xref: /freebsd/sys/kern/vfs_bio.c (revision 92fab43f7f3a6461a846a81b1e366874f2f11bf0)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * Copyright (c) 2013 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * this file contains a new buffer I/O scheme implementing a coherent
34  * VM object and buffer cache scheme.  Pains have been taken to make
35  * sure that the performance degradation associated with schemes such
36  * as this is not realized.
37  *
38  * Author:  John S. Dyson
39  * Significant help during the development and debugging phases
40  * had been provided by David Greenman, also of the FreeBSD core team.
41  *
42  * see man buf(9) for more info.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/conf.h>
52 #include <sys/buf.h>
53 #include <sys/devicestat.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fail.h>
56 #include <sys/limits.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/kthread.h>
63 #include <sys/proc.h>
64 #include <sys/resourcevar.h>
65 #include <sys/rwlock.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <geom/geom.h>
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_map.h>
78 #include "opt_compat.h"
79 #include "opt_directio.h"
80 #include "opt_swap.h"
81 
82 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
83 
84 struct	bio_ops bioops;		/* I/O operation notification */
85 
86 struct	buf_ops buf_ops_bio = {
87 	.bop_name	=	"buf_ops_bio",
88 	.bop_write	=	bufwrite,
89 	.bop_strategy	=	bufstrategy,
90 	.bop_sync	=	bufsync,
91 	.bop_bdflush	=	bufbdflush,
92 };
93 
94 /*
95  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
96  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
97  */
98 struct buf *buf;		/* buffer header pool */
99 caddr_t unmapped_buf;
100 
101 static struct proc *bufdaemonproc;
102 
103 static int inmem(struct vnode *vp, daddr_t blkno);
104 static void vm_hold_free_pages(struct buf *bp, int newbsize);
105 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
106 		vm_offset_t to);
107 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
108 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
109 		vm_page_t m);
110 static void vfs_drain_busy_pages(struct buf *bp);
111 static void vfs_clean_pages_dirty_buf(struct buf *bp);
112 static void vfs_setdirty_locked_object(struct buf *bp);
113 static void vfs_vmio_release(struct buf *bp);
114 static int vfs_bio_clcheck(struct vnode *vp, int size,
115 		daddr_t lblkno, daddr_t blkno);
116 static int buf_do_flush(struct vnode *vp);
117 static int flushbufqueues(struct vnode *, int, int);
118 static void buf_daemon(void);
119 static void bremfreel(struct buf *bp);
120 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
121     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
122 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
123 #endif
124 
125 int vmiodirenable = TRUE;
126 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
127     "Use the VM system for directory writes");
128 long runningbufspace;
129 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
130     "Amount of presently outstanding async buffer io");
131 static long bufspace;
132 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
133     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
134 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
135     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
136 #else
137 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
138     "Virtual memory used for buffers");
139 #endif
140 static long unmapped_bufspace;
141 SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
142     &unmapped_bufspace, 0,
143     "Amount of unmapped buffers, inclusive in the bufspace");
144 static long maxbufspace;
145 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
146     "Maximum allowed value of bufspace (including buf_daemon)");
147 static long bufmallocspace;
148 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
149     "Amount of malloced memory for buffers");
150 static long maxbufmallocspace;
151 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
152     "Maximum amount of malloced memory for buffers");
153 static long lobufspace;
154 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
155     "Minimum amount of buffers we want to have");
156 long hibufspace;
157 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
158     "Maximum allowed value of bufspace (excluding buf_daemon)");
159 static int bufreusecnt;
160 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
161     "Number of times we have reused a buffer");
162 static int buffreekvacnt;
163 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
164     "Number of times we have freed the KVA space from some buffer");
165 static int bufdefragcnt;
166 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
167     "Number of times we have had to repeat buffer allocation to defragment");
168 static long lorunningspace;
169 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
170     "Minimum preferred space used for in-progress I/O");
171 static long hirunningspace;
172 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
173     "Maximum amount of space to use for in-progress I/O");
174 int dirtybufferflushes;
175 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
176     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
177 int bdwriteskip;
178 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
179     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
180 int altbufferflushes;
181 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
182     0, "Number of fsync flushes to limit dirty buffers");
183 static int recursiveflushes;
184 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
185     0, "Number of flushes skipped due to being recursive");
186 static int numdirtybuffers;
187 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
188     "Number of buffers that are dirty (has unwritten changes) at the moment");
189 static int lodirtybuffers;
190 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
191     "How many buffers we want to have free before bufdaemon can sleep");
192 static int hidirtybuffers;
193 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
194     "When the number of dirty buffers is considered severe");
195 int dirtybufthresh;
196 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
197     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
198 static int numfreebuffers;
199 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
200     "Number of free buffers");
201 static int lofreebuffers;
202 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
203    "XXX Unused");
204 static int hifreebuffers;
205 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
206    "XXX Complicatedly unused");
207 static int getnewbufcalls;
208 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
209    "Number of calls to getnewbuf");
210 static int getnewbufrestarts;
211 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
212     "Number of times getnewbuf has had to restart a buffer aquisition");
213 static int mappingrestarts;
214 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
215     "Number of times getblk has had to restart a buffer mapping for "
216     "unmapped buffer");
217 static int flushbufqtarget = 100;
218 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
219     "Amount of work to do in flushbufqueues when helping bufdaemon");
220 static long notbufdflashes;
221 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
222     "Number of dirty buffer flushes done by the bufdaemon helpers");
223 static long barrierwrites;
224 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
225     "Number of barrier writes");
226 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
227     &unmapped_buf_allowed, 0,
228     "Permit the use of the unmapped i/o");
229 
230 /*
231  * Wakeup point for bufdaemon, as well as indicator of whether it is already
232  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
233  * is idling.
234  */
235 static int bd_request;
236 
237 /*
238  * Request for the buf daemon to write more buffers than is indicated by
239  * lodirtybuf.  This may be necessary to push out excess dependencies or
240  * defragment the address space where a simple count of the number of dirty
241  * buffers is insufficient to characterize the demand for flushing them.
242  */
243 static int bd_speedupreq;
244 
245 /*
246  * This lock synchronizes access to bd_request.
247  */
248 static struct mtx bdlock;
249 
250 /*
251  * bogus page -- for I/O to/from partially complete buffers
252  * this is a temporary solution to the problem, but it is not
253  * really that bad.  it would be better to split the buffer
254  * for input in the case of buffers partially already in memory,
255  * but the code is intricate enough already.
256  */
257 vm_page_t bogus_page;
258 
259 /*
260  * Synchronization (sleep/wakeup) variable for active buffer space requests.
261  * Set when wait starts, cleared prior to wakeup().
262  * Used in runningbufwakeup() and waitrunningbufspace().
263  */
264 static int runningbufreq;
265 
266 /*
267  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
268  * waitrunningbufspace().
269  */
270 static struct mtx rbreqlock;
271 
272 /*
273  * Synchronization (sleep/wakeup) variable for buffer requests.
274  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
275  * by and/or.
276  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
277  * getnewbuf(), and getblk().
278  */
279 static int needsbuffer;
280 
281 /*
282  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
283  */
284 static struct mtx nblock;
285 
286 /*
287  * Definitions for the buffer free lists.
288  */
289 #define BUFFER_QUEUES	5	/* number of free buffer queues */
290 
291 #define QUEUE_NONE	0	/* on no queue */
292 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
293 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
294 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
295 #define QUEUE_EMPTY	4	/* empty buffer headers */
296 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
297 
298 /* Queues for free buffers with various properties */
299 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
300 #ifdef INVARIANTS
301 static int bq_len[BUFFER_QUEUES];
302 #endif
303 
304 /* Lock for the bufqueues */
305 static struct mtx bqlock;
306 
307 /*
308  * Single global constant for BUF_WMESG, to avoid getting multiple references.
309  * buf_wmesg is referred from macros.
310  */
311 const char *buf_wmesg = BUF_WMESG;
312 
313 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
314 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
315 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
316 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
317 
318 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
319     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
320 static int
321 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
322 {
323 	long lvalue;
324 	int ivalue;
325 
326 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
327 		return (sysctl_handle_long(oidp, arg1, arg2, req));
328 	lvalue = *(long *)arg1;
329 	if (lvalue > INT_MAX)
330 		/* On overflow, still write out a long to trigger ENOMEM. */
331 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
332 	ivalue = lvalue;
333 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
334 }
335 #endif
336 
337 #ifdef DIRECTIO
338 extern void ffs_rawread_setup(void);
339 #endif /* DIRECTIO */
340 /*
341  *	numdirtywakeup:
342  *
343  *	If someone is blocked due to there being too many dirty buffers,
344  *	and numdirtybuffers is now reasonable, wake them up.
345  */
346 
347 static __inline void
348 numdirtywakeup(int level)
349 {
350 
351 	if (numdirtybuffers <= level) {
352 		mtx_lock(&nblock);
353 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
354 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
355 			wakeup(&needsbuffer);
356 		}
357 		mtx_unlock(&nblock);
358 	}
359 }
360 
361 /*
362  *	bufspacewakeup:
363  *
364  *	Called when buffer space is potentially available for recovery.
365  *	getnewbuf() will block on this flag when it is unable to free
366  *	sufficient buffer space.  Buffer space becomes recoverable when
367  *	bp's get placed back in the queues.
368  */
369 
370 static __inline void
371 bufspacewakeup(void)
372 {
373 
374 	/*
375 	 * If someone is waiting for BUF space, wake them up.  Even
376 	 * though we haven't freed the kva space yet, the waiting
377 	 * process will be able to now.
378 	 */
379 	mtx_lock(&nblock);
380 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
381 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
382 		wakeup(&needsbuffer);
383 	}
384 	mtx_unlock(&nblock);
385 }
386 
387 /*
388  * runningbufwakeup() - in-progress I/O accounting.
389  *
390  */
391 void
392 runningbufwakeup(struct buf *bp)
393 {
394 
395 	if (bp->b_runningbufspace) {
396 		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
397 		bp->b_runningbufspace = 0;
398 		mtx_lock(&rbreqlock);
399 		if (runningbufreq && runningbufspace <= lorunningspace) {
400 			runningbufreq = 0;
401 			wakeup(&runningbufreq);
402 		}
403 		mtx_unlock(&rbreqlock);
404 	}
405 }
406 
407 /*
408  *	bufcountwakeup:
409  *
410  *	Called when a buffer has been added to one of the free queues to
411  *	account for the buffer and to wakeup anyone waiting for free buffers.
412  *	This typically occurs when large amounts of metadata are being handled
413  *	by the buffer cache ( else buffer space runs out first, usually ).
414  */
415 
416 static __inline void
417 bufcountwakeup(struct buf *bp)
418 {
419 	int old;
420 
421 	KASSERT((bp->b_flags & B_INFREECNT) == 0,
422 	    ("buf %p already counted as free", bp));
423 	bp->b_flags |= B_INFREECNT;
424 	old = atomic_fetchadd_int(&numfreebuffers, 1);
425 	KASSERT(old >= 0 && old < nbuf,
426 	    ("numfreebuffers climbed to %d", old + 1));
427 	mtx_lock(&nblock);
428 	if (needsbuffer) {
429 		needsbuffer &= ~VFS_BIO_NEED_ANY;
430 		if (numfreebuffers >= hifreebuffers)
431 			needsbuffer &= ~VFS_BIO_NEED_FREE;
432 		wakeup(&needsbuffer);
433 	}
434 	mtx_unlock(&nblock);
435 }
436 
437 /*
438  *	waitrunningbufspace()
439  *
440  *	runningbufspace is a measure of the amount of I/O currently
441  *	running.  This routine is used in async-write situations to
442  *	prevent creating huge backups of pending writes to a device.
443  *	Only asynchronous writes are governed by this function.
444  *
445  *	Reads will adjust runningbufspace, but will not block based on it.
446  *	The read load has a side effect of reducing the allowed write load.
447  *
448  *	This does NOT turn an async write into a sync write.  It waits
449  *	for earlier writes to complete and generally returns before the
450  *	caller's write has reached the device.
451  */
452 void
453 waitrunningbufspace(void)
454 {
455 
456 	mtx_lock(&rbreqlock);
457 	while (runningbufspace > hirunningspace) {
458 		++runningbufreq;
459 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
460 	}
461 	mtx_unlock(&rbreqlock);
462 }
463 
464 
465 /*
466  *	vfs_buf_test_cache:
467  *
468  *	Called when a buffer is extended.  This function clears the B_CACHE
469  *	bit if the newly extended portion of the buffer does not contain
470  *	valid data.
471  */
472 static __inline
473 void
474 vfs_buf_test_cache(struct buf *bp,
475 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
476 		  vm_page_t m)
477 {
478 
479 	VM_OBJECT_ASSERT_WLOCKED(m->object);
480 	if (bp->b_flags & B_CACHE) {
481 		int base = (foff + off) & PAGE_MASK;
482 		if (vm_page_is_valid(m, base, size) == 0)
483 			bp->b_flags &= ~B_CACHE;
484 	}
485 }
486 
487 /* Wake up the buffer daemon if necessary */
488 static __inline
489 void
490 bd_wakeup(int dirtybuflevel)
491 {
492 
493 	mtx_lock(&bdlock);
494 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
495 		bd_request = 1;
496 		wakeup(&bd_request);
497 	}
498 	mtx_unlock(&bdlock);
499 }
500 
501 /*
502  * bd_speedup - speedup the buffer cache flushing code
503  */
504 
505 void
506 bd_speedup(void)
507 {
508 	int needwake;
509 
510 	mtx_lock(&bdlock);
511 	needwake = 0;
512 	if (bd_speedupreq == 0 || bd_request == 0)
513 		needwake = 1;
514 	bd_speedupreq = 1;
515 	bd_request = 1;
516 	if (needwake)
517 		wakeup(&bd_request);
518 	mtx_unlock(&bdlock);
519 }
520 
521 #ifdef __i386__
522 #define	TRANSIENT_DENOM	5
523 #else
524 #define	TRANSIENT_DENOM 10
525 #endif
526 
527 /*
528  * Calculating buffer cache scaling values and reserve space for buffer
529  * headers.  This is called during low level kernel initialization and
530  * may be called more then once.  We CANNOT write to the memory area
531  * being reserved at this time.
532  */
533 caddr_t
534 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
535 {
536 	int tuned_nbuf;
537 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
538 
539 	/*
540 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
541 	 * PAGE_SIZE is >= 1K)
542 	 */
543 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
544 
545 	/*
546 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
547 	 * For the first 64MB of ram nominally allocate sufficient buffers to
548 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
549 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
550 	 * the buffer cache we limit the eventual kva reservation to
551 	 * maxbcache bytes.
552 	 *
553 	 * factor represents the 1/4 x ram conversion.
554 	 */
555 	if (nbuf == 0) {
556 		int factor = 4 * BKVASIZE / 1024;
557 
558 		nbuf = 50;
559 		if (physmem_est > 4096)
560 			nbuf += min((physmem_est - 4096) / factor,
561 			    65536 / factor);
562 		if (physmem_est > 65536)
563 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
564 			    32 * 1024 * 1024 / (factor * 5));
565 
566 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
567 			nbuf = maxbcache / BKVASIZE;
568 		tuned_nbuf = 1;
569 	} else
570 		tuned_nbuf = 0;
571 
572 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
573 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
574 	if (nbuf > maxbuf) {
575 		if (!tuned_nbuf)
576 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
577 			    maxbuf);
578 		nbuf = maxbuf;
579 	}
580 
581 	/*
582 	 * Ideal allocation size for the transient bio submap if 10%
583 	 * of the maximal space buffer map.  This roughly corresponds
584 	 * to the amount of the buffer mapped for typical UFS load.
585 	 *
586 	 * Clip the buffer map to reserve space for the transient
587 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
588 	 * maximum buffer map extent on the platform.
589 	 *
590 	 * The fall-back to the maxbuf in case of maxbcache unset,
591 	 * allows to not trim the buffer KVA for the architectures
592 	 * with ample KVA space.
593 	 */
594 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
595 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
596 		buf_sz = (long)nbuf * BKVASIZE;
597 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
598 		    (TRANSIENT_DENOM - 1)) {
599 			/*
600 			 * There is more KVA than memory.  Do not
601 			 * adjust buffer map size, and assign the rest
602 			 * of maxbuf to transient map.
603 			 */
604 			biotmap_sz = maxbuf_sz - buf_sz;
605 		} else {
606 			/*
607 			 * Buffer map spans all KVA we could afford on
608 			 * this platform.  Give 10% (20% on i386) of
609 			 * the buffer map to the transient bio map.
610 			 */
611 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
612 			buf_sz -= biotmap_sz;
613 		}
614 		if (biotmap_sz / INT_MAX > MAXPHYS)
615 			bio_transient_maxcnt = INT_MAX;
616 		else
617 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
618 		/*
619 		 * Artifically limit to 1024 simultaneous in-flight I/Os
620 		 * using the transient mapping.
621 		 */
622 		if (bio_transient_maxcnt > 1024)
623 			bio_transient_maxcnt = 1024;
624 		if (tuned_nbuf)
625 			nbuf = buf_sz / BKVASIZE;
626 	}
627 
628 	/*
629 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
630 	 * We have no less then 16 and no more then 256.
631 	 */
632 	nswbuf = max(min(nbuf/4, 256), 16);
633 #ifdef NSWBUF_MIN
634 	if (nswbuf < NSWBUF_MIN)
635 		nswbuf = NSWBUF_MIN;
636 #endif
637 #ifdef DIRECTIO
638 	ffs_rawread_setup();
639 #endif
640 
641 	/*
642 	 * Reserve space for the buffer cache buffers
643 	 */
644 	swbuf = (void *)v;
645 	v = (caddr_t)(swbuf + nswbuf);
646 	buf = (void *)v;
647 	v = (caddr_t)(buf + nbuf);
648 
649 	return(v);
650 }
651 
652 /* Initialize the buffer subsystem.  Called before use of any buffers. */
653 void
654 bufinit(void)
655 {
656 	struct buf *bp;
657 	int i;
658 
659 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
660 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
661 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
662 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
663 
664 	/* next, make a null set of free lists */
665 	for (i = 0; i < BUFFER_QUEUES; i++)
666 		TAILQ_INIT(&bufqueues[i]);
667 
668 	/* finally, initialize each buffer header and stick on empty q */
669 	for (i = 0; i < nbuf; i++) {
670 		bp = &buf[i];
671 		bzero(bp, sizeof *bp);
672 		bp->b_flags = B_INVAL | B_INFREECNT;
673 		bp->b_rcred = NOCRED;
674 		bp->b_wcred = NOCRED;
675 		bp->b_qindex = QUEUE_EMPTY;
676 		bp->b_xflags = 0;
677 		LIST_INIT(&bp->b_dep);
678 		BUF_LOCKINIT(bp);
679 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
680 #ifdef INVARIANTS
681 		bq_len[QUEUE_EMPTY]++;
682 #endif
683 	}
684 
685 	/*
686 	 * maxbufspace is the absolute maximum amount of buffer space we are
687 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
688 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
689 	 * used by most other processes.  The differential is required to
690 	 * ensure that buf_daemon is able to run when other processes might
691 	 * be blocked waiting for buffer space.
692 	 *
693 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
694 	 * this may result in KVM fragmentation which is not handled optimally
695 	 * by the system.
696 	 */
697 	maxbufspace = (long)nbuf * BKVASIZE;
698 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
699 	lobufspace = hibufspace - MAXBSIZE;
700 
701 	/*
702 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
703 	 * arbitrarily and may need further tuning. It corresponds to
704 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
705 	 * which fits with many RAID controllers' tagged queuing limits.
706 	 * The lower 1 MiB limit is the historical upper limit for
707 	 * hirunningspace.
708 	 */
709 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
710 	    16 * 1024 * 1024), 1024 * 1024);
711 	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
712 
713 /*
714  * Limit the amount of malloc memory since it is wired permanently into
715  * the kernel space.  Even though this is accounted for in the buffer
716  * allocation, we don't want the malloced region to grow uncontrolled.
717  * The malloc scheme improves memory utilization significantly on average
718  * (small) directories.
719  */
720 	maxbufmallocspace = hibufspace / 20;
721 
722 /*
723  * Reduce the chance of a deadlock occuring by limiting the number
724  * of delayed-write dirty buffers we allow to stack up.
725  */
726 	hidirtybuffers = nbuf / 4 + 20;
727 	dirtybufthresh = hidirtybuffers * 9 / 10;
728 	numdirtybuffers = 0;
729 /*
730  * To support extreme low-memory systems, make sure hidirtybuffers cannot
731  * eat up all available buffer space.  This occurs when our minimum cannot
732  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
733  * BKVASIZE'd buffers.
734  */
735 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
736 		hidirtybuffers >>= 1;
737 	}
738 	lodirtybuffers = hidirtybuffers / 2;
739 
740 /*
741  * Try to keep the number of free buffers in the specified range,
742  * and give special processes (e.g. like buf_daemon) access to an
743  * emergency reserve.
744  */
745 	lofreebuffers = nbuf / 18 + 5;
746 	hifreebuffers = 2 * lofreebuffers;
747 	numfreebuffers = nbuf;
748 
749 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
750 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
751 	unmapped_buf = (caddr_t)kmem_alloc_nofault(kernel_map, MAXPHYS);
752 }
753 
754 #ifdef INVARIANTS
755 static inline void
756 vfs_buf_check_mapped(struct buf *bp)
757 {
758 
759 	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
760 	    ("mapped buf %p %x", bp, bp->b_flags));
761 	KASSERT(bp->b_kvabase != unmapped_buf,
762 	    ("mapped buf: b_kvabase was not updated %p", bp));
763 	KASSERT(bp->b_data != unmapped_buf,
764 	    ("mapped buf: b_data was not updated %p", bp));
765 }
766 
767 static inline void
768 vfs_buf_check_unmapped(struct buf *bp)
769 {
770 
771 	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
772 	    ("unmapped buf %p %x", bp, bp->b_flags));
773 	KASSERT(bp->b_kvabase == unmapped_buf,
774 	    ("unmapped buf: corrupted b_kvabase %p", bp));
775 	KASSERT(bp->b_data == unmapped_buf,
776 	    ("unmapped buf: corrupted b_data %p", bp));
777 }
778 
779 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
780 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
781 #else
782 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
783 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
784 #endif
785 
786 static void
787 bpmap_qenter(struct buf *bp)
788 {
789 
790 	BUF_CHECK_MAPPED(bp);
791 
792 	/*
793 	 * bp->b_data is relative to bp->b_offset, but
794 	 * bp->b_offset may be offset into the first page.
795 	 */
796 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
797 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
798 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
799 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
800 }
801 
802 /*
803  * bfreekva() - free the kva allocation for a buffer.
804  *
805  *	Since this call frees up buffer space, we call bufspacewakeup().
806  */
807 static void
808 bfreekva(struct buf *bp)
809 {
810 
811 	if (bp->b_kvasize == 0)
812 		return;
813 
814 	atomic_add_int(&buffreekvacnt, 1);
815 	atomic_subtract_long(&bufspace, bp->b_kvasize);
816 	if ((bp->b_flags & B_UNMAPPED) == 0) {
817 		BUF_CHECK_MAPPED(bp);
818 		vm_map_remove(buffer_map, (vm_offset_t)bp->b_kvabase,
819 		    (vm_offset_t)bp->b_kvabase + bp->b_kvasize);
820 	} else {
821 		BUF_CHECK_UNMAPPED(bp);
822 		if ((bp->b_flags & B_KVAALLOC) != 0) {
823 			vm_map_remove(buffer_map, (vm_offset_t)bp->b_kvaalloc,
824 			    (vm_offset_t)bp->b_kvaalloc + bp->b_kvasize);
825 		}
826 		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
827 		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
828 	}
829 	bp->b_kvasize = 0;
830 	bufspacewakeup();
831 }
832 
833 /*
834  *	bremfree:
835  *
836  *	Mark the buffer for removal from the appropriate free list in brelse.
837  *
838  */
839 void
840 bremfree(struct buf *bp)
841 {
842 	int old;
843 
844 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
845 	KASSERT((bp->b_flags & B_REMFREE) == 0,
846 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
847 	KASSERT(bp->b_qindex != QUEUE_NONE,
848 	    ("bremfree: buffer %p not on a queue.", bp));
849 	BUF_ASSERT_XLOCKED(bp);
850 
851 	bp->b_flags |= B_REMFREE;
852 	/* Fixup numfreebuffers count.  */
853 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
854 		KASSERT((bp->b_flags & B_INFREECNT) != 0,
855 		    ("buf %p not counted in numfreebuffers", bp));
856 		bp->b_flags &= ~B_INFREECNT;
857 		old = atomic_fetchadd_int(&numfreebuffers, -1);
858 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
859 	}
860 }
861 
862 /*
863  *	bremfreef:
864  *
865  *	Force an immediate removal from a free list.  Used only in nfs when
866  *	it abuses the b_freelist pointer.
867  */
868 void
869 bremfreef(struct buf *bp)
870 {
871 	mtx_lock(&bqlock);
872 	bremfreel(bp);
873 	mtx_unlock(&bqlock);
874 }
875 
876 /*
877  *	bremfreel:
878  *
879  *	Removes a buffer from the free list, must be called with the
880  *	bqlock held.
881  */
882 static void
883 bremfreel(struct buf *bp)
884 {
885 	int old;
886 
887 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
888 	    bp, bp->b_vp, bp->b_flags);
889 	KASSERT(bp->b_qindex != QUEUE_NONE,
890 	    ("bremfreel: buffer %p not on a queue.", bp));
891 	BUF_ASSERT_XLOCKED(bp);
892 	mtx_assert(&bqlock, MA_OWNED);
893 
894 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
895 #ifdef INVARIANTS
896 	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
897 	    bp->b_qindex));
898 	bq_len[bp->b_qindex]--;
899 #endif
900 	bp->b_qindex = QUEUE_NONE;
901 	/*
902 	 * If this was a delayed bremfree() we only need to remove the buffer
903 	 * from the queue and return the stats are already done.
904 	 */
905 	if (bp->b_flags & B_REMFREE) {
906 		bp->b_flags &= ~B_REMFREE;
907 		return;
908 	}
909 	/*
910 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
911 	 * delayed-write, the buffer was free and we must decrement
912 	 * numfreebuffers.
913 	 */
914 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
915 		KASSERT((bp->b_flags & B_INFREECNT) != 0,
916 		    ("buf %p not counted in numfreebuffers", bp));
917 		bp->b_flags &= ~B_INFREECNT;
918 		old = atomic_fetchadd_int(&numfreebuffers, -1);
919 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
920 	}
921 }
922 
923 /*
924  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
925  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
926  * the buffer is valid and we do not have to do anything.
927  */
928 void
929 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
930     int cnt, struct ucred * cred)
931 {
932 	struct buf *rabp;
933 	int i;
934 
935 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
936 		if (inmem(vp, *rablkno))
937 			continue;
938 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
939 
940 		if ((rabp->b_flags & B_CACHE) == 0) {
941 			if (!TD_IS_IDLETHREAD(curthread))
942 				curthread->td_ru.ru_inblock++;
943 			rabp->b_flags |= B_ASYNC;
944 			rabp->b_flags &= ~B_INVAL;
945 			rabp->b_ioflags &= ~BIO_ERROR;
946 			rabp->b_iocmd = BIO_READ;
947 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
948 				rabp->b_rcred = crhold(cred);
949 			vfs_busy_pages(rabp, 0);
950 			BUF_KERNPROC(rabp);
951 			rabp->b_iooffset = dbtob(rabp->b_blkno);
952 			bstrategy(rabp);
953 		} else {
954 			brelse(rabp);
955 		}
956 	}
957 }
958 
959 /*
960  * Entry point for bread() and breadn() via #defines in sys/buf.h.
961  *
962  * Get a buffer with the specified data.  Look in the cache first.  We
963  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
964  * is set, the buffer is valid and we do not have to do anything, see
965  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
966  */
967 int
968 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
969     int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
970 {
971 	struct buf *bp;
972 	int rv = 0, readwait = 0;
973 
974 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
975 	/*
976 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
977 	 */
978 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
979 	if (bp == NULL)
980 		return (EBUSY);
981 
982 	/* if not found in cache, do some I/O */
983 	if ((bp->b_flags & B_CACHE) == 0) {
984 		if (!TD_IS_IDLETHREAD(curthread))
985 			curthread->td_ru.ru_inblock++;
986 		bp->b_iocmd = BIO_READ;
987 		bp->b_flags &= ~B_INVAL;
988 		bp->b_ioflags &= ~BIO_ERROR;
989 		if (bp->b_rcred == NOCRED && cred != NOCRED)
990 			bp->b_rcred = crhold(cred);
991 		vfs_busy_pages(bp, 0);
992 		bp->b_iooffset = dbtob(bp->b_blkno);
993 		bstrategy(bp);
994 		++readwait;
995 	}
996 
997 	breada(vp, rablkno, rabsize, cnt, cred);
998 
999 	if (readwait) {
1000 		rv = bufwait(bp);
1001 	}
1002 	return (rv);
1003 }
1004 
1005 /*
1006  * Write, release buffer on completion.  (Done by iodone
1007  * if async).  Do not bother writing anything if the buffer
1008  * is invalid.
1009  *
1010  * Note that we set B_CACHE here, indicating that buffer is
1011  * fully valid and thus cacheable.  This is true even of NFS
1012  * now so we set it generally.  This could be set either here
1013  * or in biodone() since the I/O is synchronous.  We put it
1014  * here.
1015  */
1016 int
1017 bufwrite(struct buf *bp)
1018 {
1019 	int oldflags;
1020 	struct vnode *vp;
1021 	int vp_md;
1022 
1023 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1024 	if (bp->b_flags & B_INVAL) {
1025 		brelse(bp);
1026 		return (0);
1027 	}
1028 
1029 	if (bp->b_flags & B_BARRIER)
1030 		barrierwrites++;
1031 
1032 	oldflags = bp->b_flags;
1033 
1034 	BUF_ASSERT_HELD(bp);
1035 
1036 	if (bp->b_pin_count > 0)
1037 		bunpin_wait(bp);
1038 
1039 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1040 	    ("FFS background buffer should not get here %p", bp));
1041 
1042 	vp = bp->b_vp;
1043 	if (vp)
1044 		vp_md = vp->v_vflag & VV_MD;
1045 	else
1046 		vp_md = 0;
1047 
1048 	/*
1049 	 * Mark the buffer clean.  Increment the bufobj write count
1050 	 * before bundirty() call, to prevent other thread from seeing
1051 	 * empty dirty list and zero counter for writes in progress,
1052 	 * falsely indicating that the bufobj is clean.
1053 	 */
1054 	bufobj_wref(bp->b_bufobj);
1055 	bundirty(bp);
1056 
1057 	bp->b_flags &= ~B_DONE;
1058 	bp->b_ioflags &= ~BIO_ERROR;
1059 	bp->b_flags |= B_CACHE;
1060 	bp->b_iocmd = BIO_WRITE;
1061 
1062 	vfs_busy_pages(bp, 1);
1063 
1064 	/*
1065 	 * Normal bwrites pipeline writes
1066 	 */
1067 	bp->b_runningbufspace = bp->b_bufsize;
1068 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1069 
1070 	if (!TD_IS_IDLETHREAD(curthread))
1071 		curthread->td_ru.ru_oublock++;
1072 	if (oldflags & B_ASYNC)
1073 		BUF_KERNPROC(bp);
1074 	bp->b_iooffset = dbtob(bp->b_blkno);
1075 	bstrategy(bp);
1076 
1077 	if ((oldflags & B_ASYNC) == 0) {
1078 		int rtval = bufwait(bp);
1079 		brelse(bp);
1080 		return (rtval);
1081 	} else {
1082 		/*
1083 		 * don't allow the async write to saturate the I/O
1084 		 * system.  We will not deadlock here because
1085 		 * we are blocking waiting for I/O that is already in-progress
1086 		 * to complete. We do not block here if it is the update
1087 		 * or syncer daemon trying to clean up as that can lead
1088 		 * to deadlock.
1089 		 */
1090 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1091 			waitrunningbufspace();
1092 	}
1093 
1094 	return (0);
1095 }
1096 
1097 void
1098 bufbdflush(struct bufobj *bo, struct buf *bp)
1099 {
1100 	struct buf *nbp;
1101 
1102 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1103 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1104 		altbufferflushes++;
1105 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1106 		BO_LOCK(bo);
1107 		/*
1108 		 * Try to find a buffer to flush.
1109 		 */
1110 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1111 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1112 			    BUF_LOCK(nbp,
1113 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1114 				continue;
1115 			if (bp == nbp)
1116 				panic("bdwrite: found ourselves");
1117 			BO_UNLOCK(bo);
1118 			/* Don't countdeps with the bo lock held. */
1119 			if (buf_countdeps(nbp, 0)) {
1120 				BO_LOCK(bo);
1121 				BUF_UNLOCK(nbp);
1122 				continue;
1123 			}
1124 			if (nbp->b_flags & B_CLUSTEROK) {
1125 				vfs_bio_awrite(nbp);
1126 			} else {
1127 				bremfree(nbp);
1128 				bawrite(nbp);
1129 			}
1130 			dirtybufferflushes++;
1131 			break;
1132 		}
1133 		if (nbp == NULL)
1134 			BO_UNLOCK(bo);
1135 	}
1136 }
1137 
1138 /*
1139  * Delayed write. (Buffer is marked dirty).  Do not bother writing
1140  * anything if the buffer is marked invalid.
1141  *
1142  * Note that since the buffer must be completely valid, we can safely
1143  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1144  * biodone() in order to prevent getblk from writing the buffer
1145  * out synchronously.
1146  */
1147 void
1148 bdwrite(struct buf *bp)
1149 {
1150 	struct thread *td = curthread;
1151 	struct vnode *vp;
1152 	struct bufobj *bo;
1153 
1154 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1155 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1156 	KASSERT((bp->b_flags & B_BARRIER) == 0,
1157 	    ("Barrier request in delayed write %p", bp));
1158 	BUF_ASSERT_HELD(bp);
1159 
1160 	if (bp->b_flags & B_INVAL) {
1161 		brelse(bp);
1162 		return;
1163 	}
1164 
1165 	/*
1166 	 * If we have too many dirty buffers, don't create any more.
1167 	 * If we are wildly over our limit, then force a complete
1168 	 * cleanup. Otherwise, just keep the situation from getting
1169 	 * out of control. Note that we have to avoid a recursive
1170 	 * disaster and not try to clean up after our own cleanup!
1171 	 */
1172 	vp = bp->b_vp;
1173 	bo = bp->b_bufobj;
1174 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1175 		td->td_pflags |= TDP_INBDFLUSH;
1176 		BO_BDFLUSH(bo, bp);
1177 		td->td_pflags &= ~TDP_INBDFLUSH;
1178 	} else
1179 		recursiveflushes++;
1180 
1181 	bdirty(bp);
1182 	/*
1183 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1184 	 * true even of NFS now.
1185 	 */
1186 	bp->b_flags |= B_CACHE;
1187 
1188 	/*
1189 	 * This bmap keeps the system from needing to do the bmap later,
1190 	 * perhaps when the system is attempting to do a sync.  Since it
1191 	 * is likely that the indirect block -- or whatever other datastructure
1192 	 * that the filesystem needs is still in memory now, it is a good
1193 	 * thing to do this.  Note also, that if the pageout daemon is
1194 	 * requesting a sync -- there might not be enough memory to do
1195 	 * the bmap then...  So, this is important to do.
1196 	 */
1197 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1198 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1199 	}
1200 
1201 	/*
1202 	 * Set the *dirty* buffer range based upon the VM system dirty
1203 	 * pages.
1204 	 *
1205 	 * Mark the buffer pages as clean.  We need to do this here to
1206 	 * satisfy the vnode_pager and the pageout daemon, so that it
1207 	 * thinks that the pages have been "cleaned".  Note that since
1208 	 * the pages are in a delayed write buffer -- the VFS layer
1209 	 * "will" see that the pages get written out on the next sync,
1210 	 * or perhaps the cluster will be completed.
1211 	 */
1212 	vfs_clean_pages_dirty_buf(bp);
1213 	bqrelse(bp);
1214 
1215 	/*
1216 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1217 	 * buffers (midpoint between our recovery point and our stall
1218 	 * point).
1219 	 */
1220 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1221 
1222 	/*
1223 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1224 	 * due to the softdep code.
1225 	 */
1226 }
1227 
1228 /*
1229  *	bdirty:
1230  *
1231  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1232  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1233  *	itself to properly update it in the dirty/clean lists.  We mark it
1234  *	B_DONE to ensure that any asynchronization of the buffer properly
1235  *	clears B_DONE ( else a panic will occur later ).
1236  *
1237  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1238  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1239  *	should only be called if the buffer is known-good.
1240  *
1241  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1242  *	count.
1243  *
1244  *	The buffer must be on QUEUE_NONE.
1245  */
1246 void
1247 bdirty(struct buf *bp)
1248 {
1249 
1250 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1251 	    bp, bp->b_vp, bp->b_flags);
1252 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1253 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1254 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1255 	BUF_ASSERT_HELD(bp);
1256 	bp->b_flags &= ~(B_RELBUF);
1257 	bp->b_iocmd = BIO_WRITE;
1258 
1259 	if ((bp->b_flags & B_DELWRI) == 0) {
1260 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1261 		reassignbuf(bp);
1262 		atomic_add_int(&numdirtybuffers, 1);
1263 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1264 	}
1265 }
1266 
1267 /*
1268  *	bundirty:
1269  *
1270  *	Clear B_DELWRI for buffer.
1271  *
1272  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1273  *	count.
1274  *
1275  *	The buffer must be on QUEUE_NONE.
1276  */
1277 
1278 void
1279 bundirty(struct buf *bp)
1280 {
1281 
1282 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1283 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1284 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1285 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1286 	BUF_ASSERT_HELD(bp);
1287 
1288 	if (bp->b_flags & B_DELWRI) {
1289 		bp->b_flags &= ~B_DELWRI;
1290 		reassignbuf(bp);
1291 		atomic_subtract_int(&numdirtybuffers, 1);
1292 		numdirtywakeup(lodirtybuffers);
1293 	}
1294 	/*
1295 	 * Since it is now being written, we can clear its deferred write flag.
1296 	 */
1297 	bp->b_flags &= ~B_DEFERRED;
1298 }
1299 
1300 /*
1301  *	bawrite:
1302  *
1303  *	Asynchronous write.  Start output on a buffer, but do not wait for
1304  *	it to complete.  The buffer is released when the output completes.
1305  *
1306  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1307  *	B_INVAL buffers.  Not us.
1308  */
1309 void
1310 bawrite(struct buf *bp)
1311 {
1312 
1313 	bp->b_flags |= B_ASYNC;
1314 	(void) bwrite(bp);
1315 }
1316 
1317 /*
1318  *	babarrierwrite:
1319  *
1320  *	Asynchronous barrier write.  Start output on a buffer, but do not
1321  *	wait for it to complete.  Place a write barrier after this write so
1322  *	that this buffer and all buffers written before it are committed to
1323  *	the disk before any buffers written after this write are committed
1324  *	to the disk.  The buffer is released when the output completes.
1325  */
1326 void
1327 babarrierwrite(struct buf *bp)
1328 {
1329 
1330 	bp->b_flags |= B_ASYNC | B_BARRIER;
1331 	(void) bwrite(bp);
1332 }
1333 
1334 /*
1335  *	bbarrierwrite:
1336  *
1337  *	Synchronous barrier write.  Start output on a buffer and wait for
1338  *	it to complete.  Place a write barrier after this write so that
1339  *	this buffer and all buffers written before it are committed to
1340  *	the disk before any buffers written after this write are committed
1341  *	to the disk.  The buffer is released when the output completes.
1342  */
1343 int
1344 bbarrierwrite(struct buf *bp)
1345 {
1346 
1347 	bp->b_flags |= B_BARRIER;
1348 	return (bwrite(bp));
1349 }
1350 
1351 /*
1352  *	bwillwrite:
1353  *
1354  *	Called prior to the locking of any vnodes when we are expecting to
1355  *	write.  We do not want to starve the buffer cache with too many
1356  *	dirty buffers so we block here.  By blocking prior to the locking
1357  *	of any vnodes we attempt to avoid the situation where a locked vnode
1358  *	prevents the various system daemons from flushing related buffers.
1359  */
1360 
1361 void
1362 bwillwrite(void)
1363 {
1364 
1365 	if (numdirtybuffers >= hidirtybuffers) {
1366 		mtx_lock(&nblock);
1367 		while (numdirtybuffers >= hidirtybuffers) {
1368 			bd_wakeup(1);
1369 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1370 			msleep(&needsbuffer, &nblock,
1371 			    (PRIBIO + 4), "flswai", 0);
1372 		}
1373 		mtx_unlock(&nblock);
1374 	}
1375 }
1376 
1377 /*
1378  * Return true if we have too many dirty buffers.
1379  */
1380 int
1381 buf_dirty_count_severe(void)
1382 {
1383 
1384 	return(numdirtybuffers >= hidirtybuffers);
1385 }
1386 
1387 static __noinline int
1388 buf_vm_page_count_severe(void)
1389 {
1390 
1391 	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1392 
1393 	return vm_page_count_severe();
1394 }
1395 
1396 /*
1397  *	brelse:
1398  *
1399  *	Release a busy buffer and, if requested, free its resources.  The
1400  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1401  *	to be accessed later as a cache entity or reused for other purposes.
1402  */
1403 void
1404 brelse(struct buf *bp)
1405 {
1406 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1407 	    bp, bp->b_vp, bp->b_flags);
1408 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1409 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1410 
1411 	if (BUF_LOCKRECURSED(bp)) {
1412 		/*
1413 		 * Do not process, in particular, do not handle the
1414 		 * B_INVAL/B_RELBUF and do not release to free list.
1415 		 */
1416 		BUF_UNLOCK(bp);
1417 		return;
1418 	}
1419 
1420 	if (bp->b_flags & B_MANAGED) {
1421 		bqrelse(bp);
1422 		return;
1423 	}
1424 
1425 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1426 	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1427 		/*
1428 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1429 		 * pages from being scrapped.  If the error is anything
1430 		 * other than an I/O error (EIO), assume that retrying
1431 		 * is futile.
1432 		 */
1433 		bp->b_ioflags &= ~BIO_ERROR;
1434 		bdirty(bp);
1435 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1436 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1437 		/*
1438 		 * Either a failed I/O or we were asked to free or not
1439 		 * cache the buffer.
1440 		 */
1441 		bp->b_flags |= B_INVAL;
1442 		if (!LIST_EMPTY(&bp->b_dep))
1443 			buf_deallocate(bp);
1444 		if (bp->b_flags & B_DELWRI) {
1445 			atomic_subtract_int(&numdirtybuffers, 1);
1446 			numdirtywakeup(lodirtybuffers);
1447 		}
1448 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1449 		if ((bp->b_flags & B_VMIO) == 0) {
1450 			if (bp->b_bufsize)
1451 				allocbuf(bp, 0);
1452 			if (bp->b_vp)
1453 				brelvp(bp);
1454 		}
1455 	}
1456 
1457 	/*
1458 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1459 	 * is called with B_DELWRI set, the underlying pages may wind up
1460 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1461 	 * because pages associated with a B_DELWRI bp are marked clean.
1462 	 *
1463 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1464 	 * if B_DELWRI is set.
1465 	 *
1466 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1467 	 * on pages to return pages to the VM page queues.
1468 	 */
1469 	if (bp->b_flags & B_DELWRI)
1470 		bp->b_flags &= ~B_RELBUF;
1471 	else if (buf_vm_page_count_severe()) {
1472 		/*
1473 		 * BKGRDINPROG can only be set with the buf and bufobj
1474 		 * locks both held.  We tolerate a race to clear it here.
1475 		 */
1476 		if (!(bp->b_vflags & BV_BKGRDINPROG))
1477 			bp->b_flags |= B_RELBUF;
1478 	}
1479 
1480 	/*
1481 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1482 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1483 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1484 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1485 	 *
1486 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1487 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1488 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1489 	 *
1490 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1491 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1492 	 * the commit state and we cannot afford to lose the buffer. If the
1493 	 * buffer has a background write in progress, we need to keep it
1494 	 * around to prevent it from being reconstituted and starting a second
1495 	 * background write.
1496 	 */
1497 	if ((bp->b_flags & B_VMIO)
1498 	    && !(bp->b_vp->v_mount != NULL &&
1499 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1500 		 !vn_isdisk(bp->b_vp, NULL) &&
1501 		 (bp->b_flags & B_DELWRI))
1502 	    ) {
1503 
1504 		int i, j, resid;
1505 		vm_page_t m;
1506 		off_t foff;
1507 		vm_pindex_t poff;
1508 		vm_object_t obj;
1509 
1510 		obj = bp->b_bufobj->bo_object;
1511 
1512 		/*
1513 		 * Get the base offset and length of the buffer.  Note that
1514 		 * in the VMIO case if the buffer block size is not
1515 		 * page-aligned then b_data pointer may not be page-aligned.
1516 		 * But our b_pages[] array *IS* page aligned.
1517 		 *
1518 		 * block sizes less then DEV_BSIZE (usually 512) are not
1519 		 * supported due to the page granularity bits (m->valid,
1520 		 * m->dirty, etc...).
1521 		 *
1522 		 * See man buf(9) for more information
1523 		 */
1524 		resid = bp->b_bufsize;
1525 		foff = bp->b_offset;
1526 		for (i = 0; i < bp->b_npages; i++) {
1527 			int had_bogus = 0;
1528 
1529 			m = bp->b_pages[i];
1530 
1531 			/*
1532 			 * If we hit a bogus page, fixup *all* the bogus pages
1533 			 * now.
1534 			 */
1535 			if (m == bogus_page) {
1536 				poff = OFF_TO_IDX(bp->b_offset);
1537 				had_bogus = 1;
1538 
1539 				VM_OBJECT_RLOCK(obj);
1540 				for (j = i; j < bp->b_npages; j++) {
1541 					vm_page_t mtmp;
1542 					mtmp = bp->b_pages[j];
1543 					if (mtmp == bogus_page) {
1544 						mtmp = vm_page_lookup(obj, poff + j);
1545 						if (!mtmp) {
1546 							panic("brelse: page missing\n");
1547 						}
1548 						bp->b_pages[j] = mtmp;
1549 					}
1550 				}
1551 				VM_OBJECT_RUNLOCK(obj);
1552 
1553 				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1554 					BUF_CHECK_MAPPED(bp);
1555 					pmap_qenter(
1556 					    trunc_page((vm_offset_t)bp->b_data),
1557 					    bp->b_pages, bp->b_npages);
1558 				}
1559 				m = bp->b_pages[i];
1560 			}
1561 			if ((bp->b_flags & B_NOCACHE) ||
1562 			    (bp->b_ioflags & BIO_ERROR &&
1563 			     bp->b_iocmd == BIO_READ)) {
1564 				int poffset = foff & PAGE_MASK;
1565 				int presid = resid > (PAGE_SIZE - poffset) ?
1566 					(PAGE_SIZE - poffset) : resid;
1567 
1568 				KASSERT(presid >= 0, ("brelse: extra page"));
1569 				VM_OBJECT_WLOCK(obj);
1570 				vm_page_set_invalid(m, poffset, presid);
1571 				VM_OBJECT_WUNLOCK(obj);
1572 				if (had_bogus)
1573 					printf("avoided corruption bug in bogus_page/brelse code\n");
1574 			}
1575 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1576 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1577 		}
1578 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1579 			vfs_vmio_release(bp);
1580 
1581 	} else if (bp->b_flags & B_VMIO) {
1582 
1583 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1584 			vfs_vmio_release(bp);
1585 		}
1586 
1587 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1588 		if (bp->b_bufsize != 0)
1589 			allocbuf(bp, 0);
1590 		if (bp->b_vp != NULL)
1591 			brelvp(bp);
1592 	}
1593 
1594 	/* enqueue */
1595 	mtx_lock(&bqlock);
1596 	/* Handle delayed bremfree() processing. */
1597 	if (bp->b_flags & B_REMFREE)
1598 		bremfreel(bp);
1599 
1600 	if (bp->b_qindex != QUEUE_NONE)
1601 		panic("brelse: free buffer onto another queue???");
1602 
1603 	/*
1604 	 * If the buffer has junk contents signal it and eventually
1605 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1606 	 * doesn't find it.
1607 	 */
1608 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1609 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1610 		bp->b_flags |= B_INVAL;
1611 	if (bp->b_flags & B_INVAL) {
1612 		if (bp->b_flags & B_DELWRI)
1613 			bundirty(bp);
1614 		if (bp->b_vp)
1615 			brelvp(bp);
1616 	}
1617 
1618 	/* buffers with no memory */
1619 	if (bp->b_bufsize == 0) {
1620 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1621 		if (bp->b_vflags & BV_BKGRDINPROG)
1622 			panic("losing buffer 1");
1623 		if (bp->b_kvasize) {
1624 			bp->b_qindex = QUEUE_EMPTYKVA;
1625 		} else {
1626 			bp->b_qindex = QUEUE_EMPTY;
1627 		}
1628 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1629 	/* buffers with junk contents */
1630 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1631 	    (bp->b_ioflags & BIO_ERROR)) {
1632 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1633 		if (bp->b_vflags & BV_BKGRDINPROG)
1634 			panic("losing buffer 2");
1635 		bp->b_qindex = QUEUE_CLEAN;
1636 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1637 	/* remaining buffers */
1638 	} else {
1639 		if (bp->b_flags & B_DELWRI)
1640 			bp->b_qindex = QUEUE_DIRTY;
1641 		else
1642 			bp->b_qindex = QUEUE_CLEAN;
1643 		if (bp->b_flags & B_AGE) {
1644 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp,
1645 			    b_freelist);
1646 		} else {
1647 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp,
1648 			    b_freelist);
1649 		}
1650 	}
1651 #ifdef INVARIANTS
1652 	bq_len[bp->b_qindex]++;
1653 #endif
1654 	mtx_unlock(&bqlock);
1655 
1656 	/*
1657 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1658 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1659 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1660 	 * if B_INVAL is set ).
1661 	 */
1662 
1663 	if (!(bp->b_flags & B_DELWRI))
1664 		bufcountwakeup(bp);
1665 
1666 	/*
1667 	 * Something we can maybe free or reuse
1668 	 */
1669 	if (bp->b_bufsize || bp->b_kvasize)
1670 		bufspacewakeup();
1671 
1672 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1673 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1674 		panic("brelse: not dirty");
1675 	/* unlock */
1676 	BUF_UNLOCK(bp);
1677 }
1678 
1679 /*
1680  * Release a buffer back to the appropriate queue but do not try to free
1681  * it.  The buffer is expected to be used again soon.
1682  *
1683  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1684  * biodone() to requeue an async I/O on completion.  It is also used when
1685  * known good buffers need to be requeued but we think we may need the data
1686  * again soon.
1687  *
1688  * XXX we should be able to leave the B_RELBUF hint set on completion.
1689  */
1690 void
1691 bqrelse(struct buf *bp)
1692 {
1693 	struct bufobj *bo;
1694 
1695 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1696 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1697 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1698 
1699 	if (BUF_LOCKRECURSED(bp)) {
1700 		/* do not release to free list */
1701 		BUF_UNLOCK(bp);
1702 		return;
1703 	}
1704 
1705 	bo = bp->b_bufobj;
1706 	if (bp->b_flags & B_MANAGED) {
1707 		if (bp->b_flags & B_REMFREE) {
1708 			mtx_lock(&bqlock);
1709 			bremfreel(bp);
1710 			mtx_unlock(&bqlock);
1711 		}
1712 		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1713 		BUF_UNLOCK(bp);
1714 		return;
1715 	}
1716 
1717 	mtx_lock(&bqlock);
1718 	/* Handle delayed bremfree() processing. */
1719 	if (bp->b_flags & B_REMFREE)
1720 		bremfreel(bp);
1721 
1722 	if (bp->b_qindex != QUEUE_NONE)
1723 		panic("bqrelse: free buffer onto another queue???");
1724 	/* buffers with stale but valid contents */
1725 	if (bp->b_flags & B_DELWRI) {
1726 		bp->b_qindex = QUEUE_DIRTY;
1727 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1728 #ifdef INVARIANTS
1729 		bq_len[bp->b_qindex]++;
1730 #endif
1731 	} else {
1732 		/*
1733 		 * BKGRDINPROG can only be set with the buf and bufobj
1734 		 * locks both held.  We tolerate a race to clear it here.
1735 		 */
1736 		if (!buf_vm_page_count_severe() ||
1737 		    (bp->b_vflags & BV_BKGRDINPROG)) {
1738 			bp->b_qindex = QUEUE_CLEAN;
1739 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1740 			    b_freelist);
1741 #ifdef INVARIANTS
1742 			bq_len[QUEUE_CLEAN]++;
1743 #endif
1744 		} else {
1745 			/*
1746 			 * We are too low on memory, we have to try to free
1747 			 * the buffer (most importantly: the wired pages
1748 			 * making up its backing store) *now*.
1749 			 */
1750 			mtx_unlock(&bqlock);
1751 			brelse(bp);
1752 			return;
1753 		}
1754 	}
1755 	mtx_unlock(&bqlock);
1756 
1757 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1758 		bufcountwakeup(bp);
1759 
1760 	/*
1761 	 * Something we can maybe free or reuse.
1762 	 */
1763 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1764 		bufspacewakeup();
1765 
1766 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1767 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1768 		panic("bqrelse: not dirty");
1769 	/* unlock */
1770 	BUF_UNLOCK(bp);
1771 }
1772 
1773 /* Give pages used by the bp back to the VM system (where possible) */
1774 static void
1775 vfs_vmio_release(struct buf *bp)
1776 {
1777 	int i;
1778 	vm_page_t m;
1779 
1780 	if ((bp->b_flags & B_UNMAPPED) == 0) {
1781 		BUF_CHECK_MAPPED(bp);
1782 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1783 	} else
1784 		BUF_CHECK_UNMAPPED(bp);
1785 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
1786 	for (i = 0; i < bp->b_npages; i++) {
1787 		m = bp->b_pages[i];
1788 		bp->b_pages[i] = NULL;
1789 		/*
1790 		 * In order to keep page LRU ordering consistent, put
1791 		 * everything on the inactive queue.
1792 		 */
1793 		vm_page_lock(m);
1794 		vm_page_unwire(m, 0);
1795 		/*
1796 		 * We don't mess with busy pages, it is
1797 		 * the responsibility of the process that
1798 		 * busied the pages to deal with them.
1799 		 */
1800 		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1801 		    m->wire_count == 0) {
1802 			/*
1803 			 * Might as well free the page if we can and it has
1804 			 * no valid data.  We also free the page if the
1805 			 * buffer was used for direct I/O
1806 			 */
1807 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1808 				vm_page_free(m);
1809 			} else if (bp->b_flags & B_DIRECT) {
1810 				vm_page_try_to_free(m);
1811 			} else if (buf_vm_page_count_severe()) {
1812 				vm_page_try_to_cache(m);
1813 			}
1814 		}
1815 		vm_page_unlock(m);
1816 	}
1817 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
1818 
1819 	if (bp->b_bufsize) {
1820 		bufspacewakeup();
1821 		bp->b_bufsize = 0;
1822 	}
1823 	bp->b_npages = 0;
1824 	bp->b_flags &= ~B_VMIO;
1825 	if (bp->b_vp)
1826 		brelvp(bp);
1827 }
1828 
1829 /*
1830  * Check to see if a block at a particular lbn is available for a clustered
1831  * write.
1832  */
1833 static int
1834 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1835 {
1836 	struct buf *bpa;
1837 	int match;
1838 
1839 	match = 0;
1840 
1841 	/* If the buf isn't in core skip it */
1842 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1843 		return (0);
1844 
1845 	/* If the buf is busy we don't want to wait for it */
1846 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1847 		return (0);
1848 
1849 	/* Only cluster with valid clusterable delayed write buffers */
1850 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1851 	    (B_DELWRI | B_CLUSTEROK))
1852 		goto done;
1853 
1854 	if (bpa->b_bufsize != size)
1855 		goto done;
1856 
1857 	/*
1858 	 * Check to see if it is in the expected place on disk and that the
1859 	 * block has been mapped.
1860 	 */
1861 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1862 		match = 1;
1863 done:
1864 	BUF_UNLOCK(bpa);
1865 	return (match);
1866 }
1867 
1868 /*
1869  *	vfs_bio_awrite:
1870  *
1871  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1872  *	This is much better then the old way of writing only one buffer at
1873  *	a time.  Note that we may not be presented with the buffers in the
1874  *	correct order, so we search for the cluster in both directions.
1875  */
1876 int
1877 vfs_bio_awrite(struct buf *bp)
1878 {
1879 	struct bufobj *bo;
1880 	int i;
1881 	int j;
1882 	daddr_t lblkno = bp->b_lblkno;
1883 	struct vnode *vp = bp->b_vp;
1884 	int ncl;
1885 	int nwritten;
1886 	int size;
1887 	int maxcl;
1888 	int gbflags;
1889 
1890 	bo = &vp->v_bufobj;
1891 	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1892 	/*
1893 	 * right now we support clustered writing only to regular files.  If
1894 	 * we find a clusterable block we could be in the middle of a cluster
1895 	 * rather then at the beginning.
1896 	 */
1897 	if ((vp->v_type == VREG) &&
1898 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1899 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1900 
1901 		size = vp->v_mount->mnt_stat.f_iosize;
1902 		maxcl = MAXPHYS / size;
1903 
1904 		BO_RLOCK(bo);
1905 		for (i = 1; i < maxcl; i++)
1906 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1907 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1908 				break;
1909 
1910 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1911 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1912 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1913 				break;
1914 		BO_RUNLOCK(bo);
1915 		--j;
1916 		ncl = i + j;
1917 		/*
1918 		 * this is a possible cluster write
1919 		 */
1920 		if (ncl != 1) {
1921 			BUF_UNLOCK(bp);
1922 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
1923 			    gbflags);
1924 			return (nwritten);
1925 		}
1926 	}
1927 	bremfree(bp);
1928 	bp->b_flags |= B_ASYNC;
1929 	/*
1930 	 * default (old) behavior, writing out only one block
1931 	 *
1932 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1933 	 */
1934 	nwritten = bp->b_bufsize;
1935 	(void) bwrite(bp);
1936 
1937 	return (nwritten);
1938 }
1939 
1940 static void
1941 setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
1942 {
1943 
1944 	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
1945 	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
1946 	if ((gbflags & GB_UNMAPPED) == 0) {
1947 		bp->b_kvabase = (caddr_t)addr;
1948 	} else if ((gbflags & GB_KVAALLOC) != 0) {
1949 		KASSERT((gbflags & GB_UNMAPPED) != 0,
1950 		    ("GB_KVAALLOC without GB_UNMAPPED"));
1951 		bp->b_kvaalloc = (caddr_t)addr;
1952 		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
1953 		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
1954 	}
1955 	bp->b_kvasize = maxsize;
1956 }
1957 
1958 /*
1959  * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
1960  * needed.
1961  */
1962 static int
1963 allocbufkva(struct buf *bp, int maxsize, int gbflags)
1964 {
1965 	vm_offset_t addr;
1966 	int rv;
1967 
1968 	bfreekva(bp);
1969 	addr = 0;
1970 
1971 	vm_map_lock(buffer_map);
1972 	if (vm_map_findspace(buffer_map, vm_map_min(buffer_map), maxsize,
1973 	    &addr)) {
1974 		vm_map_unlock(buffer_map);
1975 		/*
1976 		 * Buffer map is too fragmented.  Request the caller
1977 		 * to defragment the map.
1978 		 */
1979 		atomic_add_int(&bufdefragcnt, 1);
1980 		return (1);
1981 	}
1982 	rv = vm_map_insert(buffer_map, NULL, 0, addr, addr + maxsize,
1983 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
1984 	KASSERT(rv == KERN_SUCCESS, ("vm_map_insert(buffer_map) rv %d", rv));
1985 	vm_map_unlock(buffer_map);
1986 	setbufkva(bp, addr, maxsize, gbflags);
1987 	atomic_add_long(&bufspace, bp->b_kvasize);
1988 	return (0);
1989 }
1990 
1991 /*
1992  * Ask the bufdaemon for help, or act as bufdaemon itself, when a
1993  * locked vnode is supplied.
1994  */
1995 static void
1996 getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
1997     int defrag)
1998 {
1999 	struct thread *td;
2000 	char *waitmsg;
2001 	int fl, flags, norunbuf;
2002 
2003 	mtx_assert(&bqlock, MA_OWNED);
2004 
2005 	if (defrag) {
2006 		flags = VFS_BIO_NEED_BUFSPACE;
2007 		waitmsg = "nbufkv";
2008 	} else if (bufspace >= hibufspace) {
2009 		waitmsg = "nbufbs";
2010 		flags = VFS_BIO_NEED_BUFSPACE;
2011 	} else {
2012 		waitmsg = "newbuf";
2013 		flags = VFS_BIO_NEED_ANY;
2014 	}
2015 	mtx_lock(&nblock);
2016 	needsbuffer |= flags;
2017 	mtx_unlock(&nblock);
2018 	mtx_unlock(&bqlock);
2019 
2020 	bd_speedup();	/* heeeelp */
2021 	if ((gbflags & GB_NOWAIT_BD) != 0)
2022 		return;
2023 
2024 	td = curthread;
2025 	mtx_lock(&nblock);
2026 	while (needsbuffer & flags) {
2027 		if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2028 			mtx_unlock(&nblock);
2029 			/*
2030 			 * getblk() is called with a vnode locked, and
2031 			 * some majority of the dirty buffers may as
2032 			 * well belong to the vnode.  Flushing the
2033 			 * buffers there would make a progress that
2034 			 * cannot be achieved by the buf_daemon, that
2035 			 * cannot lock the vnode.
2036 			 */
2037 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2038 			    (td->td_pflags & TDP_NORUNNINGBUF);
2039 			/* play bufdaemon */
2040 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2041 			fl = buf_do_flush(vp);
2042 			td->td_pflags &= norunbuf;
2043 			mtx_lock(&nblock);
2044 			if (fl != 0)
2045 				continue;
2046 			if ((needsbuffer & flags) == 0)
2047 				break;
2048 		}
2049 		if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag,
2050 		    waitmsg, slptimeo))
2051 			break;
2052 	}
2053 	mtx_unlock(&nblock);
2054 }
2055 
2056 static void
2057 getnewbuf_reuse_bp(struct buf *bp, int qindex)
2058 {
2059 
2060 	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2061 	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2062 	     bp->b_kvasize, bp->b_bufsize, qindex);
2063 	mtx_assert(&bqlock, MA_NOTOWNED);
2064 
2065 	/*
2066 	 * Note: we no longer distinguish between VMIO and non-VMIO
2067 	 * buffers.
2068 	 */
2069 	KASSERT((bp->b_flags & B_DELWRI) == 0,
2070 	    ("delwri buffer %p found in queue %d", bp, qindex));
2071 
2072 	if (qindex == QUEUE_CLEAN) {
2073 		if (bp->b_flags & B_VMIO) {
2074 			bp->b_flags &= ~B_ASYNC;
2075 			vfs_vmio_release(bp);
2076 		}
2077 		if (bp->b_vp != NULL)
2078 			brelvp(bp);
2079 	}
2080 
2081 	/*
2082 	 * Get the rest of the buffer freed up.  b_kva* is still valid
2083 	 * after this operation.
2084 	 */
2085 
2086 	if (bp->b_rcred != NOCRED) {
2087 		crfree(bp->b_rcred);
2088 		bp->b_rcred = NOCRED;
2089 	}
2090 	if (bp->b_wcred != NOCRED) {
2091 		crfree(bp->b_wcred);
2092 		bp->b_wcred = NOCRED;
2093 	}
2094 	if (!LIST_EMPTY(&bp->b_dep))
2095 		buf_deallocate(bp);
2096 	if (bp->b_vflags & BV_BKGRDINPROG)
2097 		panic("losing buffer 3");
2098 	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2099 	    bp, bp->b_vp, qindex));
2100 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2101 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2102 
2103 	if (bp->b_bufsize)
2104 		allocbuf(bp, 0);
2105 
2106 	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2107 	bp->b_ioflags = 0;
2108 	bp->b_xflags = 0;
2109 	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2110 	    ("buf %p still counted as free?", bp));
2111 	bp->b_vflags = 0;
2112 	bp->b_vp = NULL;
2113 	bp->b_blkno = bp->b_lblkno = 0;
2114 	bp->b_offset = NOOFFSET;
2115 	bp->b_iodone = 0;
2116 	bp->b_error = 0;
2117 	bp->b_resid = 0;
2118 	bp->b_bcount = 0;
2119 	bp->b_npages = 0;
2120 	bp->b_dirtyoff = bp->b_dirtyend = 0;
2121 	bp->b_bufobj = NULL;
2122 	bp->b_pin_count = 0;
2123 	bp->b_fsprivate1 = NULL;
2124 	bp->b_fsprivate2 = NULL;
2125 	bp->b_fsprivate3 = NULL;
2126 
2127 	LIST_INIT(&bp->b_dep);
2128 }
2129 
2130 static int flushingbufs;
2131 
2132 static struct buf *
2133 getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2134 {
2135 	struct buf *bp, *nbp;
2136 	int nqindex, qindex, pass;
2137 
2138 	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2139 
2140 	pass = 1;
2141 restart:
2142 	atomic_add_int(&getnewbufrestarts, 1);
2143 
2144 	/*
2145 	 * Setup for scan.  If we do not have enough free buffers,
2146 	 * we setup a degenerate case that immediately fails.  Note
2147 	 * that if we are specially marked process, we are allowed to
2148 	 * dip into our reserves.
2149 	 *
2150 	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2151 	 * for the allocation of the mapped buffer.  For unmapped, the
2152 	 * easiest is to start with EMPTY outright.
2153 	 *
2154 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2155 	 * However, there are a number of cases (defragging, reusing, ...)
2156 	 * where we cannot backup.
2157 	 */
2158 	nbp = NULL;
2159 	mtx_lock(&bqlock);
2160 	if (!defrag && unmapped) {
2161 		nqindex = QUEUE_EMPTY;
2162 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2163 	}
2164 	if (nbp == NULL) {
2165 		nqindex = QUEUE_EMPTYKVA;
2166 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2167 	}
2168 
2169 	/*
2170 	 * If no EMPTYKVA buffers and we are either defragging or
2171 	 * reusing, locate a CLEAN buffer to free or reuse.  If
2172 	 * bufspace useage is low skip this step so we can allocate a
2173 	 * new buffer.
2174 	 */
2175 	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2176 		nqindex = QUEUE_CLEAN;
2177 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2178 	}
2179 
2180 	/*
2181 	 * If we could not find or were not allowed to reuse a CLEAN
2182 	 * buffer, check to see if it is ok to use an EMPTY buffer.
2183 	 * We can only use an EMPTY buffer if allocating its KVA would
2184 	 * not otherwise run us out of buffer space.  No KVA is needed
2185 	 * for the unmapped allocation.
2186 	 */
2187 	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2188 	    metadata)) {
2189 		nqindex = QUEUE_EMPTY;
2190 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2191 	}
2192 
2193 	/*
2194 	 * All available buffers might be clean, retry ignoring the
2195 	 * lobufspace as the last resort.
2196 	 */
2197 	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2198 		nqindex = QUEUE_CLEAN;
2199 		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2200 	}
2201 
2202 	/*
2203 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2204 	 * depending.
2205 	 */
2206 	while ((bp = nbp) != NULL) {
2207 		qindex = nqindex;
2208 
2209 		/*
2210 		 * Calculate next bp (we can only use it if we do not
2211 		 * block or do other fancy things).
2212 		 */
2213 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2214 			switch (qindex) {
2215 			case QUEUE_EMPTY:
2216 				nqindex = QUEUE_EMPTYKVA;
2217 				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2218 				if (nbp != NULL)
2219 					break;
2220 				/* FALLTHROUGH */
2221 			case QUEUE_EMPTYKVA:
2222 				nqindex = QUEUE_CLEAN;
2223 				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2224 				if (nbp != NULL)
2225 					break;
2226 				/* FALLTHROUGH */
2227 			case QUEUE_CLEAN:
2228 				if (metadata && pass == 1) {
2229 					pass = 2;
2230 					nqindex = QUEUE_EMPTY;
2231 					nbp = TAILQ_FIRST(
2232 					    &bufqueues[QUEUE_EMPTY]);
2233 				}
2234 				/*
2235 				 * nbp is NULL.
2236 				 */
2237 				break;
2238 			}
2239 		}
2240 		/*
2241 		 * If we are defragging then we need a buffer with
2242 		 * b_kvasize != 0.  XXX this situation should no longer
2243 		 * occur, if defrag is non-zero the buffer's b_kvasize
2244 		 * should also be non-zero at this point.  XXX
2245 		 */
2246 		if (defrag && bp->b_kvasize == 0) {
2247 			printf("Warning: defrag empty buffer %p\n", bp);
2248 			continue;
2249 		}
2250 
2251 		/*
2252 		 * Start freeing the bp.  This is somewhat involved.  nbp
2253 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2254 		 */
2255 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2256 			continue;
2257 		/*
2258 		 * BKGRDINPROG can only be set with the buf and bufobj
2259 		 * locks both held.  We tolerate a race to clear it here.
2260 		 */
2261 		if (bp->b_vflags & BV_BKGRDINPROG) {
2262 			BUF_UNLOCK(bp);
2263 			continue;
2264 		}
2265 
2266 		KASSERT(bp->b_qindex == qindex,
2267 		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2268 
2269 		bremfreel(bp);
2270 		mtx_unlock(&bqlock);
2271 		/*
2272 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2273 		 * the scan from this point on.
2274 		 */
2275 
2276 		getnewbuf_reuse_bp(bp, qindex);
2277 		mtx_assert(&bqlock, MA_NOTOWNED);
2278 
2279 		/*
2280 		 * If we are defragging then free the buffer.
2281 		 */
2282 		if (defrag) {
2283 			bp->b_flags |= B_INVAL;
2284 			bfreekva(bp);
2285 			brelse(bp);
2286 			defrag = 0;
2287 			goto restart;
2288 		}
2289 
2290 		/*
2291 		 * Notify any waiters for the buffer lock about
2292 		 * identity change by freeing the buffer.
2293 		 */
2294 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2295 			bp->b_flags |= B_INVAL;
2296 			bfreekva(bp);
2297 			brelse(bp);
2298 			goto restart;
2299 		}
2300 
2301 		if (metadata)
2302 			break;
2303 
2304 		/*
2305 		 * If we are overcomitted then recover the buffer and its
2306 		 * KVM space.  This occurs in rare situations when multiple
2307 		 * processes are blocked in getnewbuf() or allocbuf().
2308 		 */
2309 		if (bufspace >= hibufspace)
2310 			flushingbufs = 1;
2311 		if (flushingbufs && bp->b_kvasize != 0) {
2312 			bp->b_flags |= B_INVAL;
2313 			bfreekva(bp);
2314 			brelse(bp);
2315 			goto restart;
2316 		}
2317 		if (bufspace < lobufspace)
2318 			flushingbufs = 0;
2319 		break;
2320 	}
2321 	return (bp);
2322 }
2323 
2324 /*
2325  *	getnewbuf:
2326  *
2327  *	Find and initialize a new buffer header, freeing up existing buffers
2328  *	in the bufqueues as necessary.  The new buffer is returned locked.
2329  *
2330  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2331  *	buffer away, the caller must set B_INVAL prior to calling brelse().
2332  *
2333  *	We block if:
2334  *		We have insufficient buffer headers
2335  *		We have insufficient buffer space
2336  *		buffer_map is too fragmented ( space reservation fails )
2337  *		If we have to flush dirty buffers ( but we try to avoid this )
2338  *
2339  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
2340  *	Instead we ask the buf daemon to do it for us.  We attempt to
2341  *	avoid piecemeal wakeups of the pageout daemon.
2342  */
2343 static struct buf *
2344 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2345     int gbflags)
2346 {
2347 	struct buf *bp;
2348 	int defrag, metadata;
2349 
2350 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2351 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2352 	if (!unmapped_buf_allowed)
2353 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2354 
2355 	defrag = 0;
2356 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2357 	    vp->v_type == VCHR)
2358 		metadata = 1;
2359 	else
2360 		metadata = 0;
2361 	/*
2362 	 * We can't afford to block since we might be holding a vnode lock,
2363 	 * which may prevent system daemons from running.  We deal with
2364 	 * low-memory situations by proactively returning memory and running
2365 	 * async I/O rather then sync I/O.
2366 	 */
2367 	atomic_add_int(&getnewbufcalls, 1);
2368 	atomic_subtract_int(&getnewbufrestarts, 1);
2369 restart:
2370 	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2371 	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2372 	if (bp != NULL)
2373 		defrag = 0;
2374 
2375 	/*
2376 	 * If we exhausted our list, sleep as appropriate.  We may have to
2377 	 * wakeup various daemons and write out some dirty buffers.
2378 	 *
2379 	 * Generally we are sleeping due to insufficient buffer space.
2380 	 */
2381 	if (bp == NULL) {
2382 		mtx_assert(&bqlock, MA_OWNED);
2383 		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2384 		mtx_assert(&bqlock, MA_NOTOWNED);
2385 	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2386 		mtx_assert(&bqlock, MA_NOTOWNED);
2387 
2388 		bfreekva(bp);
2389 		bp->b_flags |= B_UNMAPPED;
2390 		bp->b_kvabase = bp->b_data = unmapped_buf;
2391 		bp->b_kvasize = maxsize;
2392 		atomic_add_long(&bufspace, bp->b_kvasize);
2393 		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2394 		atomic_add_int(&bufreusecnt, 1);
2395 	} else {
2396 		mtx_assert(&bqlock, MA_NOTOWNED);
2397 
2398 		/*
2399 		 * We finally have a valid bp.  We aren't quite out of the
2400 		 * woods, we still have to reserve kva space.  In order
2401 		 * to keep fragmentation sane we only allocate kva in
2402 		 * BKVASIZE chunks.
2403 		 */
2404 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2405 
2406 		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2407 		    B_KVAALLOC)) == B_UNMAPPED) {
2408 			if (allocbufkva(bp, maxsize, gbflags)) {
2409 				defrag = 1;
2410 				bp->b_flags |= B_INVAL;
2411 				brelse(bp);
2412 				goto restart;
2413 			}
2414 			atomic_add_int(&bufreusecnt, 1);
2415 		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2416 		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2417 			/*
2418 			 * If the reused buffer has KVA allocated,
2419 			 * reassign b_kvaalloc to b_kvabase.
2420 			 */
2421 			bp->b_kvabase = bp->b_kvaalloc;
2422 			bp->b_flags &= ~B_KVAALLOC;
2423 			atomic_subtract_long(&unmapped_bufspace,
2424 			    bp->b_kvasize);
2425 			atomic_add_int(&bufreusecnt, 1);
2426 		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2427 		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2428 		    GB_KVAALLOC)) {
2429 			/*
2430 			 * The case of reused buffer already have KVA
2431 			 * mapped, but the request is for unmapped
2432 			 * buffer with KVA allocated.
2433 			 */
2434 			bp->b_kvaalloc = bp->b_kvabase;
2435 			bp->b_data = bp->b_kvabase = unmapped_buf;
2436 			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2437 			atomic_add_long(&unmapped_bufspace,
2438 			    bp->b_kvasize);
2439 			atomic_add_int(&bufreusecnt, 1);
2440 		}
2441 		if ((gbflags & GB_UNMAPPED) == 0) {
2442 			bp->b_saveaddr = bp->b_kvabase;
2443 			bp->b_data = bp->b_saveaddr;
2444 			bp->b_flags &= ~B_UNMAPPED;
2445 			BUF_CHECK_MAPPED(bp);
2446 		}
2447 	}
2448 	return (bp);
2449 }
2450 
2451 /*
2452  *	buf_daemon:
2453  *
2454  *	buffer flushing daemon.  Buffers are normally flushed by the
2455  *	update daemon but if it cannot keep up this process starts to
2456  *	take the load in an attempt to prevent getnewbuf() from blocking.
2457  */
2458 
2459 static struct kproc_desc buf_kp = {
2460 	"bufdaemon",
2461 	buf_daemon,
2462 	&bufdaemonproc
2463 };
2464 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2465 
2466 static int
2467 buf_do_flush(struct vnode *vp)
2468 {
2469 	int flushed;
2470 
2471 	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2472 	if (flushed == 0) {
2473 		/*
2474 		 * Could not find any buffers without rollback
2475 		 * dependencies, so just write the first one
2476 		 * in the hopes of eventually making progress.
2477 		 */
2478 		flushbufqueues(vp, QUEUE_DIRTY, 1);
2479 	}
2480 	return (flushed);
2481 }
2482 
2483 static void
2484 buf_daemon()
2485 {
2486 	int lodirtysave;
2487 
2488 	/*
2489 	 * This process needs to be suspended prior to shutdown sync.
2490 	 */
2491 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2492 	    SHUTDOWN_PRI_LAST);
2493 
2494 	/*
2495 	 * This process is allowed to take the buffer cache to the limit
2496 	 */
2497 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2498 	mtx_lock(&bdlock);
2499 	for (;;) {
2500 		bd_request = 0;
2501 		mtx_unlock(&bdlock);
2502 
2503 		kproc_suspend_check(bufdaemonproc);
2504 		lodirtysave = lodirtybuffers;
2505 		if (bd_speedupreq) {
2506 			lodirtybuffers = numdirtybuffers / 2;
2507 			bd_speedupreq = 0;
2508 		}
2509 		/*
2510 		 * Do the flush.  Limit the amount of in-transit I/O we
2511 		 * allow to build up, otherwise we would completely saturate
2512 		 * the I/O system.  Wakeup any waiting processes before we
2513 		 * normally would so they can run in parallel with our drain.
2514 		 */
2515 		while (numdirtybuffers > lodirtybuffers) {
2516 			if (buf_do_flush(NULL) == 0)
2517 				break;
2518 			kern_yield(PRI_USER);
2519 		}
2520 		lodirtybuffers = lodirtysave;
2521 
2522 		/*
2523 		 * Only clear bd_request if we have reached our low water
2524 		 * mark.  The buf_daemon normally waits 1 second and
2525 		 * then incrementally flushes any dirty buffers that have
2526 		 * built up, within reason.
2527 		 *
2528 		 * If we were unable to hit our low water mark and couldn't
2529 		 * find any flushable buffers, we sleep half a second.
2530 		 * Otherwise we loop immediately.
2531 		 */
2532 		mtx_lock(&bdlock);
2533 		if (numdirtybuffers <= lodirtybuffers) {
2534 			/*
2535 			 * We reached our low water mark, reset the
2536 			 * request and sleep until we are needed again.
2537 			 * The sleep is just so the suspend code works.
2538 			 */
2539 			bd_request = 0;
2540 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2541 		} else {
2542 			/*
2543 			 * We couldn't find any flushable dirty buffers but
2544 			 * still have too many dirty buffers, we
2545 			 * have to sleep and try again.  (rare)
2546 			 */
2547 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2548 		}
2549 	}
2550 }
2551 
2552 /*
2553  *	flushbufqueues:
2554  *
2555  *	Try to flush a buffer in the dirty queue.  We must be careful to
2556  *	free up B_INVAL buffers instead of write them, which NFS is
2557  *	particularly sensitive to.
2558  */
2559 static int flushwithdeps = 0;
2560 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2561     0, "Number of buffers flushed with dependecies that require rollbacks");
2562 
2563 static int
2564 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2565 {
2566 	struct buf *sentinel;
2567 	struct vnode *vp;
2568 	struct mount *mp;
2569 	struct buf *bp;
2570 	int hasdeps;
2571 	int flushed;
2572 	int target;
2573 
2574 	if (lvp == NULL) {
2575 		target = numdirtybuffers - lodirtybuffers;
2576 		if (flushdeps && target > 2)
2577 			target /= 2;
2578 	} else
2579 		target = flushbufqtarget;
2580 	flushed = 0;
2581 	bp = NULL;
2582 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2583 	sentinel->b_qindex = QUEUE_SENTINEL;
2584 	mtx_lock(&bqlock);
2585 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2586 	while (flushed != target) {
2587 		bp = TAILQ_NEXT(sentinel, b_freelist);
2588 		if (bp != NULL) {
2589 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2590 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2591 			    b_freelist);
2592 		} else
2593 			break;
2594 		/*
2595 		 * Skip sentinels inserted by other invocations of the
2596 		 * flushbufqueues(), taking care to not reorder them.
2597 		 */
2598 		if (bp->b_qindex == QUEUE_SENTINEL)
2599 			continue;
2600 		/*
2601 		 * Only flush the buffers that belong to the
2602 		 * vnode locked by the curthread.
2603 		 */
2604 		if (lvp != NULL && bp->b_vp != lvp)
2605 			continue;
2606 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2607 			continue;
2608 		if (bp->b_pin_count > 0) {
2609 			BUF_UNLOCK(bp);
2610 			continue;
2611 		}
2612 		/*
2613 		 * BKGRDINPROG can only be set with the buf and bufobj
2614 		 * locks both held.  We tolerate a race to clear it here.
2615 		 */
2616 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2617 		    (bp->b_flags & B_DELWRI) == 0) {
2618 			BUF_UNLOCK(bp);
2619 			continue;
2620 		}
2621 		if (bp->b_flags & B_INVAL) {
2622 			bremfreel(bp);
2623 			mtx_unlock(&bqlock);
2624 			brelse(bp);
2625 			flushed++;
2626 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2627 			mtx_lock(&bqlock);
2628 			continue;
2629 		}
2630 
2631 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2632 			if (flushdeps == 0) {
2633 				BUF_UNLOCK(bp);
2634 				continue;
2635 			}
2636 			hasdeps = 1;
2637 		} else
2638 			hasdeps = 0;
2639 		/*
2640 		 * We must hold the lock on a vnode before writing
2641 		 * one of its buffers. Otherwise we may confuse, or
2642 		 * in the case of a snapshot vnode, deadlock the
2643 		 * system.
2644 		 *
2645 		 * The lock order here is the reverse of the normal
2646 		 * of vnode followed by buf lock.  This is ok because
2647 		 * the NOWAIT will prevent deadlock.
2648 		 */
2649 		vp = bp->b_vp;
2650 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2651 			BUF_UNLOCK(bp);
2652 			continue;
2653 		}
2654 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2655 			mtx_unlock(&bqlock);
2656 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2657 			    bp, bp->b_vp, bp->b_flags);
2658 			if (curproc == bufdaemonproc)
2659 				vfs_bio_awrite(bp);
2660 			else {
2661 				bremfree(bp);
2662 				bwrite(bp);
2663 				notbufdflashes++;
2664 			}
2665 			vn_finished_write(mp);
2666 			VOP_UNLOCK(vp, 0);
2667 			flushwithdeps += hasdeps;
2668 			flushed++;
2669 
2670 			/*
2671 			 * Sleeping on runningbufspace while holding
2672 			 * vnode lock leads to deadlock.
2673 			 */
2674 			if (curproc == bufdaemonproc)
2675 				waitrunningbufspace();
2676 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2677 			mtx_lock(&bqlock);
2678 			continue;
2679 		}
2680 		vn_finished_write(mp);
2681 		BUF_UNLOCK(bp);
2682 	}
2683 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2684 	mtx_unlock(&bqlock);
2685 	free(sentinel, M_TEMP);
2686 	return (flushed);
2687 }
2688 
2689 /*
2690  * Check to see if a block is currently memory resident.
2691  */
2692 struct buf *
2693 incore(struct bufobj *bo, daddr_t blkno)
2694 {
2695 	struct buf *bp;
2696 
2697 	BO_RLOCK(bo);
2698 	bp = gbincore(bo, blkno);
2699 	BO_RUNLOCK(bo);
2700 	return (bp);
2701 }
2702 
2703 /*
2704  * Returns true if no I/O is needed to access the
2705  * associated VM object.  This is like incore except
2706  * it also hunts around in the VM system for the data.
2707  */
2708 
2709 static int
2710 inmem(struct vnode * vp, daddr_t blkno)
2711 {
2712 	vm_object_t obj;
2713 	vm_offset_t toff, tinc, size;
2714 	vm_page_t m;
2715 	vm_ooffset_t off;
2716 
2717 	ASSERT_VOP_LOCKED(vp, "inmem");
2718 
2719 	if (incore(&vp->v_bufobj, blkno))
2720 		return 1;
2721 	if (vp->v_mount == NULL)
2722 		return 0;
2723 	obj = vp->v_object;
2724 	if (obj == NULL)
2725 		return (0);
2726 
2727 	size = PAGE_SIZE;
2728 	if (size > vp->v_mount->mnt_stat.f_iosize)
2729 		size = vp->v_mount->mnt_stat.f_iosize;
2730 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2731 
2732 	VM_OBJECT_RLOCK(obj);
2733 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2734 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2735 		if (!m)
2736 			goto notinmem;
2737 		tinc = size;
2738 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2739 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2740 		if (vm_page_is_valid(m,
2741 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2742 			goto notinmem;
2743 	}
2744 	VM_OBJECT_RUNLOCK(obj);
2745 	return 1;
2746 
2747 notinmem:
2748 	VM_OBJECT_RUNLOCK(obj);
2749 	return (0);
2750 }
2751 
2752 /*
2753  * Set the dirty range for a buffer based on the status of the dirty
2754  * bits in the pages comprising the buffer.  The range is limited
2755  * to the size of the buffer.
2756  *
2757  * Tell the VM system that the pages associated with this buffer
2758  * are clean.  This is used for delayed writes where the data is
2759  * going to go to disk eventually without additional VM intevention.
2760  *
2761  * Note that while we only really need to clean through to b_bcount, we
2762  * just go ahead and clean through to b_bufsize.
2763  */
2764 static void
2765 vfs_clean_pages_dirty_buf(struct buf *bp)
2766 {
2767 	vm_ooffset_t foff, noff, eoff;
2768 	vm_page_t m;
2769 	int i;
2770 
2771 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2772 		return;
2773 
2774 	foff = bp->b_offset;
2775 	KASSERT(bp->b_offset != NOOFFSET,
2776 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2777 
2778 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2779 	vfs_drain_busy_pages(bp);
2780 	vfs_setdirty_locked_object(bp);
2781 	for (i = 0; i < bp->b_npages; i++) {
2782 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2783 		eoff = noff;
2784 		if (eoff > bp->b_offset + bp->b_bufsize)
2785 			eoff = bp->b_offset + bp->b_bufsize;
2786 		m = bp->b_pages[i];
2787 		vfs_page_set_validclean(bp, foff, m);
2788 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2789 		foff = noff;
2790 	}
2791 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2792 }
2793 
2794 static void
2795 vfs_setdirty_locked_object(struct buf *bp)
2796 {
2797 	vm_object_t object;
2798 	int i;
2799 
2800 	object = bp->b_bufobj->bo_object;
2801 	VM_OBJECT_ASSERT_WLOCKED(object);
2802 
2803 	/*
2804 	 * We qualify the scan for modified pages on whether the
2805 	 * object has been flushed yet.
2806 	 */
2807 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2808 		vm_offset_t boffset;
2809 		vm_offset_t eoffset;
2810 
2811 		/*
2812 		 * test the pages to see if they have been modified directly
2813 		 * by users through the VM system.
2814 		 */
2815 		for (i = 0; i < bp->b_npages; i++)
2816 			vm_page_test_dirty(bp->b_pages[i]);
2817 
2818 		/*
2819 		 * Calculate the encompassing dirty range, boffset and eoffset,
2820 		 * (eoffset - boffset) bytes.
2821 		 */
2822 
2823 		for (i = 0; i < bp->b_npages; i++) {
2824 			if (bp->b_pages[i]->dirty)
2825 				break;
2826 		}
2827 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2828 
2829 		for (i = bp->b_npages - 1; i >= 0; --i) {
2830 			if (bp->b_pages[i]->dirty) {
2831 				break;
2832 			}
2833 		}
2834 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2835 
2836 		/*
2837 		 * Fit it to the buffer.
2838 		 */
2839 
2840 		if (eoffset > bp->b_bcount)
2841 			eoffset = bp->b_bcount;
2842 
2843 		/*
2844 		 * If we have a good dirty range, merge with the existing
2845 		 * dirty range.
2846 		 */
2847 
2848 		if (boffset < eoffset) {
2849 			if (bp->b_dirtyoff > boffset)
2850 				bp->b_dirtyoff = boffset;
2851 			if (bp->b_dirtyend < eoffset)
2852 				bp->b_dirtyend = eoffset;
2853 		}
2854 	}
2855 }
2856 
2857 /*
2858  * Allocate the KVA mapping for an existing buffer. It handles the
2859  * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2860  * KVA which is not mapped (B_KVAALLOC).
2861  */
2862 static void
2863 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2864 {
2865 	struct buf *scratch_bp;
2866 	int bsize, maxsize, need_mapping, need_kva;
2867 	off_t offset;
2868 
2869 	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2870 	    (gbflags & GB_UNMAPPED) == 0;
2871 	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2872 	    (gbflags & GB_KVAALLOC) != 0;
2873 	if (!need_mapping && !need_kva)
2874 		return;
2875 
2876 	BUF_CHECK_UNMAPPED(bp);
2877 
2878 	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2879 		/*
2880 		 * Buffer is not mapped, but the KVA was already
2881 		 * reserved at the time of the instantiation.  Use the
2882 		 * allocated space.
2883 		 */
2884 		bp->b_flags &= ~B_KVAALLOC;
2885 		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2886 		bp->b_kvabase = bp->b_kvaalloc;
2887 		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
2888 		goto has_addr;
2889 	}
2890 
2891 	/*
2892 	 * Calculate the amount of the address space we would reserve
2893 	 * if the buffer was mapped.
2894 	 */
2895 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
2896 	offset = blkno * bsize;
2897 	maxsize = size + (offset & PAGE_MASK);
2898 	maxsize = imax(maxsize, bsize);
2899 
2900 mapping_loop:
2901 	if (allocbufkva(bp, maxsize, gbflags)) {
2902 		/*
2903 		 * Request defragmentation. getnewbuf() returns us the
2904 		 * allocated space by the scratch buffer KVA.
2905 		 */
2906 		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
2907 		    (GB_UNMAPPED | GB_KVAALLOC));
2908 		if (scratch_bp == NULL) {
2909 			if ((gbflags & GB_NOWAIT_BD) != 0) {
2910 				/*
2911 				 * XXXKIB: defragmentation cannot
2912 				 * succeed, not sure what else to do.
2913 				 */
2914 				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
2915 			}
2916 			atomic_add_int(&mappingrestarts, 1);
2917 			goto mapping_loop;
2918 		}
2919 		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
2920 		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
2921 		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
2922 		    scratch_bp->b_kvasize, gbflags);
2923 
2924 		/* Get rid of the scratch buffer. */
2925 		scratch_bp->b_kvasize = 0;
2926 		scratch_bp->b_flags |= B_INVAL;
2927 		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
2928 		brelse(scratch_bp);
2929 	}
2930 	if (!need_mapping)
2931 		return;
2932 
2933 has_addr:
2934 	bp->b_saveaddr = bp->b_kvabase;
2935 	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
2936 	bp->b_flags &= ~B_UNMAPPED;
2937 	BUF_CHECK_MAPPED(bp);
2938 	bpmap_qenter(bp);
2939 }
2940 
2941 /*
2942  *	getblk:
2943  *
2944  *	Get a block given a specified block and offset into a file/device.
2945  *	The buffers B_DONE bit will be cleared on return, making it almost
2946  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2947  *	return.  The caller should clear B_INVAL prior to initiating a
2948  *	READ.
2949  *
2950  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2951  *	an existing buffer.
2952  *
2953  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2954  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2955  *	and then cleared based on the backing VM.  If the previous buffer is
2956  *	non-0-sized but invalid, B_CACHE will be cleared.
2957  *
2958  *	If getblk() must create a new buffer, the new buffer is returned with
2959  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2960  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2961  *	backing VM.
2962  *
2963  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2964  *	B_CACHE bit is clear.
2965  *
2966  *	What this means, basically, is that the caller should use B_CACHE to
2967  *	determine whether the buffer is fully valid or not and should clear
2968  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2969  *	the buffer by loading its data area with something, the caller needs
2970  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2971  *	the caller should set B_CACHE ( as an optimization ), else the caller
2972  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2973  *	a write attempt or if it was a successfull read.  If the caller
2974  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2975  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2976  */
2977 struct buf *
2978 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2979     int flags)
2980 {
2981 	struct buf *bp;
2982 	struct bufobj *bo;
2983 	int bsize, error, maxsize, vmio;
2984 	off_t offset;
2985 
2986 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2987 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2988 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2989 	ASSERT_VOP_LOCKED(vp, "getblk");
2990 	if (size > MAXBSIZE)
2991 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2992 	if (!unmapped_buf_allowed)
2993 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2994 
2995 	bo = &vp->v_bufobj;
2996 loop:
2997 	/*
2998 	 * Block if we are low on buffers.   Certain processes are allowed
2999 	 * to completely exhaust the buffer cache.
3000          *
3001          * If this check ever becomes a bottleneck it may be better to
3002          * move it into the else, when gbincore() fails.  At the moment
3003          * it isn't a problem.
3004          */
3005 	if (numfreebuffers == 0) {
3006 		if (TD_IS_IDLETHREAD(curthread))
3007 			return NULL;
3008 		mtx_lock(&nblock);
3009 		needsbuffer |= VFS_BIO_NEED_ANY;
3010 		mtx_unlock(&nblock);
3011 	}
3012 
3013 	BO_RLOCK(bo);
3014 	bp = gbincore(bo, blkno);
3015 	if (bp != NULL) {
3016 		int lockflags;
3017 		/*
3018 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3019 		 * it must be on a queue.
3020 		 */
3021 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3022 
3023 		if (flags & GB_LOCK_NOWAIT)
3024 			lockflags |= LK_NOWAIT;
3025 
3026 		error = BUF_TIMELOCK(bp, lockflags,
3027 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3028 
3029 		/*
3030 		 * If we slept and got the lock we have to restart in case
3031 		 * the buffer changed identities.
3032 		 */
3033 		if (error == ENOLCK)
3034 			goto loop;
3035 		/* We timed out or were interrupted. */
3036 		else if (error)
3037 			return (NULL);
3038 		/* If recursed, assume caller knows the rules. */
3039 		else if (BUF_LOCKRECURSED(bp))
3040 			goto end;
3041 
3042 		/*
3043 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3044 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3045 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3046 		 * backing VM cache.
3047 		 */
3048 		if (bp->b_flags & B_INVAL)
3049 			bp->b_flags &= ~B_CACHE;
3050 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3051 			bp->b_flags |= B_CACHE;
3052 		if (bp->b_flags & B_MANAGED)
3053 			MPASS(bp->b_qindex == QUEUE_NONE);
3054 		else
3055 			bremfree(bp);
3056 
3057 		/*
3058 		 * check for size inconsistencies for non-VMIO case.
3059 		 */
3060 		if (bp->b_bcount != size) {
3061 			if ((bp->b_flags & B_VMIO) == 0 ||
3062 			    (size > bp->b_kvasize)) {
3063 				if (bp->b_flags & B_DELWRI) {
3064 					/*
3065 					 * If buffer is pinned and caller does
3066 					 * not want sleep  waiting for it to be
3067 					 * unpinned, bail out
3068 					 * */
3069 					if (bp->b_pin_count > 0) {
3070 						if (flags & GB_LOCK_NOWAIT) {
3071 							bqrelse(bp);
3072 							return (NULL);
3073 						} else {
3074 							bunpin_wait(bp);
3075 						}
3076 					}
3077 					bp->b_flags |= B_NOCACHE;
3078 					bwrite(bp);
3079 				} else {
3080 					if (LIST_EMPTY(&bp->b_dep)) {
3081 						bp->b_flags |= B_RELBUF;
3082 						brelse(bp);
3083 					} else {
3084 						bp->b_flags |= B_NOCACHE;
3085 						bwrite(bp);
3086 					}
3087 				}
3088 				goto loop;
3089 			}
3090 		}
3091 
3092 		/*
3093 		 * Handle the case of unmapped buffer which should
3094 		 * become mapped, or the buffer for which KVA
3095 		 * reservation is requested.
3096 		 */
3097 		bp_unmapped_get_kva(bp, blkno, size, flags);
3098 
3099 		/*
3100 		 * If the size is inconsistant in the VMIO case, we can resize
3101 		 * the buffer.  This might lead to B_CACHE getting set or
3102 		 * cleared.  If the size has not changed, B_CACHE remains
3103 		 * unchanged from its previous state.
3104 		 */
3105 		if (bp->b_bcount != size)
3106 			allocbuf(bp, size);
3107 
3108 		KASSERT(bp->b_offset != NOOFFSET,
3109 		    ("getblk: no buffer offset"));
3110 
3111 		/*
3112 		 * A buffer with B_DELWRI set and B_CACHE clear must
3113 		 * be committed before we can return the buffer in
3114 		 * order to prevent the caller from issuing a read
3115 		 * ( due to B_CACHE not being set ) and overwriting
3116 		 * it.
3117 		 *
3118 		 * Most callers, including NFS and FFS, need this to
3119 		 * operate properly either because they assume they
3120 		 * can issue a read if B_CACHE is not set, or because
3121 		 * ( for example ) an uncached B_DELWRI might loop due
3122 		 * to softupdates re-dirtying the buffer.  In the latter
3123 		 * case, B_CACHE is set after the first write completes,
3124 		 * preventing further loops.
3125 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3126 		 * above while extending the buffer, we cannot allow the
3127 		 * buffer to remain with B_CACHE set after the write
3128 		 * completes or it will represent a corrupt state.  To
3129 		 * deal with this we set B_NOCACHE to scrap the buffer
3130 		 * after the write.
3131 		 *
3132 		 * We might be able to do something fancy, like setting
3133 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3134 		 * so the below call doesn't set B_CACHE, but that gets real
3135 		 * confusing.  This is much easier.
3136 		 */
3137 
3138 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3139 			bp->b_flags |= B_NOCACHE;
3140 			bwrite(bp);
3141 			goto loop;
3142 		}
3143 		bp->b_flags &= ~B_DONE;
3144 	} else {
3145 		/*
3146 		 * Buffer is not in-core, create new buffer.  The buffer
3147 		 * returned by getnewbuf() is locked.  Note that the returned
3148 		 * buffer is also considered valid (not marked B_INVAL).
3149 		 */
3150 		BO_RUNLOCK(bo);
3151 		/*
3152 		 * If the user does not want us to create the buffer, bail out
3153 		 * here.
3154 		 */
3155 		if (flags & GB_NOCREAT)
3156 			return NULL;
3157 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3158 		offset = blkno * bsize;
3159 		vmio = vp->v_object != NULL;
3160 		if (vmio) {
3161 			maxsize = size + (offset & PAGE_MASK);
3162 		} else {
3163 			maxsize = size;
3164 			/* Do not allow non-VMIO notmapped buffers. */
3165 			flags &= ~GB_UNMAPPED;
3166 		}
3167 		maxsize = imax(maxsize, bsize);
3168 
3169 		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3170 		if (bp == NULL) {
3171 			if (slpflag || slptimeo)
3172 				return NULL;
3173 			goto loop;
3174 		}
3175 
3176 		/*
3177 		 * This code is used to make sure that a buffer is not
3178 		 * created while the getnewbuf routine is blocked.
3179 		 * This can be a problem whether the vnode is locked or not.
3180 		 * If the buffer is created out from under us, we have to
3181 		 * throw away the one we just created.
3182 		 *
3183 		 * Note: this must occur before we associate the buffer
3184 		 * with the vp especially considering limitations in
3185 		 * the splay tree implementation when dealing with duplicate
3186 		 * lblkno's.
3187 		 */
3188 		BO_LOCK(bo);
3189 		if (gbincore(bo, blkno)) {
3190 			BO_UNLOCK(bo);
3191 			bp->b_flags |= B_INVAL;
3192 			brelse(bp);
3193 			goto loop;
3194 		}
3195 
3196 		/*
3197 		 * Insert the buffer into the hash, so that it can
3198 		 * be found by incore.
3199 		 */
3200 		bp->b_blkno = bp->b_lblkno = blkno;
3201 		bp->b_offset = offset;
3202 		bgetvp(vp, bp);
3203 		BO_UNLOCK(bo);
3204 
3205 		/*
3206 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3207 		 * buffer size starts out as 0, B_CACHE will be set by
3208 		 * allocbuf() for the VMIO case prior to it testing the
3209 		 * backing store for validity.
3210 		 */
3211 
3212 		if (vmio) {
3213 			bp->b_flags |= B_VMIO;
3214 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3215 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3216 			    bp, vp->v_object, bp->b_bufobj->bo_object));
3217 		} else {
3218 			bp->b_flags &= ~B_VMIO;
3219 			KASSERT(bp->b_bufobj->bo_object == NULL,
3220 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3221 			    bp, bp->b_bufobj->bo_object));
3222 			BUF_CHECK_MAPPED(bp);
3223 		}
3224 
3225 		allocbuf(bp, size);
3226 		bp->b_flags &= ~B_DONE;
3227 	}
3228 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3229 	BUF_ASSERT_HELD(bp);
3230 end:
3231 	KASSERT(bp->b_bufobj == bo,
3232 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3233 	return (bp);
3234 }
3235 
3236 /*
3237  * Get an empty, disassociated buffer of given size.  The buffer is initially
3238  * set to B_INVAL.
3239  */
3240 struct buf *
3241 geteblk(int size, int flags)
3242 {
3243 	struct buf *bp;
3244 	int maxsize;
3245 
3246 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3247 	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3248 		if ((flags & GB_NOWAIT_BD) &&
3249 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3250 			return (NULL);
3251 	}
3252 	allocbuf(bp, size);
3253 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3254 	BUF_ASSERT_HELD(bp);
3255 	return (bp);
3256 }
3257 
3258 
3259 /*
3260  * This code constitutes the buffer memory from either anonymous system
3261  * memory (in the case of non-VMIO operations) or from an associated
3262  * VM object (in the case of VMIO operations).  This code is able to
3263  * resize a buffer up or down.
3264  *
3265  * Note that this code is tricky, and has many complications to resolve
3266  * deadlock or inconsistant data situations.  Tread lightly!!!
3267  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3268  * the caller.  Calling this code willy nilly can result in the loss of data.
3269  *
3270  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3271  * B_CACHE for the non-VMIO case.
3272  */
3273 
3274 int
3275 allocbuf(struct buf *bp, int size)
3276 {
3277 	int newbsize, mbsize;
3278 	int i;
3279 
3280 	BUF_ASSERT_HELD(bp);
3281 
3282 	if (bp->b_kvasize < size)
3283 		panic("allocbuf: buffer too small");
3284 
3285 	if ((bp->b_flags & B_VMIO) == 0) {
3286 		caddr_t origbuf;
3287 		int origbufsize;
3288 		/*
3289 		 * Just get anonymous memory from the kernel.  Don't
3290 		 * mess with B_CACHE.
3291 		 */
3292 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3293 		if (bp->b_flags & B_MALLOC)
3294 			newbsize = mbsize;
3295 		else
3296 			newbsize = round_page(size);
3297 
3298 		if (newbsize < bp->b_bufsize) {
3299 			/*
3300 			 * malloced buffers are not shrunk
3301 			 */
3302 			if (bp->b_flags & B_MALLOC) {
3303 				if (newbsize) {
3304 					bp->b_bcount = size;
3305 				} else {
3306 					free(bp->b_data, M_BIOBUF);
3307 					if (bp->b_bufsize) {
3308 						atomic_subtract_long(
3309 						    &bufmallocspace,
3310 						    bp->b_bufsize);
3311 						bufspacewakeup();
3312 						bp->b_bufsize = 0;
3313 					}
3314 					bp->b_saveaddr = bp->b_kvabase;
3315 					bp->b_data = bp->b_saveaddr;
3316 					bp->b_bcount = 0;
3317 					bp->b_flags &= ~B_MALLOC;
3318 				}
3319 				return 1;
3320 			}
3321 			vm_hold_free_pages(bp, newbsize);
3322 		} else if (newbsize > bp->b_bufsize) {
3323 			/*
3324 			 * We only use malloced memory on the first allocation.
3325 			 * and revert to page-allocated memory when the buffer
3326 			 * grows.
3327 			 */
3328 			/*
3329 			 * There is a potential smp race here that could lead
3330 			 * to bufmallocspace slightly passing the max.  It
3331 			 * is probably extremely rare and not worth worrying
3332 			 * over.
3333 			 */
3334 			if ( (bufmallocspace < maxbufmallocspace) &&
3335 				(bp->b_bufsize == 0) &&
3336 				(mbsize <= PAGE_SIZE/2)) {
3337 
3338 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3339 				bp->b_bufsize = mbsize;
3340 				bp->b_bcount = size;
3341 				bp->b_flags |= B_MALLOC;
3342 				atomic_add_long(&bufmallocspace, mbsize);
3343 				return 1;
3344 			}
3345 			origbuf = NULL;
3346 			origbufsize = 0;
3347 			/*
3348 			 * If the buffer is growing on its other-than-first allocation,
3349 			 * then we revert to the page-allocation scheme.
3350 			 */
3351 			if (bp->b_flags & B_MALLOC) {
3352 				origbuf = bp->b_data;
3353 				origbufsize = bp->b_bufsize;
3354 				bp->b_data = bp->b_kvabase;
3355 				if (bp->b_bufsize) {
3356 					atomic_subtract_long(&bufmallocspace,
3357 					    bp->b_bufsize);
3358 					bufspacewakeup();
3359 					bp->b_bufsize = 0;
3360 				}
3361 				bp->b_flags &= ~B_MALLOC;
3362 				newbsize = round_page(newbsize);
3363 			}
3364 			vm_hold_load_pages(
3365 			    bp,
3366 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3367 			    (vm_offset_t) bp->b_data + newbsize);
3368 			if (origbuf) {
3369 				bcopy(origbuf, bp->b_data, origbufsize);
3370 				free(origbuf, M_BIOBUF);
3371 			}
3372 		}
3373 	} else {
3374 		int desiredpages;
3375 
3376 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3377 		desiredpages = (size == 0) ? 0 :
3378 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3379 
3380 		if (bp->b_flags & B_MALLOC)
3381 			panic("allocbuf: VMIO buffer can't be malloced");
3382 		/*
3383 		 * Set B_CACHE initially if buffer is 0 length or will become
3384 		 * 0-length.
3385 		 */
3386 		if (size == 0 || bp->b_bufsize == 0)
3387 			bp->b_flags |= B_CACHE;
3388 
3389 		if (newbsize < bp->b_bufsize) {
3390 			/*
3391 			 * DEV_BSIZE aligned new buffer size is less then the
3392 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3393 			 * if we have to remove any pages.
3394 			 */
3395 			if (desiredpages < bp->b_npages) {
3396 				vm_page_t m;
3397 
3398 				if ((bp->b_flags & B_UNMAPPED) == 0) {
3399 					BUF_CHECK_MAPPED(bp);
3400 					pmap_qremove((vm_offset_t)trunc_page(
3401 					    (vm_offset_t)bp->b_data) +
3402 					    (desiredpages << PAGE_SHIFT),
3403 					    (bp->b_npages - desiredpages));
3404 				} else
3405 					BUF_CHECK_UNMAPPED(bp);
3406 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3407 				for (i = desiredpages; i < bp->b_npages; i++) {
3408 					/*
3409 					 * the page is not freed here -- it
3410 					 * is the responsibility of
3411 					 * vnode_pager_setsize
3412 					 */
3413 					m = bp->b_pages[i];
3414 					KASSERT(m != bogus_page,
3415 					    ("allocbuf: bogus page found"));
3416 					while (vm_page_sleep_if_busy(m, TRUE,
3417 					    "biodep"))
3418 						continue;
3419 
3420 					bp->b_pages[i] = NULL;
3421 					vm_page_lock(m);
3422 					vm_page_unwire(m, 0);
3423 					vm_page_unlock(m);
3424 				}
3425 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3426 				bp->b_npages = desiredpages;
3427 			}
3428 		} else if (size > bp->b_bcount) {
3429 			/*
3430 			 * We are growing the buffer, possibly in a
3431 			 * byte-granular fashion.
3432 			 */
3433 			vm_object_t obj;
3434 			vm_offset_t toff;
3435 			vm_offset_t tinc;
3436 
3437 			/*
3438 			 * Step 1, bring in the VM pages from the object,
3439 			 * allocating them if necessary.  We must clear
3440 			 * B_CACHE if these pages are not valid for the
3441 			 * range covered by the buffer.
3442 			 */
3443 
3444 			obj = bp->b_bufobj->bo_object;
3445 
3446 			VM_OBJECT_WLOCK(obj);
3447 			while (bp->b_npages < desiredpages) {
3448 				vm_page_t m;
3449 
3450 				/*
3451 				 * We must allocate system pages since blocking
3452 				 * here could interfere with paging I/O, no
3453 				 * matter which process we are.
3454 				 *
3455 				 * We can only test VPO_BUSY here.  Blocking on
3456 				 * m->busy might lead to a deadlock:
3457 				 *  vm_fault->getpages->cluster_read->allocbuf
3458 				 * Thus, we specify VM_ALLOC_IGN_SBUSY.
3459 				 */
3460 				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3461 				    bp->b_npages, VM_ALLOC_NOBUSY |
3462 				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3463 				    VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
3464 				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3465 				if (m->valid == 0)
3466 					bp->b_flags &= ~B_CACHE;
3467 				bp->b_pages[bp->b_npages] = m;
3468 				++bp->b_npages;
3469 			}
3470 
3471 			/*
3472 			 * Step 2.  We've loaded the pages into the buffer,
3473 			 * we have to figure out if we can still have B_CACHE
3474 			 * set.  Note that B_CACHE is set according to the
3475 			 * byte-granular range ( bcount and size ), new the
3476 			 * aligned range ( newbsize ).
3477 			 *
3478 			 * The VM test is against m->valid, which is DEV_BSIZE
3479 			 * aligned.  Needless to say, the validity of the data
3480 			 * needs to also be DEV_BSIZE aligned.  Note that this
3481 			 * fails with NFS if the server or some other client
3482 			 * extends the file's EOF.  If our buffer is resized,
3483 			 * B_CACHE may remain set! XXX
3484 			 */
3485 
3486 			toff = bp->b_bcount;
3487 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3488 
3489 			while ((bp->b_flags & B_CACHE) && toff < size) {
3490 				vm_pindex_t pi;
3491 
3492 				if (tinc > (size - toff))
3493 					tinc = size - toff;
3494 
3495 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3496 				    PAGE_SHIFT;
3497 
3498 				vfs_buf_test_cache(
3499 				    bp,
3500 				    bp->b_offset,
3501 				    toff,
3502 				    tinc,
3503 				    bp->b_pages[pi]
3504 				);
3505 				toff += tinc;
3506 				tinc = PAGE_SIZE;
3507 			}
3508 			VM_OBJECT_WUNLOCK(obj);
3509 
3510 			/*
3511 			 * Step 3, fixup the KVM pmap.
3512 			 */
3513 			if ((bp->b_flags & B_UNMAPPED) == 0)
3514 				bpmap_qenter(bp);
3515 			else
3516 				BUF_CHECK_UNMAPPED(bp);
3517 		}
3518 	}
3519 	if (newbsize < bp->b_bufsize)
3520 		bufspacewakeup();
3521 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3522 	bp->b_bcount = size;		/* requested buffer size	*/
3523 	return 1;
3524 }
3525 
3526 extern int inflight_transient_maps;
3527 
3528 void
3529 biodone(struct bio *bp)
3530 {
3531 	struct mtx *mtxp;
3532 	void (*done)(struct bio *);
3533 	vm_offset_t start, end;
3534 	int transient;
3535 
3536 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3537 	mtx_lock(mtxp);
3538 	bp->bio_flags |= BIO_DONE;
3539 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3540 		start = trunc_page((vm_offset_t)bp->bio_data);
3541 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3542 		transient = 1;
3543 	} else {
3544 		transient = 0;
3545 		start = end = 0;
3546 	}
3547 	done = bp->bio_done;
3548 	if (done == NULL)
3549 		wakeup(bp);
3550 	mtx_unlock(mtxp);
3551 	if (done != NULL)
3552 		done(bp);
3553 	if (transient) {
3554 		pmap_qremove(start, OFF_TO_IDX(end - start));
3555 		vm_map_remove(bio_transient_map, start, end);
3556 		atomic_add_int(&inflight_transient_maps, -1);
3557 	}
3558 }
3559 
3560 /*
3561  * Wait for a BIO to finish.
3562  *
3563  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3564  * case is not yet clear.
3565  */
3566 int
3567 biowait(struct bio *bp, const char *wchan)
3568 {
3569 	struct mtx *mtxp;
3570 
3571 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3572 	mtx_lock(mtxp);
3573 	while ((bp->bio_flags & BIO_DONE) == 0)
3574 		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3575 	mtx_unlock(mtxp);
3576 	if (bp->bio_error != 0)
3577 		return (bp->bio_error);
3578 	if (!(bp->bio_flags & BIO_ERROR))
3579 		return (0);
3580 	return (EIO);
3581 }
3582 
3583 void
3584 biofinish(struct bio *bp, struct devstat *stat, int error)
3585 {
3586 
3587 	if (error) {
3588 		bp->bio_error = error;
3589 		bp->bio_flags |= BIO_ERROR;
3590 	}
3591 	if (stat != NULL)
3592 		devstat_end_transaction_bio(stat, bp);
3593 	biodone(bp);
3594 }
3595 
3596 /*
3597  *	bufwait:
3598  *
3599  *	Wait for buffer I/O completion, returning error status.  The buffer
3600  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3601  *	error and cleared.
3602  */
3603 int
3604 bufwait(struct buf *bp)
3605 {
3606 	if (bp->b_iocmd == BIO_READ)
3607 		bwait(bp, PRIBIO, "biord");
3608 	else
3609 		bwait(bp, PRIBIO, "biowr");
3610 	if (bp->b_flags & B_EINTR) {
3611 		bp->b_flags &= ~B_EINTR;
3612 		return (EINTR);
3613 	}
3614 	if (bp->b_ioflags & BIO_ERROR) {
3615 		return (bp->b_error ? bp->b_error : EIO);
3616 	} else {
3617 		return (0);
3618 	}
3619 }
3620 
3621  /*
3622   * Call back function from struct bio back up to struct buf.
3623   */
3624 static void
3625 bufdonebio(struct bio *bip)
3626 {
3627 	struct buf *bp;
3628 
3629 	bp = bip->bio_caller2;
3630 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3631 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3632 	bp->b_ioflags = bip->bio_flags;
3633 	bp->b_error = bip->bio_error;
3634 	if (bp->b_error)
3635 		bp->b_ioflags |= BIO_ERROR;
3636 	bufdone(bp);
3637 	g_destroy_bio(bip);
3638 }
3639 
3640 void
3641 dev_strategy(struct cdev *dev, struct buf *bp)
3642 {
3643 	struct cdevsw *csw;
3644 	int ref;
3645 
3646 	KASSERT(dev->si_refcount > 0,
3647 	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3648 	    devtoname(dev), dev));
3649 
3650 	csw = dev_refthread(dev, &ref);
3651 	dev_strategy_csw(dev, csw, bp);
3652 	dev_relthread(dev, ref);
3653 }
3654 
3655 void
3656 dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3657 {
3658 	struct bio *bip;
3659 
3660 	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3661 	    ("b_iocmd botch"));
3662 	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3663 	    dev->si_threadcount > 0,
3664 	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3665 	    dev));
3666 	if (csw == NULL) {
3667 		bp->b_error = ENXIO;
3668 		bp->b_ioflags = BIO_ERROR;
3669 		bufdone(bp);
3670 		return;
3671 	}
3672 	for (;;) {
3673 		bip = g_new_bio();
3674 		if (bip != NULL)
3675 			break;
3676 		/* Try again later */
3677 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3678 	}
3679 	bip->bio_cmd = bp->b_iocmd;
3680 	bip->bio_offset = bp->b_iooffset;
3681 	bip->bio_length = bp->b_bcount;
3682 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3683 	bdata2bio(bp, bip);
3684 	bip->bio_done = bufdonebio;
3685 	bip->bio_caller2 = bp;
3686 	bip->bio_dev = dev;
3687 	(*csw->d_strategy)(bip);
3688 }
3689 
3690 /*
3691  *	bufdone:
3692  *
3693  *	Finish I/O on a buffer, optionally calling a completion function.
3694  *	This is usually called from an interrupt so process blocking is
3695  *	not allowed.
3696  *
3697  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3698  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3699  *	assuming B_INVAL is clear.
3700  *
3701  *	For the VMIO case, we set B_CACHE if the op was a read and no
3702  *	read error occured, or if the op was a write.  B_CACHE is never
3703  *	set if the buffer is invalid or otherwise uncacheable.
3704  *
3705  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3706  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3707  *	in the biodone routine.
3708  */
3709 void
3710 bufdone(struct buf *bp)
3711 {
3712 	struct bufobj *dropobj;
3713 	void    (*biodone)(struct buf *);
3714 
3715 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3716 	dropobj = NULL;
3717 
3718 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3719 	BUF_ASSERT_HELD(bp);
3720 
3721 	runningbufwakeup(bp);
3722 	if (bp->b_iocmd == BIO_WRITE)
3723 		dropobj = bp->b_bufobj;
3724 	/* call optional completion function if requested */
3725 	if (bp->b_iodone != NULL) {
3726 		biodone = bp->b_iodone;
3727 		bp->b_iodone = NULL;
3728 		(*biodone) (bp);
3729 		if (dropobj)
3730 			bufobj_wdrop(dropobj);
3731 		return;
3732 	}
3733 
3734 	bufdone_finish(bp);
3735 
3736 	if (dropobj)
3737 		bufobj_wdrop(dropobj);
3738 }
3739 
3740 void
3741 bufdone_finish(struct buf *bp)
3742 {
3743 	BUF_ASSERT_HELD(bp);
3744 
3745 	if (!LIST_EMPTY(&bp->b_dep))
3746 		buf_complete(bp);
3747 
3748 	if (bp->b_flags & B_VMIO) {
3749 		vm_ooffset_t foff;
3750 		vm_page_t m;
3751 		vm_object_t obj;
3752 		struct vnode *vp;
3753 		int bogus, i, iosize;
3754 
3755 		obj = bp->b_bufobj->bo_object;
3756 		KASSERT(obj->paging_in_progress >= bp->b_npages,
3757 		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3758 		    obj->paging_in_progress, bp->b_npages));
3759 
3760 		vp = bp->b_vp;
3761 		KASSERT(vp->v_holdcnt > 0,
3762 		    ("biodone_finish: vnode %p has zero hold count", vp));
3763 		KASSERT(vp->v_object != NULL,
3764 		    ("biodone_finish: vnode %p has no vm_object", vp));
3765 
3766 		foff = bp->b_offset;
3767 		KASSERT(bp->b_offset != NOOFFSET,
3768 		    ("biodone_finish: bp %p has no buffer offset", bp));
3769 
3770 		/*
3771 		 * Set B_CACHE if the op was a normal read and no error
3772 		 * occured.  B_CACHE is set for writes in the b*write()
3773 		 * routines.
3774 		 */
3775 		iosize = bp->b_bcount - bp->b_resid;
3776 		if (bp->b_iocmd == BIO_READ &&
3777 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3778 		    !(bp->b_ioflags & BIO_ERROR)) {
3779 			bp->b_flags |= B_CACHE;
3780 		}
3781 		bogus = 0;
3782 		VM_OBJECT_WLOCK(obj);
3783 		for (i = 0; i < bp->b_npages; i++) {
3784 			int bogusflag = 0;
3785 			int resid;
3786 
3787 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3788 			if (resid > iosize)
3789 				resid = iosize;
3790 
3791 			/*
3792 			 * cleanup bogus pages, restoring the originals
3793 			 */
3794 			m = bp->b_pages[i];
3795 			if (m == bogus_page) {
3796 				bogus = bogusflag = 1;
3797 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3798 				if (m == NULL)
3799 					panic("biodone: page disappeared!");
3800 				bp->b_pages[i] = m;
3801 			}
3802 			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3803 			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3804 			    (intmax_t)foff, (uintmax_t)m->pindex));
3805 
3806 			/*
3807 			 * In the write case, the valid and clean bits are
3808 			 * already changed correctly ( see bdwrite() ), so we
3809 			 * only need to do this here in the read case.
3810 			 */
3811 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3812 				KASSERT((m->dirty & vm_page_bits(foff &
3813 				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3814 				    " page %p has unexpected dirty bits", m));
3815 				vfs_page_set_valid(bp, foff, m);
3816 			}
3817 
3818 			vm_page_io_finish(m);
3819 			vm_object_pip_subtract(obj, 1);
3820 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3821 			iosize -= resid;
3822 		}
3823 		vm_object_pip_wakeupn(obj, 0);
3824 		VM_OBJECT_WUNLOCK(obj);
3825 		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3826 			BUF_CHECK_MAPPED(bp);
3827 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3828 			    bp->b_pages, bp->b_npages);
3829 		}
3830 	}
3831 
3832 	/*
3833 	 * For asynchronous completions, release the buffer now. The brelse
3834 	 * will do a wakeup there if necessary - so no need to do a wakeup
3835 	 * here in the async case. The sync case always needs to do a wakeup.
3836 	 */
3837 
3838 	if (bp->b_flags & B_ASYNC) {
3839 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3840 			brelse(bp);
3841 		else
3842 			bqrelse(bp);
3843 	} else
3844 		bdone(bp);
3845 }
3846 
3847 /*
3848  * This routine is called in lieu of iodone in the case of
3849  * incomplete I/O.  This keeps the busy status for pages
3850  * consistant.
3851  */
3852 void
3853 vfs_unbusy_pages(struct buf *bp)
3854 {
3855 	int i;
3856 	vm_object_t obj;
3857 	vm_page_t m;
3858 
3859 	runningbufwakeup(bp);
3860 	if (!(bp->b_flags & B_VMIO))
3861 		return;
3862 
3863 	obj = bp->b_bufobj->bo_object;
3864 	VM_OBJECT_WLOCK(obj);
3865 	for (i = 0; i < bp->b_npages; i++) {
3866 		m = bp->b_pages[i];
3867 		if (m == bogus_page) {
3868 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3869 			if (!m)
3870 				panic("vfs_unbusy_pages: page missing\n");
3871 			bp->b_pages[i] = m;
3872 			if ((bp->b_flags & B_UNMAPPED) == 0) {
3873 				BUF_CHECK_MAPPED(bp);
3874 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3875 				    bp->b_pages, bp->b_npages);
3876 			} else
3877 				BUF_CHECK_UNMAPPED(bp);
3878 		}
3879 		vm_object_pip_subtract(obj, 1);
3880 		vm_page_io_finish(m);
3881 	}
3882 	vm_object_pip_wakeupn(obj, 0);
3883 	VM_OBJECT_WUNLOCK(obj);
3884 }
3885 
3886 /*
3887  * vfs_page_set_valid:
3888  *
3889  *	Set the valid bits in a page based on the supplied offset.   The
3890  *	range is restricted to the buffer's size.
3891  *
3892  *	This routine is typically called after a read completes.
3893  */
3894 static void
3895 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3896 {
3897 	vm_ooffset_t eoff;
3898 
3899 	/*
3900 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3901 	 * page boundary and eoff is not greater than the end of the buffer.
3902 	 * The end of the buffer, in this case, is our file EOF, not the
3903 	 * allocation size of the buffer.
3904 	 */
3905 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3906 	if (eoff > bp->b_offset + bp->b_bcount)
3907 		eoff = bp->b_offset + bp->b_bcount;
3908 
3909 	/*
3910 	 * Set valid range.  This is typically the entire buffer and thus the
3911 	 * entire page.
3912 	 */
3913 	if (eoff > off)
3914 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3915 }
3916 
3917 /*
3918  * vfs_page_set_validclean:
3919  *
3920  *	Set the valid bits and clear the dirty bits in a page based on the
3921  *	supplied offset.   The range is restricted to the buffer's size.
3922  */
3923 static void
3924 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3925 {
3926 	vm_ooffset_t soff, eoff;
3927 
3928 	/*
3929 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3930 	 * page boundry or cross the end of the buffer.  The end of the
3931 	 * buffer, in this case, is our file EOF, not the allocation size
3932 	 * of the buffer.
3933 	 */
3934 	soff = off;
3935 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3936 	if (eoff > bp->b_offset + bp->b_bcount)
3937 		eoff = bp->b_offset + bp->b_bcount;
3938 
3939 	/*
3940 	 * Set valid range.  This is typically the entire buffer and thus the
3941 	 * entire page.
3942 	 */
3943 	if (eoff > soff) {
3944 		vm_page_set_validclean(
3945 		    m,
3946 		   (vm_offset_t) (soff & PAGE_MASK),
3947 		   (vm_offset_t) (eoff - soff)
3948 		);
3949 	}
3950 }
3951 
3952 /*
3953  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
3954  * any page is busy, drain the flag.
3955  */
3956 static void
3957 vfs_drain_busy_pages(struct buf *bp)
3958 {
3959 	vm_page_t m;
3960 	int i, last_busied;
3961 
3962 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
3963 	last_busied = 0;
3964 	for (i = 0; i < bp->b_npages; i++) {
3965 		m = bp->b_pages[i];
3966 		if ((m->oflags & VPO_BUSY) != 0) {
3967 			for (; last_busied < i; last_busied++)
3968 				vm_page_busy(bp->b_pages[last_busied]);
3969 			while ((m->oflags & VPO_BUSY) != 0)
3970 				vm_page_sleep(m, "vbpage");
3971 		}
3972 	}
3973 	for (i = 0; i < last_busied; i++)
3974 		vm_page_wakeup(bp->b_pages[i]);
3975 }
3976 
3977 /*
3978  * This routine is called before a device strategy routine.
3979  * It is used to tell the VM system that paging I/O is in
3980  * progress, and treat the pages associated with the buffer
3981  * almost as being VPO_BUSY.  Also the object paging_in_progress
3982  * flag is handled to make sure that the object doesn't become
3983  * inconsistant.
3984  *
3985  * Since I/O has not been initiated yet, certain buffer flags
3986  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3987  * and should be ignored.
3988  */
3989 void
3990 vfs_busy_pages(struct buf *bp, int clear_modify)
3991 {
3992 	int i, bogus;
3993 	vm_object_t obj;
3994 	vm_ooffset_t foff;
3995 	vm_page_t m;
3996 
3997 	if (!(bp->b_flags & B_VMIO))
3998 		return;
3999 
4000 	obj = bp->b_bufobj->bo_object;
4001 	foff = bp->b_offset;
4002 	KASSERT(bp->b_offset != NOOFFSET,
4003 	    ("vfs_busy_pages: no buffer offset"));
4004 	VM_OBJECT_WLOCK(obj);
4005 	vfs_drain_busy_pages(bp);
4006 	if (bp->b_bufsize != 0)
4007 		vfs_setdirty_locked_object(bp);
4008 	bogus = 0;
4009 	for (i = 0; i < bp->b_npages; i++) {
4010 		m = bp->b_pages[i];
4011 
4012 		if ((bp->b_flags & B_CLUSTER) == 0) {
4013 			vm_object_pip_add(obj, 1);
4014 			vm_page_io_start(m);
4015 		}
4016 		/*
4017 		 * When readying a buffer for a read ( i.e
4018 		 * clear_modify == 0 ), it is important to do
4019 		 * bogus_page replacement for valid pages in
4020 		 * partially instantiated buffers.  Partially
4021 		 * instantiated buffers can, in turn, occur when
4022 		 * reconstituting a buffer from its VM backing store
4023 		 * base.  We only have to do this if B_CACHE is
4024 		 * clear ( which causes the I/O to occur in the
4025 		 * first place ).  The replacement prevents the read
4026 		 * I/O from overwriting potentially dirty VM-backed
4027 		 * pages.  XXX bogus page replacement is, uh, bogus.
4028 		 * It may not work properly with small-block devices.
4029 		 * We need to find a better way.
4030 		 */
4031 		if (clear_modify) {
4032 			pmap_remove_write(m);
4033 			vfs_page_set_validclean(bp, foff, m);
4034 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4035 		    (bp->b_flags & B_CACHE) == 0) {
4036 			bp->b_pages[i] = bogus_page;
4037 			bogus++;
4038 		}
4039 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4040 	}
4041 	VM_OBJECT_WUNLOCK(obj);
4042 	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4043 		BUF_CHECK_MAPPED(bp);
4044 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4045 		    bp->b_pages, bp->b_npages);
4046 	}
4047 }
4048 
4049 /*
4050  *	vfs_bio_set_valid:
4051  *
4052  *	Set the range within the buffer to valid.  The range is
4053  *	relative to the beginning of the buffer, b_offset.  Note that
4054  *	b_offset itself may be offset from the beginning of the first
4055  *	page.
4056  */
4057 void
4058 vfs_bio_set_valid(struct buf *bp, int base, int size)
4059 {
4060 	int i, n;
4061 	vm_page_t m;
4062 
4063 	if (!(bp->b_flags & B_VMIO))
4064 		return;
4065 
4066 	/*
4067 	 * Fixup base to be relative to beginning of first page.
4068 	 * Set initial n to be the maximum number of bytes in the
4069 	 * first page that can be validated.
4070 	 */
4071 	base += (bp->b_offset & PAGE_MASK);
4072 	n = PAGE_SIZE - (base & PAGE_MASK);
4073 
4074 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4075 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4076 		m = bp->b_pages[i];
4077 		if (n > size)
4078 			n = size;
4079 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4080 		base += n;
4081 		size -= n;
4082 		n = PAGE_SIZE;
4083 	}
4084 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4085 }
4086 
4087 /*
4088  *	vfs_bio_clrbuf:
4089  *
4090  *	If the specified buffer is a non-VMIO buffer, clear the entire
4091  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4092  *	validate only the previously invalid portions of the buffer.
4093  *	This routine essentially fakes an I/O, so we need to clear
4094  *	BIO_ERROR and B_INVAL.
4095  *
4096  *	Note that while we only theoretically need to clear through b_bcount,
4097  *	we go ahead and clear through b_bufsize.
4098  */
4099 void
4100 vfs_bio_clrbuf(struct buf *bp)
4101 {
4102 	int i, j, mask, sa, ea, slide;
4103 
4104 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4105 		clrbuf(bp);
4106 		return;
4107 	}
4108 	bp->b_flags &= ~B_INVAL;
4109 	bp->b_ioflags &= ~BIO_ERROR;
4110 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4111 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4112 	    (bp->b_offset & PAGE_MASK) == 0) {
4113 		if (bp->b_pages[0] == bogus_page)
4114 			goto unlock;
4115 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4116 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4117 		if ((bp->b_pages[0]->valid & mask) == mask)
4118 			goto unlock;
4119 		if ((bp->b_pages[0]->valid & mask) == 0) {
4120 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4121 			bp->b_pages[0]->valid |= mask;
4122 			goto unlock;
4123 		}
4124 	}
4125 	sa = bp->b_offset & PAGE_MASK;
4126 	slide = 0;
4127 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4128 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4129 		ea = slide & PAGE_MASK;
4130 		if (ea == 0)
4131 			ea = PAGE_SIZE;
4132 		if (bp->b_pages[i] == bogus_page)
4133 			continue;
4134 		j = sa / DEV_BSIZE;
4135 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4136 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4137 		if ((bp->b_pages[i]->valid & mask) == mask)
4138 			continue;
4139 		if ((bp->b_pages[i]->valid & mask) == 0)
4140 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4141 		else {
4142 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4143 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4144 					pmap_zero_page_area(bp->b_pages[i],
4145 					    sa, DEV_BSIZE);
4146 				}
4147 			}
4148 		}
4149 		bp->b_pages[i]->valid |= mask;
4150 	}
4151 unlock:
4152 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4153 	bp->b_resid = 0;
4154 }
4155 
4156 void
4157 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4158 {
4159 	vm_page_t m;
4160 	int i, n;
4161 
4162 	if ((bp->b_flags & B_UNMAPPED) == 0) {
4163 		BUF_CHECK_MAPPED(bp);
4164 		bzero(bp->b_data + base, size);
4165 	} else {
4166 		BUF_CHECK_UNMAPPED(bp);
4167 		n = PAGE_SIZE - (base & PAGE_MASK);
4168 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4169 			m = bp->b_pages[i];
4170 			if (n > size)
4171 				n = size;
4172 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4173 			base += n;
4174 			size -= n;
4175 			n = PAGE_SIZE;
4176 		}
4177 	}
4178 }
4179 
4180 /*
4181  * vm_hold_load_pages and vm_hold_free_pages get pages into
4182  * a buffers address space.  The pages are anonymous and are
4183  * not associated with a file object.
4184  */
4185 static void
4186 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4187 {
4188 	vm_offset_t pg;
4189 	vm_page_t p;
4190 	int index;
4191 
4192 	BUF_CHECK_MAPPED(bp);
4193 
4194 	to = round_page(to);
4195 	from = round_page(from);
4196 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4197 
4198 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4199 tryagain:
4200 		/*
4201 		 * note: must allocate system pages since blocking here
4202 		 * could interfere with paging I/O, no matter which
4203 		 * process we are.
4204 		 */
4205 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4206 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4207 		if (p == NULL) {
4208 			VM_WAIT;
4209 			goto tryagain;
4210 		}
4211 		pmap_qenter(pg, &p, 1);
4212 		bp->b_pages[index] = p;
4213 	}
4214 	bp->b_npages = index;
4215 }
4216 
4217 /* Return pages associated with this buf to the vm system */
4218 static void
4219 vm_hold_free_pages(struct buf *bp, int newbsize)
4220 {
4221 	vm_offset_t from;
4222 	vm_page_t p;
4223 	int index, newnpages;
4224 
4225 	BUF_CHECK_MAPPED(bp);
4226 
4227 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4228 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4229 	if (bp->b_npages > newnpages)
4230 		pmap_qremove(from, bp->b_npages - newnpages);
4231 	for (index = newnpages; index < bp->b_npages; index++) {
4232 		p = bp->b_pages[index];
4233 		bp->b_pages[index] = NULL;
4234 		if (p->busy != 0)
4235 			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4236 			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4237 		p->wire_count--;
4238 		vm_page_free(p);
4239 		atomic_subtract_int(&cnt.v_wire_count, 1);
4240 	}
4241 	bp->b_npages = newnpages;
4242 }
4243 
4244 /*
4245  * Map an IO request into kernel virtual address space.
4246  *
4247  * All requests are (re)mapped into kernel VA space.
4248  * Notice that we use b_bufsize for the size of the buffer
4249  * to be mapped.  b_bcount might be modified by the driver.
4250  *
4251  * Note that even if the caller determines that the address space should
4252  * be valid, a race or a smaller-file mapped into a larger space may
4253  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4254  * check the return value.
4255  */
4256 int
4257 vmapbuf(struct buf *bp, int mapbuf)
4258 {
4259 	caddr_t kva;
4260 	vm_prot_t prot;
4261 	int pidx;
4262 
4263 	if (bp->b_bufsize < 0)
4264 		return (-1);
4265 	prot = VM_PROT_READ;
4266 	if (bp->b_iocmd == BIO_READ)
4267 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4268 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4269 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4270 	    btoc(MAXPHYS))) < 0)
4271 		return (-1);
4272 	bp->b_npages = pidx;
4273 	if (mapbuf || !unmapped_buf_allowed) {
4274 		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4275 		kva = bp->b_saveaddr;
4276 		bp->b_saveaddr = bp->b_data;
4277 		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4278 		bp->b_flags &= ~B_UNMAPPED;
4279 	} else {
4280 		bp->b_flags |= B_UNMAPPED;
4281 		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4282 		bp->b_saveaddr = bp->b_data;
4283 		bp->b_data = unmapped_buf;
4284 	}
4285 	return(0);
4286 }
4287 
4288 /*
4289  * Free the io map PTEs associated with this IO operation.
4290  * We also invalidate the TLB entries and restore the original b_addr.
4291  */
4292 void
4293 vunmapbuf(struct buf *bp)
4294 {
4295 	int npages;
4296 
4297 	npages = bp->b_npages;
4298 	if (bp->b_flags & B_UNMAPPED)
4299 		bp->b_flags &= ~B_UNMAPPED;
4300 	else
4301 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4302 	vm_page_unhold_pages(bp->b_pages, npages);
4303 
4304 	bp->b_data = bp->b_saveaddr;
4305 }
4306 
4307 void
4308 bdone(struct buf *bp)
4309 {
4310 	struct mtx *mtxp;
4311 
4312 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4313 	mtx_lock(mtxp);
4314 	bp->b_flags |= B_DONE;
4315 	wakeup(bp);
4316 	mtx_unlock(mtxp);
4317 }
4318 
4319 void
4320 bwait(struct buf *bp, u_char pri, const char *wchan)
4321 {
4322 	struct mtx *mtxp;
4323 
4324 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4325 	mtx_lock(mtxp);
4326 	while ((bp->b_flags & B_DONE) == 0)
4327 		msleep(bp, mtxp, pri, wchan, 0);
4328 	mtx_unlock(mtxp);
4329 }
4330 
4331 int
4332 bufsync(struct bufobj *bo, int waitfor)
4333 {
4334 
4335 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4336 }
4337 
4338 void
4339 bufstrategy(struct bufobj *bo, struct buf *bp)
4340 {
4341 	int i = 0;
4342 	struct vnode *vp;
4343 
4344 	vp = bp->b_vp;
4345 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4346 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4347 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4348 	i = VOP_STRATEGY(vp, bp);
4349 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4350 }
4351 
4352 void
4353 bufobj_wrefl(struct bufobj *bo)
4354 {
4355 
4356 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4357 	ASSERT_BO_WLOCKED(bo);
4358 	bo->bo_numoutput++;
4359 }
4360 
4361 void
4362 bufobj_wref(struct bufobj *bo)
4363 {
4364 
4365 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4366 	BO_LOCK(bo);
4367 	bo->bo_numoutput++;
4368 	BO_UNLOCK(bo);
4369 }
4370 
4371 void
4372 bufobj_wdrop(struct bufobj *bo)
4373 {
4374 
4375 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4376 	BO_LOCK(bo);
4377 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4378 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4379 		bo->bo_flag &= ~BO_WWAIT;
4380 		wakeup(&bo->bo_numoutput);
4381 	}
4382 	BO_UNLOCK(bo);
4383 }
4384 
4385 int
4386 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4387 {
4388 	int error;
4389 
4390 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4391 	ASSERT_BO_WLOCKED(bo);
4392 	error = 0;
4393 	while (bo->bo_numoutput) {
4394 		bo->bo_flag |= BO_WWAIT;
4395 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4396 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4397 		if (error)
4398 			break;
4399 	}
4400 	return (error);
4401 }
4402 
4403 void
4404 bpin(struct buf *bp)
4405 {
4406 	struct mtx *mtxp;
4407 
4408 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4409 	mtx_lock(mtxp);
4410 	bp->b_pin_count++;
4411 	mtx_unlock(mtxp);
4412 }
4413 
4414 void
4415 bunpin(struct buf *bp)
4416 {
4417 	struct mtx *mtxp;
4418 
4419 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4420 	mtx_lock(mtxp);
4421 	if (--bp->b_pin_count == 0)
4422 		wakeup(bp);
4423 	mtx_unlock(mtxp);
4424 }
4425 
4426 void
4427 bunpin_wait(struct buf *bp)
4428 {
4429 	struct mtx *mtxp;
4430 
4431 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4432 	mtx_lock(mtxp);
4433 	while (bp->b_pin_count > 0)
4434 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4435 	mtx_unlock(mtxp);
4436 }
4437 
4438 /*
4439  * Set bio_data or bio_ma for struct bio from the struct buf.
4440  */
4441 void
4442 bdata2bio(struct buf *bp, struct bio *bip)
4443 {
4444 
4445 	if ((bp->b_flags & B_UNMAPPED) != 0) {
4446 		KASSERT(unmapped_buf_allowed, ("unmapped"));
4447 		bip->bio_ma = bp->b_pages;
4448 		bip->bio_ma_n = bp->b_npages;
4449 		bip->bio_data = unmapped_buf;
4450 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4451 		bip->bio_flags |= BIO_UNMAPPED;
4452 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4453 		    PAGE_SIZE == bp->b_npages,
4454 		    ("Buffer %p too short: %d %d %d", bp, bip->bio_ma_offset,
4455 		    bip->bio_length, bip->bio_ma_n));
4456 	} else {
4457 		bip->bio_data = bp->b_data;
4458 		bip->bio_ma = NULL;
4459 	}
4460 }
4461 
4462 #include "opt_ddb.h"
4463 #ifdef DDB
4464 #include <ddb/ddb.h>
4465 
4466 /* DDB command to show buffer data */
4467 DB_SHOW_COMMAND(buffer, db_show_buffer)
4468 {
4469 	/* get args */
4470 	struct buf *bp = (struct buf *)addr;
4471 
4472 	if (!have_addr) {
4473 		db_printf("usage: show buffer <addr>\n");
4474 		return;
4475 	}
4476 
4477 	db_printf("buf at %p\n", bp);
4478 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4479 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4480 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4481 	db_printf(
4482 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4483 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4484 	    "b_dep = %p\n",
4485 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4486 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4487 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4488 	if (bp->b_npages) {
4489 		int i;
4490 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4491 		for (i = 0; i < bp->b_npages; i++) {
4492 			vm_page_t m;
4493 			m = bp->b_pages[i];
4494 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4495 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4496 			if ((i + 1) < bp->b_npages)
4497 				db_printf(",");
4498 		}
4499 		db_printf("\n");
4500 	}
4501 	db_printf(" ");
4502 	BUF_LOCKPRINTINFO(bp);
4503 }
4504 
4505 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4506 {
4507 	struct buf *bp;
4508 	int i;
4509 
4510 	for (i = 0; i < nbuf; i++) {
4511 		bp = &buf[i];
4512 		if (BUF_ISLOCKED(bp)) {
4513 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4514 			db_printf("\n");
4515 		}
4516 	}
4517 }
4518 
4519 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4520 {
4521 	struct vnode *vp;
4522 	struct buf *bp;
4523 
4524 	if (!have_addr) {
4525 		db_printf("usage: show vnodebufs <addr>\n");
4526 		return;
4527 	}
4528 	vp = (struct vnode *)addr;
4529 	db_printf("Clean buffers:\n");
4530 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4531 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4532 		db_printf("\n");
4533 	}
4534 	db_printf("Dirty buffers:\n");
4535 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4536 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4537 		db_printf("\n");
4538 	}
4539 }
4540 
4541 DB_COMMAND(countfreebufs, db_coundfreebufs)
4542 {
4543 	struct buf *bp;
4544 	int i, used = 0, nfree = 0;
4545 
4546 	if (have_addr) {
4547 		db_printf("usage: countfreebufs\n");
4548 		return;
4549 	}
4550 
4551 	for (i = 0; i < nbuf; i++) {
4552 		bp = &buf[i];
4553 		if ((bp->b_flags & B_INFREECNT) != 0)
4554 			nfree++;
4555 		else
4556 			used++;
4557 	}
4558 
4559 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4560 	    nfree + used);
4561 	db_printf("numfreebuffers is %d\n", numfreebuffers);
4562 }
4563 #endif /* DDB */
4564