1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bio.h> 33 #include <sys/buf.h> 34 #include <sys/eventhandler.h> 35 #include <sys/lock.h> 36 #include <sys/malloc.h> 37 #include <sys/mount.h> 38 #include <sys/mutex.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/ktr.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 58 59 struct bio_ops bioops; /* I/O operation notification */ 60 61 struct buf_ops buf_ops_bio = { 62 "buf_ops_bio", 63 bwrite 64 }; 65 66 struct buf *buf; /* buffer header pool */ 67 struct swqueue bswlist; 68 struct mtx buftimelock; /* Interlock on setting prio and timo */ 69 70 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 71 vm_offset_t to); 72 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 73 vm_offset_t to); 74 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 75 int pageno, vm_page_t m); 76 static void vfs_clean_pages(struct buf * bp); 77 static void vfs_setdirty(struct buf *bp); 78 static void vfs_vmio_release(struct buf *bp); 79 static void vfs_backgroundwritedone(struct buf *bp); 80 static int flushbufqueues(void); 81 82 static int bd_request; 83 84 static void buf_daemon __P((void)); 85 /* 86 * bogus page -- for I/O to/from partially complete buffers 87 * this is a temporary solution to the problem, but it is not 88 * really that bad. it would be better to split the buffer 89 * for input in the case of buffers partially already in memory, 90 * but the code is intricate enough already. 91 */ 92 vm_page_t bogus_page; 93 int vmiodirenable = TRUE; 94 int runningbufspace; 95 static vm_offset_t bogus_offset; 96 97 static int bufspace, maxbufspace, 98 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 99 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 100 static int needsbuffer; 101 static int lorunningspace, hirunningspace, runningbufreq; 102 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 103 static int numfreebuffers, lofreebuffers, hifreebuffers; 104 static int getnewbufcalls; 105 static int getnewbufrestarts; 106 107 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 108 &numdirtybuffers, 0, ""); 109 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 110 &lodirtybuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 112 &hidirtybuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 114 &numfreebuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 116 &lofreebuffers, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 118 &hifreebuffers, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 120 &runningbufspace, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, 122 &lorunningspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, 124 &hirunningspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, 126 &maxbufspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 128 &hibufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, 130 &lobufspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 132 &bufspace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 134 &maxbufmallocspace, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 136 &bufmallocspace, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 138 &getnewbufcalls, 0, ""); 139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 140 &getnewbufrestarts, 0, ""); 141 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 142 &vmiodirenable, 0, ""); 143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, 144 &bufdefragcnt, 0, ""); 145 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, 146 &buffreekvacnt, 0, ""); 147 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, 148 &bufreusecnt, 0, ""); 149 150 static int bufhashmask; 151 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 152 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 153 char *buf_wmesg = BUF_WMESG; 154 155 extern int vm_swap_size; 156 157 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 158 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 159 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 160 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 161 162 /* 163 * Buffer hash table code. Note that the logical block scans linearly, which 164 * gives us some L1 cache locality. 165 */ 166 167 static __inline 168 struct bufhashhdr * 169 bufhash(struct vnode *vnp, daddr_t bn) 170 { 171 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 172 } 173 174 /* 175 * numdirtywakeup: 176 * 177 * If someone is blocked due to there being too many dirty buffers, 178 * and numdirtybuffers is now reasonable, wake them up. 179 */ 180 181 static __inline void 182 numdirtywakeup(int level) 183 { 184 if (numdirtybuffers <= level) { 185 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 186 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 187 wakeup(&needsbuffer); 188 } 189 } 190 } 191 192 /* 193 * bufspacewakeup: 194 * 195 * Called when buffer space is potentially available for recovery. 196 * getnewbuf() will block on this flag when it is unable to free 197 * sufficient buffer space. Buffer space becomes recoverable when 198 * bp's get placed back in the queues. 199 */ 200 201 static __inline void 202 bufspacewakeup(void) 203 { 204 /* 205 * If someone is waiting for BUF space, wake them up. Even 206 * though we haven't freed the kva space yet, the waiting 207 * process will be able to now. 208 */ 209 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 210 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 211 wakeup(&needsbuffer); 212 } 213 } 214 215 /* 216 * runningbufwakeup() - in-progress I/O accounting. 217 * 218 */ 219 static __inline void 220 runningbufwakeup(struct buf *bp) 221 { 222 if (bp->b_runningbufspace) { 223 runningbufspace -= bp->b_runningbufspace; 224 bp->b_runningbufspace = 0; 225 if (runningbufreq && runningbufspace <= lorunningspace) { 226 runningbufreq = 0; 227 wakeup(&runningbufreq); 228 } 229 } 230 } 231 232 /* 233 * bufcountwakeup: 234 * 235 * Called when a buffer has been added to one of the free queues to 236 * account for the buffer and to wakeup anyone waiting for free buffers. 237 * This typically occurs when large amounts of metadata are being handled 238 * by the buffer cache ( else buffer space runs out first, usually ). 239 */ 240 241 static __inline void 242 bufcountwakeup(void) 243 { 244 ++numfreebuffers; 245 if (needsbuffer) { 246 needsbuffer &= ~VFS_BIO_NEED_ANY; 247 if (numfreebuffers >= hifreebuffers) 248 needsbuffer &= ~VFS_BIO_NEED_FREE; 249 wakeup(&needsbuffer); 250 } 251 } 252 253 /* 254 * waitrunningbufspace() 255 * 256 * runningbufspace is a measure of the amount of I/O currently 257 * running. This routine is used in async-write situations to 258 * prevent creating huge backups of pending writes to a device. 259 * Only asynchronous writes are governed by this function. 260 * 261 * Reads will adjust runningbufspace, but will not block based on it. 262 * The read load has a side effect of reducing the allowed write load. 263 * 264 * This does NOT turn an async write into a sync write. It waits 265 * for earlier writes to complete and generally returns before the 266 * caller's write has reached the device. 267 */ 268 static __inline void 269 waitrunningbufspace(void) 270 { 271 /* 272 * XXX race against wakeup interrupt, currently 273 * protected by Giant. FIXME! 274 */ 275 while (runningbufspace > hirunningspace) { 276 ++runningbufreq; 277 tsleep(&runningbufreq, PVM, "wdrain", 0); 278 } 279 } 280 281 282 /* 283 * vfs_buf_test_cache: 284 * 285 * Called when a buffer is extended. This function clears the B_CACHE 286 * bit if the newly extended portion of the buffer does not contain 287 * valid data. 288 */ 289 static __inline__ 290 void 291 vfs_buf_test_cache(struct buf *bp, 292 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 293 vm_page_t m) 294 { 295 GIANT_REQUIRED; 296 297 if (bp->b_flags & B_CACHE) { 298 int base = (foff + off) & PAGE_MASK; 299 if (vm_page_is_valid(m, base, size) == 0) 300 bp->b_flags &= ~B_CACHE; 301 } 302 } 303 304 static __inline__ 305 void 306 bd_wakeup(int dirtybuflevel) 307 { 308 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 309 bd_request = 1; 310 wakeup(&bd_request); 311 } 312 } 313 314 /* 315 * bd_speedup - speedup the buffer cache flushing code 316 */ 317 318 static __inline__ 319 void 320 bd_speedup(void) 321 { 322 bd_wakeup(1); 323 } 324 325 /* 326 * Calculating buffer cache scaling values and reserve space for buffer 327 * headers. This is called during low level kernel initialization and 328 * may be called more then once. We CANNOT write to the memory area 329 * being reserved at this time. 330 */ 331 caddr_t 332 kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est) 333 { 334 /* 335 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 336 * For the first 64MB of ram nominally allocate sufficient buffers to 337 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 338 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing 339 * the buffer cache we limit the eventual kva reservation to 340 * maxbcache bytes. 341 * 342 * factor represents the 1/4 x ram conversion. 343 */ 344 if (nbuf == 0) { 345 int factor = 4 * BKVASIZE / PAGE_SIZE; 346 347 nbuf = 50; 348 if (physmem_est > 1024) 349 nbuf += min((physmem_est - 1024) / factor, 350 16384 / factor); 351 if (physmem_est > 16384) 352 nbuf += (physmem_est - 16384) * 2 / (factor * 5); 353 354 if (maxbcache && nbuf > maxbcache / BKVASIZE) 355 nbuf = maxbcache / BKVASIZE; 356 } 357 358 #if 0 359 /* 360 * Do not allow the buffer_map to be more then 1/2 the size of the 361 * kernel_map. 362 */ 363 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 364 (BKVASIZE * 2)) { 365 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 366 (BKVASIZE * 2); 367 printf("Warning: nbufs capped at %d\n", nbuf); 368 } 369 #endif 370 371 /* 372 * swbufs are used as temporary holders for I/O, such as paging I/O. 373 * We have no less then 16 and no more then 256. 374 */ 375 nswbuf = max(min(nbuf/4, 256), 16); 376 377 /* 378 * Reserve space for the buffer cache buffers 379 */ 380 swbuf = (void *)v; 381 v = (caddr_t)(swbuf + nswbuf); 382 buf = (void *)v; 383 v = (caddr_t)(buf + nbuf); 384 385 /* 386 * Calculate the hash table size and reserve space 387 */ 388 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 389 ; 390 bufhashtbl = (void *)v; 391 v = (caddr_t)(bufhashtbl + bufhashmask); 392 --bufhashmask; 393 394 return(v); 395 } 396 397 void 398 bufinit(void) 399 { 400 struct buf *bp; 401 int i; 402 403 GIANT_REQUIRED; 404 405 TAILQ_INIT(&bswlist); 406 LIST_INIT(&invalhash); 407 mtx_init(&buftimelock, "buftime lock", MTX_DEF); 408 409 for (i = 0; i <= bufhashmask; i++) 410 LIST_INIT(&bufhashtbl[i]); 411 412 /* next, make a null set of free lists */ 413 for (i = 0; i < BUFFER_QUEUES; i++) 414 TAILQ_INIT(&bufqueues[i]); 415 416 /* finally, initialize each buffer header and stick on empty q */ 417 for (i = 0; i < nbuf; i++) { 418 bp = &buf[i]; 419 bzero(bp, sizeof *bp); 420 bp->b_flags = B_INVAL; /* we're just an empty header */ 421 bp->b_dev = NODEV; 422 bp->b_rcred = NOCRED; 423 bp->b_wcred = NOCRED; 424 bp->b_qindex = QUEUE_EMPTY; 425 bp->b_xflags = 0; 426 LIST_INIT(&bp->b_dep); 427 BUF_LOCKINIT(bp); 428 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 429 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 430 } 431 432 /* 433 * maxbufspace is the absolute maximum amount of buffer space we are 434 * allowed to reserve in KVM and in real terms. The absolute maximum 435 * is nominally used by buf_daemon. hibufspace is the nominal maximum 436 * used by most other processes. The differential is required to 437 * ensure that buf_daemon is able to run when other processes might 438 * be blocked waiting for buffer space. 439 * 440 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 441 * this may result in KVM fragmentation which is not handled optimally 442 * by the system. 443 */ 444 maxbufspace = nbuf * BKVASIZE; 445 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 446 lobufspace = hibufspace - MAXBSIZE; 447 448 lorunningspace = 512 * 1024; 449 hirunningspace = 1024 * 1024; 450 451 /* 452 * Limit the amount of malloc memory since it is wired permanently into 453 * the kernel space. Even though this is accounted for in the buffer 454 * allocation, we don't want the malloced region to grow uncontrolled. 455 * The malloc scheme improves memory utilization significantly on average 456 * (small) directories. 457 */ 458 maxbufmallocspace = hibufspace / 20; 459 460 /* 461 * Reduce the chance of a deadlock occuring by limiting the number 462 * of delayed-write dirty buffers we allow to stack up. 463 */ 464 hidirtybuffers = nbuf / 4 + 20; 465 numdirtybuffers = 0; 466 /* 467 * To support extreme low-memory systems, make sure hidirtybuffers cannot 468 * eat up all available buffer space. This occurs when our minimum cannot 469 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 470 * BKVASIZE'd (8K) buffers. 471 */ 472 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 473 hidirtybuffers >>= 1; 474 } 475 lodirtybuffers = hidirtybuffers / 2; 476 477 /* 478 * Try to keep the number of free buffers in the specified range, 479 * and give special processes (e.g. like buf_daemon) access to an 480 * emergency reserve. 481 */ 482 lofreebuffers = nbuf / 18 + 5; 483 hifreebuffers = 2 * lofreebuffers; 484 numfreebuffers = nbuf; 485 486 /* 487 * Maximum number of async ops initiated per buf_daemon loop. This is 488 * somewhat of a hack at the moment, we really need to limit ourselves 489 * based on the number of bytes of I/O in-transit that were initiated 490 * from buf_daemon. 491 */ 492 493 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 494 bogus_page = vm_page_alloc(kernel_object, 495 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 496 VM_ALLOC_NORMAL); 497 cnt.v_wire_count++; 498 } 499 500 /* 501 * bfreekva() - free the kva allocation for a buffer. 502 * 503 * Must be called at splbio() or higher as this is the only locking for 504 * buffer_map. 505 * 506 * Since this call frees up buffer space, we call bufspacewakeup(). 507 */ 508 static void 509 bfreekva(struct buf * bp) 510 { 511 GIANT_REQUIRED; 512 513 if (bp->b_kvasize) { 514 ++buffreekvacnt; 515 bufspace -= bp->b_kvasize; 516 vm_map_delete(buffer_map, 517 (vm_offset_t) bp->b_kvabase, 518 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 519 ); 520 bp->b_kvasize = 0; 521 bufspacewakeup(); 522 } 523 } 524 525 /* 526 * bremfree: 527 * 528 * Remove the buffer from the appropriate free list. 529 */ 530 void 531 bremfree(struct buf * bp) 532 { 533 int s = splbio(); 534 int old_qindex = bp->b_qindex; 535 536 GIANT_REQUIRED; 537 538 if (bp->b_qindex != QUEUE_NONE) { 539 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 540 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 541 bp->b_qindex = QUEUE_NONE; 542 } else { 543 if (BUF_REFCNT(bp) <= 1) 544 panic("bremfree: removing a buffer not on a queue"); 545 } 546 547 /* 548 * Fixup numfreebuffers count. If the buffer is invalid or not 549 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 550 * the buffer was free and we must decrement numfreebuffers. 551 */ 552 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 553 switch(old_qindex) { 554 case QUEUE_DIRTY: 555 case QUEUE_CLEAN: 556 case QUEUE_EMPTY: 557 case QUEUE_EMPTYKVA: 558 --numfreebuffers; 559 break; 560 default: 561 break; 562 } 563 } 564 splx(s); 565 } 566 567 568 /* 569 * Get a buffer with the specified data. Look in the cache first. We 570 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 571 * is set, the buffer is valid and we do not have to do anything ( see 572 * getblk() ). This is really just a special case of breadn(). 573 */ 574 int 575 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 576 struct buf ** bpp) 577 { 578 579 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 580 } 581 582 /* 583 * Operates like bread, but also starts asynchronous I/O on 584 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 585 * to initiating I/O . If B_CACHE is set, the buffer is valid 586 * and we do not have to do anything. 587 */ 588 int 589 breadn(struct vnode * vp, daddr_t blkno, int size, 590 daddr_t * rablkno, int *rabsize, 591 int cnt, struct ucred * cred, struct buf ** bpp) 592 { 593 struct buf *bp, *rabp; 594 int i; 595 int rv = 0, readwait = 0; 596 597 *bpp = bp = getblk(vp, blkno, size, 0, 0); 598 599 /* if not found in cache, do some I/O */ 600 if ((bp->b_flags & B_CACHE) == 0) { 601 if (curthread != PCPU_GET(idlethread)) 602 curthread->td_proc->p_stats->p_ru.ru_inblock++; 603 bp->b_iocmd = BIO_READ; 604 bp->b_flags &= ~B_INVAL; 605 bp->b_ioflags &= ~BIO_ERROR; 606 if (bp->b_rcred == NOCRED && cred != NOCRED) 607 bp->b_rcred = crhold(cred); 608 vfs_busy_pages(bp, 0); 609 VOP_STRATEGY(vp, bp); 610 ++readwait; 611 } 612 613 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 614 if (inmem(vp, *rablkno)) 615 continue; 616 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 617 618 if ((rabp->b_flags & B_CACHE) == 0) { 619 if (curthread != PCPU_GET(idlethread)) 620 curthread->td_proc->p_stats->p_ru.ru_inblock++; 621 rabp->b_flags |= B_ASYNC; 622 rabp->b_flags &= ~B_INVAL; 623 rabp->b_ioflags &= ~BIO_ERROR; 624 rabp->b_iocmd = BIO_READ; 625 if (rabp->b_rcred == NOCRED && cred != NOCRED) 626 rabp->b_rcred = crhold(cred); 627 vfs_busy_pages(rabp, 0); 628 BUF_KERNPROC(rabp); 629 VOP_STRATEGY(vp, rabp); 630 } else { 631 brelse(rabp); 632 } 633 } 634 635 if (readwait) { 636 rv = bufwait(bp); 637 } 638 return (rv); 639 } 640 641 /* 642 * Write, release buffer on completion. (Done by iodone 643 * if async). Do not bother writing anything if the buffer 644 * is invalid. 645 * 646 * Note that we set B_CACHE here, indicating that buffer is 647 * fully valid and thus cacheable. This is true even of NFS 648 * now so we set it generally. This could be set either here 649 * or in biodone() since the I/O is synchronous. We put it 650 * here. 651 */ 652 653 int dobkgrdwrite = 1; 654 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, ""); 655 656 int 657 bwrite(struct buf * bp) 658 { 659 int oldflags, s; 660 struct buf *newbp; 661 662 if (bp->b_flags & B_INVAL) { 663 brelse(bp); 664 return (0); 665 } 666 667 oldflags = bp->b_flags; 668 669 if (BUF_REFCNT(bp) == 0) 670 panic("bwrite: buffer is not busy???"); 671 s = splbio(); 672 /* 673 * If a background write is already in progress, delay 674 * writing this block if it is asynchronous. Otherwise 675 * wait for the background write to complete. 676 */ 677 if (bp->b_xflags & BX_BKGRDINPROG) { 678 if (bp->b_flags & B_ASYNC) { 679 splx(s); 680 bdwrite(bp); 681 return (0); 682 } 683 bp->b_xflags |= BX_BKGRDWAIT; 684 tsleep(&bp->b_xflags, PRIBIO, "biord", 0); 685 if (bp->b_xflags & BX_BKGRDINPROG) 686 panic("bwrite: still writing"); 687 } 688 689 /* Mark the buffer clean */ 690 bundirty(bp); 691 692 /* 693 * If this buffer is marked for background writing and we 694 * do not have to wait for it, make a copy and write the 695 * copy so as to leave this buffer ready for further use. 696 * 697 * This optimization eats a lot of memory. If we have a page 698 * or buffer shortfall we can't do it. 699 */ 700 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 701 (bp->b_flags & B_ASYNC) && 702 !vm_page_count_severe() && 703 !buf_dirty_count_severe()) { 704 if (bp->b_iodone != NULL) { 705 printf("bp->b_iodone = %p\n", bp->b_iodone); 706 panic("bwrite: need chained iodone"); 707 } 708 709 /* get a new block */ 710 newbp = geteblk(bp->b_bufsize); 711 712 /* set it to be identical to the old block */ 713 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 714 bgetvp(bp->b_vp, newbp); 715 newbp->b_lblkno = bp->b_lblkno; 716 newbp->b_blkno = bp->b_blkno; 717 newbp->b_offset = bp->b_offset; 718 newbp->b_iodone = vfs_backgroundwritedone; 719 newbp->b_flags |= B_ASYNC; 720 newbp->b_flags &= ~B_INVAL; 721 722 /* move over the dependencies */ 723 if (LIST_FIRST(&bp->b_dep) != NULL) 724 buf_movedeps(bp, newbp); 725 726 /* 727 * Initiate write on the copy, release the original to 728 * the B_LOCKED queue so that it cannot go away until 729 * the background write completes. If not locked it could go 730 * away and then be reconstituted while it was being written. 731 * If the reconstituted buffer were written, we could end up 732 * with two background copies being written at the same time. 733 */ 734 bp->b_xflags |= BX_BKGRDINPROG; 735 bp->b_flags |= B_LOCKED; 736 bqrelse(bp); 737 bp = newbp; 738 } 739 740 bp->b_flags &= ~B_DONE; 741 bp->b_ioflags &= ~BIO_ERROR; 742 bp->b_flags |= B_WRITEINPROG | B_CACHE; 743 bp->b_iocmd = BIO_WRITE; 744 745 bp->b_vp->v_numoutput++; 746 vfs_busy_pages(bp, 1); 747 748 /* 749 * Normal bwrites pipeline writes 750 */ 751 bp->b_runningbufspace = bp->b_bufsize; 752 runningbufspace += bp->b_runningbufspace; 753 754 if (curthread != PCPU_GET(idlethread)) 755 curthread->td_proc->p_stats->p_ru.ru_oublock++; 756 splx(s); 757 if (oldflags & B_ASYNC) 758 BUF_KERNPROC(bp); 759 BUF_STRATEGY(bp); 760 761 if ((oldflags & B_ASYNC) == 0) { 762 int rtval = bufwait(bp); 763 brelse(bp); 764 return (rtval); 765 } else if ((oldflags & B_NOWDRAIN) == 0) { 766 /* 767 * don't allow the async write to saturate the I/O 768 * system. Deadlocks can occur only if a device strategy 769 * routine (like in MD) turns around and issues another 770 * high-level write, in which case B_NOWDRAIN is expected 771 * to be set. Otherwise we will not deadlock here because 772 * we are blocking waiting for I/O that is already in-progress 773 * to complete. 774 */ 775 waitrunningbufspace(); 776 } 777 778 return (0); 779 } 780 781 /* 782 * Complete a background write started from bwrite. 783 */ 784 static void 785 vfs_backgroundwritedone(bp) 786 struct buf *bp; 787 { 788 struct buf *origbp; 789 790 /* 791 * Find the original buffer that we are writing. 792 */ 793 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 794 panic("backgroundwritedone: lost buffer"); 795 /* 796 * Process dependencies then return any unfinished ones. 797 */ 798 if (LIST_FIRST(&bp->b_dep) != NULL) 799 buf_complete(bp); 800 if (LIST_FIRST(&bp->b_dep) != NULL) 801 buf_movedeps(bp, origbp); 802 /* 803 * Clear the BX_BKGRDINPROG flag in the original buffer 804 * and awaken it if it is waiting for the write to complete. 805 * If BX_BKGRDINPROG is not set in the original buffer it must 806 * have been released and re-instantiated - which is not legal. 807 */ 808 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); 809 origbp->b_xflags &= ~BX_BKGRDINPROG; 810 if (origbp->b_xflags & BX_BKGRDWAIT) { 811 origbp->b_xflags &= ~BX_BKGRDWAIT; 812 wakeup(&origbp->b_xflags); 813 } 814 /* 815 * Clear the B_LOCKED flag and remove it from the locked 816 * queue if it currently resides there. 817 */ 818 origbp->b_flags &= ~B_LOCKED; 819 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 820 bremfree(origbp); 821 bqrelse(origbp); 822 } 823 /* 824 * This buffer is marked B_NOCACHE, so when it is released 825 * by biodone, it will be tossed. We mark it with BIO_READ 826 * to avoid biodone doing a second vwakeup. 827 */ 828 bp->b_flags |= B_NOCACHE; 829 bp->b_iocmd = BIO_READ; 830 bp->b_flags &= ~(B_CACHE | B_DONE); 831 bp->b_iodone = 0; 832 bufdone(bp); 833 } 834 835 /* 836 * Delayed write. (Buffer is marked dirty). Do not bother writing 837 * anything if the buffer is marked invalid. 838 * 839 * Note that since the buffer must be completely valid, we can safely 840 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 841 * biodone() in order to prevent getblk from writing the buffer 842 * out synchronously. 843 */ 844 void 845 bdwrite(struct buf * bp) 846 { 847 GIANT_REQUIRED; 848 849 if (BUF_REFCNT(bp) == 0) 850 panic("bdwrite: buffer is not busy"); 851 852 if (bp->b_flags & B_INVAL) { 853 brelse(bp); 854 return; 855 } 856 bdirty(bp); 857 858 /* 859 * Set B_CACHE, indicating that the buffer is fully valid. This is 860 * true even of NFS now. 861 */ 862 bp->b_flags |= B_CACHE; 863 864 /* 865 * This bmap keeps the system from needing to do the bmap later, 866 * perhaps when the system is attempting to do a sync. Since it 867 * is likely that the indirect block -- or whatever other datastructure 868 * that the filesystem needs is still in memory now, it is a good 869 * thing to do this. Note also, that if the pageout daemon is 870 * requesting a sync -- there might not be enough memory to do 871 * the bmap then... So, this is important to do. 872 */ 873 if (bp->b_lblkno == bp->b_blkno) { 874 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 875 } 876 877 /* 878 * Set the *dirty* buffer range based upon the VM system dirty pages. 879 */ 880 vfs_setdirty(bp); 881 882 /* 883 * We need to do this here to satisfy the vnode_pager and the 884 * pageout daemon, so that it thinks that the pages have been 885 * "cleaned". Note that since the pages are in a delayed write 886 * buffer -- the VFS layer "will" see that the pages get written 887 * out on the next sync, or perhaps the cluster will be completed. 888 */ 889 vfs_clean_pages(bp); 890 bqrelse(bp); 891 892 /* 893 * Wakeup the buffer flushing daemon if we have a lot of dirty 894 * buffers (midpoint between our recovery point and our stall 895 * point). 896 */ 897 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 898 899 /* 900 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 901 * due to the softdep code. 902 */ 903 } 904 905 /* 906 * bdirty: 907 * 908 * Turn buffer into delayed write request. We must clear BIO_READ and 909 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 910 * itself to properly update it in the dirty/clean lists. We mark it 911 * B_DONE to ensure that any asynchronization of the buffer properly 912 * clears B_DONE ( else a panic will occur later ). 913 * 914 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 915 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 916 * should only be called if the buffer is known-good. 917 * 918 * Since the buffer is not on a queue, we do not update the numfreebuffers 919 * count. 920 * 921 * Must be called at splbio(). 922 * The buffer must be on QUEUE_NONE. 923 */ 924 void 925 bdirty(bp) 926 struct buf *bp; 927 { 928 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 929 bp->b_flags &= ~(B_RELBUF); 930 bp->b_iocmd = BIO_WRITE; 931 932 if ((bp->b_flags & B_DELWRI) == 0) { 933 bp->b_flags |= B_DONE | B_DELWRI; 934 reassignbuf(bp, bp->b_vp); 935 ++numdirtybuffers; 936 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 937 } 938 } 939 940 /* 941 * bundirty: 942 * 943 * Clear B_DELWRI for buffer. 944 * 945 * Since the buffer is not on a queue, we do not update the numfreebuffers 946 * count. 947 * 948 * Must be called at splbio(). 949 * The buffer must be on QUEUE_NONE. 950 */ 951 952 void 953 bundirty(bp) 954 struct buf *bp; 955 { 956 KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 957 958 if (bp->b_flags & B_DELWRI) { 959 bp->b_flags &= ~B_DELWRI; 960 reassignbuf(bp, bp->b_vp); 961 --numdirtybuffers; 962 numdirtywakeup(lodirtybuffers); 963 } 964 /* 965 * Since it is now being written, we can clear its deferred write flag. 966 */ 967 bp->b_flags &= ~B_DEFERRED; 968 } 969 970 /* 971 * bawrite: 972 * 973 * Asynchronous write. Start output on a buffer, but do not wait for 974 * it to complete. The buffer is released when the output completes. 975 * 976 * bwrite() ( or the VOP routine anyway ) is responsible for handling 977 * B_INVAL buffers. Not us. 978 */ 979 void 980 bawrite(struct buf * bp) 981 { 982 bp->b_flags |= B_ASYNC; 983 (void) BUF_WRITE(bp); 984 } 985 986 /* 987 * bowrite: 988 * 989 * Ordered write. Start output on a buffer, and flag it so that the 990 * device will write it in the order it was queued. The buffer is 991 * released when the output completes. bwrite() ( or the VOP routine 992 * anyway ) is responsible for handling B_INVAL buffers. 993 */ 994 int 995 bowrite(struct buf * bp) 996 { 997 bp->b_ioflags |= BIO_ORDERED; 998 bp->b_flags |= B_ASYNC; 999 return (BUF_WRITE(bp)); 1000 } 1001 1002 /* 1003 * bwillwrite: 1004 * 1005 * Called prior to the locking of any vnodes when we are expecting to 1006 * write. We do not want to starve the buffer cache with too many 1007 * dirty buffers so we block here. By blocking prior to the locking 1008 * of any vnodes we attempt to avoid the situation where a locked vnode 1009 * prevents the various system daemons from flushing related buffers. 1010 */ 1011 1012 void 1013 bwillwrite(void) 1014 { 1015 if (numdirtybuffers >= hidirtybuffers) { 1016 int s; 1017 1018 s = splbio(); 1019 while (numdirtybuffers >= hidirtybuffers) { 1020 bd_wakeup(1); 1021 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1022 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); 1023 } 1024 splx(s); 1025 } 1026 } 1027 1028 /* 1029 * Return true if we have too many dirty buffers. 1030 */ 1031 int 1032 buf_dirty_count_severe(void) 1033 { 1034 return(numdirtybuffers >= hidirtybuffers); 1035 } 1036 1037 /* 1038 * brelse: 1039 * 1040 * Release a busy buffer and, if requested, free its resources. The 1041 * buffer will be stashed in the appropriate bufqueue[] allowing it 1042 * to be accessed later as a cache entity or reused for other purposes. 1043 */ 1044 void 1045 brelse(struct buf * bp) 1046 { 1047 int s; 1048 1049 GIANT_REQUIRED; 1050 1051 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1052 1053 s = splbio(); 1054 1055 if (bp->b_flags & B_LOCKED) 1056 bp->b_ioflags &= ~BIO_ERROR; 1057 1058 if (bp->b_iocmd == BIO_WRITE && 1059 (bp->b_ioflags & BIO_ERROR) && 1060 !(bp->b_flags & B_INVAL)) { 1061 /* 1062 * Failed write, redirty. Must clear BIO_ERROR to prevent 1063 * pages from being scrapped. If B_INVAL is set then 1064 * this case is not run and the next case is run to 1065 * destroy the buffer. B_INVAL can occur if the buffer 1066 * is outside the range supported by the underlying device. 1067 */ 1068 bp->b_ioflags &= ~BIO_ERROR; 1069 bdirty(bp); 1070 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1071 (bp->b_ioflags & BIO_ERROR) || 1072 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1073 /* 1074 * Either a failed I/O or we were asked to free or not 1075 * cache the buffer. 1076 */ 1077 bp->b_flags |= B_INVAL; 1078 if (LIST_FIRST(&bp->b_dep) != NULL) 1079 buf_deallocate(bp); 1080 if (bp->b_flags & B_DELWRI) { 1081 --numdirtybuffers; 1082 numdirtywakeup(lodirtybuffers); 1083 } 1084 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1085 if ((bp->b_flags & B_VMIO) == 0) { 1086 if (bp->b_bufsize) 1087 allocbuf(bp, 0); 1088 if (bp->b_vp) 1089 brelvp(bp); 1090 } 1091 } 1092 1093 /* 1094 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1095 * is called with B_DELWRI set, the underlying pages may wind up 1096 * getting freed causing a previous write (bdwrite()) to get 'lost' 1097 * because pages associated with a B_DELWRI bp are marked clean. 1098 * 1099 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1100 * if B_DELWRI is set. 1101 * 1102 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1103 * on pages to return pages to the VM page queues. 1104 */ 1105 if (bp->b_flags & B_DELWRI) 1106 bp->b_flags &= ~B_RELBUF; 1107 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1108 bp->b_flags |= B_RELBUF; 1109 1110 /* 1111 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1112 * constituted, not even NFS buffers now. Two flags effect this. If 1113 * B_INVAL, the struct buf is invalidated but the VM object is kept 1114 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1115 * 1116 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1117 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1118 * buffer is also B_INVAL because it hits the re-dirtying code above. 1119 * 1120 * Normally we can do this whether a buffer is B_DELWRI or not. If 1121 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1122 * the commit state and we cannot afford to lose the buffer. If the 1123 * buffer has a background write in progress, we need to keep it 1124 * around to prevent it from being reconstituted and starting a second 1125 * background write. 1126 */ 1127 if ((bp->b_flags & B_VMIO) 1128 && !(bp->b_vp->v_tag == VT_NFS && 1129 !vn_isdisk(bp->b_vp, NULL) && 1130 (bp->b_flags & B_DELWRI)) 1131 ) { 1132 1133 int i, j, resid; 1134 vm_page_t m; 1135 off_t foff; 1136 vm_pindex_t poff; 1137 vm_object_t obj; 1138 struct vnode *vp; 1139 1140 vp = bp->b_vp; 1141 1142 /* 1143 * Get the base offset and length of the buffer. Note that 1144 * in the VMIO case if the buffer block size is not 1145 * page-aligned then b_data pointer may not be page-aligned. 1146 * But our b_pages[] array *IS* page aligned. 1147 * 1148 * block sizes less then DEV_BSIZE (usually 512) are not 1149 * supported due to the page granularity bits (m->valid, 1150 * m->dirty, etc...). 1151 * 1152 * See man buf(9) for more information 1153 */ 1154 resid = bp->b_bufsize; 1155 foff = bp->b_offset; 1156 1157 for (i = 0; i < bp->b_npages; i++) { 1158 int had_bogus = 0; 1159 1160 m = bp->b_pages[i]; 1161 vm_page_flag_clear(m, PG_ZERO); 1162 1163 /* 1164 * If we hit a bogus page, fixup *all* the bogus pages 1165 * now. 1166 */ 1167 if (m == bogus_page) { 1168 VOP_GETVOBJECT(vp, &obj); 1169 poff = OFF_TO_IDX(bp->b_offset); 1170 had_bogus = 1; 1171 1172 for (j = i; j < bp->b_npages; j++) { 1173 vm_page_t mtmp; 1174 mtmp = bp->b_pages[j]; 1175 if (mtmp == bogus_page) { 1176 mtmp = vm_page_lookup(obj, poff + j); 1177 if (!mtmp) { 1178 panic("brelse: page missing\n"); 1179 } 1180 bp->b_pages[j] = mtmp; 1181 } 1182 } 1183 1184 if ((bp->b_flags & B_INVAL) == 0) { 1185 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1186 } 1187 m = bp->b_pages[i]; 1188 } 1189 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1190 int poffset = foff & PAGE_MASK; 1191 int presid = resid > (PAGE_SIZE - poffset) ? 1192 (PAGE_SIZE - poffset) : resid; 1193 1194 KASSERT(presid >= 0, ("brelse: extra page")); 1195 vm_page_set_invalid(m, poffset, presid); 1196 if (had_bogus) 1197 printf("avoided corruption bug in bogus_page/brelse code\n"); 1198 } 1199 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1200 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1201 } 1202 1203 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1204 vfs_vmio_release(bp); 1205 1206 } else if (bp->b_flags & B_VMIO) { 1207 1208 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1209 vfs_vmio_release(bp); 1210 } 1211 1212 } 1213 1214 if (bp->b_qindex != QUEUE_NONE) 1215 panic("brelse: free buffer onto another queue???"); 1216 if (BUF_REFCNT(bp) > 1) { 1217 /* do not release to free list */ 1218 BUF_UNLOCK(bp); 1219 splx(s); 1220 return; 1221 } 1222 1223 /* enqueue */ 1224 1225 /* buffers with no memory */ 1226 if (bp->b_bufsize == 0) { 1227 bp->b_flags |= B_INVAL; 1228 bp->b_xflags &= ~BX_BKGRDWRITE; 1229 if (bp->b_xflags & BX_BKGRDINPROG) 1230 panic("losing buffer 1"); 1231 if (bp->b_kvasize) { 1232 bp->b_qindex = QUEUE_EMPTYKVA; 1233 } else { 1234 bp->b_qindex = QUEUE_EMPTY; 1235 } 1236 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1237 LIST_REMOVE(bp, b_hash); 1238 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1239 bp->b_dev = NODEV; 1240 /* buffers with junk contents */ 1241 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) { 1242 bp->b_flags |= B_INVAL; 1243 bp->b_xflags &= ~BX_BKGRDWRITE; 1244 if (bp->b_xflags & BX_BKGRDINPROG) 1245 panic("losing buffer 2"); 1246 bp->b_qindex = QUEUE_CLEAN; 1247 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1248 LIST_REMOVE(bp, b_hash); 1249 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1250 bp->b_dev = NODEV; 1251 1252 /* buffers that are locked */ 1253 } else if (bp->b_flags & B_LOCKED) { 1254 bp->b_qindex = QUEUE_LOCKED; 1255 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1256 1257 /* remaining buffers */ 1258 } else { 1259 if (bp->b_flags & B_DELWRI) 1260 bp->b_qindex = QUEUE_DIRTY; 1261 else 1262 bp->b_qindex = QUEUE_CLEAN; 1263 if (bp->b_flags & B_AGE) 1264 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1265 else 1266 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1267 } 1268 1269 /* 1270 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1271 * on the correct queue. 1272 */ 1273 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) { 1274 bp->b_flags &= ~B_DELWRI; 1275 --numdirtybuffers; 1276 numdirtywakeup(lodirtybuffers); 1277 } 1278 1279 /* 1280 * Fixup numfreebuffers count. The bp is on an appropriate queue 1281 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1282 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1283 * if B_INVAL is set ). 1284 */ 1285 1286 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1287 bufcountwakeup(); 1288 1289 /* 1290 * Something we can maybe free or reuse 1291 */ 1292 if (bp->b_bufsize || bp->b_kvasize) 1293 bufspacewakeup(); 1294 1295 /* unlock */ 1296 BUF_UNLOCK(bp); 1297 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1298 B_DIRECT | B_NOWDRAIN); 1299 bp->b_ioflags &= ~BIO_ORDERED; 1300 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1301 panic("brelse: not dirty"); 1302 splx(s); 1303 } 1304 1305 /* 1306 * Release a buffer back to the appropriate queue but do not try to free 1307 * it. The buffer is expected to be used again soon. 1308 * 1309 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1310 * biodone() to requeue an async I/O on completion. It is also used when 1311 * known good buffers need to be requeued but we think we may need the data 1312 * again soon. 1313 * 1314 * XXX we should be able to leave the B_RELBUF hint set on completion. 1315 */ 1316 void 1317 bqrelse(struct buf * bp) 1318 { 1319 int s; 1320 1321 s = splbio(); 1322 1323 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1324 1325 if (bp->b_qindex != QUEUE_NONE) 1326 panic("bqrelse: free buffer onto another queue???"); 1327 if (BUF_REFCNT(bp) > 1) { 1328 /* do not release to free list */ 1329 BUF_UNLOCK(bp); 1330 splx(s); 1331 return; 1332 } 1333 if (bp->b_flags & B_LOCKED) { 1334 bp->b_ioflags &= ~BIO_ERROR; 1335 bp->b_qindex = QUEUE_LOCKED; 1336 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1337 /* buffers with stale but valid contents */ 1338 } else if (bp->b_flags & B_DELWRI) { 1339 bp->b_qindex = QUEUE_DIRTY; 1340 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1341 } else if (vm_page_count_severe()) { 1342 /* 1343 * We are too low on memory, we have to try to free the 1344 * buffer (most importantly: the wired pages making up its 1345 * backing store) *now*. 1346 */ 1347 splx(s); 1348 brelse(bp); 1349 return; 1350 } else { 1351 bp->b_qindex = QUEUE_CLEAN; 1352 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1353 } 1354 1355 if ((bp->b_flags & B_LOCKED) == 0 && 1356 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1357 bufcountwakeup(); 1358 } 1359 1360 /* 1361 * Something we can maybe free or reuse. 1362 */ 1363 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1364 bufspacewakeup(); 1365 1366 /* unlock */ 1367 BUF_UNLOCK(bp); 1368 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1369 bp->b_ioflags &= ~BIO_ORDERED; 1370 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1371 panic("bqrelse: not dirty"); 1372 splx(s); 1373 } 1374 1375 static void 1376 vfs_vmio_release(bp) 1377 struct buf *bp; 1378 { 1379 int i; 1380 vm_page_t m; 1381 1382 GIANT_REQUIRED; 1383 1384 for (i = 0; i < bp->b_npages; i++) { 1385 m = bp->b_pages[i]; 1386 bp->b_pages[i] = NULL; 1387 /* 1388 * In order to keep page LRU ordering consistent, put 1389 * everything on the inactive queue. 1390 */ 1391 vm_page_unwire(m, 0); 1392 /* 1393 * We don't mess with busy pages, it is 1394 * the responsibility of the process that 1395 * busied the pages to deal with them. 1396 */ 1397 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1398 continue; 1399 1400 if (m->wire_count == 0) { 1401 vm_page_flag_clear(m, PG_ZERO); 1402 /* 1403 * Might as well free the page if we can and it has 1404 * no valid data. We also free the page if the 1405 * buffer was used for direct I/O 1406 */ 1407 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1408 vm_page_busy(m); 1409 vm_page_protect(m, VM_PROT_NONE); 1410 vm_page_free(m); 1411 } else if (bp->b_flags & B_DIRECT) { 1412 vm_page_try_to_free(m); 1413 } else if (vm_page_count_severe()) { 1414 vm_page_try_to_cache(m); 1415 } 1416 } 1417 } 1418 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1419 1420 if (bp->b_bufsize) { 1421 bufspacewakeup(); 1422 bp->b_bufsize = 0; 1423 } 1424 bp->b_npages = 0; 1425 bp->b_flags &= ~B_VMIO; 1426 if (bp->b_vp) 1427 brelvp(bp); 1428 } 1429 1430 /* 1431 * Check to see if a block is currently memory resident. 1432 */ 1433 struct buf * 1434 gbincore(struct vnode * vp, daddr_t blkno) 1435 { 1436 struct buf *bp; 1437 struct bufhashhdr *bh; 1438 1439 bh = bufhash(vp, blkno); 1440 1441 /* Search hash chain */ 1442 LIST_FOREACH(bp, bh, b_hash) { 1443 /* hit */ 1444 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1445 (bp->b_flags & B_INVAL) == 0) { 1446 break; 1447 } 1448 } 1449 return (bp); 1450 } 1451 1452 /* 1453 * vfs_bio_awrite: 1454 * 1455 * Implement clustered async writes for clearing out B_DELWRI buffers. 1456 * This is much better then the old way of writing only one buffer at 1457 * a time. Note that we may not be presented with the buffers in the 1458 * correct order, so we search for the cluster in both directions. 1459 */ 1460 int 1461 vfs_bio_awrite(struct buf * bp) 1462 { 1463 int i; 1464 int j; 1465 daddr_t lblkno = bp->b_lblkno; 1466 struct vnode *vp = bp->b_vp; 1467 int s; 1468 int ncl; 1469 struct buf *bpa; 1470 int nwritten; 1471 int size; 1472 int maxcl; 1473 1474 s = splbio(); 1475 /* 1476 * right now we support clustered writing only to regular files. If 1477 * we find a clusterable block we could be in the middle of a cluster 1478 * rather then at the beginning. 1479 */ 1480 if ((vp->v_type == VREG) && 1481 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1482 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1483 1484 size = vp->v_mount->mnt_stat.f_iosize; 1485 maxcl = MAXPHYS / size; 1486 1487 for (i = 1; i < maxcl; i++) { 1488 if ((bpa = gbincore(vp, lblkno + i)) && 1489 BUF_REFCNT(bpa) == 0 && 1490 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1491 (B_DELWRI | B_CLUSTEROK)) && 1492 (bpa->b_bufsize == size)) { 1493 if ((bpa->b_blkno == bpa->b_lblkno) || 1494 (bpa->b_blkno != 1495 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1496 break; 1497 } else { 1498 break; 1499 } 1500 } 1501 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1502 if ((bpa = gbincore(vp, lblkno - j)) && 1503 BUF_REFCNT(bpa) == 0 && 1504 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1505 (B_DELWRI | B_CLUSTEROK)) && 1506 (bpa->b_bufsize == size)) { 1507 if ((bpa->b_blkno == bpa->b_lblkno) || 1508 (bpa->b_blkno != 1509 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1510 break; 1511 } else { 1512 break; 1513 } 1514 } 1515 --j; 1516 ncl = i + j; 1517 /* 1518 * this is a possible cluster write 1519 */ 1520 if (ncl != 1) { 1521 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1522 splx(s); 1523 return nwritten; 1524 } 1525 } 1526 1527 BUF_LOCK(bp, LK_EXCLUSIVE); 1528 bremfree(bp); 1529 bp->b_flags |= B_ASYNC; 1530 1531 splx(s); 1532 /* 1533 * default (old) behavior, writing out only one block 1534 * 1535 * XXX returns b_bufsize instead of b_bcount for nwritten? 1536 */ 1537 nwritten = bp->b_bufsize; 1538 (void) BUF_WRITE(bp); 1539 1540 return nwritten; 1541 } 1542 1543 /* 1544 * getnewbuf: 1545 * 1546 * Find and initialize a new buffer header, freeing up existing buffers 1547 * in the bufqueues as necessary. The new buffer is returned locked. 1548 * 1549 * Important: B_INVAL is not set. If the caller wishes to throw the 1550 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1551 * 1552 * We block if: 1553 * We have insufficient buffer headers 1554 * We have insufficient buffer space 1555 * buffer_map is too fragmented ( space reservation fails ) 1556 * If we have to flush dirty buffers ( but we try to avoid this ) 1557 * 1558 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1559 * Instead we ask the buf daemon to do it for us. We attempt to 1560 * avoid piecemeal wakeups of the pageout daemon. 1561 */ 1562 1563 static struct buf * 1564 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1565 { 1566 struct buf *bp; 1567 struct buf *nbp; 1568 int defrag = 0; 1569 int nqindex; 1570 static int flushingbufs; 1571 1572 GIANT_REQUIRED; 1573 1574 /* 1575 * We can't afford to block since we might be holding a vnode lock, 1576 * which may prevent system daemons from running. We deal with 1577 * low-memory situations by proactively returning memory and running 1578 * async I/O rather then sync I/O. 1579 */ 1580 1581 ++getnewbufcalls; 1582 --getnewbufrestarts; 1583 restart: 1584 ++getnewbufrestarts; 1585 1586 /* 1587 * Setup for scan. If we do not have enough free buffers, 1588 * we setup a degenerate case that immediately fails. Note 1589 * that if we are specially marked process, we are allowed to 1590 * dip into our reserves. 1591 * 1592 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1593 * 1594 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1595 * However, there are a number of cases (defragging, reusing, ...) 1596 * where we cannot backup. 1597 */ 1598 nqindex = QUEUE_EMPTYKVA; 1599 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1600 1601 if (nbp == NULL) { 1602 /* 1603 * If no EMPTYKVA buffers and we are either 1604 * defragging or reusing, locate a CLEAN buffer 1605 * to free or reuse. If bufspace useage is low 1606 * skip this step so we can allocate a new buffer. 1607 */ 1608 if (defrag || bufspace >= lobufspace) { 1609 nqindex = QUEUE_CLEAN; 1610 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1611 } 1612 1613 /* 1614 * If we could not find or were not allowed to reuse a 1615 * CLEAN buffer, check to see if it is ok to use an EMPTY 1616 * buffer. We can only use an EMPTY buffer if allocating 1617 * its KVA would not otherwise run us out of buffer space. 1618 */ 1619 if (nbp == NULL && defrag == 0 && 1620 bufspace + maxsize < hibufspace) { 1621 nqindex = QUEUE_EMPTY; 1622 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1623 } 1624 } 1625 1626 /* 1627 * Run scan, possibly freeing data and/or kva mappings on the fly 1628 * depending. 1629 */ 1630 1631 while ((bp = nbp) != NULL) { 1632 int qindex = nqindex; 1633 1634 /* 1635 * Calculate next bp ( we can only use it if we do not block 1636 * or do other fancy things ). 1637 */ 1638 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1639 switch(qindex) { 1640 case QUEUE_EMPTY: 1641 nqindex = QUEUE_EMPTYKVA; 1642 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1643 break; 1644 /* fall through */ 1645 case QUEUE_EMPTYKVA: 1646 nqindex = QUEUE_CLEAN; 1647 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1648 break; 1649 /* fall through */ 1650 case QUEUE_CLEAN: 1651 /* 1652 * nbp is NULL. 1653 */ 1654 break; 1655 } 1656 } 1657 1658 /* 1659 * Sanity Checks 1660 */ 1661 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1662 1663 /* 1664 * Note: we no longer distinguish between VMIO and non-VMIO 1665 * buffers. 1666 */ 1667 1668 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1669 1670 /* 1671 * If we are defragging then we need a buffer with 1672 * b_kvasize != 0. XXX this situation should no longer 1673 * occur, if defrag is non-zero the buffer's b_kvasize 1674 * should also be non-zero at this point. XXX 1675 */ 1676 if (defrag && bp->b_kvasize == 0) { 1677 printf("Warning: defrag empty buffer %p\n", bp); 1678 continue; 1679 } 1680 1681 /* 1682 * Start freeing the bp. This is somewhat involved. nbp 1683 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1684 */ 1685 1686 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1687 panic("getnewbuf: locked buf"); 1688 bremfree(bp); 1689 1690 if (qindex == QUEUE_CLEAN) { 1691 if (bp->b_flags & B_VMIO) { 1692 bp->b_flags &= ~B_ASYNC; 1693 vfs_vmio_release(bp); 1694 } 1695 if (bp->b_vp) 1696 brelvp(bp); 1697 } 1698 1699 /* 1700 * NOTE: nbp is now entirely invalid. We can only restart 1701 * the scan from this point on. 1702 * 1703 * Get the rest of the buffer freed up. b_kva* is still 1704 * valid after this operation. 1705 */ 1706 1707 if (bp->b_rcred != NOCRED) { 1708 crfree(bp->b_rcred); 1709 bp->b_rcred = NOCRED; 1710 } 1711 if (bp->b_wcred != NOCRED) { 1712 crfree(bp->b_wcred); 1713 bp->b_wcred = NOCRED; 1714 } 1715 if (LIST_FIRST(&bp->b_dep) != NULL) 1716 buf_deallocate(bp); 1717 if (bp->b_xflags & BX_BKGRDINPROG) 1718 panic("losing buffer 3"); 1719 LIST_REMOVE(bp, b_hash); 1720 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1721 1722 if (bp->b_bufsize) 1723 allocbuf(bp, 0); 1724 1725 bp->b_flags = 0; 1726 bp->b_ioflags = 0; 1727 bp->b_xflags = 0; 1728 bp->b_dev = NODEV; 1729 bp->b_vp = NULL; 1730 bp->b_blkno = bp->b_lblkno = 0; 1731 bp->b_offset = NOOFFSET; 1732 bp->b_iodone = 0; 1733 bp->b_error = 0; 1734 bp->b_resid = 0; 1735 bp->b_bcount = 0; 1736 bp->b_npages = 0; 1737 bp->b_dirtyoff = bp->b_dirtyend = 0; 1738 bp->b_magic = B_MAGIC_BIO; 1739 bp->b_op = &buf_ops_bio; 1740 1741 LIST_INIT(&bp->b_dep); 1742 1743 /* 1744 * If we are defragging then free the buffer. 1745 */ 1746 if (defrag) { 1747 bp->b_flags |= B_INVAL; 1748 bfreekva(bp); 1749 brelse(bp); 1750 defrag = 0; 1751 goto restart; 1752 } 1753 1754 /* 1755 * If we are overcomitted then recover the buffer and its 1756 * KVM space. This occurs in rare situations when multiple 1757 * processes are blocked in getnewbuf() or allocbuf(). 1758 */ 1759 if (bufspace >= hibufspace) 1760 flushingbufs = 1; 1761 if (flushingbufs && bp->b_kvasize != 0) { 1762 bp->b_flags |= B_INVAL; 1763 bfreekva(bp); 1764 brelse(bp); 1765 goto restart; 1766 } 1767 if (bufspace < lobufspace) 1768 flushingbufs = 0; 1769 break; 1770 } 1771 1772 /* 1773 * If we exhausted our list, sleep as appropriate. We may have to 1774 * wakeup various daemons and write out some dirty buffers. 1775 * 1776 * Generally we are sleeping due to insufficient buffer space. 1777 */ 1778 1779 if (bp == NULL) { 1780 int flags; 1781 char *waitmsg; 1782 1783 if (defrag) { 1784 flags = VFS_BIO_NEED_BUFSPACE; 1785 waitmsg = "nbufkv"; 1786 } else if (bufspace >= hibufspace) { 1787 waitmsg = "nbufbs"; 1788 flags = VFS_BIO_NEED_BUFSPACE; 1789 } else { 1790 waitmsg = "newbuf"; 1791 flags = VFS_BIO_NEED_ANY; 1792 } 1793 1794 bd_speedup(); /* heeeelp */ 1795 1796 needsbuffer |= flags; 1797 while (needsbuffer & flags) { 1798 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1799 waitmsg, slptimeo)) 1800 return (NULL); 1801 } 1802 } else { 1803 /* 1804 * We finally have a valid bp. We aren't quite out of the 1805 * woods, we still have to reserve kva space. In order 1806 * to keep fragmentation sane we only allocate kva in 1807 * BKVASIZE chunks. 1808 */ 1809 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1810 1811 if (maxsize != bp->b_kvasize) { 1812 vm_offset_t addr = 0; 1813 1814 bfreekva(bp); 1815 1816 if (vm_map_findspace(buffer_map, 1817 vm_map_min(buffer_map), maxsize, &addr)) { 1818 /* 1819 * Uh oh. Buffer map is to fragmented. We 1820 * must defragment the map. 1821 */ 1822 ++bufdefragcnt; 1823 defrag = 1; 1824 bp->b_flags |= B_INVAL; 1825 brelse(bp); 1826 goto restart; 1827 } 1828 if (addr) { 1829 vm_map_insert(buffer_map, NULL, 0, 1830 addr, addr + maxsize, 1831 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1832 1833 bp->b_kvabase = (caddr_t) addr; 1834 bp->b_kvasize = maxsize; 1835 bufspace += bp->b_kvasize; 1836 ++bufreusecnt; 1837 } 1838 } 1839 bp->b_data = bp->b_kvabase; 1840 } 1841 return(bp); 1842 } 1843 1844 /* 1845 * buf_daemon: 1846 * 1847 * buffer flushing daemon. Buffers are normally flushed by the 1848 * update daemon but if it cannot keep up this process starts to 1849 * take the load in an attempt to prevent getnewbuf() from blocking. 1850 */ 1851 1852 static struct proc *bufdaemonproc; 1853 1854 static struct kproc_desc buf_kp = { 1855 "bufdaemon", 1856 buf_daemon, 1857 &bufdaemonproc 1858 }; 1859 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1860 1861 static void 1862 buf_daemon() 1863 { 1864 int s; 1865 1866 mtx_lock(&Giant); 1867 1868 /* 1869 * This process needs to be suspended prior to shutdown sync. 1870 */ 1871 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 1872 SHUTDOWN_PRI_LAST); 1873 1874 /* 1875 * This process is allowed to take the buffer cache to the limit 1876 */ 1877 curproc->p_flag |= P_BUFEXHAUST; 1878 s = splbio(); 1879 1880 for (;;) { 1881 kthread_suspend_check(bufdaemonproc); 1882 1883 bd_request = 0; 1884 1885 /* 1886 * Do the flush. Limit the amount of in-transit I/O we 1887 * allow to build up, otherwise we would completely saturate 1888 * the I/O system. Wakeup any waiting processes before we 1889 * normally would so they can run in parallel with our drain. 1890 */ 1891 while (numdirtybuffers > lodirtybuffers) { 1892 if (flushbufqueues() == 0) 1893 break; 1894 waitrunningbufspace(); 1895 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1896 } 1897 1898 /* 1899 * Only clear bd_request if we have reached our low water 1900 * mark. The buf_daemon normally waits 5 seconds and 1901 * then incrementally flushes any dirty buffers that have 1902 * built up, within reason. 1903 * 1904 * If we were unable to hit our low water mark and couldn't 1905 * find any flushable buffers, we sleep half a second. 1906 * Otherwise we loop immediately. 1907 */ 1908 if (numdirtybuffers <= lodirtybuffers) { 1909 /* 1910 * We reached our low water mark, reset the 1911 * request and sleep until we are needed again. 1912 * The sleep is just so the suspend code works. 1913 */ 1914 bd_request = 0; 1915 tsleep(&bd_request, PVM, "psleep", hz); 1916 } else { 1917 /* 1918 * We couldn't find any flushable dirty buffers but 1919 * still have too many dirty buffers, we 1920 * have to sleep and try again. (rare) 1921 */ 1922 tsleep(&bd_request, PVM, "qsleep", hz / 2); 1923 } 1924 } 1925 } 1926 1927 /* 1928 * flushbufqueues: 1929 * 1930 * Try to flush a buffer in the dirty queue. We must be careful to 1931 * free up B_INVAL buffers instead of write them, which NFS is 1932 * particularly sensitive to. 1933 */ 1934 1935 static int 1936 flushbufqueues(void) 1937 { 1938 struct buf *bp; 1939 int r = 0; 1940 1941 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1942 1943 while (bp) { 1944 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1945 if ((bp->b_flags & B_DELWRI) != 0 && 1946 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 1947 if (bp->b_flags & B_INVAL) { 1948 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1949 panic("flushbufqueues: locked buf"); 1950 bremfree(bp); 1951 brelse(bp); 1952 ++r; 1953 break; 1954 } 1955 if (LIST_FIRST(&bp->b_dep) != NULL && 1956 (bp->b_flags & B_DEFERRED) == 0 && 1957 buf_countdeps(bp, 0)) { 1958 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 1959 bp, b_freelist); 1960 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 1961 bp, b_freelist); 1962 bp->b_flags |= B_DEFERRED; 1963 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1964 continue; 1965 } 1966 vfs_bio_awrite(bp); 1967 ++r; 1968 break; 1969 } 1970 bp = TAILQ_NEXT(bp, b_freelist); 1971 } 1972 return (r); 1973 } 1974 1975 /* 1976 * Check to see if a block is currently memory resident. 1977 */ 1978 struct buf * 1979 incore(struct vnode * vp, daddr_t blkno) 1980 { 1981 struct buf *bp; 1982 1983 int s = splbio(); 1984 bp = gbincore(vp, blkno); 1985 splx(s); 1986 return (bp); 1987 } 1988 1989 /* 1990 * Returns true if no I/O is needed to access the 1991 * associated VM object. This is like incore except 1992 * it also hunts around in the VM system for the data. 1993 */ 1994 1995 int 1996 inmem(struct vnode * vp, daddr_t blkno) 1997 { 1998 vm_object_t obj; 1999 vm_offset_t toff, tinc, size; 2000 vm_page_t m; 2001 vm_ooffset_t off; 2002 2003 GIANT_REQUIRED; 2004 2005 if (incore(vp, blkno)) 2006 return 1; 2007 if (vp->v_mount == NULL) 2008 return 0; 2009 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 2010 return 0; 2011 2012 size = PAGE_SIZE; 2013 if (size > vp->v_mount->mnt_stat.f_iosize) 2014 size = vp->v_mount->mnt_stat.f_iosize; 2015 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2016 2017 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2018 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2019 if (!m) 2020 goto notinmem; 2021 tinc = size; 2022 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2023 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2024 if (vm_page_is_valid(m, 2025 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2026 goto notinmem; 2027 } 2028 return 1; 2029 2030 notinmem: 2031 return (0); 2032 } 2033 2034 /* 2035 * vfs_setdirty: 2036 * 2037 * Sets the dirty range for a buffer based on the status of the dirty 2038 * bits in the pages comprising the buffer. 2039 * 2040 * The range is limited to the size of the buffer. 2041 * 2042 * This routine is primarily used by NFS, but is generalized for the 2043 * B_VMIO case. 2044 */ 2045 static void 2046 vfs_setdirty(struct buf *bp) 2047 { 2048 int i; 2049 vm_object_t object; 2050 2051 GIANT_REQUIRED; 2052 /* 2053 * Degenerate case - empty buffer 2054 */ 2055 2056 if (bp->b_bufsize == 0) 2057 return; 2058 2059 /* 2060 * We qualify the scan for modified pages on whether the 2061 * object has been flushed yet. The OBJ_WRITEABLE flag 2062 * is not cleared simply by protecting pages off. 2063 */ 2064 2065 if ((bp->b_flags & B_VMIO) == 0) 2066 return; 2067 2068 object = bp->b_pages[0]->object; 2069 2070 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2071 printf("Warning: object %p writeable but not mightbedirty\n", object); 2072 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2073 printf("Warning: object %p mightbedirty but not writeable\n", object); 2074 2075 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2076 vm_offset_t boffset; 2077 vm_offset_t eoffset; 2078 2079 /* 2080 * test the pages to see if they have been modified directly 2081 * by users through the VM system. 2082 */ 2083 for (i = 0; i < bp->b_npages; i++) { 2084 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2085 vm_page_test_dirty(bp->b_pages[i]); 2086 } 2087 2088 /* 2089 * Calculate the encompassing dirty range, boffset and eoffset, 2090 * (eoffset - boffset) bytes. 2091 */ 2092 2093 for (i = 0; i < bp->b_npages; i++) { 2094 if (bp->b_pages[i]->dirty) 2095 break; 2096 } 2097 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2098 2099 for (i = bp->b_npages - 1; i >= 0; --i) { 2100 if (bp->b_pages[i]->dirty) { 2101 break; 2102 } 2103 } 2104 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2105 2106 /* 2107 * Fit it to the buffer. 2108 */ 2109 2110 if (eoffset > bp->b_bcount) 2111 eoffset = bp->b_bcount; 2112 2113 /* 2114 * If we have a good dirty range, merge with the existing 2115 * dirty range. 2116 */ 2117 2118 if (boffset < eoffset) { 2119 if (bp->b_dirtyoff > boffset) 2120 bp->b_dirtyoff = boffset; 2121 if (bp->b_dirtyend < eoffset) 2122 bp->b_dirtyend = eoffset; 2123 } 2124 } 2125 } 2126 2127 /* 2128 * getblk: 2129 * 2130 * Get a block given a specified block and offset into a file/device. 2131 * The buffers B_DONE bit will be cleared on return, making it almost 2132 * ready for an I/O initiation. B_INVAL may or may not be set on 2133 * return. The caller should clear B_INVAL prior to initiating a 2134 * READ. 2135 * 2136 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2137 * an existing buffer. 2138 * 2139 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2140 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2141 * and then cleared based on the backing VM. If the previous buffer is 2142 * non-0-sized but invalid, B_CACHE will be cleared. 2143 * 2144 * If getblk() must create a new buffer, the new buffer is returned with 2145 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2146 * case it is returned with B_INVAL clear and B_CACHE set based on the 2147 * backing VM. 2148 * 2149 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2150 * B_CACHE bit is clear. 2151 * 2152 * What this means, basically, is that the caller should use B_CACHE to 2153 * determine whether the buffer is fully valid or not and should clear 2154 * B_INVAL prior to issuing a read. If the caller intends to validate 2155 * the buffer by loading its data area with something, the caller needs 2156 * to clear B_INVAL. If the caller does this without issuing an I/O, 2157 * the caller should set B_CACHE ( as an optimization ), else the caller 2158 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2159 * a write attempt or if it was a successfull read. If the caller 2160 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2161 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2162 */ 2163 struct buf * 2164 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2165 { 2166 struct buf *bp; 2167 int s; 2168 struct bufhashhdr *bh; 2169 2170 if (size > MAXBSIZE) 2171 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2172 2173 s = splbio(); 2174 loop: 2175 /* 2176 * Block if we are low on buffers. Certain processes are allowed 2177 * to completely exhaust the buffer cache. 2178 * 2179 * If this check ever becomes a bottleneck it may be better to 2180 * move it into the else, when gbincore() fails. At the moment 2181 * it isn't a problem. 2182 * 2183 * XXX remove if 0 sections (clean this up after its proven) 2184 */ 2185 if (numfreebuffers == 0) { 2186 if (curthread == PCPU_GET(idlethread)) 2187 return NULL; 2188 needsbuffer |= VFS_BIO_NEED_ANY; 2189 } 2190 2191 if ((bp = gbincore(vp, blkno))) { 2192 /* 2193 * Buffer is in-core. If the buffer is not busy, it must 2194 * be on a queue. 2195 */ 2196 2197 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2198 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2199 "getblk", slpflag, slptimeo) == ENOLCK) 2200 goto loop; 2201 splx(s); 2202 return (struct buf *) NULL; 2203 } 2204 2205 /* 2206 * The buffer is locked. B_CACHE is cleared if the buffer is 2207 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2208 * and for a VMIO buffer B_CACHE is adjusted according to the 2209 * backing VM cache. 2210 */ 2211 if (bp->b_flags & B_INVAL) 2212 bp->b_flags &= ~B_CACHE; 2213 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2214 bp->b_flags |= B_CACHE; 2215 bremfree(bp); 2216 2217 /* 2218 * check for size inconsistancies for non-VMIO case. 2219 */ 2220 2221 if (bp->b_bcount != size) { 2222 if ((bp->b_flags & B_VMIO) == 0 || 2223 (size > bp->b_kvasize)) { 2224 if (bp->b_flags & B_DELWRI) { 2225 bp->b_flags |= B_NOCACHE; 2226 BUF_WRITE(bp); 2227 } else { 2228 if ((bp->b_flags & B_VMIO) && 2229 (LIST_FIRST(&bp->b_dep) == NULL)) { 2230 bp->b_flags |= B_RELBUF; 2231 brelse(bp); 2232 } else { 2233 bp->b_flags |= B_NOCACHE; 2234 BUF_WRITE(bp); 2235 } 2236 } 2237 goto loop; 2238 } 2239 } 2240 2241 /* 2242 * If the size is inconsistant in the VMIO case, we can resize 2243 * the buffer. This might lead to B_CACHE getting set or 2244 * cleared. If the size has not changed, B_CACHE remains 2245 * unchanged from its previous state. 2246 */ 2247 2248 if (bp->b_bcount != size) 2249 allocbuf(bp, size); 2250 2251 KASSERT(bp->b_offset != NOOFFSET, 2252 ("getblk: no buffer offset")); 2253 2254 /* 2255 * A buffer with B_DELWRI set and B_CACHE clear must 2256 * be committed before we can return the buffer in 2257 * order to prevent the caller from issuing a read 2258 * ( due to B_CACHE not being set ) and overwriting 2259 * it. 2260 * 2261 * Most callers, including NFS and FFS, need this to 2262 * operate properly either because they assume they 2263 * can issue a read if B_CACHE is not set, or because 2264 * ( for example ) an uncached B_DELWRI might loop due 2265 * to softupdates re-dirtying the buffer. In the latter 2266 * case, B_CACHE is set after the first write completes, 2267 * preventing further loops. 2268 */ 2269 2270 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2271 BUF_WRITE(bp); 2272 goto loop; 2273 } 2274 2275 splx(s); 2276 bp->b_flags &= ~B_DONE; 2277 } else { 2278 /* 2279 * Buffer is not in-core, create new buffer. The buffer 2280 * returned by getnewbuf() is locked. Note that the returned 2281 * buffer is also considered valid (not marked B_INVAL). 2282 */ 2283 int bsize, maxsize, vmio; 2284 off_t offset; 2285 2286 if (vn_isdisk(vp, NULL)) 2287 bsize = DEV_BSIZE; 2288 else if (vp->v_mountedhere) 2289 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2290 else if (vp->v_mount) 2291 bsize = vp->v_mount->mnt_stat.f_iosize; 2292 else 2293 bsize = size; 2294 2295 offset = (off_t)blkno * bsize; 2296 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2297 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2298 maxsize = imax(maxsize, bsize); 2299 2300 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2301 if (slpflag || slptimeo) { 2302 splx(s); 2303 return NULL; 2304 } 2305 goto loop; 2306 } 2307 2308 /* 2309 * This code is used to make sure that a buffer is not 2310 * created while the getnewbuf routine is blocked. 2311 * This can be a problem whether the vnode is locked or not. 2312 * If the buffer is created out from under us, we have to 2313 * throw away the one we just created. There is now window 2314 * race because we are safely running at splbio() from the 2315 * point of the duplicate buffer creation through to here, 2316 * and we've locked the buffer. 2317 */ 2318 if (gbincore(vp, blkno)) { 2319 bp->b_flags |= B_INVAL; 2320 brelse(bp); 2321 goto loop; 2322 } 2323 2324 /* 2325 * Insert the buffer into the hash, so that it can 2326 * be found by incore. 2327 */ 2328 bp->b_blkno = bp->b_lblkno = blkno; 2329 bp->b_offset = offset; 2330 2331 bgetvp(vp, bp); 2332 LIST_REMOVE(bp, b_hash); 2333 bh = bufhash(vp, blkno); 2334 LIST_INSERT_HEAD(bh, bp, b_hash); 2335 2336 /* 2337 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2338 * buffer size starts out as 0, B_CACHE will be set by 2339 * allocbuf() for the VMIO case prior to it testing the 2340 * backing store for validity. 2341 */ 2342 2343 if (vmio) { 2344 bp->b_flags |= B_VMIO; 2345 #if defined(VFS_BIO_DEBUG) 2346 if (vp->v_type != VREG) 2347 printf("getblk: vmioing file type %d???\n", vp->v_type); 2348 #endif 2349 } else { 2350 bp->b_flags &= ~B_VMIO; 2351 } 2352 2353 allocbuf(bp, size); 2354 2355 splx(s); 2356 bp->b_flags &= ~B_DONE; 2357 } 2358 return (bp); 2359 } 2360 2361 /* 2362 * Get an empty, disassociated buffer of given size. The buffer is initially 2363 * set to B_INVAL. 2364 */ 2365 struct buf * 2366 geteblk(int size) 2367 { 2368 struct buf *bp; 2369 int s; 2370 int maxsize; 2371 2372 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2373 2374 s = splbio(); 2375 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0); 2376 splx(s); 2377 allocbuf(bp, size); 2378 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2379 return (bp); 2380 } 2381 2382 2383 /* 2384 * This code constitutes the buffer memory from either anonymous system 2385 * memory (in the case of non-VMIO operations) or from an associated 2386 * VM object (in the case of VMIO operations). This code is able to 2387 * resize a buffer up or down. 2388 * 2389 * Note that this code is tricky, and has many complications to resolve 2390 * deadlock or inconsistant data situations. Tread lightly!!! 2391 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2392 * the caller. Calling this code willy nilly can result in the loss of data. 2393 * 2394 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2395 * B_CACHE for the non-VMIO case. 2396 */ 2397 2398 int 2399 allocbuf(struct buf *bp, int size) 2400 { 2401 int newbsize, mbsize; 2402 int i; 2403 2404 GIANT_REQUIRED; 2405 2406 if (BUF_REFCNT(bp) == 0) 2407 panic("allocbuf: buffer not busy"); 2408 2409 if (bp->b_kvasize < size) 2410 panic("allocbuf: buffer too small"); 2411 2412 if ((bp->b_flags & B_VMIO) == 0) { 2413 caddr_t origbuf; 2414 int origbufsize; 2415 /* 2416 * Just get anonymous memory from the kernel. Don't 2417 * mess with B_CACHE. 2418 */ 2419 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2420 #if !defined(NO_B_MALLOC) 2421 if (bp->b_flags & B_MALLOC) 2422 newbsize = mbsize; 2423 else 2424 #endif 2425 newbsize = round_page(size); 2426 2427 if (newbsize < bp->b_bufsize) { 2428 #if !defined(NO_B_MALLOC) 2429 /* 2430 * malloced buffers are not shrunk 2431 */ 2432 if (bp->b_flags & B_MALLOC) { 2433 if (newbsize) { 2434 bp->b_bcount = size; 2435 } else { 2436 free(bp->b_data, M_BIOBUF); 2437 if (bp->b_bufsize) { 2438 bufmallocspace -= bp->b_bufsize; 2439 bufspacewakeup(); 2440 bp->b_bufsize = 0; 2441 } 2442 bp->b_data = bp->b_kvabase; 2443 bp->b_bcount = 0; 2444 bp->b_flags &= ~B_MALLOC; 2445 } 2446 return 1; 2447 } 2448 #endif 2449 vm_hold_free_pages( 2450 bp, 2451 (vm_offset_t) bp->b_data + newbsize, 2452 (vm_offset_t) bp->b_data + bp->b_bufsize); 2453 } else if (newbsize > bp->b_bufsize) { 2454 #if !defined(NO_B_MALLOC) 2455 /* 2456 * We only use malloced memory on the first allocation. 2457 * and revert to page-allocated memory when the buffer 2458 * grows. 2459 */ 2460 if ( (bufmallocspace < maxbufmallocspace) && 2461 (bp->b_bufsize == 0) && 2462 (mbsize <= PAGE_SIZE/2)) { 2463 2464 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2465 bp->b_bufsize = mbsize; 2466 bp->b_bcount = size; 2467 bp->b_flags |= B_MALLOC; 2468 bufmallocspace += mbsize; 2469 return 1; 2470 } 2471 #endif 2472 origbuf = NULL; 2473 origbufsize = 0; 2474 #if !defined(NO_B_MALLOC) 2475 /* 2476 * If the buffer is growing on its other-than-first allocation, 2477 * then we revert to the page-allocation scheme. 2478 */ 2479 if (bp->b_flags & B_MALLOC) { 2480 origbuf = bp->b_data; 2481 origbufsize = bp->b_bufsize; 2482 bp->b_data = bp->b_kvabase; 2483 if (bp->b_bufsize) { 2484 bufmallocspace -= bp->b_bufsize; 2485 bufspacewakeup(); 2486 bp->b_bufsize = 0; 2487 } 2488 bp->b_flags &= ~B_MALLOC; 2489 newbsize = round_page(newbsize); 2490 } 2491 #endif 2492 vm_hold_load_pages( 2493 bp, 2494 (vm_offset_t) bp->b_data + bp->b_bufsize, 2495 (vm_offset_t) bp->b_data + newbsize); 2496 #if !defined(NO_B_MALLOC) 2497 if (origbuf) { 2498 bcopy(origbuf, bp->b_data, origbufsize); 2499 free(origbuf, M_BIOBUF); 2500 } 2501 #endif 2502 } 2503 } else { 2504 vm_page_t m; 2505 int desiredpages; 2506 2507 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2508 desiredpages = (size == 0) ? 0 : 2509 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2510 2511 #if !defined(NO_B_MALLOC) 2512 if (bp->b_flags & B_MALLOC) 2513 panic("allocbuf: VMIO buffer can't be malloced"); 2514 #endif 2515 /* 2516 * Set B_CACHE initially if buffer is 0 length or will become 2517 * 0-length. 2518 */ 2519 if (size == 0 || bp->b_bufsize == 0) 2520 bp->b_flags |= B_CACHE; 2521 2522 if (newbsize < bp->b_bufsize) { 2523 /* 2524 * DEV_BSIZE aligned new buffer size is less then the 2525 * DEV_BSIZE aligned existing buffer size. Figure out 2526 * if we have to remove any pages. 2527 */ 2528 if (desiredpages < bp->b_npages) { 2529 for (i = desiredpages; i < bp->b_npages; i++) { 2530 /* 2531 * the page is not freed here -- it 2532 * is the responsibility of 2533 * vnode_pager_setsize 2534 */ 2535 m = bp->b_pages[i]; 2536 KASSERT(m != bogus_page, 2537 ("allocbuf: bogus page found")); 2538 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2539 ; 2540 2541 bp->b_pages[i] = NULL; 2542 vm_page_unwire(m, 0); 2543 } 2544 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2545 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2546 bp->b_npages = desiredpages; 2547 } 2548 } else if (size > bp->b_bcount) { 2549 /* 2550 * We are growing the buffer, possibly in a 2551 * byte-granular fashion. 2552 */ 2553 struct vnode *vp; 2554 vm_object_t obj; 2555 vm_offset_t toff; 2556 vm_offset_t tinc; 2557 2558 /* 2559 * Step 1, bring in the VM pages from the object, 2560 * allocating them if necessary. We must clear 2561 * B_CACHE if these pages are not valid for the 2562 * range covered by the buffer. 2563 */ 2564 2565 vp = bp->b_vp; 2566 VOP_GETVOBJECT(vp, &obj); 2567 2568 while (bp->b_npages < desiredpages) { 2569 vm_page_t m; 2570 vm_pindex_t pi; 2571 2572 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2573 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2574 /* 2575 * note: must allocate system pages 2576 * since blocking here could intefere 2577 * with paging I/O, no matter which 2578 * process we are. 2579 */ 2580 m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM); 2581 if (m == NULL) { 2582 VM_WAIT; 2583 vm_pageout_deficit += desiredpages - bp->b_npages; 2584 } else { 2585 vm_page_wire(m); 2586 vm_page_wakeup(m); 2587 bp->b_flags &= ~B_CACHE; 2588 bp->b_pages[bp->b_npages] = m; 2589 ++bp->b_npages; 2590 } 2591 continue; 2592 } 2593 2594 /* 2595 * We found a page. If we have to sleep on it, 2596 * retry because it might have gotten freed out 2597 * from under us. 2598 * 2599 * We can only test PG_BUSY here. Blocking on 2600 * m->busy might lead to a deadlock: 2601 * 2602 * vm_fault->getpages->cluster_read->allocbuf 2603 * 2604 */ 2605 2606 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2607 continue; 2608 2609 /* 2610 * We have a good page. Should we wakeup the 2611 * page daemon? 2612 */ 2613 if ((curproc != pageproc) && 2614 ((m->queue - m->pc) == PQ_CACHE) && 2615 ((cnt.v_free_count + cnt.v_cache_count) < 2616 (cnt.v_free_min + cnt.v_cache_min))) { 2617 pagedaemon_wakeup(); 2618 } 2619 vm_page_flag_clear(m, PG_ZERO); 2620 vm_page_wire(m); 2621 bp->b_pages[bp->b_npages] = m; 2622 ++bp->b_npages; 2623 } 2624 2625 /* 2626 * Step 2. We've loaded the pages into the buffer, 2627 * we have to figure out if we can still have B_CACHE 2628 * set. Note that B_CACHE is set according to the 2629 * byte-granular range ( bcount and size ), new the 2630 * aligned range ( newbsize ). 2631 * 2632 * The VM test is against m->valid, which is DEV_BSIZE 2633 * aligned. Needless to say, the validity of the data 2634 * needs to also be DEV_BSIZE aligned. Note that this 2635 * fails with NFS if the server or some other client 2636 * extends the file's EOF. If our buffer is resized, 2637 * B_CACHE may remain set! XXX 2638 */ 2639 2640 toff = bp->b_bcount; 2641 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2642 2643 while ((bp->b_flags & B_CACHE) && toff < size) { 2644 vm_pindex_t pi; 2645 2646 if (tinc > (size - toff)) 2647 tinc = size - toff; 2648 2649 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2650 PAGE_SHIFT; 2651 2652 vfs_buf_test_cache( 2653 bp, 2654 bp->b_offset, 2655 toff, 2656 tinc, 2657 bp->b_pages[pi] 2658 ); 2659 toff += tinc; 2660 tinc = PAGE_SIZE; 2661 } 2662 2663 /* 2664 * Step 3, fixup the KVM pmap. Remember that 2665 * bp->b_data is relative to bp->b_offset, but 2666 * bp->b_offset may be offset into the first page. 2667 */ 2668 2669 bp->b_data = (caddr_t) 2670 trunc_page((vm_offset_t)bp->b_data); 2671 pmap_qenter( 2672 (vm_offset_t)bp->b_data, 2673 bp->b_pages, 2674 bp->b_npages 2675 ); 2676 2677 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2678 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2679 } 2680 } 2681 if (newbsize < bp->b_bufsize) 2682 bufspacewakeup(); 2683 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2684 bp->b_bcount = size; /* requested buffer size */ 2685 return 1; 2686 } 2687 2688 /* 2689 * bufwait: 2690 * 2691 * Wait for buffer I/O completion, returning error status. The buffer 2692 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2693 * error and cleared. 2694 */ 2695 int 2696 bufwait(register struct buf * bp) 2697 { 2698 int s; 2699 2700 s = splbio(); 2701 while ((bp->b_flags & B_DONE) == 0) { 2702 if (bp->b_iocmd == BIO_READ) 2703 tsleep(bp, PRIBIO, "biord", 0); 2704 else 2705 tsleep(bp, PRIBIO, "biowr", 0); 2706 } 2707 splx(s); 2708 if (bp->b_flags & B_EINTR) { 2709 bp->b_flags &= ~B_EINTR; 2710 return (EINTR); 2711 } 2712 if (bp->b_ioflags & BIO_ERROR) { 2713 return (bp->b_error ? bp->b_error : EIO); 2714 } else { 2715 return (0); 2716 } 2717 } 2718 2719 /* 2720 * Call back function from struct bio back up to struct buf. 2721 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 2722 */ 2723 void 2724 bufdonebio(struct bio *bp) 2725 { 2726 bufdone(bp->bio_caller2); 2727 } 2728 2729 /* 2730 * bufdone: 2731 * 2732 * Finish I/O on a buffer, optionally calling a completion function. 2733 * This is usually called from an interrupt so process blocking is 2734 * not allowed. 2735 * 2736 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2737 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2738 * assuming B_INVAL is clear. 2739 * 2740 * For the VMIO case, we set B_CACHE if the op was a read and no 2741 * read error occured, or if the op was a write. B_CACHE is never 2742 * set if the buffer is invalid or otherwise uncacheable. 2743 * 2744 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2745 * initiator to leave B_INVAL set to brelse the buffer out of existance 2746 * in the biodone routine. 2747 */ 2748 void 2749 bufdone(struct buf *bp) 2750 { 2751 int s, error; 2752 void (*biodone) __P((struct buf *)); 2753 2754 GIANT_REQUIRED; 2755 2756 s = splbio(); 2757 2758 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2759 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2760 2761 bp->b_flags |= B_DONE; 2762 runningbufwakeup(bp); 2763 2764 if (bp->b_iocmd == BIO_DELETE) { 2765 brelse(bp); 2766 splx(s); 2767 return; 2768 } 2769 2770 if (bp->b_iocmd == BIO_WRITE) { 2771 vwakeup(bp); 2772 } 2773 2774 /* call optional completion function if requested */ 2775 if (bp->b_iodone != NULL) { 2776 biodone = bp->b_iodone; 2777 bp->b_iodone = NULL; 2778 (*biodone) (bp); 2779 splx(s); 2780 return; 2781 } 2782 if (LIST_FIRST(&bp->b_dep) != NULL) 2783 buf_complete(bp); 2784 2785 if (bp->b_flags & B_VMIO) { 2786 int i; 2787 vm_ooffset_t foff; 2788 vm_page_t m; 2789 vm_object_t obj; 2790 int iosize; 2791 struct vnode *vp = bp->b_vp; 2792 2793 error = VOP_GETVOBJECT(vp, &obj); 2794 2795 #if defined(VFS_BIO_DEBUG) 2796 if (vp->v_usecount == 0) { 2797 panic("biodone: zero vnode ref count"); 2798 } 2799 2800 if (error) { 2801 panic("biodone: missing VM object"); 2802 } 2803 2804 if ((vp->v_flag & VOBJBUF) == 0) { 2805 panic("biodone: vnode is not setup for merged cache"); 2806 } 2807 #endif 2808 2809 foff = bp->b_offset; 2810 KASSERT(bp->b_offset != NOOFFSET, 2811 ("biodone: no buffer offset")); 2812 2813 if (error) { 2814 panic("biodone: no object"); 2815 } 2816 #if defined(VFS_BIO_DEBUG) 2817 if (obj->paging_in_progress < bp->b_npages) { 2818 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2819 obj->paging_in_progress, bp->b_npages); 2820 } 2821 #endif 2822 2823 /* 2824 * Set B_CACHE if the op was a normal read and no error 2825 * occured. B_CACHE is set for writes in the b*write() 2826 * routines. 2827 */ 2828 iosize = bp->b_bcount - bp->b_resid; 2829 if (bp->b_iocmd == BIO_READ && 2830 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 2831 !(bp->b_ioflags & BIO_ERROR)) { 2832 bp->b_flags |= B_CACHE; 2833 } 2834 2835 for (i = 0; i < bp->b_npages; i++) { 2836 int bogusflag = 0; 2837 int resid; 2838 2839 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2840 if (resid > iosize) 2841 resid = iosize; 2842 2843 /* 2844 * cleanup bogus pages, restoring the originals 2845 */ 2846 m = bp->b_pages[i]; 2847 if (m == bogus_page) { 2848 bogusflag = 1; 2849 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2850 if (m == NULL) 2851 panic("biodone: page disappeared!"); 2852 bp->b_pages[i] = m; 2853 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2854 } 2855 #if defined(VFS_BIO_DEBUG) 2856 if (OFF_TO_IDX(foff) != m->pindex) { 2857 printf( 2858 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2859 (unsigned long)foff, m->pindex); 2860 } 2861 #endif 2862 2863 /* 2864 * In the write case, the valid and clean bits are 2865 * already changed correctly ( see bdwrite() ), so we 2866 * only need to do this here in the read case. 2867 */ 2868 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 2869 vfs_page_set_valid(bp, foff, i, m); 2870 } 2871 vm_page_flag_clear(m, PG_ZERO); 2872 2873 /* 2874 * when debugging new filesystems or buffer I/O methods, this 2875 * is the most common error that pops up. if you see this, you 2876 * have not set the page busy flag correctly!!! 2877 */ 2878 if (m->busy == 0) { 2879 printf("biodone: page busy < 0, " 2880 "pindex: %d, foff: 0x(%x,%x), " 2881 "resid: %d, index: %d\n", 2882 (int) m->pindex, (int)(foff >> 32), 2883 (int) foff & 0xffffffff, resid, i); 2884 if (!vn_isdisk(vp, NULL)) 2885 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2886 bp->b_vp->v_mount->mnt_stat.f_iosize, 2887 (int) bp->b_lblkno, 2888 bp->b_flags, bp->b_npages); 2889 else 2890 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2891 (int) bp->b_lblkno, 2892 bp->b_flags, bp->b_npages); 2893 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2894 m->valid, m->dirty, m->wire_count); 2895 panic("biodone: page busy < 0\n"); 2896 } 2897 vm_page_io_finish(m); 2898 vm_object_pip_subtract(obj, 1); 2899 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2900 iosize -= resid; 2901 } 2902 if (obj) 2903 vm_object_pip_wakeupn(obj, 0); 2904 } 2905 2906 /* 2907 * For asynchronous completions, release the buffer now. The brelse 2908 * will do a wakeup there if necessary - so no need to do a wakeup 2909 * here in the async case. The sync case always needs to do a wakeup. 2910 */ 2911 2912 if (bp->b_flags & B_ASYNC) { 2913 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 2914 brelse(bp); 2915 else 2916 bqrelse(bp); 2917 } else { 2918 wakeup(bp); 2919 } 2920 splx(s); 2921 } 2922 2923 /* 2924 * This routine is called in lieu of iodone in the case of 2925 * incomplete I/O. This keeps the busy status for pages 2926 * consistant. 2927 */ 2928 void 2929 vfs_unbusy_pages(struct buf * bp) 2930 { 2931 int i; 2932 2933 GIANT_REQUIRED; 2934 2935 runningbufwakeup(bp); 2936 if (bp->b_flags & B_VMIO) { 2937 struct vnode *vp = bp->b_vp; 2938 vm_object_t obj; 2939 2940 VOP_GETVOBJECT(vp, &obj); 2941 2942 for (i = 0; i < bp->b_npages; i++) { 2943 vm_page_t m = bp->b_pages[i]; 2944 2945 if (m == bogus_page) { 2946 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2947 if (!m) { 2948 panic("vfs_unbusy_pages: page missing\n"); 2949 } 2950 bp->b_pages[i] = m; 2951 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2952 } 2953 vm_object_pip_subtract(obj, 1); 2954 vm_page_flag_clear(m, PG_ZERO); 2955 vm_page_io_finish(m); 2956 } 2957 vm_object_pip_wakeupn(obj, 0); 2958 } 2959 } 2960 2961 /* 2962 * vfs_page_set_valid: 2963 * 2964 * Set the valid bits in a page based on the supplied offset. The 2965 * range is restricted to the buffer's size. 2966 * 2967 * This routine is typically called after a read completes. 2968 */ 2969 static void 2970 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 2971 { 2972 vm_ooffset_t soff, eoff; 2973 2974 GIANT_REQUIRED; 2975 /* 2976 * Start and end offsets in buffer. eoff - soff may not cross a 2977 * page boundry or cross the end of the buffer. The end of the 2978 * buffer, in this case, is our file EOF, not the allocation size 2979 * of the buffer. 2980 */ 2981 soff = off; 2982 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2983 if (eoff > bp->b_offset + bp->b_bcount) 2984 eoff = bp->b_offset + bp->b_bcount; 2985 2986 /* 2987 * Set valid range. This is typically the entire buffer and thus the 2988 * entire page. 2989 */ 2990 if (eoff > soff) { 2991 vm_page_set_validclean( 2992 m, 2993 (vm_offset_t) (soff & PAGE_MASK), 2994 (vm_offset_t) (eoff - soff) 2995 ); 2996 } 2997 } 2998 2999 /* 3000 * This routine is called before a device strategy routine. 3001 * It is used to tell the VM system that paging I/O is in 3002 * progress, and treat the pages associated with the buffer 3003 * almost as being PG_BUSY. Also the object paging_in_progress 3004 * flag is handled to make sure that the object doesn't become 3005 * inconsistant. 3006 * 3007 * Since I/O has not been initiated yet, certain buffer flags 3008 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 3009 * and should be ignored. 3010 */ 3011 void 3012 vfs_busy_pages(struct buf * bp, int clear_modify) 3013 { 3014 int i, bogus; 3015 3016 GIANT_REQUIRED; 3017 3018 if (bp->b_flags & B_VMIO) { 3019 struct vnode *vp = bp->b_vp; 3020 vm_object_t obj; 3021 vm_ooffset_t foff; 3022 3023 VOP_GETVOBJECT(vp, &obj); 3024 foff = bp->b_offset; 3025 KASSERT(bp->b_offset != NOOFFSET, 3026 ("vfs_busy_pages: no buffer offset")); 3027 vfs_setdirty(bp); 3028 3029 retry: 3030 for (i = 0; i < bp->b_npages; i++) { 3031 vm_page_t m = bp->b_pages[i]; 3032 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3033 goto retry; 3034 } 3035 3036 bogus = 0; 3037 for (i = 0; i < bp->b_npages; i++) { 3038 vm_page_t m = bp->b_pages[i]; 3039 3040 vm_page_flag_clear(m, PG_ZERO); 3041 if ((bp->b_flags & B_CLUSTER) == 0) { 3042 vm_object_pip_add(obj, 1); 3043 vm_page_io_start(m); 3044 } 3045 3046 /* 3047 * When readying a buffer for a read ( i.e 3048 * clear_modify == 0 ), it is important to do 3049 * bogus_page replacement for valid pages in 3050 * partially instantiated buffers. Partially 3051 * instantiated buffers can, in turn, occur when 3052 * reconstituting a buffer from its VM backing store 3053 * base. We only have to do this if B_CACHE is 3054 * clear ( which causes the I/O to occur in the 3055 * first place ). The replacement prevents the read 3056 * I/O from overwriting potentially dirty VM-backed 3057 * pages. XXX bogus page replacement is, uh, bogus. 3058 * It may not work properly with small-block devices. 3059 * We need to find a better way. 3060 */ 3061 3062 vm_page_protect(m, VM_PROT_NONE); 3063 if (clear_modify) 3064 vfs_page_set_valid(bp, foff, i, m); 3065 else if (m->valid == VM_PAGE_BITS_ALL && 3066 (bp->b_flags & B_CACHE) == 0) { 3067 bp->b_pages[i] = bogus_page; 3068 bogus++; 3069 } 3070 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3071 } 3072 if (bogus) 3073 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3074 } 3075 } 3076 3077 /* 3078 * Tell the VM system that the pages associated with this buffer 3079 * are clean. This is used for delayed writes where the data is 3080 * going to go to disk eventually without additional VM intevention. 3081 * 3082 * Note that while we only really need to clean through to b_bcount, we 3083 * just go ahead and clean through to b_bufsize. 3084 */ 3085 static void 3086 vfs_clean_pages(struct buf * bp) 3087 { 3088 int i; 3089 3090 GIANT_REQUIRED; 3091 3092 if (bp->b_flags & B_VMIO) { 3093 vm_ooffset_t foff; 3094 3095 foff = bp->b_offset; 3096 KASSERT(bp->b_offset != NOOFFSET, 3097 ("vfs_clean_pages: no buffer offset")); 3098 for (i = 0; i < bp->b_npages; i++) { 3099 vm_page_t m = bp->b_pages[i]; 3100 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3101 vm_ooffset_t eoff = noff; 3102 3103 if (eoff > bp->b_offset + bp->b_bufsize) 3104 eoff = bp->b_offset + bp->b_bufsize; 3105 vfs_page_set_valid(bp, foff, i, m); 3106 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3107 foff = noff; 3108 } 3109 } 3110 } 3111 3112 /* 3113 * vfs_bio_set_validclean: 3114 * 3115 * Set the range within the buffer to valid and clean. The range is 3116 * relative to the beginning of the buffer, b_offset. Note that b_offset 3117 * itself may be offset from the beginning of the first page. 3118 * 3119 */ 3120 3121 void 3122 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3123 { 3124 if (bp->b_flags & B_VMIO) { 3125 int i; 3126 int n; 3127 3128 /* 3129 * Fixup base to be relative to beginning of first page. 3130 * Set initial n to be the maximum number of bytes in the 3131 * first page that can be validated. 3132 */ 3133 3134 base += (bp->b_offset & PAGE_MASK); 3135 n = PAGE_SIZE - (base & PAGE_MASK); 3136 3137 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3138 vm_page_t m = bp->b_pages[i]; 3139 3140 if (n > size) 3141 n = size; 3142 3143 vm_page_set_validclean(m, base & PAGE_MASK, n); 3144 base += n; 3145 size -= n; 3146 n = PAGE_SIZE; 3147 } 3148 } 3149 } 3150 3151 /* 3152 * vfs_bio_clrbuf: 3153 * 3154 * clear a buffer. This routine essentially fakes an I/O, so we need 3155 * to clear BIO_ERROR and B_INVAL. 3156 * 3157 * Note that while we only theoretically need to clear through b_bcount, 3158 * we go ahead and clear through b_bufsize. 3159 */ 3160 3161 void 3162 vfs_bio_clrbuf(struct buf *bp) { 3163 int i, mask = 0; 3164 caddr_t sa, ea; 3165 3166 GIANT_REQUIRED; 3167 3168 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3169 bp->b_flags &= ~B_INVAL; 3170 bp->b_ioflags &= ~BIO_ERROR; 3171 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3172 (bp->b_offset & PAGE_MASK) == 0) { 3173 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3174 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3175 ((bp->b_pages[0]->valid & mask) != mask)) { 3176 bzero(bp->b_data, bp->b_bufsize); 3177 } 3178 bp->b_pages[0]->valid |= mask; 3179 bp->b_resid = 0; 3180 return; 3181 } 3182 ea = sa = bp->b_data; 3183 for(i=0;i<bp->b_npages;i++,sa=ea) { 3184 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3185 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3186 ea = (caddr_t)(vm_offset_t)ulmin( 3187 (u_long)(vm_offset_t)ea, 3188 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3189 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3190 if ((bp->b_pages[i]->valid & mask) == mask) 3191 continue; 3192 if ((bp->b_pages[i]->valid & mask) == 0) { 3193 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3194 bzero(sa, ea - sa); 3195 } 3196 } else { 3197 for (; sa < ea; sa += DEV_BSIZE, j++) { 3198 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3199 (bp->b_pages[i]->valid & (1<<j)) == 0) 3200 bzero(sa, DEV_BSIZE); 3201 } 3202 } 3203 bp->b_pages[i]->valid |= mask; 3204 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3205 } 3206 bp->b_resid = 0; 3207 } else { 3208 clrbuf(bp); 3209 } 3210 } 3211 3212 /* 3213 * vm_hold_load_pages and vm_hold_free_pages get pages into 3214 * a buffers address space. The pages are anonymous and are 3215 * not associated with a file object. 3216 */ 3217 static void 3218 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3219 { 3220 vm_offset_t pg; 3221 vm_page_t p; 3222 int index; 3223 3224 GIANT_REQUIRED; 3225 3226 to = round_page(to); 3227 from = round_page(from); 3228 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3229 3230 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3231 tryagain: 3232 /* 3233 * note: must allocate system pages since blocking here 3234 * could intefere with paging I/O, no matter which 3235 * process we are. 3236 */ 3237 p = vm_page_alloc(kernel_object, 3238 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3239 VM_ALLOC_SYSTEM); 3240 if (!p) { 3241 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3242 VM_WAIT; 3243 goto tryagain; 3244 } 3245 vm_page_wire(p); 3246 p->valid = VM_PAGE_BITS_ALL; 3247 vm_page_flag_clear(p, PG_ZERO); 3248 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3249 bp->b_pages[index] = p; 3250 vm_page_wakeup(p); 3251 } 3252 bp->b_npages = index; 3253 } 3254 3255 void 3256 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3257 { 3258 vm_offset_t pg; 3259 vm_page_t p; 3260 int index, newnpages; 3261 3262 GIANT_REQUIRED; 3263 3264 from = round_page(from); 3265 to = round_page(to); 3266 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3267 3268 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3269 p = bp->b_pages[index]; 3270 if (p && (index < bp->b_npages)) { 3271 if (p->busy) { 3272 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3273 bp->b_blkno, bp->b_lblkno); 3274 } 3275 bp->b_pages[index] = NULL; 3276 pmap_kremove(pg); 3277 vm_page_busy(p); 3278 vm_page_unwire(p, 0); 3279 vm_page_free(p); 3280 } 3281 } 3282 bp->b_npages = newnpages; 3283 } 3284 3285 3286 #include "opt_ddb.h" 3287 #ifdef DDB 3288 #include <ddb/ddb.h> 3289 3290 DB_SHOW_COMMAND(buffer, db_show_buffer) 3291 { 3292 /* get args */ 3293 struct buf *bp = (struct buf *)addr; 3294 3295 if (!have_addr) { 3296 db_printf("usage: show buffer <addr>\n"); 3297 return; 3298 } 3299 3300 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3301 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3302 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3303 "b_blkno = %d, b_pblkno = %d\n", 3304 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3305 major(bp->b_dev), minor(bp->b_dev), 3306 bp->b_data, bp->b_blkno, bp->b_pblkno); 3307 if (bp->b_npages) { 3308 int i; 3309 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3310 for (i = 0; i < bp->b_npages; i++) { 3311 vm_page_t m; 3312 m = bp->b_pages[i]; 3313 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3314 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3315 if ((i + 1) < bp->b_npages) 3316 db_printf(","); 3317 } 3318 db_printf("\n"); 3319 } 3320 } 3321 #endif /* DDB */ 3322