xref: /freebsd/sys/kern/vfs_bio.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * Copyright (c) 2013 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * this file contains a new buffer I/O scheme implementing a coherent
34  * VM object and buffer cache scheme.  Pains have been taken to make
35  * sure that the performance degradation associated with schemes such
36  * as this is not realized.
37  *
38  * Author:  John S. Dyson
39  * Significant help during the development and debugging phases
40  * had been provided by David Greenman, also of the FreeBSD core team.
41  *
42  * see man buf(9) for more info.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/conf.h>
52 #include <sys/buf.h>
53 #include <sys/devicestat.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fail.h>
56 #include <sys/limits.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/kthread.h>
63 #include <sys/proc.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/rwlock.h>
67 #include <sys/smp.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysproto.h>
70 #include <sys/vmem.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/watchdog.h>
74 #include <geom/geom.h>
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pageout.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vm_extern.h>
83 #include <vm/vm_map.h>
84 #include <vm/swap_pager.h>
85 #include "opt_compat.h"
86 #include "opt_swap.h"
87 
88 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
89 
90 struct	bio_ops bioops;		/* I/O operation notification */
91 
92 struct	buf_ops buf_ops_bio = {
93 	.bop_name	=	"buf_ops_bio",
94 	.bop_write	=	bufwrite,
95 	.bop_strategy	=	bufstrategy,
96 	.bop_sync	=	bufsync,
97 	.bop_bdflush	=	bufbdflush,
98 };
99 
100 static struct buf *buf;		/* buffer header pool */
101 extern struct buf *swbuf;	/* Swap buffer header pool. */
102 caddr_t unmapped_buf;
103 
104 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
105 struct proc *bufdaemonproc;
106 struct proc *bufspacedaemonproc;
107 
108 static int inmem(struct vnode *vp, daddr_t blkno);
109 static void vm_hold_free_pages(struct buf *bp, int newbsize);
110 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
111 		vm_offset_t to);
112 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
113 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
114 		vm_page_t m);
115 static void vfs_clean_pages_dirty_buf(struct buf *bp);
116 static void vfs_setdirty_locked_object(struct buf *bp);
117 static void vfs_vmio_invalidate(struct buf *bp);
118 static void vfs_vmio_truncate(struct buf *bp, int npages);
119 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
120 static int vfs_bio_clcheck(struct vnode *vp, int size,
121 		daddr_t lblkno, daddr_t blkno);
122 static int buf_flush(struct vnode *vp, int);
123 static int buf_recycle(bool);
124 static int buf_scan(bool);
125 static int flushbufqueues(struct vnode *, int, int);
126 static void buf_daemon(void);
127 static void bremfreel(struct buf *bp);
128 static __inline void bd_wakeup(void);
129 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
130 static void bufkva_reclaim(vmem_t *, int);
131 static void bufkva_free(struct buf *);
132 static int buf_import(void *, void **, int, int);
133 static void buf_release(void *, void **, int);
134 static void maxbcachebuf_adjust(void);
135 
136 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
137     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
138 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
139 #endif
140 
141 int vmiodirenable = TRUE;
142 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
143     "Use the VM system for directory writes");
144 long runningbufspace;
145 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
146     "Amount of presently outstanding async buffer io");
147 static long bufspace;
148 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
149     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
150 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
151     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
152 #else
153 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
154     "Physical memory used for buffers");
155 #endif
156 static long bufkvaspace;
157 SYSCTL_LONG(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 0,
158     "Kernel virtual memory used for buffers");
159 static long maxbufspace;
160 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW, &maxbufspace, 0,
161     "Maximum allowed value of bufspace (including metadata)");
162 static long bufmallocspace;
163 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
164     "Amount of malloced memory for buffers");
165 static long maxbufmallocspace;
166 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
167     0, "Maximum amount of malloced memory for buffers");
168 static long lobufspace;
169 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RW, &lobufspace, 0,
170     "Minimum amount of buffers we want to have");
171 long hibufspace;
172 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RW, &hibufspace, 0,
173     "Maximum allowed value of bufspace (excluding metadata)");
174 long bufspacethresh;
175 SYSCTL_LONG(_vfs, OID_AUTO, bufspacethresh, CTLFLAG_RW, &bufspacethresh,
176     0, "Bufspace consumed before waking the daemon to free some");
177 static int buffreekvacnt;
178 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
179     "Number of times we have freed the KVA space from some buffer");
180 static int bufdefragcnt;
181 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
182     "Number of times we have had to repeat buffer allocation to defragment");
183 static long lorunningspace;
184 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
185     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
186     "Minimum preferred space used for in-progress I/O");
187 static long hirunningspace;
188 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
189     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
190     "Maximum amount of space to use for in-progress I/O");
191 int dirtybufferflushes;
192 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
193     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
194 int bdwriteskip;
195 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
196     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
197 int altbufferflushes;
198 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
199     0, "Number of fsync flushes to limit dirty buffers");
200 static int recursiveflushes;
201 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
202     0, "Number of flushes skipped due to being recursive");
203 static int numdirtybuffers;
204 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
205     "Number of buffers that are dirty (has unwritten changes) at the moment");
206 static int lodirtybuffers;
207 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
208     "How many buffers we want to have free before bufdaemon can sleep");
209 static int hidirtybuffers;
210 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
211     "When the number of dirty buffers is considered severe");
212 int dirtybufthresh;
213 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
214     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
215 static int numfreebuffers;
216 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
217     "Number of free buffers");
218 static int lofreebuffers;
219 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
220    "Target number of free buffers");
221 static int hifreebuffers;
222 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
223    "Threshold for clean buffer recycling");
224 static int getnewbufcalls;
225 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
226    "Number of calls to getnewbuf");
227 static int getnewbufrestarts;
228 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
229     "Number of times getnewbuf has had to restart a buffer acquisition");
230 static int mappingrestarts;
231 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
232     "Number of times getblk has had to restart a buffer mapping for "
233     "unmapped buffer");
234 static int numbufallocfails;
235 SYSCTL_INT(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, &numbufallocfails, 0,
236     "Number of times buffer allocations failed");
237 static int flushbufqtarget = 100;
238 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
239     "Amount of work to do in flushbufqueues when helping bufdaemon");
240 static long notbufdflushes;
241 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
242     "Number of dirty buffer flushes done by the bufdaemon helpers");
243 static long barrierwrites;
244 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
245     "Number of barrier writes");
246 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
247     &unmapped_buf_allowed, 0,
248     "Permit the use of the unmapped i/o");
249 int maxbcachebuf = MAXBCACHEBUF;
250 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
251     "Maximum size of a buffer cache block");
252 
253 /*
254  * This lock synchronizes access to bd_request.
255  */
256 static struct mtx_padalign bdlock;
257 
258 /*
259  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
260  * waitrunningbufspace().
261  */
262 static struct mtx_padalign rbreqlock;
263 
264 /*
265  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
266  */
267 static struct rwlock_padalign nblock;
268 
269 /*
270  * Lock that protects bdirtywait.
271  */
272 static struct mtx_padalign bdirtylock;
273 
274 /*
275  * Wakeup point for bufdaemon, as well as indicator of whether it is already
276  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
277  * is idling.
278  */
279 static int bd_request;
280 
281 /*
282  * Request/wakeup point for the bufspace daemon.
283  */
284 static int bufspace_request;
285 
286 /*
287  * Request for the buf daemon to write more buffers than is indicated by
288  * lodirtybuf.  This may be necessary to push out excess dependencies or
289  * defragment the address space where a simple count of the number of dirty
290  * buffers is insufficient to characterize the demand for flushing them.
291  */
292 static int bd_speedupreq;
293 
294 /*
295  * Synchronization (sleep/wakeup) variable for active buffer space requests.
296  * Set when wait starts, cleared prior to wakeup().
297  * Used in runningbufwakeup() and waitrunningbufspace().
298  */
299 static int runningbufreq;
300 
301 /*
302  * Synchronization (sleep/wakeup) variable for buffer requests.
303  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
304  * by and/or.
305  * Used in numdirtywakeup(), bufspace_wakeup(), bwillwrite(),
306  * getnewbuf(), and getblk().
307  */
308 static volatile int needsbuffer;
309 
310 /*
311  * Synchronization for bwillwrite() waiters.
312  */
313 static int bdirtywait;
314 
315 /*
316  * Definitions for the buffer free lists.
317  */
318 #define QUEUE_NONE	0	/* on no queue */
319 #define QUEUE_EMPTY	1	/* empty buffer headers */
320 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
321 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
322 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
323 
324 /* Maximum number of clean buffer queues. */
325 #define	CLEAN_QUEUES	16
326 
327 /* Configured number of clean queues. */
328 static int clean_queues;
329 
330 /* Maximum number of buffer queues. */
331 #define BUFFER_QUEUES	(QUEUE_CLEAN + CLEAN_QUEUES)
332 
333 /* Queues for free buffers with various properties */
334 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
335 #ifdef INVARIANTS
336 static int bq_len[BUFFER_QUEUES];
337 #endif
338 
339 /*
340  * Lock for each bufqueue
341  */
342 static struct mtx_padalign bqlocks[BUFFER_QUEUES];
343 
344 /*
345  * per-cpu empty buffer cache.
346  */
347 uma_zone_t buf_zone;
348 
349 /*
350  * Single global constant for BUF_WMESG, to avoid getting multiple references.
351  * buf_wmesg is referred from macros.
352  */
353 const char *buf_wmesg = BUF_WMESG;
354 
355 static int
356 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
357 {
358 	long value;
359 	int error;
360 
361 	value = *(long *)arg1;
362 	error = sysctl_handle_long(oidp, &value, 0, req);
363 	if (error != 0 || req->newptr == NULL)
364 		return (error);
365 	mtx_lock(&rbreqlock);
366 	if (arg1 == &hirunningspace) {
367 		if (value < lorunningspace)
368 			error = EINVAL;
369 		else
370 			hirunningspace = value;
371 	} else {
372 		KASSERT(arg1 == &lorunningspace,
373 		    ("%s: unknown arg1", __func__));
374 		if (value > hirunningspace)
375 			error = EINVAL;
376 		else
377 			lorunningspace = value;
378 	}
379 	mtx_unlock(&rbreqlock);
380 	return (error);
381 }
382 
383 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
384     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
385 static int
386 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
387 {
388 	long lvalue;
389 	int ivalue;
390 
391 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
392 		return (sysctl_handle_long(oidp, arg1, arg2, req));
393 	lvalue = *(long *)arg1;
394 	if (lvalue > INT_MAX)
395 		/* On overflow, still write out a long to trigger ENOMEM. */
396 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
397 	ivalue = lvalue;
398 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
399 }
400 #endif
401 
402 static int
403 bqcleanq(void)
404 {
405 	static int nextq;
406 
407 	return ((atomic_fetchadd_int(&nextq, 1) % clean_queues) + QUEUE_CLEAN);
408 }
409 
410 static int
411 bqisclean(int qindex)
412 {
413 
414 	return (qindex >= QUEUE_CLEAN && qindex < QUEUE_CLEAN + CLEAN_QUEUES);
415 }
416 
417 /*
418  *	bqlock:
419  *
420  *	Return the appropriate queue lock based on the index.
421  */
422 static inline struct mtx *
423 bqlock(int qindex)
424 {
425 
426 	return (struct mtx *)&bqlocks[qindex];
427 }
428 
429 /*
430  *	bdirtywakeup:
431  *
432  *	Wakeup any bwillwrite() waiters.
433  */
434 static void
435 bdirtywakeup(void)
436 {
437 	mtx_lock(&bdirtylock);
438 	if (bdirtywait) {
439 		bdirtywait = 0;
440 		wakeup(&bdirtywait);
441 	}
442 	mtx_unlock(&bdirtylock);
443 }
444 
445 /*
446  *	bdirtysub:
447  *
448  *	Decrement the numdirtybuffers count by one and wakeup any
449  *	threads blocked in bwillwrite().
450  */
451 static void
452 bdirtysub(void)
453 {
454 
455 	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
456 	    (lodirtybuffers + hidirtybuffers) / 2)
457 		bdirtywakeup();
458 }
459 
460 /*
461  *	bdirtyadd:
462  *
463  *	Increment the numdirtybuffers count by one and wakeup the buf
464  *	daemon if needed.
465  */
466 static void
467 bdirtyadd(void)
468 {
469 
470 	/*
471 	 * Only do the wakeup once as we cross the boundary.  The
472 	 * buf daemon will keep running until the condition clears.
473 	 */
474 	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
475 	    (lodirtybuffers + hidirtybuffers) / 2)
476 		bd_wakeup();
477 }
478 
479 /*
480  *	bufspace_wakeup:
481  *
482  *	Called when buffer space is potentially available for recovery.
483  *	getnewbuf() will block on this flag when it is unable to free
484  *	sufficient buffer space.  Buffer space becomes recoverable when
485  *	bp's get placed back in the queues.
486  */
487 static void
488 bufspace_wakeup(void)
489 {
490 
491 	/*
492 	 * If someone is waiting for bufspace, wake them up.
493 	 *
494 	 * Since needsbuffer is set prior to doing an additional queue
495 	 * scan it is safe to check for the flag prior to acquiring the
496 	 * lock.  The thread that is preparing to scan again before
497 	 * blocking would discover the buf we released.
498 	 */
499 	if (needsbuffer) {
500 		rw_rlock(&nblock);
501 		if (atomic_cmpset_int(&needsbuffer, 1, 0) == 1)
502 			wakeup(__DEVOLATILE(void *, &needsbuffer));
503 		rw_runlock(&nblock);
504 	}
505 }
506 
507 /*
508  *	bufspace_daemonwakeup:
509  *
510  *	Wakeup the daemon responsible for freeing clean bufs.
511  */
512 static void
513 bufspace_daemonwakeup(void)
514 {
515 	rw_rlock(&nblock);
516 	if (bufspace_request == 0) {
517 		bufspace_request = 1;
518 		wakeup(&bufspace_request);
519 	}
520 	rw_runlock(&nblock);
521 }
522 
523 /*
524  *	bufspace_adjust:
525  *
526  *	Adjust the reported bufspace for a KVA managed buffer, possibly
527  * 	waking any waiters.
528  */
529 static void
530 bufspace_adjust(struct buf *bp, int bufsize)
531 {
532 	long space;
533 	int diff;
534 
535 	KASSERT((bp->b_flags & B_MALLOC) == 0,
536 	    ("bufspace_adjust: malloc buf %p", bp));
537 	diff = bufsize - bp->b_bufsize;
538 	if (diff < 0) {
539 		atomic_subtract_long(&bufspace, -diff);
540 		bufspace_wakeup();
541 	} else {
542 		space = atomic_fetchadd_long(&bufspace, diff);
543 		/* Wake up the daemon on the transition. */
544 		if (space < bufspacethresh && space + diff >= bufspacethresh)
545 			bufspace_daemonwakeup();
546 	}
547 	bp->b_bufsize = bufsize;
548 }
549 
550 /*
551  *	bufspace_reserve:
552  *
553  *	Reserve bufspace before calling allocbuf().  metadata has a
554  *	different space limit than data.
555  */
556 static int
557 bufspace_reserve(int size, bool metadata)
558 {
559 	long limit;
560 	long space;
561 
562 	if (metadata)
563 		limit = maxbufspace;
564 	else
565 		limit = hibufspace;
566 	do {
567 		space = bufspace;
568 		if (space + size > limit)
569 			return (ENOSPC);
570 	} while (atomic_cmpset_long(&bufspace, space, space + size) == 0);
571 
572 	/* Wake up the daemon on the transition. */
573 	if (space < bufspacethresh && space + size >= bufspacethresh)
574 		bufspace_daemonwakeup();
575 
576 	return (0);
577 }
578 
579 /*
580  *	bufspace_release:
581  *
582  *	Release reserved bufspace after bufspace_adjust() has consumed it.
583  */
584 static void
585 bufspace_release(int size)
586 {
587 	atomic_subtract_long(&bufspace, size);
588 	bufspace_wakeup();
589 }
590 
591 /*
592  *	bufspace_wait:
593  *
594  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
595  *	supplied.  needsbuffer must be set in a safe fashion prior to
596  *	polling for space.  The operation must be re-tried on return.
597  */
598 static void
599 bufspace_wait(struct vnode *vp, int gbflags, int slpflag, int slptimeo)
600 {
601 	struct thread *td;
602 	int error, fl, norunbuf;
603 
604 	if ((gbflags & GB_NOWAIT_BD) != 0)
605 		return;
606 
607 	td = curthread;
608 	rw_wlock(&nblock);
609 	while (needsbuffer != 0) {
610 		if (vp != NULL && vp->v_type != VCHR &&
611 		    (td->td_pflags & TDP_BUFNEED) == 0) {
612 			rw_wunlock(&nblock);
613 			/*
614 			 * getblk() is called with a vnode locked, and
615 			 * some majority of the dirty buffers may as
616 			 * well belong to the vnode.  Flushing the
617 			 * buffers there would make a progress that
618 			 * cannot be achieved by the buf_daemon, that
619 			 * cannot lock the vnode.
620 			 */
621 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
622 			    (td->td_pflags & TDP_NORUNNINGBUF);
623 
624 			/*
625 			 * Play bufdaemon.  The getnewbuf() function
626 			 * may be called while the thread owns lock
627 			 * for another dirty buffer for the same
628 			 * vnode, which makes it impossible to use
629 			 * VOP_FSYNC() there, due to the buffer lock
630 			 * recursion.
631 			 */
632 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
633 			fl = buf_flush(vp, flushbufqtarget);
634 			td->td_pflags &= norunbuf;
635 			rw_wlock(&nblock);
636 			if (fl != 0)
637 				continue;
638 			if (needsbuffer == 0)
639 				break;
640 		}
641 		error = rw_sleep(__DEVOLATILE(void *, &needsbuffer), &nblock,
642 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
643 		if (error != 0)
644 			break;
645 	}
646 	rw_wunlock(&nblock);
647 }
648 
649 
650 /*
651  *	bufspace_daemon:
652  *
653  *	buffer space management daemon.  Tries to maintain some marginal
654  *	amount of free buffer space so that requesting processes neither
655  *	block nor work to reclaim buffers.
656  */
657 static void
658 bufspace_daemon(void)
659 {
660 	for (;;) {
661 		kproc_suspend_check(bufspacedaemonproc);
662 
663 		/*
664 		 * Free buffers from the clean queue until we meet our
665 		 * targets.
666 		 *
667 		 * Theory of operation:  The buffer cache is most efficient
668 		 * when some free buffer headers and space are always
669 		 * available to getnewbuf().  This daemon attempts to prevent
670 		 * the excessive blocking and synchronization associated
671 		 * with shortfall.  It goes through three phases according
672 		 * demand:
673 		 *
674 		 * 1)	The daemon wakes up voluntarily once per-second
675 		 *	during idle periods when the counters are below
676 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
677 		 *
678 		 * 2)	The daemon wakes up as we cross the thresholds
679 		 *	ahead of any potential blocking.  This may bounce
680 		 *	slightly according to the rate of consumption and
681 		 *	release.
682 		 *
683 		 * 3)	The daemon and consumers are starved for working
684 		 *	clean buffers.  This is the 'bufspace' sleep below
685 		 *	which will inefficiently trade bufs with bqrelse
686 		 *	until we return to condition 2.
687 		 */
688 		while (bufspace > lobufspace ||
689 		    numfreebuffers < hifreebuffers) {
690 			if (buf_recycle(false) != 0) {
691 				atomic_set_int(&needsbuffer, 1);
692 				if (buf_recycle(false) != 0) {
693 					rw_wlock(&nblock);
694 					if (needsbuffer)
695 						rw_sleep(__DEVOLATILE(void *,
696 						    &needsbuffer), &nblock,
697 						    PRIBIO|PDROP, "bufspace",
698 						    hz/10);
699 					else
700 						rw_wunlock(&nblock);
701 				}
702 			}
703 			maybe_yield();
704 		}
705 
706 		/*
707 		 * Re-check our limits under the exclusive nblock.
708 		 */
709 		rw_wlock(&nblock);
710 		if (bufspace < bufspacethresh &&
711 		    numfreebuffers > lofreebuffers) {
712 			bufspace_request = 0;
713 			rw_sleep(&bufspace_request, &nblock, PRIBIO|PDROP,
714 			    "-", hz);
715 		} else
716 			rw_wunlock(&nblock);
717 	}
718 }
719 
720 static struct kproc_desc bufspace_kp = {
721 	"bufspacedaemon",
722 	bufspace_daemon,
723 	&bufspacedaemonproc
724 };
725 SYSINIT(bufspacedaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start,
726     &bufspace_kp);
727 
728 /*
729  *	bufmallocadjust:
730  *
731  *	Adjust the reported bufspace for a malloc managed buffer, possibly
732  *	waking any waiters.
733  */
734 static void
735 bufmallocadjust(struct buf *bp, int bufsize)
736 {
737 	int diff;
738 
739 	KASSERT((bp->b_flags & B_MALLOC) != 0,
740 	    ("bufmallocadjust: non-malloc buf %p", bp));
741 	diff = bufsize - bp->b_bufsize;
742 	if (diff < 0)
743 		atomic_subtract_long(&bufmallocspace, -diff);
744 	else
745 		atomic_add_long(&bufmallocspace, diff);
746 	bp->b_bufsize = bufsize;
747 }
748 
749 /*
750  *	runningwakeup:
751  *
752  *	Wake up processes that are waiting on asynchronous writes to fall
753  *	below lorunningspace.
754  */
755 static void
756 runningwakeup(void)
757 {
758 
759 	mtx_lock(&rbreqlock);
760 	if (runningbufreq) {
761 		runningbufreq = 0;
762 		wakeup(&runningbufreq);
763 	}
764 	mtx_unlock(&rbreqlock);
765 }
766 
767 /*
768  *	runningbufwakeup:
769  *
770  *	Decrement the outstanding write count according.
771  */
772 void
773 runningbufwakeup(struct buf *bp)
774 {
775 	long space, bspace;
776 
777 	bspace = bp->b_runningbufspace;
778 	if (bspace == 0)
779 		return;
780 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
781 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
782 	    space, bspace));
783 	bp->b_runningbufspace = 0;
784 	/*
785 	 * Only acquire the lock and wakeup on the transition from exceeding
786 	 * the threshold to falling below it.
787 	 */
788 	if (space < lorunningspace)
789 		return;
790 	if (space - bspace > lorunningspace)
791 		return;
792 	runningwakeup();
793 }
794 
795 /*
796  *	waitrunningbufspace()
797  *
798  *	runningbufspace is a measure of the amount of I/O currently
799  *	running.  This routine is used in async-write situations to
800  *	prevent creating huge backups of pending writes to a device.
801  *	Only asynchronous writes are governed by this function.
802  *
803  *	This does NOT turn an async write into a sync write.  It waits
804  *	for earlier writes to complete and generally returns before the
805  *	caller's write has reached the device.
806  */
807 void
808 waitrunningbufspace(void)
809 {
810 
811 	mtx_lock(&rbreqlock);
812 	while (runningbufspace > hirunningspace) {
813 		runningbufreq = 1;
814 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
815 	}
816 	mtx_unlock(&rbreqlock);
817 }
818 
819 
820 /*
821  *	vfs_buf_test_cache:
822  *
823  *	Called when a buffer is extended.  This function clears the B_CACHE
824  *	bit if the newly extended portion of the buffer does not contain
825  *	valid data.
826  */
827 static __inline void
828 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
829     vm_offset_t size, vm_page_t m)
830 {
831 
832 	VM_OBJECT_ASSERT_LOCKED(m->object);
833 	if (bp->b_flags & B_CACHE) {
834 		int base = (foff + off) & PAGE_MASK;
835 		if (vm_page_is_valid(m, base, size) == 0)
836 			bp->b_flags &= ~B_CACHE;
837 	}
838 }
839 
840 /* Wake up the buffer daemon if necessary */
841 static __inline void
842 bd_wakeup(void)
843 {
844 
845 	mtx_lock(&bdlock);
846 	if (bd_request == 0) {
847 		bd_request = 1;
848 		wakeup(&bd_request);
849 	}
850 	mtx_unlock(&bdlock);
851 }
852 
853 /*
854  * Adjust the maxbcachbuf tunable.
855  */
856 static void
857 maxbcachebuf_adjust(void)
858 {
859 	int i;
860 
861 	/*
862 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
863 	 */
864 	i = 2;
865 	while (i * 2 <= maxbcachebuf)
866 		i *= 2;
867 	maxbcachebuf = i;
868 	if (maxbcachebuf < MAXBSIZE)
869 		maxbcachebuf = MAXBSIZE;
870 	if (maxbcachebuf > MAXPHYS)
871 		maxbcachebuf = MAXPHYS;
872 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
873 		printf("maxbcachebuf=%d\n", maxbcachebuf);
874 }
875 
876 /*
877  * bd_speedup - speedup the buffer cache flushing code
878  */
879 void
880 bd_speedup(void)
881 {
882 	int needwake;
883 
884 	mtx_lock(&bdlock);
885 	needwake = 0;
886 	if (bd_speedupreq == 0 || bd_request == 0)
887 		needwake = 1;
888 	bd_speedupreq = 1;
889 	bd_request = 1;
890 	if (needwake)
891 		wakeup(&bd_request);
892 	mtx_unlock(&bdlock);
893 }
894 
895 #ifndef NSWBUF_MIN
896 #define	NSWBUF_MIN	16
897 #endif
898 
899 #ifdef __i386__
900 #define	TRANSIENT_DENOM	5
901 #else
902 #define	TRANSIENT_DENOM 10
903 #endif
904 
905 /*
906  * Calculating buffer cache scaling values and reserve space for buffer
907  * headers.  This is called during low level kernel initialization and
908  * may be called more then once.  We CANNOT write to the memory area
909  * being reserved at this time.
910  */
911 caddr_t
912 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
913 {
914 	int tuned_nbuf;
915 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
916 
917 	/*
918 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
919 	 * PAGE_SIZE is >= 1K)
920 	 */
921 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
922 
923 	maxbcachebuf_adjust();
924 	/*
925 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
926 	 * For the first 64MB of ram nominally allocate sufficient buffers to
927 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
928 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
929 	 * the buffer cache we limit the eventual kva reservation to
930 	 * maxbcache bytes.
931 	 *
932 	 * factor represents the 1/4 x ram conversion.
933 	 */
934 	if (nbuf == 0) {
935 		int factor = 4 * BKVASIZE / 1024;
936 
937 		nbuf = 50;
938 		if (physmem_est > 4096)
939 			nbuf += min((physmem_est - 4096) / factor,
940 			    65536 / factor);
941 		if (physmem_est > 65536)
942 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
943 			    32 * 1024 * 1024 / (factor * 5));
944 
945 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
946 			nbuf = maxbcache / BKVASIZE;
947 		tuned_nbuf = 1;
948 	} else
949 		tuned_nbuf = 0;
950 
951 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
952 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
953 	if (nbuf > maxbuf) {
954 		if (!tuned_nbuf)
955 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
956 			    maxbuf);
957 		nbuf = maxbuf;
958 	}
959 
960 	/*
961 	 * Ideal allocation size for the transient bio submap is 10%
962 	 * of the maximal space buffer map.  This roughly corresponds
963 	 * to the amount of the buffer mapped for typical UFS load.
964 	 *
965 	 * Clip the buffer map to reserve space for the transient
966 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
967 	 * maximum buffer map extent on the platform.
968 	 *
969 	 * The fall-back to the maxbuf in case of maxbcache unset,
970 	 * allows to not trim the buffer KVA for the architectures
971 	 * with ample KVA space.
972 	 */
973 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
974 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
975 		buf_sz = (long)nbuf * BKVASIZE;
976 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
977 		    (TRANSIENT_DENOM - 1)) {
978 			/*
979 			 * There is more KVA than memory.  Do not
980 			 * adjust buffer map size, and assign the rest
981 			 * of maxbuf to transient map.
982 			 */
983 			biotmap_sz = maxbuf_sz - buf_sz;
984 		} else {
985 			/*
986 			 * Buffer map spans all KVA we could afford on
987 			 * this platform.  Give 10% (20% on i386) of
988 			 * the buffer map to the transient bio map.
989 			 */
990 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
991 			buf_sz -= biotmap_sz;
992 		}
993 		if (biotmap_sz / INT_MAX > MAXPHYS)
994 			bio_transient_maxcnt = INT_MAX;
995 		else
996 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
997 		/*
998 		 * Artificially limit to 1024 simultaneous in-flight I/Os
999 		 * using the transient mapping.
1000 		 */
1001 		if (bio_transient_maxcnt > 1024)
1002 			bio_transient_maxcnt = 1024;
1003 		if (tuned_nbuf)
1004 			nbuf = buf_sz / BKVASIZE;
1005 	}
1006 
1007 	/*
1008 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
1009 	 * We have no less then 16 and no more then 256.
1010 	 */
1011 	nswbuf = min(nbuf / 4, 256);
1012 	TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
1013 	if (nswbuf < NSWBUF_MIN)
1014 		nswbuf = NSWBUF_MIN;
1015 
1016 	/*
1017 	 * Reserve space for the buffer cache buffers
1018 	 */
1019 	swbuf = (void *)v;
1020 	v = (caddr_t)(swbuf + nswbuf);
1021 	buf = (void *)v;
1022 	v = (caddr_t)(buf + nbuf);
1023 
1024 	return(v);
1025 }
1026 
1027 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1028 void
1029 bufinit(void)
1030 {
1031 	struct buf *bp;
1032 	int i;
1033 
1034 	KASSERT(maxbcachebuf >= MAXBSIZE,
1035 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1036 	    MAXBSIZE));
1037 	mtx_init(&bqlocks[QUEUE_DIRTY], "bufq dirty lock", NULL, MTX_DEF);
1038 	mtx_init(&bqlocks[QUEUE_EMPTY], "bufq empty lock", NULL, MTX_DEF);
1039 	for (i = QUEUE_CLEAN; i < QUEUE_CLEAN + CLEAN_QUEUES; i++)
1040 		mtx_init(&bqlocks[i], "bufq clean lock", NULL, MTX_DEF);
1041 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1042 	rw_init(&nblock, "needsbuffer lock");
1043 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1044 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1045 
1046 	/* next, make a null set of free lists */
1047 	for (i = 0; i < BUFFER_QUEUES; i++)
1048 		TAILQ_INIT(&bufqueues[i]);
1049 
1050 	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
1051 
1052 	/* finally, initialize each buffer header and stick on empty q */
1053 	for (i = 0; i < nbuf; i++) {
1054 		bp = &buf[i];
1055 		bzero(bp, sizeof *bp);
1056 		bp->b_flags = B_INVAL;
1057 		bp->b_rcred = NOCRED;
1058 		bp->b_wcred = NOCRED;
1059 		bp->b_qindex = QUEUE_EMPTY;
1060 		bp->b_xflags = 0;
1061 		bp->b_data = bp->b_kvabase = unmapped_buf;
1062 		LIST_INIT(&bp->b_dep);
1063 		BUF_LOCKINIT(bp);
1064 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
1065 #ifdef INVARIANTS
1066 		bq_len[QUEUE_EMPTY]++;
1067 #endif
1068 	}
1069 
1070 	/*
1071 	 * maxbufspace is the absolute maximum amount of buffer space we are
1072 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1073 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1074 	 * used by most other requests.  The differential is required to
1075 	 * ensure that metadata deadlocks don't occur.
1076 	 *
1077 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1078 	 * this may result in KVM fragmentation which is not handled optimally
1079 	 * by the system. XXX This is less true with vmem.  We could use
1080 	 * PAGE_SIZE.
1081 	 */
1082 	maxbufspace = (long)nbuf * BKVASIZE;
1083 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1084 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1085 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1086 
1087 	/*
1088 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1089 	 * arbitrarily and may need further tuning. It corresponds to
1090 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1091 	 * which fits with many RAID controllers' tagged queuing limits.
1092 	 * The lower 1 MiB limit is the historical upper limit for
1093 	 * hirunningspace.
1094 	 */
1095 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1096 	    16 * 1024 * 1024), 1024 * 1024);
1097 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1098 
1099 	/*
1100 	 * Limit the amount of malloc memory since it is wired permanently into
1101 	 * the kernel space.  Even though this is accounted for in the buffer
1102 	 * allocation, we don't want the malloced region to grow uncontrolled.
1103 	 * The malloc scheme improves memory utilization significantly on
1104 	 * average (small) directories.
1105 	 */
1106 	maxbufmallocspace = hibufspace / 20;
1107 
1108 	/*
1109 	 * Reduce the chance of a deadlock occurring by limiting the number
1110 	 * of delayed-write dirty buffers we allow to stack up.
1111 	 */
1112 	hidirtybuffers = nbuf / 4 + 20;
1113 	dirtybufthresh = hidirtybuffers * 9 / 10;
1114 	numdirtybuffers = 0;
1115 	/*
1116 	 * To support extreme low-memory systems, make sure hidirtybuffers
1117 	 * cannot eat up all available buffer space.  This occurs when our
1118 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1119 	 * buffer space assuming BKVASIZE'd buffers.
1120 	 */
1121 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1122 		hidirtybuffers >>= 1;
1123 	}
1124 	lodirtybuffers = hidirtybuffers / 2;
1125 
1126 	/*
1127 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1128 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1129 	 * are counted as free but will be unavailable to threads executing
1130 	 * on other cpus.
1131 	 *
1132 	 * hifreebuffers is the free target for the bufspace daemon.  This
1133 	 * should be set appropriately to limit work per-iteration.
1134 	 */
1135 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1136 	hifreebuffers = (3 * lofreebuffers) / 2;
1137 	numfreebuffers = nbuf;
1138 
1139 	/* Setup the kva and free list allocators. */
1140 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1141 	buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
1142 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1143 
1144 	/*
1145 	 * Size the clean queue according to the amount of buffer space.
1146 	 * One queue per-256mb up to the max.  More queues gives better
1147 	 * concurrency but less accurate LRU.
1148 	 */
1149 	clean_queues = MIN(howmany(maxbufspace, 256*1024*1024), CLEAN_QUEUES);
1150 
1151 }
1152 
1153 #ifdef INVARIANTS
1154 static inline void
1155 vfs_buf_check_mapped(struct buf *bp)
1156 {
1157 
1158 	KASSERT(bp->b_kvabase != unmapped_buf,
1159 	    ("mapped buf: b_kvabase was not updated %p", bp));
1160 	KASSERT(bp->b_data != unmapped_buf,
1161 	    ("mapped buf: b_data was not updated %p", bp));
1162 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1163 	    MAXPHYS, ("b_data + b_offset unmapped %p", bp));
1164 }
1165 
1166 static inline void
1167 vfs_buf_check_unmapped(struct buf *bp)
1168 {
1169 
1170 	KASSERT(bp->b_data == unmapped_buf,
1171 	    ("unmapped buf: corrupted b_data %p", bp));
1172 }
1173 
1174 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1175 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1176 #else
1177 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1178 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1179 #endif
1180 
1181 static int
1182 isbufbusy(struct buf *bp)
1183 {
1184 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1185 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1186 		return (1);
1187 	return (0);
1188 }
1189 
1190 /*
1191  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1192  */
1193 void
1194 bufshutdown(int show_busybufs)
1195 {
1196 	static int first_buf_printf = 1;
1197 	struct buf *bp;
1198 	int iter, nbusy, pbusy;
1199 #ifndef PREEMPTION
1200 	int subiter;
1201 #endif
1202 
1203 	/*
1204 	 * Sync filesystems for shutdown
1205 	 */
1206 	wdog_kern_pat(WD_LASTVAL);
1207 	sys_sync(curthread, NULL);
1208 
1209 	/*
1210 	 * With soft updates, some buffers that are
1211 	 * written will be remarked as dirty until other
1212 	 * buffers are written.
1213 	 */
1214 	for (iter = pbusy = 0; iter < 20; iter++) {
1215 		nbusy = 0;
1216 		for (bp = &buf[nbuf]; --bp >= buf; )
1217 			if (isbufbusy(bp))
1218 				nbusy++;
1219 		if (nbusy == 0) {
1220 			if (first_buf_printf)
1221 				printf("All buffers synced.");
1222 			break;
1223 		}
1224 		if (first_buf_printf) {
1225 			printf("Syncing disks, buffers remaining... ");
1226 			first_buf_printf = 0;
1227 		}
1228 		printf("%d ", nbusy);
1229 		if (nbusy < pbusy)
1230 			iter = 0;
1231 		pbusy = nbusy;
1232 
1233 		wdog_kern_pat(WD_LASTVAL);
1234 		sys_sync(curthread, NULL);
1235 
1236 #ifdef PREEMPTION
1237 		/*
1238 		 * Drop Giant and spin for a while to allow
1239 		 * interrupt threads to run.
1240 		 */
1241 		DROP_GIANT();
1242 		DELAY(50000 * iter);
1243 		PICKUP_GIANT();
1244 #else
1245 		/*
1246 		 * Drop Giant and context switch several times to
1247 		 * allow interrupt threads to run.
1248 		 */
1249 		DROP_GIANT();
1250 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1251 			thread_lock(curthread);
1252 			mi_switch(SW_VOL, NULL);
1253 			thread_unlock(curthread);
1254 			DELAY(1000);
1255 		}
1256 		PICKUP_GIANT();
1257 #endif
1258 	}
1259 	printf("\n");
1260 	/*
1261 	 * Count only busy local buffers to prevent forcing
1262 	 * a fsck if we're just a client of a wedged NFS server
1263 	 */
1264 	nbusy = 0;
1265 	for (bp = &buf[nbuf]; --bp >= buf; ) {
1266 		if (isbufbusy(bp)) {
1267 #if 0
1268 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1269 			if (bp->b_dev == NULL) {
1270 				TAILQ_REMOVE(&mountlist,
1271 				    bp->b_vp->v_mount, mnt_list);
1272 				continue;
1273 			}
1274 #endif
1275 			nbusy++;
1276 			if (show_busybufs > 0) {
1277 				printf(
1278 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1279 				    nbusy, bp, bp->b_vp, bp->b_flags,
1280 				    (intmax_t)bp->b_blkno,
1281 				    (intmax_t)bp->b_lblkno);
1282 				BUF_LOCKPRINTINFO(bp);
1283 				if (show_busybufs > 1)
1284 					vn_printf(bp->b_vp,
1285 					    "vnode content: ");
1286 			}
1287 		}
1288 	}
1289 	if (nbusy) {
1290 		/*
1291 		 * Failed to sync all blocks. Indicate this and don't
1292 		 * unmount filesystems (thus forcing an fsck on reboot).
1293 		 */
1294 		printf("Giving up on %d buffers\n", nbusy);
1295 		DELAY(5000000);	/* 5 seconds */
1296 	} else {
1297 		if (!first_buf_printf)
1298 			printf("Final sync complete\n");
1299 		/*
1300 		 * Unmount filesystems
1301 		 */
1302 		if (panicstr == NULL)
1303 			vfs_unmountall();
1304 	}
1305 	swapoff_all();
1306 	DELAY(100000);		/* wait for console output to finish */
1307 }
1308 
1309 static void
1310 bpmap_qenter(struct buf *bp)
1311 {
1312 
1313 	BUF_CHECK_MAPPED(bp);
1314 
1315 	/*
1316 	 * bp->b_data is relative to bp->b_offset, but
1317 	 * bp->b_offset may be offset into the first page.
1318 	 */
1319 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1320 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1321 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1322 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1323 }
1324 
1325 /*
1326  *	binsfree:
1327  *
1328  *	Insert the buffer into the appropriate free list.
1329  */
1330 static void
1331 binsfree(struct buf *bp, int qindex)
1332 {
1333 	struct mtx *olock, *nlock;
1334 
1335 	if (qindex != QUEUE_EMPTY) {
1336 		BUF_ASSERT_XLOCKED(bp);
1337 	}
1338 
1339 	/*
1340 	 * Stick to the same clean queue for the lifetime of the buf to
1341 	 * limit locking below.  Otherwise pick ont sequentially.
1342 	 */
1343 	if (qindex == QUEUE_CLEAN) {
1344 		if (bqisclean(bp->b_qindex))
1345 			qindex = bp->b_qindex;
1346 		else
1347 			qindex = bqcleanq();
1348 	}
1349 
1350 	/*
1351 	 * Handle delayed bremfree() processing.
1352 	 */
1353 	nlock = bqlock(qindex);
1354 	if (bp->b_flags & B_REMFREE) {
1355 		olock = bqlock(bp->b_qindex);
1356 		mtx_lock(olock);
1357 		bremfreel(bp);
1358 		if (olock != nlock) {
1359 			mtx_unlock(olock);
1360 			mtx_lock(nlock);
1361 		}
1362 	} else
1363 		mtx_lock(nlock);
1364 
1365 	if (bp->b_qindex != QUEUE_NONE)
1366 		panic("binsfree: free buffer onto another queue???");
1367 
1368 	bp->b_qindex = qindex;
1369 	if (bp->b_flags & B_AGE)
1370 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1371 	else
1372 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1373 #ifdef INVARIANTS
1374 	bq_len[bp->b_qindex]++;
1375 #endif
1376 	mtx_unlock(nlock);
1377 }
1378 
1379 /*
1380  * buf_free:
1381  *
1382  *	Free a buffer to the buf zone once it no longer has valid contents.
1383  */
1384 static void
1385 buf_free(struct buf *bp)
1386 {
1387 
1388 	if (bp->b_flags & B_REMFREE)
1389 		bremfreef(bp);
1390 	if (bp->b_vflags & BV_BKGRDINPROG)
1391 		panic("losing buffer 1");
1392 	if (bp->b_rcred != NOCRED) {
1393 		crfree(bp->b_rcred);
1394 		bp->b_rcred = NOCRED;
1395 	}
1396 	if (bp->b_wcred != NOCRED) {
1397 		crfree(bp->b_wcred);
1398 		bp->b_wcred = NOCRED;
1399 	}
1400 	if (!LIST_EMPTY(&bp->b_dep))
1401 		buf_deallocate(bp);
1402 	bufkva_free(bp);
1403 	BUF_UNLOCK(bp);
1404 	uma_zfree(buf_zone, bp);
1405 	atomic_add_int(&numfreebuffers, 1);
1406 	bufspace_wakeup();
1407 }
1408 
1409 /*
1410  * buf_import:
1411  *
1412  *	Import bufs into the uma cache from the buf list.  The system still
1413  *	expects a static array of bufs and much of the synchronization
1414  *	around bufs assumes type stable storage.  As a result, UMA is used
1415  *	only as a per-cpu cache of bufs still maintained on a global list.
1416  */
1417 static int
1418 buf_import(void *arg, void **store, int cnt, int flags)
1419 {
1420 	struct buf *bp;
1421 	int i;
1422 
1423 	mtx_lock(&bqlocks[QUEUE_EMPTY]);
1424 	for (i = 0; i < cnt; i++) {
1425 		bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1426 		if (bp == NULL)
1427 			break;
1428 		bremfreel(bp);
1429 		store[i] = bp;
1430 	}
1431 	mtx_unlock(&bqlocks[QUEUE_EMPTY]);
1432 
1433 	return (i);
1434 }
1435 
1436 /*
1437  * buf_release:
1438  *
1439  *	Release bufs from the uma cache back to the buffer queues.
1440  */
1441 static void
1442 buf_release(void *arg, void **store, int cnt)
1443 {
1444         int i;
1445 
1446         for (i = 0; i < cnt; i++)
1447 		binsfree(store[i], QUEUE_EMPTY);
1448 }
1449 
1450 /*
1451  * buf_alloc:
1452  *
1453  *	Allocate an empty buffer header.
1454  */
1455 static struct buf *
1456 buf_alloc(void)
1457 {
1458 	struct buf *bp;
1459 
1460 	bp = uma_zalloc(buf_zone, M_NOWAIT);
1461 	if (bp == NULL) {
1462 		bufspace_daemonwakeup();
1463 		atomic_add_int(&numbufallocfails, 1);
1464 		return (NULL);
1465 	}
1466 
1467 	/*
1468 	 * Wake-up the bufspace daemon on transition.
1469 	 */
1470 	if (atomic_fetchadd_int(&numfreebuffers, -1) == lofreebuffers)
1471 		bufspace_daemonwakeup();
1472 
1473 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1474 		panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
1475 
1476 	KASSERT(bp->b_vp == NULL,
1477 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1478 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1479 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1480 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1481 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1482 	KASSERT(bp->b_npages == 0,
1483 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1484 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1485 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1486 
1487 	bp->b_flags = 0;
1488 	bp->b_ioflags = 0;
1489 	bp->b_xflags = 0;
1490 	bp->b_vflags = 0;
1491 	bp->b_vp = NULL;
1492 	bp->b_blkno = bp->b_lblkno = 0;
1493 	bp->b_offset = NOOFFSET;
1494 	bp->b_iodone = 0;
1495 	bp->b_error = 0;
1496 	bp->b_resid = 0;
1497 	bp->b_bcount = 0;
1498 	bp->b_npages = 0;
1499 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1500 	bp->b_bufobj = NULL;
1501 	bp->b_data = bp->b_kvabase = unmapped_buf;
1502 	bp->b_fsprivate1 = NULL;
1503 	bp->b_fsprivate2 = NULL;
1504 	bp->b_fsprivate3 = NULL;
1505 	LIST_INIT(&bp->b_dep);
1506 
1507 	return (bp);
1508 }
1509 
1510 /*
1511  *	buf_qrecycle:
1512  *
1513  *	Free a buffer from the given bufqueue.  kva controls whether the
1514  *	freed buf must own some kva resources.  This is used for
1515  *	defragmenting.
1516  */
1517 static int
1518 buf_qrecycle(int qindex, bool kva)
1519 {
1520 	struct buf *bp, *nbp;
1521 
1522 	if (kva)
1523 		atomic_add_int(&bufdefragcnt, 1);
1524 	nbp = NULL;
1525 	mtx_lock(&bqlocks[qindex]);
1526 	nbp = TAILQ_FIRST(&bufqueues[qindex]);
1527 
1528 	/*
1529 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1530 	 * depending.
1531 	 */
1532 	while ((bp = nbp) != NULL) {
1533 		/*
1534 		 * Calculate next bp (we can only use it if we do not
1535 		 * release the bqlock).
1536 		 */
1537 		nbp = TAILQ_NEXT(bp, b_freelist);
1538 
1539 		/*
1540 		 * If we are defragging then we need a buffer with
1541 		 * some kva to reclaim.
1542 		 */
1543 		if (kva && bp->b_kvasize == 0)
1544 			continue;
1545 
1546 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1547 			continue;
1548 
1549 		/*
1550 		 * Skip buffers with background writes in progress.
1551 		 */
1552 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1553 			BUF_UNLOCK(bp);
1554 			continue;
1555 		}
1556 
1557 		KASSERT(bp->b_qindex == qindex,
1558 		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1559 		/*
1560 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1561 		 * the scan from this point on.
1562 		 */
1563 		bremfreel(bp);
1564 		mtx_unlock(&bqlocks[qindex]);
1565 
1566 		/*
1567 		 * Requeue the background write buffer with error and
1568 		 * restart the scan.
1569 		 */
1570 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1571 			bqrelse(bp);
1572 			mtx_lock(&bqlocks[qindex]);
1573 			nbp = TAILQ_FIRST(&bufqueues[qindex]);
1574 			continue;
1575 		}
1576 		bp->b_flags |= B_INVAL;
1577 		brelse(bp);
1578 		return (0);
1579 	}
1580 	mtx_unlock(&bqlocks[qindex]);
1581 
1582 	return (ENOBUFS);
1583 }
1584 
1585 /*
1586  *	buf_recycle:
1587  *
1588  *	Iterate through all clean queues until we find a buf to recycle or
1589  *	exhaust the search.
1590  */
1591 static int
1592 buf_recycle(bool kva)
1593 {
1594 	int qindex, first_qindex;
1595 
1596 	qindex = first_qindex = bqcleanq();
1597 	do {
1598 		if (buf_qrecycle(qindex, kva) == 0)
1599 			return (0);
1600 		if (++qindex == QUEUE_CLEAN + clean_queues)
1601 			qindex = QUEUE_CLEAN;
1602 	} while (qindex != first_qindex);
1603 
1604 	return (ENOBUFS);
1605 }
1606 
1607 /*
1608  *	buf_scan:
1609  *
1610  *	Scan the clean queues looking for a buffer to recycle.  needsbuffer
1611  *	is set on failure so that the caller may optionally bufspace_wait()
1612  *	in a race-free fashion.
1613  */
1614 static int
1615 buf_scan(bool defrag)
1616 {
1617 	int error;
1618 
1619 	/*
1620 	 * To avoid heavy synchronization and wakeup races we set
1621 	 * needsbuffer and re-poll before failing.  This ensures that
1622 	 * no frees can be missed between an unsuccessful poll and
1623 	 * going to sleep in a synchronized fashion.
1624 	 */
1625 	if ((error = buf_recycle(defrag)) != 0) {
1626 		atomic_set_int(&needsbuffer, 1);
1627 		bufspace_daemonwakeup();
1628 		error = buf_recycle(defrag);
1629 	}
1630 	if (error == 0)
1631 		atomic_add_int(&getnewbufrestarts, 1);
1632 	return (error);
1633 }
1634 
1635 /*
1636  *	bremfree:
1637  *
1638  *	Mark the buffer for removal from the appropriate free list.
1639  *
1640  */
1641 void
1642 bremfree(struct buf *bp)
1643 {
1644 
1645 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1646 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1647 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1648 	KASSERT(bp->b_qindex != QUEUE_NONE,
1649 	    ("bremfree: buffer %p not on a queue.", bp));
1650 	BUF_ASSERT_XLOCKED(bp);
1651 
1652 	bp->b_flags |= B_REMFREE;
1653 }
1654 
1655 /*
1656  *	bremfreef:
1657  *
1658  *	Force an immediate removal from a free list.  Used only in nfs when
1659  *	it abuses the b_freelist pointer.
1660  */
1661 void
1662 bremfreef(struct buf *bp)
1663 {
1664 	struct mtx *qlock;
1665 
1666 	qlock = bqlock(bp->b_qindex);
1667 	mtx_lock(qlock);
1668 	bremfreel(bp);
1669 	mtx_unlock(qlock);
1670 }
1671 
1672 /*
1673  *	bremfreel:
1674  *
1675  *	Removes a buffer from the free list, must be called with the
1676  *	correct qlock held.
1677  */
1678 static void
1679 bremfreel(struct buf *bp)
1680 {
1681 
1682 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1683 	    bp, bp->b_vp, bp->b_flags);
1684 	KASSERT(bp->b_qindex != QUEUE_NONE,
1685 	    ("bremfreel: buffer %p not on a queue.", bp));
1686 	if (bp->b_qindex != QUEUE_EMPTY) {
1687 		BUF_ASSERT_XLOCKED(bp);
1688 	}
1689 	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1690 
1691 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1692 #ifdef INVARIANTS
1693 	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1694 	    bp->b_qindex));
1695 	bq_len[bp->b_qindex]--;
1696 #endif
1697 	bp->b_qindex = QUEUE_NONE;
1698 	bp->b_flags &= ~B_REMFREE;
1699 }
1700 
1701 /*
1702  *	bufkva_free:
1703  *
1704  *	Free the kva allocation for a buffer.
1705  *
1706  */
1707 static void
1708 bufkva_free(struct buf *bp)
1709 {
1710 
1711 #ifdef INVARIANTS
1712 	if (bp->b_kvasize == 0) {
1713 		KASSERT(bp->b_kvabase == unmapped_buf &&
1714 		    bp->b_data == unmapped_buf,
1715 		    ("Leaked KVA space on %p", bp));
1716 	} else if (buf_mapped(bp))
1717 		BUF_CHECK_MAPPED(bp);
1718 	else
1719 		BUF_CHECK_UNMAPPED(bp);
1720 #endif
1721 	if (bp->b_kvasize == 0)
1722 		return;
1723 
1724 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
1725 	atomic_subtract_long(&bufkvaspace, bp->b_kvasize);
1726 	atomic_add_int(&buffreekvacnt, 1);
1727 	bp->b_data = bp->b_kvabase = unmapped_buf;
1728 	bp->b_kvasize = 0;
1729 }
1730 
1731 /*
1732  *	bufkva_alloc:
1733  *
1734  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
1735  */
1736 static int
1737 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
1738 {
1739 	vm_offset_t addr;
1740 	int error;
1741 
1742 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
1743 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
1744 
1745 	bufkva_free(bp);
1746 
1747 	addr = 0;
1748 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
1749 	if (error != 0) {
1750 		/*
1751 		 * Buffer map is too fragmented.  Request the caller
1752 		 * to defragment the map.
1753 		 */
1754 		return (error);
1755 	}
1756 	bp->b_kvabase = (caddr_t)addr;
1757 	bp->b_kvasize = maxsize;
1758 	atomic_add_long(&bufkvaspace, bp->b_kvasize);
1759 	if ((gbflags & GB_UNMAPPED) != 0) {
1760 		bp->b_data = unmapped_buf;
1761 		BUF_CHECK_UNMAPPED(bp);
1762 	} else {
1763 		bp->b_data = bp->b_kvabase;
1764 		BUF_CHECK_MAPPED(bp);
1765 	}
1766 	return (0);
1767 }
1768 
1769 /*
1770  *	bufkva_reclaim:
1771  *
1772  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
1773  *	callback that fires to avoid returning failure.
1774  */
1775 static void
1776 bufkva_reclaim(vmem_t *vmem, int flags)
1777 {
1778 	int i;
1779 
1780 	for (i = 0; i < 5; i++)
1781 		if (buf_scan(true) != 0)
1782 			break;
1783 	return;
1784 }
1785 
1786 
1787 /*
1788  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1789  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1790  * the buffer is valid and we do not have to do anything.
1791  */
1792 void
1793 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1794     int cnt, struct ucred * cred)
1795 {
1796 	struct buf *rabp;
1797 	int i;
1798 
1799 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1800 		if (inmem(vp, *rablkno))
1801 			continue;
1802 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1803 
1804 		if ((rabp->b_flags & B_CACHE) == 0) {
1805 			if (!TD_IS_IDLETHREAD(curthread)) {
1806 #ifdef RACCT
1807 				if (racct_enable) {
1808 					PROC_LOCK(curproc);
1809 					racct_add_buf(curproc, rabp, 0);
1810 					PROC_UNLOCK(curproc);
1811 				}
1812 #endif /* RACCT */
1813 				curthread->td_ru.ru_inblock++;
1814 			}
1815 			rabp->b_flags |= B_ASYNC;
1816 			rabp->b_flags &= ~B_INVAL;
1817 			rabp->b_ioflags &= ~BIO_ERROR;
1818 			rabp->b_iocmd = BIO_READ;
1819 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1820 				rabp->b_rcred = crhold(cred);
1821 			vfs_busy_pages(rabp, 0);
1822 			BUF_KERNPROC(rabp);
1823 			rabp->b_iooffset = dbtob(rabp->b_blkno);
1824 			bstrategy(rabp);
1825 		} else {
1826 			brelse(rabp);
1827 		}
1828 	}
1829 }
1830 
1831 /*
1832  * Entry point for bread() and breadn() via #defines in sys/buf.h.
1833  *
1834  * Get a buffer with the specified data.  Look in the cache first.  We
1835  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1836  * is set, the buffer is valid and we do not have to do anything, see
1837  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1838  *
1839  * Always return a NULL buffer pointer (in bpp) when returning an error.
1840  */
1841 int
1842 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1843     int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1844 {
1845 	struct buf *bp;
1846 	int rv = 0, readwait = 0;
1847 
1848 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1849 	/*
1850 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1851 	 */
1852 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1853 	if (bp == NULL)
1854 		return (EBUSY);
1855 
1856 	/* if not found in cache, do some I/O */
1857 	if ((bp->b_flags & B_CACHE) == 0) {
1858 		if (!TD_IS_IDLETHREAD(curthread)) {
1859 #ifdef RACCT
1860 			if (racct_enable) {
1861 				PROC_LOCK(curproc);
1862 				racct_add_buf(curproc, bp, 0);
1863 				PROC_UNLOCK(curproc);
1864 			}
1865 #endif /* RACCT */
1866 			curthread->td_ru.ru_inblock++;
1867 		}
1868 		bp->b_iocmd = BIO_READ;
1869 		bp->b_flags &= ~B_INVAL;
1870 		bp->b_ioflags &= ~BIO_ERROR;
1871 		if (bp->b_rcred == NOCRED && cred != NOCRED)
1872 			bp->b_rcred = crhold(cred);
1873 		vfs_busy_pages(bp, 0);
1874 		bp->b_iooffset = dbtob(bp->b_blkno);
1875 		bstrategy(bp);
1876 		++readwait;
1877 	}
1878 
1879 	breada(vp, rablkno, rabsize, cnt, cred);
1880 
1881 	if (readwait) {
1882 		rv = bufwait(bp);
1883 		if (rv != 0) {
1884 			brelse(bp);
1885 			*bpp = NULL;
1886 		}
1887 	}
1888 	return (rv);
1889 }
1890 
1891 /*
1892  * Write, release buffer on completion.  (Done by iodone
1893  * if async).  Do not bother writing anything if the buffer
1894  * is invalid.
1895  *
1896  * Note that we set B_CACHE here, indicating that buffer is
1897  * fully valid and thus cacheable.  This is true even of NFS
1898  * now so we set it generally.  This could be set either here
1899  * or in biodone() since the I/O is synchronous.  We put it
1900  * here.
1901  */
1902 int
1903 bufwrite(struct buf *bp)
1904 {
1905 	int oldflags;
1906 	struct vnode *vp;
1907 	long space;
1908 	int vp_md;
1909 
1910 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1911 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
1912 		bp->b_flags |= B_INVAL | B_RELBUF;
1913 		bp->b_flags &= ~B_CACHE;
1914 		brelse(bp);
1915 		return (ENXIO);
1916 	}
1917 	if (bp->b_flags & B_INVAL) {
1918 		brelse(bp);
1919 		return (0);
1920 	}
1921 
1922 	if (bp->b_flags & B_BARRIER)
1923 		barrierwrites++;
1924 
1925 	oldflags = bp->b_flags;
1926 
1927 	BUF_ASSERT_HELD(bp);
1928 
1929 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1930 	    ("FFS background buffer should not get here %p", bp));
1931 
1932 	vp = bp->b_vp;
1933 	if (vp)
1934 		vp_md = vp->v_vflag & VV_MD;
1935 	else
1936 		vp_md = 0;
1937 
1938 	/*
1939 	 * Mark the buffer clean.  Increment the bufobj write count
1940 	 * before bundirty() call, to prevent other thread from seeing
1941 	 * empty dirty list and zero counter for writes in progress,
1942 	 * falsely indicating that the bufobj is clean.
1943 	 */
1944 	bufobj_wref(bp->b_bufobj);
1945 	bundirty(bp);
1946 
1947 	bp->b_flags &= ~B_DONE;
1948 	bp->b_ioflags &= ~BIO_ERROR;
1949 	bp->b_flags |= B_CACHE;
1950 	bp->b_iocmd = BIO_WRITE;
1951 
1952 	vfs_busy_pages(bp, 1);
1953 
1954 	/*
1955 	 * Normal bwrites pipeline writes
1956 	 */
1957 	bp->b_runningbufspace = bp->b_bufsize;
1958 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1959 
1960 	if (!TD_IS_IDLETHREAD(curthread)) {
1961 #ifdef RACCT
1962 		if (racct_enable) {
1963 			PROC_LOCK(curproc);
1964 			racct_add_buf(curproc, bp, 1);
1965 			PROC_UNLOCK(curproc);
1966 		}
1967 #endif /* RACCT */
1968 		curthread->td_ru.ru_oublock++;
1969 	}
1970 	if (oldflags & B_ASYNC)
1971 		BUF_KERNPROC(bp);
1972 	bp->b_iooffset = dbtob(bp->b_blkno);
1973 	buf_track(bp, __func__);
1974 	bstrategy(bp);
1975 
1976 	if ((oldflags & B_ASYNC) == 0) {
1977 		int rtval = bufwait(bp);
1978 		brelse(bp);
1979 		return (rtval);
1980 	} else if (space > hirunningspace) {
1981 		/*
1982 		 * don't allow the async write to saturate the I/O
1983 		 * system.  We will not deadlock here because
1984 		 * we are blocking waiting for I/O that is already in-progress
1985 		 * to complete. We do not block here if it is the update
1986 		 * or syncer daemon trying to clean up as that can lead
1987 		 * to deadlock.
1988 		 */
1989 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1990 			waitrunningbufspace();
1991 	}
1992 
1993 	return (0);
1994 }
1995 
1996 void
1997 bufbdflush(struct bufobj *bo, struct buf *bp)
1998 {
1999 	struct buf *nbp;
2000 
2001 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
2002 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2003 		altbufferflushes++;
2004 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
2005 		BO_LOCK(bo);
2006 		/*
2007 		 * Try to find a buffer to flush.
2008 		 */
2009 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2010 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2011 			    BUF_LOCK(nbp,
2012 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2013 				continue;
2014 			if (bp == nbp)
2015 				panic("bdwrite: found ourselves");
2016 			BO_UNLOCK(bo);
2017 			/* Don't countdeps with the bo lock held. */
2018 			if (buf_countdeps(nbp, 0)) {
2019 				BO_LOCK(bo);
2020 				BUF_UNLOCK(nbp);
2021 				continue;
2022 			}
2023 			if (nbp->b_flags & B_CLUSTEROK) {
2024 				vfs_bio_awrite(nbp);
2025 			} else {
2026 				bremfree(nbp);
2027 				bawrite(nbp);
2028 			}
2029 			dirtybufferflushes++;
2030 			break;
2031 		}
2032 		if (nbp == NULL)
2033 			BO_UNLOCK(bo);
2034 	}
2035 }
2036 
2037 /*
2038  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2039  * anything if the buffer is marked invalid.
2040  *
2041  * Note that since the buffer must be completely valid, we can safely
2042  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2043  * biodone() in order to prevent getblk from writing the buffer
2044  * out synchronously.
2045  */
2046 void
2047 bdwrite(struct buf *bp)
2048 {
2049 	struct thread *td = curthread;
2050 	struct vnode *vp;
2051 	struct bufobj *bo;
2052 
2053 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2054 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2055 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2056 	    ("Barrier request in delayed write %p", bp));
2057 	BUF_ASSERT_HELD(bp);
2058 
2059 	if (bp->b_flags & B_INVAL) {
2060 		brelse(bp);
2061 		return;
2062 	}
2063 
2064 	/*
2065 	 * If we have too many dirty buffers, don't create any more.
2066 	 * If we are wildly over our limit, then force a complete
2067 	 * cleanup. Otherwise, just keep the situation from getting
2068 	 * out of control. Note that we have to avoid a recursive
2069 	 * disaster and not try to clean up after our own cleanup!
2070 	 */
2071 	vp = bp->b_vp;
2072 	bo = bp->b_bufobj;
2073 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2074 		td->td_pflags |= TDP_INBDFLUSH;
2075 		BO_BDFLUSH(bo, bp);
2076 		td->td_pflags &= ~TDP_INBDFLUSH;
2077 	} else
2078 		recursiveflushes++;
2079 
2080 	bdirty(bp);
2081 	/*
2082 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2083 	 * true even of NFS now.
2084 	 */
2085 	bp->b_flags |= B_CACHE;
2086 
2087 	/*
2088 	 * This bmap keeps the system from needing to do the bmap later,
2089 	 * perhaps when the system is attempting to do a sync.  Since it
2090 	 * is likely that the indirect block -- or whatever other datastructure
2091 	 * that the filesystem needs is still in memory now, it is a good
2092 	 * thing to do this.  Note also, that if the pageout daemon is
2093 	 * requesting a sync -- there might not be enough memory to do
2094 	 * the bmap then...  So, this is important to do.
2095 	 */
2096 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2097 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2098 	}
2099 
2100 	buf_track(bp, __func__);
2101 
2102 	/*
2103 	 * Set the *dirty* buffer range based upon the VM system dirty
2104 	 * pages.
2105 	 *
2106 	 * Mark the buffer pages as clean.  We need to do this here to
2107 	 * satisfy the vnode_pager and the pageout daemon, so that it
2108 	 * thinks that the pages have been "cleaned".  Note that since
2109 	 * the pages are in a delayed write buffer -- the VFS layer
2110 	 * "will" see that the pages get written out on the next sync,
2111 	 * or perhaps the cluster will be completed.
2112 	 */
2113 	vfs_clean_pages_dirty_buf(bp);
2114 	bqrelse(bp);
2115 
2116 	/*
2117 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2118 	 * due to the softdep code.
2119 	 */
2120 }
2121 
2122 /*
2123  *	bdirty:
2124  *
2125  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2126  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2127  *	itself to properly update it in the dirty/clean lists.  We mark it
2128  *	B_DONE to ensure that any asynchronization of the buffer properly
2129  *	clears B_DONE ( else a panic will occur later ).
2130  *
2131  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2132  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2133  *	should only be called if the buffer is known-good.
2134  *
2135  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2136  *	count.
2137  *
2138  *	The buffer must be on QUEUE_NONE.
2139  */
2140 void
2141 bdirty(struct buf *bp)
2142 {
2143 
2144 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2145 	    bp, bp->b_vp, bp->b_flags);
2146 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2147 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2148 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2149 	BUF_ASSERT_HELD(bp);
2150 	bp->b_flags &= ~(B_RELBUF);
2151 	bp->b_iocmd = BIO_WRITE;
2152 
2153 	if ((bp->b_flags & B_DELWRI) == 0) {
2154 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2155 		reassignbuf(bp);
2156 		bdirtyadd();
2157 	}
2158 }
2159 
2160 /*
2161  *	bundirty:
2162  *
2163  *	Clear B_DELWRI for buffer.
2164  *
2165  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2166  *	count.
2167  *
2168  *	The buffer must be on QUEUE_NONE.
2169  */
2170 
2171 void
2172 bundirty(struct buf *bp)
2173 {
2174 
2175 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2176 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2177 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2178 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2179 	BUF_ASSERT_HELD(bp);
2180 
2181 	if (bp->b_flags & B_DELWRI) {
2182 		bp->b_flags &= ~B_DELWRI;
2183 		reassignbuf(bp);
2184 		bdirtysub();
2185 	}
2186 	/*
2187 	 * Since it is now being written, we can clear its deferred write flag.
2188 	 */
2189 	bp->b_flags &= ~B_DEFERRED;
2190 }
2191 
2192 /*
2193  *	bawrite:
2194  *
2195  *	Asynchronous write.  Start output on a buffer, but do not wait for
2196  *	it to complete.  The buffer is released when the output completes.
2197  *
2198  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2199  *	B_INVAL buffers.  Not us.
2200  */
2201 void
2202 bawrite(struct buf *bp)
2203 {
2204 
2205 	bp->b_flags |= B_ASYNC;
2206 	(void) bwrite(bp);
2207 }
2208 
2209 /*
2210  *	babarrierwrite:
2211  *
2212  *	Asynchronous barrier write.  Start output on a buffer, but do not
2213  *	wait for it to complete.  Place a write barrier after this write so
2214  *	that this buffer and all buffers written before it are committed to
2215  *	the disk before any buffers written after this write are committed
2216  *	to the disk.  The buffer is released when the output completes.
2217  */
2218 void
2219 babarrierwrite(struct buf *bp)
2220 {
2221 
2222 	bp->b_flags |= B_ASYNC | B_BARRIER;
2223 	(void) bwrite(bp);
2224 }
2225 
2226 /*
2227  *	bbarrierwrite:
2228  *
2229  *	Synchronous barrier write.  Start output on a buffer and wait for
2230  *	it to complete.  Place a write barrier after this write so that
2231  *	this buffer and all buffers written before it are committed to
2232  *	the disk before any buffers written after this write are committed
2233  *	to the disk.  The buffer is released when the output completes.
2234  */
2235 int
2236 bbarrierwrite(struct buf *bp)
2237 {
2238 
2239 	bp->b_flags |= B_BARRIER;
2240 	return (bwrite(bp));
2241 }
2242 
2243 /*
2244  *	bwillwrite:
2245  *
2246  *	Called prior to the locking of any vnodes when we are expecting to
2247  *	write.  We do not want to starve the buffer cache with too many
2248  *	dirty buffers so we block here.  By blocking prior to the locking
2249  *	of any vnodes we attempt to avoid the situation where a locked vnode
2250  *	prevents the various system daemons from flushing related buffers.
2251  */
2252 void
2253 bwillwrite(void)
2254 {
2255 
2256 	if (numdirtybuffers >= hidirtybuffers) {
2257 		mtx_lock(&bdirtylock);
2258 		while (numdirtybuffers >= hidirtybuffers) {
2259 			bdirtywait = 1;
2260 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2261 			    "flswai", 0);
2262 		}
2263 		mtx_unlock(&bdirtylock);
2264 	}
2265 }
2266 
2267 /*
2268  * Return true if we have too many dirty buffers.
2269  */
2270 int
2271 buf_dirty_count_severe(void)
2272 {
2273 
2274 	return(numdirtybuffers >= hidirtybuffers);
2275 }
2276 
2277 /*
2278  *	brelse:
2279  *
2280  *	Release a busy buffer and, if requested, free its resources.  The
2281  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2282  *	to be accessed later as a cache entity or reused for other purposes.
2283  */
2284 void
2285 brelse(struct buf *bp)
2286 {
2287 	int qindex;
2288 
2289 	/*
2290 	 * Many functions erroneously call brelse with a NULL bp under rare
2291 	 * error conditions. Simply return when called with a NULL bp.
2292 	 */
2293 	if (bp == NULL)
2294 		return;
2295 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2296 	    bp, bp->b_vp, bp->b_flags);
2297 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2298 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2299 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2300 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2301 
2302 	if (BUF_LOCKRECURSED(bp)) {
2303 		/*
2304 		 * Do not process, in particular, do not handle the
2305 		 * B_INVAL/B_RELBUF and do not release to free list.
2306 		 */
2307 		BUF_UNLOCK(bp);
2308 		return;
2309 	}
2310 
2311 	if (bp->b_flags & B_MANAGED) {
2312 		bqrelse(bp);
2313 		return;
2314 	}
2315 
2316 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2317 		BO_LOCK(bp->b_bufobj);
2318 		bp->b_vflags &= ~BV_BKGRDERR;
2319 		BO_UNLOCK(bp->b_bufobj);
2320 		bdirty(bp);
2321 	}
2322 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2323 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2324 	    !(bp->b_flags & B_INVAL)) {
2325 		/*
2326 		 * Failed write, redirty.  All errors except ENXIO (which
2327 		 * means the device is gone) are expected to be potentially
2328 		 * transient - underlying media might work if tried again
2329 		 * after EIO, and memory might be available after an ENOMEM.
2330 		 *
2331 		 * Do this also for buffers that failed with ENXIO, but have
2332 		 * non-empty dependencies - the soft updates code might need
2333 		 * to access the buffer to untangle them.
2334 		 *
2335 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2336 		 */
2337 		bp->b_ioflags &= ~BIO_ERROR;
2338 		bdirty(bp);
2339 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2340 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2341 		/*
2342 		 * Either a failed read I/O, or we were asked to free or not
2343 		 * cache the buffer, or we failed to write to a device that's
2344 		 * no longer present.
2345 		 */
2346 		bp->b_flags |= B_INVAL;
2347 		if (!LIST_EMPTY(&bp->b_dep))
2348 			buf_deallocate(bp);
2349 		if (bp->b_flags & B_DELWRI)
2350 			bdirtysub();
2351 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2352 		if ((bp->b_flags & B_VMIO) == 0) {
2353 			allocbuf(bp, 0);
2354 			if (bp->b_vp)
2355 				brelvp(bp);
2356 		}
2357 	}
2358 
2359 	/*
2360 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2361 	 * is called with B_DELWRI set, the underlying pages may wind up
2362 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2363 	 * because pages associated with a B_DELWRI bp are marked clean.
2364 	 *
2365 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2366 	 * if B_DELWRI is set.
2367 	 */
2368 	if (bp->b_flags & B_DELWRI)
2369 		bp->b_flags &= ~B_RELBUF;
2370 
2371 	/*
2372 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2373 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2374 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2375 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2376 	 *
2377 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2378 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2379 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2380 	 *
2381 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2382 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2383 	 * the commit state and we cannot afford to lose the buffer. If the
2384 	 * buffer has a background write in progress, we need to keep it
2385 	 * around to prevent it from being reconstituted and starting a second
2386 	 * background write.
2387 	 */
2388 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2389 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2390 	    !(bp->b_vp->v_mount != NULL &&
2391 	    (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2392 	    !vn_isdisk(bp->b_vp, NULL) && (bp->b_flags & B_DELWRI))) {
2393 		vfs_vmio_invalidate(bp);
2394 		allocbuf(bp, 0);
2395 	}
2396 
2397 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2398 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2399 		allocbuf(bp, 0);
2400 		bp->b_flags &= ~B_NOREUSE;
2401 		if (bp->b_vp != NULL)
2402 			brelvp(bp);
2403 	}
2404 
2405 	/*
2406 	 * If the buffer has junk contents signal it and eventually
2407 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2408 	 * doesn't find it.
2409 	 */
2410 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2411 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2412 		bp->b_flags |= B_INVAL;
2413 	if (bp->b_flags & B_INVAL) {
2414 		if (bp->b_flags & B_DELWRI)
2415 			bundirty(bp);
2416 		if (bp->b_vp)
2417 			brelvp(bp);
2418 	}
2419 
2420 	buf_track(bp, __func__);
2421 
2422 	/* buffers with no memory */
2423 	if (bp->b_bufsize == 0) {
2424 		buf_free(bp);
2425 		return;
2426 	}
2427 	/* buffers with junk contents */
2428 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2429 	    (bp->b_ioflags & BIO_ERROR)) {
2430 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2431 		if (bp->b_vflags & BV_BKGRDINPROG)
2432 			panic("losing buffer 2");
2433 		qindex = QUEUE_CLEAN;
2434 		bp->b_flags |= B_AGE;
2435 	/* remaining buffers */
2436 	} else if (bp->b_flags & B_DELWRI)
2437 		qindex = QUEUE_DIRTY;
2438 	else
2439 		qindex = QUEUE_CLEAN;
2440 
2441 	binsfree(bp, qindex);
2442 
2443 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
2444 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2445 		panic("brelse: not dirty");
2446 	/* unlock */
2447 	BUF_UNLOCK(bp);
2448 	if (qindex == QUEUE_CLEAN)
2449 		bufspace_wakeup();
2450 }
2451 
2452 /*
2453  * Release a buffer back to the appropriate queue but do not try to free
2454  * it.  The buffer is expected to be used again soon.
2455  *
2456  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2457  * biodone() to requeue an async I/O on completion.  It is also used when
2458  * known good buffers need to be requeued but we think we may need the data
2459  * again soon.
2460  *
2461  * XXX we should be able to leave the B_RELBUF hint set on completion.
2462  */
2463 void
2464 bqrelse(struct buf *bp)
2465 {
2466 	int qindex;
2467 
2468 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2469 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2470 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2471 
2472 	qindex = QUEUE_NONE;
2473 	if (BUF_LOCKRECURSED(bp)) {
2474 		/* do not release to free list */
2475 		BUF_UNLOCK(bp);
2476 		return;
2477 	}
2478 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2479 
2480 	if (bp->b_flags & B_MANAGED) {
2481 		if (bp->b_flags & B_REMFREE)
2482 			bremfreef(bp);
2483 		goto out;
2484 	}
2485 
2486 	/* buffers with stale but valid contents */
2487 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2488 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2489 		BO_LOCK(bp->b_bufobj);
2490 		bp->b_vflags &= ~BV_BKGRDERR;
2491 		BO_UNLOCK(bp->b_bufobj);
2492 		qindex = QUEUE_DIRTY;
2493 	} else {
2494 		if ((bp->b_flags & B_DELWRI) == 0 &&
2495 		    (bp->b_xflags & BX_VNDIRTY))
2496 			panic("bqrelse: not dirty");
2497 		if ((bp->b_flags & B_NOREUSE) != 0) {
2498 			brelse(bp);
2499 			return;
2500 		}
2501 		qindex = QUEUE_CLEAN;
2502 	}
2503 	binsfree(bp, qindex);
2504 
2505 out:
2506 	buf_track(bp, __func__);
2507 	/* unlock */
2508 	BUF_UNLOCK(bp);
2509 	if (qindex == QUEUE_CLEAN)
2510 		bufspace_wakeup();
2511 }
2512 
2513 /*
2514  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2515  * restore bogus pages.
2516  */
2517 static void
2518 vfs_vmio_iodone(struct buf *bp)
2519 {
2520 	vm_ooffset_t foff;
2521 	vm_page_t m;
2522 	vm_object_t obj;
2523 	struct vnode *vp;
2524 	int i, iosize, resid;
2525 	bool bogus;
2526 
2527 	obj = bp->b_bufobj->bo_object;
2528 	KASSERT(obj->paging_in_progress >= bp->b_npages,
2529 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2530 	    obj->paging_in_progress, bp->b_npages));
2531 
2532 	vp = bp->b_vp;
2533 	KASSERT(vp->v_holdcnt > 0,
2534 	    ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
2535 	KASSERT(vp->v_object != NULL,
2536 	    ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
2537 
2538 	foff = bp->b_offset;
2539 	KASSERT(bp->b_offset != NOOFFSET,
2540 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2541 
2542 	bogus = false;
2543 	iosize = bp->b_bcount - bp->b_resid;
2544 	VM_OBJECT_WLOCK(obj);
2545 	for (i = 0; i < bp->b_npages; i++) {
2546 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2547 		if (resid > iosize)
2548 			resid = iosize;
2549 
2550 		/*
2551 		 * cleanup bogus pages, restoring the originals
2552 		 */
2553 		m = bp->b_pages[i];
2554 		if (m == bogus_page) {
2555 			bogus = true;
2556 			m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2557 			if (m == NULL)
2558 				panic("biodone: page disappeared!");
2559 			bp->b_pages[i] = m;
2560 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2561 			/*
2562 			 * In the write case, the valid and clean bits are
2563 			 * already changed correctly ( see bdwrite() ), so we
2564 			 * only need to do this here in the read case.
2565 			 */
2566 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2567 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2568 			    "has unexpected dirty bits", m));
2569 			vfs_page_set_valid(bp, foff, m);
2570 		}
2571 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2572 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2573 		    (intmax_t)foff, (uintmax_t)m->pindex));
2574 
2575 		vm_page_sunbusy(m);
2576 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2577 		iosize -= resid;
2578 	}
2579 	vm_object_pip_wakeupn(obj, bp->b_npages);
2580 	VM_OBJECT_WUNLOCK(obj);
2581 	if (bogus && buf_mapped(bp)) {
2582 		BUF_CHECK_MAPPED(bp);
2583 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2584 		    bp->b_pages, bp->b_npages);
2585 	}
2586 }
2587 
2588 /*
2589  * Unwire a page held by a buf and place it on the appropriate vm queue.
2590  */
2591 static void
2592 vfs_vmio_unwire(struct buf *bp, vm_page_t m)
2593 {
2594 	bool freed;
2595 
2596 	vm_page_lock(m);
2597 	if (vm_page_unwire(m, PQ_NONE)) {
2598 		/*
2599 		 * Determine if the page should be freed before adding
2600 		 * it to the inactive queue.
2601 		 */
2602 		if (m->valid == 0) {
2603 			freed = !vm_page_busied(m);
2604 			if (freed)
2605 				vm_page_free(m);
2606 		} else if ((bp->b_flags & B_DIRECT) != 0)
2607 			freed = vm_page_try_to_free(m);
2608 		else
2609 			freed = false;
2610 		if (!freed) {
2611 			/*
2612 			 * If the page is unlikely to be reused, let the
2613 			 * VM know.  Otherwise, maintain LRU page
2614 			 * ordering and put the page at the tail of the
2615 			 * inactive queue.
2616 			 */
2617 			if ((bp->b_flags & B_NOREUSE) != 0)
2618 				vm_page_deactivate_noreuse(m);
2619 			else
2620 				vm_page_deactivate(m);
2621 		}
2622 	}
2623 	vm_page_unlock(m);
2624 }
2625 
2626 /*
2627  * Perform page invalidation when a buffer is released.  The fully invalid
2628  * pages will be reclaimed later in vfs_vmio_truncate().
2629  */
2630 static void
2631 vfs_vmio_invalidate(struct buf *bp)
2632 {
2633 	vm_object_t obj;
2634 	vm_page_t m;
2635 	int i, resid, poffset, presid;
2636 
2637 	if (buf_mapped(bp)) {
2638 		BUF_CHECK_MAPPED(bp);
2639 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2640 	} else
2641 		BUF_CHECK_UNMAPPED(bp);
2642 	/*
2643 	 * Get the base offset and length of the buffer.  Note that
2644 	 * in the VMIO case if the buffer block size is not
2645 	 * page-aligned then b_data pointer may not be page-aligned.
2646 	 * But our b_pages[] array *IS* page aligned.
2647 	 *
2648 	 * block sizes less then DEV_BSIZE (usually 512) are not
2649 	 * supported due to the page granularity bits (m->valid,
2650 	 * m->dirty, etc...).
2651 	 *
2652 	 * See man buf(9) for more information
2653 	 */
2654 	obj = bp->b_bufobj->bo_object;
2655 	resid = bp->b_bufsize;
2656 	poffset = bp->b_offset & PAGE_MASK;
2657 	VM_OBJECT_WLOCK(obj);
2658 	for (i = 0; i < bp->b_npages; i++) {
2659 		m = bp->b_pages[i];
2660 		if (m == bogus_page)
2661 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
2662 		bp->b_pages[i] = NULL;
2663 
2664 		presid = resid > (PAGE_SIZE - poffset) ?
2665 		    (PAGE_SIZE - poffset) : resid;
2666 		KASSERT(presid >= 0, ("brelse: extra page"));
2667 		while (vm_page_xbusied(m)) {
2668 			vm_page_lock(m);
2669 			VM_OBJECT_WUNLOCK(obj);
2670 			vm_page_busy_sleep(m, "mbncsh", true);
2671 			VM_OBJECT_WLOCK(obj);
2672 		}
2673 		if (pmap_page_wired_mappings(m) == 0)
2674 			vm_page_set_invalid(m, poffset, presid);
2675 		vfs_vmio_unwire(bp, m);
2676 		resid -= presid;
2677 		poffset = 0;
2678 	}
2679 	VM_OBJECT_WUNLOCK(obj);
2680 	bp->b_npages = 0;
2681 }
2682 
2683 /*
2684  * Page-granular truncation of an existing VMIO buffer.
2685  */
2686 static void
2687 vfs_vmio_truncate(struct buf *bp, int desiredpages)
2688 {
2689 	vm_object_t obj;
2690 	vm_page_t m;
2691 	int i;
2692 
2693 	if (bp->b_npages == desiredpages)
2694 		return;
2695 
2696 	if (buf_mapped(bp)) {
2697 		BUF_CHECK_MAPPED(bp);
2698 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
2699 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
2700 	} else
2701 		BUF_CHECK_UNMAPPED(bp);
2702 	obj = bp->b_bufobj->bo_object;
2703 	if (obj != NULL)
2704 		VM_OBJECT_WLOCK(obj);
2705 	for (i = desiredpages; i < bp->b_npages; i++) {
2706 		m = bp->b_pages[i];
2707 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
2708 		bp->b_pages[i] = NULL;
2709 		vfs_vmio_unwire(bp, m);
2710 	}
2711 	if (obj != NULL)
2712 		VM_OBJECT_WUNLOCK(obj);
2713 	bp->b_npages = desiredpages;
2714 }
2715 
2716 /*
2717  * Byte granular extension of VMIO buffers.
2718  */
2719 static void
2720 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
2721 {
2722 	/*
2723 	 * We are growing the buffer, possibly in a
2724 	 * byte-granular fashion.
2725 	 */
2726 	vm_object_t obj;
2727 	vm_offset_t toff;
2728 	vm_offset_t tinc;
2729 	vm_page_t m;
2730 
2731 	/*
2732 	 * Step 1, bring in the VM pages from the object, allocating
2733 	 * them if necessary.  We must clear B_CACHE if these pages
2734 	 * are not valid for the range covered by the buffer.
2735 	 */
2736 	obj = bp->b_bufobj->bo_object;
2737 	VM_OBJECT_WLOCK(obj);
2738 	if (bp->b_npages < desiredpages) {
2739 		/*
2740 		 * We must allocate system pages since blocking
2741 		 * here could interfere with paging I/O, no
2742 		 * matter which process we are.
2743 		 *
2744 		 * Only exclusive busy can be tested here.
2745 		 * Blocking on shared busy might lead to
2746 		 * deadlocks once allocbuf() is called after
2747 		 * pages are vfs_busy_pages().
2748 		 */
2749 		(void)vm_page_grab_pages(obj,
2750 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
2751 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
2752 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
2753 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
2754 		bp->b_npages = desiredpages;
2755 	}
2756 
2757 	/*
2758 	 * Step 2.  We've loaded the pages into the buffer,
2759 	 * we have to figure out if we can still have B_CACHE
2760 	 * set.  Note that B_CACHE is set according to the
2761 	 * byte-granular range ( bcount and size ), not the
2762 	 * aligned range ( newbsize ).
2763 	 *
2764 	 * The VM test is against m->valid, which is DEV_BSIZE
2765 	 * aligned.  Needless to say, the validity of the data
2766 	 * needs to also be DEV_BSIZE aligned.  Note that this
2767 	 * fails with NFS if the server or some other client
2768 	 * extends the file's EOF.  If our buffer is resized,
2769 	 * B_CACHE may remain set! XXX
2770 	 */
2771 	toff = bp->b_bcount;
2772 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2773 	while ((bp->b_flags & B_CACHE) && toff < size) {
2774 		vm_pindex_t pi;
2775 
2776 		if (tinc > (size - toff))
2777 			tinc = size - toff;
2778 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
2779 		m = bp->b_pages[pi];
2780 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
2781 		toff += tinc;
2782 		tinc = PAGE_SIZE;
2783 	}
2784 	VM_OBJECT_WUNLOCK(obj);
2785 
2786 	/*
2787 	 * Step 3, fixup the KVA pmap.
2788 	 */
2789 	if (buf_mapped(bp))
2790 		bpmap_qenter(bp);
2791 	else
2792 		BUF_CHECK_UNMAPPED(bp);
2793 }
2794 
2795 /*
2796  * Check to see if a block at a particular lbn is available for a clustered
2797  * write.
2798  */
2799 static int
2800 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
2801 {
2802 	struct buf *bpa;
2803 	int match;
2804 
2805 	match = 0;
2806 
2807 	/* If the buf isn't in core skip it */
2808 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
2809 		return (0);
2810 
2811 	/* If the buf is busy we don't want to wait for it */
2812 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2813 		return (0);
2814 
2815 	/* Only cluster with valid clusterable delayed write buffers */
2816 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
2817 	    (B_DELWRI | B_CLUSTEROK))
2818 		goto done;
2819 
2820 	if (bpa->b_bufsize != size)
2821 		goto done;
2822 
2823 	/*
2824 	 * Check to see if it is in the expected place on disk and that the
2825 	 * block has been mapped.
2826 	 */
2827 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
2828 		match = 1;
2829 done:
2830 	BUF_UNLOCK(bpa);
2831 	return (match);
2832 }
2833 
2834 /*
2835  *	vfs_bio_awrite:
2836  *
2837  *	Implement clustered async writes for clearing out B_DELWRI buffers.
2838  *	This is much better then the old way of writing only one buffer at
2839  *	a time.  Note that we may not be presented with the buffers in the
2840  *	correct order, so we search for the cluster in both directions.
2841  */
2842 int
2843 vfs_bio_awrite(struct buf *bp)
2844 {
2845 	struct bufobj *bo;
2846 	int i;
2847 	int j;
2848 	daddr_t lblkno = bp->b_lblkno;
2849 	struct vnode *vp = bp->b_vp;
2850 	int ncl;
2851 	int nwritten;
2852 	int size;
2853 	int maxcl;
2854 	int gbflags;
2855 
2856 	bo = &vp->v_bufobj;
2857 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
2858 	/*
2859 	 * right now we support clustered writing only to regular files.  If
2860 	 * we find a clusterable block we could be in the middle of a cluster
2861 	 * rather then at the beginning.
2862 	 */
2863 	if ((vp->v_type == VREG) &&
2864 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
2865 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
2866 
2867 		size = vp->v_mount->mnt_stat.f_iosize;
2868 		maxcl = MAXPHYS / size;
2869 
2870 		BO_RLOCK(bo);
2871 		for (i = 1; i < maxcl; i++)
2872 			if (vfs_bio_clcheck(vp, size, lblkno + i,
2873 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
2874 				break;
2875 
2876 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
2877 			if (vfs_bio_clcheck(vp, size, lblkno - j,
2878 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
2879 				break;
2880 		BO_RUNLOCK(bo);
2881 		--j;
2882 		ncl = i + j;
2883 		/*
2884 		 * this is a possible cluster write
2885 		 */
2886 		if (ncl != 1) {
2887 			BUF_UNLOCK(bp);
2888 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
2889 			    gbflags);
2890 			return (nwritten);
2891 		}
2892 	}
2893 	bremfree(bp);
2894 	bp->b_flags |= B_ASYNC;
2895 	/*
2896 	 * default (old) behavior, writing out only one block
2897 	 *
2898 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
2899 	 */
2900 	nwritten = bp->b_bufsize;
2901 	(void) bwrite(bp);
2902 
2903 	return (nwritten);
2904 }
2905 
2906 /*
2907  *	getnewbuf_kva:
2908  *
2909  *	Allocate KVA for an empty buf header according to gbflags.
2910  */
2911 static int
2912 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
2913 {
2914 
2915 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
2916 		/*
2917 		 * In order to keep fragmentation sane we only allocate kva
2918 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
2919 		 */
2920 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2921 
2922 		if (maxsize != bp->b_kvasize &&
2923 		    bufkva_alloc(bp, maxsize, gbflags))
2924 			return (ENOSPC);
2925 	}
2926 	return (0);
2927 }
2928 
2929 /*
2930  *	getnewbuf:
2931  *
2932  *	Find and initialize a new buffer header, freeing up existing buffers
2933  *	in the bufqueues as necessary.  The new buffer is returned locked.
2934  *
2935  *	We block if:
2936  *		We have insufficient buffer headers
2937  *		We have insufficient buffer space
2938  *		buffer_arena is too fragmented ( space reservation fails )
2939  *		If we have to flush dirty buffers ( but we try to avoid this )
2940  *
2941  *	The caller is responsible for releasing the reserved bufspace after
2942  *	allocbuf() is called.
2943  */
2944 static struct buf *
2945 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
2946 {
2947 	struct buf *bp;
2948 	bool metadata, reserved;
2949 
2950 	bp = NULL;
2951 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2952 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2953 	if (!unmapped_buf_allowed)
2954 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2955 
2956 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2957 	    vp->v_type == VCHR)
2958 		metadata = true;
2959 	else
2960 		metadata = false;
2961 	atomic_add_int(&getnewbufcalls, 1);
2962 	reserved = false;
2963 	do {
2964 		if (reserved == false &&
2965 		    bufspace_reserve(maxsize, metadata) != 0)
2966 			continue;
2967 		reserved = true;
2968 		if ((bp = buf_alloc()) == NULL)
2969 			continue;
2970 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
2971 			return (bp);
2972 		break;
2973 	} while(buf_scan(false) == 0);
2974 
2975 	if (reserved)
2976 		atomic_subtract_long(&bufspace, maxsize);
2977 	if (bp != NULL) {
2978 		bp->b_flags |= B_INVAL;
2979 		brelse(bp);
2980 	}
2981 	bufspace_wait(vp, gbflags, slpflag, slptimeo);
2982 
2983 	return (NULL);
2984 }
2985 
2986 /*
2987  *	buf_daemon:
2988  *
2989  *	buffer flushing daemon.  Buffers are normally flushed by the
2990  *	update daemon but if it cannot keep up this process starts to
2991  *	take the load in an attempt to prevent getnewbuf() from blocking.
2992  */
2993 static struct kproc_desc buf_kp = {
2994 	"bufdaemon",
2995 	buf_daemon,
2996 	&bufdaemonproc
2997 };
2998 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2999 
3000 static int
3001 buf_flush(struct vnode *vp, int target)
3002 {
3003 	int flushed;
3004 
3005 	flushed = flushbufqueues(vp, target, 0);
3006 	if (flushed == 0) {
3007 		/*
3008 		 * Could not find any buffers without rollback
3009 		 * dependencies, so just write the first one
3010 		 * in the hopes of eventually making progress.
3011 		 */
3012 		if (vp != NULL && target > 2)
3013 			target /= 2;
3014 		flushbufqueues(vp, target, 1);
3015 	}
3016 	return (flushed);
3017 }
3018 
3019 static void
3020 buf_daemon()
3021 {
3022 	int lodirty;
3023 
3024 	/*
3025 	 * This process needs to be suspended prior to shutdown sync.
3026 	 */
3027 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
3028 	    SHUTDOWN_PRI_LAST);
3029 
3030 	/*
3031 	 * This process is allowed to take the buffer cache to the limit
3032 	 */
3033 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3034 	mtx_lock(&bdlock);
3035 	for (;;) {
3036 		bd_request = 0;
3037 		mtx_unlock(&bdlock);
3038 
3039 		kproc_suspend_check(bufdaemonproc);
3040 		lodirty = lodirtybuffers;
3041 		if (bd_speedupreq) {
3042 			lodirty = numdirtybuffers / 2;
3043 			bd_speedupreq = 0;
3044 		}
3045 		/*
3046 		 * Do the flush.  Limit the amount of in-transit I/O we
3047 		 * allow to build up, otherwise we would completely saturate
3048 		 * the I/O system.
3049 		 */
3050 		while (numdirtybuffers > lodirty) {
3051 			if (buf_flush(NULL, numdirtybuffers - lodirty) == 0)
3052 				break;
3053 			kern_yield(PRI_USER);
3054 		}
3055 
3056 		/*
3057 		 * Only clear bd_request if we have reached our low water
3058 		 * mark.  The buf_daemon normally waits 1 second and
3059 		 * then incrementally flushes any dirty buffers that have
3060 		 * built up, within reason.
3061 		 *
3062 		 * If we were unable to hit our low water mark and couldn't
3063 		 * find any flushable buffers, we sleep for a short period
3064 		 * to avoid endless loops on unlockable buffers.
3065 		 */
3066 		mtx_lock(&bdlock);
3067 		if (numdirtybuffers <= lodirtybuffers) {
3068 			/*
3069 			 * We reached our low water mark, reset the
3070 			 * request and sleep until we are needed again.
3071 			 * The sleep is just so the suspend code works.
3072 			 */
3073 			bd_request = 0;
3074 			/*
3075 			 * Do an extra wakeup in case dirty threshold
3076 			 * changed via sysctl and the explicit transition
3077 			 * out of shortfall was missed.
3078 			 */
3079 			bdirtywakeup();
3080 			if (runningbufspace <= lorunningspace)
3081 				runningwakeup();
3082 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3083 		} else {
3084 			/*
3085 			 * We couldn't find any flushable dirty buffers but
3086 			 * still have too many dirty buffers, we
3087 			 * have to sleep and try again.  (rare)
3088 			 */
3089 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3090 		}
3091 	}
3092 }
3093 
3094 /*
3095  *	flushbufqueues:
3096  *
3097  *	Try to flush a buffer in the dirty queue.  We must be careful to
3098  *	free up B_INVAL buffers instead of write them, which NFS is
3099  *	particularly sensitive to.
3100  */
3101 static int flushwithdeps = 0;
3102 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
3103     0, "Number of buffers flushed with dependecies that require rollbacks");
3104 
3105 static int
3106 flushbufqueues(struct vnode *lvp, int target, int flushdeps)
3107 {
3108 	struct buf *sentinel;
3109 	struct vnode *vp;
3110 	struct mount *mp;
3111 	struct buf *bp;
3112 	int hasdeps;
3113 	int flushed;
3114 	int queue;
3115 	int error;
3116 	bool unlock;
3117 
3118 	flushed = 0;
3119 	queue = QUEUE_DIRTY;
3120 	bp = NULL;
3121 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3122 	sentinel->b_qindex = QUEUE_SENTINEL;
3123 	mtx_lock(&bqlocks[queue]);
3124 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
3125 	mtx_unlock(&bqlocks[queue]);
3126 	while (flushed != target) {
3127 		maybe_yield();
3128 		mtx_lock(&bqlocks[queue]);
3129 		bp = TAILQ_NEXT(sentinel, b_freelist);
3130 		if (bp != NULL) {
3131 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
3132 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
3133 			    b_freelist);
3134 		} else {
3135 			mtx_unlock(&bqlocks[queue]);
3136 			break;
3137 		}
3138 		/*
3139 		 * Skip sentinels inserted by other invocations of the
3140 		 * flushbufqueues(), taking care to not reorder them.
3141 		 *
3142 		 * Only flush the buffers that belong to the
3143 		 * vnode locked by the curthread.
3144 		 */
3145 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3146 		    bp->b_vp != lvp)) {
3147 			mtx_unlock(&bqlocks[queue]);
3148 			continue;
3149 		}
3150 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3151 		mtx_unlock(&bqlocks[queue]);
3152 		if (error != 0)
3153 			continue;
3154 
3155 		/*
3156 		 * BKGRDINPROG can only be set with the buf and bufobj
3157 		 * locks both held.  We tolerate a race to clear it here.
3158 		 */
3159 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3160 		    (bp->b_flags & B_DELWRI) == 0) {
3161 			BUF_UNLOCK(bp);
3162 			continue;
3163 		}
3164 		if (bp->b_flags & B_INVAL) {
3165 			bremfreef(bp);
3166 			brelse(bp);
3167 			flushed++;
3168 			continue;
3169 		}
3170 
3171 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3172 			if (flushdeps == 0) {
3173 				BUF_UNLOCK(bp);
3174 				continue;
3175 			}
3176 			hasdeps = 1;
3177 		} else
3178 			hasdeps = 0;
3179 		/*
3180 		 * We must hold the lock on a vnode before writing
3181 		 * one of its buffers. Otherwise we may confuse, or
3182 		 * in the case of a snapshot vnode, deadlock the
3183 		 * system.
3184 		 *
3185 		 * The lock order here is the reverse of the normal
3186 		 * of vnode followed by buf lock.  This is ok because
3187 		 * the NOWAIT will prevent deadlock.
3188 		 */
3189 		vp = bp->b_vp;
3190 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3191 			BUF_UNLOCK(bp);
3192 			continue;
3193 		}
3194 		if (lvp == NULL) {
3195 			unlock = true;
3196 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3197 		} else {
3198 			ASSERT_VOP_LOCKED(vp, "getbuf");
3199 			unlock = false;
3200 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3201 			    vn_lock(vp, LK_TRYUPGRADE);
3202 		}
3203 		if (error == 0) {
3204 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3205 			    bp, bp->b_vp, bp->b_flags);
3206 			if (curproc == bufdaemonproc) {
3207 				vfs_bio_awrite(bp);
3208 			} else {
3209 				bremfree(bp);
3210 				bwrite(bp);
3211 				notbufdflushes++;
3212 			}
3213 			vn_finished_write(mp);
3214 			if (unlock)
3215 				VOP_UNLOCK(vp, 0);
3216 			flushwithdeps += hasdeps;
3217 			flushed++;
3218 
3219 			/*
3220 			 * Sleeping on runningbufspace while holding
3221 			 * vnode lock leads to deadlock.
3222 			 */
3223 			if (curproc == bufdaemonproc &&
3224 			    runningbufspace > hirunningspace)
3225 				waitrunningbufspace();
3226 			continue;
3227 		}
3228 		vn_finished_write(mp);
3229 		BUF_UNLOCK(bp);
3230 	}
3231 	mtx_lock(&bqlocks[queue]);
3232 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
3233 	mtx_unlock(&bqlocks[queue]);
3234 	free(sentinel, M_TEMP);
3235 	return (flushed);
3236 }
3237 
3238 /*
3239  * Check to see if a block is currently memory resident.
3240  */
3241 struct buf *
3242 incore(struct bufobj *bo, daddr_t blkno)
3243 {
3244 	struct buf *bp;
3245 
3246 	BO_RLOCK(bo);
3247 	bp = gbincore(bo, blkno);
3248 	BO_RUNLOCK(bo);
3249 	return (bp);
3250 }
3251 
3252 /*
3253  * Returns true if no I/O is needed to access the
3254  * associated VM object.  This is like incore except
3255  * it also hunts around in the VM system for the data.
3256  */
3257 
3258 static int
3259 inmem(struct vnode * vp, daddr_t blkno)
3260 {
3261 	vm_object_t obj;
3262 	vm_offset_t toff, tinc, size;
3263 	vm_page_t m;
3264 	vm_ooffset_t off;
3265 
3266 	ASSERT_VOP_LOCKED(vp, "inmem");
3267 
3268 	if (incore(&vp->v_bufobj, blkno))
3269 		return 1;
3270 	if (vp->v_mount == NULL)
3271 		return 0;
3272 	obj = vp->v_object;
3273 	if (obj == NULL)
3274 		return (0);
3275 
3276 	size = PAGE_SIZE;
3277 	if (size > vp->v_mount->mnt_stat.f_iosize)
3278 		size = vp->v_mount->mnt_stat.f_iosize;
3279 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3280 
3281 	VM_OBJECT_RLOCK(obj);
3282 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3283 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
3284 		if (!m)
3285 			goto notinmem;
3286 		tinc = size;
3287 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3288 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3289 		if (vm_page_is_valid(m,
3290 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
3291 			goto notinmem;
3292 	}
3293 	VM_OBJECT_RUNLOCK(obj);
3294 	return 1;
3295 
3296 notinmem:
3297 	VM_OBJECT_RUNLOCK(obj);
3298 	return (0);
3299 }
3300 
3301 /*
3302  * Set the dirty range for a buffer based on the status of the dirty
3303  * bits in the pages comprising the buffer.  The range is limited
3304  * to the size of the buffer.
3305  *
3306  * Tell the VM system that the pages associated with this buffer
3307  * are clean.  This is used for delayed writes where the data is
3308  * going to go to disk eventually without additional VM intevention.
3309  *
3310  * Note that while we only really need to clean through to b_bcount, we
3311  * just go ahead and clean through to b_bufsize.
3312  */
3313 static void
3314 vfs_clean_pages_dirty_buf(struct buf *bp)
3315 {
3316 	vm_ooffset_t foff, noff, eoff;
3317 	vm_page_t m;
3318 	int i;
3319 
3320 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3321 		return;
3322 
3323 	foff = bp->b_offset;
3324 	KASSERT(bp->b_offset != NOOFFSET,
3325 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3326 
3327 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3328 	vfs_drain_busy_pages(bp);
3329 	vfs_setdirty_locked_object(bp);
3330 	for (i = 0; i < bp->b_npages; i++) {
3331 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3332 		eoff = noff;
3333 		if (eoff > bp->b_offset + bp->b_bufsize)
3334 			eoff = bp->b_offset + bp->b_bufsize;
3335 		m = bp->b_pages[i];
3336 		vfs_page_set_validclean(bp, foff, m);
3337 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3338 		foff = noff;
3339 	}
3340 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3341 }
3342 
3343 static void
3344 vfs_setdirty_locked_object(struct buf *bp)
3345 {
3346 	vm_object_t object;
3347 	int i;
3348 
3349 	object = bp->b_bufobj->bo_object;
3350 	VM_OBJECT_ASSERT_WLOCKED(object);
3351 
3352 	/*
3353 	 * We qualify the scan for modified pages on whether the
3354 	 * object has been flushed yet.
3355 	 */
3356 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
3357 		vm_offset_t boffset;
3358 		vm_offset_t eoffset;
3359 
3360 		/*
3361 		 * test the pages to see if they have been modified directly
3362 		 * by users through the VM system.
3363 		 */
3364 		for (i = 0; i < bp->b_npages; i++)
3365 			vm_page_test_dirty(bp->b_pages[i]);
3366 
3367 		/*
3368 		 * Calculate the encompassing dirty range, boffset and eoffset,
3369 		 * (eoffset - boffset) bytes.
3370 		 */
3371 
3372 		for (i = 0; i < bp->b_npages; i++) {
3373 			if (bp->b_pages[i]->dirty)
3374 				break;
3375 		}
3376 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3377 
3378 		for (i = bp->b_npages - 1; i >= 0; --i) {
3379 			if (bp->b_pages[i]->dirty) {
3380 				break;
3381 			}
3382 		}
3383 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3384 
3385 		/*
3386 		 * Fit it to the buffer.
3387 		 */
3388 
3389 		if (eoffset > bp->b_bcount)
3390 			eoffset = bp->b_bcount;
3391 
3392 		/*
3393 		 * If we have a good dirty range, merge with the existing
3394 		 * dirty range.
3395 		 */
3396 
3397 		if (boffset < eoffset) {
3398 			if (bp->b_dirtyoff > boffset)
3399 				bp->b_dirtyoff = boffset;
3400 			if (bp->b_dirtyend < eoffset)
3401 				bp->b_dirtyend = eoffset;
3402 		}
3403 	}
3404 }
3405 
3406 /*
3407  * Allocate the KVA mapping for an existing buffer.
3408  * If an unmapped buffer is provided but a mapped buffer is requested, take
3409  * also care to properly setup mappings between pages and KVA.
3410  */
3411 static void
3412 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3413 {
3414 	int bsize, maxsize, need_mapping, need_kva;
3415 	off_t offset;
3416 
3417 	need_mapping = bp->b_data == unmapped_buf &&
3418 	    (gbflags & GB_UNMAPPED) == 0;
3419 	need_kva = bp->b_kvabase == unmapped_buf &&
3420 	    bp->b_data == unmapped_buf &&
3421 	    (gbflags & GB_KVAALLOC) != 0;
3422 	if (!need_mapping && !need_kva)
3423 		return;
3424 
3425 	BUF_CHECK_UNMAPPED(bp);
3426 
3427 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3428 		/*
3429 		 * Buffer is not mapped, but the KVA was already
3430 		 * reserved at the time of the instantiation.  Use the
3431 		 * allocated space.
3432 		 */
3433 		goto has_addr;
3434 	}
3435 
3436 	/*
3437 	 * Calculate the amount of the address space we would reserve
3438 	 * if the buffer was mapped.
3439 	 */
3440 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3441 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3442 	offset = blkno * bsize;
3443 	maxsize = size + (offset & PAGE_MASK);
3444 	maxsize = imax(maxsize, bsize);
3445 
3446 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3447 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3448 			/*
3449 			 * XXXKIB: defragmentation cannot
3450 			 * succeed, not sure what else to do.
3451 			 */
3452 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3453 		}
3454 		atomic_add_int(&mappingrestarts, 1);
3455 		bufspace_wait(bp->b_vp, gbflags, 0, 0);
3456 	}
3457 has_addr:
3458 	if (need_mapping) {
3459 		/* b_offset is handled by bpmap_qenter. */
3460 		bp->b_data = bp->b_kvabase;
3461 		BUF_CHECK_MAPPED(bp);
3462 		bpmap_qenter(bp);
3463 	}
3464 }
3465 
3466 /*
3467  *	getblk:
3468  *
3469  *	Get a block given a specified block and offset into a file/device.
3470  *	The buffers B_DONE bit will be cleared on return, making it almost
3471  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3472  *	return.  The caller should clear B_INVAL prior to initiating a
3473  *	READ.
3474  *
3475  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3476  *	an existing buffer.
3477  *
3478  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3479  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3480  *	and then cleared based on the backing VM.  If the previous buffer is
3481  *	non-0-sized but invalid, B_CACHE will be cleared.
3482  *
3483  *	If getblk() must create a new buffer, the new buffer is returned with
3484  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3485  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3486  *	backing VM.
3487  *
3488  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3489  *	B_CACHE bit is clear.
3490  *
3491  *	What this means, basically, is that the caller should use B_CACHE to
3492  *	determine whether the buffer is fully valid or not and should clear
3493  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3494  *	the buffer by loading its data area with something, the caller needs
3495  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3496  *	the caller should set B_CACHE ( as an optimization ), else the caller
3497  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3498  *	a write attempt or if it was a successful read.  If the caller
3499  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3500  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3501  */
3502 struct buf *
3503 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3504     int flags)
3505 {
3506 	struct buf *bp;
3507 	struct bufobj *bo;
3508 	int bsize, error, maxsize, vmio;
3509 	off_t offset;
3510 
3511 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3512 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3513 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3514 	ASSERT_VOP_LOCKED(vp, "getblk");
3515 	if (size > maxbcachebuf)
3516 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3517 		    maxbcachebuf);
3518 	if (!unmapped_buf_allowed)
3519 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3520 
3521 	bo = &vp->v_bufobj;
3522 loop:
3523 	BO_RLOCK(bo);
3524 	bp = gbincore(bo, blkno);
3525 	if (bp != NULL) {
3526 		int lockflags;
3527 		/*
3528 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3529 		 * it must be on a queue.
3530 		 */
3531 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3532 
3533 		if (flags & GB_LOCK_NOWAIT)
3534 			lockflags |= LK_NOWAIT;
3535 
3536 		error = BUF_TIMELOCK(bp, lockflags,
3537 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3538 
3539 		/*
3540 		 * If we slept and got the lock we have to restart in case
3541 		 * the buffer changed identities.
3542 		 */
3543 		if (error == ENOLCK)
3544 			goto loop;
3545 		/* We timed out or were interrupted. */
3546 		else if (error)
3547 			return (NULL);
3548 		/* If recursed, assume caller knows the rules. */
3549 		else if (BUF_LOCKRECURSED(bp))
3550 			goto end;
3551 
3552 		/*
3553 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3554 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3555 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3556 		 * backing VM cache.
3557 		 */
3558 		if (bp->b_flags & B_INVAL)
3559 			bp->b_flags &= ~B_CACHE;
3560 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3561 			bp->b_flags |= B_CACHE;
3562 		if (bp->b_flags & B_MANAGED)
3563 			MPASS(bp->b_qindex == QUEUE_NONE);
3564 		else
3565 			bremfree(bp);
3566 
3567 		/*
3568 		 * check for size inconsistencies for non-VMIO case.
3569 		 */
3570 		if (bp->b_bcount != size) {
3571 			if ((bp->b_flags & B_VMIO) == 0 ||
3572 			    (size > bp->b_kvasize)) {
3573 				if (bp->b_flags & B_DELWRI) {
3574 					bp->b_flags |= B_NOCACHE;
3575 					bwrite(bp);
3576 				} else {
3577 					if (LIST_EMPTY(&bp->b_dep)) {
3578 						bp->b_flags |= B_RELBUF;
3579 						brelse(bp);
3580 					} else {
3581 						bp->b_flags |= B_NOCACHE;
3582 						bwrite(bp);
3583 					}
3584 				}
3585 				goto loop;
3586 			}
3587 		}
3588 
3589 		/*
3590 		 * Handle the case of unmapped buffer which should
3591 		 * become mapped, or the buffer for which KVA
3592 		 * reservation is requested.
3593 		 */
3594 		bp_unmapped_get_kva(bp, blkno, size, flags);
3595 
3596 		/*
3597 		 * If the size is inconsistent in the VMIO case, we can resize
3598 		 * the buffer.  This might lead to B_CACHE getting set or
3599 		 * cleared.  If the size has not changed, B_CACHE remains
3600 		 * unchanged from its previous state.
3601 		 */
3602 		allocbuf(bp, size);
3603 
3604 		KASSERT(bp->b_offset != NOOFFSET,
3605 		    ("getblk: no buffer offset"));
3606 
3607 		/*
3608 		 * A buffer with B_DELWRI set and B_CACHE clear must
3609 		 * be committed before we can return the buffer in
3610 		 * order to prevent the caller from issuing a read
3611 		 * ( due to B_CACHE not being set ) and overwriting
3612 		 * it.
3613 		 *
3614 		 * Most callers, including NFS and FFS, need this to
3615 		 * operate properly either because they assume they
3616 		 * can issue a read if B_CACHE is not set, or because
3617 		 * ( for example ) an uncached B_DELWRI might loop due
3618 		 * to softupdates re-dirtying the buffer.  In the latter
3619 		 * case, B_CACHE is set after the first write completes,
3620 		 * preventing further loops.
3621 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3622 		 * above while extending the buffer, we cannot allow the
3623 		 * buffer to remain with B_CACHE set after the write
3624 		 * completes or it will represent a corrupt state.  To
3625 		 * deal with this we set B_NOCACHE to scrap the buffer
3626 		 * after the write.
3627 		 *
3628 		 * We might be able to do something fancy, like setting
3629 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3630 		 * so the below call doesn't set B_CACHE, but that gets real
3631 		 * confusing.  This is much easier.
3632 		 */
3633 
3634 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3635 			bp->b_flags |= B_NOCACHE;
3636 			bwrite(bp);
3637 			goto loop;
3638 		}
3639 		bp->b_flags &= ~B_DONE;
3640 	} else {
3641 		/*
3642 		 * Buffer is not in-core, create new buffer.  The buffer
3643 		 * returned by getnewbuf() is locked.  Note that the returned
3644 		 * buffer is also considered valid (not marked B_INVAL).
3645 		 */
3646 		BO_RUNLOCK(bo);
3647 		/*
3648 		 * If the user does not want us to create the buffer, bail out
3649 		 * here.
3650 		 */
3651 		if (flags & GB_NOCREAT)
3652 			return NULL;
3653 		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3654 			return NULL;
3655 
3656 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3657 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3658 		offset = blkno * bsize;
3659 		vmio = vp->v_object != NULL;
3660 		if (vmio) {
3661 			maxsize = size + (offset & PAGE_MASK);
3662 		} else {
3663 			maxsize = size;
3664 			/* Do not allow non-VMIO notmapped buffers. */
3665 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3666 		}
3667 		maxsize = imax(maxsize, bsize);
3668 
3669 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
3670 		if (bp == NULL) {
3671 			if (slpflag || slptimeo)
3672 				return NULL;
3673 			/*
3674 			 * XXX This is here until the sleep path is diagnosed
3675 			 * enough to work under very low memory conditions.
3676 			 *
3677 			 * There's an issue on low memory, 4BSD+non-preempt
3678 			 * systems (eg MIPS routers with 32MB RAM) where buffer
3679 			 * exhaustion occurs without sleeping for buffer
3680 			 * reclaimation.  This just sticks in a loop and
3681 			 * constantly attempts to allocate a buffer, which
3682 			 * hits exhaustion and tries to wakeup bufdaemon.
3683 			 * This never happens because we never yield.
3684 			 *
3685 			 * The real solution is to identify and fix these cases
3686 			 * so we aren't effectively busy-waiting in a loop
3687 			 * until the reclaimation path has cycles to run.
3688 			 */
3689 			kern_yield(PRI_USER);
3690 			goto loop;
3691 		}
3692 
3693 		/*
3694 		 * This code is used to make sure that a buffer is not
3695 		 * created while the getnewbuf routine is blocked.
3696 		 * This can be a problem whether the vnode is locked or not.
3697 		 * If the buffer is created out from under us, we have to
3698 		 * throw away the one we just created.
3699 		 *
3700 		 * Note: this must occur before we associate the buffer
3701 		 * with the vp especially considering limitations in
3702 		 * the splay tree implementation when dealing with duplicate
3703 		 * lblkno's.
3704 		 */
3705 		BO_LOCK(bo);
3706 		if (gbincore(bo, blkno)) {
3707 			BO_UNLOCK(bo);
3708 			bp->b_flags |= B_INVAL;
3709 			brelse(bp);
3710 			bufspace_release(maxsize);
3711 			goto loop;
3712 		}
3713 
3714 		/*
3715 		 * Insert the buffer into the hash, so that it can
3716 		 * be found by incore.
3717 		 */
3718 		bp->b_blkno = bp->b_lblkno = blkno;
3719 		bp->b_offset = offset;
3720 		bgetvp(vp, bp);
3721 		BO_UNLOCK(bo);
3722 
3723 		/*
3724 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3725 		 * buffer size starts out as 0, B_CACHE will be set by
3726 		 * allocbuf() for the VMIO case prior to it testing the
3727 		 * backing store for validity.
3728 		 */
3729 
3730 		if (vmio) {
3731 			bp->b_flags |= B_VMIO;
3732 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3733 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3734 			    bp, vp->v_object, bp->b_bufobj->bo_object));
3735 		} else {
3736 			bp->b_flags &= ~B_VMIO;
3737 			KASSERT(bp->b_bufobj->bo_object == NULL,
3738 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3739 			    bp, bp->b_bufobj->bo_object));
3740 			BUF_CHECK_MAPPED(bp);
3741 		}
3742 
3743 		allocbuf(bp, size);
3744 		bufspace_release(maxsize);
3745 		bp->b_flags &= ~B_DONE;
3746 	}
3747 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3748 	BUF_ASSERT_HELD(bp);
3749 end:
3750 	buf_track(bp, __func__);
3751 	KASSERT(bp->b_bufobj == bo,
3752 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3753 	return (bp);
3754 }
3755 
3756 /*
3757  * Get an empty, disassociated buffer of given size.  The buffer is initially
3758  * set to B_INVAL.
3759  */
3760 struct buf *
3761 geteblk(int size, int flags)
3762 {
3763 	struct buf *bp;
3764 	int maxsize;
3765 
3766 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3767 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
3768 		if ((flags & GB_NOWAIT_BD) &&
3769 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3770 			return (NULL);
3771 	}
3772 	allocbuf(bp, size);
3773 	bufspace_release(maxsize);
3774 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3775 	BUF_ASSERT_HELD(bp);
3776 	return (bp);
3777 }
3778 
3779 /*
3780  * Truncate the backing store for a non-vmio buffer.
3781  */
3782 static void
3783 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
3784 {
3785 
3786 	if (bp->b_flags & B_MALLOC) {
3787 		/*
3788 		 * malloced buffers are not shrunk
3789 		 */
3790 		if (newbsize == 0) {
3791 			bufmallocadjust(bp, 0);
3792 			free(bp->b_data, M_BIOBUF);
3793 			bp->b_data = bp->b_kvabase;
3794 			bp->b_flags &= ~B_MALLOC;
3795 		}
3796 		return;
3797 	}
3798 	vm_hold_free_pages(bp, newbsize);
3799 	bufspace_adjust(bp, newbsize);
3800 }
3801 
3802 /*
3803  * Extend the backing for a non-VMIO buffer.
3804  */
3805 static void
3806 vfs_nonvmio_extend(struct buf *bp, int newbsize)
3807 {
3808 	caddr_t origbuf;
3809 	int origbufsize;
3810 
3811 	/*
3812 	 * We only use malloced memory on the first allocation.
3813 	 * and revert to page-allocated memory when the buffer
3814 	 * grows.
3815 	 *
3816 	 * There is a potential smp race here that could lead
3817 	 * to bufmallocspace slightly passing the max.  It
3818 	 * is probably extremely rare and not worth worrying
3819 	 * over.
3820 	 */
3821 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
3822 	    bufmallocspace < maxbufmallocspace) {
3823 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
3824 		bp->b_flags |= B_MALLOC;
3825 		bufmallocadjust(bp, newbsize);
3826 		return;
3827 	}
3828 
3829 	/*
3830 	 * If the buffer is growing on its other-than-first
3831 	 * allocation then we revert to the page-allocation
3832 	 * scheme.
3833 	 */
3834 	origbuf = NULL;
3835 	origbufsize = 0;
3836 	if (bp->b_flags & B_MALLOC) {
3837 		origbuf = bp->b_data;
3838 		origbufsize = bp->b_bufsize;
3839 		bp->b_data = bp->b_kvabase;
3840 		bufmallocadjust(bp, 0);
3841 		bp->b_flags &= ~B_MALLOC;
3842 		newbsize = round_page(newbsize);
3843 	}
3844 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
3845 	    (vm_offset_t) bp->b_data + newbsize);
3846 	if (origbuf != NULL) {
3847 		bcopy(origbuf, bp->b_data, origbufsize);
3848 		free(origbuf, M_BIOBUF);
3849 	}
3850 	bufspace_adjust(bp, newbsize);
3851 }
3852 
3853 /*
3854  * This code constitutes the buffer memory from either anonymous system
3855  * memory (in the case of non-VMIO operations) or from an associated
3856  * VM object (in the case of VMIO operations).  This code is able to
3857  * resize a buffer up or down.
3858  *
3859  * Note that this code is tricky, and has many complications to resolve
3860  * deadlock or inconsistent data situations.  Tread lightly!!!
3861  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3862  * the caller.  Calling this code willy nilly can result in the loss of data.
3863  *
3864  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3865  * B_CACHE for the non-VMIO case.
3866  */
3867 int
3868 allocbuf(struct buf *bp, int size)
3869 {
3870 	int newbsize;
3871 
3872 	BUF_ASSERT_HELD(bp);
3873 
3874 	if (bp->b_bcount == size)
3875 		return (1);
3876 
3877 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
3878 		panic("allocbuf: buffer too small");
3879 
3880 	newbsize = roundup2(size, DEV_BSIZE);
3881 	if ((bp->b_flags & B_VMIO) == 0) {
3882 		if ((bp->b_flags & B_MALLOC) == 0)
3883 			newbsize = round_page(newbsize);
3884 		/*
3885 		 * Just get anonymous memory from the kernel.  Don't
3886 		 * mess with B_CACHE.
3887 		 */
3888 		if (newbsize < bp->b_bufsize)
3889 			vfs_nonvmio_truncate(bp, newbsize);
3890 		else if (newbsize > bp->b_bufsize)
3891 			vfs_nonvmio_extend(bp, newbsize);
3892 	} else {
3893 		int desiredpages;
3894 
3895 		desiredpages = (size == 0) ? 0 :
3896 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3897 
3898 		if (bp->b_flags & B_MALLOC)
3899 			panic("allocbuf: VMIO buffer can't be malloced");
3900 		/*
3901 		 * Set B_CACHE initially if buffer is 0 length or will become
3902 		 * 0-length.
3903 		 */
3904 		if (size == 0 || bp->b_bufsize == 0)
3905 			bp->b_flags |= B_CACHE;
3906 
3907 		if (newbsize < bp->b_bufsize)
3908 			vfs_vmio_truncate(bp, desiredpages);
3909 		/* XXX This looks as if it should be newbsize > b_bufsize */
3910 		else if (size > bp->b_bcount)
3911 			vfs_vmio_extend(bp, desiredpages, size);
3912 		bufspace_adjust(bp, newbsize);
3913 	}
3914 	bp->b_bcount = size;		/* requested buffer size. */
3915 	return (1);
3916 }
3917 
3918 extern int inflight_transient_maps;
3919 
3920 void
3921 biodone(struct bio *bp)
3922 {
3923 	struct mtx *mtxp;
3924 	void (*done)(struct bio *);
3925 	vm_offset_t start, end;
3926 
3927 	biotrack(bp, __func__);
3928 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3929 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3930 		bp->bio_flags |= BIO_UNMAPPED;
3931 		start = trunc_page((vm_offset_t)bp->bio_data);
3932 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3933 		bp->bio_data = unmapped_buf;
3934 		pmap_qremove(start, atop(end - start));
3935 		vmem_free(transient_arena, start, end - start);
3936 		atomic_add_int(&inflight_transient_maps, -1);
3937 	}
3938 	done = bp->bio_done;
3939 	if (done == NULL) {
3940 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3941 		mtx_lock(mtxp);
3942 		bp->bio_flags |= BIO_DONE;
3943 		wakeup(bp);
3944 		mtx_unlock(mtxp);
3945 	} else
3946 		done(bp);
3947 }
3948 
3949 /*
3950  * Wait for a BIO to finish.
3951  */
3952 int
3953 biowait(struct bio *bp, const char *wchan)
3954 {
3955 	struct mtx *mtxp;
3956 
3957 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3958 	mtx_lock(mtxp);
3959 	while ((bp->bio_flags & BIO_DONE) == 0)
3960 		msleep(bp, mtxp, PRIBIO, wchan, 0);
3961 	mtx_unlock(mtxp);
3962 	if (bp->bio_error != 0)
3963 		return (bp->bio_error);
3964 	if (!(bp->bio_flags & BIO_ERROR))
3965 		return (0);
3966 	return (EIO);
3967 }
3968 
3969 void
3970 biofinish(struct bio *bp, struct devstat *stat, int error)
3971 {
3972 
3973 	if (error) {
3974 		bp->bio_error = error;
3975 		bp->bio_flags |= BIO_ERROR;
3976 	}
3977 	if (stat != NULL)
3978 		devstat_end_transaction_bio(stat, bp);
3979 	biodone(bp);
3980 }
3981 
3982 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
3983 void
3984 biotrack_buf(struct bio *bp, const char *location)
3985 {
3986 
3987 	buf_track(bp->bio_track_bp, location);
3988 }
3989 #endif
3990 
3991 /*
3992  *	bufwait:
3993  *
3994  *	Wait for buffer I/O completion, returning error status.  The buffer
3995  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3996  *	error and cleared.
3997  */
3998 int
3999 bufwait(struct buf *bp)
4000 {
4001 	if (bp->b_iocmd == BIO_READ)
4002 		bwait(bp, PRIBIO, "biord");
4003 	else
4004 		bwait(bp, PRIBIO, "biowr");
4005 	if (bp->b_flags & B_EINTR) {
4006 		bp->b_flags &= ~B_EINTR;
4007 		return (EINTR);
4008 	}
4009 	if (bp->b_ioflags & BIO_ERROR) {
4010 		return (bp->b_error ? bp->b_error : EIO);
4011 	} else {
4012 		return (0);
4013 	}
4014 }
4015 
4016 /*
4017  *	bufdone:
4018  *
4019  *	Finish I/O on a buffer, optionally calling a completion function.
4020  *	This is usually called from an interrupt so process blocking is
4021  *	not allowed.
4022  *
4023  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4024  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4025  *	assuming B_INVAL is clear.
4026  *
4027  *	For the VMIO case, we set B_CACHE if the op was a read and no
4028  *	read error occurred, or if the op was a write.  B_CACHE is never
4029  *	set if the buffer is invalid or otherwise uncacheable.
4030  *
4031  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
4032  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4033  *	in the biodone routine.
4034  */
4035 void
4036 bufdone(struct buf *bp)
4037 {
4038 	struct bufobj *dropobj;
4039 	void    (*biodone)(struct buf *);
4040 
4041 	buf_track(bp, __func__);
4042 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4043 	dropobj = NULL;
4044 
4045 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4046 	BUF_ASSERT_HELD(bp);
4047 
4048 	runningbufwakeup(bp);
4049 	if (bp->b_iocmd == BIO_WRITE)
4050 		dropobj = bp->b_bufobj;
4051 	/* call optional completion function if requested */
4052 	if (bp->b_iodone != NULL) {
4053 		biodone = bp->b_iodone;
4054 		bp->b_iodone = NULL;
4055 		(*biodone) (bp);
4056 		if (dropobj)
4057 			bufobj_wdrop(dropobj);
4058 		return;
4059 	}
4060 
4061 	bufdone_finish(bp);
4062 
4063 	if (dropobj)
4064 		bufobj_wdrop(dropobj);
4065 }
4066 
4067 void
4068 bufdone_finish(struct buf *bp)
4069 {
4070 	BUF_ASSERT_HELD(bp);
4071 
4072 	if (!LIST_EMPTY(&bp->b_dep))
4073 		buf_complete(bp);
4074 
4075 	if (bp->b_flags & B_VMIO) {
4076 		/*
4077 		 * Set B_CACHE if the op was a normal read and no error
4078 		 * occurred.  B_CACHE is set for writes in the b*write()
4079 		 * routines.
4080 		 */
4081 		if (bp->b_iocmd == BIO_READ &&
4082 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4083 		    !(bp->b_ioflags & BIO_ERROR))
4084 			bp->b_flags |= B_CACHE;
4085 		vfs_vmio_iodone(bp);
4086 	}
4087 
4088 	/*
4089 	 * For asynchronous completions, release the buffer now. The brelse
4090 	 * will do a wakeup there if necessary - so no need to do a wakeup
4091 	 * here in the async case. The sync case always needs to do a wakeup.
4092 	 */
4093 	if (bp->b_flags & B_ASYNC) {
4094 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4095 		    (bp->b_ioflags & BIO_ERROR))
4096 			brelse(bp);
4097 		else
4098 			bqrelse(bp);
4099 	} else
4100 		bdone(bp);
4101 }
4102 
4103 /*
4104  * This routine is called in lieu of iodone in the case of
4105  * incomplete I/O.  This keeps the busy status for pages
4106  * consistent.
4107  */
4108 void
4109 vfs_unbusy_pages(struct buf *bp)
4110 {
4111 	int i;
4112 	vm_object_t obj;
4113 	vm_page_t m;
4114 
4115 	runningbufwakeup(bp);
4116 	if (!(bp->b_flags & B_VMIO))
4117 		return;
4118 
4119 	obj = bp->b_bufobj->bo_object;
4120 	VM_OBJECT_WLOCK(obj);
4121 	for (i = 0; i < bp->b_npages; i++) {
4122 		m = bp->b_pages[i];
4123 		if (m == bogus_page) {
4124 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4125 			if (!m)
4126 				panic("vfs_unbusy_pages: page missing\n");
4127 			bp->b_pages[i] = m;
4128 			if (buf_mapped(bp)) {
4129 				BUF_CHECK_MAPPED(bp);
4130 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4131 				    bp->b_pages, bp->b_npages);
4132 			} else
4133 				BUF_CHECK_UNMAPPED(bp);
4134 		}
4135 		vm_page_sunbusy(m);
4136 	}
4137 	vm_object_pip_wakeupn(obj, bp->b_npages);
4138 	VM_OBJECT_WUNLOCK(obj);
4139 }
4140 
4141 /*
4142  * vfs_page_set_valid:
4143  *
4144  *	Set the valid bits in a page based on the supplied offset.   The
4145  *	range is restricted to the buffer's size.
4146  *
4147  *	This routine is typically called after a read completes.
4148  */
4149 static void
4150 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4151 {
4152 	vm_ooffset_t eoff;
4153 
4154 	/*
4155 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4156 	 * page boundary and eoff is not greater than the end of the buffer.
4157 	 * The end of the buffer, in this case, is our file EOF, not the
4158 	 * allocation size of the buffer.
4159 	 */
4160 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4161 	if (eoff > bp->b_offset + bp->b_bcount)
4162 		eoff = bp->b_offset + bp->b_bcount;
4163 
4164 	/*
4165 	 * Set valid range.  This is typically the entire buffer and thus the
4166 	 * entire page.
4167 	 */
4168 	if (eoff > off)
4169 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4170 }
4171 
4172 /*
4173  * vfs_page_set_validclean:
4174  *
4175  *	Set the valid bits and clear the dirty bits in a page based on the
4176  *	supplied offset.   The range is restricted to the buffer's size.
4177  */
4178 static void
4179 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4180 {
4181 	vm_ooffset_t soff, eoff;
4182 
4183 	/*
4184 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4185 	 * page boundary or cross the end of the buffer.  The end of the
4186 	 * buffer, in this case, is our file EOF, not the allocation size
4187 	 * of the buffer.
4188 	 */
4189 	soff = off;
4190 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4191 	if (eoff > bp->b_offset + bp->b_bcount)
4192 		eoff = bp->b_offset + bp->b_bcount;
4193 
4194 	/*
4195 	 * Set valid range.  This is typically the entire buffer and thus the
4196 	 * entire page.
4197 	 */
4198 	if (eoff > soff) {
4199 		vm_page_set_validclean(
4200 		    m,
4201 		   (vm_offset_t) (soff & PAGE_MASK),
4202 		   (vm_offset_t) (eoff - soff)
4203 		);
4204 	}
4205 }
4206 
4207 /*
4208  * Ensure that all buffer pages are not exclusive busied.  If any page is
4209  * exclusive busy, drain it.
4210  */
4211 void
4212 vfs_drain_busy_pages(struct buf *bp)
4213 {
4214 	vm_page_t m;
4215 	int i, last_busied;
4216 
4217 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4218 	last_busied = 0;
4219 	for (i = 0; i < bp->b_npages; i++) {
4220 		m = bp->b_pages[i];
4221 		if (vm_page_xbusied(m)) {
4222 			for (; last_busied < i; last_busied++)
4223 				vm_page_sbusy(bp->b_pages[last_busied]);
4224 			while (vm_page_xbusied(m)) {
4225 				vm_page_lock(m);
4226 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4227 				vm_page_busy_sleep(m, "vbpage", true);
4228 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4229 			}
4230 		}
4231 	}
4232 	for (i = 0; i < last_busied; i++)
4233 		vm_page_sunbusy(bp->b_pages[i]);
4234 }
4235 
4236 /*
4237  * This routine is called before a device strategy routine.
4238  * It is used to tell the VM system that paging I/O is in
4239  * progress, and treat the pages associated with the buffer
4240  * almost as being exclusive busy.  Also the object paging_in_progress
4241  * flag is handled to make sure that the object doesn't become
4242  * inconsistent.
4243  *
4244  * Since I/O has not been initiated yet, certain buffer flags
4245  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4246  * and should be ignored.
4247  */
4248 void
4249 vfs_busy_pages(struct buf *bp, int clear_modify)
4250 {
4251 	vm_object_t obj;
4252 	vm_ooffset_t foff;
4253 	vm_page_t m;
4254 	int i;
4255 	bool bogus;
4256 
4257 	if (!(bp->b_flags & B_VMIO))
4258 		return;
4259 
4260 	obj = bp->b_bufobj->bo_object;
4261 	foff = bp->b_offset;
4262 	KASSERT(bp->b_offset != NOOFFSET,
4263 	    ("vfs_busy_pages: no buffer offset"));
4264 	VM_OBJECT_WLOCK(obj);
4265 	vfs_drain_busy_pages(bp);
4266 	if (bp->b_bufsize != 0)
4267 		vfs_setdirty_locked_object(bp);
4268 	bogus = false;
4269 	for (i = 0; i < bp->b_npages; i++) {
4270 		m = bp->b_pages[i];
4271 
4272 		if ((bp->b_flags & B_CLUSTER) == 0) {
4273 			vm_object_pip_add(obj, 1);
4274 			vm_page_sbusy(m);
4275 		}
4276 		/*
4277 		 * When readying a buffer for a read ( i.e
4278 		 * clear_modify == 0 ), it is important to do
4279 		 * bogus_page replacement for valid pages in
4280 		 * partially instantiated buffers.  Partially
4281 		 * instantiated buffers can, in turn, occur when
4282 		 * reconstituting a buffer from its VM backing store
4283 		 * base.  We only have to do this if B_CACHE is
4284 		 * clear ( which causes the I/O to occur in the
4285 		 * first place ).  The replacement prevents the read
4286 		 * I/O from overwriting potentially dirty VM-backed
4287 		 * pages.  XXX bogus page replacement is, uh, bogus.
4288 		 * It may not work properly with small-block devices.
4289 		 * We need to find a better way.
4290 		 */
4291 		if (clear_modify) {
4292 			pmap_remove_write(m);
4293 			vfs_page_set_validclean(bp, foff, m);
4294 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4295 		    (bp->b_flags & B_CACHE) == 0) {
4296 			bp->b_pages[i] = bogus_page;
4297 			bogus = true;
4298 		}
4299 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4300 	}
4301 	VM_OBJECT_WUNLOCK(obj);
4302 	if (bogus && buf_mapped(bp)) {
4303 		BUF_CHECK_MAPPED(bp);
4304 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4305 		    bp->b_pages, bp->b_npages);
4306 	}
4307 }
4308 
4309 /*
4310  *	vfs_bio_set_valid:
4311  *
4312  *	Set the range within the buffer to valid.  The range is
4313  *	relative to the beginning of the buffer, b_offset.  Note that
4314  *	b_offset itself may be offset from the beginning of the first
4315  *	page.
4316  */
4317 void
4318 vfs_bio_set_valid(struct buf *bp, int base, int size)
4319 {
4320 	int i, n;
4321 	vm_page_t m;
4322 
4323 	if (!(bp->b_flags & B_VMIO))
4324 		return;
4325 
4326 	/*
4327 	 * Fixup base to be relative to beginning of first page.
4328 	 * Set initial n to be the maximum number of bytes in the
4329 	 * first page that can be validated.
4330 	 */
4331 	base += (bp->b_offset & PAGE_MASK);
4332 	n = PAGE_SIZE - (base & PAGE_MASK);
4333 
4334 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4335 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4336 		m = bp->b_pages[i];
4337 		if (n > size)
4338 			n = size;
4339 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4340 		base += n;
4341 		size -= n;
4342 		n = PAGE_SIZE;
4343 	}
4344 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4345 }
4346 
4347 /*
4348  *	vfs_bio_clrbuf:
4349  *
4350  *	If the specified buffer is a non-VMIO buffer, clear the entire
4351  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4352  *	validate only the previously invalid portions of the buffer.
4353  *	This routine essentially fakes an I/O, so we need to clear
4354  *	BIO_ERROR and B_INVAL.
4355  *
4356  *	Note that while we only theoretically need to clear through b_bcount,
4357  *	we go ahead and clear through b_bufsize.
4358  */
4359 void
4360 vfs_bio_clrbuf(struct buf *bp)
4361 {
4362 	int i, j, mask, sa, ea, slide;
4363 
4364 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4365 		clrbuf(bp);
4366 		return;
4367 	}
4368 	bp->b_flags &= ~B_INVAL;
4369 	bp->b_ioflags &= ~BIO_ERROR;
4370 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4371 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4372 	    (bp->b_offset & PAGE_MASK) == 0) {
4373 		if (bp->b_pages[0] == bogus_page)
4374 			goto unlock;
4375 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4376 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4377 		if ((bp->b_pages[0]->valid & mask) == mask)
4378 			goto unlock;
4379 		if ((bp->b_pages[0]->valid & mask) == 0) {
4380 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4381 			bp->b_pages[0]->valid |= mask;
4382 			goto unlock;
4383 		}
4384 	}
4385 	sa = bp->b_offset & PAGE_MASK;
4386 	slide = 0;
4387 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4388 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4389 		ea = slide & PAGE_MASK;
4390 		if (ea == 0)
4391 			ea = PAGE_SIZE;
4392 		if (bp->b_pages[i] == bogus_page)
4393 			continue;
4394 		j = sa / DEV_BSIZE;
4395 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4396 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4397 		if ((bp->b_pages[i]->valid & mask) == mask)
4398 			continue;
4399 		if ((bp->b_pages[i]->valid & mask) == 0)
4400 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4401 		else {
4402 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4403 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4404 					pmap_zero_page_area(bp->b_pages[i],
4405 					    sa, DEV_BSIZE);
4406 				}
4407 			}
4408 		}
4409 		bp->b_pages[i]->valid |= mask;
4410 	}
4411 unlock:
4412 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4413 	bp->b_resid = 0;
4414 }
4415 
4416 void
4417 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4418 {
4419 	vm_page_t m;
4420 	int i, n;
4421 
4422 	if (buf_mapped(bp)) {
4423 		BUF_CHECK_MAPPED(bp);
4424 		bzero(bp->b_data + base, size);
4425 	} else {
4426 		BUF_CHECK_UNMAPPED(bp);
4427 		n = PAGE_SIZE - (base & PAGE_MASK);
4428 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4429 			m = bp->b_pages[i];
4430 			if (n > size)
4431 				n = size;
4432 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4433 			base += n;
4434 			size -= n;
4435 			n = PAGE_SIZE;
4436 		}
4437 	}
4438 }
4439 
4440 /*
4441  * Update buffer flags based on I/O request parameters, optionally releasing the
4442  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4443  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4444  * I/O).  Otherwise the buffer is released to the cache.
4445  */
4446 static void
4447 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4448 {
4449 
4450 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4451 	    ("buf %p non-VMIO noreuse", bp));
4452 
4453 	if ((ioflag & IO_DIRECT) != 0)
4454 		bp->b_flags |= B_DIRECT;
4455 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4456 		bp->b_flags |= B_RELBUF;
4457 		if ((ioflag & IO_NOREUSE) != 0)
4458 			bp->b_flags |= B_NOREUSE;
4459 		if (release)
4460 			brelse(bp);
4461 	} else if (release)
4462 		bqrelse(bp);
4463 }
4464 
4465 void
4466 vfs_bio_brelse(struct buf *bp, int ioflag)
4467 {
4468 
4469 	b_io_dismiss(bp, ioflag, true);
4470 }
4471 
4472 void
4473 vfs_bio_set_flags(struct buf *bp, int ioflag)
4474 {
4475 
4476 	b_io_dismiss(bp, ioflag, false);
4477 }
4478 
4479 /*
4480  * vm_hold_load_pages and vm_hold_free_pages get pages into
4481  * a buffers address space.  The pages are anonymous and are
4482  * not associated with a file object.
4483  */
4484 static void
4485 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4486 {
4487 	vm_offset_t pg;
4488 	vm_page_t p;
4489 	int index;
4490 
4491 	BUF_CHECK_MAPPED(bp);
4492 
4493 	to = round_page(to);
4494 	from = round_page(from);
4495 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4496 
4497 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4498 tryagain:
4499 		/*
4500 		 * note: must allocate system pages since blocking here
4501 		 * could interfere with paging I/O, no matter which
4502 		 * process we are.
4503 		 */
4504 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4505 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4506 		if (p == NULL) {
4507 			VM_WAIT;
4508 			goto tryagain;
4509 		}
4510 		pmap_qenter(pg, &p, 1);
4511 		bp->b_pages[index] = p;
4512 	}
4513 	bp->b_npages = index;
4514 }
4515 
4516 /* Return pages associated with this buf to the vm system */
4517 static void
4518 vm_hold_free_pages(struct buf *bp, int newbsize)
4519 {
4520 	vm_offset_t from;
4521 	vm_page_t p;
4522 	int index, newnpages;
4523 
4524 	BUF_CHECK_MAPPED(bp);
4525 
4526 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4527 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4528 	if (bp->b_npages > newnpages)
4529 		pmap_qremove(from, bp->b_npages - newnpages);
4530 	for (index = newnpages; index < bp->b_npages; index++) {
4531 		p = bp->b_pages[index];
4532 		bp->b_pages[index] = NULL;
4533 		p->wire_count--;
4534 		vm_page_free(p);
4535 	}
4536 	atomic_subtract_int(&vm_cnt.v_wire_count, bp->b_npages - newnpages);
4537 	bp->b_npages = newnpages;
4538 }
4539 
4540 /*
4541  * Map an IO request into kernel virtual address space.
4542  *
4543  * All requests are (re)mapped into kernel VA space.
4544  * Notice that we use b_bufsize for the size of the buffer
4545  * to be mapped.  b_bcount might be modified by the driver.
4546  *
4547  * Note that even if the caller determines that the address space should
4548  * be valid, a race or a smaller-file mapped into a larger space may
4549  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4550  * check the return value.
4551  *
4552  * This function only works with pager buffers.
4553  */
4554 int
4555 vmapbuf(struct buf *bp, int mapbuf)
4556 {
4557 	vm_prot_t prot;
4558 	int pidx;
4559 
4560 	if (bp->b_bufsize < 0)
4561 		return (-1);
4562 	prot = VM_PROT_READ;
4563 	if (bp->b_iocmd == BIO_READ)
4564 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4565 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4566 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4567 	    btoc(MAXPHYS))) < 0)
4568 		return (-1);
4569 	bp->b_npages = pidx;
4570 	bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4571 	if (mapbuf || !unmapped_buf_allowed) {
4572 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4573 		bp->b_data = bp->b_kvabase + bp->b_offset;
4574 	} else
4575 		bp->b_data = unmapped_buf;
4576 	return(0);
4577 }
4578 
4579 /*
4580  * Free the io map PTEs associated with this IO operation.
4581  * We also invalidate the TLB entries and restore the original b_addr.
4582  *
4583  * This function only works with pager buffers.
4584  */
4585 void
4586 vunmapbuf(struct buf *bp)
4587 {
4588 	int npages;
4589 
4590 	npages = bp->b_npages;
4591 	if (buf_mapped(bp))
4592 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4593 	vm_page_unhold_pages(bp->b_pages, npages);
4594 
4595 	bp->b_data = unmapped_buf;
4596 }
4597 
4598 void
4599 bdone(struct buf *bp)
4600 {
4601 	struct mtx *mtxp;
4602 
4603 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4604 	mtx_lock(mtxp);
4605 	bp->b_flags |= B_DONE;
4606 	wakeup(bp);
4607 	mtx_unlock(mtxp);
4608 }
4609 
4610 void
4611 bwait(struct buf *bp, u_char pri, const char *wchan)
4612 {
4613 	struct mtx *mtxp;
4614 
4615 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4616 	mtx_lock(mtxp);
4617 	while ((bp->b_flags & B_DONE) == 0)
4618 		msleep(bp, mtxp, pri, wchan, 0);
4619 	mtx_unlock(mtxp);
4620 }
4621 
4622 int
4623 bufsync(struct bufobj *bo, int waitfor)
4624 {
4625 
4626 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
4627 }
4628 
4629 void
4630 bufstrategy(struct bufobj *bo, struct buf *bp)
4631 {
4632 	int i = 0;
4633 	struct vnode *vp;
4634 
4635 	vp = bp->b_vp;
4636 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4637 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4638 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4639 	i = VOP_STRATEGY(vp, bp);
4640 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4641 }
4642 
4643 void
4644 bufobj_wrefl(struct bufobj *bo)
4645 {
4646 
4647 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4648 	ASSERT_BO_WLOCKED(bo);
4649 	bo->bo_numoutput++;
4650 }
4651 
4652 void
4653 bufobj_wref(struct bufobj *bo)
4654 {
4655 
4656 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4657 	BO_LOCK(bo);
4658 	bo->bo_numoutput++;
4659 	BO_UNLOCK(bo);
4660 }
4661 
4662 void
4663 bufobj_wdrop(struct bufobj *bo)
4664 {
4665 
4666 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4667 	BO_LOCK(bo);
4668 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4669 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4670 		bo->bo_flag &= ~BO_WWAIT;
4671 		wakeup(&bo->bo_numoutput);
4672 	}
4673 	BO_UNLOCK(bo);
4674 }
4675 
4676 int
4677 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4678 {
4679 	int error;
4680 
4681 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4682 	ASSERT_BO_WLOCKED(bo);
4683 	error = 0;
4684 	while (bo->bo_numoutput) {
4685 		bo->bo_flag |= BO_WWAIT;
4686 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4687 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4688 		if (error)
4689 			break;
4690 	}
4691 	return (error);
4692 }
4693 
4694 /*
4695  * Set bio_data or bio_ma for struct bio from the struct buf.
4696  */
4697 void
4698 bdata2bio(struct buf *bp, struct bio *bip)
4699 {
4700 
4701 	if (!buf_mapped(bp)) {
4702 		KASSERT(unmapped_buf_allowed, ("unmapped"));
4703 		bip->bio_ma = bp->b_pages;
4704 		bip->bio_ma_n = bp->b_npages;
4705 		bip->bio_data = unmapped_buf;
4706 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4707 		bip->bio_flags |= BIO_UNMAPPED;
4708 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4709 		    PAGE_SIZE == bp->b_npages,
4710 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4711 		    (long long)bip->bio_length, bip->bio_ma_n));
4712 	} else {
4713 		bip->bio_data = bp->b_data;
4714 		bip->bio_ma = NULL;
4715 	}
4716 }
4717 
4718 /*
4719  * The MIPS pmap code currently doesn't handle aliased pages.
4720  * The VIPT caches may not handle page aliasing themselves, leading
4721  * to data corruption.
4722  *
4723  * As such, this code makes a system extremely unhappy if said
4724  * system doesn't support unaliasing the above situation in hardware.
4725  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
4726  * this feature at build time, so it has to be handled in software.
4727  *
4728  * Once the MIPS pmap/cache code grows to support this function on
4729  * earlier chips, it should be flipped back off.
4730  */
4731 #ifdef	__mips__
4732 static int buf_pager_relbuf = 1;
4733 #else
4734 static int buf_pager_relbuf = 0;
4735 #endif
4736 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
4737     &buf_pager_relbuf, 0,
4738     "Make buffer pager release buffers after reading");
4739 
4740 /*
4741  * The buffer pager.  It uses buffer reads to validate pages.
4742  *
4743  * In contrast to the generic local pager from vm/vnode_pager.c, this
4744  * pager correctly and easily handles volumes where the underlying
4745  * device block size is greater than the machine page size.  The
4746  * buffer cache transparently extends the requested page run to be
4747  * aligned at the block boundary, and does the necessary bogus page
4748  * replacements in the addends to avoid obliterating already valid
4749  * pages.
4750  *
4751  * The only non-trivial issue is that the exclusive busy state for
4752  * pages, which is assumed by the vm_pager_getpages() interface, is
4753  * incompatible with the VMIO buffer cache's desire to share-busy the
4754  * pages.  This function performs a trivial downgrade of the pages'
4755  * state before reading buffers, and a less trivial upgrade from the
4756  * shared-busy to excl-busy state after the read.
4757  */
4758 int
4759 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
4760     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
4761     vbg_get_blksize_t get_blksize)
4762 {
4763 	vm_page_t m;
4764 	vm_object_t object;
4765 	struct buf *bp;
4766 	struct mount *mp;
4767 	daddr_t lbn, lbnp;
4768 	vm_ooffset_t la, lb, poff, poffe;
4769 	long bsize;
4770 	int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
4771 	bool redo, lpart;
4772 
4773 	object = vp->v_object;
4774 	mp = vp->v_mount;
4775 	la = IDX_TO_OFF(ma[count - 1]->pindex);
4776 	if (la >= object->un_pager.vnp.vnp_size)
4777 		return (VM_PAGER_BAD);
4778 	lpart = la + PAGE_SIZE > object->un_pager.vnp.vnp_size;
4779 	bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
4780 
4781 	/*
4782 	 * Calculate read-ahead, behind and total pages.
4783 	 */
4784 	pgsin = count;
4785 	lb = IDX_TO_OFF(ma[0]->pindex);
4786 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
4787 	pgsin += pgsin_b;
4788 	if (rbehind != NULL)
4789 		*rbehind = pgsin_b;
4790 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
4791 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
4792 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
4793 		    PAGE_SIZE) - la);
4794 	pgsin += pgsin_a;
4795 	if (rahead != NULL)
4796 		*rahead = pgsin_a;
4797 	VM_CNT_INC(v_vnodein);
4798 	VM_CNT_ADD(v_vnodepgsin, pgsin);
4799 
4800 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
4801 	    != 0) ? GB_UNMAPPED : 0;
4802 	VM_OBJECT_WLOCK(object);
4803 again:
4804 	for (i = 0; i < count; i++)
4805 		vm_page_busy_downgrade(ma[i]);
4806 	VM_OBJECT_WUNLOCK(object);
4807 
4808 	lbnp = -1;
4809 	for (i = 0; i < count; i++) {
4810 		m = ma[i];
4811 
4812 		/*
4813 		 * Pages are shared busy and the object lock is not
4814 		 * owned, which together allow for the pages'
4815 		 * invalidation.  The racy test for validity avoids
4816 		 * useless creation of the buffer for the most typical
4817 		 * case when invalidation is not used in redo or for
4818 		 * parallel read.  The shared->excl upgrade loop at
4819 		 * the end of the function catches the race in a
4820 		 * reliable way (protected by the object lock).
4821 		 */
4822 		if (m->valid == VM_PAGE_BITS_ALL)
4823 			continue;
4824 
4825 		poff = IDX_TO_OFF(m->pindex);
4826 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
4827 		for (; poff < poffe; poff += bsize) {
4828 			lbn = get_lblkno(vp, poff);
4829 			if (lbn == lbnp)
4830 				goto next_page;
4831 			lbnp = lbn;
4832 
4833 			bsize = get_blksize(vp, lbn);
4834 			error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
4835 			    br_flags, &bp);
4836 			if (error != 0)
4837 				goto end_pages;
4838 			if (LIST_EMPTY(&bp->b_dep)) {
4839 				/*
4840 				 * Invalidation clears m->valid, but
4841 				 * may leave B_CACHE flag if the
4842 				 * buffer existed at the invalidation
4843 				 * time.  In this case, recycle the
4844 				 * buffer to do real read on next
4845 				 * bread() after redo.
4846 				 *
4847 				 * Otherwise B_RELBUF is not strictly
4848 				 * necessary, enable to reduce buf
4849 				 * cache pressure.
4850 				 */
4851 				if (buf_pager_relbuf ||
4852 				    m->valid != VM_PAGE_BITS_ALL)
4853 					bp->b_flags |= B_RELBUF;
4854 
4855 				bp->b_flags &= ~B_NOCACHE;
4856 				brelse(bp);
4857 			} else {
4858 				bqrelse(bp);
4859 			}
4860 		}
4861 		KASSERT(1 /* racy, enable for debugging */ ||
4862 		    m->valid == VM_PAGE_BITS_ALL || i == count - 1,
4863 		    ("buf %d %p invalid", i, m));
4864 		if (i == count - 1 && lpart) {
4865 			VM_OBJECT_WLOCK(object);
4866 			if (m->valid != 0 &&
4867 			    m->valid != VM_PAGE_BITS_ALL)
4868 				vm_page_zero_invalid(m, TRUE);
4869 			VM_OBJECT_WUNLOCK(object);
4870 		}
4871 next_page:;
4872 	}
4873 end_pages:
4874 
4875 	VM_OBJECT_WLOCK(object);
4876 	redo = false;
4877 	for (i = 0; i < count; i++) {
4878 		vm_page_sunbusy(ma[i]);
4879 		ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL);
4880 
4881 		/*
4882 		 * Since the pages were only sbusy while neither the
4883 		 * buffer nor the object lock was held by us, or
4884 		 * reallocated while vm_page_grab() slept for busy
4885 		 * relinguish, they could have been invalidated.
4886 		 * Recheck the valid bits and re-read as needed.
4887 		 *
4888 		 * Note that the last page is made fully valid in the
4889 		 * read loop, and partial validity for the page at
4890 		 * index count - 1 could mean that the page was
4891 		 * invalidated or removed, so we must restart for
4892 		 * safety as well.
4893 		 */
4894 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
4895 			redo = true;
4896 	}
4897 	if (redo && error == 0)
4898 		goto again;
4899 	VM_OBJECT_WUNLOCK(object);
4900 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
4901 }
4902 
4903 #include "opt_ddb.h"
4904 #ifdef DDB
4905 #include <ddb/ddb.h>
4906 
4907 /* DDB command to show buffer data */
4908 DB_SHOW_COMMAND(buffer, db_show_buffer)
4909 {
4910 	/* get args */
4911 	struct buf *bp = (struct buf *)addr;
4912 #ifdef FULL_BUF_TRACKING
4913 	uint32_t i, j;
4914 #endif
4915 
4916 	if (!have_addr) {
4917 		db_printf("usage: show buffer <addr>\n");
4918 		return;
4919 	}
4920 
4921 	db_printf("buf at %p\n", bp);
4922 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4923 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4924 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4925 	db_printf(
4926 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4927 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4928 	    "b_dep = %p\n",
4929 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4930 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4931 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4932 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
4933 	    bp->b_kvabase, bp->b_kvasize);
4934 	if (bp->b_npages) {
4935 		int i;
4936 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4937 		for (i = 0; i < bp->b_npages; i++) {
4938 			vm_page_t m;
4939 			m = bp->b_pages[i];
4940 			if (m != NULL)
4941 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
4942 				    (u_long)m->pindex,
4943 				    (u_long)VM_PAGE_TO_PHYS(m));
4944 			else
4945 				db_printf("( ??? )");
4946 			if ((i + 1) < bp->b_npages)
4947 				db_printf(",");
4948 		}
4949 		db_printf("\n");
4950 	}
4951 #if defined(FULL_BUF_TRACKING)
4952 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
4953 
4954 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
4955 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
4956 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
4957 			continue;
4958 		db_printf(" %2u: %s\n", j,
4959 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
4960 	}
4961 #elif defined(BUF_TRACKING)
4962 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
4963 #endif
4964 	db_printf(" ");
4965 	BUF_LOCKPRINTINFO(bp);
4966 }
4967 
4968 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4969 {
4970 	struct buf *bp;
4971 	int i;
4972 
4973 	for (i = 0; i < nbuf; i++) {
4974 		bp = &buf[i];
4975 		if (BUF_ISLOCKED(bp)) {
4976 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4977 			db_printf("\n");
4978 			if (db_pager_quit)
4979 				break;
4980 		}
4981 	}
4982 }
4983 
4984 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4985 {
4986 	struct vnode *vp;
4987 	struct buf *bp;
4988 
4989 	if (!have_addr) {
4990 		db_printf("usage: show vnodebufs <addr>\n");
4991 		return;
4992 	}
4993 	vp = (struct vnode *)addr;
4994 	db_printf("Clean buffers:\n");
4995 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4996 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4997 		db_printf("\n");
4998 	}
4999 	db_printf("Dirty buffers:\n");
5000 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5001 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5002 		db_printf("\n");
5003 	}
5004 }
5005 
5006 DB_COMMAND(countfreebufs, db_coundfreebufs)
5007 {
5008 	struct buf *bp;
5009 	int i, used = 0, nfree = 0;
5010 
5011 	if (have_addr) {
5012 		db_printf("usage: countfreebufs\n");
5013 		return;
5014 	}
5015 
5016 	for (i = 0; i < nbuf; i++) {
5017 		bp = &buf[i];
5018 		if (bp->b_qindex == QUEUE_EMPTY)
5019 			nfree++;
5020 		else
5021 			used++;
5022 	}
5023 
5024 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5025 	    nfree + used);
5026 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5027 }
5028 #endif /* DDB */
5029