1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1994,1997 John S. Dyson 4 * Copyright (c) 2013 The FreeBSD Foundation 5 * All rights reserved. 6 * 7 * Portions of this software were developed by Konstantin Belousov 8 * under sponsorship from the FreeBSD Foundation. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * this file contains a new buffer I/O scheme implementing a coherent 34 * VM object and buffer cache scheme. Pains have been taken to make 35 * sure that the performance degradation associated with schemes such 36 * as this is not realized. 37 * 38 * Author: John S. Dyson 39 * Significant help during the development and debugging phases 40 * had been provided by David Greenman, also of the FreeBSD core team. 41 * 42 * see man buf(9) for more info. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/conf.h> 52 #include <sys/buf.h> 53 #include <sys/devicestat.h> 54 #include <sys/eventhandler.h> 55 #include <sys/fail.h> 56 #include <sys/limits.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mount.h> 60 #include <sys/mutex.h> 61 #include <sys/kernel.h> 62 #include <sys/kthread.h> 63 #include <sys/proc.h> 64 #include <sys/resourcevar.h> 65 #include <sys/rwlock.h> 66 #include <sys/sysctl.h> 67 #include <sys/vmem.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <geom/geom.h> 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_page.h> 76 #include <vm/vm_object.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_map.h> 79 #include "opt_compat.h" 80 #include "opt_swap.h" 81 82 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer"); 83 84 struct bio_ops bioops; /* I/O operation notification */ 85 86 struct buf_ops buf_ops_bio = { 87 .bop_name = "buf_ops_bio", 88 .bop_write = bufwrite, 89 .bop_strategy = bufstrategy, 90 .bop_sync = bufsync, 91 .bop_bdflush = bufbdflush, 92 }; 93 94 /* 95 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 96 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 97 */ 98 struct buf *buf; /* buffer header pool */ 99 caddr_t unmapped_buf; 100 101 static struct proc *bufdaemonproc; 102 103 static int inmem(struct vnode *vp, daddr_t blkno); 104 static void vm_hold_free_pages(struct buf *bp, int newbsize); 105 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 106 vm_offset_t to); 107 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m); 108 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, 109 vm_page_t m); 110 static void vfs_clean_pages_dirty_buf(struct buf *bp); 111 static void vfs_setdirty_locked_object(struct buf *bp); 112 static void vfs_vmio_release(struct buf *bp); 113 static int vfs_bio_clcheck(struct vnode *vp, int size, 114 daddr_t lblkno, daddr_t blkno); 115 static int buf_flush(int); 116 static int flushbufqueues(int, int); 117 static void buf_daemon(void); 118 static void bremfreel(struct buf *bp); 119 static __inline void bd_wakeup(void); 120 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS); 121 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 122 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 123 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS); 124 #endif 125 126 int vmiodirenable = TRUE; 127 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 128 "Use the VM system for directory writes"); 129 long runningbufspace; 130 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 131 "Amount of presently outstanding async buffer io"); 132 static long bufspace; 133 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 134 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 135 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD, 136 &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers"); 137 #else 138 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 139 "Virtual memory used for buffers"); 140 #endif 141 static long unmapped_bufspace; 142 SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD, 143 &unmapped_bufspace, 0, 144 "Amount of unmapped buffers, inclusive in the bufspace"); 145 static long maxbufspace; 146 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 147 "Maximum allowed value of bufspace (including buf_daemon)"); 148 static long bufmallocspace; 149 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 150 "Amount of malloced memory for buffers"); 151 static long maxbufmallocspace; 152 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 153 "Maximum amount of malloced memory for buffers"); 154 static long lobufspace; 155 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 156 "Minimum amount of buffers we want to have"); 157 long hibufspace; 158 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 159 "Maximum allowed value of bufspace (excluding buf_daemon)"); 160 static int bufreusecnt; 161 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 162 "Number of times we have reused a buffer"); 163 static int buffreekvacnt; 164 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 165 "Number of times we have freed the KVA space from some buffer"); 166 static int bufdefragcnt; 167 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 168 "Number of times we have had to repeat buffer allocation to defragment"); 169 static long lorunningspace; 170 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 171 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L", 172 "Minimum preferred space used for in-progress I/O"); 173 static long hirunningspace; 174 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 175 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L", 176 "Maximum amount of space to use for in-progress I/O"); 177 int dirtybufferflushes; 178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 179 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 180 int bdwriteskip; 181 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip, 182 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk"); 183 int altbufferflushes; 184 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes, 185 0, "Number of fsync flushes to limit dirty buffers"); 186 static int recursiveflushes; 187 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes, 188 0, "Number of flushes skipped due to being recursive"); 189 static int numdirtybuffers; 190 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 191 "Number of buffers that are dirty (has unwritten changes) at the moment"); 192 static int lodirtybuffers; 193 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 194 "How many buffers we want to have free before bufdaemon can sleep"); 195 static int hidirtybuffers; 196 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 197 "When the number of dirty buffers is considered severe"); 198 int dirtybufthresh; 199 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh, 200 0, "Number of bdwrite to bawrite conversions to clear dirty buffers"); 201 static int numfreebuffers; 202 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 203 "Number of free buffers"); 204 static int lofreebuffers; 205 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 206 "XXX Unused"); 207 static int hifreebuffers; 208 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 209 "XXX Complicatedly unused"); 210 static int getnewbufcalls; 211 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 212 "Number of calls to getnewbuf"); 213 static int getnewbufrestarts; 214 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 215 "Number of times getnewbuf has had to restart a buffer aquisition"); 216 static int mappingrestarts; 217 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0, 218 "Number of times getblk has had to restart a buffer mapping for " 219 "unmapped buffer"); 220 static int flushbufqtarget = 100; 221 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0, 222 "Amount of work to do in flushbufqueues when helping bufdaemon"); 223 static long notbufdflushes; 224 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes, 0, 225 "Number of dirty buffer flushes done by the bufdaemon helpers"); 226 static long barrierwrites; 227 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0, 228 "Number of barrier writes"); 229 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD, 230 &unmapped_buf_allowed, 0, 231 "Permit the use of the unmapped i/o"); 232 233 /* 234 * Lock for the non-dirty bufqueues 235 */ 236 static struct mtx_padalign bqclean; 237 238 /* 239 * Lock for the dirty queue. 240 */ 241 static struct mtx_padalign bqdirty; 242 243 /* 244 * This lock synchronizes access to bd_request. 245 */ 246 static struct mtx_padalign bdlock; 247 248 /* 249 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 250 * waitrunningbufspace(). 251 */ 252 static struct mtx_padalign rbreqlock; 253 254 /* 255 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it. 256 */ 257 static struct mtx_padalign nblock; 258 259 /* 260 * Lock that protects bdirtywait. 261 */ 262 static struct mtx_padalign bdirtylock; 263 264 /* 265 * Wakeup point for bufdaemon, as well as indicator of whether it is already 266 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 267 * is idling. 268 */ 269 static int bd_request; 270 271 /* 272 * Request for the buf daemon to write more buffers than is indicated by 273 * lodirtybuf. This may be necessary to push out excess dependencies or 274 * defragment the address space where a simple count of the number of dirty 275 * buffers is insufficient to characterize the demand for flushing them. 276 */ 277 static int bd_speedupreq; 278 279 /* 280 * bogus page -- for I/O to/from partially complete buffers 281 * this is a temporary solution to the problem, but it is not 282 * really that bad. it would be better to split the buffer 283 * for input in the case of buffers partially already in memory, 284 * but the code is intricate enough already. 285 */ 286 vm_page_t bogus_page; 287 288 /* 289 * Synchronization (sleep/wakeup) variable for active buffer space requests. 290 * Set when wait starts, cleared prior to wakeup(). 291 * Used in runningbufwakeup() and waitrunningbufspace(). 292 */ 293 static int runningbufreq; 294 295 /* 296 * Synchronization (sleep/wakeup) variable for buffer requests. 297 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 298 * by and/or. 299 * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(), 300 * getnewbuf(), and getblk(). 301 */ 302 static int needsbuffer; 303 304 /* 305 * Synchronization for bwillwrite() waiters. 306 */ 307 static int bdirtywait; 308 309 /* 310 * Definitions for the buffer free lists. 311 */ 312 #define BUFFER_QUEUES 5 /* number of free buffer queues */ 313 314 #define QUEUE_NONE 0 /* on no queue */ 315 #define QUEUE_CLEAN 1 /* non-B_DELWRI buffers */ 316 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */ 317 #define QUEUE_EMPTYKVA 3 /* empty buffer headers w/KVA assignment */ 318 #define QUEUE_EMPTY 4 /* empty buffer headers */ 319 #define QUEUE_SENTINEL 1024 /* not an queue index, but mark for sentinel */ 320 321 /* Queues for free buffers with various properties */ 322 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 323 #ifdef INVARIANTS 324 static int bq_len[BUFFER_QUEUES]; 325 #endif 326 327 /* 328 * Single global constant for BUF_WMESG, to avoid getting multiple references. 329 * buf_wmesg is referred from macros. 330 */ 331 const char *buf_wmesg = BUF_WMESG; 332 333 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 334 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 335 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 336 337 static int 338 sysctl_runningspace(SYSCTL_HANDLER_ARGS) 339 { 340 long value; 341 int error; 342 343 value = *(long *)arg1; 344 error = sysctl_handle_long(oidp, &value, 0, req); 345 if (error != 0 || req->newptr == NULL) 346 return (error); 347 mtx_lock(&rbreqlock); 348 if (arg1 == &hirunningspace) { 349 if (value < lorunningspace) 350 error = EINVAL; 351 else 352 hirunningspace = value; 353 } else { 354 KASSERT(arg1 == &lorunningspace, 355 ("%s: unknown arg1", __func__)); 356 if (value > hirunningspace) 357 error = EINVAL; 358 else 359 lorunningspace = value; 360 } 361 mtx_unlock(&rbreqlock); 362 return (error); 363 } 364 365 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 366 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 367 static int 368 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 369 { 370 long lvalue; 371 int ivalue; 372 373 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long)) 374 return (sysctl_handle_long(oidp, arg1, arg2, req)); 375 lvalue = *(long *)arg1; 376 if (lvalue > INT_MAX) 377 /* On overflow, still write out a long to trigger ENOMEM. */ 378 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 379 ivalue = lvalue; 380 return (sysctl_handle_int(oidp, &ivalue, 0, req)); 381 } 382 #endif 383 384 /* 385 * bqlock: 386 * 387 * Return the appropriate queue lock based on the index. 388 */ 389 static inline struct mtx * 390 bqlock(int qindex) 391 { 392 393 if (qindex == QUEUE_DIRTY) 394 return (struct mtx *)(&bqdirty); 395 return (struct mtx *)(&bqclean); 396 } 397 398 /* 399 * bdirtywakeup: 400 * 401 * Wakeup any bwillwrite() waiters. 402 */ 403 static void 404 bdirtywakeup(void) 405 { 406 mtx_lock(&bdirtylock); 407 if (bdirtywait) { 408 bdirtywait = 0; 409 wakeup(&bdirtywait); 410 } 411 mtx_unlock(&bdirtylock); 412 } 413 414 /* 415 * bdirtysub: 416 * 417 * Decrement the numdirtybuffers count by one and wakeup any 418 * threads blocked in bwillwrite(). 419 */ 420 static void 421 bdirtysub(void) 422 { 423 424 if (atomic_fetchadd_int(&numdirtybuffers, -1) == 425 (lodirtybuffers + hidirtybuffers) / 2) 426 bdirtywakeup(); 427 } 428 429 /* 430 * bdirtyadd: 431 * 432 * Increment the numdirtybuffers count by one and wakeup the buf 433 * daemon if needed. 434 */ 435 static void 436 bdirtyadd(void) 437 { 438 439 /* 440 * Only do the wakeup once as we cross the boundary. The 441 * buf daemon will keep running until the condition clears. 442 */ 443 if (atomic_fetchadd_int(&numdirtybuffers, 1) == 444 (lodirtybuffers + hidirtybuffers) / 2) 445 bd_wakeup(); 446 } 447 448 /* 449 * bufspacewakeup: 450 * 451 * Called when buffer space is potentially available for recovery. 452 * getnewbuf() will block on this flag when it is unable to free 453 * sufficient buffer space. Buffer space becomes recoverable when 454 * bp's get placed back in the queues. 455 */ 456 457 static __inline void 458 bufspacewakeup(void) 459 { 460 461 /* 462 * If someone is waiting for BUF space, wake them up. Even 463 * though we haven't freed the kva space yet, the waiting 464 * process will be able to now. 465 */ 466 mtx_lock(&nblock); 467 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 468 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 469 wakeup(&needsbuffer); 470 } 471 mtx_unlock(&nblock); 472 } 473 474 /* 475 * runningwakeup: 476 * 477 * Wake up processes that are waiting on asynchronous writes to fall 478 * below lorunningspace. 479 */ 480 static void 481 runningwakeup(void) 482 { 483 484 mtx_lock(&rbreqlock); 485 if (runningbufreq) { 486 runningbufreq = 0; 487 wakeup(&runningbufreq); 488 } 489 mtx_unlock(&rbreqlock); 490 } 491 492 /* 493 * runningbufwakeup: 494 * 495 * Decrement the outstanding write count according. 496 */ 497 void 498 runningbufwakeup(struct buf *bp) 499 { 500 long space, bspace; 501 502 bspace = bp->b_runningbufspace; 503 if (bspace == 0) 504 return; 505 space = atomic_fetchadd_long(&runningbufspace, -bspace); 506 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld", 507 space, bspace)); 508 bp->b_runningbufspace = 0; 509 /* 510 * Only acquire the lock and wakeup on the transition from exceeding 511 * the threshold to falling below it. 512 */ 513 if (space < lorunningspace) 514 return; 515 if (space - bspace > lorunningspace) 516 return; 517 runningwakeup(); 518 } 519 520 /* 521 * bufcountadd: 522 * 523 * Called when a buffer has been added to one of the free queues to 524 * account for the buffer and to wakeup anyone waiting for free buffers. 525 * This typically occurs when large amounts of metadata are being handled 526 * by the buffer cache ( else buffer space runs out first, usually ). 527 */ 528 static __inline void 529 bufcountadd(struct buf *bp) 530 { 531 int old; 532 533 KASSERT((bp->b_flags & B_INFREECNT) == 0, 534 ("buf %p already counted as free", bp)); 535 bp->b_flags |= B_INFREECNT; 536 old = atomic_fetchadd_int(&numfreebuffers, 1); 537 KASSERT(old >= 0 && old < nbuf, 538 ("numfreebuffers climbed to %d", old + 1)); 539 mtx_lock(&nblock); 540 if (needsbuffer) { 541 needsbuffer &= ~VFS_BIO_NEED_ANY; 542 if (numfreebuffers >= hifreebuffers) 543 needsbuffer &= ~VFS_BIO_NEED_FREE; 544 wakeup(&needsbuffer); 545 } 546 mtx_unlock(&nblock); 547 } 548 549 /* 550 * bufcountsub: 551 * 552 * Decrement the numfreebuffers count as needed. 553 */ 554 static void 555 bufcountsub(struct buf *bp) 556 { 557 int old; 558 559 /* 560 * Fixup numfreebuffers count. If the buffer is invalid or not 561 * delayed-write, the buffer was free and we must decrement 562 * numfreebuffers. 563 */ 564 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 565 KASSERT((bp->b_flags & B_INFREECNT) != 0, 566 ("buf %p not counted in numfreebuffers", bp)); 567 bp->b_flags &= ~B_INFREECNT; 568 old = atomic_fetchadd_int(&numfreebuffers, -1); 569 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1)); 570 } 571 } 572 573 /* 574 * waitrunningbufspace() 575 * 576 * runningbufspace is a measure of the amount of I/O currently 577 * running. This routine is used in async-write situations to 578 * prevent creating huge backups of pending writes to a device. 579 * Only asynchronous writes are governed by this function. 580 * 581 * This does NOT turn an async write into a sync write. It waits 582 * for earlier writes to complete and generally returns before the 583 * caller's write has reached the device. 584 */ 585 void 586 waitrunningbufspace(void) 587 { 588 589 mtx_lock(&rbreqlock); 590 while (runningbufspace > hirunningspace) { 591 runningbufreq = 1; 592 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 593 } 594 mtx_unlock(&rbreqlock); 595 } 596 597 598 /* 599 * vfs_buf_test_cache: 600 * 601 * Called when a buffer is extended. This function clears the B_CACHE 602 * bit if the newly extended portion of the buffer does not contain 603 * valid data. 604 */ 605 static __inline 606 void 607 vfs_buf_test_cache(struct buf *bp, 608 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 609 vm_page_t m) 610 { 611 612 VM_OBJECT_ASSERT_LOCKED(m->object); 613 if (bp->b_flags & B_CACHE) { 614 int base = (foff + off) & PAGE_MASK; 615 if (vm_page_is_valid(m, base, size) == 0) 616 bp->b_flags &= ~B_CACHE; 617 } 618 } 619 620 /* Wake up the buffer daemon if necessary */ 621 static __inline void 622 bd_wakeup(void) 623 { 624 625 mtx_lock(&bdlock); 626 if (bd_request == 0) { 627 bd_request = 1; 628 wakeup(&bd_request); 629 } 630 mtx_unlock(&bdlock); 631 } 632 633 /* 634 * bd_speedup - speedup the buffer cache flushing code 635 */ 636 void 637 bd_speedup(void) 638 { 639 int needwake; 640 641 mtx_lock(&bdlock); 642 needwake = 0; 643 if (bd_speedupreq == 0 || bd_request == 0) 644 needwake = 1; 645 bd_speedupreq = 1; 646 bd_request = 1; 647 if (needwake) 648 wakeup(&bd_request); 649 mtx_unlock(&bdlock); 650 } 651 652 #ifdef __i386__ 653 #define TRANSIENT_DENOM 5 654 #else 655 #define TRANSIENT_DENOM 10 656 #endif 657 658 /* 659 * Calculating buffer cache scaling values and reserve space for buffer 660 * headers. This is called during low level kernel initialization and 661 * may be called more then once. We CANNOT write to the memory area 662 * being reserved at this time. 663 */ 664 caddr_t 665 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 666 { 667 int tuned_nbuf; 668 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz; 669 670 /* 671 * physmem_est is in pages. Convert it to kilobytes (assumes 672 * PAGE_SIZE is >= 1K) 673 */ 674 physmem_est = physmem_est * (PAGE_SIZE / 1024); 675 676 /* 677 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 678 * For the first 64MB of ram nominally allocate sufficient buffers to 679 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 680 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing 681 * the buffer cache we limit the eventual kva reservation to 682 * maxbcache bytes. 683 * 684 * factor represents the 1/4 x ram conversion. 685 */ 686 if (nbuf == 0) { 687 int factor = 4 * BKVASIZE / 1024; 688 689 nbuf = 50; 690 if (physmem_est > 4096) 691 nbuf += min((physmem_est - 4096) / factor, 692 65536 / factor); 693 if (physmem_est > 65536) 694 nbuf += min((physmem_est - 65536) * 2 / (factor * 5), 695 32 * 1024 * 1024 / (factor * 5)); 696 697 if (maxbcache && nbuf > maxbcache / BKVASIZE) 698 nbuf = maxbcache / BKVASIZE; 699 tuned_nbuf = 1; 700 } else 701 tuned_nbuf = 0; 702 703 /* XXX Avoid unsigned long overflows later on with maxbufspace. */ 704 maxbuf = (LONG_MAX / 3) / BKVASIZE; 705 if (nbuf > maxbuf) { 706 if (!tuned_nbuf) 707 printf("Warning: nbufs lowered from %d to %ld\n", nbuf, 708 maxbuf); 709 nbuf = maxbuf; 710 } 711 712 /* 713 * Ideal allocation size for the transient bio submap is 10% 714 * of the maximal space buffer map. This roughly corresponds 715 * to the amount of the buffer mapped for typical UFS load. 716 * 717 * Clip the buffer map to reserve space for the transient 718 * BIOs, if its extent is bigger than 90% (80% on i386) of the 719 * maximum buffer map extent on the platform. 720 * 721 * The fall-back to the maxbuf in case of maxbcache unset, 722 * allows to not trim the buffer KVA for the architectures 723 * with ample KVA space. 724 */ 725 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) { 726 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE; 727 buf_sz = (long)nbuf * BKVASIZE; 728 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM * 729 (TRANSIENT_DENOM - 1)) { 730 /* 731 * There is more KVA than memory. Do not 732 * adjust buffer map size, and assign the rest 733 * of maxbuf to transient map. 734 */ 735 biotmap_sz = maxbuf_sz - buf_sz; 736 } else { 737 /* 738 * Buffer map spans all KVA we could afford on 739 * this platform. Give 10% (20% on i386) of 740 * the buffer map to the transient bio map. 741 */ 742 biotmap_sz = buf_sz / TRANSIENT_DENOM; 743 buf_sz -= biotmap_sz; 744 } 745 if (biotmap_sz / INT_MAX > MAXPHYS) 746 bio_transient_maxcnt = INT_MAX; 747 else 748 bio_transient_maxcnt = biotmap_sz / MAXPHYS; 749 /* 750 * Artifically limit to 1024 simultaneous in-flight I/Os 751 * using the transient mapping. 752 */ 753 if (bio_transient_maxcnt > 1024) 754 bio_transient_maxcnt = 1024; 755 if (tuned_nbuf) 756 nbuf = buf_sz / BKVASIZE; 757 } 758 759 /* 760 * swbufs are used as temporary holders for I/O, such as paging I/O. 761 * We have no less then 16 and no more then 256. 762 */ 763 nswbuf = max(min(nbuf/4, 256), 16); 764 #ifdef NSWBUF_MIN 765 if (nswbuf < NSWBUF_MIN) 766 nswbuf = NSWBUF_MIN; 767 #endif 768 769 /* 770 * Reserve space for the buffer cache buffers 771 */ 772 swbuf = (void *)v; 773 v = (caddr_t)(swbuf + nswbuf); 774 buf = (void *)v; 775 v = (caddr_t)(buf + nbuf); 776 777 return(v); 778 } 779 780 /* Initialize the buffer subsystem. Called before use of any buffers. */ 781 void 782 bufinit(void) 783 { 784 struct buf *bp; 785 int i; 786 787 mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF); 788 mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF); 789 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 790 mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF); 791 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 792 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF); 793 794 /* next, make a null set of free lists */ 795 for (i = 0; i < BUFFER_QUEUES; i++) 796 TAILQ_INIT(&bufqueues[i]); 797 798 /* finally, initialize each buffer header and stick on empty q */ 799 for (i = 0; i < nbuf; i++) { 800 bp = &buf[i]; 801 bzero(bp, sizeof *bp); 802 bp->b_flags = B_INVAL | B_INFREECNT; 803 bp->b_rcred = NOCRED; 804 bp->b_wcred = NOCRED; 805 bp->b_qindex = QUEUE_EMPTY; 806 bp->b_xflags = 0; 807 LIST_INIT(&bp->b_dep); 808 BUF_LOCKINIT(bp); 809 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 810 #ifdef INVARIANTS 811 bq_len[QUEUE_EMPTY]++; 812 #endif 813 } 814 815 /* 816 * maxbufspace is the absolute maximum amount of buffer space we are 817 * allowed to reserve in KVM and in real terms. The absolute maximum 818 * is nominally used by buf_daemon. hibufspace is the nominal maximum 819 * used by most other processes. The differential is required to 820 * ensure that buf_daemon is able to run when other processes might 821 * be blocked waiting for buffer space. 822 * 823 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 824 * this may result in KVM fragmentation which is not handled optimally 825 * by the system. 826 */ 827 maxbufspace = (long)nbuf * BKVASIZE; 828 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 829 lobufspace = hibufspace - MAXBSIZE; 830 831 /* 832 * Note: The 16 MiB upper limit for hirunningspace was chosen 833 * arbitrarily and may need further tuning. It corresponds to 834 * 128 outstanding write IO requests (if IO size is 128 KiB), 835 * which fits with many RAID controllers' tagged queuing limits. 836 * The lower 1 MiB limit is the historical upper limit for 837 * hirunningspace. 838 */ 839 hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE), 840 16 * 1024 * 1024), 1024 * 1024); 841 lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE); 842 843 /* 844 * Limit the amount of malloc memory since it is wired permanently into 845 * the kernel space. Even though this is accounted for in the buffer 846 * allocation, we don't want the malloced region to grow uncontrolled. 847 * The malloc scheme improves memory utilization significantly on average 848 * (small) directories. 849 */ 850 maxbufmallocspace = hibufspace / 20; 851 852 /* 853 * Reduce the chance of a deadlock occuring by limiting the number 854 * of delayed-write dirty buffers we allow to stack up. 855 */ 856 hidirtybuffers = nbuf / 4 + 20; 857 dirtybufthresh = hidirtybuffers * 9 / 10; 858 numdirtybuffers = 0; 859 /* 860 * To support extreme low-memory systems, make sure hidirtybuffers cannot 861 * eat up all available buffer space. This occurs when our minimum cannot 862 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 863 * BKVASIZE'd buffers. 864 */ 865 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 866 hidirtybuffers >>= 1; 867 } 868 lodirtybuffers = hidirtybuffers / 2; 869 870 /* 871 * Try to keep the number of free buffers in the specified range, 872 * and give special processes (e.g. like buf_daemon) access to an 873 * emergency reserve. 874 */ 875 lofreebuffers = nbuf / 18 + 5; 876 hifreebuffers = 2 * lofreebuffers; 877 numfreebuffers = nbuf; 878 879 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 880 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 881 unmapped_buf = (caddr_t)kva_alloc(MAXPHYS); 882 } 883 884 #ifdef INVARIANTS 885 static inline void 886 vfs_buf_check_mapped(struct buf *bp) 887 { 888 889 KASSERT((bp->b_flags & B_UNMAPPED) == 0, 890 ("mapped buf %p %x", bp, bp->b_flags)); 891 KASSERT(bp->b_kvabase != unmapped_buf, 892 ("mapped buf: b_kvabase was not updated %p", bp)); 893 KASSERT(bp->b_data != unmapped_buf, 894 ("mapped buf: b_data was not updated %p", bp)); 895 } 896 897 static inline void 898 vfs_buf_check_unmapped(struct buf *bp) 899 { 900 901 KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED, 902 ("unmapped buf %p %x", bp, bp->b_flags)); 903 KASSERT(bp->b_kvabase == unmapped_buf, 904 ("unmapped buf: corrupted b_kvabase %p", bp)); 905 KASSERT(bp->b_data == unmapped_buf, 906 ("unmapped buf: corrupted b_data %p", bp)); 907 } 908 909 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp) 910 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp) 911 #else 912 #define BUF_CHECK_MAPPED(bp) do {} while (0) 913 #define BUF_CHECK_UNMAPPED(bp) do {} while (0) 914 #endif 915 916 static void 917 bpmap_qenter(struct buf *bp) 918 { 919 920 BUF_CHECK_MAPPED(bp); 921 922 /* 923 * bp->b_data is relative to bp->b_offset, but 924 * bp->b_offset may be offset into the first page. 925 */ 926 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); 927 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 928 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 929 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 930 } 931 932 /* 933 * bfreekva() - free the kva allocation for a buffer. 934 * 935 * Since this call frees up buffer space, we call bufspacewakeup(). 936 */ 937 static void 938 bfreekva(struct buf *bp) 939 { 940 941 if (bp->b_kvasize == 0) 942 return; 943 944 atomic_add_int(&buffreekvacnt, 1); 945 atomic_subtract_long(&bufspace, bp->b_kvasize); 946 if ((bp->b_flags & B_UNMAPPED) == 0) { 947 BUF_CHECK_MAPPED(bp); 948 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, 949 bp->b_kvasize); 950 } else { 951 BUF_CHECK_UNMAPPED(bp); 952 if ((bp->b_flags & B_KVAALLOC) != 0) { 953 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc, 954 bp->b_kvasize); 955 } 956 atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize); 957 bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC); 958 } 959 bp->b_kvasize = 0; 960 bufspacewakeup(); 961 } 962 963 /* 964 * binsfree: 965 * 966 * Insert the buffer into the appropriate free list. 967 */ 968 static void 969 binsfree(struct buf *bp, int qindex) 970 { 971 struct mtx *olock, *nlock; 972 973 BUF_ASSERT_XLOCKED(bp); 974 975 olock = bqlock(bp->b_qindex); 976 nlock = bqlock(qindex); 977 mtx_lock(olock); 978 /* Handle delayed bremfree() processing. */ 979 if (bp->b_flags & B_REMFREE) 980 bremfreel(bp); 981 982 if (bp->b_qindex != QUEUE_NONE) 983 panic("binsfree: free buffer onto another queue???"); 984 985 bp->b_qindex = qindex; 986 if (olock != nlock) { 987 mtx_unlock(olock); 988 mtx_lock(nlock); 989 } 990 if (bp->b_flags & B_AGE) 991 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 992 else 993 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 994 #ifdef INVARIANTS 995 bq_len[bp->b_qindex]++; 996 #endif 997 mtx_unlock(nlock); 998 999 /* 1000 * Something we can maybe free or reuse. 1001 */ 1002 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1003 bufspacewakeup(); 1004 1005 if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) 1006 bufcountadd(bp); 1007 } 1008 1009 /* 1010 * bremfree: 1011 * 1012 * Mark the buffer for removal from the appropriate free list. 1013 * 1014 */ 1015 void 1016 bremfree(struct buf *bp) 1017 { 1018 1019 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1020 KASSERT((bp->b_flags & B_REMFREE) == 0, 1021 ("bremfree: buffer %p already marked for delayed removal.", bp)); 1022 KASSERT(bp->b_qindex != QUEUE_NONE, 1023 ("bremfree: buffer %p not on a queue.", bp)); 1024 BUF_ASSERT_XLOCKED(bp); 1025 1026 bp->b_flags |= B_REMFREE; 1027 bufcountsub(bp); 1028 } 1029 1030 /* 1031 * bremfreef: 1032 * 1033 * Force an immediate removal from a free list. Used only in nfs when 1034 * it abuses the b_freelist pointer. 1035 */ 1036 void 1037 bremfreef(struct buf *bp) 1038 { 1039 struct mtx *qlock; 1040 1041 qlock = bqlock(bp->b_qindex); 1042 mtx_lock(qlock); 1043 bremfreel(bp); 1044 mtx_unlock(qlock); 1045 } 1046 1047 /* 1048 * bremfreel: 1049 * 1050 * Removes a buffer from the free list, must be called with the 1051 * correct qlock held. 1052 */ 1053 static void 1054 bremfreel(struct buf *bp) 1055 { 1056 1057 CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X", 1058 bp, bp->b_vp, bp->b_flags); 1059 KASSERT(bp->b_qindex != QUEUE_NONE, 1060 ("bremfreel: buffer %p not on a queue.", bp)); 1061 BUF_ASSERT_XLOCKED(bp); 1062 mtx_assert(bqlock(bp->b_qindex), MA_OWNED); 1063 1064 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 1065 #ifdef INVARIANTS 1066 KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow", 1067 bp->b_qindex)); 1068 bq_len[bp->b_qindex]--; 1069 #endif 1070 bp->b_qindex = QUEUE_NONE; 1071 /* 1072 * If this was a delayed bremfree() we only need to remove the buffer 1073 * from the queue and return the stats are already done. 1074 */ 1075 if (bp->b_flags & B_REMFREE) { 1076 bp->b_flags &= ~B_REMFREE; 1077 return; 1078 } 1079 bufcountsub(bp); 1080 } 1081 1082 /* 1083 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must 1084 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set, 1085 * the buffer is valid and we do not have to do anything. 1086 */ 1087 void 1088 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, 1089 int cnt, struct ucred * cred) 1090 { 1091 struct buf *rabp; 1092 int i; 1093 1094 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 1095 if (inmem(vp, *rablkno)) 1096 continue; 1097 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 1098 1099 if ((rabp->b_flags & B_CACHE) == 0) { 1100 if (!TD_IS_IDLETHREAD(curthread)) 1101 curthread->td_ru.ru_inblock++; 1102 rabp->b_flags |= B_ASYNC; 1103 rabp->b_flags &= ~B_INVAL; 1104 rabp->b_ioflags &= ~BIO_ERROR; 1105 rabp->b_iocmd = BIO_READ; 1106 if (rabp->b_rcred == NOCRED && cred != NOCRED) 1107 rabp->b_rcred = crhold(cred); 1108 vfs_busy_pages(rabp, 0); 1109 BUF_KERNPROC(rabp); 1110 rabp->b_iooffset = dbtob(rabp->b_blkno); 1111 bstrategy(rabp); 1112 } else { 1113 brelse(rabp); 1114 } 1115 } 1116 } 1117 1118 /* 1119 * Entry point for bread() and breadn() via #defines in sys/buf.h. 1120 * 1121 * Get a buffer with the specified data. Look in the cache first. We 1122 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 1123 * is set, the buffer is valid and we do not have to do anything, see 1124 * getblk(). Also starts asynchronous I/O on read-ahead blocks. 1125 */ 1126 int 1127 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno, 1128 int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp) 1129 { 1130 struct buf *bp; 1131 int rv = 0, readwait = 0; 1132 1133 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size); 1134 /* 1135 * Can only return NULL if GB_LOCK_NOWAIT flag is specified. 1136 */ 1137 *bpp = bp = getblk(vp, blkno, size, 0, 0, flags); 1138 if (bp == NULL) 1139 return (EBUSY); 1140 1141 /* if not found in cache, do some I/O */ 1142 if ((bp->b_flags & B_CACHE) == 0) { 1143 if (!TD_IS_IDLETHREAD(curthread)) 1144 curthread->td_ru.ru_inblock++; 1145 bp->b_iocmd = BIO_READ; 1146 bp->b_flags &= ~B_INVAL; 1147 bp->b_ioflags &= ~BIO_ERROR; 1148 if (bp->b_rcred == NOCRED && cred != NOCRED) 1149 bp->b_rcred = crhold(cred); 1150 vfs_busy_pages(bp, 0); 1151 bp->b_iooffset = dbtob(bp->b_blkno); 1152 bstrategy(bp); 1153 ++readwait; 1154 } 1155 1156 breada(vp, rablkno, rabsize, cnt, cred); 1157 1158 if (readwait) { 1159 rv = bufwait(bp); 1160 } 1161 return (rv); 1162 } 1163 1164 /* 1165 * Write, release buffer on completion. (Done by iodone 1166 * if async). Do not bother writing anything if the buffer 1167 * is invalid. 1168 * 1169 * Note that we set B_CACHE here, indicating that buffer is 1170 * fully valid and thus cacheable. This is true even of NFS 1171 * now so we set it generally. This could be set either here 1172 * or in biodone() since the I/O is synchronous. We put it 1173 * here. 1174 */ 1175 int 1176 bufwrite(struct buf *bp) 1177 { 1178 int oldflags; 1179 struct vnode *vp; 1180 long space; 1181 int vp_md; 1182 1183 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1184 if (bp->b_flags & B_INVAL) { 1185 brelse(bp); 1186 return (0); 1187 } 1188 1189 if (bp->b_flags & B_BARRIER) 1190 barrierwrites++; 1191 1192 oldflags = bp->b_flags; 1193 1194 BUF_ASSERT_HELD(bp); 1195 1196 if (bp->b_pin_count > 0) 1197 bunpin_wait(bp); 1198 1199 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG), 1200 ("FFS background buffer should not get here %p", bp)); 1201 1202 vp = bp->b_vp; 1203 if (vp) 1204 vp_md = vp->v_vflag & VV_MD; 1205 else 1206 vp_md = 0; 1207 1208 /* 1209 * Mark the buffer clean. Increment the bufobj write count 1210 * before bundirty() call, to prevent other thread from seeing 1211 * empty dirty list and zero counter for writes in progress, 1212 * falsely indicating that the bufobj is clean. 1213 */ 1214 bufobj_wref(bp->b_bufobj); 1215 bundirty(bp); 1216 1217 bp->b_flags &= ~B_DONE; 1218 bp->b_ioflags &= ~BIO_ERROR; 1219 bp->b_flags |= B_CACHE; 1220 bp->b_iocmd = BIO_WRITE; 1221 1222 vfs_busy_pages(bp, 1); 1223 1224 /* 1225 * Normal bwrites pipeline writes 1226 */ 1227 bp->b_runningbufspace = bp->b_bufsize; 1228 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace); 1229 1230 if (!TD_IS_IDLETHREAD(curthread)) 1231 curthread->td_ru.ru_oublock++; 1232 if (oldflags & B_ASYNC) 1233 BUF_KERNPROC(bp); 1234 bp->b_iooffset = dbtob(bp->b_blkno); 1235 bstrategy(bp); 1236 1237 if ((oldflags & B_ASYNC) == 0) { 1238 int rtval = bufwait(bp); 1239 brelse(bp); 1240 return (rtval); 1241 } else if (space > hirunningspace) { 1242 /* 1243 * don't allow the async write to saturate the I/O 1244 * system. We will not deadlock here because 1245 * we are blocking waiting for I/O that is already in-progress 1246 * to complete. We do not block here if it is the update 1247 * or syncer daemon trying to clean up as that can lead 1248 * to deadlock. 1249 */ 1250 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md) 1251 waitrunningbufspace(); 1252 } 1253 1254 return (0); 1255 } 1256 1257 void 1258 bufbdflush(struct bufobj *bo, struct buf *bp) 1259 { 1260 struct buf *nbp; 1261 1262 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) { 1263 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread); 1264 altbufferflushes++; 1265 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) { 1266 BO_LOCK(bo); 1267 /* 1268 * Try to find a buffer to flush. 1269 */ 1270 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) { 1271 if ((nbp->b_vflags & BV_BKGRDINPROG) || 1272 BUF_LOCK(nbp, 1273 LK_EXCLUSIVE | LK_NOWAIT, NULL)) 1274 continue; 1275 if (bp == nbp) 1276 panic("bdwrite: found ourselves"); 1277 BO_UNLOCK(bo); 1278 /* Don't countdeps with the bo lock held. */ 1279 if (buf_countdeps(nbp, 0)) { 1280 BO_LOCK(bo); 1281 BUF_UNLOCK(nbp); 1282 continue; 1283 } 1284 if (nbp->b_flags & B_CLUSTEROK) { 1285 vfs_bio_awrite(nbp); 1286 } else { 1287 bremfree(nbp); 1288 bawrite(nbp); 1289 } 1290 dirtybufferflushes++; 1291 break; 1292 } 1293 if (nbp == NULL) 1294 BO_UNLOCK(bo); 1295 } 1296 } 1297 1298 /* 1299 * Delayed write. (Buffer is marked dirty). Do not bother writing 1300 * anything if the buffer is marked invalid. 1301 * 1302 * Note that since the buffer must be completely valid, we can safely 1303 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1304 * biodone() in order to prevent getblk from writing the buffer 1305 * out synchronously. 1306 */ 1307 void 1308 bdwrite(struct buf *bp) 1309 { 1310 struct thread *td = curthread; 1311 struct vnode *vp; 1312 struct bufobj *bo; 1313 1314 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1315 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1316 KASSERT((bp->b_flags & B_BARRIER) == 0, 1317 ("Barrier request in delayed write %p", bp)); 1318 BUF_ASSERT_HELD(bp); 1319 1320 if (bp->b_flags & B_INVAL) { 1321 brelse(bp); 1322 return; 1323 } 1324 1325 /* 1326 * If we have too many dirty buffers, don't create any more. 1327 * If we are wildly over our limit, then force a complete 1328 * cleanup. Otherwise, just keep the situation from getting 1329 * out of control. Note that we have to avoid a recursive 1330 * disaster and not try to clean up after our own cleanup! 1331 */ 1332 vp = bp->b_vp; 1333 bo = bp->b_bufobj; 1334 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) { 1335 td->td_pflags |= TDP_INBDFLUSH; 1336 BO_BDFLUSH(bo, bp); 1337 td->td_pflags &= ~TDP_INBDFLUSH; 1338 } else 1339 recursiveflushes++; 1340 1341 bdirty(bp); 1342 /* 1343 * Set B_CACHE, indicating that the buffer is fully valid. This is 1344 * true even of NFS now. 1345 */ 1346 bp->b_flags |= B_CACHE; 1347 1348 /* 1349 * This bmap keeps the system from needing to do the bmap later, 1350 * perhaps when the system is attempting to do a sync. Since it 1351 * is likely that the indirect block -- or whatever other datastructure 1352 * that the filesystem needs is still in memory now, it is a good 1353 * thing to do this. Note also, that if the pageout daemon is 1354 * requesting a sync -- there might not be enough memory to do 1355 * the bmap then... So, this is important to do. 1356 */ 1357 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 1358 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 1359 } 1360 1361 /* 1362 * Set the *dirty* buffer range based upon the VM system dirty 1363 * pages. 1364 * 1365 * Mark the buffer pages as clean. We need to do this here to 1366 * satisfy the vnode_pager and the pageout daemon, so that it 1367 * thinks that the pages have been "cleaned". Note that since 1368 * the pages are in a delayed write buffer -- the VFS layer 1369 * "will" see that the pages get written out on the next sync, 1370 * or perhaps the cluster will be completed. 1371 */ 1372 vfs_clean_pages_dirty_buf(bp); 1373 bqrelse(bp); 1374 1375 /* 1376 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1377 * due to the softdep code. 1378 */ 1379 } 1380 1381 /* 1382 * bdirty: 1383 * 1384 * Turn buffer into delayed write request. We must clear BIO_READ and 1385 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 1386 * itself to properly update it in the dirty/clean lists. We mark it 1387 * B_DONE to ensure that any asynchronization of the buffer properly 1388 * clears B_DONE ( else a panic will occur later ). 1389 * 1390 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 1391 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 1392 * should only be called if the buffer is known-good. 1393 * 1394 * Since the buffer is not on a queue, we do not update the numfreebuffers 1395 * count. 1396 * 1397 * The buffer must be on QUEUE_NONE. 1398 */ 1399 void 1400 bdirty(struct buf *bp) 1401 { 1402 1403 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X", 1404 bp, bp->b_vp, bp->b_flags); 1405 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1406 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 1407 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1408 BUF_ASSERT_HELD(bp); 1409 bp->b_flags &= ~(B_RELBUF); 1410 bp->b_iocmd = BIO_WRITE; 1411 1412 if ((bp->b_flags & B_DELWRI) == 0) { 1413 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI; 1414 reassignbuf(bp); 1415 bdirtyadd(); 1416 } 1417 } 1418 1419 /* 1420 * bundirty: 1421 * 1422 * Clear B_DELWRI for buffer. 1423 * 1424 * Since the buffer is not on a queue, we do not update the numfreebuffers 1425 * count. 1426 * 1427 * The buffer must be on QUEUE_NONE. 1428 */ 1429 1430 void 1431 bundirty(struct buf *bp) 1432 { 1433 1434 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1435 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1436 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 1437 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1438 BUF_ASSERT_HELD(bp); 1439 1440 if (bp->b_flags & B_DELWRI) { 1441 bp->b_flags &= ~B_DELWRI; 1442 reassignbuf(bp); 1443 bdirtysub(); 1444 } 1445 /* 1446 * Since it is now being written, we can clear its deferred write flag. 1447 */ 1448 bp->b_flags &= ~B_DEFERRED; 1449 } 1450 1451 /* 1452 * bawrite: 1453 * 1454 * Asynchronous write. Start output on a buffer, but do not wait for 1455 * it to complete. The buffer is released when the output completes. 1456 * 1457 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1458 * B_INVAL buffers. Not us. 1459 */ 1460 void 1461 bawrite(struct buf *bp) 1462 { 1463 1464 bp->b_flags |= B_ASYNC; 1465 (void) bwrite(bp); 1466 } 1467 1468 /* 1469 * babarrierwrite: 1470 * 1471 * Asynchronous barrier write. Start output on a buffer, but do not 1472 * wait for it to complete. Place a write barrier after this write so 1473 * that this buffer and all buffers written before it are committed to 1474 * the disk before any buffers written after this write are committed 1475 * to the disk. The buffer is released when the output completes. 1476 */ 1477 void 1478 babarrierwrite(struct buf *bp) 1479 { 1480 1481 bp->b_flags |= B_ASYNC | B_BARRIER; 1482 (void) bwrite(bp); 1483 } 1484 1485 /* 1486 * bbarrierwrite: 1487 * 1488 * Synchronous barrier write. Start output on a buffer and wait for 1489 * it to complete. Place a write barrier after this write so that 1490 * this buffer and all buffers written before it are committed to 1491 * the disk before any buffers written after this write are committed 1492 * to the disk. The buffer is released when the output completes. 1493 */ 1494 int 1495 bbarrierwrite(struct buf *bp) 1496 { 1497 1498 bp->b_flags |= B_BARRIER; 1499 return (bwrite(bp)); 1500 } 1501 1502 /* 1503 * bwillwrite: 1504 * 1505 * Called prior to the locking of any vnodes when we are expecting to 1506 * write. We do not want to starve the buffer cache with too many 1507 * dirty buffers so we block here. By blocking prior to the locking 1508 * of any vnodes we attempt to avoid the situation where a locked vnode 1509 * prevents the various system daemons from flushing related buffers. 1510 */ 1511 void 1512 bwillwrite(void) 1513 { 1514 1515 if (numdirtybuffers >= hidirtybuffers) { 1516 mtx_lock(&bdirtylock); 1517 while (numdirtybuffers >= hidirtybuffers) { 1518 bdirtywait = 1; 1519 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4), 1520 "flswai", 0); 1521 } 1522 mtx_unlock(&bdirtylock); 1523 } 1524 } 1525 1526 /* 1527 * Return true if we have too many dirty buffers. 1528 */ 1529 int 1530 buf_dirty_count_severe(void) 1531 { 1532 1533 return(numdirtybuffers >= hidirtybuffers); 1534 } 1535 1536 static __noinline int 1537 buf_vm_page_count_severe(void) 1538 { 1539 1540 KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1); 1541 1542 return vm_page_count_severe(); 1543 } 1544 1545 /* 1546 * brelse: 1547 * 1548 * Release a busy buffer and, if requested, free its resources. The 1549 * buffer will be stashed in the appropriate bufqueue[] allowing it 1550 * to be accessed later as a cache entity or reused for other purposes. 1551 */ 1552 void 1553 brelse(struct buf *bp) 1554 { 1555 int qindex; 1556 1557 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X", 1558 bp, bp->b_vp, bp->b_flags); 1559 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1560 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1561 1562 if (BUF_LOCKRECURSED(bp)) { 1563 /* 1564 * Do not process, in particular, do not handle the 1565 * B_INVAL/B_RELBUF and do not release to free list. 1566 */ 1567 BUF_UNLOCK(bp); 1568 return; 1569 } 1570 1571 if (bp->b_flags & B_MANAGED) { 1572 bqrelse(bp); 1573 return; 1574 } 1575 1576 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 1577 bp->b_error == EIO && !(bp->b_flags & B_INVAL)) { 1578 /* 1579 * Failed write, redirty. Must clear BIO_ERROR to prevent 1580 * pages from being scrapped. If the error is anything 1581 * other than an I/O error (EIO), assume that retrying 1582 * is futile. 1583 */ 1584 bp->b_ioflags &= ~BIO_ERROR; 1585 bdirty(bp); 1586 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1587 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) { 1588 /* 1589 * Either a failed I/O or we were asked to free or not 1590 * cache the buffer. 1591 */ 1592 bp->b_flags |= B_INVAL; 1593 if (!LIST_EMPTY(&bp->b_dep)) 1594 buf_deallocate(bp); 1595 if (bp->b_flags & B_DELWRI) 1596 bdirtysub(); 1597 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1598 if ((bp->b_flags & B_VMIO) == 0) { 1599 if (bp->b_bufsize) 1600 allocbuf(bp, 0); 1601 if (bp->b_vp) 1602 brelvp(bp); 1603 } 1604 } 1605 1606 /* 1607 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1608 * is called with B_DELWRI set, the underlying pages may wind up 1609 * getting freed causing a previous write (bdwrite()) to get 'lost' 1610 * because pages associated with a B_DELWRI bp are marked clean. 1611 * 1612 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1613 * if B_DELWRI is set. 1614 * 1615 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1616 * on pages to return pages to the VM page queues. 1617 */ 1618 if (bp->b_flags & B_DELWRI) 1619 bp->b_flags &= ~B_RELBUF; 1620 else if (buf_vm_page_count_severe()) { 1621 /* 1622 * BKGRDINPROG can only be set with the buf and bufobj 1623 * locks both held. We tolerate a race to clear it here. 1624 */ 1625 if (!(bp->b_vflags & BV_BKGRDINPROG)) 1626 bp->b_flags |= B_RELBUF; 1627 } 1628 1629 /* 1630 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1631 * constituted, not even NFS buffers now. Two flags effect this. If 1632 * B_INVAL, the struct buf is invalidated but the VM object is kept 1633 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1634 * 1635 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1636 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1637 * buffer is also B_INVAL because it hits the re-dirtying code above. 1638 * 1639 * Normally we can do this whether a buffer is B_DELWRI or not. If 1640 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1641 * the commit state and we cannot afford to lose the buffer. If the 1642 * buffer has a background write in progress, we need to keep it 1643 * around to prevent it from being reconstituted and starting a second 1644 * background write. 1645 */ 1646 if ((bp->b_flags & B_VMIO) 1647 && !(bp->b_vp->v_mount != NULL && 1648 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1649 !vn_isdisk(bp->b_vp, NULL) && 1650 (bp->b_flags & B_DELWRI)) 1651 ) { 1652 1653 int i, j, resid; 1654 vm_page_t m; 1655 off_t foff; 1656 vm_pindex_t poff; 1657 vm_object_t obj; 1658 1659 obj = bp->b_bufobj->bo_object; 1660 1661 /* 1662 * Get the base offset and length of the buffer. Note that 1663 * in the VMIO case if the buffer block size is not 1664 * page-aligned then b_data pointer may not be page-aligned. 1665 * But our b_pages[] array *IS* page aligned. 1666 * 1667 * block sizes less then DEV_BSIZE (usually 512) are not 1668 * supported due to the page granularity bits (m->valid, 1669 * m->dirty, etc...). 1670 * 1671 * See man buf(9) for more information 1672 */ 1673 resid = bp->b_bufsize; 1674 foff = bp->b_offset; 1675 for (i = 0; i < bp->b_npages; i++) { 1676 int had_bogus = 0; 1677 1678 m = bp->b_pages[i]; 1679 1680 /* 1681 * If we hit a bogus page, fixup *all* the bogus pages 1682 * now. 1683 */ 1684 if (m == bogus_page) { 1685 poff = OFF_TO_IDX(bp->b_offset); 1686 had_bogus = 1; 1687 1688 VM_OBJECT_RLOCK(obj); 1689 for (j = i; j < bp->b_npages; j++) { 1690 vm_page_t mtmp; 1691 mtmp = bp->b_pages[j]; 1692 if (mtmp == bogus_page) { 1693 mtmp = vm_page_lookup(obj, poff + j); 1694 if (!mtmp) { 1695 panic("brelse: page missing\n"); 1696 } 1697 bp->b_pages[j] = mtmp; 1698 } 1699 } 1700 VM_OBJECT_RUNLOCK(obj); 1701 1702 if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) { 1703 BUF_CHECK_MAPPED(bp); 1704 pmap_qenter( 1705 trunc_page((vm_offset_t)bp->b_data), 1706 bp->b_pages, bp->b_npages); 1707 } 1708 m = bp->b_pages[i]; 1709 } 1710 if ((bp->b_flags & B_NOCACHE) || 1711 (bp->b_ioflags & BIO_ERROR && 1712 bp->b_iocmd == BIO_READ)) { 1713 int poffset = foff & PAGE_MASK; 1714 int presid = resid > (PAGE_SIZE - poffset) ? 1715 (PAGE_SIZE - poffset) : resid; 1716 1717 KASSERT(presid >= 0, ("brelse: extra page")); 1718 VM_OBJECT_WLOCK(obj); 1719 while (vm_page_xbusied(m)) { 1720 vm_page_lock(m); 1721 VM_OBJECT_WUNLOCK(obj); 1722 vm_page_busy_sleep(m, "mbncsh"); 1723 VM_OBJECT_WLOCK(obj); 1724 } 1725 if (pmap_page_wired_mappings(m) == 0) 1726 vm_page_set_invalid(m, poffset, presid); 1727 VM_OBJECT_WUNLOCK(obj); 1728 if (had_bogus) 1729 printf("avoided corruption bug in bogus_page/brelse code\n"); 1730 } 1731 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1732 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1733 } 1734 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1735 vfs_vmio_release(bp); 1736 1737 } else if (bp->b_flags & B_VMIO) { 1738 1739 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1740 vfs_vmio_release(bp); 1741 } 1742 1743 } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) { 1744 if (bp->b_bufsize != 0) 1745 allocbuf(bp, 0); 1746 if (bp->b_vp != NULL) 1747 brelvp(bp); 1748 } 1749 1750 /* 1751 * If the buffer has junk contents signal it and eventually 1752 * clean up B_DELWRI and diassociate the vnode so that gbincore() 1753 * doesn't find it. 1754 */ 1755 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 || 1756 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0) 1757 bp->b_flags |= B_INVAL; 1758 if (bp->b_flags & B_INVAL) { 1759 if (bp->b_flags & B_DELWRI) 1760 bundirty(bp); 1761 if (bp->b_vp) 1762 brelvp(bp); 1763 } 1764 1765 /* buffers with no memory */ 1766 if (bp->b_bufsize == 0) { 1767 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1768 if (bp->b_vflags & BV_BKGRDINPROG) 1769 panic("losing buffer 1"); 1770 if (bp->b_kvasize) 1771 qindex = QUEUE_EMPTYKVA; 1772 else 1773 qindex = QUEUE_EMPTY; 1774 bp->b_flags |= B_AGE; 1775 /* buffers with junk contents */ 1776 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1777 (bp->b_ioflags & BIO_ERROR)) { 1778 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1779 if (bp->b_vflags & BV_BKGRDINPROG) 1780 panic("losing buffer 2"); 1781 qindex = QUEUE_CLEAN; 1782 bp->b_flags |= B_AGE; 1783 /* remaining buffers */ 1784 } else if (bp->b_flags & B_DELWRI) 1785 qindex = QUEUE_DIRTY; 1786 else 1787 qindex = QUEUE_CLEAN; 1788 1789 binsfree(bp, qindex); 1790 1791 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT); 1792 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1793 panic("brelse: not dirty"); 1794 /* unlock */ 1795 BUF_UNLOCK(bp); 1796 } 1797 1798 /* 1799 * Release a buffer back to the appropriate queue but do not try to free 1800 * it. The buffer is expected to be used again soon. 1801 * 1802 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1803 * biodone() to requeue an async I/O on completion. It is also used when 1804 * known good buffers need to be requeued but we think we may need the data 1805 * again soon. 1806 * 1807 * XXX we should be able to leave the B_RELBUF hint set on completion. 1808 */ 1809 void 1810 bqrelse(struct buf *bp) 1811 { 1812 int qindex; 1813 1814 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1815 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1816 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1817 1818 if (BUF_LOCKRECURSED(bp)) { 1819 /* do not release to free list */ 1820 BUF_UNLOCK(bp); 1821 return; 1822 } 1823 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1824 1825 if (bp->b_flags & B_MANAGED) { 1826 if (bp->b_flags & B_REMFREE) 1827 bremfreef(bp); 1828 goto out; 1829 } 1830 1831 /* buffers with stale but valid contents */ 1832 if (bp->b_flags & B_DELWRI) { 1833 qindex = QUEUE_DIRTY; 1834 } else { 1835 if ((bp->b_flags & B_DELWRI) == 0 && 1836 (bp->b_xflags & BX_VNDIRTY)) 1837 panic("bqrelse: not dirty"); 1838 /* 1839 * BKGRDINPROG can only be set with the buf and bufobj 1840 * locks both held. We tolerate a race to clear it here. 1841 */ 1842 if (buf_vm_page_count_severe() && 1843 (bp->b_vflags & BV_BKGRDINPROG) == 0) { 1844 /* 1845 * We are too low on memory, we have to try to free 1846 * the buffer (most importantly: the wired pages 1847 * making up its backing store) *now*. 1848 */ 1849 brelse(bp); 1850 return; 1851 } 1852 qindex = QUEUE_CLEAN; 1853 } 1854 binsfree(bp, qindex); 1855 1856 out: 1857 /* unlock */ 1858 BUF_UNLOCK(bp); 1859 } 1860 1861 /* Give pages used by the bp back to the VM system (where possible) */ 1862 static void 1863 vfs_vmio_release(struct buf *bp) 1864 { 1865 int i; 1866 vm_page_t m; 1867 1868 if ((bp->b_flags & B_UNMAPPED) == 0) { 1869 BUF_CHECK_MAPPED(bp); 1870 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages); 1871 } else 1872 BUF_CHECK_UNMAPPED(bp); 1873 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 1874 for (i = 0; i < bp->b_npages; i++) { 1875 m = bp->b_pages[i]; 1876 bp->b_pages[i] = NULL; 1877 /* 1878 * In order to keep page LRU ordering consistent, put 1879 * everything on the inactive queue. 1880 */ 1881 vm_page_lock(m); 1882 vm_page_unwire(m, 0); 1883 1884 /* 1885 * Might as well free the page if we can and it has 1886 * no valid data. We also free the page if the 1887 * buffer was used for direct I/O 1888 */ 1889 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) { 1890 if (m->wire_count == 0 && !vm_page_busied(m)) 1891 vm_page_free(m); 1892 } else if (bp->b_flags & B_DIRECT) 1893 vm_page_try_to_free(m); 1894 else if (buf_vm_page_count_severe()) 1895 vm_page_try_to_cache(m); 1896 vm_page_unlock(m); 1897 } 1898 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 1899 1900 if (bp->b_bufsize) { 1901 bufspacewakeup(); 1902 bp->b_bufsize = 0; 1903 } 1904 bp->b_npages = 0; 1905 bp->b_flags &= ~B_VMIO; 1906 if (bp->b_vp) 1907 brelvp(bp); 1908 } 1909 1910 /* 1911 * Check to see if a block at a particular lbn is available for a clustered 1912 * write. 1913 */ 1914 static int 1915 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 1916 { 1917 struct buf *bpa; 1918 int match; 1919 1920 match = 0; 1921 1922 /* If the buf isn't in core skip it */ 1923 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL) 1924 return (0); 1925 1926 /* If the buf is busy we don't want to wait for it */ 1927 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1928 return (0); 1929 1930 /* Only cluster with valid clusterable delayed write buffers */ 1931 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 1932 (B_DELWRI | B_CLUSTEROK)) 1933 goto done; 1934 1935 if (bpa->b_bufsize != size) 1936 goto done; 1937 1938 /* 1939 * Check to see if it is in the expected place on disk and that the 1940 * block has been mapped. 1941 */ 1942 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 1943 match = 1; 1944 done: 1945 BUF_UNLOCK(bpa); 1946 return (match); 1947 } 1948 1949 /* 1950 * vfs_bio_awrite: 1951 * 1952 * Implement clustered async writes for clearing out B_DELWRI buffers. 1953 * This is much better then the old way of writing only one buffer at 1954 * a time. Note that we may not be presented with the buffers in the 1955 * correct order, so we search for the cluster in both directions. 1956 */ 1957 int 1958 vfs_bio_awrite(struct buf *bp) 1959 { 1960 struct bufobj *bo; 1961 int i; 1962 int j; 1963 daddr_t lblkno = bp->b_lblkno; 1964 struct vnode *vp = bp->b_vp; 1965 int ncl; 1966 int nwritten; 1967 int size; 1968 int maxcl; 1969 int gbflags; 1970 1971 bo = &vp->v_bufobj; 1972 gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 1973 /* 1974 * right now we support clustered writing only to regular files. If 1975 * we find a clusterable block we could be in the middle of a cluster 1976 * rather then at the beginning. 1977 */ 1978 if ((vp->v_type == VREG) && 1979 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1980 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1981 1982 size = vp->v_mount->mnt_stat.f_iosize; 1983 maxcl = MAXPHYS / size; 1984 1985 BO_RLOCK(bo); 1986 for (i = 1; i < maxcl; i++) 1987 if (vfs_bio_clcheck(vp, size, lblkno + i, 1988 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 1989 break; 1990 1991 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 1992 if (vfs_bio_clcheck(vp, size, lblkno - j, 1993 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 1994 break; 1995 BO_RUNLOCK(bo); 1996 --j; 1997 ncl = i + j; 1998 /* 1999 * this is a possible cluster write 2000 */ 2001 if (ncl != 1) { 2002 BUF_UNLOCK(bp); 2003 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl, 2004 gbflags); 2005 return (nwritten); 2006 } 2007 } 2008 bremfree(bp); 2009 bp->b_flags |= B_ASYNC; 2010 /* 2011 * default (old) behavior, writing out only one block 2012 * 2013 * XXX returns b_bufsize instead of b_bcount for nwritten? 2014 */ 2015 nwritten = bp->b_bufsize; 2016 (void) bwrite(bp); 2017 2018 return (nwritten); 2019 } 2020 2021 static void 2022 setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags) 2023 { 2024 2025 KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 && 2026 bp->b_kvasize == 0, ("call bfreekva(%p)", bp)); 2027 if ((gbflags & GB_UNMAPPED) == 0) { 2028 bp->b_kvabase = (caddr_t)addr; 2029 } else if ((gbflags & GB_KVAALLOC) != 0) { 2030 KASSERT((gbflags & GB_UNMAPPED) != 0, 2031 ("GB_KVAALLOC without GB_UNMAPPED")); 2032 bp->b_kvaalloc = (caddr_t)addr; 2033 bp->b_flags |= B_UNMAPPED | B_KVAALLOC; 2034 atomic_add_long(&unmapped_bufspace, bp->b_kvasize); 2035 } 2036 bp->b_kvasize = maxsize; 2037 } 2038 2039 /* 2040 * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if 2041 * needed. 2042 */ 2043 static int 2044 allocbufkva(struct buf *bp, int maxsize, int gbflags) 2045 { 2046 vm_offset_t addr; 2047 2048 bfreekva(bp); 2049 addr = 0; 2050 2051 if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) { 2052 /* 2053 * Buffer map is too fragmented. Request the caller 2054 * to defragment the map. 2055 */ 2056 atomic_add_int(&bufdefragcnt, 1); 2057 return (1); 2058 } 2059 setbufkva(bp, addr, maxsize, gbflags); 2060 atomic_add_long(&bufspace, bp->b_kvasize); 2061 return (0); 2062 } 2063 2064 /* 2065 * Ask the bufdaemon for help, or act as bufdaemon itself, when a 2066 * locked vnode is supplied. 2067 */ 2068 static void 2069 getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo, 2070 int defrag) 2071 { 2072 struct thread *td; 2073 char *waitmsg; 2074 int cnt, error, flags, norunbuf, wait; 2075 2076 mtx_assert(&bqclean, MA_OWNED); 2077 2078 if (defrag) { 2079 flags = VFS_BIO_NEED_BUFSPACE; 2080 waitmsg = "nbufkv"; 2081 } else if (bufspace >= hibufspace) { 2082 waitmsg = "nbufbs"; 2083 flags = VFS_BIO_NEED_BUFSPACE; 2084 } else { 2085 waitmsg = "newbuf"; 2086 flags = VFS_BIO_NEED_ANY; 2087 } 2088 mtx_lock(&nblock); 2089 needsbuffer |= flags; 2090 mtx_unlock(&nblock); 2091 mtx_unlock(&bqclean); 2092 2093 bd_speedup(); /* heeeelp */ 2094 if ((gbflags & GB_NOWAIT_BD) != 0) 2095 return; 2096 2097 td = curthread; 2098 cnt = 0; 2099 wait = MNT_NOWAIT; 2100 mtx_lock(&nblock); 2101 while (needsbuffer & flags) { 2102 if (vp != NULL && vp->v_type != VCHR && 2103 (td->td_pflags & TDP_BUFNEED) == 0) { 2104 mtx_unlock(&nblock); 2105 2106 /* 2107 * getblk() is called with a vnode locked, and 2108 * some majority of the dirty buffers may as 2109 * well belong to the vnode. Flushing the 2110 * buffers there would make a progress that 2111 * cannot be achieved by the buf_daemon, that 2112 * cannot lock the vnode. 2113 */ 2114 if (cnt++ > 2) 2115 wait = MNT_WAIT; 2116 ASSERT_VOP_LOCKED(vp, "bufd_helper"); 2117 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 : 2118 vn_lock(vp, LK_TRYUPGRADE); 2119 if (error == 0) { 2120 /* play bufdaemon */ 2121 norunbuf = curthread_pflags_set(TDP_BUFNEED | 2122 TDP_NORUNNINGBUF); 2123 VOP_FSYNC(vp, wait, td); 2124 atomic_add_long(¬bufdflushes, 1); 2125 curthread_pflags_restore(norunbuf); 2126 } 2127 mtx_lock(&nblock); 2128 if ((needsbuffer & flags) == 0) 2129 break; 2130 } 2131 if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag, 2132 waitmsg, slptimeo)) 2133 break; 2134 } 2135 mtx_unlock(&nblock); 2136 } 2137 2138 static void 2139 getnewbuf_reuse_bp(struct buf *bp, int qindex) 2140 { 2141 2142 CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d " 2143 "queue %d (recycling)", bp, bp->b_vp, bp->b_flags, 2144 bp->b_kvasize, bp->b_bufsize, qindex); 2145 mtx_assert(&bqclean, MA_NOTOWNED); 2146 2147 /* 2148 * Note: we no longer distinguish between VMIO and non-VMIO 2149 * buffers. 2150 */ 2151 KASSERT((bp->b_flags & B_DELWRI) == 0, 2152 ("delwri buffer %p found in queue %d", bp, qindex)); 2153 2154 if (qindex == QUEUE_CLEAN) { 2155 if (bp->b_flags & B_VMIO) { 2156 bp->b_flags &= ~B_ASYNC; 2157 vfs_vmio_release(bp); 2158 } 2159 if (bp->b_vp != NULL) 2160 brelvp(bp); 2161 } 2162 2163 /* 2164 * Get the rest of the buffer freed up. b_kva* is still valid 2165 * after this operation. 2166 */ 2167 2168 if (bp->b_rcred != NOCRED) { 2169 crfree(bp->b_rcred); 2170 bp->b_rcred = NOCRED; 2171 } 2172 if (bp->b_wcred != NOCRED) { 2173 crfree(bp->b_wcred); 2174 bp->b_wcred = NOCRED; 2175 } 2176 if (!LIST_EMPTY(&bp->b_dep)) 2177 buf_deallocate(bp); 2178 if (bp->b_vflags & BV_BKGRDINPROG) 2179 panic("losing buffer 3"); 2180 KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p. qindex: %d", 2181 bp, bp->b_vp, qindex)); 2182 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0, 2183 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags)); 2184 2185 if (bp->b_bufsize) 2186 allocbuf(bp, 0); 2187 2188 bp->b_flags &= B_UNMAPPED | B_KVAALLOC; 2189 bp->b_ioflags = 0; 2190 bp->b_xflags = 0; 2191 KASSERT((bp->b_flags & B_INFREECNT) == 0, 2192 ("buf %p still counted as free?", bp)); 2193 bp->b_vflags = 0; 2194 bp->b_vp = NULL; 2195 bp->b_blkno = bp->b_lblkno = 0; 2196 bp->b_offset = NOOFFSET; 2197 bp->b_iodone = 0; 2198 bp->b_error = 0; 2199 bp->b_resid = 0; 2200 bp->b_bcount = 0; 2201 bp->b_npages = 0; 2202 bp->b_dirtyoff = bp->b_dirtyend = 0; 2203 bp->b_bufobj = NULL; 2204 bp->b_pin_count = 0; 2205 bp->b_fsprivate1 = NULL; 2206 bp->b_fsprivate2 = NULL; 2207 bp->b_fsprivate3 = NULL; 2208 2209 LIST_INIT(&bp->b_dep); 2210 } 2211 2212 static int flushingbufs; 2213 2214 static struct buf * 2215 getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata) 2216 { 2217 struct buf *bp, *nbp; 2218 int nqindex, qindex, pass; 2219 2220 KASSERT(!unmapped || !defrag, ("both unmapped and defrag")); 2221 2222 pass = 1; 2223 restart: 2224 atomic_add_int(&getnewbufrestarts, 1); 2225 2226 /* 2227 * Setup for scan. If we do not have enough free buffers, 2228 * we setup a degenerate case that immediately fails. Note 2229 * that if we are specially marked process, we are allowed to 2230 * dip into our reserves. 2231 * 2232 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 2233 * for the allocation of the mapped buffer. For unmapped, the 2234 * easiest is to start with EMPTY outright. 2235 * 2236 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 2237 * However, there are a number of cases (defragging, reusing, ...) 2238 * where we cannot backup. 2239 */ 2240 nbp = NULL; 2241 mtx_lock(&bqclean); 2242 if (!defrag && unmapped) { 2243 nqindex = QUEUE_EMPTY; 2244 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 2245 } 2246 if (nbp == NULL) { 2247 nqindex = QUEUE_EMPTYKVA; 2248 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 2249 } 2250 2251 /* 2252 * If no EMPTYKVA buffers and we are either defragging or 2253 * reusing, locate a CLEAN buffer to free or reuse. If 2254 * bufspace useage is low skip this step so we can allocate a 2255 * new buffer. 2256 */ 2257 if (nbp == NULL && (defrag || bufspace >= lobufspace)) { 2258 nqindex = QUEUE_CLEAN; 2259 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 2260 } 2261 2262 /* 2263 * If we could not find or were not allowed to reuse a CLEAN 2264 * buffer, check to see if it is ok to use an EMPTY buffer. 2265 * We can only use an EMPTY buffer if allocating its KVA would 2266 * not otherwise run us out of buffer space. No KVA is needed 2267 * for the unmapped allocation. 2268 */ 2269 if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace || 2270 metadata)) { 2271 nqindex = QUEUE_EMPTY; 2272 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 2273 } 2274 2275 /* 2276 * All available buffers might be clean, retry ignoring the 2277 * lobufspace as the last resort. 2278 */ 2279 if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) { 2280 nqindex = QUEUE_CLEAN; 2281 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 2282 } 2283 2284 /* 2285 * Run scan, possibly freeing data and/or kva mappings on the fly 2286 * depending. 2287 */ 2288 while ((bp = nbp) != NULL) { 2289 qindex = nqindex; 2290 2291 /* 2292 * Calculate next bp (we can only use it if we do not 2293 * block or do other fancy things). 2294 */ 2295 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 2296 switch (qindex) { 2297 case QUEUE_EMPTY: 2298 nqindex = QUEUE_EMPTYKVA; 2299 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 2300 if (nbp != NULL) 2301 break; 2302 /* FALLTHROUGH */ 2303 case QUEUE_EMPTYKVA: 2304 nqindex = QUEUE_CLEAN; 2305 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 2306 if (nbp != NULL) 2307 break; 2308 /* FALLTHROUGH */ 2309 case QUEUE_CLEAN: 2310 if (metadata && pass == 1) { 2311 pass = 2; 2312 nqindex = QUEUE_EMPTY; 2313 nbp = TAILQ_FIRST( 2314 &bufqueues[QUEUE_EMPTY]); 2315 } 2316 /* 2317 * nbp is NULL. 2318 */ 2319 break; 2320 } 2321 } 2322 /* 2323 * If we are defragging then we need a buffer with 2324 * b_kvasize != 0. XXX this situation should no longer 2325 * occur, if defrag is non-zero the buffer's b_kvasize 2326 * should also be non-zero at this point. XXX 2327 */ 2328 if (defrag && bp->b_kvasize == 0) { 2329 printf("Warning: defrag empty buffer %p\n", bp); 2330 continue; 2331 } 2332 2333 /* 2334 * Start freeing the bp. This is somewhat involved. nbp 2335 * remains valid only for QUEUE_EMPTY[KVA] bp's. 2336 */ 2337 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2338 continue; 2339 /* 2340 * BKGRDINPROG can only be set with the buf and bufobj 2341 * locks both held. We tolerate a race to clear it here. 2342 */ 2343 if (bp->b_vflags & BV_BKGRDINPROG) { 2344 BUF_UNLOCK(bp); 2345 continue; 2346 } 2347 2348 KASSERT(bp->b_qindex == qindex, 2349 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2350 2351 bremfreel(bp); 2352 mtx_unlock(&bqclean); 2353 /* 2354 * NOTE: nbp is now entirely invalid. We can only restart 2355 * the scan from this point on. 2356 */ 2357 2358 getnewbuf_reuse_bp(bp, qindex); 2359 mtx_assert(&bqclean, MA_NOTOWNED); 2360 2361 /* 2362 * If we are defragging then free the buffer. 2363 */ 2364 if (defrag) { 2365 bp->b_flags |= B_INVAL; 2366 bfreekva(bp); 2367 brelse(bp); 2368 defrag = 0; 2369 goto restart; 2370 } 2371 2372 /* 2373 * Notify any waiters for the buffer lock about 2374 * identity change by freeing the buffer. 2375 */ 2376 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) { 2377 bp->b_flags |= B_INVAL; 2378 bfreekva(bp); 2379 brelse(bp); 2380 goto restart; 2381 } 2382 2383 if (metadata) 2384 break; 2385 2386 /* 2387 * If we are overcomitted then recover the buffer and its 2388 * KVM space. This occurs in rare situations when multiple 2389 * processes are blocked in getnewbuf() or allocbuf(). 2390 */ 2391 if (bufspace >= hibufspace) 2392 flushingbufs = 1; 2393 if (flushingbufs && bp->b_kvasize != 0) { 2394 bp->b_flags |= B_INVAL; 2395 bfreekva(bp); 2396 brelse(bp); 2397 goto restart; 2398 } 2399 if (bufspace < lobufspace) 2400 flushingbufs = 0; 2401 break; 2402 } 2403 return (bp); 2404 } 2405 2406 /* 2407 * getnewbuf: 2408 * 2409 * Find and initialize a new buffer header, freeing up existing buffers 2410 * in the bufqueues as necessary. The new buffer is returned locked. 2411 * 2412 * Important: B_INVAL is not set. If the caller wishes to throw the 2413 * buffer away, the caller must set B_INVAL prior to calling brelse(). 2414 * 2415 * We block if: 2416 * We have insufficient buffer headers 2417 * We have insufficient buffer space 2418 * buffer_arena is too fragmented ( space reservation fails ) 2419 * If we have to flush dirty buffers ( but we try to avoid this ) 2420 */ 2421 static struct buf * 2422 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize, 2423 int gbflags) 2424 { 2425 struct buf *bp; 2426 int defrag, metadata; 2427 2428 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 2429 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 2430 if (!unmapped_buf_allowed) 2431 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC); 2432 2433 defrag = 0; 2434 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 || 2435 vp->v_type == VCHR) 2436 metadata = 1; 2437 else 2438 metadata = 0; 2439 /* 2440 * We can't afford to block since we might be holding a vnode lock, 2441 * which may prevent system daemons from running. We deal with 2442 * low-memory situations by proactively returning memory and running 2443 * async I/O rather then sync I/O. 2444 */ 2445 atomic_add_int(&getnewbufcalls, 1); 2446 atomic_subtract_int(&getnewbufrestarts, 1); 2447 restart: 2448 bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED | 2449 GB_KVAALLOC)) == GB_UNMAPPED, metadata); 2450 if (bp != NULL) 2451 defrag = 0; 2452 2453 /* 2454 * If we exhausted our list, sleep as appropriate. We may have to 2455 * wakeup various daemons and write out some dirty buffers. 2456 * 2457 * Generally we are sleeping due to insufficient buffer space. 2458 */ 2459 if (bp == NULL) { 2460 mtx_assert(&bqclean, MA_OWNED); 2461 getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag); 2462 mtx_assert(&bqclean, MA_NOTOWNED); 2463 } else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) { 2464 mtx_assert(&bqclean, MA_NOTOWNED); 2465 2466 bfreekva(bp); 2467 bp->b_flags |= B_UNMAPPED; 2468 bp->b_kvabase = bp->b_data = unmapped_buf; 2469 bp->b_kvasize = maxsize; 2470 atomic_add_long(&bufspace, bp->b_kvasize); 2471 atomic_add_long(&unmapped_bufspace, bp->b_kvasize); 2472 atomic_add_int(&bufreusecnt, 1); 2473 } else { 2474 mtx_assert(&bqclean, MA_NOTOWNED); 2475 2476 /* 2477 * We finally have a valid bp. We aren't quite out of the 2478 * woods, we still have to reserve kva space. In order 2479 * to keep fragmentation sane we only allocate kva in 2480 * BKVASIZE chunks. 2481 */ 2482 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2483 2484 if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED | 2485 B_KVAALLOC)) == B_UNMAPPED) { 2486 if (allocbufkva(bp, maxsize, gbflags)) { 2487 defrag = 1; 2488 bp->b_flags |= B_INVAL; 2489 brelse(bp); 2490 goto restart; 2491 } 2492 atomic_add_int(&bufreusecnt, 1); 2493 } else if ((bp->b_flags & B_KVAALLOC) != 0 && 2494 (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) { 2495 /* 2496 * If the reused buffer has KVA allocated, 2497 * reassign b_kvaalloc to b_kvabase. 2498 */ 2499 bp->b_kvabase = bp->b_kvaalloc; 2500 bp->b_flags &= ~B_KVAALLOC; 2501 atomic_subtract_long(&unmapped_bufspace, 2502 bp->b_kvasize); 2503 atomic_add_int(&bufreusecnt, 1); 2504 } else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 && 2505 (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED | 2506 GB_KVAALLOC)) { 2507 /* 2508 * The case of reused buffer already have KVA 2509 * mapped, but the request is for unmapped 2510 * buffer with KVA allocated. 2511 */ 2512 bp->b_kvaalloc = bp->b_kvabase; 2513 bp->b_data = bp->b_kvabase = unmapped_buf; 2514 bp->b_flags |= B_UNMAPPED | B_KVAALLOC; 2515 atomic_add_long(&unmapped_bufspace, 2516 bp->b_kvasize); 2517 atomic_add_int(&bufreusecnt, 1); 2518 } 2519 if ((gbflags & GB_UNMAPPED) == 0) { 2520 bp->b_saveaddr = bp->b_kvabase; 2521 bp->b_data = bp->b_saveaddr; 2522 bp->b_flags &= ~B_UNMAPPED; 2523 BUF_CHECK_MAPPED(bp); 2524 } 2525 } 2526 return (bp); 2527 } 2528 2529 /* 2530 * buf_daemon: 2531 * 2532 * buffer flushing daemon. Buffers are normally flushed by the 2533 * update daemon but if it cannot keep up this process starts to 2534 * take the load in an attempt to prevent getnewbuf() from blocking. 2535 */ 2536 2537 static struct kproc_desc buf_kp = { 2538 "bufdaemon", 2539 buf_daemon, 2540 &bufdaemonproc 2541 }; 2542 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp); 2543 2544 static int 2545 buf_flush(int target) 2546 { 2547 int flushed; 2548 2549 flushed = flushbufqueues(target, 0); 2550 if (flushed == 0) { 2551 /* 2552 * Could not find any buffers without rollback 2553 * dependencies, so just write the first one 2554 * in the hopes of eventually making progress. 2555 */ 2556 flushed = flushbufqueues(target, 1); 2557 } 2558 return (flushed); 2559 } 2560 2561 static void 2562 buf_daemon() 2563 { 2564 int lodirty; 2565 2566 /* 2567 * This process needs to be suspended prior to shutdown sync. 2568 */ 2569 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 2570 SHUTDOWN_PRI_LAST); 2571 2572 /* 2573 * This process is allowed to take the buffer cache to the limit 2574 */ 2575 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED; 2576 mtx_lock(&bdlock); 2577 for (;;) { 2578 bd_request = 0; 2579 mtx_unlock(&bdlock); 2580 2581 kproc_suspend_check(bufdaemonproc); 2582 lodirty = lodirtybuffers; 2583 if (bd_speedupreq) { 2584 lodirty = numdirtybuffers / 2; 2585 bd_speedupreq = 0; 2586 } 2587 /* 2588 * Do the flush. Limit the amount of in-transit I/O we 2589 * allow to build up, otherwise we would completely saturate 2590 * the I/O system. 2591 */ 2592 while (numdirtybuffers > lodirty) { 2593 if (buf_flush(numdirtybuffers - lodirty) == 0) 2594 break; 2595 kern_yield(PRI_USER); 2596 } 2597 2598 /* 2599 * Only clear bd_request if we have reached our low water 2600 * mark. The buf_daemon normally waits 1 second and 2601 * then incrementally flushes any dirty buffers that have 2602 * built up, within reason. 2603 * 2604 * If we were unable to hit our low water mark and couldn't 2605 * find any flushable buffers, we sleep for a short period 2606 * to avoid endless loops on unlockable buffers. 2607 */ 2608 mtx_lock(&bdlock); 2609 if (numdirtybuffers <= lodirtybuffers) { 2610 /* 2611 * We reached our low water mark, reset the 2612 * request and sleep until we are needed again. 2613 * The sleep is just so the suspend code works. 2614 */ 2615 bd_request = 0; 2616 /* 2617 * Do an extra wakeup in case dirty threshold 2618 * changed via sysctl and the explicit transition 2619 * out of shortfall was missed. 2620 */ 2621 bdirtywakeup(); 2622 if (runningbufspace <= lorunningspace) 2623 runningwakeup(); 2624 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 2625 } else { 2626 /* 2627 * We couldn't find any flushable dirty buffers but 2628 * still have too many dirty buffers, we 2629 * have to sleep and try again. (rare) 2630 */ 2631 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 2632 } 2633 } 2634 } 2635 2636 /* 2637 * flushbufqueues: 2638 * 2639 * Try to flush a buffer in the dirty queue. We must be careful to 2640 * free up B_INVAL buffers instead of write them, which NFS is 2641 * particularly sensitive to. 2642 */ 2643 static int flushwithdeps = 0; 2644 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 2645 0, "Number of buffers flushed with dependecies that require rollbacks"); 2646 2647 static int 2648 flushbufqueues(int target, int flushdeps) 2649 { 2650 struct buf *sentinel; 2651 struct vnode *vp; 2652 struct mount *mp; 2653 struct buf *bp; 2654 int hasdeps; 2655 int flushed; 2656 int queue; 2657 int error; 2658 2659 flushed = 0; 2660 queue = QUEUE_DIRTY; 2661 bp = NULL; 2662 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO); 2663 sentinel->b_qindex = QUEUE_SENTINEL; 2664 mtx_lock(&bqdirty); 2665 TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist); 2666 mtx_unlock(&bqdirty); 2667 while (flushed != target) { 2668 maybe_yield(); 2669 mtx_lock(&bqdirty); 2670 bp = TAILQ_NEXT(sentinel, b_freelist); 2671 if (bp != NULL) { 2672 TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist); 2673 TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel, 2674 b_freelist); 2675 } else { 2676 mtx_unlock(&bqdirty); 2677 break; 2678 } 2679 KASSERT(bp->b_qindex != QUEUE_SENTINEL, 2680 ("parallel calls to flushbufqueues() bp %p", bp)); 2681 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL); 2682 mtx_unlock(&bqdirty); 2683 if (error != 0) 2684 continue; 2685 if (bp->b_pin_count > 0) { 2686 BUF_UNLOCK(bp); 2687 continue; 2688 } 2689 /* 2690 * BKGRDINPROG can only be set with the buf and bufobj 2691 * locks both held. We tolerate a race to clear it here. 2692 */ 2693 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 || 2694 (bp->b_flags & B_DELWRI) == 0) { 2695 BUF_UNLOCK(bp); 2696 continue; 2697 } 2698 if (bp->b_flags & B_INVAL) { 2699 bremfreef(bp); 2700 brelse(bp); 2701 flushed++; 2702 continue; 2703 } 2704 2705 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) { 2706 if (flushdeps == 0) { 2707 BUF_UNLOCK(bp); 2708 continue; 2709 } 2710 hasdeps = 1; 2711 } else 2712 hasdeps = 0; 2713 /* 2714 * We must hold the lock on a vnode before writing 2715 * one of its buffers. Otherwise we may confuse, or 2716 * in the case of a snapshot vnode, deadlock the 2717 * system. 2718 * 2719 * The lock order here is the reverse of the normal 2720 * of vnode followed by buf lock. This is ok because 2721 * the NOWAIT will prevent deadlock. 2722 */ 2723 vp = bp->b_vp; 2724 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2725 BUF_UNLOCK(bp); 2726 continue; 2727 } 2728 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 2729 if (error == 0) { 2730 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X", 2731 bp, bp->b_vp, bp->b_flags); 2732 vfs_bio_awrite(bp); 2733 vn_finished_write(mp); 2734 VOP_UNLOCK(vp, 0); 2735 flushwithdeps += hasdeps; 2736 flushed++; 2737 if (runningbufspace > hirunningspace) 2738 waitrunningbufspace(); 2739 continue; 2740 } 2741 vn_finished_write(mp); 2742 BUF_UNLOCK(bp); 2743 } 2744 mtx_lock(&bqdirty); 2745 TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist); 2746 mtx_unlock(&bqdirty); 2747 free(sentinel, M_TEMP); 2748 return (flushed); 2749 } 2750 2751 /* 2752 * Check to see if a block is currently memory resident. 2753 */ 2754 struct buf * 2755 incore(struct bufobj *bo, daddr_t blkno) 2756 { 2757 struct buf *bp; 2758 2759 BO_RLOCK(bo); 2760 bp = gbincore(bo, blkno); 2761 BO_RUNLOCK(bo); 2762 return (bp); 2763 } 2764 2765 /* 2766 * Returns true if no I/O is needed to access the 2767 * associated VM object. This is like incore except 2768 * it also hunts around in the VM system for the data. 2769 */ 2770 2771 static int 2772 inmem(struct vnode * vp, daddr_t blkno) 2773 { 2774 vm_object_t obj; 2775 vm_offset_t toff, tinc, size; 2776 vm_page_t m; 2777 vm_ooffset_t off; 2778 2779 ASSERT_VOP_LOCKED(vp, "inmem"); 2780 2781 if (incore(&vp->v_bufobj, blkno)) 2782 return 1; 2783 if (vp->v_mount == NULL) 2784 return 0; 2785 obj = vp->v_object; 2786 if (obj == NULL) 2787 return (0); 2788 2789 size = PAGE_SIZE; 2790 if (size > vp->v_mount->mnt_stat.f_iosize) 2791 size = vp->v_mount->mnt_stat.f_iosize; 2792 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2793 2794 VM_OBJECT_RLOCK(obj); 2795 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2796 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2797 if (!m) 2798 goto notinmem; 2799 tinc = size; 2800 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2801 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2802 if (vm_page_is_valid(m, 2803 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2804 goto notinmem; 2805 } 2806 VM_OBJECT_RUNLOCK(obj); 2807 return 1; 2808 2809 notinmem: 2810 VM_OBJECT_RUNLOCK(obj); 2811 return (0); 2812 } 2813 2814 /* 2815 * Set the dirty range for a buffer based on the status of the dirty 2816 * bits in the pages comprising the buffer. The range is limited 2817 * to the size of the buffer. 2818 * 2819 * Tell the VM system that the pages associated with this buffer 2820 * are clean. This is used for delayed writes where the data is 2821 * going to go to disk eventually without additional VM intevention. 2822 * 2823 * Note that while we only really need to clean through to b_bcount, we 2824 * just go ahead and clean through to b_bufsize. 2825 */ 2826 static void 2827 vfs_clean_pages_dirty_buf(struct buf *bp) 2828 { 2829 vm_ooffset_t foff, noff, eoff; 2830 vm_page_t m; 2831 int i; 2832 2833 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0) 2834 return; 2835 2836 foff = bp->b_offset; 2837 KASSERT(bp->b_offset != NOOFFSET, 2838 ("vfs_clean_pages_dirty_buf: no buffer offset")); 2839 2840 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 2841 vfs_drain_busy_pages(bp); 2842 vfs_setdirty_locked_object(bp); 2843 for (i = 0; i < bp->b_npages; i++) { 2844 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2845 eoff = noff; 2846 if (eoff > bp->b_offset + bp->b_bufsize) 2847 eoff = bp->b_offset + bp->b_bufsize; 2848 m = bp->b_pages[i]; 2849 vfs_page_set_validclean(bp, foff, m); 2850 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 2851 foff = noff; 2852 } 2853 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 2854 } 2855 2856 static void 2857 vfs_setdirty_locked_object(struct buf *bp) 2858 { 2859 vm_object_t object; 2860 int i; 2861 2862 object = bp->b_bufobj->bo_object; 2863 VM_OBJECT_ASSERT_WLOCKED(object); 2864 2865 /* 2866 * We qualify the scan for modified pages on whether the 2867 * object has been flushed yet. 2868 */ 2869 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) { 2870 vm_offset_t boffset; 2871 vm_offset_t eoffset; 2872 2873 /* 2874 * test the pages to see if they have been modified directly 2875 * by users through the VM system. 2876 */ 2877 for (i = 0; i < bp->b_npages; i++) 2878 vm_page_test_dirty(bp->b_pages[i]); 2879 2880 /* 2881 * Calculate the encompassing dirty range, boffset and eoffset, 2882 * (eoffset - boffset) bytes. 2883 */ 2884 2885 for (i = 0; i < bp->b_npages; i++) { 2886 if (bp->b_pages[i]->dirty) 2887 break; 2888 } 2889 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2890 2891 for (i = bp->b_npages - 1; i >= 0; --i) { 2892 if (bp->b_pages[i]->dirty) { 2893 break; 2894 } 2895 } 2896 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2897 2898 /* 2899 * Fit it to the buffer. 2900 */ 2901 2902 if (eoffset > bp->b_bcount) 2903 eoffset = bp->b_bcount; 2904 2905 /* 2906 * If we have a good dirty range, merge with the existing 2907 * dirty range. 2908 */ 2909 2910 if (boffset < eoffset) { 2911 if (bp->b_dirtyoff > boffset) 2912 bp->b_dirtyoff = boffset; 2913 if (bp->b_dirtyend < eoffset) 2914 bp->b_dirtyend = eoffset; 2915 } 2916 } 2917 } 2918 2919 /* 2920 * Allocate the KVA mapping for an existing buffer. It handles the 2921 * cases of both B_UNMAPPED buffer, and buffer with the preallocated 2922 * KVA which is not mapped (B_KVAALLOC). 2923 */ 2924 static void 2925 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags) 2926 { 2927 struct buf *scratch_bp; 2928 int bsize, maxsize, need_mapping, need_kva; 2929 off_t offset; 2930 2931 need_mapping = (bp->b_flags & B_UNMAPPED) != 0 && 2932 (gbflags & GB_UNMAPPED) == 0; 2933 need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED && 2934 (gbflags & GB_KVAALLOC) != 0; 2935 if (!need_mapping && !need_kva) 2936 return; 2937 2938 BUF_CHECK_UNMAPPED(bp); 2939 2940 if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) { 2941 /* 2942 * Buffer is not mapped, but the KVA was already 2943 * reserved at the time of the instantiation. Use the 2944 * allocated space. 2945 */ 2946 bp->b_flags &= ~B_KVAALLOC; 2947 KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0")); 2948 bp->b_kvabase = bp->b_kvaalloc; 2949 atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize); 2950 goto has_addr; 2951 } 2952 2953 /* 2954 * Calculate the amount of the address space we would reserve 2955 * if the buffer was mapped. 2956 */ 2957 bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize; 2958 offset = blkno * bsize; 2959 maxsize = size + (offset & PAGE_MASK); 2960 maxsize = imax(maxsize, bsize); 2961 2962 mapping_loop: 2963 if (allocbufkva(bp, maxsize, gbflags)) { 2964 /* 2965 * Request defragmentation. getnewbuf() returns us the 2966 * allocated space by the scratch buffer KVA. 2967 */ 2968 scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags | 2969 (GB_UNMAPPED | GB_KVAALLOC)); 2970 if (scratch_bp == NULL) { 2971 if ((gbflags & GB_NOWAIT_BD) != 0) { 2972 /* 2973 * XXXKIB: defragmentation cannot 2974 * succeed, not sure what else to do. 2975 */ 2976 panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp); 2977 } 2978 atomic_add_int(&mappingrestarts, 1); 2979 goto mapping_loop; 2980 } 2981 KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0, 2982 ("scratch bp !B_KVAALLOC %p", scratch_bp)); 2983 setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc, 2984 scratch_bp->b_kvasize, gbflags); 2985 2986 /* Get rid of the scratch buffer. */ 2987 scratch_bp->b_kvasize = 0; 2988 scratch_bp->b_flags |= B_INVAL; 2989 scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC); 2990 brelse(scratch_bp); 2991 } 2992 if (!need_mapping) 2993 return; 2994 2995 has_addr: 2996 bp->b_saveaddr = bp->b_kvabase; 2997 bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */ 2998 bp->b_flags &= ~B_UNMAPPED; 2999 BUF_CHECK_MAPPED(bp); 3000 bpmap_qenter(bp); 3001 } 3002 3003 /* 3004 * getblk: 3005 * 3006 * Get a block given a specified block and offset into a file/device. 3007 * The buffers B_DONE bit will be cleared on return, making it almost 3008 * ready for an I/O initiation. B_INVAL may or may not be set on 3009 * return. The caller should clear B_INVAL prior to initiating a 3010 * READ. 3011 * 3012 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 3013 * an existing buffer. 3014 * 3015 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 3016 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 3017 * and then cleared based on the backing VM. If the previous buffer is 3018 * non-0-sized but invalid, B_CACHE will be cleared. 3019 * 3020 * If getblk() must create a new buffer, the new buffer is returned with 3021 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 3022 * case it is returned with B_INVAL clear and B_CACHE set based on the 3023 * backing VM. 3024 * 3025 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 3026 * B_CACHE bit is clear. 3027 * 3028 * What this means, basically, is that the caller should use B_CACHE to 3029 * determine whether the buffer is fully valid or not and should clear 3030 * B_INVAL prior to issuing a read. If the caller intends to validate 3031 * the buffer by loading its data area with something, the caller needs 3032 * to clear B_INVAL. If the caller does this without issuing an I/O, 3033 * the caller should set B_CACHE ( as an optimization ), else the caller 3034 * should issue the I/O and biodone() will set B_CACHE if the I/O was 3035 * a write attempt or if it was a successfull read. If the caller 3036 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 3037 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 3038 */ 3039 struct buf * 3040 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo, 3041 int flags) 3042 { 3043 struct buf *bp; 3044 struct bufobj *bo; 3045 int bsize, error, maxsize, vmio; 3046 off_t offset; 3047 3048 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size); 3049 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3050 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3051 ASSERT_VOP_LOCKED(vp, "getblk"); 3052 if (size > MAXBSIZE) 3053 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 3054 if (!unmapped_buf_allowed) 3055 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3056 3057 bo = &vp->v_bufobj; 3058 loop: 3059 BO_RLOCK(bo); 3060 bp = gbincore(bo, blkno); 3061 if (bp != NULL) { 3062 int lockflags; 3063 /* 3064 * Buffer is in-core. If the buffer is not busy nor managed, 3065 * it must be on a queue. 3066 */ 3067 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK; 3068 3069 if (flags & GB_LOCK_NOWAIT) 3070 lockflags |= LK_NOWAIT; 3071 3072 error = BUF_TIMELOCK(bp, lockflags, 3073 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo); 3074 3075 /* 3076 * If we slept and got the lock we have to restart in case 3077 * the buffer changed identities. 3078 */ 3079 if (error == ENOLCK) 3080 goto loop; 3081 /* We timed out or were interrupted. */ 3082 else if (error) 3083 return (NULL); 3084 /* If recursed, assume caller knows the rules. */ 3085 else if (BUF_LOCKRECURSED(bp)) 3086 goto end; 3087 3088 /* 3089 * The buffer is locked. B_CACHE is cleared if the buffer is 3090 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 3091 * and for a VMIO buffer B_CACHE is adjusted according to the 3092 * backing VM cache. 3093 */ 3094 if (bp->b_flags & B_INVAL) 3095 bp->b_flags &= ~B_CACHE; 3096 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 3097 bp->b_flags |= B_CACHE; 3098 if (bp->b_flags & B_MANAGED) 3099 MPASS(bp->b_qindex == QUEUE_NONE); 3100 else 3101 bremfree(bp); 3102 3103 /* 3104 * check for size inconsistencies for non-VMIO case. 3105 */ 3106 if (bp->b_bcount != size) { 3107 if ((bp->b_flags & B_VMIO) == 0 || 3108 (size > bp->b_kvasize)) { 3109 if (bp->b_flags & B_DELWRI) { 3110 /* 3111 * If buffer is pinned and caller does 3112 * not want sleep waiting for it to be 3113 * unpinned, bail out 3114 * */ 3115 if (bp->b_pin_count > 0) { 3116 if (flags & GB_LOCK_NOWAIT) { 3117 bqrelse(bp); 3118 return (NULL); 3119 } else { 3120 bunpin_wait(bp); 3121 } 3122 } 3123 bp->b_flags |= B_NOCACHE; 3124 bwrite(bp); 3125 } else { 3126 if (LIST_EMPTY(&bp->b_dep)) { 3127 bp->b_flags |= B_RELBUF; 3128 brelse(bp); 3129 } else { 3130 bp->b_flags |= B_NOCACHE; 3131 bwrite(bp); 3132 } 3133 } 3134 goto loop; 3135 } 3136 } 3137 3138 /* 3139 * Handle the case of unmapped buffer which should 3140 * become mapped, or the buffer for which KVA 3141 * reservation is requested. 3142 */ 3143 bp_unmapped_get_kva(bp, blkno, size, flags); 3144 3145 /* 3146 * If the size is inconsistant in the VMIO case, we can resize 3147 * the buffer. This might lead to B_CACHE getting set or 3148 * cleared. If the size has not changed, B_CACHE remains 3149 * unchanged from its previous state. 3150 */ 3151 if (bp->b_bcount != size) 3152 allocbuf(bp, size); 3153 3154 KASSERT(bp->b_offset != NOOFFSET, 3155 ("getblk: no buffer offset")); 3156 3157 /* 3158 * A buffer with B_DELWRI set and B_CACHE clear must 3159 * be committed before we can return the buffer in 3160 * order to prevent the caller from issuing a read 3161 * ( due to B_CACHE not being set ) and overwriting 3162 * it. 3163 * 3164 * Most callers, including NFS and FFS, need this to 3165 * operate properly either because they assume they 3166 * can issue a read if B_CACHE is not set, or because 3167 * ( for example ) an uncached B_DELWRI might loop due 3168 * to softupdates re-dirtying the buffer. In the latter 3169 * case, B_CACHE is set after the first write completes, 3170 * preventing further loops. 3171 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3172 * above while extending the buffer, we cannot allow the 3173 * buffer to remain with B_CACHE set after the write 3174 * completes or it will represent a corrupt state. To 3175 * deal with this we set B_NOCACHE to scrap the buffer 3176 * after the write. 3177 * 3178 * We might be able to do something fancy, like setting 3179 * B_CACHE in bwrite() except if B_DELWRI is already set, 3180 * so the below call doesn't set B_CACHE, but that gets real 3181 * confusing. This is much easier. 3182 */ 3183 3184 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3185 bp->b_flags |= B_NOCACHE; 3186 bwrite(bp); 3187 goto loop; 3188 } 3189 bp->b_flags &= ~B_DONE; 3190 } else { 3191 /* 3192 * Buffer is not in-core, create new buffer. The buffer 3193 * returned by getnewbuf() is locked. Note that the returned 3194 * buffer is also considered valid (not marked B_INVAL). 3195 */ 3196 BO_RUNLOCK(bo); 3197 /* 3198 * If the user does not want us to create the buffer, bail out 3199 * here. 3200 */ 3201 if (flags & GB_NOCREAT) 3202 return NULL; 3203 if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread)) 3204 return NULL; 3205 3206 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize; 3207 offset = blkno * bsize; 3208 vmio = vp->v_object != NULL; 3209 if (vmio) { 3210 maxsize = size + (offset & PAGE_MASK); 3211 } else { 3212 maxsize = size; 3213 /* Do not allow non-VMIO notmapped buffers. */ 3214 flags &= ~GB_UNMAPPED; 3215 } 3216 maxsize = imax(maxsize, bsize); 3217 3218 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags); 3219 if (bp == NULL) { 3220 if (slpflag || slptimeo) 3221 return NULL; 3222 goto loop; 3223 } 3224 3225 /* 3226 * This code is used to make sure that a buffer is not 3227 * created while the getnewbuf routine is blocked. 3228 * This can be a problem whether the vnode is locked or not. 3229 * If the buffer is created out from under us, we have to 3230 * throw away the one we just created. 3231 * 3232 * Note: this must occur before we associate the buffer 3233 * with the vp especially considering limitations in 3234 * the splay tree implementation when dealing with duplicate 3235 * lblkno's. 3236 */ 3237 BO_LOCK(bo); 3238 if (gbincore(bo, blkno)) { 3239 BO_UNLOCK(bo); 3240 bp->b_flags |= B_INVAL; 3241 brelse(bp); 3242 goto loop; 3243 } 3244 3245 /* 3246 * Insert the buffer into the hash, so that it can 3247 * be found by incore. 3248 */ 3249 bp->b_blkno = bp->b_lblkno = blkno; 3250 bp->b_offset = offset; 3251 bgetvp(vp, bp); 3252 BO_UNLOCK(bo); 3253 3254 /* 3255 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 3256 * buffer size starts out as 0, B_CACHE will be set by 3257 * allocbuf() for the VMIO case prior to it testing the 3258 * backing store for validity. 3259 */ 3260 3261 if (vmio) { 3262 bp->b_flags |= B_VMIO; 3263 KASSERT(vp->v_object == bp->b_bufobj->bo_object, 3264 ("ARGH! different b_bufobj->bo_object %p %p %p\n", 3265 bp, vp->v_object, bp->b_bufobj->bo_object)); 3266 } else { 3267 bp->b_flags &= ~B_VMIO; 3268 KASSERT(bp->b_bufobj->bo_object == NULL, 3269 ("ARGH! has b_bufobj->bo_object %p %p\n", 3270 bp, bp->b_bufobj->bo_object)); 3271 BUF_CHECK_MAPPED(bp); 3272 } 3273 3274 allocbuf(bp, size); 3275 bp->b_flags &= ~B_DONE; 3276 } 3277 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp); 3278 BUF_ASSERT_HELD(bp); 3279 end: 3280 KASSERT(bp->b_bufobj == bo, 3281 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3282 return (bp); 3283 } 3284 3285 /* 3286 * Get an empty, disassociated buffer of given size. The buffer is initially 3287 * set to B_INVAL. 3288 */ 3289 struct buf * 3290 geteblk(int size, int flags) 3291 { 3292 struct buf *bp; 3293 int maxsize; 3294 3295 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3296 while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) { 3297 if ((flags & GB_NOWAIT_BD) && 3298 (curthread->td_pflags & TDP_BUFNEED) != 0) 3299 return (NULL); 3300 } 3301 allocbuf(bp, size); 3302 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3303 BUF_ASSERT_HELD(bp); 3304 return (bp); 3305 } 3306 3307 3308 /* 3309 * This code constitutes the buffer memory from either anonymous system 3310 * memory (in the case of non-VMIO operations) or from an associated 3311 * VM object (in the case of VMIO operations). This code is able to 3312 * resize a buffer up or down. 3313 * 3314 * Note that this code is tricky, and has many complications to resolve 3315 * deadlock or inconsistant data situations. Tread lightly!!! 3316 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3317 * the caller. Calling this code willy nilly can result in the loss of data. 3318 * 3319 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3320 * B_CACHE for the non-VMIO case. 3321 */ 3322 3323 int 3324 allocbuf(struct buf *bp, int size) 3325 { 3326 int newbsize, mbsize; 3327 int i; 3328 3329 BUF_ASSERT_HELD(bp); 3330 3331 if (bp->b_kvasize < size) 3332 panic("allocbuf: buffer too small"); 3333 3334 if ((bp->b_flags & B_VMIO) == 0) { 3335 caddr_t origbuf; 3336 int origbufsize; 3337 /* 3338 * Just get anonymous memory from the kernel. Don't 3339 * mess with B_CACHE. 3340 */ 3341 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3342 if (bp->b_flags & B_MALLOC) 3343 newbsize = mbsize; 3344 else 3345 newbsize = round_page(size); 3346 3347 if (newbsize < bp->b_bufsize) { 3348 /* 3349 * malloced buffers are not shrunk 3350 */ 3351 if (bp->b_flags & B_MALLOC) { 3352 if (newbsize) { 3353 bp->b_bcount = size; 3354 } else { 3355 free(bp->b_data, M_BIOBUF); 3356 if (bp->b_bufsize) { 3357 atomic_subtract_long( 3358 &bufmallocspace, 3359 bp->b_bufsize); 3360 bufspacewakeup(); 3361 bp->b_bufsize = 0; 3362 } 3363 bp->b_saveaddr = bp->b_kvabase; 3364 bp->b_data = bp->b_saveaddr; 3365 bp->b_bcount = 0; 3366 bp->b_flags &= ~B_MALLOC; 3367 } 3368 return 1; 3369 } 3370 vm_hold_free_pages(bp, newbsize); 3371 } else if (newbsize > bp->b_bufsize) { 3372 /* 3373 * We only use malloced memory on the first allocation. 3374 * and revert to page-allocated memory when the buffer 3375 * grows. 3376 */ 3377 /* 3378 * There is a potential smp race here that could lead 3379 * to bufmallocspace slightly passing the max. It 3380 * is probably extremely rare and not worth worrying 3381 * over. 3382 */ 3383 if ( (bufmallocspace < maxbufmallocspace) && 3384 (bp->b_bufsize == 0) && 3385 (mbsize <= PAGE_SIZE/2)) { 3386 3387 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 3388 bp->b_bufsize = mbsize; 3389 bp->b_bcount = size; 3390 bp->b_flags |= B_MALLOC; 3391 atomic_add_long(&bufmallocspace, mbsize); 3392 return 1; 3393 } 3394 origbuf = NULL; 3395 origbufsize = 0; 3396 /* 3397 * If the buffer is growing on its other-than-first allocation, 3398 * then we revert to the page-allocation scheme. 3399 */ 3400 if (bp->b_flags & B_MALLOC) { 3401 origbuf = bp->b_data; 3402 origbufsize = bp->b_bufsize; 3403 bp->b_data = bp->b_kvabase; 3404 if (bp->b_bufsize) { 3405 atomic_subtract_long(&bufmallocspace, 3406 bp->b_bufsize); 3407 bufspacewakeup(); 3408 bp->b_bufsize = 0; 3409 } 3410 bp->b_flags &= ~B_MALLOC; 3411 newbsize = round_page(newbsize); 3412 } 3413 vm_hold_load_pages( 3414 bp, 3415 (vm_offset_t) bp->b_data + bp->b_bufsize, 3416 (vm_offset_t) bp->b_data + newbsize); 3417 if (origbuf) { 3418 bcopy(origbuf, bp->b_data, origbufsize); 3419 free(origbuf, M_BIOBUF); 3420 } 3421 } 3422 } else { 3423 int desiredpages; 3424 3425 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3426 desiredpages = (size == 0) ? 0 : 3427 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 3428 3429 if (bp->b_flags & B_MALLOC) 3430 panic("allocbuf: VMIO buffer can't be malloced"); 3431 /* 3432 * Set B_CACHE initially if buffer is 0 length or will become 3433 * 0-length. 3434 */ 3435 if (size == 0 || bp->b_bufsize == 0) 3436 bp->b_flags |= B_CACHE; 3437 3438 if (newbsize < bp->b_bufsize) { 3439 /* 3440 * DEV_BSIZE aligned new buffer size is less then the 3441 * DEV_BSIZE aligned existing buffer size. Figure out 3442 * if we have to remove any pages. 3443 */ 3444 if (desiredpages < bp->b_npages) { 3445 vm_page_t m; 3446 3447 if ((bp->b_flags & B_UNMAPPED) == 0) { 3448 BUF_CHECK_MAPPED(bp); 3449 pmap_qremove((vm_offset_t)trunc_page( 3450 (vm_offset_t)bp->b_data) + 3451 (desiredpages << PAGE_SHIFT), 3452 (bp->b_npages - desiredpages)); 3453 } else 3454 BUF_CHECK_UNMAPPED(bp); 3455 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 3456 for (i = desiredpages; i < bp->b_npages; i++) { 3457 /* 3458 * the page is not freed here -- it 3459 * is the responsibility of 3460 * vnode_pager_setsize 3461 */ 3462 m = bp->b_pages[i]; 3463 KASSERT(m != bogus_page, 3464 ("allocbuf: bogus page found")); 3465 while (vm_page_sleep_if_busy(m, 3466 "biodep")) 3467 continue; 3468 3469 bp->b_pages[i] = NULL; 3470 vm_page_lock(m); 3471 vm_page_unwire(m, 0); 3472 vm_page_unlock(m); 3473 } 3474 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 3475 bp->b_npages = desiredpages; 3476 } 3477 } else if (size > bp->b_bcount) { 3478 /* 3479 * We are growing the buffer, possibly in a 3480 * byte-granular fashion. 3481 */ 3482 vm_object_t obj; 3483 vm_offset_t toff; 3484 vm_offset_t tinc; 3485 3486 /* 3487 * Step 1, bring in the VM pages from the object, 3488 * allocating them if necessary. We must clear 3489 * B_CACHE if these pages are not valid for the 3490 * range covered by the buffer. 3491 */ 3492 3493 obj = bp->b_bufobj->bo_object; 3494 3495 VM_OBJECT_WLOCK(obj); 3496 while (bp->b_npages < desiredpages) { 3497 vm_page_t m; 3498 3499 /* 3500 * We must allocate system pages since blocking 3501 * here could interfere with paging I/O, no 3502 * matter which process we are. 3503 * 3504 * Only exclusive busy can be tested here. 3505 * Blocking on shared busy might lead to 3506 * deadlocks once allocbuf() is called after 3507 * pages are vfs_busy_pages(). 3508 */ 3509 m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) + 3510 bp->b_npages, VM_ALLOC_NOBUSY | 3511 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | 3512 VM_ALLOC_IGN_SBUSY | 3513 VM_ALLOC_COUNT(desiredpages - bp->b_npages)); 3514 if (m->valid == 0) 3515 bp->b_flags &= ~B_CACHE; 3516 bp->b_pages[bp->b_npages] = m; 3517 ++bp->b_npages; 3518 } 3519 3520 /* 3521 * Step 2. We've loaded the pages into the buffer, 3522 * we have to figure out if we can still have B_CACHE 3523 * set. Note that B_CACHE is set according to the 3524 * byte-granular range ( bcount and size ), new the 3525 * aligned range ( newbsize ). 3526 * 3527 * The VM test is against m->valid, which is DEV_BSIZE 3528 * aligned. Needless to say, the validity of the data 3529 * needs to also be DEV_BSIZE aligned. Note that this 3530 * fails with NFS if the server or some other client 3531 * extends the file's EOF. If our buffer is resized, 3532 * B_CACHE may remain set! XXX 3533 */ 3534 3535 toff = bp->b_bcount; 3536 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 3537 3538 while ((bp->b_flags & B_CACHE) && toff < size) { 3539 vm_pindex_t pi; 3540 3541 if (tinc > (size - toff)) 3542 tinc = size - toff; 3543 3544 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 3545 PAGE_SHIFT; 3546 3547 vfs_buf_test_cache( 3548 bp, 3549 bp->b_offset, 3550 toff, 3551 tinc, 3552 bp->b_pages[pi] 3553 ); 3554 toff += tinc; 3555 tinc = PAGE_SIZE; 3556 } 3557 VM_OBJECT_WUNLOCK(obj); 3558 3559 /* 3560 * Step 3, fixup the KVM pmap. 3561 */ 3562 if ((bp->b_flags & B_UNMAPPED) == 0) 3563 bpmap_qenter(bp); 3564 else 3565 BUF_CHECK_UNMAPPED(bp); 3566 } 3567 } 3568 if (newbsize < bp->b_bufsize) 3569 bufspacewakeup(); 3570 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3571 bp->b_bcount = size; /* requested buffer size */ 3572 return 1; 3573 } 3574 3575 extern int inflight_transient_maps; 3576 3577 void 3578 biodone(struct bio *bp) 3579 { 3580 struct mtx *mtxp; 3581 void (*done)(struct bio *); 3582 vm_offset_t start, end; 3583 3584 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) { 3585 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING; 3586 bp->bio_flags |= BIO_UNMAPPED; 3587 start = trunc_page((vm_offset_t)bp->bio_data); 3588 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length); 3589 pmap_qremove(start, OFF_TO_IDX(end - start)); 3590 vmem_free(transient_arena, start, end - start); 3591 atomic_add_int(&inflight_transient_maps, -1); 3592 } 3593 done = bp->bio_done; 3594 if (done == NULL) { 3595 mtxp = mtx_pool_find(mtxpool_sleep, bp); 3596 mtx_lock(mtxp); 3597 bp->bio_flags |= BIO_DONE; 3598 wakeup(bp); 3599 mtx_unlock(mtxp); 3600 } else { 3601 bp->bio_flags |= BIO_DONE; 3602 done(bp); 3603 } 3604 } 3605 3606 /* 3607 * Wait for a BIO to finish. 3608 */ 3609 int 3610 biowait(struct bio *bp, const char *wchan) 3611 { 3612 struct mtx *mtxp; 3613 3614 mtxp = mtx_pool_find(mtxpool_sleep, bp); 3615 mtx_lock(mtxp); 3616 while ((bp->bio_flags & BIO_DONE) == 0) 3617 msleep(bp, mtxp, PRIBIO, wchan, 0); 3618 mtx_unlock(mtxp); 3619 if (bp->bio_error != 0) 3620 return (bp->bio_error); 3621 if (!(bp->bio_flags & BIO_ERROR)) 3622 return (0); 3623 return (EIO); 3624 } 3625 3626 void 3627 biofinish(struct bio *bp, struct devstat *stat, int error) 3628 { 3629 3630 if (error) { 3631 bp->bio_error = error; 3632 bp->bio_flags |= BIO_ERROR; 3633 } 3634 if (stat != NULL) 3635 devstat_end_transaction_bio(stat, bp); 3636 biodone(bp); 3637 } 3638 3639 /* 3640 * bufwait: 3641 * 3642 * Wait for buffer I/O completion, returning error status. The buffer 3643 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 3644 * error and cleared. 3645 */ 3646 int 3647 bufwait(struct buf *bp) 3648 { 3649 if (bp->b_iocmd == BIO_READ) 3650 bwait(bp, PRIBIO, "biord"); 3651 else 3652 bwait(bp, PRIBIO, "biowr"); 3653 if (bp->b_flags & B_EINTR) { 3654 bp->b_flags &= ~B_EINTR; 3655 return (EINTR); 3656 } 3657 if (bp->b_ioflags & BIO_ERROR) { 3658 return (bp->b_error ? bp->b_error : EIO); 3659 } else { 3660 return (0); 3661 } 3662 } 3663 3664 /* 3665 * Call back function from struct bio back up to struct buf. 3666 */ 3667 static void 3668 bufdonebio(struct bio *bip) 3669 { 3670 struct buf *bp; 3671 3672 bp = bip->bio_caller2; 3673 bp->b_resid = bip->bio_resid; 3674 bp->b_ioflags = bip->bio_flags; 3675 bp->b_error = bip->bio_error; 3676 if (bp->b_error) 3677 bp->b_ioflags |= BIO_ERROR; 3678 bufdone(bp); 3679 g_destroy_bio(bip); 3680 } 3681 3682 void 3683 dev_strategy(struct cdev *dev, struct buf *bp) 3684 { 3685 struct cdevsw *csw; 3686 int ref; 3687 3688 KASSERT(dev->si_refcount > 0, 3689 ("dev_strategy on un-referenced struct cdev *(%s) %p", 3690 devtoname(dev), dev)); 3691 3692 csw = dev_refthread(dev, &ref); 3693 dev_strategy_csw(dev, csw, bp); 3694 dev_relthread(dev, ref); 3695 } 3696 3697 void 3698 dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp) 3699 { 3700 struct bio *bip; 3701 3702 KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE, 3703 ("b_iocmd botch")); 3704 KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) || 3705 dev->si_threadcount > 0, 3706 ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev), 3707 dev)); 3708 if (csw == NULL) { 3709 bp->b_error = ENXIO; 3710 bp->b_ioflags = BIO_ERROR; 3711 bufdone(bp); 3712 return; 3713 } 3714 for (;;) { 3715 bip = g_new_bio(); 3716 if (bip != NULL) 3717 break; 3718 /* Try again later */ 3719 tsleep(&bp, PRIBIO, "dev_strat", hz/10); 3720 } 3721 bip->bio_cmd = bp->b_iocmd; 3722 bip->bio_offset = bp->b_iooffset; 3723 bip->bio_length = bp->b_bcount; 3724 bip->bio_bcount = bp->b_bcount; /* XXX: remove */ 3725 bdata2bio(bp, bip); 3726 bip->bio_done = bufdonebio; 3727 bip->bio_caller2 = bp; 3728 bip->bio_dev = dev; 3729 (*csw->d_strategy)(bip); 3730 } 3731 3732 /* 3733 * bufdone: 3734 * 3735 * Finish I/O on a buffer, optionally calling a completion function. 3736 * This is usually called from an interrupt so process blocking is 3737 * not allowed. 3738 * 3739 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3740 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3741 * assuming B_INVAL is clear. 3742 * 3743 * For the VMIO case, we set B_CACHE if the op was a read and no 3744 * read error occured, or if the op was a write. B_CACHE is never 3745 * set if the buffer is invalid or otherwise uncacheable. 3746 * 3747 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3748 * initiator to leave B_INVAL set to brelse the buffer out of existance 3749 * in the biodone routine. 3750 */ 3751 void 3752 bufdone(struct buf *bp) 3753 { 3754 struct bufobj *dropobj; 3755 void (*biodone)(struct buf *); 3756 3757 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 3758 dropobj = NULL; 3759 3760 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 3761 BUF_ASSERT_HELD(bp); 3762 3763 runningbufwakeup(bp); 3764 if (bp->b_iocmd == BIO_WRITE) 3765 dropobj = bp->b_bufobj; 3766 /* call optional completion function if requested */ 3767 if (bp->b_iodone != NULL) { 3768 biodone = bp->b_iodone; 3769 bp->b_iodone = NULL; 3770 (*biodone) (bp); 3771 if (dropobj) 3772 bufobj_wdrop(dropobj); 3773 return; 3774 } 3775 3776 bufdone_finish(bp); 3777 3778 if (dropobj) 3779 bufobj_wdrop(dropobj); 3780 } 3781 3782 void 3783 bufdone_finish(struct buf *bp) 3784 { 3785 BUF_ASSERT_HELD(bp); 3786 3787 if (!LIST_EMPTY(&bp->b_dep)) 3788 buf_complete(bp); 3789 3790 if (bp->b_flags & B_VMIO) { 3791 vm_ooffset_t foff; 3792 vm_page_t m; 3793 vm_object_t obj; 3794 struct vnode *vp; 3795 int bogus, i, iosize; 3796 3797 obj = bp->b_bufobj->bo_object; 3798 KASSERT(obj->paging_in_progress >= bp->b_npages, 3799 ("biodone_finish: paging in progress(%d) < b_npages(%d)", 3800 obj->paging_in_progress, bp->b_npages)); 3801 3802 vp = bp->b_vp; 3803 KASSERT(vp->v_holdcnt > 0, 3804 ("biodone_finish: vnode %p has zero hold count", vp)); 3805 KASSERT(vp->v_object != NULL, 3806 ("biodone_finish: vnode %p has no vm_object", vp)); 3807 3808 foff = bp->b_offset; 3809 KASSERT(bp->b_offset != NOOFFSET, 3810 ("biodone_finish: bp %p has no buffer offset", bp)); 3811 3812 /* 3813 * Set B_CACHE if the op was a normal read and no error 3814 * occured. B_CACHE is set for writes in the b*write() 3815 * routines. 3816 */ 3817 iosize = bp->b_bcount - bp->b_resid; 3818 if (bp->b_iocmd == BIO_READ && 3819 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 3820 !(bp->b_ioflags & BIO_ERROR)) { 3821 bp->b_flags |= B_CACHE; 3822 } 3823 bogus = 0; 3824 VM_OBJECT_WLOCK(obj); 3825 for (i = 0; i < bp->b_npages; i++) { 3826 int bogusflag = 0; 3827 int resid; 3828 3829 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3830 if (resid > iosize) 3831 resid = iosize; 3832 3833 /* 3834 * cleanup bogus pages, restoring the originals 3835 */ 3836 m = bp->b_pages[i]; 3837 if (m == bogus_page) { 3838 bogus = bogusflag = 1; 3839 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3840 if (m == NULL) 3841 panic("biodone: page disappeared!"); 3842 bp->b_pages[i] = m; 3843 } 3844 KASSERT(OFF_TO_IDX(foff) == m->pindex, 3845 ("biodone_finish: foff(%jd)/pindex(%ju) mismatch", 3846 (intmax_t)foff, (uintmax_t)m->pindex)); 3847 3848 /* 3849 * In the write case, the valid and clean bits are 3850 * already changed correctly ( see bdwrite() ), so we 3851 * only need to do this here in the read case. 3852 */ 3853 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 3854 KASSERT((m->dirty & vm_page_bits(foff & 3855 PAGE_MASK, resid)) == 0, ("bufdone_finish:" 3856 " page %p has unexpected dirty bits", m)); 3857 vfs_page_set_valid(bp, foff, m); 3858 } 3859 3860 vm_page_sunbusy(m); 3861 vm_object_pip_subtract(obj, 1); 3862 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3863 iosize -= resid; 3864 } 3865 vm_object_pip_wakeupn(obj, 0); 3866 VM_OBJECT_WUNLOCK(obj); 3867 if (bogus && (bp->b_flags & B_UNMAPPED) == 0) { 3868 BUF_CHECK_MAPPED(bp); 3869 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3870 bp->b_pages, bp->b_npages); 3871 } 3872 } 3873 3874 /* 3875 * For asynchronous completions, release the buffer now. The brelse 3876 * will do a wakeup there if necessary - so no need to do a wakeup 3877 * here in the async case. The sync case always needs to do a wakeup. 3878 */ 3879 3880 if (bp->b_flags & B_ASYNC) { 3881 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 3882 brelse(bp); 3883 else 3884 bqrelse(bp); 3885 } else 3886 bdone(bp); 3887 } 3888 3889 /* 3890 * This routine is called in lieu of iodone in the case of 3891 * incomplete I/O. This keeps the busy status for pages 3892 * consistant. 3893 */ 3894 void 3895 vfs_unbusy_pages(struct buf *bp) 3896 { 3897 int i; 3898 vm_object_t obj; 3899 vm_page_t m; 3900 3901 runningbufwakeup(bp); 3902 if (!(bp->b_flags & B_VMIO)) 3903 return; 3904 3905 obj = bp->b_bufobj->bo_object; 3906 VM_OBJECT_WLOCK(obj); 3907 for (i = 0; i < bp->b_npages; i++) { 3908 m = bp->b_pages[i]; 3909 if (m == bogus_page) { 3910 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3911 if (!m) 3912 panic("vfs_unbusy_pages: page missing\n"); 3913 bp->b_pages[i] = m; 3914 if ((bp->b_flags & B_UNMAPPED) == 0) { 3915 BUF_CHECK_MAPPED(bp); 3916 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3917 bp->b_pages, bp->b_npages); 3918 } else 3919 BUF_CHECK_UNMAPPED(bp); 3920 } 3921 vm_object_pip_subtract(obj, 1); 3922 vm_page_sunbusy(m); 3923 } 3924 vm_object_pip_wakeupn(obj, 0); 3925 VM_OBJECT_WUNLOCK(obj); 3926 } 3927 3928 /* 3929 * vfs_page_set_valid: 3930 * 3931 * Set the valid bits in a page based on the supplied offset. The 3932 * range is restricted to the buffer's size. 3933 * 3934 * This routine is typically called after a read completes. 3935 */ 3936 static void 3937 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m) 3938 { 3939 vm_ooffset_t eoff; 3940 3941 /* 3942 * Compute the end offset, eoff, such that [off, eoff) does not span a 3943 * page boundary and eoff is not greater than the end of the buffer. 3944 * The end of the buffer, in this case, is our file EOF, not the 3945 * allocation size of the buffer. 3946 */ 3947 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK; 3948 if (eoff > bp->b_offset + bp->b_bcount) 3949 eoff = bp->b_offset + bp->b_bcount; 3950 3951 /* 3952 * Set valid range. This is typically the entire buffer and thus the 3953 * entire page. 3954 */ 3955 if (eoff > off) 3956 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off); 3957 } 3958 3959 /* 3960 * vfs_page_set_validclean: 3961 * 3962 * Set the valid bits and clear the dirty bits in a page based on the 3963 * supplied offset. The range is restricted to the buffer's size. 3964 */ 3965 static void 3966 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m) 3967 { 3968 vm_ooffset_t soff, eoff; 3969 3970 /* 3971 * Start and end offsets in buffer. eoff - soff may not cross a 3972 * page boundry or cross the end of the buffer. The end of the 3973 * buffer, in this case, is our file EOF, not the allocation size 3974 * of the buffer. 3975 */ 3976 soff = off; 3977 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3978 if (eoff > bp->b_offset + bp->b_bcount) 3979 eoff = bp->b_offset + bp->b_bcount; 3980 3981 /* 3982 * Set valid range. This is typically the entire buffer and thus the 3983 * entire page. 3984 */ 3985 if (eoff > soff) { 3986 vm_page_set_validclean( 3987 m, 3988 (vm_offset_t) (soff & PAGE_MASK), 3989 (vm_offset_t) (eoff - soff) 3990 ); 3991 } 3992 } 3993 3994 /* 3995 * Ensure that all buffer pages are not exclusive busied. If any page is 3996 * exclusive busy, drain it. 3997 */ 3998 void 3999 vfs_drain_busy_pages(struct buf *bp) 4000 { 4001 vm_page_t m; 4002 int i, last_busied; 4003 4004 VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object); 4005 last_busied = 0; 4006 for (i = 0; i < bp->b_npages; i++) { 4007 m = bp->b_pages[i]; 4008 if (vm_page_xbusied(m)) { 4009 for (; last_busied < i; last_busied++) 4010 vm_page_sbusy(bp->b_pages[last_busied]); 4011 while (vm_page_xbusied(m)) { 4012 vm_page_lock(m); 4013 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4014 vm_page_busy_sleep(m, "vbpage"); 4015 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4016 } 4017 } 4018 } 4019 for (i = 0; i < last_busied; i++) 4020 vm_page_sunbusy(bp->b_pages[i]); 4021 } 4022 4023 /* 4024 * This routine is called before a device strategy routine. 4025 * It is used to tell the VM system that paging I/O is in 4026 * progress, and treat the pages associated with the buffer 4027 * almost as being exclusive busy. Also the object paging_in_progress 4028 * flag is handled to make sure that the object doesn't become 4029 * inconsistant. 4030 * 4031 * Since I/O has not been initiated yet, certain buffer flags 4032 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 4033 * and should be ignored. 4034 */ 4035 void 4036 vfs_busy_pages(struct buf *bp, int clear_modify) 4037 { 4038 int i, bogus; 4039 vm_object_t obj; 4040 vm_ooffset_t foff; 4041 vm_page_t m; 4042 4043 if (!(bp->b_flags & B_VMIO)) 4044 return; 4045 4046 obj = bp->b_bufobj->bo_object; 4047 foff = bp->b_offset; 4048 KASSERT(bp->b_offset != NOOFFSET, 4049 ("vfs_busy_pages: no buffer offset")); 4050 VM_OBJECT_WLOCK(obj); 4051 vfs_drain_busy_pages(bp); 4052 if (bp->b_bufsize != 0) 4053 vfs_setdirty_locked_object(bp); 4054 bogus = 0; 4055 for (i = 0; i < bp->b_npages; i++) { 4056 m = bp->b_pages[i]; 4057 4058 if ((bp->b_flags & B_CLUSTER) == 0) { 4059 vm_object_pip_add(obj, 1); 4060 vm_page_sbusy(m); 4061 } 4062 /* 4063 * When readying a buffer for a read ( i.e 4064 * clear_modify == 0 ), it is important to do 4065 * bogus_page replacement for valid pages in 4066 * partially instantiated buffers. Partially 4067 * instantiated buffers can, in turn, occur when 4068 * reconstituting a buffer from its VM backing store 4069 * base. We only have to do this if B_CACHE is 4070 * clear ( which causes the I/O to occur in the 4071 * first place ). The replacement prevents the read 4072 * I/O from overwriting potentially dirty VM-backed 4073 * pages. XXX bogus page replacement is, uh, bogus. 4074 * It may not work properly with small-block devices. 4075 * We need to find a better way. 4076 */ 4077 if (clear_modify) { 4078 pmap_remove_write(m); 4079 vfs_page_set_validclean(bp, foff, m); 4080 } else if (m->valid == VM_PAGE_BITS_ALL && 4081 (bp->b_flags & B_CACHE) == 0) { 4082 bp->b_pages[i] = bogus_page; 4083 bogus++; 4084 } 4085 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4086 } 4087 VM_OBJECT_WUNLOCK(obj); 4088 if (bogus && (bp->b_flags & B_UNMAPPED) == 0) { 4089 BUF_CHECK_MAPPED(bp); 4090 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4091 bp->b_pages, bp->b_npages); 4092 } 4093 } 4094 4095 /* 4096 * vfs_bio_set_valid: 4097 * 4098 * Set the range within the buffer to valid. The range is 4099 * relative to the beginning of the buffer, b_offset. Note that 4100 * b_offset itself may be offset from the beginning of the first 4101 * page. 4102 */ 4103 void 4104 vfs_bio_set_valid(struct buf *bp, int base, int size) 4105 { 4106 int i, n; 4107 vm_page_t m; 4108 4109 if (!(bp->b_flags & B_VMIO)) 4110 return; 4111 4112 /* 4113 * Fixup base to be relative to beginning of first page. 4114 * Set initial n to be the maximum number of bytes in the 4115 * first page that can be validated. 4116 */ 4117 base += (bp->b_offset & PAGE_MASK); 4118 n = PAGE_SIZE - (base & PAGE_MASK); 4119 4120 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4121 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4122 m = bp->b_pages[i]; 4123 if (n > size) 4124 n = size; 4125 vm_page_set_valid_range(m, base & PAGE_MASK, n); 4126 base += n; 4127 size -= n; 4128 n = PAGE_SIZE; 4129 } 4130 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4131 } 4132 4133 /* 4134 * vfs_bio_clrbuf: 4135 * 4136 * If the specified buffer is a non-VMIO buffer, clear the entire 4137 * buffer. If the specified buffer is a VMIO buffer, clear and 4138 * validate only the previously invalid portions of the buffer. 4139 * This routine essentially fakes an I/O, so we need to clear 4140 * BIO_ERROR and B_INVAL. 4141 * 4142 * Note that while we only theoretically need to clear through b_bcount, 4143 * we go ahead and clear through b_bufsize. 4144 */ 4145 void 4146 vfs_bio_clrbuf(struct buf *bp) 4147 { 4148 int i, j, mask, sa, ea, slide; 4149 4150 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) { 4151 clrbuf(bp); 4152 return; 4153 } 4154 bp->b_flags &= ~B_INVAL; 4155 bp->b_ioflags &= ~BIO_ERROR; 4156 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4157 if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4158 (bp->b_offset & PAGE_MASK) == 0) { 4159 if (bp->b_pages[0] == bogus_page) 4160 goto unlock; 4161 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4162 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object); 4163 if ((bp->b_pages[0]->valid & mask) == mask) 4164 goto unlock; 4165 if ((bp->b_pages[0]->valid & mask) == 0) { 4166 pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize); 4167 bp->b_pages[0]->valid |= mask; 4168 goto unlock; 4169 } 4170 } 4171 sa = bp->b_offset & PAGE_MASK; 4172 slide = 0; 4173 for (i = 0; i < bp->b_npages; i++, sa = 0) { 4174 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize); 4175 ea = slide & PAGE_MASK; 4176 if (ea == 0) 4177 ea = PAGE_SIZE; 4178 if (bp->b_pages[i] == bogus_page) 4179 continue; 4180 j = sa / DEV_BSIZE; 4181 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4182 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object); 4183 if ((bp->b_pages[i]->valid & mask) == mask) 4184 continue; 4185 if ((bp->b_pages[i]->valid & mask) == 0) 4186 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa); 4187 else { 4188 for (; sa < ea; sa += DEV_BSIZE, j++) { 4189 if ((bp->b_pages[i]->valid & (1 << j)) == 0) { 4190 pmap_zero_page_area(bp->b_pages[i], 4191 sa, DEV_BSIZE); 4192 } 4193 } 4194 } 4195 bp->b_pages[i]->valid |= mask; 4196 } 4197 unlock: 4198 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4199 bp->b_resid = 0; 4200 } 4201 4202 void 4203 vfs_bio_bzero_buf(struct buf *bp, int base, int size) 4204 { 4205 vm_page_t m; 4206 int i, n; 4207 4208 if ((bp->b_flags & B_UNMAPPED) == 0) { 4209 BUF_CHECK_MAPPED(bp); 4210 bzero(bp->b_data + base, size); 4211 } else { 4212 BUF_CHECK_UNMAPPED(bp); 4213 n = PAGE_SIZE - (base & PAGE_MASK); 4214 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4215 m = bp->b_pages[i]; 4216 if (n > size) 4217 n = size; 4218 pmap_zero_page_area(m, base & PAGE_MASK, n); 4219 base += n; 4220 size -= n; 4221 n = PAGE_SIZE; 4222 } 4223 } 4224 } 4225 4226 /* 4227 * vm_hold_load_pages and vm_hold_free_pages get pages into 4228 * a buffers address space. The pages are anonymous and are 4229 * not associated with a file object. 4230 */ 4231 static void 4232 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4233 { 4234 vm_offset_t pg; 4235 vm_page_t p; 4236 int index; 4237 4238 BUF_CHECK_MAPPED(bp); 4239 4240 to = round_page(to); 4241 from = round_page(from); 4242 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4243 4244 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4245 tryagain: 4246 /* 4247 * note: must allocate system pages since blocking here 4248 * could interfere with paging I/O, no matter which 4249 * process we are. 4250 */ 4251 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ | 4252 VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT)); 4253 if (p == NULL) { 4254 VM_WAIT; 4255 goto tryagain; 4256 } 4257 pmap_qenter(pg, &p, 1); 4258 bp->b_pages[index] = p; 4259 } 4260 bp->b_npages = index; 4261 } 4262 4263 /* Return pages associated with this buf to the vm system */ 4264 static void 4265 vm_hold_free_pages(struct buf *bp, int newbsize) 4266 { 4267 vm_offset_t from; 4268 vm_page_t p; 4269 int index, newnpages; 4270 4271 BUF_CHECK_MAPPED(bp); 4272 4273 from = round_page((vm_offset_t)bp->b_data + newbsize); 4274 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4275 if (bp->b_npages > newnpages) 4276 pmap_qremove(from, bp->b_npages - newnpages); 4277 for (index = newnpages; index < bp->b_npages; index++) { 4278 p = bp->b_pages[index]; 4279 bp->b_pages[index] = NULL; 4280 if (vm_page_sbusied(p)) 4281 printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 4282 (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno); 4283 p->wire_count--; 4284 vm_page_free(p); 4285 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 4286 } 4287 bp->b_npages = newnpages; 4288 } 4289 4290 /* 4291 * Map an IO request into kernel virtual address space. 4292 * 4293 * All requests are (re)mapped into kernel VA space. 4294 * Notice that we use b_bufsize for the size of the buffer 4295 * to be mapped. b_bcount might be modified by the driver. 4296 * 4297 * Note that even if the caller determines that the address space should 4298 * be valid, a race or a smaller-file mapped into a larger space may 4299 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 4300 * check the return value. 4301 */ 4302 int 4303 vmapbuf(struct buf *bp, int mapbuf) 4304 { 4305 caddr_t kva; 4306 vm_prot_t prot; 4307 int pidx; 4308 4309 if (bp->b_bufsize < 0) 4310 return (-1); 4311 prot = VM_PROT_READ; 4312 if (bp->b_iocmd == BIO_READ) 4313 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 4314 if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 4315 (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages, 4316 btoc(MAXPHYS))) < 0) 4317 return (-1); 4318 bp->b_npages = pidx; 4319 if (mapbuf || !unmapped_buf_allowed) { 4320 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 4321 kva = bp->b_saveaddr; 4322 bp->b_saveaddr = bp->b_data; 4323 bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK); 4324 bp->b_flags &= ~B_UNMAPPED; 4325 } else { 4326 bp->b_flags |= B_UNMAPPED; 4327 bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK; 4328 bp->b_saveaddr = bp->b_data; 4329 bp->b_data = unmapped_buf; 4330 } 4331 return(0); 4332 } 4333 4334 /* 4335 * Free the io map PTEs associated with this IO operation. 4336 * We also invalidate the TLB entries and restore the original b_addr. 4337 */ 4338 void 4339 vunmapbuf(struct buf *bp) 4340 { 4341 int npages; 4342 4343 npages = bp->b_npages; 4344 if (bp->b_flags & B_UNMAPPED) 4345 bp->b_flags &= ~B_UNMAPPED; 4346 else 4347 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4348 vm_page_unhold_pages(bp->b_pages, npages); 4349 4350 bp->b_data = bp->b_saveaddr; 4351 } 4352 4353 void 4354 bdone(struct buf *bp) 4355 { 4356 struct mtx *mtxp; 4357 4358 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4359 mtx_lock(mtxp); 4360 bp->b_flags |= B_DONE; 4361 wakeup(bp); 4362 mtx_unlock(mtxp); 4363 } 4364 4365 void 4366 bwait(struct buf *bp, u_char pri, const char *wchan) 4367 { 4368 struct mtx *mtxp; 4369 4370 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4371 mtx_lock(mtxp); 4372 while ((bp->b_flags & B_DONE) == 0) 4373 msleep(bp, mtxp, pri, wchan, 0); 4374 mtx_unlock(mtxp); 4375 } 4376 4377 int 4378 bufsync(struct bufobj *bo, int waitfor) 4379 { 4380 4381 return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread)); 4382 } 4383 4384 void 4385 bufstrategy(struct bufobj *bo, struct buf *bp) 4386 { 4387 int i = 0; 4388 struct vnode *vp; 4389 4390 vp = bp->b_vp; 4391 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy")); 4392 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 4393 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp)); 4394 i = VOP_STRATEGY(vp, bp); 4395 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp)); 4396 } 4397 4398 void 4399 bufobj_wrefl(struct bufobj *bo) 4400 { 4401 4402 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 4403 ASSERT_BO_WLOCKED(bo); 4404 bo->bo_numoutput++; 4405 } 4406 4407 void 4408 bufobj_wref(struct bufobj *bo) 4409 { 4410 4411 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 4412 BO_LOCK(bo); 4413 bo->bo_numoutput++; 4414 BO_UNLOCK(bo); 4415 } 4416 4417 void 4418 bufobj_wdrop(struct bufobj *bo) 4419 { 4420 4421 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop")); 4422 BO_LOCK(bo); 4423 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count")); 4424 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) { 4425 bo->bo_flag &= ~BO_WWAIT; 4426 wakeup(&bo->bo_numoutput); 4427 } 4428 BO_UNLOCK(bo); 4429 } 4430 4431 int 4432 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo) 4433 { 4434 int error; 4435 4436 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait")); 4437 ASSERT_BO_WLOCKED(bo); 4438 error = 0; 4439 while (bo->bo_numoutput) { 4440 bo->bo_flag |= BO_WWAIT; 4441 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo), 4442 slpflag | (PRIBIO + 1), "bo_wwait", timeo); 4443 if (error) 4444 break; 4445 } 4446 return (error); 4447 } 4448 4449 void 4450 bpin(struct buf *bp) 4451 { 4452 struct mtx *mtxp; 4453 4454 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4455 mtx_lock(mtxp); 4456 bp->b_pin_count++; 4457 mtx_unlock(mtxp); 4458 } 4459 4460 void 4461 bunpin(struct buf *bp) 4462 { 4463 struct mtx *mtxp; 4464 4465 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4466 mtx_lock(mtxp); 4467 if (--bp->b_pin_count == 0) 4468 wakeup(bp); 4469 mtx_unlock(mtxp); 4470 } 4471 4472 void 4473 bunpin_wait(struct buf *bp) 4474 { 4475 struct mtx *mtxp; 4476 4477 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4478 mtx_lock(mtxp); 4479 while (bp->b_pin_count > 0) 4480 msleep(bp, mtxp, PRIBIO, "bwunpin", 0); 4481 mtx_unlock(mtxp); 4482 } 4483 4484 /* 4485 * Set bio_data or bio_ma for struct bio from the struct buf. 4486 */ 4487 void 4488 bdata2bio(struct buf *bp, struct bio *bip) 4489 { 4490 4491 if ((bp->b_flags & B_UNMAPPED) != 0) { 4492 KASSERT(unmapped_buf_allowed, ("unmapped")); 4493 bip->bio_ma = bp->b_pages; 4494 bip->bio_ma_n = bp->b_npages; 4495 bip->bio_data = unmapped_buf; 4496 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 4497 bip->bio_flags |= BIO_UNMAPPED; 4498 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) / 4499 PAGE_SIZE == bp->b_npages, 4500 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset, 4501 (long long)bip->bio_length, bip->bio_ma_n)); 4502 } else { 4503 bip->bio_data = bp->b_data; 4504 bip->bio_ma = NULL; 4505 } 4506 } 4507 4508 #include "opt_ddb.h" 4509 #ifdef DDB 4510 #include <ddb/ddb.h> 4511 4512 /* DDB command to show buffer data */ 4513 DB_SHOW_COMMAND(buffer, db_show_buffer) 4514 { 4515 /* get args */ 4516 struct buf *bp = (struct buf *)addr; 4517 4518 if (!have_addr) { 4519 db_printf("usage: show buffer <addr>\n"); 4520 return; 4521 } 4522 4523 db_printf("buf at %p\n", bp); 4524 db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n", 4525 (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags, 4526 PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS); 4527 db_printf( 4528 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 4529 "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, " 4530 "b_dep = %p\n", 4531 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4532 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno, 4533 (intmax_t)bp->b_lblkno, bp->b_dep.lh_first); 4534 if (bp->b_npages) { 4535 int i; 4536 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 4537 for (i = 0; i < bp->b_npages; i++) { 4538 vm_page_t m; 4539 m = bp->b_pages[i]; 4540 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4541 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4542 if ((i + 1) < bp->b_npages) 4543 db_printf(","); 4544 } 4545 db_printf("\n"); 4546 } 4547 db_printf(" "); 4548 BUF_LOCKPRINTINFO(bp); 4549 } 4550 4551 DB_SHOW_COMMAND(lockedbufs, lockedbufs) 4552 { 4553 struct buf *bp; 4554 int i; 4555 4556 for (i = 0; i < nbuf; i++) { 4557 bp = &buf[i]; 4558 if (BUF_ISLOCKED(bp)) { 4559 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4560 db_printf("\n"); 4561 } 4562 } 4563 } 4564 4565 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs) 4566 { 4567 struct vnode *vp; 4568 struct buf *bp; 4569 4570 if (!have_addr) { 4571 db_printf("usage: show vnodebufs <addr>\n"); 4572 return; 4573 } 4574 vp = (struct vnode *)addr; 4575 db_printf("Clean buffers:\n"); 4576 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) { 4577 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4578 db_printf("\n"); 4579 } 4580 db_printf("Dirty buffers:\n"); 4581 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 4582 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4583 db_printf("\n"); 4584 } 4585 } 4586 4587 DB_COMMAND(countfreebufs, db_coundfreebufs) 4588 { 4589 struct buf *bp; 4590 int i, used = 0, nfree = 0; 4591 4592 if (have_addr) { 4593 db_printf("usage: countfreebufs\n"); 4594 return; 4595 } 4596 4597 for (i = 0; i < nbuf; i++) { 4598 bp = &buf[i]; 4599 if ((bp->b_flags & B_INFREECNT) != 0) 4600 nfree++; 4601 else 4602 used++; 4603 } 4604 4605 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used, 4606 nfree + used); 4607 db_printf("numfreebuffers is %d\n", numfreebuffers); 4608 } 4609 #endif /* DDB */ 4610