm_ooffset_t foff; 3304 3305 foff = bp->b_offset; 3306 KASSERT(bp->b_offset != NOOFFSET, 3307 ("vfs_clean_pages: no buffer offset")); 3308 for (i = 0; i < bp->b_npages; i++) { 3309 vm_page_t m = bp->b_pages[i]; 3310 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3311 vm_ooffset_t eoff = noff; 3312 3313 if (eoff > bp->b_offset + bp->b_bufsize) 3314 eoff = bp->b_offset + bp->b_bufsize; 3315 vfs_page_set_valid(bp, foff, i, m); 3316 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3317 foff = noff; 3318 } 3319 } 3320 } 3321 3322 /* 3323 * vfs_bio_set_validclean: 3324 * 3325 * Set the range within the buffer to valid and clean. The range is 3326 * relative to the beginning of the buffer, b_offset. Note that b_offset 3327 * itself may be offset from the beginning of the first page. 3328 * 3329 */ 3330 3331 void 3332 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3333 { 3334 if (bp->b_flags & B_VMIO) { 3335 int i; 3336 int n; 3337 3338 /* 3339 * Fixup base to be relative to beginning of first page. 3340 * Set initial n to be the maximum number of bytes in the 3341 * first page that can be validated. 3342 */ 3343 3344 base += (bp->b_offset & PAGE_MASK); 3345 n = PAGE_SIZE - (base & PAGE_MASK); 3346 3347 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3348 vm_page_t m = bp->b_pages[i]; 3349 3350 if (n > size) 3351 n = size; 3352 3353 vm_page_set_validclean(m, base & PAGE_MASK, n); 3354 base += n; 3355 size -= n; 3356 n = PAGE_SIZE; 3357 } 3358 } 3359 } 3360 3361 /* 3362 * vfs_bio_clrbuf: 3363 * 3364 * clear a buffer. This routine essentially fakes an I/O, so we need 3365 * to clear BIO_ERROR and B_INVAL. 3366 * 3367 * Note that while we only theoretically need to clear through b_bcount, 3368 * we go ahead and clear through b_bufsize. 3369 */ 3370 3371 void 3372 vfs_bio_clrbuf(struct buf *bp) 3373 { 3374 int i, mask = 0; 3375 caddr_t sa, ea; 3376 3377 GIANT_REQUIRED; 3378 3379 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3380 bp->b_flags &= ~B_INVAL; 3381 bp->b_ioflags &= ~BIO_ERROR; 3382 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3383 (bp->b_offset & PAGE_MASK) == 0) { 3384 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3385 if ((bp->b_pages[0]->valid & mask) == mask) { 3386 bp->b_resid = 0; 3387 return; 3388 } 3389 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3390 ((bp->b_pages[0]->valid & mask) == 0)) { 3391 bzero(bp->b_data, bp->b_bufsize); 3392 bp->b_pages[0]->valid |= mask; 3393 bp->b_resid = 0; 3394 return; 3395 } 3396 } 3397 ea = sa = bp->b_data; 3398 for(i=0;i<bp->b_npages;i++,sa=ea) { 3399 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3400 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3401 ea = (caddr_t)(vm_offset_t)ulmin( 3402 (u_long)(vm_offset_t)ea, 3403 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3404 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3405 if ((bp->b_pages[i]->valid & mask) == mask) 3406 continue; 3407 if ((bp->b_pages[i]->valid & mask) == 0) { 3408 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3409 bzero(sa, ea - sa); 3410 } 3411 } else { 3412 for (; sa < ea; sa += DEV_BSIZE, j++) { 3413 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3414 (bp->b_pages[i]->valid & (1<<j)) == 0) 3415 bzero(sa, DEV_BSIZE); 3416 } 3417 } 3418 bp->b_pages[i]->valid |= mask; 3419 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3420 } 3421 bp->b_resid = 0; 3422 } else { 3423 clrbuf(bp); 3424 } 3425 } 3426 3427 /* 3428 * vm_hold_load_pages and vm_hold_free_pages get pages into 3429 * a buffers address space. The pages are anonymous and are 3430 * not associated with a file object. 3431 */ 3432 static void 3433 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3434 { 3435 vm_offset_t pg; 3436 vm_page_t p; 3437 int index; 3438 3439 GIANT_REQUIRED; 3440 3441 to = round_page(to); 3442 from = round_page(from); 3443 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3444 3445 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3446 tryagain: 3447 /* 3448 * note: must allocate system pages since blocking here 3449 * could intefere with paging I/O, no matter which 3450 * process we are. 3451 */ 3452 p = vm_page_alloc(kernel_object, 3453 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3454 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 3455 if (!p) { 3456 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3457 VM_WAIT; 3458 goto tryagain; 3459 } 3460 vm_page_lock_queues(); 3461 p->valid = VM_PAGE_BITS_ALL; 3462 vm_page_flag_clear(p, PG_ZERO); 3463 vm_page_unlock_queues(); 3464 pmap_qenter(pg, &p, 1); 3465 bp->b_pages[index] = p; 3466 vm_page_wakeup(p); 3467 } 3468 bp->b_npages = index; 3469 } 3470 3471 /* Return pages associated with this buf to the vm system */ 3472 static void 3473 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3474 { 3475 vm_offset_t pg; 3476 vm_page_t p; 3477 int index, newnpages; 3478 3479 GIANT_REQUIRED; 3480 3481 from = round_page(from); 3482 to = round_page(to); 3483 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3484 3485 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3486 p = bp->b_pages[index]; 3487 if (p && (index < bp->b_npages)) { 3488 if (p->busy) { 3489 printf( 3490 "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 3491 (intmax_t)bp->b_blkno, 3492 (intmax_t)bp->b_lblkno); 3493 } 3494 bp->b_pages[index] = NULL; 3495 pmap_qremove(pg, 1); 3496 vm_page_lock_queues(); 3497 vm_page_busy(p); 3498 vm_page_unwire(p, 0); 3499 vm_page_free(p); 3500 vm_page_unlock_queues(); 3501 } 3502 } 3503 bp->b_npages = newnpages; 3504 } 3505 3506 3507 #include "opt_ddb.h" 3508 #ifdef DDB 3509 #include <ddb/ddb.h> 3510 3511 /* DDB command to show buffer data */ 3512 DB_SHOW_COMMAND(buffer, db_show_buffer) 3513 { 3514 /* get args */ 3515 struct buf *bp = (struct buf *)addr; 3516 3517 if (!have_addr) { 3518 db_printf("usage: show buffer <addr>\n"); 3519 return; 3520 } 3521 3522 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3523 db_printf( 3524 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 3525 "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n", 3526 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3527 major(bp->b_dev), minor(bp->b_dev), bp->b_data, 3528 (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno); 3529 if (bp->b_npages) { 3530 int i; 3531 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3532 for (i = 0; i < bp->b_npages; i++) { 3533 vm_page_t m; 3534 m = bp->b_pages[i]; 3535 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3536 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3537 if ((i + 1) < bp->b_npages) 3538 db_printf(","); 3539 } 3540 db_printf("\n"); 3541 } 3542 } 3543 #endif /* DDB */ 3544