1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/sysctl.h> 34 #include <sys/proc.h> 35 #include <sys/kthread.h> 36 #include <sys/vnode.h> 37 #include <sys/vmmeter.h> 38 #include <sys/lock.h> 39 #include <vm/vm.h> 40 #include <vm/vm_param.h> 41 #include <vm/vm_kern.h> 42 #include <vm/vm_pageout.h> 43 #include <vm/vm_page.h> 44 #include <vm/vm_object.h> 45 #include <vm/vm_extern.h> 46 #include <vm/vm_map.h> 47 #include <sys/buf.h> 48 #include <sys/mount.h> 49 #include <sys/malloc.h> 50 #include <sys/resourcevar.h> 51 #include <sys/conf.h> 52 53 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 54 55 struct bio_ops bioops; /* I/O operation notification */ 56 57 struct buf *buf; /* buffer header pool */ 58 struct swqueue bswlist; 59 60 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 61 vm_offset_t to); 62 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 63 vm_offset_t to); 64 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 65 int pageno, vm_page_t m); 66 static void vfs_clean_pages(struct buf * bp); 67 static void vfs_setdirty(struct buf *bp); 68 static void vfs_vmio_release(struct buf *bp); 69 static int flushbufqueues(void); 70 71 static int bd_request; 72 73 static void buf_daemon __P((void)); 74 /* 75 * bogus page -- for I/O to/from partially complete buffers 76 * this is a temporary solution to the problem, but it is not 77 * really that bad. it would be better to split the buffer 78 * for input in the case of buffers partially already in memory, 79 * but the code is intricate enough already. 80 */ 81 vm_page_t bogus_page; 82 int runningbufspace; 83 int vmiodirenable = FALSE; 84 int buf_maxio = DFLTPHYS; 85 static vm_offset_t bogus_offset; 86 87 static int bufspace, maxbufspace, vmiospace, 88 bufmallocspace, maxbufmallocspace, hibufspace; 89 static int maxbdrun; 90 static int needsbuffer; 91 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 92 static int numfreebuffers, lofreebuffers, hifreebuffers; 93 static int getnewbufcalls; 94 static int getnewbufrestarts; 95 static int kvafreespace; 96 97 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 98 &numdirtybuffers, 0, ""); 99 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 100 &lodirtybuffers, 0, ""); 101 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 102 &hidirtybuffers, 0, ""); 103 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 104 &numfreebuffers, 0, ""); 105 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 106 &lofreebuffers, 0, ""); 107 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 108 &hifreebuffers, 0, ""); 109 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 110 &runningbufspace, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW, 112 &maxbufspace, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 114 &hibufspace, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 116 &bufspace, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW, 118 &maxbdrun, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD, 120 &vmiospace, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 122 &maxbufmallocspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 124 &bufmallocspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD, 126 &kvafreespace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 128 &getnewbufcalls, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 130 &getnewbufrestarts, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 132 &vmiodirenable, 0, ""); 133 134 135 static int bufhashmask; 136 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 137 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 138 char *buf_wmesg = BUF_WMESG; 139 140 extern int vm_swap_size; 141 142 #define BUF_MAXUSE 24 143 144 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 145 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 146 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 147 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 148 #define VFS_BIO_NEED_KVASPACE 0x10 /* wait for buffer_map space, emerg */ 149 150 /* 151 * Buffer hash table code. Note that the logical block scans linearly, which 152 * gives us some L1 cache locality. 153 */ 154 155 static __inline 156 struct bufhashhdr * 157 bufhash(struct vnode *vnp, daddr_t bn) 158 { 159 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 160 } 161 162 /* 163 * kvaspacewakeup: 164 * 165 * Called when kva space is potential available for recovery or when 166 * kva space is recovered in the buffer_map. This function wakes up 167 * anyone waiting for buffer_map kva space. Even though the buffer_map 168 * is larger then maxbufspace, this situation will typically occur 169 * when the buffer_map gets fragmented. 170 */ 171 172 static __inline void 173 kvaspacewakeup(void) 174 { 175 /* 176 * If someone is waiting for KVA space, wake them up. Even 177 * though we haven't freed the kva space yet, the waiting 178 * process will be able to now. 179 */ 180 if (needsbuffer & VFS_BIO_NEED_KVASPACE) { 181 needsbuffer &= ~VFS_BIO_NEED_KVASPACE; 182 wakeup(&needsbuffer); 183 } 184 } 185 186 /* 187 * numdirtywakeup: 188 * 189 * If someone is blocked due to there being too many dirty buffers, 190 * and numdirtybuffers is now reasonable, wake them up. 191 */ 192 193 static __inline void 194 numdirtywakeup(void) 195 { 196 if (numdirtybuffers < hidirtybuffers) { 197 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 198 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 199 wakeup(&needsbuffer); 200 } 201 } 202 } 203 204 /* 205 * bufspacewakeup: 206 * 207 * Called when buffer space is potentially available for recovery or when 208 * buffer space is recovered. getnewbuf() will block on this flag when 209 * it is unable to free sufficient buffer space. Buffer space becomes 210 * recoverable when bp's get placed back in the queues. 211 */ 212 213 static __inline void 214 bufspacewakeup(void) 215 { 216 /* 217 * If someone is waiting for BUF space, wake them up. Even 218 * though we haven't freed the kva space yet, the waiting 219 * process will be able to now. 220 */ 221 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 222 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 223 wakeup(&needsbuffer); 224 } 225 } 226 227 /* 228 * bufcountwakeup: 229 * 230 * Called when a buffer has been added to one of the free queues to 231 * account for the buffer and to wakeup anyone waiting for free buffers. 232 * This typically occurs when large amounts of metadata are being handled 233 * by the buffer cache ( else buffer space runs out first, usually ). 234 */ 235 236 static __inline void 237 bufcountwakeup(void) 238 { 239 ++numfreebuffers; 240 if (needsbuffer) { 241 needsbuffer &= ~VFS_BIO_NEED_ANY; 242 if (numfreebuffers >= hifreebuffers) 243 needsbuffer &= ~VFS_BIO_NEED_FREE; 244 wakeup(&needsbuffer); 245 } 246 } 247 248 /* 249 * vfs_buf_test_cache: 250 * 251 * Called when a buffer is extended. This function clears the B_CACHE 252 * bit if the newly extended portion of the buffer does not contain 253 * valid data. 254 */ 255 static __inline__ 256 void 257 vfs_buf_test_cache(struct buf *bp, 258 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 259 vm_page_t m) 260 { 261 if (bp->b_flags & B_CACHE) { 262 int base = (foff + off) & PAGE_MASK; 263 if (vm_page_is_valid(m, base, size) == 0) 264 bp->b_flags &= ~B_CACHE; 265 } 266 } 267 268 static __inline__ 269 void 270 bd_wakeup(int dirtybuflevel) 271 { 272 if (numdirtybuffers >= dirtybuflevel && bd_request == 0) { 273 bd_request = 1; 274 wakeup(&bd_request); 275 } 276 } 277 278 279 /* 280 * Initialize buffer headers and related structures. 281 */ 282 283 caddr_t 284 bufhashinit(caddr_t vaddr) 285 { 286 /* first, make a null hash table */ 287 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 288 ; 289 bufhashtbl = (void *)vaddr; 290 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; 291 --bufhashmask; 292 return(vaddr); 293 } 294 295 void 296 bufinit(void) 297 { 298 struct buf *bp; 299 int i; 300 301 TAILQ_INIT(&bswlist); 302 LIST_INIT(&invalhash); 303 simple_lock_init(&buftimelock); 304 305 for (i = 0; i <= bufhashmask; i++) 306 LIST_INIT(&bufhashtbl[i]); 307 308 /* next, make a null set of free lists */ 309 for (i = 0; i < BUFFER_QUEUES; i++) 310 TAILQ_INIT(&bufqueues[i]); 311 312 /* finally, initialize each buffer header and stick on empty q */ 313 for (i = 0; i < nbuf; i++) { 314 bp = &buf[i]; 315 bzero(bp, sizeof *bp); 316 bp->b_flags = B_INVAL; /* we're just an empty header */ 317 bp->b_dev = NODEV; 318 bp->b_rcred = NOCRED; 319 bp->b_wcred = NOCRED; 320 bp->b_qindex = QUEUE_EMPTY; 321 bp->b_xflags = 0; 322 LIST_INIT(&bp->b_dep); 323 BUF_LOCKINIT(bp); 324 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 325 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 326 } 327 328 /* 329 * maxbufspace is currently calculated to be maximally efficient 330 * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2 331 * (4K or 8K). To reduce the number of stall points our calculation 332 * is based on DFLTBSIZE which should reduce the chances of actually 333 * running out of buffer headers. The maxbufspace calculation is also 334 * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to 335 * reduce the chance that a KVA allocation will fail due to 336 * fragmentation. While this does not usually create a stall, 337 * the KVA map allocation/free functions are O(N) rather then O(1) 338 * so running them constantly would result in inefficient O(N*M) 339 * buffer cache operation. 340 */ 341 maxbufspace = (nbuf + 8) * DFLTBSIZE; 342 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 5); 343 /* 344 * Limit the amount of malloc memory since it is wired permanently into 345 * the kernel space. Even though this is accounted for in the buffer 346 * allocation, we don't want the malloced region to grow uncontrolled. 347 * The malloc scheme improves memory utilization significantly on average 348 * (small) directories. 349 */ 350 maxbufmallocspace = hibufspace / 20; 351 352 /* 353 * Reduce the chance of a deadlock occuring by limiting the number 354 * of delayed-write dirty buffers we allow to stack up. 355 */ 356 lodirtybuffers = nbuf / 7 + 10; 357 hidirtybuffers = nbuf / 4 + 20; 358 numdirtybuffers = 0; 359 /* 360 * To support extreme low-memory systems, make sure hidirtybuffers cannot 361 * eat up all available buffer space. This occurs when our minimum cannot 362 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 363 * BKVASIZE'd (8K) buffers. We also reduce buf_maxio in this case (used 364 * by the clustering code) in an attempt to further reduce the load on 365 * the buffer cache. 366 */ 367 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 368 lodirtybuffers >>= 1; 369 hidirtybuffers >>= 1; 370 buf_maxio >>= 1; 371 } 372 if (lodirtybuffers < 2) { 373 lodirtybuffers = 2; 374 hidirtybuffers = 4; 375 } 376 377 /* 378 * Temporary, BKVASIZE may be manipulated soon, make sure we don't 379 * do something illegal. XXX 380 */ 381 #if BKVASIZE < MAXBSIZE 382 if (buf_maxio < BKVASIZE * 2) 383 buf_maxio = BKVASIZE * 2; 384 #else 385 if (buf_maxio < MAXBSIZE) 386 buf_maxio = MAXBSIZE; 387 #endif 388 389 /* 390 * Try to keep the number of free buffers in the specified range, 391 * and give the syncer access to an emergency reserve. 392 */ 393 lofreebuffers = nbuf / 18 + 5; 394 hifreebuffers = 2 * lofreebuffers; 395 numfreebuffers = nbuf; 396 397 /* 398 * Maximum number of async ops initiated per buf_daemon loop. This is 399 * somewhat of a hack at the moment, we really need to limit ourselves 400 * based on the number of bytes of I/O in-transit that were initiated 401 * from buf_daemon. 402 */ 403 if ((maxbdrun = nswbuf / 4) < 4) 404 maxbdrun = 4; 405 406 kvafreespace = 0; 407 408 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 409 bogus_page = vm_page_alloc(kernel_object, 410 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 411 VM_ALLOC_NORMAL); 412 cnt.v_wire_count++; 413 414 } 415 416 /* 417 * Free the kva allocation for a buffer 418 * Must be called only at splbio or higher, 419 * as this is the only locking for buffer_map. 420 */ 421 static void 422 bfreekva(struct buf * bp) 423 { 424 if (bp->b_kvasize) { 425 vm_map_delete(buffer_map, 426 (vm_offset_t) bp->b_kvabase, 427 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 428 ); 429 bp->b_kvasize = 0; 430 kvaspacewakeup(); 431 } 432 } 433 434 /* 435 * bremfree: 436 * 437 * Remove the buffer from the appropriate free list. 438 */ 439 void 440 bremfree(struct buf * bp) 441 { 442 int s = splbio(); 443 int old_qindex = bp->b_qindex; 444 445 if (bp->b_qindex != QUEUE_NONE) { 446 if (bp->b_qindex == QUEUE_EMPTYKVA) { 447 kvafreespace -= bp->b_kvasize; 448 } 449 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 450 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 451 bp->b_qindex = QUEUE_NONE; 452 runningbufspace += bp->b_bufsize; 453 } else { 454 #if !defined(MAX_PERF) 455 if (BUF_REFCNT(bp) <= 1) 456 panic("bremfree: removing a buffer not on a queue"); 457 #endif 458 } 459 460 /* 461 * Fixup numfreebuffers count. If the buffer is invalid or not 462 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 463 * the buffer was free and we must decrement numfreebuffers. 464 */ 465 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 466 switch(old_qindex) { 467 case QUEUE_DIRTY: 468 case QUEUE_CLEAN: 469 case QUEUE_EMPTY: 470 case QUEUE_EMPTYKVA: 471 --numfreebuffers; 472 break; 473 default: 474 break; 475 } 476 } 477 splx(s); 478 } 479 480 481 /* 482 * Get a buffer with the specified data. Look in the cache first. We 483 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 484 * is set, the buffer is valid and we do not have to do anything ( see 485 * getblk() ). 486 */ 487 int 488 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 489 struct buf ** bpp) 490 { 491 struct buf *bp; 492 493 bp = getblk(vp, blkno, size, 0, 0); 494 *bpp = bp; 495 496 /* if not found in cache, do some I/O */ 497 if ((bp->b_flags & B_CACHE) == 0) { 498 if (curproc != NULL) 499 curproc->p_stats->p_ru.ru_inblock++; 500 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); 501 bp->b_flags |= B_READ; 502 bp->b_flags &= ~(B_ERROR | B_INVAL); 503 if (bp->b_rcred == NOCRED) { 504 if (cred != NOCRED) 505 crhold(cred); 506 bp->b_rcred = cred; 507 } 508 vfs_busy_pages(bp, 0); 509 VOP_STRATEGY(vp, bp); 510 return (biowait(bp)); 511 } 512 return (0); 513 } 514 515 /* 516 * Operates like bread, but also starts asynchronous I/O on 517 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 518 * to initiating I/O . If B_CACHE is set, the buffer is valid 519 * and we do not have to do anything. 520 */ 521 int 522 breadn(struct vnode * vp, daddr_t blkno, int size, 523 daddr_t * rablkno, int *rabsize, 524 int cnt, struct ucred * cred, struct buf ** bpp) 525 { 526 struct buf *bp, *rabp; 527 int i; 528 int rv = 0, readwait = 0; 529 530 *bpp = bp = getblk(vp, blkno, size, 0, 0); 531 532 /* if not found in cache, do some I/O */ 533 if ((bp->b_flags & B_CACHE) == 0) { 534 if (curproc != NULL) 535 curproc->p_stats->p_ru.ru_inblock++; 536 bp->b_flags |= B_READ; 537 bp->b_flags &= ~(B_ERROR | B_INVAL); 538 if (bp->b_rcred == NOCRED) { 539 if (cred != NOCRED) 540 crhold(cred); 541 bp->b_rcred = cred; 542 } 543 vfs_busy_pages(bp, 0); 544 VOP_STRATEGY(vp, bp); 545 ++readwait; 546 } 547 548 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 549 if (inmem(vp, *rablkno)) 550 continue; 551 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 552 553 if ((rabp->b_flags & B_CACHE) == 0) { 554 if (curproc != NULL) 555 curproc->p_stats->p_ru.ru_inblock++; 556 rabp->b_flags |= B_READ | B_ASYNC; 557 rabp->b_flags &= ~(B_ERROR | B_INVAL); 558 if (rabp->b_rcred == NOCRED) { 559 if (cred != NOCRED) 560 crhold(cred); 561 rabp->b_rcred = cred; 562 } 563 vfs_busy_pages(rabp, 0); 564 BUF_KERNPROC(rabp); 565 VOP_STRATEGY(vp, rabp); 566 } else { 567 brelse(rabp); 568 } 569 } 570 571 if (readwait) { 572 rv = biowait(bp); 573 } 574 return (rv); 575 } 576 577 /* 578 * Write, release buffer on completion. (Done by iodone 579 * if async). Do not bother writing anything if the buffer 580 * is invalid. 581 * 582 * Note that we set B_CACHE here, indicating that buffer is 583 * fully valid and thus cacheable. This is true even of NFS 584 * now so we set it generally. This could be set either here 585 * or in biodone() since the I/O is synchronous. We put it 586 * here. 587 */ 588 int 589 bwrite(struct buf * bp) 590 { 591 int oldflags, s; 592 struct vnode *vp; 593 struct mount *mp; 594 595 if (bp->b_flags & B_INVAL) { 596 brelse(bp); 597 return (0); 598 } 599 600 oldflags = bp->b_flags; 601 602 #if !defined(MAX_PERF) 603 if (BUF_REFCNT(bp) == 0) 604 panic("bwrite: buffer is not busy???"); 605 #endif 606 s = splbio(); 607 bundirty(bp); 608 609 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR); 610 bp->b_flags |= B_WRITEINPROG | B_CACHE; 611 612 bp->b_vp->v_numoutput++; 613 vfs_busy_pages(bp, 1); 614 if (curproc != NULL) 615 curproc->p_stats->p_ru.ru_oublock++; 616 splx(s); 617 if (oldflags & B_ASYNC) 618 BUF_KERNPROC(bp); 619 VOP_STRATEGY(bp->b_vp, bp); 620 621 /* 622 * Collect statistics on synchronous and asynchronous writes. 623 * Writes to block devices are charged to their associated 624 * filesystem (if any). 625 */ 626 if ((vp = bp->b_vp) != NULL) { 627 if (vp->v_type == VBLK) 628 mp = vp->v_specmountpoint; 629 else 630 mp = vp->v_mount; 631 if (mp != NULL) { 632 if ((oldflags & B_ASYNC) == 0) 633 mp->mnt_stat.f_syncwrites++; 634 else 635 mp->mnt_stat.f_asyncwrites++; 636 } 637 } 638 639 if ((oldflags & B_ASYNC) == 0) { 640 int rtval = biowait(bp); 641 brelse(bp); 642 return (rtval); 643 } 644 645 return (0); 646 } 647 648 /* 649 * Delayed write. (Buffer is marked dirty). Do not bother writing 650 * anything if the buffer is marked invalid. 651 * 652 * Note that since the buffer must be completely valid, we can safely 653 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 654 * biodone() in order to prevent getblk from writing the buffer 655 * out synchronously. 656 */ 657 void 658 bdwrite(struct buf * bp) 659 { 660 #if !defined(MAX_PERF) 661 if (BUF_REFCNT(bp) == 0) 662 panic("bdwrite: buffer is not busy"); 663 #endif 664 665 if (bp->b_flags & B_INVAL) { 666 brelse(bp); 667 return; 668 } 669 bdirty(bp); 670 671 /* 672 * Set B_CACHE, indicating that the buffer is fully valid. This is 673 * true even of NFS now. 674 */ 675 bp->b_flags |= B_CACHE; 676 677 /* 678 * This bmap keeps the system from needing to do the bmap later, 679 * perhaps when the system is attempting to do a sync. Since it 680 * is likely that the indirect block -- or whatever other datastructure 681 * that the filesystem needs is still in memory now, it is a good 682 * thing to do this. Note also, that if the pageout daemon is 683 * requesting a sync -- there might not be enough memory to do 684 * the bmap then... So, this is important to do. 685 */ 686 if (bp->b_lblkno == bp->b_blkno) { 687 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 688 } 689 690 /* 691 * Set the *dirty* buffer range based upon the VM system dirty pages. 692 */ 693 vfs_setdirty(bp); 694 695 /* 696 * We need to do this here to satisfy the vnode_pager and the 697 * pageout daemon, so that it thinks that the pages have been 698 * "cleaned". Note that since the pages are in a delayed write 699 * buffer -- the VFS layer "will" see that the pages get written 700 * out on the next sync, or perhaps the cluster will be completed. 701 */ 702 vfs_clean_pages(bp); 703 bqrelse(bp); 704 705 /* 706 * Wakeup the buffer flushing daemon if we have saturated the 707 * buffer cache. 708 */ 709 710 bd_wakeup(hidirtybuffers); 711 712 /* 713 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 714 * due to the softdep code. 715 */ 716 } 717 718 /* 719 * bdirty: 720 * 721 * Turn buffer into delayed write request. We must clear B_READ and 722 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 723 * itself to properly update it in the dirty/clean lists. We mark it 724 * B_DONE to ensure that any asynchronization of the buffer properly 725 * clears B_DONE ( else a panic will occur later ). 726 * 727 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 728 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 729 * should only be called if the buffer is known-good. 730 * 731 * Since the buffer is not on a queue, we do not update the numfreebuffers 732 * count. 733 * 734 * Must be called at splbio(). 735 * The buffer must be on QUEUE_NONE. 736 */ 737 void 738 bdirty(bp) 739 struct buf *bp; 740 { 741 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 742 bp->b_flags &= ~(B_READ|B_RELBUF); 743 744 if ((bp->b_flags & B_DELWRI) == 0) { 745 bp->b_flags |= B_DONE | B_DELWRI; 746 reassignbuf(bp, bp->b_vp); 747 ++numdirtybuffers; 748 bd_wakeup(hidirtybuffers); 749 } 750 } 751 752 /* 753 * bundirty: 754 * 755 * Clear B_DELWRI for buffer. 756 * 757 * Since the buffer is not on a queue, we do not update the numfreebuffers 758 * count. 759 * 760 * Must be called at splbio(). 761 * The buffer must be on QUEUE_NONE. 762 */ 763 764 void 765 bundirty(bp) 766 struct buf *bp; 767 { 768 KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 769 770 if (bp->b_flags & B_DELWRI) { 771 bp->b_flags &= ~B_DELWRI; 772 reassignbuf(bp, bp->b_vp); 773 --numdirtybuffers; 774 numdirtywakeup(); 775 } 776 } 777 778 /* 779 * bawrite: 780 * 781 * Asynchronous write. Start output on a buffer, but do not wait for 782 * it to complete. The buffer is released when the output completes. 783 * 784 * bwrite() ( or the VOP routine anyway ) is responsible for handling 785 * B_INVAL buffers. Not us. 786 */ 787 void 788 bawrite(struct buf * bp) 789 { 790 bp->b_flags |= B_ASYNC; 791 (void) VOP_BWRITE(bp->b_vp, bp); 792 } 793 794 /* 795 * bowrite: 796 * 797 * Ordered write. Start output on a buffer, and flag it so that the 798 * device will write it in the order it was queued. The buffer is 799 * released when the output completes. bwrite() ( or the VOP routine 800 * anyway ) is responsible for handling B_INVAL buffers. 801 */ 802 int 803 bowrite(struct buf * bp) 804 { 805 bp->b_flags |= B_ORDERED | B_ASYNC; 806 return (VOP_BWRITE(bp->b_vp, bp)); 807 } 808 809 /* 810 * bwillwrite: 811 * 812 * Called prior to the locking of any vnodes when we are expecting to 813 * write. We do not want to starve the buffer cache with too many 814 * dirty buffers so we block here. By blocking prior to the locking 815 * of any vnodes we attempt to avoid the situation where a locked vnode 816 * prevents the various system daemons from flushing related buffers. 817 */ 818 819 void 820 bwillwrite(void) 821 { 822 int twenty = (hidirtybuffers - lodirtybuffers) / 5; 823 824 if (numdirtybuffers > hidirtybuffers + twenty) { 825 int s; 826 827 s = splbio(); 828 while (numdirtybuffers > hidirtybuffers) { 829 bd_wakeup(hidirtybuffers); 830 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 831 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); 832 } 833 splx(s); 834 } 835 } 836 837 /* 838 * brelse: 839 * 840 * Release a busy buffer and, if requested, free its resources. The 841 * buffer will be stashed in the appropriate bufqueue[] allowing it 842 * to be accessed later as a cache entity or reused for other purposes. 843 */ 844 void 845 brelse(struct buf * bp) 846 { 847 int s; 848 int kvawakeup = 0; 849 850 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 851 852 s = splbio(); 853 854 if (bp->b_flags & B_LOCKED) 855 bp->b_flags &= ~B_ERROR; 856 857 if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) { 858 /* 859 * Failed write, redirty. Must clear B_ERROR to prevent 860 * pages from being scrapped. If B_INVAL is set then 861 * this case is not run and the next case is run to 862 * destroy the buffer. B_INVAL can occur if the buffer 863 * is outside the range supported by the underlying device. 864 */ 865 bp->b_flags &= ~B_ERROR; 866 bdirty(bp); 867 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) || 868 (bp->b_bufsize <= 0)) { 869 /* 870 * Either a failed I/O or we were asked to free or not 871 * cache the buffer. 872 */ 873 bp->b_flags |= B_INVAL; 874 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 875 (*bioops.io_deallocate)(bp); 876 if (bp->b_flags & B_DELWRI) { 877 --numdirtybuffers; 878 numdirtywakeup(); 879 } 880 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF); 881 if ((bp->b_flags & B_VMIO) == 0) { 882 if (bp->b_bufsize) 883 allocbuf(bp, 0); 884 if (bp->b_vp) 885 brelvp(bp); 886 } 887 } 888 889 /* 890 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 891 * is called with B_DELWRI set, the underlying pages may wind up 892 * getting freed causing a previous write (bdwrite()) to get 'lost' 893 * because pages associated with a B_DELWRI bp are marked clean. 894 * 895 * We still allow the B_INVAL case to call vfs_vmio_release(), even 896 * if B_DELWRI is set. 897 */ 898 899 if (bp->b_flags & B_DELWRI) 900 bp->b_flags &= ~B_RELBUF; 901 902 /* 903 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 904 * constituted, not even NFS buffers now. Two flags effect this. If 905 * B_INVAL, the struct buf is invalidated but the VM object is kept 906 * around ( i.e. so it is trivial to reconstitute the buffer later ). 907 * 908 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be 909 * invalidated. B_ERROR cannot be set for a failed write unless the 910 * buffer is also B_INVAL because it hits the re-dirtying code above. 911 * 912 * Normally we can do this whether a buffer is B_DELWRI or not. If 913 * the buffer is an NFS buffer, it is tracking piecemeal writes or 914 * the commit state and we cannot afford to lose the buffer. 915 */ 916 if ((bp->b_flags & B_VMIO) 917 && !(bp->b_vp->v_tag == VT_NFS && 918 bp->b_vp->v_type != VBLK && 919 (bp->b_flags & B_DELWRI)) 920 ) { 921 922 int i, j, resid; 923 vm_page_t m; 924 off_t foff; 925 vm_pindex_t poff; 926 vm_object_t obj; 927 struct vnode *vp; 928 929 vp = bp->b_vp; 930 931 /* 932 * Get the base offset and length of the buffer. Note that 933 * for block sizes that are less then PAGE_SIZE, the b_data 934 * base of the buffer does not represent exactly b_offset and 935 * neither b_offset nor b_size are necessarily page aligned. 936 * Instead, the starting position of b_offset is: 937 * 938 * b_data + (b_offset & PAGE_MASK) 939 * 940 * block sizes less then DEV_BSIZE (usually 512) are not 941 * supported due to the page granularity bits (m->valid, 942 * m->dirty, etc...). 943 * 944 * See man buf(9) for more information 945 */ 946 947 resid = bp->b_bufsize; 948 foff = bp->b_offset; 949 950 for (i = 0; i < bp->b_npages; i++) { 951 m = bp->b_pages[i]; 952 vm_page_flag_clear(m, PG_ZERO); 953 if (m == bogus_page) { 954 955 obj = (vm_object_t) vp->v_object; 956 poff = OFF_TO_IDX(bp->b_offset); 957 958 for (j = i; j < bp->b_npages; j++) { 959 m = bp->b_pages[j]; 960 if (m == bogus_page) { 961 m = vm_page_lookup(obj, poff + j); 962 #if !defined(MAX_PERF) 963 if (!m) { 964 panic("brelse: page missing\n"); 965 } 966 #endif 967 bp->b_pages[j] = m; 968 } 969 } 970 971 if ((bp->b_flags & B_INVAL) == 0) { 972 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 973 } 974 } 975 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 976 int poffset = foff & PAGE_MASK; 977 int presid = resid > (PAGE_SIZE - poffset) ? 978 (PAGE_SIZE - poffset) : resid; 979 980 KASSERT(presid >= 0, ("brelse: extra page")); 981 vm_page_set_invalid(m, poffset, presid); 982 } 983 resid -= PAGE_SIZE - (foff & PAGE_MASK); 984 foff = (foff + PAGE_SIZE) & ~PAGE_MASK; 985 } 986 987 if (bp->b_flags & (B_INVAL | B_RELBUF)) 988 vfs_vmio_release(bp); 989 990 } else if (bp->b_flags & B_VMIO) { 991 992 if (bp->b_flags & (B_INVAL | B_RELBUF)) 993 vfs_vmio_release(bp); 994 995 } 996 997 #if !defined(MAX_PERF) 998 if (bp->b_qindex != QUEUE_NONE) 999 panic("brelse: free buffer onto another queue???"); 1000 #endif 1001 if (BUF_REFCNT(bp) > 1) { 1002 /* Temporary panic to verify exclusive locking */ 1003 /* This panic goes away when we allow shared refs */ 1004 panic("brelse: multiple refs"); 1005 /* do not release to free list */ 1006 BUF_UNLOCK(bp); 1007 splx(s); 1008 return; 1009 } 1010 1011 /* enqueue */ 1012 1013 /* buffers with no memory */ 1014 if (bp->b_bufsize == 0) { 1015 bp->b_flags |= B_INVAL; 1016 if (bp->b_kvasize) { 1017 bp->b_qindex = QUEUE_EMPTYKVA; 1018 kvawakeup = 1; 1019 } else { 1020 bp->b_qindex = QUEUE_EMPTY; 1021 } 1022 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1023 LIST_REMOVE(bp, b_hash); 1024 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1025 bp->b_dev = NODEV; 1026 kvafreespace += bp->b_kvasize; 1027 /* buffers with junk contents */ 1028 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { 1029 bp->b_flags |= B_INVAL; 1030 bp->b_qindex = QUEUE_CLEAN; 1031 if (bp->b_kvasize) 1032 kvawakeup = 1; 1033 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1034 LIST_REMOVE(bp, b_hash); 1035 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1036 bp->b_dev = NODEV; 1037 1038 /* buffers that are locked */ 1039 } else if (bp->b_flags & B_LOCKED) { 1040 bp->b_qindex = QUEUE_LOCKED; 1041 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1042 1043 /* remaining buffers */ 1044 } else { 1045 switch(bp->b_flags & (B_DELWRI|B_AGE)) { 1046 case B_DELWRI | B_AGE: 1047 bp->b_qindex = QUEUE_DIRTY; 1048 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1049 break; 1050 case B_DELWRI: 1051 bp->b_qindex = QUEUE_DIRTY; 1052 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1053 break; 1054 case B_AGE: 1055 bp->b_qindex = QUEUE_CLEAN; 1056 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1057 if (bp->b_kvasize) 1058 kvawakeup = 1; 1059 break; 1060 default: 1061 bp->b_qindex = QUEUE_CLEAN; 1062 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1063 if (bp->b_kvasize) 1064 kvawakeup = 1; 1065 break; 1066 } 1067 } 1068 1069 /* 1070 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1071 * on the correct queue. 1072 */ 1073 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) { 1074 bp->b_flags &= ~B_DELWRI; 1075 --numdirtybuffers; 1076 numdirtywakeup(); 1077 } 1078 1079 runningbufspace -= bp->b_bufsize; 1080 1081 /* 1082 * Fixup numfreebuffers count. The bp is on an appropriate queue 1083 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1084 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1085 * if B_INVAL is set ). 1086 */ 1087 1088 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1089 bufcountwakeup(); 1090 1091 /* 1092 * Something we can maybe free. 1093 */ 1094 1095 if (bp->b_bufsize) 1096 bufspacewakeup(); 1097 if (kvawakeup) 1098 kvaspacewakeup(); 1099 1100 /* unlock */ 1101 BUF_UNLOCK(bp); 1102 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1103 splx(s); 1104 } 1105 1106 /* 1107 * Release a buffer back to the appropriate queue but do not try to free 1108 * it. 1109 * 1110 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1111 * biodone() to requeue an async I/O on completion. It is also used when 1112 * known good buffers need to be requeued but we think we may need the data 1113 * again soon. 1114 */ 1115 void 1116 bqrelse(struct buf * bp) 1117 { 1118 int s; 1119 1120 s = splbio(); 1121 1122 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1123 1124 #if !defined(MAX_PERF) 1125 if (bp->b_qindex != QUEUE_NONE) 1126 panic("bqrelse: free buffer onto another queue???"); 1127 #endif 1128 if (BUF_REFCNT(bp) > 1) { 1129 /* do not release to free list */ 1130 panic("bqrelse: multiple refs"); 1131 BUF_UNLOCK(bp); 1132 splx(s); 1133 return; 1134 } 1135 if (bp->b_flags & B_LOCKED) { 1136 bp->b_flags &= ~B_ERROR; 1137 bp->b_qindex = QUEUE_LOCKED; 1138 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1139 /* buffers with stale but valid contents */ 1140 } else if (bp->b_flags & B_DELWRI) { 1141 bp->b_qindex = QUEUE_DIRTY; 1142 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1143 } else { 1144 bp->b_qindex = QUEUE_CLEAN; 1145 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1146 } 1147 1148 runningbufspace -= bp->b_bufsize; 1149 1150 if ((bp->b_flags & B_LOCKED) == 0 && 1151 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1152 bufcountwakeup(); 1153 } 1154 1155 /* 1156 * Something we can maybe wakeup 1157 */ 1158 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1159 bufspacewakeup(); 1160 1161 /* unlock */ 1162 BUF_UNLOCK(bp); 1163 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1164 splx(s); 1165 } 1166 1167 static void 1168 vfs_vmio_release(bp) 1169 struct buf *bp; 1170 { 1171 int i, s; 1172 vm_page_t m; 1173 1174 s = splvm(); 1175 for (i = 0; i < bp->b_npages; i++) { 1176 m = bp->b_pages[i]; 1177 bp->b_pages[i] = NULL; 1178 /* 1179 * In order to keep page LRU ordering consistent, put 1180 * everything on the inactive queue. 1181 */ 1182 vm_page_unwire(m, 0); 1183 /* 1184 * We don't mess with busy pages, it is 1185 * the responsibility of the process that 1186 * busied the pages to deal with them. 1187 */ 1188 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1189 continue; 1190 1191 if (m->wire_count == 0) { 1192 vm_page_flag_clear(m, PG_ZERO); 1193 /* 1194 * Might as well free the page if we can and it has 1195 * no valid data. 1196 */ 1197 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1198 vm_page_busy(m); 1199 vm_page_protect(m, VM_PROT_NONE); 1200 vm_page_free(m); 1201 } 1202 } 1203 } 1204 bufspace -= bp->b_bufsize; 1205 vmiospace -= bp->b_bufsize; 1206 runningbufspace -= bp->b_bufsize; 1207 splx(s); 1208 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1209 if (bp->b_bufsize) 1210 bufspacewakeup(); 1211 bp->b_npages = 0; 1212 bp->b_bufsize = 0; 1213 bp->b_flags &= ~B_VMIO; 1214 if (bp->b_vp) 1215 brelvp(bp); 1216 } 1217 1218 /* 1219 * Check to see if a block is currently memory resident. 1220 */ 1221 struct buf * 1222 gbincore(struct vnode * vp, daddr_t blkno) 1223 { 1224 struct buf *bp; 1225 struct bufhashhdr *bh; 1226 1227 bh = bufhash(vp, blkno); 1228 bp = bh->lh_first; 1229 1230 /* Search hash chain */ 1231 while (bp != NULL) { 1232 /* hit */ 1233 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1234 (bp->b_flags & B_INVAL) == 0) { 1235 break; 1236 } 1237 bp = bp->b_hash.le_next; 1238 } 1239 return (bp); 1240 } 1241 1242 /* 1243 * vfs_bio_awrite: 1244 * 1245 * Implement clustered async writes for clearing out B_DELWRI buffers. 1246 * This is much better then the old way of writing only one buffer at 1247 * a time. Note that we may not be presented with the buffers in the 1248 * correct order, so we search for the cluster in both directions. 1249 */ 1250 int 1251 vfs_bio_awrite(struct buf * bp) 1252 { 1253 int i; 1254 int j; 1255 daddr_t lblkno = bp->b_lblkno; 1256 struct vnode *vp = bp->b_vp; 1257 int s; 1258 int ncl; 1259 struct buf *bpa; 1260 int nwritten; 1261 int size; 1262 int maxcl; 1263 1264 s = splbio(); 1265 /* 1266 * right now we support clustered writing only to regular files. If 1267 * we find a clusterable block we could be in the middle of a cluster 1268 * rather then at the beginning. 1269 */ 1270 if ((vp->v_type == VREG) && 1271 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1272 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1273 1274 size = vp->v_mount->mnt_stat.f_iosize; 1275 maxcl = MAXPHYS / size; 1276 1277 for (i = 1; i < maxcl; i++) { 1278 if ((bpa = gbincore(vp, lblkno + i)) && 1279 BUF_REFCNT(bpa) == 0 && 1280 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1281 (B_DELWRI | B_CLUSTEROK)) && 1282 (bpa->b_bufsize == size)) { 1283 if ((bpa->b_blkno == bpa->b_lblkno) || 1284 (bpa->b_blkno != 1285 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1286 break; 1287 } else { 1288 break; 1289 } 1290 } 1291 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1292 if ((bpa = gbincore(vp, lblkno - j)) && 1293 BUF_REFCNT(bpa) == 0 && 1294 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1295 (B_DELWRI | B_CLUSTEROK)) && 1296 (bpa->b_bufsize == size)) { 1297 if ((bpa->b_blkno == bpa->b_lblkno) || 1298 (bpa->b_blkno != 1299 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1300 break; 1301 } else { 1302 break; 1303 } 1304 } 1305 --j; 1306 ncl = i + j; 1307 /* 1308 * this is a possible cluster write 1309 */ 1310 if (ncl != 1) { 1311 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1312 splx(s); 1313 return nwritten; 1314 } 1315 } 1316 1317 BUF_LOCK(bp, LK_EXCLUSIVE); 1318 bremfree(bp); 1319 bp->b_flags |= B_ASYNC; 1320 1321 splx(s); 1322 /* 1323 * default (old) behavior, writing out only one block 1324 * 1325 * XXX returns b_bufsize instead of b_bcount for nwritten? 1326 */ 1327 nwritten = bp->b_bufsize; 1328 (void) VOP_BWRITE(bp->b_vp, bp); 1329 1330 return nwritten; 1331 } 1332 1333 /* 1334 * getnewbuf: 1335 * 1336 * Find and initialize a new buffer header, freeing up existing buffers 1337 * in the bufqueues as necessary. The new buffer is returned locked. 1338 * 1339 * Important: B_INVAL is not set. If the caller wishes to throw the 1340 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1341 * 1342 * We block if: 1343 * We have insufficient buffer headers 1344 * We have insufficient buffer space 1345 * buffer_map is too fragmented ( space reservation fails ) 1346 * If we have to flush dirty buffers ( but we try to avoid this ) 1347 * 1348 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1349 * Instead we ask the buf daemon to do it for us. We attempt to 1350 * avoid piecemeal wakeups of the pageout daemon. 1351 */ 1352 1353 static struct buf * 1354 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1355 { 1356 struct buf *bp; 1357 struct buf *nbp; 1358 struct buf *dbp; 1359 int outofspace; 1360 int nqindex; 1361 int defrag = 0; 1362 1363 ++getnewbufcalls; 1364 --getnewbufrestarts; 1365 restart: 1366 ++getnewbufrestarts; 1367 1368 /* 1369 * Calculate whether we are out of buffer space. This state is 1370 * recalculated on every restart. If we are out of space, we 1371 * have to turn off defragmentation. Setting defrag to -1 when 1372 * outofspace is positive means "defrag while freeing buffers". 1373 * The looping conditional will be muffed up if defrag is left 1374 * positive when outofspace is positive. 1375 */ 1376 1377 dbp = NULL; 1378 outofspace = 0; 1379 if (bufspace >= hibufspace) { 1380 if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) || 1381 bufspace >= maxbufspace) { 1382 outofspace = 1; 1383 if (defrag > 0) 1384 defrag = -1; 1385 } 1386 } 1387 1388 /* 1389 * defrag state is semi-persistant. 1 means we are flagged for 1390 * defragging. -1 means we actually defragged something. 1391 */ 1392 /* nop */ 1393 1394 /* 1395 * Setup for scan. If we do not have enough free buffers, 1396 * we setup a degenerate case that immediately fails. Note 1397 * that if we are specially marked process, we are allowed to 1398 * dip into our reserves. 1399 * 1400 * Normally we want to find an EMPTYKVA buffer. That is, a 1401 * buffer with kva already allocated. If there are no EMPTYKVA 1402 * buffers we back up to the truely EMPTY buffers. When defragging 1403 * we do not bother backing up since we have to locate buffers with 1404 * kva to defrag. If we are out of space we skip both EMPTY and 1405 * EMPTYKVA and dig right into the CLEAN queue. 1406 * 1407 * In this manner we avoid scanning unnecessary buffers. It is very 1408 * important for us to do this because the buffer cache is almost 1409 * constantly out of space or in need of defragmentation. 1410 */ 1411 1412 if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 && 1413 numfreebuffers < lofreebuffers) { 1414 nqindex = QUEUE_CLEAN; 1415 nbp = NULL; 1416 } else { 1417 nqindex = QUEUE_EMPTYKVA; 1418 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1419 if (nbp == NULL) { 1420 if (defrag <= 0) { 1421 nqindex = QUEUE_EMPTY; 1422 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1423 } 1424 } 1425 if (outofspace || nbp == NULL) { 1426 nqindex = QUEUE_CLEAN; 1427 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1428 } 1429 } 1430 1431 /* 1432 * Run scan, possibly freeing data and/or kva mappings on the fly 1433 * depending. 1434 */ 1435 1436 while ((bp = nbp) != NULL) { 1437 int qindex = nqindex; 1438 1439 /* 1440 * Calculate next bp ( we can only use it if we do not block 1441 * or do other fancy things ). 1442 */ 1443 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1444 switch(qindex) { 1445 case QUEUE_EMPTY: 1446 nqindex = QUEUE_EMPTYKVA; 1447 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1448 break; 1449 /* fall through */ 1450 case QUEUE_EMPTYKVA: 1451 nqindex = QUEUE_CLEAN; 1452 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1453 break; 1454 /* fall through */ 1455 case QUEUE_CLEAN: 1456 /* 1457 * nbp is NULL. 1458 */ 1459 break; 1460 } 1461 } 1462 1463 /* 1464 * Sanity Checks 1465 */ 1466 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1467 1468 /* 1469 * Note: we no longer distinguish between VMIO and non-VMIO 1470 * buffers. 1471 */ 1472 1473 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1474 1475 /* 1476 * If we are defragging and the buffer isn't useful for fixing 1477 * that problem we continue. If we are out of space and the 1478 * buffer isn't useful for fixing that problem we continue. 1479 */ 1480 1481 if (defrag > 0 && bp->b_kvasize == 0) 1482 continue; 1483 if (outofspace > 0 && bp->b_bufsize == 0) 1484 continue; 1485 1486 /* 1487 * Start freeing the bp. This is somewhat involved. nbp 1488 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1489 */ 1490 1491 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1492 panic("getnewbuf: locked buf"); 1493 bremfree(bp); 1494 1495 if (qindex == QUEUE_CLEAN) { 1496 if (bp->b_flags & B_VMIO) { 1497 bp->b_flags &= ~B_ASYNC; 1498 vfs_vmio_release(bp); 1499 } 1500 if (bp->b_vp) 1501 brelvp(bp); 1502 } 1503 1504 /* 1505 * NOTE: nbp is now entirely invalid. We can only restart 1506 * the scan from this point on. 1507 * 1508 * Get the rest of the buffer freed up. b_kva* is still 1509 * valid after this operation. 1510 */ 1511 1512 if (bp->b_rcred != NOCRED) { 1513 crfree(bp->b_rcred); 1514 bp->b_rcred = NOCRED; 1515 } 1516 if (bp->b_wcred != NOCRED) { 1517 crfree(bp->b_wcred); 1518 bp->b_wcred = NOCRED; 1519 } 1520 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1521 (*bioops.io_deallocate)(bp); 1522 LIST_REMOVE(bp, b_hash); 1523 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1524 1525 if (bp->b_bufsize) 1526 allocbuf(bp, 0); 1527 1528 bp->b_flags = 0; 1529 bp->b_dev = NODEV; 1530 bp->b_vp = NULL; 1531 bp->b_blkno = bp->b_lblkno = 0; 1532 bp->b_offset = NOOFFSET; 1533 bp->b_iodone = 0; 1534 bp->b_error = 0; 1535 bp->b_resid = 0; 1536 bp->b_bcount = 0; 1537 bp->b_npages = 0; 1538 bp->b_dirtyoff = bp->b_dirtyend = 0; 1539 1540 LIST_INIT(&bp->b_dep); 1541 1542 /* 1543 * Ok, now that we have a free buffer, if we are defragging 1544 * we have to recover the kvaspace. If we are out of space 1545 * we have to free the buffer (which we just did), but we 1546 * do not have to recover kva space unless we hit a defrag 1547 * hicup. Being able to avoid freeing the kva space leads 1548 * to a significant reduction in overhead. 1549 */ 1550 1551 if (defrag > 0) { 1552 defrag = -1; 1553 bp->b_flags |= B_INVAL; 1554 bfreekva(bp); 1555 brelse(bp); 1556 goto restart; 1557 } 1558 1559 if (outofspace > 0) { 1560 outofspace = -1; 1561 bp->b_flags |= B_INVAL; 1562 if (defrag < 0) 1563 bfreekva(bp); 1564 brelse(bp); 1565 goto restart; 1566 } 1567 1568 /* 1569 * We are done 1570 */ 1571 break; 1572 } 1573 1574 /* 1575 * If we exhausted our list, sleep as appropriate. We may have to 1576 * wakeup various daemons and write out some dirty buffers. 1577 * 1578 * Generally we are sleeping due to insufficient buffer space. 1579 */ 1580 1581 if (bp == NULL) { 1582 int flags; 1583 char *waitmsg; 1584 1585 if (defrag > 0) { 1586 flags = VFS_BIO_NEED_KVASPACE; 1587 waitmsg = "nbufkv"; 1588 } else if (outofspace > 0) { 1589 waitmsg = "nbufbs"; 1590 flags = VFS_BIO_NEED_BUFSPACE; 1591 } else { 1592 waitmsg = "newbuf"; 1593 flags = VFS_BIO_NEED_ANY; 1594 } 1595 1596 /* XXX */ 1597 1598 (void) speedup_syncer(); 1599 needsbuffer |= flags; 1600 while (needsbuffer & flags) { 1601 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1602 waitmsg, slptimeo)) 1603 return (NULL); 1604 } 1605 } else { 1606 /* 1607 * We finally have a valid bp. We aren't quite out of the 1608 * woods, we still have to reserve kva space. 1609 */ 1610 vm_offset_t addr = 0; 1611 1612 maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK; 1613 1614 if (maxsize != bp->b_kvasize) { 1615 bfreekva(bp); 1616 1617 if (vm_map_findspace(buffer_map, 1618 vm_map_min(buffer_map), maxsize, &addr)) { 1619 /* 1620 * Uh oh. Buffer map is to fragmented. Try 1621 * to defragment. 1622 */ 1623 if (defrag <= 0) { 1624 defrag = 1; 1625 bp->b_flags |= B_INVAL; 1626 brelse(bp); 1627 goto restart; 1628 } 1629 /* 1630 * Uh oh. We couldn't seem to defragment 1631 */ 1632 panic("getnewbuf: unreachable code reached"); 1633 } 1634 } 1635 if (addr) { 1636 vm_map_insert(buffer_map, NULL, 0, 1637 addr, addr + maxsize, 1638 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1639 1640 bp->b_kvabase = (caddr_t) addr; 1641 bp->b_kvasize = maxsize; 1642 } 1643 bp->b_data = bp->b_kvabase; 1644 } 1645 return(bp); 1646 } 1647 1648 /* 1649 * waitfreebuffers: 1650 * 1651 * Wait for sufficient free buffers. Only called from normal processes. 1652 */ 1653 1654 static void 1655 waitfreebuffers(int slpflag, int slptimeo) 1656 { 1657 while (numfreebuffers < hifreebuffers) { 1658 if (numfreebuffers >= hifreebuffers) 1659 break; 1660 needsbuffer |= VFS_BIO_NEED_FREE; 1661 if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo)) 1662 break; 1663 } 1664 } 1665 1666 /* 1667 * buf_daemon: 1668 * 1669 * buffer flushing daemon. Buffers are normally flushed by the 1670 * update daemon but if it cannot keep up this process starts to 1671 * take the load in an attempt to prevent getnewbuf() from blocking. 1672 */ 1673 1674 static struct proc *bufdaemonproc; 1675 static int bd_interval; 1676 static int bd_flushto; 1677 1678 static struct kproc_desc buf_kp = { 1679 "bufdaemon", 1680 buf_daemon, 1681 &bufdaemonproc 1682 }; 1683 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1684 1685 static void 1686 buf_daemon() 1687 { 1688 int s; 1689 /* 1690 * This process is allowed to take the buffer cache to the limit 1691 */ 1692 curproc->p_flag |= P_BUFEXHAUST; 1693 s = splbio(); 1694 1695 bd_interval = 5 * hz; /* dynamically adjusted */ 1696 bd_flushto = hidirtybuffers; /* dynamically adjusted */ 1697 1698 while (TRUE) { 1699 bd_request = 0; 1700 1701 /* 1702 * Do the flush. Limit the number of buffers we flush in one 1703 * go. The failure condition occurs when processes are writing 1704 * buffers faster then we can dispose of them. In this case 1705 * we may be flushing so often that the previous set of flushes 1706 * have not had time to complete, causing us to run out of 1707 * physical buffers and block. 1708 */ 1709 { 1710 int runcount = maxbdrun; 1711 1712 while (numdirtybuffers > bd_flushto && runcount) { 1713 --runcount; 1714 if (flushbufqueues() == 0) 1715 break; 1716 } 1717 } 1718 1719 /* 1720 * If nobody is requesting anything we sleep 1721 */ 1722 if (bd_request == 0) 1723 tsleep(&bd_request, PVM, "psleep", bd_interval); 1724 1725 /* 1726 * We calculate how much to add or subtract from bd_flushto 1727 * and bd_interval based on how far off we are from the 1728 * optimal number of dirty buffers, which is 20% below the 1729 * hidirtybuffers mark. We cannot use hidirtybuffers straight 1730 * because being right on the mark will cause getnewbuf() 1731 * to oscillate our wakeup. 1732 * 1733 * The larger the error in either direction, the more we adjust 1734 * bd_flushto and bd_interval. The time interval is adjusted 1735 * by 2 seconds per whole-buffer-range of error. This is an 1736 * exponential convergence algorithm, with large errors 1737 * producing large changes and small errors producing small 1738 * changes. 1739 */ 1740 1741 { 1742 int brange = hidirtybuffers - lodirtybuffers; 1743 int middb = hidirtybuffers - brange / 5; 1744 int deltabuf = middb - numdirtybuffers; 1745 1746 bd_flushto += deltabuf / 20; 1747 bd_interval += deltabuf * (2 * hz) / (brange * 1); 1748 } 1749 if (bd_flushto < lodirtybuffers) 1750 bd_flushto = lodirtybuffers; 1751 if (bd_flushto > hidirtybuffers) 1752 bd_flushto = hidirtybuffers; 1753 if (bd_interval < hz / 10) 1754 bd_interval = hz / 10; 1755 if (bd_interval > 5 * hz) 1756 bd_interval = 5 * hz; 1757 } 1758 } 1759 1760 /* 1761 * flushbufqueues: 1762 * 1763 * Try to flush a buffer in the dirty queue. We must be careful to 1764 * free up B_INVAL buffers instead of write them, which NFS is 1765 * particularly sensitive to. 1766 */ 1767 1768 static int 1769 flushbufqueues(void) 1770 { 1771 struct buf *bp; 1772 int r = 0; 1773 1774 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1775 1776 while (bp) { 1777 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1778 if ((bp->b_flags & B_DELWRI) != 0) { 1779 if (bp->b_flags & B_INVAL) { 1780 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1781 panic("flushbufqueues: locked buf"); 1782 bremfree(bp); 1783 brelse(bp); 1784 ++r; 1785 break; 1786 } 1787 vfs_bio_awrite(bp); 1788 ++r; 1789 break; 1790 } 1791 bp = TAILQ_NEXT(bp, b_freelist); 1792 } 1793 return(r); 1794 } 1795 1796 /* 1797 * Check to see if a block is currently memory resident. 1798 */ 1799 struct buf * 1800 incore(struct vnode * vp, daddr_t blkno) 1801 { 1802 struct buf *bp; 1803 1804 int s = splbio(); 1805 bp = gbincore(vp, blkno); 1806 splx(s); 1807 return (bp); 1808 } 1809 1810 /* 1811 * Returns true if no I/O is needed to access the 1812 * associated VM object. This is like incore except 1813 * it also hunts around in the VM system for the data. 1814 */ 1815 1816 int 1817 inmem(struct vnode * vp, daddr_t blkno) 1818 { 1819 vm_object_t obj; 1820 vm_offset_t toff, tinc, size; 1821 vm_page_t m; 1822 vm_ooffset_t off; 1823 1824 if (incore(vp, blkno)) 1825 return 1; 1826 if (vp->v_mount == NULL) 1827 return 0; 1828 if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0) 1829 return 0; 1830 1831 obj = vp->v_object; 1832 size = PAGE_SIZE; 1833 if (size > vp->v_mount->mnt_stat.f_iosize) 1834 size = vp->v_mount->mnt_stat.f_iosize; 1835 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 1836 1837 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 1838 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 1839 if (!m) 1840 return 0; 1841 tinc = size; 1842 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 1843 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 1844 if (vm_page_is_valid(m, 1845 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 1846 return 0; 1847 } 1848 return 1; 1849 } 1850 1851 /* 1852 * vfs_setdirty: 1853 * 1854 * Sets the dirty range for a buffer based on the status of the dirty 1855 * bits in the pages comprising the buffer. 1856 * 1857 * The range is limited to the size of the buffer. 1858 * 1859 * This routine is primarily used by NFS, but is generalized for the 1860 * B_VMIO case. 1861 */ 1862 static void 1863 vfs_setdirty(struct buf *bp) 1864 { 1865 int i; 1866 vm_object_t object; 1867 1868 /* 1869 * Degenerate case - empty buffer 1870 */ 1871 1872 if (bp->b_bufsize == 0) 1873 return; 1874 1875 /* 1876 * We qualify the scan for modified pages on whether the 1877 * object has been flushed yet. The OBJ_WRITEABLE flag 1878 * is not cleared simply by protecting pages off. 1879 */ 1880 1881 if ((bp->b_flags & B_VMIO) == 0) 1882 return; 1883 1884 object = bp->b_pages[0]->object; 1885 1886 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 1887 printf("Warning: object %p writeable but not mightbedirty\n", object); 1888 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 1889 printf("Warning: object %p mightbedirty but not writeable\n", object); 1890 1891 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 1892 vm_offset_t boffset; 1893 vm_offset_t eoffset; 1894 1895 /* 1896 * test the pages to see if they have been modified directly 1897 * by users through the VM system. 1898 */ 1899 for (i = 0; i < bp->b_npages; i++) { 1900 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 1901 vm_page_test_dirty(bp->b_pages[i]); 1902 } 1903 1904 /* 1905 * Calculate the encompassing dirty range, boffset and eoffset, 1906 * (eoffset - boffset) bytes. 1907 */ 1908 1909 for (i = 0; i < bp->b_npages; i++) { 1910 if (bp->b_pages[i]->dirty) 1911 break; 1912 } 1913 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 1914 1915 for (i = bp->b_npages - 1; i >= 0; --i) { 1916 if (bp->b_pages[i]->dirty) { 1917 break; 1918 } 1919 } 1920 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 1921 1922 /* 1923 * Fit it to the buffer. 1924 */ 1925 1926 if (eoffset > bp->b_bcount) 1927 eoffset = bp->b_bcount; 1928 1929 /* 1930 * If we have a good dirty range, merge with the existing 1931 * dirty range. 1932 */ 1933 1934 if (boffset < eoffset) { 1935 if (bp->b_dirtyoff > boffset) 1936 bp->b_dirtyoff = boffset; 1937 if (bp->b_dirtyend < eoffset) 1938 bp->b_dirtyend = eoffset; 1939 } 1940 } 1941 } 1942 1943 /* 1944 * getblk: 1945 * 1946 * Get a block given a specified block and offset into a file/device. 1947 * The buffers B_DONE bit will be cleared on return, making it almost 1948 * ready for an I/O initiation. B_INVAL may or may not be set on 1949 * return. The caller should clear B_INVAL prior to initiating a 1950 * READ. 1951 * 1952 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 1953 * an existing buffer. 1954 * 1955 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 1956 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 1957 * and then cleared based on the backing VM. If the previous buffer is 1958 * non-0-sized but invalid, B_CACHE will be cleared. 1959 * 1960 * If getblk() must create a new buffer, the new buffer is returned with 1961 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 1962 * case it is returned with B_INVAL clear and B_CACHE set based on the 1963 * backing VM. 1964 * 1965 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos 1966 * B_CACHE bit is clear. 1967 * 1968 * What this means, basically, is that the caller should use B_CACHE to 1969 * determine whether the buffer is fully valid or not and should clear 1970 * B_INVAL prior to issuing a read. If the caller intends to validate 1971 * the buffer by loading its data area with something, the caller needs 1972 * to clear B_INVAL. If the caller does this without issuing an I/O, 1973 * the caller should set B_CACHE ( as an optimization ), else the caller 1974 * should issue the I/O and biodone() will set B_CACHE if the I/O was 1975 * a write attempt or if it was a successfull read. If the caller 1976 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 1977 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 1978 */ 1979 struct buf * 1980 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 1981 { 1982 struct buf *bp; 1983 int s; 1984 struct bufhashhdr *bh; 1985 1986 #if !defined(MAX_PERF) 1987 if (size > MAXBSIZE) 1988 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 1989 #endif 1990 1991 s = splbio(); 1992 loop: 1993 /* 1994 * Block if we are low on buffers. Certain processes are allowed 1995 * to completely exhaust the buffer cache. 1996 * 1997 * If this check ever becomes a bottleneck it may be better to 1998 * move it into the else, when gbincore() fails. At the moment 1999 * it isn't a problem. 2000 */ 2001 if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) { 2002 if (numfreebuffers == 0) { 2003 if (!curproc) 2004 return NULL; 2005 needsbuffer |= VFS_BIO_NEED_ANY; 2006 tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf", 2007 slptimeo); 2008 } 2009 } else if (numfreebuffers < lofreebuffers) { 2010 waitfreebuffers(slpflag, slptimeo); 2011 } 2012 2013 if ((bp = gbincore(vp, blkno))) { 2014 /* 2015 * Buffer is in-core. If the buffer is not busy, it must 2016 * be on a queue. 2017 */ 2018 2019 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2020 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2021 "getblk", slpflag, slptimeo) == ENOLCK) 2022 goto loop; 2023 splx(s); 2024 return (struct buf *) NULL; 2025 } 2026 2027 /* 2028 * The buffer is locked. B_CACHE is cleared if the buffer is 2029 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2030 * and for a VMIO buffer B_CACHE is adjusted according to the 2031 * backing VM cache. 2032 */ 2033 if (bp->b_flags & B_INVAL) 2034 bp->b_flags &= ~B_CACHE; 2035 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2036 bp->b_flags |= B_CACHE; 2037 bremfree(bp); 2038 2039 /* 2040 * check for size inconsistancies for non-VMIO case. 2041 */ 2042 2043 if (bp->b_bcount != size) { 2044 if ((bp->b_flags & B_VMIO) == 0 || 2045 (size > bp->b_kvasize)) { 2046 if (bp->b_flags & B_DELWRI) { 2047 bp->b_flags |= B_NOCACHE; 2048 VOP_BWRITE(bp->b_vp, bp); 2049 } else { 2050 if ((bp->b_flags & B_VMIO) && 2051 (LIST_FIRST(&bp->b_dep) == NULL)) { 2052 bp->b_flags |= B_RELBUF; 2053 brelse(bp); 2054 } else { 2055 bp->b_flags |= B_NOCACHE; 2056 VOP_BWRITE(bp->b_vp, bp); 2057 } 2058 } 2059 goto loop; 2060 } 2061 } 2062 2063 /* 2064 * If the size is inconsistant in the VMIO case, we can resize 2065 * the buffer. This might lead to B_CACHE getting set or 2066 * cleared. If the size has not changed, B_CACHE remains 2067 * unchanged from its previous state. 2068 */ 2069 2070 if (bp->b_bcount != size) 2071 allocbuf(bp, size); 2072 2073 KASSERT(bp->b_offset != NOOFFSET, 2074 ("getblk: no buffer offset")); 2075 2076 /* 2077 * A buffer with B_DELWRI set and B_CACHE clear must 2078 * be committed before we can return the buffer in 2079 * order to prevent the caller from issuing a read 2080 * ( due to B_CACHE not being set ) and overwriting 2081 * it. 2082 * 2083 * Most callers, including NFS and FFS, need this to 2084 * operate properly either because they assume they 2085 * can issue a read if B_CACHE is not set, or because 2086 * ( for example ) an uncached B_DELWRI might loop due 2087 * to softupdates re-dirtying the buffer. In the latter 2088 * case, B_CACHE is set after the first write completes, 2089 * preventing further loops. 2090 */ 2091 2092 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2093 VOP_BWRITE(bp->b_vp, bp); 2094 goto loop; 2095 } 2096 2097 splx(s); 2098 bp->b_flags &= ~B_DONE; 2099 } else { 2100 /* 2101 * Buffer is not in-core, create new buffer. The buffer 2102 * returned by getnewbuf() is locked. Note that the returned 2103 * buffer is also considered valid (not marked B_INVAL). 2104 */ 2105 int bsize, maxsize, vmio; 2106 off_t offset; 2107 2108 if (vp->v_type == VBLK) 2109 bsize = DEV_BSIZE; 2110 else if (vp->v_mountedhere) 2111 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2112 else if (vp->v_mount) 2113 bsize = vp->v_mount->mnt_stat.f_iosize; 2114 else 2115 bsize = size; 2116 2117 offset = (off_t)blkno * bsize; 2118 vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF); 2119 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2120 maxsize = imax(maxsize, bsize); 2121 2122 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2123 if (slpflag || slptimeo) { 2124 splx(s); 2125 return NULL; 2126 } 2127 goto loop; 2128 } 2129 2130 /* 2131 * This code is used to make sure that a buffer is not 2132 * created while the getnewbuf routine is blocked. 2133 * This can be a problem whether the vnode is locked or not. 2134 * If the buffer is created out from under us, we have to 2135 * throw away the one we just created. There is now window 2136 * race because we are safely running at splbio() from the 2137 * point of the duplicate buffer creation through to here, 2138 * and we've locked the buffer. 2139 */ 2140 if (gbincore(vp, blkno)) { 2141 bp->b_flags |= B_INVAL; 2142 brelse(bp); 2143 goto loop; 2144 } 2145 2146 /* 2147 * Insert the buffer into the hash, so that it can 2148 * be found by incore. 2149 */ 2150 bp->b_blkno = bp->b_lblkno = blkno; 2151 bp->b_offset = offset; 2152 2153 bgetvp(vp, bp); 2154 LIST_REMOVE(bp, b_hash); 2155 bh = bufhash(vp, blkno); 2156 LIST_INSERT_HEAD(bh, bp, b_hash); 2157 2158 /* 2159 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2160 * buffer size starts out as 0, B_CACHE will be set by 2161 * allocbuf() for the VMIO case prior to it testing the 2162 * backing store for validity. 2163 */ 2164 2165 if (vmio) { 2166 bp->b_flags |= B_VMIO; 2167 #if defined(VFS_BIO_DEBUG) 2168 if (vp->v_type != VREG && vp->v_type != VBLK) 2169 printf("getblk: vmioing file type %d???\n", vp->v_type); 2170 #endif 2171 } else { 2172 bp->b_flags &= ~B_VMIO; 2173 } 2174 2175 allocbuf(bp, size); 2176 2177 splx(s); 2178 bp->b_flags &= ~B_DONE; 2179 } 2180 return (bp); 2181 } 2182 2183 /* 2184 * Get an empty, disassociated buffer of given size. The buffer is initially 2185 * set to B_INVAL. 2186 */ 2187 struct buf * 2188 geteblk(int size) 2189 { 2190 struct buf *bp; 2191 int s; 2192 2193 s = splbio(); 2194 while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0); 2195 splx(s); 2196 allocbuf(bp, size); 2197 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2198 return (bp); 2199 } 2200 2201 2202 /* 2203 * This code constitutes the buffer memory from either anonymous system 2204 * memory (in the case of non-VMIO operations) or from an associated 2205 * VM object (in the case of VMIO operations). This code is able to 2206 * resize a buffer up or down. 2207 * 2208 * Note that this code is tricky, and has many complications to resolve 2209 * deadlock or inconsistant data situations. Tread lightly!!! 2210 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2211 * the caller. Calling this code willy nilly can result in the loss of data. 2212 * 2213 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2214 * B_CACHE for the non-VMIO case. 2215 */ 2216 2217 int 2218 allocbuf(struct buf *bp, int size) 2219 { 2220 int newbsize, mbsize; 2221 int i; 2222 2223 #if !defined(MAX_PERF) 2224 if (BUF_REFCNT(bp) == 0) 2225 panic("allocbuf: buffer not busy"); 2226 2227 if (bp->b_kvasize < size) 2228 panic("allocbuf: buffer too small"); 2229 #endif 2230 2231 if ((bp->b_flags & B_VMIO) == 0) { 2232 caddr_t origbuf; 2233 int origbufsize; 2234 /* 2235 * Just get anonymous memory from the kernel. Don't 2236 * mess with B_CACHE. 2237 */ 2238 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2239 #if !defined(NO_B_MALLOC) 2240 if (bp->b_flags & B_MALLOC) 2241 newbsize = mbsize; 2242 else 2243 #endif 2244 newbsize = round_page(size); 2245 2246 if (newbsize < bp->b_bufsize) { 2247 #if !defined(NO_B_MALLOC) 2248 /* 2249 * malloced buffers are not shrunk 2250 */ 2251 if (bp->b_flags & B_MALLOC) { 2252 if (newbsize) { 2253 bp->b_bcount = size; 2254 } else { 2255 free(bp->b_data, M_BIOBUF); 2256 bufspace -= bp->b_bufsize; 2257 bufmallocspace -= bp->b_bufsize; 2258 runningbufspace -= bp->b_bufsize; 2259 if (bp->b_bufsize) 2260 bufspacewakeup(); 2261 bp->b_data = bp->b_kvabase; 2262 bp->b_bufsize = 0; 2263 bp->b_bcount = 0; 2264 bp->b_flags &= ~B_MALLOC; 2265 } 2266 return 1; 2267 } 2268 #endif 2269 vm_hold_free_pages( 2270 bp, 2271 (vm_offset_t) bp->b_data + newbsize, 2272 (vm_offset_t) bp->b_data + bp->b_bufsize); 2273 } else if (newbsize > bp->b_bufsize) { 2274 #if !defined(NO_B_MALLOC) 2275 /* 2276 * We only use malloced memory on the first allocation. 2277 * and revert to page-allocated memory when the buffer 2278 * grows. 2279 */ 2280 if ( (bufmallocspace < maxbufmallocspace) && 2281 (bp->b_bufsize == 0) && 2282 (mbsize <= PAGE_SIZE/2)) { 2283 2284 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2285 bp->b_bufsize = mbsize; 2286 bp->b_bcount = size; 2287 bp->b_flags |= B_MALLOC; 2288 bufspace += mbsize; 2289 bufmallocspace += mbsize; 2290 runningbufspace += bp->b_bufsize; 2291 return 1; 2292 } 2293 #endif 2294 origbuf = NULL; 2295 origbufsize = 0; 2296 #if !defined(NO_B_MALLOC) 2297 /* 2298 * If the buffer is growing on its other-than-first allocation, 2299 * then we revert to the page-allocation scheme. 2300 */ 2301 if (bp->b_flags & B_MALLOC) { 2302 origbuf = bp->b_data; 2303 origbufsize = bp->b_bufsize; 2304 bp->b_data = bp->b_kvabase; 2305 bufspace -= bp->b_bufsize; 2306 bufmallocspace -= bp->b_bufsize; 2307 runningbufspace -= bp->b_bufsize; 2308 if (bp->b_bufsize) 2309 bufspacewakeup(); 2310 bp->b_bufsize = 0; 2311 bp->b_flags &= ~B_MALLOC; 2312 newbsize = round_page(newbsize); 2313 } 2314 #endif 2315 vm_hold_load_pages( 2316 bp, 2317 (vm_offset_t) bp->b_data + bp->b_bufsize, 2318 (vm_offset_t) bp->b_data + newbsize); 2319 #if !defined(NO_B_MALLOC) 2320 if (origbuf) { 2321 bcopy(origbuf, bp->b_data, origbufsize); 2322 free(origbuf, M_BIOBUF); 2323 } 2324 #endif 2325 } 2326 } else { 2327 vm_page_t m; 2328 int desiredpages; 2329 2330 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2331 desiredpages = (size == 0) ? 0 : 2332 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2333 2334 #if !defined(NO_B_MALLOC) 2335 if (bp->b_flags & B_MALLOC) 2336 panic("allocbuf: VMIO buffer can't be malloced"); 2337 #endif 2338 /* 2339 * Set B_CACHE initially if buffer is 0 length or will become 2340 * 0-length. 2341 */ 2342 if (size == 0 || bp->b_bufsize == 0) 2343 bp->b_flags |= B_CACHE; 2344 2345 if (newbsize < bp->b_bufsize) { 2346 /* 2347 * DEV_BSIZE aligned new buffer size is less then the 2348 * DEV_BSIZE aligned existing buffer size. Figure out 2349 * if we have to remove any pages. 2350 */ 2351 if (desiredpages < bp->b_npages) { 2352 for (i = desiredpages; i < bp->b_npages; i++) { 2353 /* 2354 * the page is not freed here -- it 2355 * is the responsibility of 2356 * vnode_pager_setsize 2357 */ 2358 m = bp->b_pages[i]; 2359 KASSERT(m != bogus_page, 2360 ("allocbuf: bogus page found")); 2361 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2362 ; 2363 2364 bp->b_pages[i] = NULL; 2365 vm_page_unwire(m, 0); 2366 } 2367 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2368 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2369 bp->b_npages = desiredpages; 2370 } 2371 } else if (size > bp->b_bcount) { 2372 /* 2373 * We are growing the buffer, possibly in a 2374 * byte-granular fashion. 2375 */ 2376 struct vnode *vp; 2377 vm_object_t obj; 2378 vm_offset_t toff; 2379 vm_offset_t tinc; 2380 2381 /* 2382 * Step 1, bring in the VM pages from the object, 2383 * allocating them if necessary. We must clear 2384 * B_CACHE if these pages are not valid for the 2385 * range covered by the buffer. 2386 */ 2387 2388 vp = bp->b_vp; 2389 obj = vp->v_object; 2390 2391 while (bp->b_npages < desiredpages) { 2392 vm_page_t m; 2393 vm_pindex_t pi; 2394 2395 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2396 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2397 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL); 2398 if (m == NULL) { 2399 VM_WAIT; 2400 vm_pageout_deficit += desiredpages - bp->b_npages; 2401 } else { 2402 vm_page_wire(m); 2403 vm_page_wakeup(m); 2404 bp->b_flags &= ~B_CACHE; 2405 bp->b_pages[bp->b_npages] = m; 2406 ++bp->b_npages; 2407 } 2408 continue; 2409 } 2410 2411 /* 2412 * We found a page. If we have to sleep on it, 2413 * retry because it might have gotten freed out 2414 * from under us. 2415 * 2416 * We can only test PG_BUSY here. Blocking on 2417 * m->busy might lead to a deadlock: 2418 * 2419 * vm_fault->getpages->cluster_read->allocbuf 2420 * 2421 */ 2422 2423 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2424 continue; 2425 2426 /* 2427 * We have a good page. Should we wakeup the 2428 * page daemon? 2429 */ 2430 if ((curproc != pageproc) && 2431 ((m->queue - m->pc) == PQ_CACHE) && 2432 ((cnt.v_free_count + cnt.v_cache_count) < 2433 (cnt.v_free_min + cnt.v_cache_min))) { 2434 pagedaemon_wakeup(); 2435 } 2436 vm_page_flag_clear(m, PG_ZERO); 2437 vm_page_wire(m); 2438 bp->b_pages[bp->b_npages] = m; 2439 ++bp->b_npages; 2440 } 2441 2442 /* 2443 * Step 2. We've loaded the pages into the buffer, 2444 * we have to figure out if we can still have B_CACHE 2445 * set. Note that B_CACHE is set according to the 2446 * byte-granular range ( bcount and size ), new the 2447 * aligned range ( newbsize ). 2448 * 2449 * The VM test is against m->valid, which is DEV_BSIZE 2450 * aligned. Needless to say, the validity of the data 2451 * needs to also be DEV_BSIZE aligned. Note that this 2452 * fails with NFS if the server or some other client 2453 * extends the file's EOF. If our buffer is resized, 2454 * B_CACHE may remain set! XXX 2455 */ 2456 2457 toff = bp->b_bcount; 2458 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2459 2460 while ((bp->b_flags & B_CACHE) && toff < size) { 2461 vm_pindex_t pi; 2462 2463 if (tinc > (size - toff)) 2464 tinc = size - toff; 2465 2466 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2467 PAGE_SHIFT; 2468 2469 vfs_buf_test_cache( 2470 bp, 2471 bp->b_offset, 2472 toff, 2473 tinc, 2474 bp->b_pages[pi] 2475 ); 2476 toff += tinc; 2477 tinc = PAGE_SIZE; 2478 } 2479 2480 /* 2481 * Step 3, fixup the KVM pmap. Remember that 2482 * bp->b_data is relative to bp->b_offset, but 2483 * bp->b_offset may be offset into the first page. 2484 */ 2485 2486 bp->b_data = (caddr_t) 2487 trunc_page((vm_offset_t)bp->b_data); 2488 pmap_qenter( 2489 (vm_offset_t)bp->b_data, 2490 bp->b_pages, 2491 bp->b_npages 2492 ); 2493 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2494 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2495 } 2496 } 2497 if (bp->b_flags & B_VMIO) 2498 vmiospace += (newbsize - bp->b_bufsize); 2499 bufspace += (newbsize - bp->b_bufsize); 2500 runningbufspace += (newbsize - bp->b_bufsize); 2501 if (newbsize < bp->b_bufsize) 2502 bufspacewakeup(); 2503 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2504 bp->b_bcount = size; /* requested buffer size */ 2505 return 1; 2506 } 2507 2508 /* 2509 * biowait: 2510 * 2511 * Wait for buffer I/O completion, returning error status. The buffer 2512 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2513 * error and cleared. 2514 */ 2515 int 2516 biowait(register struct buf * bp) 2517 { 2518 int s; 2519 2520 s = splbio(); 2521 while ((bp->b_flags & B_DONE) == 0) { 2522 #if defined(NO_SCHEDULE_MODS) 2523 tsleep(bp, PRIBIO, "biowait", 0); 2524 #else 2525 if (bp->b_flags & B_READ) 2526 tsleep(bp, PRIBIO, "biord", 0); 2527 else 2528 tsleep(bp, PRIBIO, "biowr", 0); 2529 #endif 2530 } 2531 splx(s); 2532 if (bp->b_flags & B_EINTR) { 2533 bp->b_flags &= ~B_EINTR; 2534 return (EINTR); 2535 } 2536 if (bp->b_flags & B_ERROR) { 2537 return (bp->b_error ? bp->b_error : EIO); 2538 } else { 2539 return (0); 2540 } 2541 } 2542 2543 /* 2544 * biodone: 2545 * 2546 * Finish I/O on a buffer, optionally calling a completion function. 2547 * This is usually called from an interrupt so process blocking is 2548 * not allowed. 2549 * 2550 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2551 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2552 * assuming B_INVAL is clear. 2553 * 2554 * For the VMIO case, we set B_CACHE if the op was a read and no 2555 * read error occured, or if the op was a write. B_CACHE is never 2556 * set if the buffer is invalid or otherwise uncacheable. 2557 * 2558 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2559 * initiator to leave B_INVAL set to brelse the buffer out of existance 2560 * in the biodone routine. 2561 */ 2562 void 2563 biodone(register struct buf * bp) 2564 { 2565 int s; 2566 2567 s = splbio(); 2568 2569 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2570 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2571 2572 bp->b_flags |= B_DONE; 2573 2574 if (bp->b_flags & B_FREEBUF) { 2575 brelse(bp); 2576 splx(s); 2577 return; 2578 } 2579 2580 if ((bp->b_flags & B_READ) == 0) { 2581 vwakeup(bp); 2582 } 2583 2584 /* call optional completion function if requested */ 2585 if (bp->b_flags & B_CALL) { 2586 bp->b_flags &= ~B_CALL; 2587 (*bp->b_iodone) (bp); 2588 splx(s); 2589 return; 2590 } 2591 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 2592 (*bioops.io_complete)(bp); 2593 2594 if (bp->b_flags & B_VMIO) { 2595 int i, resid; 2596 vm_ooffset_t foff; 2597 vm_page_t m; 2598 vm_object_t obj; 2599 int iosize; 2600 struct vnode *vp = bp->b_vp; 2601 2602 obj = vp->v_object; 2603 2604 #if defined(VFS_BIO_DEBUG) 2605 if (vp->v_usecount == 0) { 2606 panic("biodone: zero vnode ref count"); 2607 } 2608 2609 if (vp->v_object == NULL) { 2610 panic("biodone: missing VM object"); 2611 } 2612 2613 if ((vp->v_flag & VOBJBUF) == 0) { 2614 panic("biodone: vnode is not setup for merged cache"); 2615 } 2616 #endif 2617 2618 foff = bp->b_offset; 2619 KASSERT(bp->b_offset != NOOFFSET, 2620 ("biodone: no buffer offset")); 2621 2622 #if !defined(MAX_PERF) 2623 if (!obj) { 2624 panic("biodone: no object"); 2625 } 2626 #endif 2627 #if defined(VFS_BIO_DEBUG) 2628 if (obj->paging_in_progress < bp->b_npages) { 2629 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2630 obj->paging_in_progress, bp->b_npages); 2631 } 2632 #endif 2633 2634 /* 2635 * Set B_CACHE if the op was a normal read and no error 2636 * occured. B_CACHE is set for writes in the b*write() 2637 * routines. 2638 */ 2639 iosize = bp->b_bcount - bp->b_resid; 2640 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) { 2641 bp->b_flags |= B_CACHE; 2642 } 2643 2644 for (i = 0; i < bp->b_npages; i++) { 2645 int bogusflag = 0; 2646 m = bp->b_pages[i]; 2647 if (m == bogus_page) { 2648 bogusflag = 1; 2649 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2650 if (!m) { 2651 #if defined(VFS_BIO_DEBUG) 2652 printf("biodone: page disappeared\n"); 2653 #endif 2654 vm_object_pip_subtract(obj, 1); 2655 bp->b_flags &= ~B_CACHE; 2656 continue; 2657 } 2658 bp->b_pages[i] = m; 2659 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2660 } 2661 #if defined(VFS_BIO_DEBUG) 2662 if (OFF_TO_IDX(foff) != m->pindex) { 2663 printf( 2664 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2665 (unsigned long)foff, m->pindex); 2666 } 2667 #endif 2668 resid = IDX_TO_OFF(m->pindex + 1) - foff; 2669 if (resid > iosize) 2670 resid = iosize; 2671 2672 /* 2673 * In the write case, the valid and clean bits are 2674 * already changed correctly ( see bdwrite() ), so we 2675 * only need to do this here in the read case. 2676 */ 2677 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) { 2678 vfs_page_set_valid(bp, foff, i, m); 2679 } 2680 vm_page_flag_clear(m, PG_ZERO); 2681 2682 /* 2683 * when debugging new filesystems or buffer I/O methods, this 2684 * is the most common error that pops up. if you see this, you 2685 * have not set the page busy flag correctly!!! 2686 */ 2687 if (m->busy == 0) { 2688 #if !defined(MAX_PERF) 2689 printf("biodone: page busy < 0, " 2690 "pindex: %d, foff: 0x(%x,%x), " 2691 "resid: %d, index: %d\n", 2692 (int) m->pindex, (int)(foff >> 32), 2693 (int) foff & 0xffffffff, resid, i); 2694 #endif 2695 if (vp->v_type != VBLK) 2696 #if !defined(MAX_PERF) 2697 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2698 bp->b_vp->v_mount->mnt_stat.f_iosize, 2699 (int) bp->b_lblkno, 2700 bp->b_flags, bp->b_npages); 2701 else 2702 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2703 (int) bp->b_lblkno, 2704 bp->b_flags, bp->b_npages); 2705 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2706 m->valid, m->dirty, m->wire_count); 2707 #endif 2708 panic("biodone: page busy < 0\n"); 2709 } 2710 vm_page_io_finish(m); 2711 vm_object_pip_subtract(obj, 1); 2712 foff += resid; 2713 iosize -= resid; 2714 } 2715 if (obj) 2716 vm_object_pip_wakeupn(obj, 0); 2717 } 2718 /* 2719 * For asynchronous completions, release the buffer now. The brelse 2720 * will do a wakeup there if necessary - so no need to do a wakeup 2721 * here in the async case. The sync case always needs to do a wakeup. 2722 */ 2723 2724 if (bp->b_flags & B_ASYNC) { 2725 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 2726 brelse(bp); 2727 else 2728 bqrelse(bp); 2729 } else { 2730 wakeup(bp); 2731 } 2732 splx(s); 2733 } 2734 2735 /* 2736 * This routine is called in lieu of iodone in the case of 2737 * incomplete I/O. This keeps the busy status for pages 2738 * consistant. 2739 */ 2740 void 2741 vfs_unbusy_pages(struct buf * bp) 2742 { 2743 int i; 2744 2745 if (bp->b_flags & B_VMIO) { 2746 struct vnode *vp = bp->b_vp; 2747 vm_object_t obj = vp->v_object; 2748 2749 for (i = 0; i < bp->b_npages; i++) { 2750 vm_page_t m = bp->b_pages[i]; 2751 2752 if (m == bogus_page) { 2753 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2754 #if !defined(MAX_PERF) 2755 if (!m) { 2756 panic("vfs_unbusy_pages: page missing\n"); 2757 } 2758 #endif 2759 bp->b_pages[i] = m; 2760 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2761 } 2762 vm_object_pip_subtract(obj, 1); 2763 vm_page_flag_clear(m, PG_ZERO); 2764 vm_page_io_finish(m); 2765 } 2766 vm_object_pip_wakeupn(obj, 0); 2767 } 2768 } 2769 2770 /* 2771 * vfs_page_set_valid: 2772 * 2773 * Set the valid bits in a page based on the supplied offset. The 2774 * range is restricted to the buffer's size. 2775 * 2776 * This routine is typically called after a read completes. 2777 */ 2778 static void 2779 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 2780 { 2781 vm_ooffset_t soff, eoff; 2782 2783 /* 2784 * Start and end offsets in buffer. eoff - soff may not cross a 2785 * page boundry or cross the end of the buffer. The end of the 2786 * buffer, in this case, is our file EOF, not the allocation size 2787 * of the buffer. 2788 */ 2789 soff = off; 2790 eoff = (off + PAGE_SIZE) & ~PAGE_MASK; 2791 if (eoff > bp->b_offset + bp->b_bcount) 2792 eoff = bp->b_offset + bp->b_bcount; 2793 2794 /* 2795 * Set valid range. This is typically the entire buffer and thus the 2796 * entire page. 2797 */ 2798 if (eoff > soff) { 2799 vm_page_set_validclean( 2800 m, 2801 (vm_offset_t) (soff & PAGE_MASK), 2802 (vm_offset_t) (eoff - soff) 2803 ); 2804 } 2805 } 2806 2807 /* 2808 * This routine is called before a device strategy routine. 2809 * It is used to tell the VM system that paging I/O is in 2810 * progress, and treat the pages associated with the buffer 2811 * almost as being PG_BUSY. Also the object paging_in_progress 2812 * flag is handled to make sure that the object doesn't become 2813 * inconsistant. 2814 * 2815 * Since I/O has not been initiated yet, certain buffer flags 2816 * such as B_ERROR or B_INVAL may be in an inconsistant state 2817 * and should be ignored. 2818 */ 2819 void 2820 vfs_busy_pages(struct buf * bp, int clear_modify) 2821 { 2822 int i, bogus; 2823 2824 if (bp->b_flags & B_VMIO) { 2825 struct vnode *vp = bp->b_vp; 2826 vm_object_t obj = vp->v_object; 2827 vm_ooffset_t foff; 2828 2829 foff = bp->b_offset; 2830 KASSERT(bp->b_offset != NOOFFSET, 2831 ("vfs_busy_pages: no buffer offset")); 2832 vfs_setdirty(bp); 2833 2834 retry: 2835 for (i = 0; i < bp->b_npages; i++) { 2836 vm_page_t m = bp->b_pages[i]; 2837 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 2838 goto retry; 2839 } 2840 2841 bogus = 0; 2842 for (i = 0; i < bp->b_npages; i++) { 2843 vm_page_t m = bp->b_pages[i]; 2844 2845 vm_page_flag_clear(m, PG_ZERO); 2846 if ((bp->b_flags & B_CLUSTER) == 0) { 2847 vm_object_pip_add(obj, 1); 2848 vm_page_io_start(m); 2849 } 2850 2851 /* 2852 * When readying a buffer for a read ( i.e 2853 * clear_modify == 0 ), it is important to do 2854 * bogus_page replacement for valid pages in 2855 * partially instantiated buffers. Partially 2856 * instantiated buffers can, in turn, occur when 2857 * reconstituting a buffer from its VM backing store 2858 * base. We only have to do this if B_CACHE is 2859 * clear ( which causes the I/O to occur in the 2860 * first place ). The replacement prevents the read 2861 * I/O from overwriting potentially dirty VM-backed 2862 * pages. XXX bogus page replacement is, uh, bogus. 2863 * It may not work properly with small-block devices. 2864 * We need to find a better way. 2865 */ 2866 2867 vm_page_protect(m, VM_PROT_NONE); 2868 if (clear_modify) 2869 vfs_page_set_valid(bp, foff, i, m); 2870 else if (m->valid == VM_PAGE_BITS_ALL && 2871 (bp->b_flags & B_CACHE) == 0) { 2872 bp->b_pages[i] = bogus_page; 2873 bogus++; 2874 } 2875 foff = (foff + PAGE_SIZE) & ~PAGE_MASK; 2876 } 2877 if (bogus) 2878 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2879 } 2880 } 2881 2882 /* 2883 * Tell the VM system that the pages associated with this buffer 2884 * are clean. This is used for delayed writes where the data is 2885 * going to go to disk eventually without additional VM intevention. 2886 * 2887 * Note that while we only really need to clean through to b_bcount, we 2888 * just go ahead and clean through to b_bufsize. 2889 */ 2890 static void 2891 vfs_clean_pages(struct buf * bp) 2892 { 2893 int i; 2894 2895 if (bp->b_flags & B_VMIO) { 2896 vm_ooffset_t foff; 2897 2898 foff = bp->b_offset; 2899 KASSERT(bp->b_offset != NOOFFSET, 2900 ("vfs_clean_pages: no buffer offset")); 2901 for (i = 0; i < bp->b_npages; i++) { 2902 vm_page_t m = bp->b_pages[i]; 2903 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK; 2904 vm_ooffset_t eoff = noff; 2905 2906 if (eoff > bp->b_offset + bp->b_bufsize) 2907 eoff = bp->b_offset + bp->b_bufsize; 2908 vfs_page_set_valid(bp, foff, i, m); 2909 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 2910 foff = noff; 2911 } 2912 } 2913 } 2914 2915 /* 2916 * vfs_bio_set_validclean: 2917 * 2918 * Set the range within the buffer to valid and clean. The range is 2919 * relative to the beginning of the buffer, b_offset. Note that b_offset 2920 * itself may be offset from the beginning of the first page. 2921 */ 2922 2923 void 2924 vfs_bio_set_validclean(struct buf *bp, int base, int size) 2925 { 2926 if (bp->b_flags & B_VMIO) { 2927 int i; 2928 int n; 2929 2930 /* 2931 * Fixup base to be relative to beginning of first page. 2932 * Set initial n to be the maximum number of bytes in the 2933 * first page that can be validated. 2934 */ 2935 2936 base += (bp->b_offset & PAGE_MASK); 2937 n = PAGE_SIZE - (base & PAGE_MASK); 2938 2939 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 2940 vm_page_t m = bp->b_pages[i]; 2941 2942 if (n > size) 2943 n = size; 2944 2945 vm_page_set_validclean(m, base & PAGE_MASK, n); 2946 base += n; 2947 size -= n; 2948 n = PAGE_SIZE; 2949 } 2950 } 2951 } 2952 2953 /* 2954 * vfs_bio_clrbuf: 2955 * 2956 * clear a buffer. This routine essentially fakes an I/O, so we need 2957 * to clear B_ERROR and B_INVAL. 2958 * 2959 * Note that while we only theoretically need to clear through b_bcount, 2960 * we go ahead and clear through b_bufsize. 2961 */ 2962 2963 void 2964 vfs_bio_clrbuf(struct buf *bp) { 2965 int i, mask = 0; 2966 caddr_t sa, ea; 2967 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 2968 bp->b_flags &= ~(B_INVAL|B_ERROR); 2969 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 2970 (bp->b_offset & PAGE_MASK) == 0) { 2971 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 2972 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 2973 ((bp->b_pages[0]->valid & mask) != mask)) { 2974 bzero(bp->b_data, bp->b_bufsize); 2975 } 2976 bp->b_pages[0]->valid |= mask; 2977 bp->b_resid = 0; 2978 return; 2979 } 2980 ea = sa = bp->b_data; 2981 for(i=0;i<bp->b_npages;i++,sa=ea) { 2982 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 2983 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 2984 ea = (caddr_t)(vm_offset_t)ulmin( 2985 (u_long)(vm_offset_t)ea, 2986 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 2987 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 2988 if ((bp->b_pages[i]->valid & mask) == mask) 2989 continue; 2990 if ((bp->b_pages[i]->valid & mask) == 0) { 2991 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 2992 bzero(sa, ea - sa); 2993 } 2994 } else { 2995 for (; sa < ea; sa += DEV_BSIZE, j++) { 2996 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 2997 (bp->b_pages[i]->valid & (1<<j)) == 0) 2998 bzero(sa, DEV_BSIZE); 2999 } 3000 } 3001 bp->b_pages[i]->valid |= mask; 3002 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3003 } 3004 bp->b_resid = 0; 3005 } else { 3006 clrbuf(bp); 3007 } 3008 } 3009 3010 /* 3011 * vm_hold_load_pages and vm_hold_unload pages get pages into 3012 * a buffers address space. The pages are anonymous and are 3013 * not associated with a file object. 3014 */ 3015 void 3016 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3017 { 3018 vm_offset_t pg; 3019 vm_page_t p; 3020 int index; 3021 3022 to = round_page(to); 3023 from = round_page(from); 3024 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3025 3026 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3027 3028 tryagain: 3029 3030 p = vm_page_alloc(kernel_object, 3031 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3032 VM_ALLOC_NORMAL); 3033 if (!p) { 3034 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3035 VM_WAIT; 3036 goto tryagain; 3037 } 3038 vm_page_wire(p); 3039 p->valid = VM_PAGE_BITS_ALL; 3040 vm_page_flag_clear(p, PG_ZERO); 3041 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3042 bp->b_pages[index] = p; 3043 vm_page_wakeup(p); 3044 } 3045 bp->b_npages = index; 3046 } 3047 3048 void 3049 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3050 { 3051 vm_offset_t pg; 3052 vm_page_t p; 3053 int index, newnpages; 3054 3055 from = round_page(from); 3056 to = round_page(to); 3057 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3058 3059 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3060 p = bp->b_pages[index]; 3061 if (p && (index < bp->b_npages)) { 3062 #if !defined(MAX_PERF) 3063 if (p->busy) { 3064 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3065 bp->b_blkno, bp->b_lblkno); 3066 } 3067 #endif 3068 bp->b_pages[index] = NULL; 3069 pmap_kremove(pg); 3070 vm_page_busy(p); 3071 vm_page_unwire(p, 0); 3072 vm_page_free(p); 3073 } 3074 } 3075 bp->b_npages = newnpages; 3076 } 3077 3078 3079 #include "opt_ddb.h" 3080 #ifdef DDB 3081 #include <ddb/ddb.h> 3082 3083 DB_SHOW_COMMAND(buffer, db_show_buffer) 3084 { 3085 /* get args */ 3086 struct buf *bp = (struct buf *)addr; 3087 3088 if (!have_addr) { 3089 db_printf("usage: show buffer <addr>\n"); 3090 return; 3091 } 3092 3093 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3094 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3095 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3096 "b_blkno = %d, b_pblkno = %d\n", 3097 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3098 major(bp->b_dev), minor(bp->b_dev), 3099 bp->b_data, bp->b_blkno, bp->b_pblkno); 3100 if (bp->b_npages) { 3101 int i; 3102 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3103 for (i = 0; i < bp->b_npages; i++) { 3104 vm_page_t m; 3105 m = bp->b_pages[i]; 3106 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3107 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3108 if ((i + 1) < bp->b_npages) 3109 db_printf(","); 3110 } 3111 db_printf("\n"); 3112 } 3113 } 3114 #endif /* DDB */ 3115