xref: /freebsd/sys/kern/vfs_bio.c (revision 80ff58b89dcacfe07fe20b045890df9db5ca0af0)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * this file contains a new buffer I/O scheme implementing a coherent
30  * VM object and buffer cache scheme.  Pains have been taken to make
31  * sure that the performance degradation associated with schemes such
32  * as this is not realized.
33  *
34  * Author:  John S. Dyson
35  * Significant help during the development and debugging phases
36  * had been provided by David Greenman, also of the FreeBSD core team.
37  *
38  * see man buf(9) for more info.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bio.h>
47 #include <sys/conf.h>
48 #include <sys/buf.h>
49 #include <sys/devicestat.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fail.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/proc.h>
60 #include <sys/resourcevar.h>
61 #include <sys/sysctl.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 #include <geom/geom.h>
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_pageout.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_extern.h>
72 #include <vm/vm_map.h>
73 #include "opt_compat.h"
74 #include "opt_directio.h"
75 #include "opt_swap.h"
76 
77 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78 
79 struct	bio_ops bioops;		/* I/O operation notification */
80 
81 struct	buf_ops buf_ops_bio = {
82 	.bop_name	=	"buf_ops_bio",
83 	.bop_write	=	bufwrite,
84 	.bop_strategy	=	bufstrategy,
85 	.bop_sync	=	bufsync,
86 	.bop_bdflush	=	bufbdflush,
87 };
88 
89 /*
90  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92  */
93 struct buf *buf;		/* buffer header pool */
94 
95 static struct proc *bufdaemonproc;
96 
97 static int inmem(struct vnode *vp, daddr_t blkno);
98 static void vm_hold_free_pages(struct buf *bp, int newbsize);
99 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100 		vm_offset_t to);
101 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
102 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
103 		vm_page_t m);
104 static void vfs_drain_busy_pages(struct buf *bp);
105 static void vfs_clean_pages_dirty_buf(struct buf *bp);
106 static void vfs_setdirty_locked_object(struct buf *bp);
107 static void vfs_vmio_release(struct buf *bp);
108 static int vfs_bio_clcheck(struct vnode *vp, int size,
109 		daddr_t lblkno, daddr_t blkno);
110 static int buf_do_flush(struct vnode *vp);
111 static int flushbufqueues(struct vnode *, int, int);
112 static void buf_daemon(void);
113 static void bremfreel(struct buf *bp);
114 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
115     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
116 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
117 #endif
118 
119 int vmiodirenable = TRUE;
120 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
121     "Use the VM system for directory writes");
122 long runningbufspace;
123 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
124     "Amount of presently outstanding async buffer io");
125 static long bufspace;
126 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
127     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
128 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
129     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
130 #else
131 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
132     "Virtual memory used for buffers");
133 #endif
134 static long maxbufspace;
135 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
136     "Maximum allowed value of bufspace (including buf_daemon)");
137 static long bufmallocspace;
138 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
139     "Amount of malloced memory for buffers");
140 static long maxbufmallocspace;
141 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
142     "Maximum amount of malloced memory for buffers");
143 static long lobufspace;
144 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
145     "Minimum amount of buffers we want to have");
146 long hibufspace;
147 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
148     "Maximum allowed value of bufspace (excluding buf_daemon)");
149 static int bufreusecnt;
150 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
151     "Number of times we have reused a buffer");
152 static int buffreekvacnt;
153 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
154     "Number of times we have freed the KVA space from some buffer");
155 static int bufdefragcnt;
156 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
157     "Number of times we have had to repeat buffer allocation to defragment");
158 static long lorunningspace;
159 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
160     "Minimum preferred space used for in-progress I/O");
161 static long hirunningspace;
162 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
163     "Maximum amount of space to use for in-progress I/O");
164 int dirtybufferflushes;
165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
166     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
167 int bdwriteskip;
168 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
169     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
170 int altbufferflushes;
171 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
172     0, "Number of fsync flushes to limit dirty buffers");
173 static int recursiveflushes;
174 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
175     0, "Number of flushes skipped due to being recursive");
176 static int numdirtybuffers;
177 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
178     "Number of buffers that are dirty (has unwritten changes) at the moment");
179 static int lodirtybuffers;
180 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
181     "How many buffers we want to have free before bufdaemon can sleep");
182 static int hidirtybuffers;
183 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
184     "When the number of dirty buffers is considered severe");
185 int dirtybufthresh;
186 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
187     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
188 static int numfreebuffers;
189 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
190     "Number of free buffers");
191 static int lofreebuffers;
192 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
193    "XXX Unused");
194 static int hifreebuffers;
195 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
196    "XXX Complicatedly unused");
197 static int getnewbufcalls;
198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
199    "Number of calls to getnewbuf");
200 static int getnewbufrestarts;
201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
202     "Number of times getnewbuf has had to restart a buffer aquisition");
203 static int flushbufqtarget = 100;
204 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
205     "Amount of work to do in flushbufqueues when helping bufdaemon");
206 static long notbufdflashes;
207 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
208     "Number of dirty buffer flushes done by the bufdaemon helpers");
209 static long barrierwrites;
210 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
211     "Number of barrier writes");
212 
213 /*
214  * Wakeup point for bufdaemon, as well as indicator of whether it is already
215  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
216  * is idling.
217  */
218 static int bd_request;
219 
220 /*
221  * Request for the buf daemon to write more buffers than is indicated by
222  * lodirtybuf.  This may be necessary to push out excess dependencies or
223  * defragment the address space where a simple count of the number of dirty
224  * buffers is insufficient to characterize the demand for flushing them.
225  */
226 static int bd_speedupreq;
227 
228 /*
229  * This lock synchronizes access to bd_request.
230  */
231 static struct mtx bdlock;
232 
233 /*
234  * bogus page -- for I/O to/from partially complete buffers
235  * this is a temporary solution to the problem, but it is not
236  * really that bad.  it would be better to split the buffer
237  * for input in the case of buffers partially already in memory,
238  * but the code is intricate enough already.
239  */
240 vm_page_t bogus_page;
241 
242 /*
243  * Synchronization (sleep/wakeup) variable for active buffer space requests.
244  * Set when wait starts, cleared prior to wakeup().
245  * Used in runningbufwakeup() and waitrunningbufspace().
246  */
247 static int runningbufreq;
248 
249 /*
250  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
251  * waitrunningbufspace().
252  */
253 static struct mtx rbreqlock;
254 
255 /*
256  * Synchronization (sleep/wakeup) variable for buffer requests.
257  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
258  * by and/or.
259  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
260  * getnewbuf(), and getblk().
261  */
262 static int needsbuffer;
263 
264 /*
265  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
266  */
267 static struct mtx nblock;
268 
269 /*
270  * Definitions for the buffer free lists.
271  */
272 #define BUFFER_QUEUES	5	/* number of free buffer queues */
273 
274 #define QUEUE_NONE	0	/* on no queue */
275 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
276 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
277 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
278 #define QUEUE_EMPTY	4	/* empty buffer headers */
279 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
280 
281 /* Queues for free buffers with various properties */
282 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
283 
284 /* Lock for the bufqueues */
285 static struct mtx bqlock;
286 
287 /*
288  * Single global constant for BUF_WMESG, to avoid getting multiple references.
289  * buf_wmesg is referred from macros.
290  */
291 const char *buf_wmesg = BUF_WMESG;
292 
293 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
294 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
295 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
296 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
297 
298 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
299     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
300 static int
301 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
302 {
303 	long lvalue;
304 	int ivalue;
305 
306 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
307 		return (sysctl_handle_long(oidp, arg1, arg2, req));
308 	lvalue = *(long *)arg1;
309 	if (lvalue > INT_MAX)
310 		/* On overflow, still write out a long to trigger ENOMEM. */
311 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
312 	ivalue = lvalue;
313 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
314 }
315 #endif
316 
317 #ifdef DIRECTIO
318 extern void ffs_rawread_setup(void);
319 #endif /* DIRECTIO */
320 /*
321  *	numdirtywakeup:
322  *
323  *	If someone is blocked due to there being too many dirty buffers,
324  *	and numdirtybuffers is now reasonable, wake them up.
325  */
326 
327 static __inline void
328 numdirtywakeup(int level)
329 {
330 
331 	if (numdirtybuffers <= level) {
332 		mtx_lock(&nblock);
333 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
334 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
335 			wakeup(&needsbuffer);
336 		}
337 		mtx_unlock(&nblock);
338 	}
339 }
340 
341 /*
342  *	bufspacewakeup:
343  *
344  *	Called when buffer space is potentially available for recovery.
345  *	getnewbuf() will block on this flag when it is unable to free
346  *	sufficient buffer space.  Buffer space becomes recoverable when
347  *	bp's get placed back in the queues.
348  */
349 
350 static __inline void
351 bufspacewakeup(void)
352 {
353 
354 	/*
355 	 * If someone is waiting for BUF space, wake them up.  Even
356 	 * though we haven't freed the kva space yet, the waiting
357 	 * process will be able to now.
358 	 */
359 	mtx_lock(&nblock);
360 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
361 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
362 		wakeup(&needsbuffer);
363 	}
364 	mtx_unlock(&nblock);
365 }
366 
367 /*
368  * runningbufwakeup() - in-progress I/O accounting.
369  *
370  */
371 void
372 runningbufwakeup(struct buf *bp)
373 {
374 
375 	if (bp->b_runningbufspace) {
376 		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
377 		bp->b_runningbufspace = 0;
378 		mtx_lock(&rbreqlock);
379 		if (runningbufreq && runningbufspace <= lorunningspace) {
380 			runningbufreq = 0;
381 			wakeup(&runningbufreq);
382 		}
383 		mtx_unlock(&rbreqlock);
384 	}
385 }
386 
387 /*
388  *	bufcountwakeup:
389  *
390  *	Called when a buffer has been added to one of the free queues to
391  *	account for the buffer and to wakeup anyone waiting for free buffers.
392  *	This typically occurs when large amounts of metadata are being handled
393  *	by the buffer cache ( else buffer space runs out first, usually ).
394  */
395 
396 static __inline void
397 bufcountwakeup(struct buf *bp)
398 {
399 	int old;
400 
401 	KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
402 	    ("buf %p already counted as free", bp));
403 	if (bp->b_bufobj != NULL)
404 		mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
405 	bp->b_vflags |= BV_INFREECNT;
406 	old = atomic_fetchadd_int(&numfreebuffers, 1);
407 	KASSERT(old >= 0 && old < nbuf,
408 	    ("numfreebuffers climbed to %d", old + 1));
409 	mtx_lock(&nblock);
410 	if (needsbuffer) {
411 		needsbuffer &= ~VFS_BIO_NEED_ANY;
412 		if (numfreebuffers >= hifreebuffers)
413 			needsbuffer &= ~VFS_BIO_NEED_FREE;
414 		wakeup(&needsbuffer);
415 	}
416 	mtx_unlock(&nblock);
417 }
418 
419 /*
420  *	waitrunningbufspace()
421  *
422  *	runningbufspace is a measure of the amount of I/O currently
423  *	running.  This routine is used in async-write situations to
424  *	prevent creating huge backups of pending writes to a device.
425  *	Only asynchronous writes are governed by this function.
426  *
427  *	Reads will adjust runningbufspace, but will not block based on it.
428  *	The read load has a side effect of reducing the allowed write load.
429  *
430  *	This does NOT turn an async write into a sync write.  It waits
431  *	for earlier writes to complete and generally returns before the
432  *	caller's write has reached the device.
433  */
434 void
435 waitrunningbufspace(void)
436 {
437 
438 	mtx_lock(&rbreqlock);
439 	while (runningbufspace > hirunningspace) {
440 		++runningbufreq;
441 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
442 	}
443 	mtx_unlock(&rbreqlock);
444 }
445 
446 
447 /*
448  *	vfs_buf_test_cache:
449  *
450  *	Called when a buffer is extended.  This function clears the B_CACHE
451  *	bit if the newly extended portion of the buffer does not contain
452  *	valid data.
453  */
454 static __inline
455 void
456 vfs_buf_test_cache(struct buf *bp,
457 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
458 		  vm_page_t m)
459 {
460 
461 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
462 	if (bp->b_flags & B_CACHE) {
463 		int base = (foff + off) & PAGE_MASK;
464 		if (vm_page_is_valid(m, base, size) == 0)
465 			bp->b_flags &= ~B_CACHE;
466 	}
467 }
468 
469 /* Wake up the buffer daemon if necessary */
470 static __inline
471 void
472 bd_wakeup(int dirtybuflevel)
473 {
474 
475 	mtx_lock(&bdlock);
476 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
477 		bd_request = 1;
478 		wakeup(&bd_request);
479 	}
480 	mtx_unlock(&bdlock);
481 }
482 
483 /*
484  * bd_speedup - speedup the buffer cache flushing code
485  */
486 
487 void
488 bd_speedup(void)
489 {
490 	int needwake;
491 
492 	mtx_lock(&bdlock);
493 	needwake = 0;
494 	if (bd_speedupreq == 0 || bd_request == 0)
495 		needwake = 1;
496 	bd_speedupreq = 1;
497 	bd_request = 1;
498 	if (needwake)
499 		wakeup(&bd_request);
500 	mtx_unlock(&bdlock);
501 }
502 
503 /*
504  * Calculating buffer cache scaling values and reserve space for buffer
505  * headers.  This is called during low level kernel initialization and
506  * may be called more then once.  We CANNOT write to the memory area
507  * being reserved at this time.
508  */
509 caddr_t
510 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
511 {
512 	int tuned_nbuf;
513 	long maxbuf;
514 
515 	/*
516 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
517 	 * PAGE_SIZE is >= 1K)
518 	 */
519 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
520 
521 	/*
522 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
523 	 * For the first 64MB of ram nominally allocate sufficient buffers to
524 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
525 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
526 	 * the buffer cache we limit the eventual kva reservation to
527 	 * maxbcache bytes.
528 	 *
529 	 * factor represents the 1/4 x ram conversion.
530 	 */
531 	if (nbuf == 0) {
532 		int factor = 4 * BKVASIZE / 1024;
533 
534 		nbuf = 50;
535 		if (physmem_est > 4096)
536 			nbuf += min((physmem_est - 4096) / factor,
537 			    65536 / factor);
538 		if (physmem_est > 65536)
539 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
540 
541 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
542 			nbuf = maxbcache / BKVASIZE;
543 		tuned_nbuf = 1;
544 	} else
545 		tuned_nbuf = 0;
546 
547 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
548 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
549 	if (nbuf > maxbuf) {
550 		if (!tuned_nbuf)
551 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
552 			    maxbuf);
553 		nbuf = maxbuf;
554 	}
555 
556 	/*
557 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
558 	 * We have no less then 16 and no more then 256.
559 	 */
560 	nswbuf = max(min(nbuf/4, 256), 16);
561 #ifdef NSWBUF_MIN
562 	if (nswbuf < NSWBUF_MIN)
563 		nswbuf = NSWBUF_MIN;
564 #endif
565 #ifdef DIRECTIO
566 	ffs_rawread_setup();
567 #endif
568 
569 	/*
570 	 * Reserve space for the buffer cache buffers
571 	 */
572 	swbuf = (void *)v;
573 	v = (caddr_t)(swbuf + nswbuf);
574 	buf = (void *)v;
575 	v = (caddr_t)(buf + nbuf);
576 
577 	return(v);
578 }
579 
580 /* Initialize the buffer subsystem.  Called before use of any buffers. */
581 void
582 bufinit(void)
583 {
584 	struct buf *bp;
585 	int i;
586 
587 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
588 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
589 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
590 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
591 
592 	/* next, make a null set of free lists */
593 	for (i = 0; i < BUFFER_QUEUES; i++)
594 		TAILQ_INIT(&bufqueues[i]);
595 
596 	/* finally, initialize each buffer header and stick on empty q */
597 	for (i = 0; i < nbuf; i++) {
598 		bp = &buf[i];
599 		bzero(bp, sizeof *bp);
600 		bp->b_flags = B_INVAL;	/* we're just an empty header */
601 		bp->b_rcred = NOCRED;
602 		bp->b_wcred = NOCRED;
603 		bp->b_qindex = QUEUE_EMPTY;
604 		bp->b_vflags = BV_INFREECNT;	/* buf is counted as free */
605 		bp->b_xflags = 0;
606 		LIST_INIT(&bp->b_dep);
607 		BUF_LOCKINIT(bp);
608 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
609 	}
610 
611 	/*
612 	 * maxbufspace is the absolute maximum amount of buffer space we are
613 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
614 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
615 	 * used by most other processes.  The differential is required to
616 	 * ensure that buf_daemon is able to run when other processes might
617 	 * be blocked waiting for buffer space.
618 	 *
619 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
620 	 * this may result in KVM fragmentation which is not handled optimally
621 	 * by the system.
622 	 */
623 	maxbufspace = (long)nbuf * BKVASIZE;
624 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
625 	lobufspace = hibufspace - MAXBSIZE;
626 
627 	/*
628 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
629 	 * arbitrarily and may need further tuning. It corresponds to
630 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
631 	 * which fits with many RAID controllers' tagged queuing limits.
632 	 * The lower 1 MiB limit is the historical upper limit for
633 	 * hirunningspace.
634 	 */
635 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
636 	    16 * 1024 * 1024), 1024 * 1024);
637 	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
638 
639 /*
640  * Limit the amount of malloc memory since it is wired permanently into
641  * the kernel space.  Even though this is accounted for in the buffer
642  * allocation, we don't want the malloced region to grow uncontrolled.
643  * The malloc scheme improves memory utilization significantly on average
644  * (small) directories.
645  */
646 	maxbufmallocspace = hibufspace / 20;
647 
648 /*
649  * Reduce the chance of a deadlock occuring by limiting the number
650  * of delayed-write dirty buffers we allow to stack up.
651  */
652 	hidirtybuffers = nbuf / 4 + 20;
653 	dirtybufthresh = hidirtybuffers * 9 / 10;
654 	numdirtybuffers = 0;
655 /*
656  * To support extreme low-memory systems, make sure hidirtybuffers cannot
657  * eat up all available buffer space.  This occurs when our minimum cannot
658  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
659  * BKVASIZE'd buffers.
660  */
661 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
662 		hidirtybuffers >>= 1;
663 	}
664 	lodirtybuffers = hidirtybuffers / 2;
665 
666 /*
667  * Try to keep the number of free buffers in the specified range,
668  * and give special processes (e.g. like buf_daemon) access to an
669  * emergency reserve.
670  */
671 	lofreebuffers = nbuf / 18 + 5;
672 	hifreebuffers = 2 * lofreebuffers;
673 	numfreebuffers = nbuf;
674 
675 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
676 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
677 }
678 
679 /*
680  * bfreekva() - free the kva allocation for a buffer.
681  *
682  *	Since this call frees up buffer space, we call bufspacewakeup().
683  */
684 static void
685 bfreekva(struct buf *bp)
686 {
687 
688 	if (bp->b_kvasize) {
689 		atomic_add_int(&buffreekvacnt, 1);
690 		atomic_subtract_long(&bufspace, bp->b_kvasize);
691 		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
692 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
693 		bp->b_kvasize = 0;
694 		bufspacewakeup();
695 	}
696 }
697 
698 /*
699  *	bremfree:
700  *
701  *	Mark the buffer for removal from the appropriate free list in brelse.
702  *
703  */
704 void
705 bremfree(struct buf *bp)
706 {
707 	int old;
708 
709 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
710 	KASSERT((bp->b_flags & B_REMFREE) == 0,
711 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
712 	KASSERT(bp->b_qindex != QUEUE_NONE,
713 	    ("bremfree: buffer %p not on a queue.", bp));
714 	BUF_ASSERT_HELD(bp);
715 
716 	bp->b_flags |= B_REMFREE;
717 	/* Fixup numfreebuffers count.  */
718 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
719 		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
720 		    ("buf %p not counted in numfreebuffers", bp));
721 		if (bp->b_bufobj != NULL)
722 			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
723 		bp->b_vflags &= ~BV_INFREECNT;
724 		old = atomic_fetchadd_int(&numfreebuffers, -1);
725 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
726 	}
727 }
728 
729 /*
730  *	bremfreef:
731  *
732  *	Force an immediate removal from a free list.  Used only in nfs when
733  *	it abuses the b_freelist pointer.
734  */
735 void
736 bremfreef(struct buf *bp)
737 {
738 	mtx_lock(&bqlock);
739 	bremfreel(bp);
740 	mtx_unlock(&bqlock);
741 }
742 
743 /*
744  *	bremfreel:
745  *
746  *	Removes a buffer from the free list, must be called with the
747  *	bqlock held.
748  */
749 static void
750 bremfreel(struct buf *bp)
751 {
752 	int old;
753 
754 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
755 	    bp, bp->b_vp, bp->b_flags);
756 	KASSERT(bp->b_qindex != QUEUE_NONE,
757 	    ("bremfreel: buffer %p not on a queue.", bp));
758 	BUF_ASSERT_HELD(bp);
759 	mtx_assert(&bqlock, MA_OWNED);
760 
761 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
762 	bp->b_qindex = QUEUE_NONE;
763 	/*
764 	 * If this was a delayed bremfree() we only need to remove the buffer
765 	 * from the queue and return the stats are already done.
766 	 */
767 	if (bp->b_flags & B_REMFREE) {
768 		bp->b_flags &= ~B_REMFREE;
769 		return;
770 	}
771 	/*
772 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
773 	 * delayed-write, the buffer was free and we must decrement
774 	 * numfreebuffers.
775 	 */
776 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
777 		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
778 		    ("buf %p not counted in numfreebuffers", bp));
779 		if (bp->b_bufobj != NULL)
780 			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
781 		bp->b_vflags &= ~BV_INFREECNT;
782 		old = atomic_fetchadd_int(&numfreebuffers, -1);
783 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
784 	}
785 }
786 
787 /*
788  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
789  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
790  * the buffer is valid and we do not have to do anything.
791  */
792 void
793 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
794     int cnt, struct ucred * cred)
795 {
796 	struct buf *rabp;
797 	int i;
798 
799 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
800 		if (inmem(vp, *rablkno))
801 			continue;
802 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
803 
804 		if ((rabp->b_flags & B_CACHE) == 0) {
805 			if (!TD_IS_IDLETHREAD(curthread))
806 				curthread->td_ru.ru_inblock++;
807 			rabp->b_flags |= B_ASYNC;
808 			rabp->b_flags &= ~B_INVAL;
809 			rabp->b_ioflags &= ~BIO_ERROR;
810 			rabp->b_iocmd = BIO_READ;
811 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
812 				rabp->b_rcred = crhold(cred);
813 			vfs_busy_pages(rabp, 0);
814 			BUF_KERNPROC(rabp);
815 			rabp->b_iooffset = dbtob(rabp->b_blkno);
816 			bstrategy(rabp);
817 		} else {
818 			brelse(rabp);
819 		}
820 	}
821 }
822 
823 /*
824  * Entry point for bread() and breadn() via #defines in sys/buf.h.
825  *
826  * Get a buffer with the specified data.  Look in the cache first.  We
827  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
828  * is set, the buffer is valid and we do not have to do anything, see
829  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
830  */
831 int
832 breadn_flags(struct vnode * vp, daddr_t blkno, int size,
833     daddr_t * rablkno, int *rabsize, int cnt,
834     struct ucred * cred, int flags, struct buf **bpp)
835 {
836 	struct buf *bp;
837 	int rv = 0, readwait = 0;
838 
839 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
840 	/*
841 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
842 	 */
843 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
844 	if (bp == NULL)
845 		return (EBUSY);
846 
847 	/* if not found in cache, do some I/O */
848 	if ((bp->b_flags & B_CACHE) == 0) {
849 		if (!TD_IS_IDLETHREAD(curthread))
850 			curthread->td_ru.ru_inblock++;
851 		bp->b_iocmd = BIO_READ;
852 		bp->b_flags &= ~B_INVAL;
853 		bp->b_ioflags &= ~BIO_ERROR;
854 		if (bp->b_rcred == NOCRED && cred != NOCRED)
855 			bp->b_rcred = crhold(cred);
856 		vfs_busy_pages(bp, 0);
857 		bp->b_iooffset = dbtob(bp->b_blkno);
858 		bstrategy(bp);
859 		++readwait;
860 	}
861 
862 	breada(vp, rablkno, rabsize, cnt, cred);
863 
864 	if (readwait) {
865 		rv = bufwait(bp);
866 	}
867 	return (rv);
868 }
869 
870 /*
871  * Write, release buffer on completion.  (Done by iodone
872  * if async).  Do not bother writing anything if the buffer
873  * is invalid.
874  *
875  * Note that we set B_CACHE here, indicating that buffer is
876  * fully valid and thus cacheable.  This is true even of NFS
877  * now so we set it generally.  This could be set either here
878  * or in biodone() since the I/O is synchronous.  We put it
879  * here.
880  */
881 int
882 bufwrite(struct buf *bp)
883 {
884 	int oldflags;
885 	struct vnode *vp;
886 	int vp_md;
887 
888 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
889 	if (bp->b_flags & B_INVAL) {
890 		brelse(bp);
891 		return (0);
892 	}
893 
894 	if (bp->b_flags & B_BARRIER)
895 		barrierwrites++;
896 
897 	oldflags = bp->b_flags;
898 
899 	BUF_ASSERT_HELD(bp);
900 
901 	if (bp->b_pin_count > 0)
902 		bunpin_wait(bp);
903 
904 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
905 	    ("FFS background buffer should not get here %p", bp));
906 
907 	vp = bp->b_vp;
908 	if (vp)
909 		vp_md = vp->v_vflag & VV_MD;
910 	else
911 		vp_md = 0;
912 
913 	/* Mark the buffer clean */
914 	bundirty(bp);
915 
916 	bp->b_flags &= ~B_DONE;
917 	bp->b_ioflags &= ~BIO_ERROR;
918 	bp->b_flags |= B_CACHE;
919 	bp->b_iocmd = BIO_WRITE;
920 
921 	bufobj_wref(bp->b_bufobj);
922 	vfs_busy_pages(bp, 1);
923 
924 	/*
925 	 * Normal bwrites pipeline writes
926 	 */
927 	bp->b_runningbufspace = bp->b_bufsize;
928 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
929 
930 	if (!TD_IS_IDLETHREAD(curthread))
931 		curthread->td_ru.ru_oublock++;
932 	if (oldflags & B_ASYNC)
933 		BUF_KERNPROC(bp);
934 	bp->b_iooffset = dbtob(bp->b_blkno);
935 	bstrategy(bp);
936 
937 	if ((oldflags & B_ASYNC) == 0) {
938 		int rtval = bufwait(bp);
939 		brelse(bp);
940 		return (rtval);
941 	} else {
942 		/*
943 		 * don't allow the async write to saturate the I/O
944 		 * system.  We will not deadlock here because
945 		 * we are blocking waiting for I/O that is already in-progress
946 		 * to complete. We do not block here if it is the update
947 		 * or syncer daemon trying to clean up as that can lead
948 		 * to deadlock.
949 		 */
950 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
951 			waitrunningbufspace();
952 	}
953 
954 	return (0);
955 }
956 
957 void
958 bufbdflush(struct bufobj *bo, struct buf *bp)
959 {
960 	struct buf *nbp;
961 
962 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
963 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
964 		altbufferflushes++;
965 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
966 		BO_LOCK(bo);
967 		/*
968 		 * Try to find a buffer to flush.
969 		 */
970 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
971 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
972 			    BUF_LOCK(nbp,
973 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
974 				continue;
975 			if (bp == nbp)
976 				panic("bdwrite: found ourselves");
977 			BO_UNLOCK(bo);
978 			/* Don't countdeps with the bo lock held. */
979 			if (buf_countdeps(nbp, 0)) {
980 				BO_LOCK(bo);
981 				BUF_UNLOCK(nbp);
982 				continue;
983 			}
984 			if (nbp->b_flags & B_CLUSTEROK) {
985 				vfs_bio_awrite(nbp);
986 			} else {
987 				bremfree(nbp);
988 				bawrite(nbp);
989 			}
990 			dirtybufferflushes++;
991 			break;
992 		}
993 		if (nbp == NULL)
994 			BO_UNLOCK(bo);
995 	}
996 }
997 
998 /*
999  * Delayed write. (Buffer is marked dirty).  Do not bother writing
1000  * anything if the buffer is marked invalid.
1001  *
1002  * Note that since the buffer must be completely valid, we can safely
1003  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1004  * biodone() in order to prevent getblk from writing the buffer
1005  * out synchronously.
1006  */
1007 void
1008 bdwrite(struct buf *bp)
1009 {
1010 	struct thread *td = curthread;
1011 	struct vnode *vp;
1012 	struct bufobj *bo;
1013 
1014 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1015 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1016 	KASSERT((bp->b_flags & B_BARRIER) == 0,
1017 	    ("Barrier request in delayed write %p", bp));
1018 	BUF_ASSERT_HELD(bp);
1019 
1020 	if (bp->b_flags & B_INVAL) {
1021 		brelse(bp);
1022 		return;
1023 	}
1024 
1025 	/*
1026 	 * If we have too many dirty buffers, don't create any more.
1027 	 * If we are wildly over our limit, then force a complete
1028 	 * cleanup. Otherwise, just keep the situation from getting
1029 	 * out of control. Note that we have to avoid a recursive
1030 	 * disaster and not try to clean up after our own cleanup!
1031 	 */
1032 	vp = bp->b_vp;
1033 	bo = bp->b_bufobj;
1034 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1035 		td->td_pflags |= TDP_INBDFLUSH;
1036 		BO_BDFLUSH(bo, bp);
1037 		td->td_pflags &= ~TDP_INBDFLUSH;
1038 	} else
1039 		recursiveflushes++;
1040 
1041 	bdirty(bp);
1042 	/*
1043 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1044 	 * true even of NFS now.
1045 	 */
1046 	bp->b_flags |= B_CACHE;
1047 
1048 	/*
1049 	 * This bmap keeps the system from needing to do the bmap later,
1050 	 * perhaps when the system is attempting to do a sync.  Since it
1051 	 * is likely that the indirect block -- or whatever other datastructure
1052 	 * that the filesystem needs is still in memory now, it is a good
1053 	 * thing to do this.  Note also, that if the pageout daemon is
1054 	 * requesting a sync -- there might not be enough memory to do
1055 	 * the bmap then...  So, this is important to do.
1056 	 */
1057 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1058 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1059 	}
1060 
1061 	/*
1062 	 * Set the *dirty* buffer range based upon the VM system dirty
1063 	 * pages.
1064 	 *
1065 	 * Mark the buffer pages as clean.  We need to do this here to
1066 	 * satisfy the vnode_pager and the pageout daemon, so that it
1067 	 * thinks that the pages have been "cleaned".  Note that since
1068 	 * the pages are in a delayed write buffer -- the VFS layer
1069 	 * "will" see that the pages get written out on the next sync,
1070 	 * or perhaps the cluster will be completed.
1071 	 */
1072 	vfs_clean_pages_dirty_buf(bp);
1073 	bqrelse(bp);
1074 
1075 	/*
1076 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1077 	 * buffers (midpoint between our recovery point and our stall
1078 	 * point).
1079 	 */
1080 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1081 
1082 	/*
1083 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1084 	 * due to the softdep code.
1085 	 */
1086 }
1087 
1088 /*
1089  *	bdirty:
1090  *
1091  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1092  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1093  *	itself to properly update it in the dirty/clean lists.  We mark it
1094  *	B_DONE to ensure that any asynchronization of the buffer properly
1095  *	clears B_DONE ( else a panic will occur later ).
1096  *
1097  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1098  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1099  *	should only be called if the buffer is known-good.
1100  *
1101  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1102  *	count.
1103  *
1104  *	The buffer must be on QUEUE_NONE.
1105  */
1106 void
1107 bdirty(struct buf *bp)
1108 {
1109 
1110 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1111 	    bp, bp->b_vp, bp->b_flags);
1112 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1113 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1114 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1115 	BUF_ASSERT_HELD(bp);
1116 	bp->b_flags &= ~(B_RELBUF);
1117 	bp->b_iocmd = BIO_WRITE;
1118 
1119 	if ((bp->b_flags & B_DELWRI) == 0) {
1120 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1121 		reassignbuf(bp);
1122 		atomic_add_int(&numdirtybuffers, 1);
1123 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1124 	}
1125 }
1126 
1127 /*
1128  *	bundirty:
1129  *
1130  *	Clear B_DELWRI for buffer.
1131  *
1132  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1133  *	count.
1134  *
1135  *	The buffer must be on QUEUE_NONE.
1136  */
1137 
1138 void
1139 bundirty(struct buf *bp)
1140 {
1141 
1142 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1143 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1144 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1145 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1146 	BUF_ASSERT_HELD(bp);
1147 
1148 	if (bp->b_flags & B_DELWRI) {
1149 		bp->b_flags &= ~B_DELWRI;
1150 		reassignbuf(bp);
1151 		atomic_subtract_int(&numdirtybuffers, 1);
1152 		numdirtywakeup(lodirtybuffers);
1153 	}
1154 	/*
1155 	 * Since it is now being written, we can clear its deferred write flag.
1156 	 */
1157 	bp->b_flags &= ~B_DEFERRED;
1158 }
1159 
1160 /*
1161  *	bawrite:
1162  *
1163  *	Asynchronous write.  Start output on a buffer, but do not wait for
1164  *	it to complete.  The buffer is released when the output completes.
1165  *
1166  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1167  *	B_INVAL buffers.  Not us.
1168  */
1169 void
1170 bawrite(struct buf *bp)
1171 {
1172 
1173 	bp->b_flags |= B_ASYNC;
1174 	(void) bwrite(bp);
1175 }
1176 
1177 /*
1178  *	babarrierwrite:
1179  *
1180  *	Asynchronous barrier write.  Start output on a buffer, but do not
1181  *	wait for it to complete.  Place a write barrier after this write so
1182  *	that this buffer and all buffers written before it are committed to
1183  *	the disk before any buffers written after this write are committed
1184  *	to the disk.  The buffer is released when the output completes.
1185  */
1186 void
1187 babarrierwrite(struct buf *bp)
1188 {
1189 
1190 	bp->b_flags |= B_ASYNC | B_BARRIER;
1191 	(void) bwrite(bp);
1192 }
1193 
1194 /*
1195  *	bbarrierwrite:
1196  *
1197  *	Synchronous barrier write.  Start output on a buffer and wait for
1198  *	it to complete.  Place a write barrier after this write so that
1199  *	this buffer and all buffers written before it are committed to
1200  *	the disk before any buffers written after this write are committed
1201  *	to the disk.  The buffer is released when the output completes.
1202  */
1203 int
1204 bbarrierwrite(struct buf *bp)
1205 {
1206 
1207 	bp->b_flags |= B_BARRIER;
1208 	return (bwrite(bp));
1209 }
1210 
1211 /*
1212  *	bwillwrite:
1213  *
1214  *	Called prior to the locking of any vnodes when we are expecting to
1215  *	write.  We do not want to starve the buffer cache with too many
1216  *	dirty buffers so we block here.  By blocking prior to the locking
1217  *	of any vnodes we attempt to avoid the situation where a locked vnode
1218  *	prevents the various system daemons from flushing related buffers.
1219  */
1220 
1221 void
1222 bwillwrite(void)
1223 {
1224 
1225 	if (numdirtybuffers >= hidirtybuffers) {
1226 		mtx_lock(&nblock);
1227 		while (numdirtybuffers >= hidirtybuffers) {
1228 			bd_wakeup(1);
1229 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1230 			msleep(&needsbuffer, &nblock,
1231 			    (PRIBIO + 4), "flswai", 0);
1232 		}
1233 		mtx_unlock(&nblock);
1234 	}
1235 }
1236 
1237 /*
1238  * Return true if we have too many dirty buffers.
1239  */
1240 int
1241 buf_dirty_count_severe(void)
1242 {
1243 
1244 	return(numdirtybuffers >= hidirtybuffers);
1245 }
1246 
1247 static __noinline int
1248 buf_vm_page_count_severe(void)
1249 {
1250 
1251 	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1252 
1253 	return vm_page_count_severe();
1254 }
1255 
1256 /*
1257  *	brelse:
1258  *
1259  *	Release a busy buffer and, if requested, free its resources.  The
1260  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1261  *	to be accessed later as a cache entity or reused for other purposes.
1262  */
1263 void
1264 brelse(struct buf *bp)
1265 {
1266 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1267 	    bp, bp->b_vp, bp->b_flags);
1268 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1269 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1270 
1271 	if (BUF_LOCKRECURSED(bp)) {
1272 		/*
1273 		 * Do not process, in particular, do not handle the
1274 		 * B_INVAL/B_RELBUF and do not release to free list.
1275 		 */
1276 		BUF_UNLOCK(bp);
1277 		return;
1278 	}
1279 
1280 	if (bp->b_flags & B_MANAGED) {
1281 		bqrelse(bp);
1282 		return;
1283 	}
1284 
1285 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1286 	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1287 		/*
1288 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1289 		 * pages from being scrapped.  If the error is anything
1290 		 * other than an I/O error (EIO), assume that retrying
1291 		 * is futile.
1292 		 */
1293 		bp->b_ioflags &= ~BIO_ERROR;
1294 		bdirty(bp);
1295 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1296 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1297 		/*
1298 		 * Either a failed I/O or we were asked to free or not
1299 		 * cache the buffer.
1300 		 */
1301 		bp->b_flags |= B_INVAL;
1302 		if (!LIST_EMPTY(&bp->b_dep))
1303 			buf_deallocate(bp);
1304 		if (bp->b_flags & B_DELWRI) {
1305 			atomic_subtract_int(&numdirtybuffers, 1);
1306 			numdirtywakeup(lodirtybuffers);
1307 		}
1308 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1309 		if ((bp->b_flags & B_VMIO) == 0) {
1310 			if (bp->b_bufsize)
1311 				allocbuf(bp, 0);
1312 			if (bp->b_vp)
1313 				brelvp(bp);
1314 		}
1315 	}
1316 
1317 	/*
1318 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1319 	 * is called with B_DELWRI set, the underlying pages may wind up
1320 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1321 	 * because pages associated with a B_DELWRI bp are marked clean.
1322 	 *
1323 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1324 	 * if B_DELWRI is set.
1325 	 *
1326 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1327 	 * on pages to return pages to the VM page queues.
1328 	 */
1329 	if (bp->b_flags & B_DELWRI)
1330 		bp->b_flags &= ~B_RELBUF;
1331 	else if (buf_vm_page_count_severe()) {
1332 		/*
1333 		 * The locking of the BO_LOCK is not necessary since
1334 		 * BKGRDINPROG cannot be set while we hold the buf
1335 		 * lock, it can only be cleared if it is already
1336 		 * pending.
1337 		 */
1338 		if (bp->b_vp) {
1339 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1340 				bp->b_flags |= B_RELBUF;
1341 		} else
1342 			bp->b_flags |= B_RELBUF;
1343 	}
1344 
1345 	/*
1346 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1347 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1348 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1349 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1350 	 *
1351 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1352 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1353 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1354 	 *
1355 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1356 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1357 	 * the commit state and we cannot afford to lose the buffer. If the
1358 	 * buffer has a background write in progress, we need to keep it
1359 	 * around to prevent it from being reconstituted and starting a second
1360 	 * background write.
1361 	 */
1362 	if ((bp->b_flags & B_VMIO)
1363 	    && !(bp->b_vp->v_mount != NULL &&
1364 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1365 		 !vn_isdisk(bp->b_vp, NULL) &&
1366 		 (bp->b_flags & B_DELWRI))
1367 	    ) {
1368 
1369 		int i, j, resid;
1370 		vm_page_t m;
1371 		off_t foff;
1372 		vm_pindex_t poff;
1373 		vm_object_t obj;
1374 
1375 		obj = bp->b_bufobj->bo_object;
1376 
1377 		/*
1378 		 * Get the base offset and length of the buffer.  Note that
1379 		 * in the VMIO case if the buffer block size is not
1380 		 * page-aligned then b_data pointer may not be page-aligned.
1381 		 * But our b_pages[] array *IS* page aligned.
1382 		 *
1383 		 * block sizes less then DEV_BSIZE (usually 512) are not
1384 		 * supported due to the page granularity bits (m->valid,
1385 		 * m->dirty, etc...).
1386 		 *
1387 		 * See man buf(9) for more information
1388 		 */
1389 		resid = bp->b_bufsize;
1390 		foff = bp->b_offset;
1391 		VM_OBJECT_LOCK(obj);
1392 		for (i = 0; i < bp->b_npages; i++) {
1393 			int had_bogus = 0;
1394 
1395 			m = bp->b_pages[i];
1396 
1397 			/*
1398 			 * If we hit a bogus page, fixup *all* the bogus pages
1399 			 * now.
1400 			 */
1401 			if (m == bogus_page) {
1402 				poff = OFF_TO_IDX(bp->b_offset);
1403 				had_bogus = 1;
1404 
1405 				for (j = i; j < bp->b_npages; j++) {
1406 					vm_page_t mtmp;
1407 					mtmp = bp->b_pages[j];
1408 					if (mtmp == bogus_page) {
1409 						mtmp = vm_page_lookup(obj, poff + j);
1410 						if (!mtmp) {
1411 							panic("brelse: page missing\n");
1412 						}
1413 						bp->b_pages[j] = mtmp;
1414 					}
1415 				}
1416 
1417 				if ((bp->b_flags & B_INVAL) == 0) {
1418 					pmap_qenter(
1419 					    trunc_page((vm_offset_t)bp->b_data),
1420 					    bp->b_pages, bp->b_npages);
1421 				}
1422 				m = bp->b_pages[i];
1423 			}
1424 			if ((bp->b_flags & B_NOCACHE) ||
1425 			    (bp->b_ioflags & BIO_ERROR &&
1426 			     bp->b_iocmd == BIO_READ)) {
1427 				int poffset = foff & PAGE_MASK;
1428 				int presid = resid > (PAGE_SIZE - poffset) ?
1429 					(PAGE_SIZE - poffset) : resid;
1430 
1431 				KASSERT(presid >= 0, ("brelse: extra page"));
1432 				vm_page_set_invalid(m, poffset, presid);
1433 				if (had_bogus)
1434 					printf("avoided corruption bug in bogus_page/brelse code\n");
1435 			}
1436 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1437 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1438 		}
1439 		VM_OBJECT_UNLOCK(obj);
1440 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1441 			vfs_vmio_release(bp);
1442 
1443 	} else if (bp->b_flags & B_VMIO) {
1444 
1445 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1446 			vfs_vmio_release(bp);
1447 		}
1448 
1449 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1450 		if (bp->b_bufsize != 0)
1451 			allocbuf(bp, 0);
1452 		if (bp->b_vp != NULL)
1453 			brelvp(bp);
1454 	}
1455 
1456 	/* enqueue */
1457 	mtx_lock(&bqlock);
1458 	/* Handle delayed bremfree() processing. */
1459 	if (bp->b_flags & B_REMFREE) {
1460 		struct bufobj *bo;
1461 
1462 		bo = bp->b_bufobj;
1463 		if (bo != NULL)
1464 			BO_LOCK(bo);
1465 		bremfreel(bp);
1466 		if (bo != NULL)
1467 			BO_UNLOCK(bo);
1468 	}
1469 	if (bp->b_qindex != QUEUE_NONE)
1470 		panic("brelse: free buffer onto another queue???");
1471 
1472 	/*
1473 	 * If the buffer has junk contents signal it and eventually
1474 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1475 	 * doesn't find it.
1476 	 */
1477 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1478 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1479 		bp->b_flags |= B_INVAL;
1480 	if (bp->b_flags & B_INVAL) {
1481 		if (bp->b_flags & B_DELWRI)
1482 			bundirty(bp);
1483 		if (bp->b_vp)
1484 			brelvp(bp);
1485 	}
1486 
1487 	/* buffers with no memory */
1488 	if (bp->b_bufsize == 0) {
1489 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1490 		if (bp->b_vflags & BV_BKGRDINPROG)
1491 			panic("losing buffer 1");
1492 		if (bp->b_kvasize) {
1493 			bp->b_qindex = QUEUE_EMPTYKVA;
1494 		} else {
1495 			bp->b_qindex = QUEUE_EMPTY;
1496 		}
1497 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1498 	/* buffers with junk contents */
1499 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1500 	    (bp->b_ioflags & BIO_ERROR)) {
1501 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1502 		if (bp->b_vflags & BV_BKGRDINPROG)
1503 			panic("losing buffer 2");
1504 		bp->b_qindex = QUEUE_CLEAN;
1505 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1506 	/* remaining buffers */
1507 	} else {
1508 		if (bp->b_flags & B_DELWRI)
1509 			bp->b_qindex = QUEUE_DIRTY;
1510 		else
1511 			bp->b_qindex = QUEUE_CLEAN;
1512 		if (bp->b_flags & B_AGE)
1513 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1514 		else
1515 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1516 	}
1517 	mtx_unlock(&bqlock);
1518 
1519 	/*
1520 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1521 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1522 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1523 	 * if B_INVAL is set ).
1524 	 */
1525 
1526 	if (!(bp->b_flags & B_DELWRI)) {
1527 		struct bufobj *bo;
1528 
1529 		bo = bp->b_bufobj;
1530 		if (bo != NULL)
1531 			BO_LOCK(bo);
1532 		bufcountwakeup(bp);
1533 		if (bo != NULL)
1534 			BO_UNLOCK(bo);
1535 	}
1536 
1537 	/*
1538 	 * Something we can maybe free or reuse
1539 	 */
1540 	if (bp->b_bufsize || bp->b_kvasize)
1541 		bufspacewakeup();
1542 
1543 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1544 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1545 		panic("brelse: not dirty");
1546 	/* unlock */
1547 	BUF_UNLOCK(bp);
1548 }
1549 
1550 /*
1551  * Release a buffer back to the appropriate queue but do not try to free
1552  * it.  The buffer is expected to be used again soon.
1553  *
1554  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1555  * biodone() to requeue an async I/O on completion.  It is also used when
1556  * known good buffers need to be requeued but we think we may need the data
1557  * again soon.
1558  *
1559  * XXX we should be able to leave the B_RELBUF hint set on completion.
1560  */
1561 void
1562 bqrelse(struct buf *bp)
1563 {
1564 	struct bufobj *bo;
1565 
1566 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1567 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1568 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1569 
1570 	if (BUF_LOCKRECURSED(bp)) {
1571 		/* do not release to free list */
1572 		BUF_UNLOCK(bp);
1573 		return;
1574 	}
1575 
1576 	bo = bp->b_bufobj;
1577 	if (bp->b_flags & B_MANAGED) {
1578 		if (bp->b_flags & B_REMFREE) {
1579 			mtx_lock(&bqlock);
1580 			if (bo != NULL)
1581 				BO_LOCK(bo);
1582 			bremfreel(bp);
1583 			if (bo != NULL)
1584 				BO_UNLOCK(bo);
1585 			mtx_unlock(&bqlock);
1586 		}
1587 		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1588 		BUF_UNLOCK(bp);
1589 		return;
1590 	}
1591 
1592 	mtx_lock(&bqlock);
1593 	/* Handle delayed bremfree() processing. */
1594 	if (bp->b_flags & B_REMFREE) {
1595 		if (bo != NULL)
1596 			BO_LOCK(bo);
1597 		bremfreel(bp);
1598 		if (bo != NULL)
1599 			BO_UNLOCK(bo);
1600 	}
1601 	if (bp->b_qindex != QUEUE_NONE)
1602 		panic("bqrelse: free buffer onto another queue???");
1603 	/* buffers with stale but valid contents */
1604 	if (bp->b_flags & B_DELWRI) {
1605 		bp->b_qindex = QUEUE_DIRTY;
1606 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1607 	} else {
1608 		/*
1609 		 * The locking of the BO_LOCK for checking of the
1610 		 * BV_BKGRDINPROG is not necessary since the
1611 		 * BV_BKGRDINPROG cannot be set while we hold the buf
1612 		 * lock, it can only be cleared if it is already
1613 		 * pending.
1614 		 */
1615 		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1616 			bp->b_qindex = QUEUE_CLEAN;
1617 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1618 			    b_freelist);
1619 		} else {
1620 			/*
1621 			 * We are too low on memory, we have to try to free
1622 			 * the buffer (most importantly: the wired pages
1623 			 * making up its backing store) *now*.
1624 			 */
1625 			mtx_unlock(&bqlock);
1626 			brelse(bp);
1627 			return;
1628 		}
1629 	}
1630 	mtx_unlock(&bqlock);
1631 
1632 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
1633 		if (bo != NULL)
1634 			BO_LOCK(bo);
1635 		bufcountwakeup(bp);
1636 		if (bo != NULL)
1637 			BO_UNLOCK(bo);
1638 	}
1639 
1640 	/*
1641 	 * Something we can maybe free or reuse.
1642 	 */
1643 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1644 		bufspacewakeup();
1645 
1646 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1647 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1648 		panic("bqrelse: not dirty");
1649 	/* unlock */
1650 	BUF_UNLOCK(bp);
1651 }
1652 
1653 /* Give pages used by the bp back to the VM system (where possible) */
1654 static void
1655 vfs_vmio_release(struct buf *bp)
1656 {
1657 	int i;
1658 	vm_page_t m;
1659 
1660 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1661 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1662 	for (i = 0; i < bp->b_npages; i++) {
1663 		m = bp->b_pages[i];
1664 		bp->b_pages[i] = NULL;
1665 		/*
1666 		 * In order to keep page LRU ordering consistent, put
1667 		 * everything on the inactive queue.
1668 		 */
1669 		vm_page_lock(m);
1670 		vm_page_unwire(m, 0);
1671 		/*
1672 		 * We don't mess with busy pages, it is
1673 		 * the responsibility of the process that
1674 		 * busied the pages to deal with them.
1675 		 */
1676 		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1677 		    m->wire_count == 0) {
1678 			/*
1679 			 * Might as well free the page if we can and it has
1680 			 * no valid data.  We also free the page if the
1681 			 * buffer was used for direct I/O
1682 			 */
1683 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1684 				vm_page_free(m);
1685 			} else if (bp->b_flags & B_DIRECT) {
1686 				vm_page_try_to_free(m);
1687 			} else if (buf_vm_page_count_severe()) {
1688 				vm_page_try_to_cache(m);
1689 			}
1690 		}
1691 		vm_page_unlock(m);
1692 	}
1693 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1694 
1695 	if (bp->b_bufsize) {
1696 		bufspacewakeup();
1697 		bp->b_bufsize = 0;
1698 	}
1699 	bp->b_npages = 0;
1700 	bp->b_flags &= ~B_VMIO;
1701 	if (bp->b_vp)
1702 		brelvp(bp);
1703 }
1704 
1705 /*
1706  * Check to see if a block at a particular lbn is available for a clustered
1707  * write.
1708  */
1709 static int
1710 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1711 {
1712 	struct buf *bpa;
1713 	int match;
1714 
1715 	match = 0;
1716 
1717 	/* If the buf isn't in core skip it */
1718 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1719 		return (0);
1720 
1721 	/* If the buf is busy we don't want to wait for it */
1722 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1723 		return (0);
1724 
1725 	/* Only cluster with valid clusterable delayed write buffers */
1726 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1727 	    (B_DELWRI | B_CLUSTEROK))
1728 		goto done;
1729 
1730 	if (bpa->b_bufsize != size)
1731 		goto done;
1732 
1733 	/*
1734 	 * Check to see if it is in the expected place on disk and that the
1735 	 * block has been mapped.
1736 	 */
1737 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1738 		match = 1;
1739 done:
1740 	BUF_UNLOCK(bpa);
1741 	return (match);
1742 }
1743 
1744 /*
1745  *	vfs_bio_awrite:
1746  *
1747  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1748  *	This is much better then the old way of writing only one buffer at
1749  *	a time.  Note that we may not be presented with the buffers in the
1750  *	correct order, so we search for the cluster in both directions.
1751  */
1752 int
1753 vfs_bio_awrite(struct buf *bp)
1754 {
1755 	struct bufobj *bo;
1756 	int i;
1757 	int j;
1758 	daddr_t lblkno = bp->b_lblkno;
1759 	struct vnode *vp = bp->b_vp;
1760 	int ncl;
1761 	int nwritten;
1762 	int size;
1763 	int maxcl;
1764 
1765 	bo = &vp->v_bufobj;
1766 	/*
1767 	 * right now we support clustered writing only to regular files.  If
1768 	 * we find a clusterable block we could be in the middle of a cluster
1769 	 * rather then at the beginning.
1770 	 */
1771 	if ((vp->v_type == VREG) &&
1772 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1773 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1774 
1775 		size = vp->v_mount->mnt_stat.f_iosize;
1776 		maxcl = MAXPHYS / size;
1777 
1778 		BO_LOCK(bo);
1779 		for (i = 1; i < maxcl; i++)
1780 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1781 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1782 				break;
1783 
1784 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1785 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1786 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1787 				break;
1788 		BO_UNLOCK(bo);
1789 		--j;
1790 		ncl = i + j;
1791 		/*
1792 		 * this is a possible cluster write
1793 		 */
1794 		if (ncl != 1) {
1795 			BUF_UNLOCK(bp);
1796 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1797 			return nwritten;
1798 		}
1799 	}
1800 	bremfree(bp);
1801 	bp->b_flags |= B_ASYNC;
1802 	/*
1803 	 * default (old) behavior, writing out only one block
1804 	 *
1805 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1806 	 */
1807 	nwritten = bp->b_bufsize;
1808 	(void) bwrite(bp);
1809 
1810 	return nwritten;
1811 }
1812 
1813 /*
1814  *	getnewbuf:
1815  *
1816  *	Find and initialize a new buffer header, freeing up existing buffers
1817  *	in the bufqueues as necessary.  The new buffer is returned locked.
1818  *
1819  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1820  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1821  *
1822  *	We block if:
1823  *		We have insufficient buffer headers
1824  *		We have insufficient buffer space
1825  *		buffer_map is too fragmented ( space reservation fails )
1826  *		If we have to flush dirty buffers ( but we try to avoid this )
1827  *
1828  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1829  *	Instead we ask the buf daemon to do it for us.  We attempt to
1830  *	avoid piecemeal wakeups of the pageout daemon.
1831  */
1832 
1833 static struct buf *
1834 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1835     int gbflags)
1836 {
1837 	struct thread *td;
1838 	struct buf *bp;
1839 	struct buf *nbp;
1840 	int defrag = 0;
1841 	int nqindex;
1842 	static int flushingbufs;
1843 
1844 	td = curthread;
1845 	/*
1846 	 * We can't afford to block since we might be holding a vnode lock,
1847 	 * which may prevent system daemons from running.  We deal with
1848 	 * low-memory situations by proactively returning memory and running
1849 	 * async I/O rather then sync I/O.
1850 	 */
1851 	atomic_add_int(&getnewbufcalls, 1);
1852 	atomic_subtract_int(&getnewbufrestarts, 1);
1853 restart:
1854 	atomic_add_int(&getnewbufrestarts, 1);
1855 
1856 	/*
1857 	 * Setup for scan.  If we do not have enough free buffers,
1858 	 * we setup a degenerate case that immediately fails.  Note
1859 	 * that if we are specially marked process, we are allowed to
1860 	 * dip into our reserves.
1861 	 *
1862 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1863 	 *
1864 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1865 	 * However, there are a number of cases (defragging, reusing, ...)
1866 	 * where we cannot backup.
1867 	 */
1868 	mtx_lock(&bqlock);
1869 	nqindex = QUEUE_EMPTYKVA;
1870 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1871 
1872 	if (nbp == NULL) {
1873 		/*
1874 		 * If no EMPTYKVA buffers and we are either
1875 		 * defragging or reusing, locate a CLEAN buffer
1876 		 * to free or reuse.  If bufspace useage is low
1877 		 * skip this step so we can allocate a new buffer.
1878 		 */
1879 		if (defrag || bufspace >= lobufspace) {
1880 			nqindex = QUEUE_CLEAN;
1881 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1882 		}
1883 
1884 		/*
1885 		 * If we could not find or were not allowed to reuse a
1886 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1887 		 * buffer.  We can only use an EMPTY buffer if allocating
1888 		 * its KVA would not otherwise run us out of buffer space.
1889 		 */
1890 		if (nbp == NULL && defrag == 0 &&
1891 		    bufspace + maxsize < hibufspace) {
1892 			nqindex = QUEUE_EMPTY;
1893 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1899 	 * depending.
1900 	 */
1901 
1902 	while ((bp = nbp) != NULL) {
1903 		int qindex = nqindex;
1904 
1905 		/*
1906 		 * Calculate next bp ( we can only use it if we do not block
1907 		 * or do other fancy things ).
1908 		 */
1909 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1910 			switch(qindex) {
1911 			case QUEUE_EMPTY:
1912 				nqindex = QUEUE_EMPTYKVA;
1913 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1914 					break;
1915 				/* FALLTHROUGH */
1916 			case QUEUE_EMPTYKVA:
1917 				nqindex = QUEUE_CLEAN;
1918 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1919 					break;
1920 				/* FALLTHROUGH */
1921 			case QUEUE_CLEAN:
1922 				/*
1923 				 * nbp is NULL.
1924 				 */
1925 				break;
1926 			}
1927 		}
1928 		/*
1929 		 * If we are defragging then we need a buffer with
1930 		 * b_kvasize != 0.  XXX this situation should no longer
1931 		 * occur, if defrag is non-zero the buffer's b_kvasize
1932 		 * should also be non-zero at this point.  XXX
1933 		 */
1934 		if (defrag && bp->b_kvasize == 0) {
1935 			printf("Warning: defrag empty buffer %p\n", bp);
1936 			continue;
1937 		}
1938 
1939 		/*
1940 		 * Start freeing the bp.  This is somewhat involved.  nbp
1941 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1942 		 */
1943 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1944 			continue;
1945 		if (bp->b_vp) {
1946 			BO_LOCK(bp->b_bufobj);
1947 			if (bp->b_vflags & BV_BKGRDINPROG) {
1948 				BO_UNLOCK(bp->b_bufobj);
1949 				BUF_UNLOCK(bp);
1950 				continue;
1951 			}
1952 			BO_UNLOCK(bp->b_bufobj);
1953 		}
1954 		CTR6(KTR_BUF,
1955 		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1956 		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1957 		    bp->b_kvasize, bp->b_bufsize, qindex);
1958 
1959 		/*
1960 		 * Sanity Checks
1961 		 */
1962 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1963 
1964 		/*
1965 		 * Note: we no longer distinguish between VMIO and non-VMIO
1966 		 * buffers.
1967 		 */
1968 
1969 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1970 
1971 		if (bp->b_bufobj != NULL)
1972 			BO_LOCK(bp->b_bufobj);
1973 		bremfreel(bp);
1974 		if (bp->b_bufobj != NULL)
1975 			BO_UNLOCK(bp->b_bufobj);
1976 		mtx_unlock(&bqlock);
1977 
1978 		if (qindex == QUEUE_CLEAN) {
1979 			if (bp->b_flags & B_VMIO) {
1980 				bp->b_flags &= ~B_ASYNC;
1981 				vfs_vmio_release(bp);
1982 			}
1983 			if (bp->b_vp)
1984 				brelvp(bp);
1985 		}
1986 
1987 		/*
1988 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1989 		 * the scan from this point on.
1990 		 *
1991 		 * Get the rest of the buffer freed up.  b_kva* is still
1992 		 * valid after this operation.
1993 		 */
1994 
1995 		if (bp->b_rcred != NOCRED) {
1996 			crfree(bp->b_rcred);
1997 			bp->b_rcred = NOCRED;
1998 		}
1999 		if (bp->b_wcred != NOCRED) {
2000 			crfree(bp->b_wcred);
2001 			bp->b_wcred = NOCRED;
2002 		}
2003 		if (!LIST_EMPTY(&bp->b_dep))
2004 			buf_deallocate(bp);
2005 		if (bp->b_vflags & BV_BKGRDINPROG)
2006 			panic("losing buffer 3");
2007 		KASSERT(bp->b_vp == NULL,
2008 		    ("bp: %p still has vnode %p.  qindex: %d",
2009 		    bp, bp->b_vp, qindex));
2010 		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2011 		   ("bp: %p still on a buffer list. xflags %X",
2012 		    bp, bp->b_xflags));
2013 
2014 		if (bp->b_bufsize)
2015 			allocbuf(bp, 0);
2016 
2017 		bp->b_flags = 0;
2018 		bp->b_ioflags = 0;
2019 		bp->b_xflags = 0;
2020 		KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
2021 		    ("buf %p still counted as free?", bp));
2022 		bp->b_vflags = 0;
2023 		bp->b_vp = NULL;
2024 		bp->b_blkno = bp->b_lblkno = 0;
2025 		bp->b_offset = NOOFFSET;
2026 		bp->b_iodone = 0;
2027 		bp->b_error = 0;
2028 		bp->b_resid = 0;
2029 		bp->b_bcount = 0;
2030 		bp->b_npages = 0;
2031 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2032 		bp->b_bufobj = NULL;
2033 		bp->b_pin_count = 0;
2034 		bp->b_fsprivate1 = NULL;
2035 		bp->b_fsprivate2 = NULL;
2036 		bp->b_fsprivate3 = NULL;
2037 
2038 		LIST_INIT(&bp->b_dep);
2039 
2040 		/*
2041 		 * If we are defragging then free the buffer.
2042 		 */
2043 		if (defrag) {
2044 			bp->b_flags |= B_INVAL;
2045 			bfreekva(bp);
2046 			brelse(bp);
2047 			defrag = 0;
2048 			goto restart;
2049 		}
2050 
2051 		/*
2052 		 * Notify any waiters for the buffer lock about
2053 		 * identity change by freeing the buffer.
2054 		 */
2055 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2056 			bp->b_flags |= B_INVAL;
2057 			bfreekva(bp);
2058 			brelse(bp);
2059 			goto restart;
2060 		}
2061 
2062 		/*
2063 		 * If we are overcomitted then recover the buffer and its
2064 		 * KVM space.  This occurs in rare situations when multiple
2065 		 * processes are blocked in getnewbuf() or allocbuf().
2066 		 */
2067 		if (bufspace >= hibufspace)
2068 			flushingbufs = 1;
2069 		if (flushingbufs && bp->b_kvasize != 0) {
2070 			bp->b_flags |= B_INVAL;
2071 			bfreekva(bp);
2072 			brelse(bp);
2073 			goto restart;
2074 		}
2075 		if (bufspace < lobufspace)
2076 			flushingbufs = 0;
2077 		break;
2078 	}
2079 
2080 	/*
2081 	 * If we exhausted our list, sleep as appropriate.  We may have to
2082 	 * wakeup various daemons and write out some dirty buffers.
2083 	 *
2084 	 * Generally we are sleeping due to insufficient buffer space.
2085 	 */
2086 
2087 	if (bp == NULL) {
2088 		int flags, norunbuf;
2089 		char *waitmsg;
2090 		int fl;
2091 
2092 		if (defrag) {
2093 			flags = VFS_BIO_NEED_BUFSPACE;
2094 			waitmsg = "nbufkv";
2095 		} else if (bufspace >= hibufspace) {
2096 			waitmsg = "nbufbs";
2097 			flags = VFS_BIO_NEED_BUFSPACE;
2098 		} else {
2099 			waitmsg = "newbuf";
2100 			flags = VFS_BIO_NEED_ANY;
2101 		}
2102 		mtx_lock(&nblock);
2103 		needsbuffer |= flags;
2104 		mtx_unlock(&nblock);
2105 		mtx_unlock(&bqlock);
2106 
2107 		bd_speedup();	/* heeeelp */
2108 		if (gbflags & GB_NOWAIT_BD)
2109 			return (NULL);
2110 
2111 		mtx_lock(&nblock);
2112 		while (needsbuffer & flags) {
2113 			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2114 				mtx_unlock(&nblock);
2115 				/*
2116 				 * getblk() is called with a vnode
2117 				 * locked, and some majority of the
2118 				 * dirty buffers may as well belong to
2119 				 * the vnode. Flushing the buffers
2120 				 * there would make a progress that
2121 				 * cannot be achieved by the
2122 				 * buf_daemon, that cannot lock the
2123 				 * vnode.
2124 				 */
2125 				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2126 				    (td->td_pflags & TDP_NORUNNINGBUF);
2127 				/* play bufdaemon */
2128 				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2129 				fl = buf_do_flush(vp);
2130 				td->td_pflags &= norunbuf;
2131 				mtx_lock(&nblock);
2132 				if (fl != 0)
2133 					continue;
2134 				if ((needsbuffer & flags) == 0)
2135 					break;
2136 			}
2137 			if (msleep(&needsbuffer, &nblock,
2138 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2139 				mtx_unlock(&nblock);
2140 				return (NULL);
2141 			}
2142 		}
2143 		mtx_unlock(&nblock);
2144 	} else {
2145 		/*
2146 		 * We finally have a valid bp.  We aren't quite out of the
2147 		 * woods, we still have to reserve kva space.  In order
2148 		 * to keep fragmentation sane we only allocate kva in
2149 		 * BKVASIZE chunks.
2150 		 */
2151 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2152 
2153 		if (maxsize != bp->b_kvasize) {
2154 			vm_offset_t addr = 0;
2155 			int rv;
2156 
2157 			bfreekva(bp);
2158 
2159 			vm_map_lock(buffer_map);
2160 			if (vm_map_findspace(buffer_map,
2161 			    vm_map_min(buffer_map), maxsize, &addr)) {
2162 				/*
2163 				 * Buffer map is too fragmented.
2164 				 * We must defragment the map.
2165 				 */
2166 				atomic_add_int(&bufdefragcnt, 1);
2167 				vm_map_unlock(buffer_map);
2168 				defrag = 1;
2169 				bp->b_flags |= B_INVAL;
2170 				brelse(bp);
2171 				goto restart;
2172 			}
2173 			rv = vm_map_insert(buffer_map, NULL, 0, addr,
2174 			    addr + maxsize, VM_PROT_ALL, VM_PROT_ALL,
2175 			    MAP_NOFAULT);
2176 			KASSERT(rv == KERN_SUCCESS,
2177 			    ("vm_map_insert(buffer_map) rv %d", rv));
2178 			vm_map_unlock(buffer_map);
2179 			bp->b_kvabase = (caddr_t)addr;
2180 			bp->b_kvasize = maxsize;
2181 			atomic_add_long(&bufspace, bp->b_kvasize);
2182 			atomic_add_int(&bufreusecnt, 1);
2183 		}
2184 		bp->b_saveaddr = bp->b_kvabase;
2185 		bp->b_data = bp->b_saveaddr;
2186 	}
2187 	return (bp);
2188 }
2189 
2190 /*
2191  *	buf_daemon:
2192  *
2193  *	buffer flushing daemon.  Buffers are normally flushed by the
2194  *	update daemon but if it cannot keep up this process starts to
2195  *	take the load in an attempt to prevent getnewbuf() from blocking.
2196  */
2197 
2198 static struct kproc_desc buf_kp = {
2199 	"bufdaemon",
2200 	buf_daemon,
2201 	&bufdaemonproc
2202 };
2203 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2204 
2205 static int
2206 buf_do_flush(struct vnode *vp)
2207 {
2208 	int flushed;
2209 
2210 	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2211 	if (flushed == 0) {
2212 		/*
2213 		 * Could not find any buffers without rollback
2214 		 * dependencies, so just write the first one
2215 		 * in the hopes of eventually making progress.
2216 		 */
2217 		flushbufqueues(vp, QUEUE_DIRTY, 1);
2218 	}
2219 	return (flushed);
2220 }
2221 
2222 static void
2223 buf_daemon()
2224 {
2225 	int lodirtysave;
2226 
2227 	/*
2228 	 * This process needs to be suspended prior to shutdown sync.
2229 	 */
2230 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2231 	    SHUTDOWN_PRI_LAST);
2232 
2233 	/*
2234 	 * This process is allowed to take the buffer cache to the limit
2235 	 */
2236 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2237 	mtx_lock(&bdlock);
2238 	for (;;) {
2239 		bd_request = 0;
2240 		mtx_unlock(&bdlock);
2241 
2242 		kproc_suspend_check(bufdaemonproc);
2243 		lodirtysave = lodirtybuffers;
2244 		if (bd_speedupreq) {
2245 			lodirtybuffers = numdirtybuffers / 2;
2246 			bd_speedupreq = 0;
2247 		}
2248 		/*
2249 		 * Do the flush.  Limit the amount of in-transit I/O we
2250 		 * allow to build up, otherwise we would completely saturate
2251 		 * the I/O system.  Wakeup any waiting processes before we
2252 		 * normally would so they can run in parallel with our drain.
2253 		 */
2254 		while (numdirtybuffers > lodirtybuffers) {
2255 			if (buf_do_flush(NULL) == 0)
2256 				break;
2257 			kern_yield(PRI_USER);
2258 		}
2259 		lodirtybuffers = lodirtysave;
2260 
2261 		/*
2262 		 * Only clear bd_request if we have reached our low water
2263 		 * mark.  The buf_daemon normally waits 1 second and
2264 		 * then incrementally flushes any dirty buffers that have
2265 		 * built up, within reason.
2266 		 *
2267 		 * If we were unable to hit our low water mark and couldn't
2268 		 * find any flushable buffers, we sleep half a second.
2269 		 * Otherwise we loop immediately.
2270 		 */
2271 		mtx_lock(&bdlock);
2272 		if (numdirtybuffers <= lodirtybuffers) {
2273 			/*
2274 			 * We reached our low water mark, reset the
2275 			 * request and sleep until we are needed again.
2276 			 * The sleep is just so the suspend code works.
2277 			 */
2278 			bd_request = 0;
2279 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2280 		} else {
2281 			/*
2282 			 * We couldn't find any flushable dirty buffers but
2283 			 * still have too many dirty buffers, we
2284 			 * have to sleep and try again.  (rare)
2285 			 */
2286 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2287 		}
2288 	}
2289 }
2290 
2291 /*
2292  *	flushbufqueues:
2293  *
2294  *	Try to flush a buffer in the dirty queue.  We must be careful to
2295  *	free up B_INVAL buffers instead of write them, which NFS is
2296  *	particularly sensitive to.
2297  */
2298 static int flushwithdeps = 0;
2299 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2300     0, "Number of buffers flushed with dependecies that require rollbacks");
2301 
2302 static int
2303 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2304 {
2305 	struct buf *sentinel;
2306 	struct vnode *vp;
2307 	struct mount *mp;
2308 	struct buf *bp;
2309 	int hasdeps;
2310 	int flushed;
2311 	int target;
2312 
2313 	if (lvp == NULL) {
2314 		target = numdirtybuffers - lodirtybuffers;
2315 		if (flushdeps && target > 2)
2316 			target /= 2;
2317 	} else
2318 		target = flushbufqtarget;
2319 	flushed = 0;
2320 	bp = NULL;
2321 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2322 	sentinel->b_qindex = QUEUE_SENTINEL;
2323 	mtx_lock(&bqlock);
2324 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2325 	while (flushed != target) {
2326 		bp = TAILQ_NEXT(sentinel, b_freelist);
2327 		if (bp != NULL) {
2328 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2329 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2330 			    b_freelist);
2331 		} else
2332 			break;
2333 		/*
2334 		 * Skip sentinels inserted by other invocations of the
2335 		 * flushbufqueues(), taking care to not reorder them.
2336 		 */
2337 		if (bp->b_qindex == QUEUE_SENTINEL)
2338 			continue;
2339 		/*
2340 		 * Only flush the buffers that belong to the
2341 		 * vnode locked by the curthread.
2342 		 */
2343 		if (lvp != NULL && bp->b_vp != lvp)
2344 			continue;
2345 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2346 			continue;
2347 		if (bp->b_pin_count > 0) {
2348 			BUF_UNLOCK(bp);
2349 			continue;
2350 		}
2351 		BO_LOCK(bp->b_bufobj);
2352 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2353 		    (bp->b_flags & B_DELWRI) == 0) {
2354 			BO_UNLOCK(bp->b_bufobj);
2355 			BUF_UNLOCK(bp);
2356 			continue;
2357 		}
2358 		BO_UNLOCK(bp->b_bufobj);
2359 		if (bp->b_flags & B_INVAL) {
2360 			bremfreel(bp);
2361 			mtx_unlock(&bqlock);
2362 			brelse(bp);
2363 			flushed++;
2364 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2365 			mtx_lock(&bqlock);
2366 			continue;
2367 		}
2368 
2369 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2370 			if (flushdeps == 0) {
2371 				BUF_UNLOCK(bp);
2372 				continue;
2373 			}
2374 			hasdeps = 1;
2375 		} else
2376 			hasdeps = 0;
2377 		/*
2378 		 * We must hold the lock on a vnode before writing
2379 		 * one of its buffers. Otherwise we may confuse, or
2380 		 * in the case of a snapshot vnode, deadlock the
2381 		 * system.
2382 		 *
2383 		 * The lock order here is the reverse of the normal
2384 		 * of vnode followed by buf lock.  This is ok because
2385 		 * the NOWAIT will prevent deadlock.
2386 		 */
2387 		vp = bp->b_vp;
2388 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2389 			BUF_UNLOCK(bp);
2390 			continue;
2391 		}
2392 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2393 			mtx_unlock(&bqlock);
2394 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2395 			    bp, bp->b_vp, bp->b_flags);
2396 			if (curproc == bufdaemonproc)
2397 				vfs_bio_awrite(bp);
2398 			else {
2399 				bremfree(bp);
2400 				bwrite(bp);
2401 				notbufdflashes++;
2402 			}
2403 			vn_finished_write(mp);
2404 			VOP_UNLOCK(vp, 0);
2405 			flushwithdeps += hasdeps;
2406 			flushed++;
2407 
2408 			/*
2409 			 * Sleeping on runningbufspace while holding
2410 			 * vnode lock leads to deadlock.
2411 			 */
2412 			if (curproc == bufdaemonproc)
2413 				waitrunningbufspace();
2414 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2415 			mtx_lock(&bqlock);
2416 			continue;
2417 		}
2418 		vn_finished_write(mp);
2419 		BUF_UNLOCK(bp);
2420 	}
2421 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2422 	mtx_unlock(&bqlock);
2423 	free(sentinel, M_TEMP);
2424 	return (flushed);
2425 }
2426 
2427 /*
2428  * Check to see if a block is currently memory resident.
2429  */
2430 struct buf *
2431 incore(struct bufobj *bo, daddr_t blkno)
2432 {
2433 	struct buf *bp;
2434 
2435 	BO_LOCK(bo);
2436 	bp = gbincore(bo, blkno);
2437 	BO_UNLOCK(bo);
2438 	return (bp);
2439 }
2440 
2441 /*
2442  * Returns true if no I/O is needed to access the
2443  * associated VM object.  This is like incore except
2444  * it also hunts around in the VM system for the data.
2445  */
2446 
2447 static int
2448 inmem(struct vnode * vp, daddr_t blkno)
2449 {
2450 	vm_object_t obj;
2451 	vm_offset_t toff, tinc, size;
2452 	vm_page_t m;
2453 	vm_ooffset_t off;
2454 
2455 	ASSERT_VOP_LOCKED(vp, "inmem");
2456 
2457 	if (incore(&vp->v_bufobj, blkno))
2458 		return 1;
2459 	if (vp->v_mount == NULL)
2460 		return 0;
2461 	obj = vp->v_object;
2462 	if (obj == NULL)
2463 		return (0);
2464 
2465 	size = PAGE_SIZE;
2466 	if (size > vp->v_mount->mnt_stat.f_iosize)
2467 		size = vp->v_mount->mnt_stat.f_iosize;
2468 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2469 
2470 	VM_OBJECT_LOCK(obj);
2471 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2472 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2473 		if (!m)
2474 			goto notinmem;
2475 		tinc = size;
2476 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2477 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2478 		if (vm_page_is_valid(m,
2479 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2480 			goto notinmem;
2481 	}
2482 	VM_OBJECT_UNLOCK(obj);
2483 	return 1;
2484 
2485 notinmem:
2486 	VM_OBJECT_UNLOCK(obj);
2487 	return (0);
2488 }
2489 
2490 /*
2491  * Set the dirty range for a buffer based on the status of the dirty
2492  * bits in the pages comprising the buffer.  The range is limited
2493  * to the size of the buffer.
2494  *
2495  * Tell the VM system that the pages associated with this buffer
2496  * are clean.  This is used for delayed writes where the data is
2497  * going to go to disk eventually without additional VM intevention.
2498  *
2499  * Note that while we only really need to clean through to b_bcount, we
2500  * just go ahead and clean through to b_bufsize.
2501  */
2502 static void
2503 vfs_clean_pages_dirty_buf(struct buf *bp)
2504 {
2505 	vm_ooffset_t foff, noff, eoff;
2506 	vm_page_t m;
2507 	int i;
2508 
2509 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2510 		return;
2511 
2512 	foff = bp->b_offset;
2513 	KASSERT(bp->b_offset != NOOFFSET,
2514 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2515 
2516 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2517 	vfs_drain_busy_pages(bp);
2518 	vfs_setdirty_locked_object(bp);
2519 	for (i = 0; i < bp->b_npages; i++) {
2520 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2521 		eoff = noff;
2522 		if (eoff > bp->b_offset + bp->b_bufsize)
2523 			eoff = bp->b_offset + bp->b_bufsize;
2524 		m = bp->b_pages[i];
2525 		vfs_page_set_validclean(bp, foff, m);
2526 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2527 		foff = noff;
2528 	}
2529 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2530 }
2531 
2532 static void
2533 vfs_setdirty_locked_object(struct buf *bp)
2534 {
2535 	vm_object_t object;
2536 	int i;
2537 
2538 	object = bp->b_bufobj->bo_object;
2539 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2540 
2541 	/*
2542 	 * We qualify the scan for modified pages on whether the
2543 	 * object has been flushed yet.
2544 	 */
2545 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2546 		vm_offset_t boffset;
2547 		vm_offset_t eoffset;
2548 
2549 		/*
2550 		 * test the pages to see if they have been modified directly
2551 		 * by users through the VM system.
2552 		 */
2553 		for (i = 0; i < bp->b_npages; i++)
2554 			vm_page_test_dirty(bp->b_pages[i]);
2555 
2556 		/*
2557 		 * Calculate the encompassing dirty range, boffset and eoffset,
2558 		 * (eoffset - boffset) bytes.
2559 		 */
2560 
2561 		for (i = 0; i < bp->b_npages; i++) {
2562 			if (bp->b_pages[i]->dirty)
2563 				break;
2564 		}
2565 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2566 
2567 		for (i = bp->b_npages - 1; i >= 0; --i) {
2568 			if (bp->b_pages[i]->dirty) {
2569 				break;
2570 			}
2571 		}
2572 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2573 
2574 		/*
2575 		 * Fit it to the buffer.
2576 		 */
2577 
2578 		if (eoffset > bp->b_bcount)
2579 			eoffset = bp->b_bcount;
2580 
2581 		/*
2582 		 * If we have a good dirty range, merge with the existing
2583 		 * dirty range.
2584 		 */
2585 
2586 		if (boffset < eoffset) {
2587 			if (bp->b_dirtyoff > boffset)
2588 				bp->b_dirtyoff = boffset;
2589 			if (bp->b_dirtyend < eoffset)
2590 				bp->b_dirtyend = eoffset;
2591 		}
2592 	}
2593 }
2594 
2595 /*
2596  *	getblk:
2597  *
2598  *	Get a block given a specified block and offset into a file/device.
2599  *	The buffers B_DONE bit will be cleared on return, making it almost
2600  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2601  *	return.  The caller should clear B_INVAL prior to initiating a
2602  *	READ.
2603  *
2604  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2605  *	an existing buffer.
2606  *
2607  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2608  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2609  *	and then cleared based on the backing VM.  If the previous buffer is
2610  *	non-0-sized but invalid, B_CACHE will be cleared.
2611  *
2612  *	If getblk() must create a new buffer, the new buffer is returned with
2613  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2614  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2615  *	backing VM.
2616  *
2617  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2618  *	B_CACHE bit is clear.
2619  *
2620  *	What this means, basically, is that the caller should use B_CACHE to
2621  *	determine whether the buffer is fully valid or not and should clear
2622  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2623  *	the buffer by loading its data area with something, the caller needs
2624  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2625  *	the caller should set B_CACHE ( as an optimization ), else the caller
2626  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2627  *	a write attempt or if it was a successfull read.  If the caller
2628  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2629  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2630  */
2631 struct buf *
2632 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2633     int flags)
2634 {
2635 	struct buf *bp;
2636 	struct bufobj *bo;
2637 	int error;
2638 
2639 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2640 	ASSERT_VOP_LOCKED(vp, "getblk");
2641 	if (size > MAXBSIZE)
2642 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2643 
2644 	bo = &vp->v_bufobj;
2645 loop:
2646 	/*
2647 	 * Block if we are low on buffers.   Certain processes are allowed
2648 	 * to completely exhaust the buffer cache.
2649          *
2650          * If this check ever becomes a bottleneck it may be better to
2651          * move it into the else, when gbincore() fails.  At the moment
2652          * it isn't a problem.
2653          */
2654 	if (numfreebuffers == 0) {
2655 		if (TD_IS_IDLETHREAD(curthread))
2656 			return NULL;
2657 		mtx_lock(&nblock);
2658 		needsbuffer |= VFS_BIO_NEED_ANY;
2659 		mtx_unlock(&nblock);
2660 	}
2661 
2662 	BO_LOCK(bo);
2663 	bp = gbincore(bo, blkno);
2664 	if (bp != NULL) {
2665 		int lockflags;
2666 		/*
2667 		 * Buffer is in-core.  If the buffer is not busy nor managed,
2668 		 * it must be on a queue.
2669 		 */
2670 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2671 
2672 		if (flags & GB_LOCK_NOWAIT)
2673 			lockflags |= LK_NOWAIT;
2674 
2675 		error = BUF_TIMELOCK(bp, lockflags,
2676 		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2677 
2678 		/*
2679 		 * If we slept and got the lock we have to restart in case
2680 		 * the buffer changed identities.
2681 		 */
2682 		if (error == ENOLCK)
2683 			goto loop;
2684 		/* We timed out or were interrupted. */
2685 		else if (error)
2686 			return (NULL);
2687 		/* If recursed, assume caller knows the rules. */
2688 		else if (BUF_LOCKRECURSED(bp))
2689 			goto end;
2690 
2691 		/*
2692 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2693 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2694 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2695 		 * backing VM cache.
2696 		 */
2697 		if (bp->b_flags & B_INVAL)
2698 			bp->b_flags &= ~B_CACHE;
2699 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2700 			bp->b_flags |= B_CACHE;
2701 		if (bp->b_flags & B_MANAGED)
2702 			MPASS(bp->b_qindex == QUEUE_NONE);
2703 		else {
2704 			BO_LOCK(bo);
2705 			bremfree(bp);
2706 			BO_UNLOCK(bo);
2707 		}
2708 
2709 		/*
2710 		 * check for size inconsistancies for non-VMIO case.
2711 		 */
2712 
2713 		if (bp->b_bcount != size) {
2714 			if ((bp->b_flags & B_VMIO) == 0 ||
2715 			    (size > bp->b_kvasize)) {
2716 				if (bp->b_flags & B_DELWRI) {
2717 					/*
2718 					 * If buffer is pinned and caller does
2719 					 * not want sleep  waiting for it to be
2720 					 * unpinned, bail out
2721 					 * */
2722 					if (bp->b_pin_count > 0) {
2723 						if (flags & GB_LOCK_NOWAIT) {
2724 							bqrelse(bp);
2725 							return (NULL);
2726 						} else {
2727 							bunpin_wait(bp);
2728 						}
2729 					}
2730 					bp->b_flags |= B_NOCACHE;
2731 					bwrite(bp);
2732 				} else {
2733 					if (LIST_EMPTY(&bp->b_dep)) {
2734 						bp->b_flags |= B_RELBUF;
2735 						brelse(bp);
2736 					} else {
2737 						bp->b_flags |= B_NOCACHE;
2738 						bwrite(bp);
2739 					}
2740 				}
2741 				goto loop;
2742 			}
2743 		}
2744 
2745 		/*
2746 		 * If the size is inconsistant in the VMIO case, we can resize
2747 		 * the buffer.  This might lead to B_CACHE getting set or
2748 		 * cleared.  If the size has not changed, B_CACHE remains
2749 		 * unchanged from its previous state.
2750 		 */
2751 
2752 		if (bp->b_bcount != size)
2753 			allocbuf(bp, size);
2754 
2755 		KASSERT(bp->b_offset != NOOFFSET,
2756 		    ("getblk: no buffer offset"));
2757 
2758 		/*
2759 		 * A buffer with B_DELWRI set and B_CACHE clear must
2760 		 * be committed before we can return the buffer in
2761 		 * order to prevent the caller from issuing a read
2762 		 * ( due to B_CACHE not being set ) and overwriting
2763 		 * it.
2764 		 *
2765 		 * Most callers, including NFS and FFS, need this to
2766 		 * operate properly either because they assume they
2767 		 * can issue a read if B_CACHE is not set, or because
2768 		 * ( for example ) an uncached B_DELWRI might loop due
2769 		 * to softupdates re-dirtying the buffer.  In the latter
2770 		 * case, B_CACHE is set after the first write completes,
2771 		 * preventing further loops.
2772 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2773 		 * above while extending the buffer, we cannot allow the
2774 		 * buffer to remain with B_CACHE set after the write
2775 		 * completes or it will represent a corrupt state.  To
2776 		 * deal with this we set B_NOCACHE to scrap the buffer
2777 		 * after the write.
2778 		 *
2779 		 * We might be able to do something fancy, like setting
2780 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2781 		 * so the below call doesn't set B_CACHE, but that gets real
2782 		 * confusing.  This is much easier.
2783 		 */
2784 
2785 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2786 			bp->b_flags |= B_NOCACHE;
2787 			bwrite(bp);
2788 			goto loop;
2789 		}
2790 		bp->b_flags &= ~B_DONE;
2791 	} else {
2792 		int bsize, maxsize, vmio;
2793 		off_t offset;
2794 
2795 		/*
2796 		 * Buffer is not in-core, create new buffer.  The buffer
2797 		 * returned by getnewbuf() is locked.  Note that the returned
2798 		 * buffer is also considered valid (not marked B_INVAL).
2799 		 */
2800 		BO_UNLOCK(bo);
2801 		/*
2802 		 * If the user does not want us to create the buffer, bail out
2803 		 * here.
2804 		 */
2805 		if (flags & GB_NOCREAT)
2806 			return NULL;
2807 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2808 		offset = blkno * bsize;
2809 		vmio = vp->v_object != NULL;
2810 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2811 		maxsize = imax(maxsize, bsize);
2812 
2813 		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2814 		if (bp == NULL) {
2815 			if (slpflag || slptimeo)
2816 				return NULL;
2817 			goto loop;
2818 		}
2819 
2820 		/*
2821 		 * This code is used to make sure that a buffer is not
2822 		 * created while the getnewbuf routine is blocked.
2823 		 * This can be a problem whether the vnode is locked or not.
2824 		 * If the buffer is created out from under us, we have to
2825 		 * throw away the one we just created.
2826 		 *
2827 		 * Note: this must occur before we associate the buffer
2828 		 * with the vp especially considering limitations in
2829 		 * the splay tree implementation when dealing with duplicate
2830 		 * lblkno's.
2831 		 */
2832 		BO_LOCK(bo);
2833 		if (gbincore(bo, blkno)) {
2834 			BO_UNLOCK(bo);
2835 			bp->b_flags |= B_INVAL;
2836 			brelse(bp);
2837 			goto loop;
2838 		}
2839 
2840 		/*
2841 		 * Insert the buffer into the hash, so that it can
2842 		 * be found by incore.
2843 		 */
2844 		bp->b_blkno = bp->b_lblkno = blkno;
2845 		bp->b_offset = offset;
2846 		bgetvp(vp, bp);
2847 		BO_UNLOCK(bo);
2848 
2849 		/*
2850 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2851 		 * buffer size starts out as 0, B_CACHE will be set by
2852 		 * allocbuf() for the VMIO case prior to it testing the
2853 		 * backing store for validity.
2854 		 */
2855 
2856 		if (vmio) {
2857 			bp->b_flags |= B_VMIO;
2858 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2859 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2860 			    bp, vp->v_object, bp->b_bufobj->bo_object));
2861 		} else {
2862 			bp->b_flags &= ~B_VMIO;
2863 			KASSERT(bp->b_bufobj->bo_object == NULL,
2864 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2865 			    bp, bp->b_bufobj->bo_object));
2866 		}
2867 
2868 		allocbuf(bp, size);
2869 		bp->b_flags &= ~B_DONE;
2870 	}
2871 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2872 	BUF_ASSERT_HELD(bp);
2873 end:
2874 	KASSERT(bp->b_bufobj == bo,
2875 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2876 	return (bp);
2877 }
2878 
2879 /*
2880  * Get an empty, disassociated buffer of given size.  The buffer is initially
2881  * set to B_INVAL.
2882  */
2883 struct buf *
2884 geteblk(int size, int flags)
2885 {
2886 	struct buf *bp;
2887 	int maxsize;
2888 
2889 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2890 	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2891 		if ((flags & GB_NOWAIT_BD) &&
2892 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2893 			return (NULL);
2894 	}
2895 	allocbuf(bp, size);
2896 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2897 	BUF_ASSERT_HELD(bp);
2898 	return (bp);
2899 }
2900 
2901 
2902 /*
2903  * This code constitutes the buffer memory from either anonymous system
2904  * memory (in the case of non-VMIO operations) or from an associated
2905  * VM object (in the case of VMIO operations).  This code is able to
2906  * resize a buffer up or down.
2907  *
2908  * Note that this code is tricky, and has many complications to resolve
2909  * deadlock or inconsistant data situations.  Tread lightly!!!
2910  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2911  * the caller.  Calling this code willy nilly can result in the loss of data.
2912  *
2913  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2914  * B_CACHE for the non-VMIO case.
2915  */
2916 
2917 int
2918 allocbuf(struct buf *bp, int size)
2919 {
2920 	int newbsize, mbsize;
2921 	int i;
2922 
2923 	BUF_ASSERT_HELD(bp);
2924 
2925 	if (bp->b_kvasize < size)
2926 		panic("allocbuf: buffer too small");
2927 
2928 	if ((bp->b_flags & B_VMIO) == 0) {
2929 		caddr_t origbuf;
2930 		int origbufsize;
2931 		/*
2932 		 * Just get anonymous memory from the kernel.  Don't
2933 		 * mess with B_CACHE.
2934 		 */
2935 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2936 		if (bp->b_flags & B_MALLOC)
2937 			newbsize = mbsize;
2938 		else
2939 			newbsize = round_page(size);
2940 
2941 		if (newbsize < bp->b_bufsize) {
2942 			/*
2943 			 * malloced buffers are not shrunk
2944 			 */
2945 			if (bp->b_flags & B_MALLOC) {
2946 				if (newbsize) {
2947 					bp->b_bcount = size;
2948 				} else {
2949 					free(bp->b_data, M_BIOBUF);
2950 					if (bp->b_bufsize) {
2951 						atomic_subtract_long(
2952 						    &bufmallocspace,
2953 						    bp->b_bufsize);
2954 						bufspacewakeup();
2955 						bp->b_bufsize = 0;
2956 					}
2957 					bp->b_saveaddr = bp->b_kvabase;
2958 					bp->b_data = bp->b_saveaddr;
2959 					bp->b_bcount = 0;
2960 					bp->b_flags &= ~B_MALLOC;
2961 				}
2962 				return 1;
2963 			}
2964 			vm_hold_free_pages(bp, newbsize);
2965 		} else if (newbsize > bp->b_bufsize) {
2966 			/*
2967 			 * We only use malloced memory on the first allocation.
2968 			 * and revert to page-allocated memory when the buffer
2969 			 * grows.
2970 			 */
2971 			/*
2972 			 * There is a potential smp race here that could lead
2973 			 * to bufmallocspace slightly passing the max.  It
2974 			 * is probably extremely rare and not worth worrying
2975 			 * over.
2976 			 */
2977 			if ( (bufmallocspace < maxbufmallocspace) &&
2978 				(bp->b_bufsize == 0) &&
2979 				(mbsize <= PAGE_SIZE/2)) {
2980 
2981 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2982 				bp->b_bufsize = mbsize;
2983 				bp->b_bcount = size;
2984 				bp->b_flags |= B_MALLOC;
2985 				atomic_add_long(&bufmallocspace, mbsize);
2986 				return 1;
2987 			}
2988 			origbuf = NULL;
2989 			origbufsize = 0;
2990 			/*
2991 			 * If the buffer is growing on its other-than-first allocation,
2992 			 * then we revert to the page-allocation scheme.
2993 			 */
2994 			if (bp->b_flags & B_MALLOC) {
2995 				origbuf = bp->b_data;
2996 				origbufsize = bp->b_bufsize;
2997 				bp->b_data = bp->b_kvabase;
2998 				if (bp->b_bufsize) {
2999 					atomic_subtract_long(&bufmallocspace,
3000 					    bp->b_bufsize);
3001 					bufspacewakeup();
3002 					bp->b_bufsize = 0;
3003 				}
3004 				bp->b_flags &= ~B_MALLOC;
3005 				newbsize = round_page(newbsize);
3006 			}
3007 			vm_hold_load_pages(
3008 			    bp,
3009 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3010 			    (vm_offset_t) bp->b_data + newbsize);
3011 			if (origbuf) {
3012 				bcopy(origbuf, bp->b_data, origbufsize);
3013 				free(origbuf, M_BIOBUF);
3014 			}
3015 		}
3016 	} else {
3017 		int desiredpages;
3018 
3019 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3020 		desiredpages = (size == 0) ? 0 :
3021 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3022 
3023 		if (bp->b_flags & B_MALLOC)
3024 			panic("allocbuf: VMIO buffer can't be malloced");
3025 		/*
3026 		 * Set B_CACHE initially if buffer is 0 length or will become
3027 		 * 0-length.
3028 		 */
3029 		if (size == 0 || bp->b_bufsize == 0)
3030 			bp->b_flags |= B_CACHE;
3031 
3032 		if (newbsize < bp->b_bufsize) {
3033 			/*
3034 			 * DEV_BSIZE aligned new buffer size is less then the
3035 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3036 			 * if we have to remove any pages.
3037 			 */
3038 			if (desiredpages < bp->b_npages) {
3039 				vm_page_t m;
3040 
3041 				pmap_qremove((vm_offset_t)trunc_page(
3042 				    (vm_offset_t)bp->b_data) +
3043 				    (desiredpages << PAGE_SHIFT),
3044 				    (bp->b_npages - desiredpages));
3045 				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3046 				for (i = desiredpages; i < bp->b_npages; i++) {
3047 					/*
3048 					 * the page is not freed here -- it
3049 					 * is the responsibility of
3050 					 * vnode_pager_setsize
3051 					 */
3052 					m = bp->b_pages[i];
3053 					KASSERT(m != bogus_page,
3054 					    ("allocbuf: bogus page found"));
3055 					while (vm_page_sleep_if_busy(m, TRUE,
3056 					    "biodep"))
3057 						continue;
3058 
3059 					bp->b_pages[i] = NULL;
3060 					vm_page_lock(m);
3061 					vm_page_unwire(m, 0);
3062 					vm_page_unlock(m);
3063 				}
3064 				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3065 				bp->b_npages = desiredpages;
3066 			}
3067 		} else if (size > bp->b_bcount) {
3068 			/*
3069 			 * We are growing the buffer, possibly in a
3070 			 * byte-granular fashion.
3071 			 */
3072 			vm_object_t obj;
3073 			vm_offset_t toff;
3074 			vm_offset_t tinc;
3075 
3076 			/*
3077 			 * Step 1, bring in the VM pages from the object,
3078 			 * allocating them if necessary.  We must clear
3079 			 * B_CACHE if these pages are not valid for the
3080 			 * range covered by the buffer.
3081 			 */
3082 
3083 			obj = bp->b_bufobj->bo_object;
3084 
3085 			VM_OBJECT_LOCK(obj);
3086 			while (bp->b_npages < desiredpages) {
3087 				vm_page_t m;
3088 
3089 				/*
3090 				 * We must allocate system pages since blocking
3091 				 * here could interfere with paging I/O, no
3092 				 * matter which process we are.
3093 				 *
3094 				 * We can only test VPO_BUSY here.  Blocking on
3095 				 * m->busy might lead to a deadlock:
3096 				 *  vm_fault->getpages->cluster_read->allocbuf
3097 				 * Thus, we specify VM_ALLOC_IGN_SBUSY.
3098 				 */
3099 				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3100 				    bp->b_npages, VM_ALLOC_NOBUSY |
3101 				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3102 				    VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
3103 				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3104 				if (m->valid == 0)
3105 					bp->b_flags &= ~B_CACHE;
3106 				bp->b_pages[bp->b_npages] = m;
3107 				++bp->b_npages;
3108 			}
3109 
3110 			/*
3111 			 * Step 2.  We've loaded the pages into the buffer,
3112 			 * we have to figure out if we can still have B_CACHE
3113 			 * set.  Note that B_CACHE is set according to the
3114 			 * byte-granular range ( bcount and size ), new the
3115 			 * aligned range ( newbsize ).
3116 			 *
3117 			 * The VM test is against m->valid, which is DEV_BSIZE
3118 			 * aligned.  Needless to say, the validity of the data
3119 			 * needs to also be DEV_BSIZE aligned.  Note that this
3120 			 * fails with NFS if the server or some other client
3121 			 * extends the file's EOF.  If our buffer is resized,
3122 			 * B_CACHE may remain set! XXX
3123 			 */
3124 
3125 			toff = bp->b_bcount;
3126 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3127 
3128 			while ((bp->b_flags & B_CACHE) && toff < size) {
3129 				vm_pindex_t pi;
3130 
3131 				if (tinc > (size - toff))
3132 					tinc = size - toff;
3133 
3134 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3135 				    PAGE_SHIFT;
3136 
3137 				vfs_buf_test_cache(
3138 				    bp,
3139 				    bp->b_offset,
3140 				    toff,
3141 				    tinc,
3142 				    bp->b_pages[pi]
3143 				);
3144 				toff += tinc;
3145 				tinc = PAGE_SIZE;
3146 			}
3147 			VM_OBJECT_UNLOCK(obj);
3148 
3149 			/*
3150 			 * Step 3, fixup the KVM pmap.  Remember that
3151 			 * bp->b_data is relative to bp->b_offset, but
3152 			 * bp->b_offset may be offset into the first page.
3153 			 */
3154 
3155 			bp->b_data = (caddr_t)
3156 			    trunc_page((vm_offset_t)bp->b_data);
3157 			pmap_qenter(
3158 			    (vm_offset_t)bp->b_data,
3159 			    bp->b_pages,
3160 			    bp->b_npages
3161 			);
3162 
3163 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3164 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3165 		}
3166 	}
3167 	if (newbsize < bp->b_bufsize)
3168 		bufspacewakeup();
3169 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3170 	bp->b_bcount = size;		/* requested buffer size	*/
3171 	return 1;
3172 }
3173 
3174 void
3175 biodone(struct bio *bp)
3176 {
3177 	struct mtx *mtxp;
3178 	void (*done)(struct bio *);
3179 
3180 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3181 	mtx_lock(mtxp);
3182 	bp->bio_flags |= BIO_DONE;
3183 	done = bp->bio_done;
3184 	if (done == NULL)
3185 		wakeup(bp);
3186 	mtx_unlock(mtxp);
3187 	if (done != NULL)
3188 		done(bp);
3189 }
3190 
3191 /*
3192  * Wait for a BIO to finish.
3193  *
3194  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3195  * case is not yet clear.
3196  */
3197 int
3198 biowait(struct bio *bp, const char *wchan)
3199 {
3200 	struct mtx *mtxp;
3201 
3202 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3203 	mtx_lock(mtxp);
3204 	while ((bp->bio_flags & BIO_DONE) == 0)
3205 		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3206 	mtx_unlock(mtxp);
3207 	if (bp->bio_error != 0)
3208 		return (bp->bio_error);
3209 	if (!(bp->bio_flags & BIO_ERROR))
3210 		return (0);
3211 	return (EIO);
3212 }
3213 
3214 void
3215 biofinish(struct bio *bp, struct devstat *stat, int error)
3216 {
3217 
3218 	if (error) {
3219 		bp->bio_error = error;
3220 		bp->bio_flags |= BIO_ERROR;
3221 	}
3222 	if (stat != NULL)
3223 		devstat_end_transaction_bio(stat, bp);
3224 	biodone(bp);
3225 }
3226 
3227 /*
3228  *	bufwait:
3229  *
3230  *	Wait for buffer I/O completion, returning error status.  The buffer
3231  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3232  *	error and cleared.
3233  */
3234 int
3235 bufwait(struct buf *bp)
3236 {
3237 	if (bp->b_iocmd == BIO_READ)
3238 		bwait(bp, PRIBIO, "biord");
3239 	else
3240 		bwait(bp, PRIBIO, "biowr");
3241 	if (bp->b_flags & B_EINTR) {
3242 		bp->b_flags &= ~B_EINTR;
3243 		return (EINTR);
3244 	}
3245 	if (bp->b_ioflags & BIO_ERROR) {
3246 		return (bp->b_error ? bp->b_error : EIO);
3247 	} else {
3248 		return (0);
3249 	}
3250 }
3251 
3252  /*
3253   * Call back function from struct bio back up to struct buf.
3254   */
3255 static void
3256 bufdonebio(struct bio *bip)
3257 {
3258 	struct buf *bp;
3259 
3260 	bp = bip->bio_caller2;
3261 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3262 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3263 	bp->b_ioflags = bip->bio_flags;
3264 	bp->b_error = bip->bio_error;
3265 	if (bp->b_error)
3266 		bp->b_ioflags |= BIO_ERROR;
3267 	bufdone(bp);
3268 	g_destroy_bio(bip);
3269 }
3270 
3271 void
3272 dev_strategy(struct cdev *dev, struct buf *bp)
3273 {
3274 	struct cdevsw *csw;
3275 	struct bio *bip;
3276 	int ref;
3277 
3278 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3279 		panic("b_iocmd botch");
3280 	for (;;) {
3281 		bip = g_new_bio();
3282 		if (bip != NULL)
3283 			break;
3284 		/* Try again later */
3285 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3286 	}
3287 	bip->bio_cmd = bp->b_iocmd;
3288 	bip->bio_offset = bp->b_iooffset;
3289 	bip->bio_length = bp->b_bcount;
3290 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3291 	bip->bio_data = bp->b_data;
3292 	bip->bio_done = bufdonebio;
3293 	bip->bio_caller2 = bp;
3294 	bip->bio_dev = dev;
3295 	KASSERT(dev->si_refcount > 0,
3296 	    ("dev_strategy on un-referenced struct cdev *(%s)",
3297 	    devtoname(dev)));
3298 	csw = dev_refthread(dev, &ref);
3299 	if (csw == NULL) {
3300 		g_destroy_bio(bip);
3301 		bp->b_error = ENXIO;
3302 		bp->b_ioflags = BIO_ERROR;
3303 		bufdone(bp);
3304 		return;
3305 	}
3306 	(*csw->d_strategy)(bip);
3307 	dev_relthread(dev, ref);
3308 }
3309 
3310 /*
3311  *	bufdone:
3312  *
3313  *	Finish I/O on a buffer, optionally calling a completion function.
3314  *	This is usually called from an interrupt so process blocking is
3315  *	not allowed.
3316  *
3317  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3318  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3319  *	assuming B_INVAL is clear.
3320  *
3321  *	For the VMIO case, we set B_CACHE if the op was a read and no
3322  *	read error occured, or if the op was a write.  B_CACHE is never
3323  *	set if the buffer is invalid or otherwise uncacheable.
3324  *
3325  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3326  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3327  *	in the biodone routine.
3328  */
3329 void
3330 bufdone(struct buf *bp)
3331 {
3332 	struct bufobj *dropobj;
3333 	void    (*biodone)(struct buf *);
3334 
3335 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3336 	dropobj = NULL;
3337 
3338 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3339 	BUF_ASSERT_HELD(bp);
3340 
3341 	runningbufwakeup(bp);
3342 	if (bp->b_iocmd == BIO_WRITE)
3343 		dropobj = bp->b_bufobj;
3344 	/* call optional completion function if requested */
3345 	if (bp->b_iodone != NULL) {
3346 		biodone = bp->b_iodone;
3347 		bp->b_iodone = NULL;
3348 		(*biodone) (bp);
3349 		if (dropobj)
3350 			bufobj_wdrop(dropobj);
3351 		return;
3352 	}
3353 
3354 	bufdone_finish(bp);
3355 
3356 	if (dropobj)
3357 		bufobj_wdrop(dropobj);
3358 }
3359 
3360 void
3361 bufdone_finish(struct buf *bp)
3362 {
3363 	BUF_ASSERT_HELD(bp);
3364 
3365 	if (!LIST_EMPTY(&bp->b_dep))
3366 		buf_complete(bp);
3367 
3368 	if (bp->b_flags & B_VMIO) {
3369 		vm_ooffset_t foff;
3370 		vm_page_t m;
3371 		vm_object_t obj;
3372 		struct vnode *vp;
3373 		int bogus, i, iosize;
3374 
3375 		obj = bp->b_bufobj->bo_object;
3376 		KASSERT(obj->paging_in_progress >= bp->b_npages,
3377 		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3378 		    obj->paging_in_progress, bp->b_npages));
3379 
3380 		vp = bp->b_vp;
3381 		KASSERT(vp->v_holdcnt > 0,
3382 		    ("biodone_finish: vnode %p has zero hold count", vp));
3383 		KASSERT(vp->v_object != NULL,
3384 		    ("biodone_finish: vnode %p has no vm_object", vp));
3385 
3386 		foff = bp->b_offset;
3387 		KASSERT(bp->b_offset != NOOFFSET,
3388 		    ("biodone_finish: bp %p has no buffer offset", bp));
3389 
3390 		/*
3391 		 * Set B_CACHE if the op was a normal read and no error
3392 		 * occured.  B_CACHE is set for writes in the b*write()
3393 		 * routines.
3394 		 */
3395 		iosize = bp->b_bcount - bp->b_resid;
3396 		if (bp->b_iocmd == BIO_READ &&
3397 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3398 		    !(bp->b_ioflags & BIO_ERROR)) {
3399 			bp->b_flags |= B_CACHE;
3400 		}
3401 		bogus = 0;
3402 		VM_OBJECT_LOCK(obj);
3403 		for (i = 0; i < bp->b_npages; i++) {
3404 			int bogusflag = 0;
3405 			int resid;
3406 
3407 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3408 			if (resid > iosize)
3409 				resid = iosize;
3410 
3411 			/*
3412 			 * cleanup bogus pages, restoring the originals
3413 			 */
3414 			m = bp->b_pages[i];
3415 			if (m == bogus_page) {
3416 				bogus = bogusflag = 1;
3417 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3418 				if (m == NULL)
3419 					panic("biodone: page disappeared!");
3420 				bp->b_pages[i] = m;
3421 			}
3422 			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3423 			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3424 			    (intmax_t)foff, (uintmax_t)m->pindex));
3425 
3426 			/*
3427 			 * In the write case, the valid and clean bits are
3428 			 * already changed correctly ( see bdwrite() ), so we
3429 			 * only need to do this here in the read case.
3430 			 */
3431 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3432 				KASSERT((m->dirty & vm_page_bits(foff &
3433 				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3434 				    " page %p has unexpected dirty bits", m));
3435 				vfs_page_set_valid(bp, foff, m);
3436 			}
3437 
3438 			vm_page_io_finish(m);
3439 			vm_object_pip_subtract(obj, 1);
3440 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3441 			iosize -= resid;
3442 		}
3443 		vm_object_pip_wakeupn(obj, 0);
3444 		VM_OBJECT_UNLOCK(obj);
3445 		if (bogus)
3446 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3447 			    bp->b_pages, bp->b_npages);
3448 	}
3449 
3450 	/*
3451 	 * For asynchronous completions, release the buffer now. The brelse
3452 	 * will do a wakeup there if necessary - so no need to do a wakeup
3453 	 * here in the async case. The sync case always needs to do a wakeup.
3454 	 */
3455 
3456 	if (bp->b_flags & B_ASYNC) {
3457 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3458 			brelse(bp);
3459 		else
3460 			bqrelse(bp);
3461 	} else
3462 		bdone(bp);
3463 }
3464 
3465 /*
3466  * This routine is called in lieu of iodone in the case of
3467  * incomplete I/O.  This keeps the busy status for pages
3468  * consistant.
3469  */
3470 void
3471 vfs_unbusy_pages(struct buf *bp)
3472 {
3473 	int i;
3474 	vm_object_t obj;
3475 	vm_page_t m;
3476 
3477 	runningbufwakeup(bp);
3478 	if (!(bp->b_flags & B_VMIO))
3479 		return;
3480 
3481 	obj = bp->b_bufobj->bo_object;
3482 	VM_OBJECT_LOCK(obj);
3483 	for (i = 0; i < bp->b_npages; i++) {
3484 		m = bp->b_pages[i];
3485 		if (m == bogus_page) {
3486 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3487 			if (!m)
3488 				panic("vfs_unbusy_pages: page missing\n");
3489 			bp->b_pages[i] = m;
3490 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3491 			    bp->b_pages, bp->b_npages);
3492 		}
3493 		vm_object_pip_subtract(obj, 1);
3494 		vm_page_io_finish(m);
3495 	}
3496 	vm_object_pip_wakeupn(obj, 0);
3497 	VM_OBJECT_UNLOCK(obj);
3498 }
3499 
3500 /*
3501  * vfs_page_set_valid:
3502  *
3503  *	Set the valid bits in a page based on the supplied offset.   The
3504  *	range is restricted to the buffer's size.
3505  *
3506  *	This routine is typically called after a read completes.
3507  */
3508 static void
3509 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3510 {
3511 	vm_ooffset_t eoff;
3512 
3513 	/*
3514 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3515 	 * page boundary and eoff is not greater than the end of the buffer.
3516 	 * The end of the buffer, in this case, is our file EOF, not the
3517 	 * allocation size of the buffer.
3518 	 */
3519 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3520 	if (eoff > bp->b_offset + bp->b_bcount)
3521 		eoff = bp->b_offset + bp->b_bcount;
3522 
3523 	/*
3524 	 * Set valid range.  This is typically the entire buffer and thus the
3525 	 * entire page.
3526 	 */
3527 	if (eoff > off)
3528 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3529 }
3530 
3531 /*
3532  * vfs_page_set_validclean:
3533  *
3534  *	Set the valid bits and clear the dirty bits in a page based on the
3535  *	supplied offset.   The range is restricted to the buffer's size.
3536  */
3537 static void
3538 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3539 {
3540 	vm_ooffset_t soff, eoff;
3541 
3542 	/*
3543 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3544 	 * page boundry or cross the end of the buffer.  The end of the
3545 	 * buffer, in this case, is our file EOF, not the allocation size
3546 	 * of the buffer.
3547 	 */
3548 	soff = off;
3549 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3550 	if (eoff > bp->b_offset + bp->b_bcount)
3551 		eoff = bp->b_offset + bp->b_bcount;
3552 
3553 	/*
3554 	 * Set valid range.  This is typically the entire buffer and thus the
3555 	 * entire page.
3556 	 */
3557 	if (eoff > soff) {
3558 		vm_page_set_validclean(
3559 		    m,
3560 		   (vm_offset_t) (soff & PAGE_MASK),
3561 		   (vm_offset_t) (eoff - soff)
3562 		);
3563 	}
3564 }
3565 
3566 /*
3567  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
3568  * any page is busy, drain the flag.
3569  */
3570 static void
3571 vfs_drain_busy_pages(struct buf *bp)
3572 {
3573 	vm_page_t m;
3574 	int i, last_busied;
3575 
3576 	VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
3577 	last_busied = 0;
3578 	for (i = 0; i < bp->b_npages; i++) {
3579 		m = bp->b_pages[i];
3580 		if ((m->oflags & VPO_BUSY) != 0) {
3581 			for (; last_busied < i; last_busied++)
3582 				vm_page_busy(bp->b_pages[last_busied]);
3583 			while ((m->oflags & VPO_BUSY) != 0)
3584 				vm_page_sleep(m, "vbpage");
3585 		}
3586 	}
3587 	for (i = 0; i < last_busied; i++)
3588 		vm_page_wakeup(bp->b_pages[i]);
3589 }
3590 
3591 /*
3592  * This routine is called before a device strategy routine.
3593  * It is used to tell the VM system that paging I/O is in
3594  * progress, and treat the pages associated with the buffer
3595  * almost as being VPO_BUSY.  Also the object paging_in_progress
3596  * flag is handled to make sure that the object doesn't become
3597  * inconsistant.
3598  *
3599  * Since I/O has not been initiated yet, certain buffer flags
3600  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3601  * and should be ignored.
3602  */
3603 void
3604 vfs_busy_pages(struct buf *bp, int clear_modify)
3605 {
3606 	int i, bogus;
3607 	vm_object_t obj;
3608 	vm_ooffset_t foff;
3609 	vm_page_t m;
3610 
3611 	if (!(bp->b_flags & B_VMIO))
3612 		return;
3613 
3614 	obj = bp->b_bufobj->bo_object;
3615 	foff = bp->b_offset;
3616 	KASSERT(bp->b_offset != NOOFFSET,
3617 	    ("vfs_busy_pages: no buffer offset"));
3618 	VM_OBJECT_LOCK(obj);
3619 	vfs_drain_busy_pages(bp);
3620 	if (bp->b_bufsize != 0)
3621 		vfs_setdirty_locked_object(bp);
3622 	bogus = 0;
3623 	for (i = 0; i < bp->b_npages; i++) {
3624 		m = bp->b_pages[i];
3625 
3626 		if ((bp->b_flags & B_CLUSTER) == 0) {
3627 			vm_object_pip_add(obj, 1);
3628 			vm_page_io_start(m);
3629 		}
3630 		/*
3631 		 * When readying a buffer for a read ( i.e
3632 		 * clear_modify == 0 ), it is important to do
3633 		 * bogus_page replacement for valid pages in
3634 		 * partially instantiated buffers.  Partially
3635 		 * instantiated buffers can, in turn, occur when
3636 		 * reconstituting a buffer from its VM backing store
3637 		 * base.  We only have to do this if B_CACHE is
3638 		 * clear ( which causes the I/O to occur in the
3639 		 * first place ).  The replacement prevents the read
3640 		 * I/O from overwriting potentially dirty VM-backed
3641 		 * pages.  XXX bogus page replacement is, uh, bogus.
3642 		 * It may not work properly with small-block devices.
3643 		 * We need to find a better way.
3644 		 */
3645 		if (clear_modify) {
3646 			pmap_remove_write(m);
3647 			vfs_page_set_validclean(bp, foff, m);
3648 		} else if (m->valid == VM_PAGE_BITS_ALL &&
3649 		    (bp->b_flags & B_CACHE) == 0) {
3650 			bp->b_pages[i] = bogus_page;
3651 			bogus++;
3652 		}
3653 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3654 	}
3655 	VM_OBJECT_UNLOCK(obj);
3656 	if (bogus)
3657 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3658 		    bp->b_pages, bp->b_npages);
3659 }
3660 
3661 /*
3662  *	vfs_bio_set_valid:
3663  *
3664  *	Set the range within the buffer to valid.  The range is
3665  *	relative to the beginning of the buffer, b_offset.  Note that
3666  *	b_offset itself may be offset from the beginning of the first
3667  *	page.
3668  */
3669 void
3670 vfs_bio_set_valid(struct buf *bp, int base, int size)
3671 {
3672 	int i, n;
3673 	vm_page_t m;
3674 
3675 	if (!(bp->b_flags & B_VMIO))
3676 		return;
3677 
3678 	/*
3679 	 * Fixup base to be relative to beginning of first page.
3680 	 * Set initial n to be the maximum number of bytes in the
3681 	 * first page that can be validated.
3682 	 */
3683 	base += (bp->b_offset & PAGE_MASK);
3684 	n = PAGE_SIZE - (base & PAGE_MASK);
3685 
3686 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3687 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3688 		m = bp->b_pages[i];
3689 		if (n > size)
3690 			n = size;
3691 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
3692 		base += n;
3693 		size -= n;
3694 		n = PAGE_SIZE;
3695 	}
3696 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3697 }
3698 
3699 /*
3700  *	vfs_bio_clrbuf:
3701  *
3702  *	If the specified buffer is a non-VMIO buffer, clear the entire
3703  *	buffer.  If the specified buffer is a VMIO buffer, clear and
3704  *	validate only the previously invalid portions of the buffer.
3705  *	This routine essentially fakes an I/O, so we need to clear
3706  *	BIO_ERROR and B_INVAL.
3707  *
3708  *	Note that while we only theoretically need to clear through b_bcount,
3709  *	we go ahead and clear through b_bufsize.
3710  */
3711 void
3712 vfs_bio_clrbuf(struct buf *bp)
3713 {
3714 	int i, j, mask;
3715 	caddr_t sa, ea;
3716 
3717 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3718 		clrbuf(bp);
3719 		return;
3720 	}
3721 	bp->b_flags &= ~B_INVAL;
3722 	bp->b_ioflags &= ~BIO_ERROR;
3723 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3724 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3725 	    (bp->b_offset & PAGE_MASK) == 0) {
3726 		if (bp->b_pages[0] == bogus_page)
3727 			goto unlock;
3728 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3729 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3730 		if ((bp->b_pages[0]->valid & mask) == mask)
3731 			goto unlock;
3732 		if ((bp->b_pages[0]->valid & mask) == 0) {
3733 			bzero(bp->b_data, bp->b_bufsize);
3734 			bp->b_pages[0]->valid |= mask;
3735 			goto unlock;
3736 		}
3737 	}
3738 	ea = sa = bp->b_data;
3739 	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3740 		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3741 		ea = (caddr_t)(vm_offset_t)ulmin(
3742 		    (u_long)(vm_offset_t)ea,
3743 		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3744 		if (bp->b_pages[i] == bogus_page)
3745 			continue;
3746 		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3747 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3748 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3749 		if ((bp->b_pages[i]->valid & mask) == mask)
3750 			continue;
3751 		if ((bp->b_pages[i]->valid & mask) == 0)
3752 			bzero(sa, ea - sa);
3753 		else {
3754 			for (; sa < ea; sa += DEV_BSIZE, j++) {
3755 				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3756 					bzero(sa, DEV_BSIZE);
3757 			}
3758 		}
3759 		bp->b_pages[i]->valid |= mask;
3760 	}
3761 unlock:
3762 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3763 	bp->b_resid = 0;
3764 }
3765 
3766 /*
3767  * vm_hold_load_pages and vm_hold_free_pages get pages into
3768  * a buffers address space.  The pages are anonymous and are
3769  * not associated with a file object.
3770  */
3771 static void
3772 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3773 {
3774 	vm_offset_t pg;
3775 	vm_page_t p;
3776 	int index;
3777 
3778 	to = round_page(to);
3779 	from = round_page(from);
3780 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3781 
3782 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3783 tryagain:
3784 		/*
3785 		 * note: must allocate system pages since blocking here
3786 		 * could interfere with paging I/O, no matter which
3787 		 * process we are.
3788 		 */
3789 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
3790 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
3791 		if (p == NULL) {
3792 			VM_WAIT;
3793 			goto tryagain;
3794 		}
3795 		pmap_qenter(pg, &p, 1);
3796 		bp->b_pages[index] = p;
3797 	}
3798 	bp->b_npages = index;
3799 }
3800 
3801 /* Return pages associated with this buf to the vm system */
3802 static void
3803 vm_hold_free_pages(struct buf *bp, int newbsize)
3804 {
3805 	vm_offset_t from;
3806 	vm_page_t p;
3807 	int index, newnpages;
3808 
3809 	from = round_page((vm_offset_t)bp->b_data + newbsize);
3810 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3811 	if (bp->b_npages > newnpages)
3812 		pmap_qremove(from, bp->b_npages - newnpages);
3813 	for (index = newnpages; index < bp->b_npages; index++) {
3814 		p = bp->b_pages[index];
3815 		bp->b_pages[index] = NULL;
3816 		if (p->busy != 0)
3817 			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3818 			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
3819 		p->wire_count--;
3820 		vm_page_free(p);
3821 		atomic_subtract_int(&cnt.v_wire_count, 1);
3822 	}
3823 	bp->b_npages = newnpages;
3824 }
3825 
3826 /*
3827  * Map an IO request into kernel virtual address space.
3828  *
3829  * All requests are (re)mapped into kernel VA space.
3830  * Notice that we use b_bufsize for the size of the buffer
3831  * to be mapped.  b_bcount might be modified by the driver.
3832  *
3833  * Note that even if the caller determines that the address space should
3834  * be valid, a race or a smaller-file mapped into a larger space may
3835  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3836  * check the return value.
3837  */
3838 int
3839 vmapbuf(struct buf *bp)
3840 {
3841 	caddr_t kva;
3842 	vm_prot_t prot;
3843 	int pidx;
3844 
3845 	if (bp->b_bufsize < 0)
3846 		return (-1);
3847 	prot = VM_PROT_READ;
3848 	if (bp->b_iocmd == BIO_READ)
3849 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3850 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
3851 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
3852 	    btoc(MAXPHYS))) < 0)
3853 		return (-1);
3854 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3855 
3856 	kva = bp->b_saveaddr;
3857 	bp->b_npages = pidx;
3858 	bp->b_saveaddr = bp->b_data;
3859 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3860 	return(0);
3861 }
3862 
3863 /*
3864  * Free the io map PTEs associated with this IO operation.
3865  * We also invalidate the TLB entries and restore the original b_addr.
3866  */
3867 void
3868 vunmapbuf(struct buf *bp)
3869 {
3870 	int npages;
3871 
3872 	npages = bp->b_npages;
3873 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3874 	vm_page_unhold_pages(bp->b_pages, npages);
3875 
3876 	bp->b_data = bp->b_saveaddr;
3877 }
3878 
3879 void
3880 bdone(struct buf *bp)
3881 {
3882 	struct mtx *mtxp;
3883 
3884 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3885 	mtx_lock(mtxp);
3886 	bp->b_flags |= B_DONE;
3887 	wakeup(bp);
3888 	mtx_unlock(mtxp);
3889 }
3890 
3891 void
3892 bwait(struct buf *bp, u_char pri, const char *wchan)
3893 {
3894 	struct mtx *mtxp;
3895 
3896 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3897 	mtx_lock(mtxp);
3898 	while ((bp->b_flags & B_DONE) == 0)
3899 		msleep(bp, mtxp, pri, wchan, 0);
3900 	mtx_unlock(mtxp);
3901 }
3902 
3903 int
3904 bufsync(struct bufobj *bo, int waitfor)
3905 {
3906 
3907 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3908 }
3909 
3910 void
3911 bufstrategy(struct bufobj *bo, struct buf *bp)
3912 {
3913 	int i = 0;
3914 	struct vnode *vp;
3915 
3916 	vp = bp->b_vp;
3917 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3918 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3919 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3920 	i = VOP_STRATEGY(vp, bp);
3921 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3922 }
3923 
3924 void
3925 bufobj_wrefl(struct bufobj *bo)
3926 {
3927 
3928 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3929 	ASSERT_BO_LOCKED(bo);
3930 	bo->bo_numoutput++;
3931 }
3932 
3933 void
3934 bufobj_wref(struct bufobj *bo)
3935 {
3936 
3937 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3938 	BO_LOCK(bo);
3939 	bo->bo_numoutput++;
3940 	BO_UNLOCK(bo);
3941 }
3942 
3943 void
3944 bufobj_wdrop(struct bufobj *bo)
3945 {
3946 
3947 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3948 	BO_LOCK(bo);
3949 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3950 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3951 		bo->bo_flag &= ~BO_WWAIT;
3952 		wakeup(&bo->bo_numoutput);
3953 	}
3954 	BO_UNLOCK(bo);
3955 }
3956 
3957 int
3958 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3959 {
3960 	int error;
3961 
3962 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3963 	ASSERT_BO_LOCKED(bo);
3964 	error = 0;
3965 	while (bo->bo_numoutput) {
3966 		bo->bo_flag |= BO_WWAIT;
3967 		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3968 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3969 		if (error)
3970 			break;
3971 	}
3972 	return (error);
3973 }
3974 
3975 void
3976 bpin(struct buf *bp)
3977 {
3978 	struct mtx *mtxp;
3979 
3980 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3981 	mtx_lock(mtxp);
3982 	bp->b_pin_count++;
3983 	mtx_unlock(mtxp);
3984 }
3985 
3986 void
3987 bunpin(struct buf *bp)
3988 {
3989 	struct mtx *mtxp;
3990 
3991 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3992 	mtx_lock(mtxp);
3993 	if (--bp->b_pin_count == 0)
3994 		wakeup(bp);
3995 	mtx_unlock(mtxp);
3996 }
3997 
3998 void
3999 bunpin_wait(struct buf *bp)
4000 {
4001 	struct mtx *mtxp;
4002 
4003 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4004 	mtx_lock(mtxp);
4005 	while (bp->b_pin_count > 0)
4006 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4007 	mtx_unlock(mtxp);
4008 }
4009 
4010 #include "opt_ddb.h"
4011 #ifdef DDB
4012 #include <ddb/ddb.h>
4013 
4014 /* DDB command to show buffer data */
4015 DB_SHOW_COMMAND(buffer, db_show_buffer)
4016 {
4017 	/* get args */
4018 	struct buf *bp = (struct buf *)addr;
4019 
4020 	if (!have_addr) {
4021 		db_printf("usage: show buffer <addr>\n");
4022 		return;
4023 	}
4024 
4025 	db_printf("buf at %p\n", bp);
4026 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4027 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4028 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4029 	db_printf(
4030 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4031 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4032 	    "b_dep = %p\n",
4033 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4034 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4035 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4036 	if (bp->b_npages) {
4037 		int i;
4038 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4039 		for (i = 0; i < bp->b_npages; i++) {
4040 			vm_page_t m;
4041 			m = bp->b_pages[i];
4042 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4043 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4044 			if ((i + 1) < bp->b_npages)
4045 				db_printf(",");
4046 		}
4047 		db_printf("\n");
4048 	}
4049 	db_printf(" ");
4050 	BUF_LOCKPRINTINFO(bp);
4051 }
4052 
4053 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4054 {
4055 	struct buf *bp;
4056 	int i;
4057 
4058 	for (i = 0; i < nbuf; i++) {
4059 		bp = &buf[i];
4060 		if (BUF_ISLOCKED(bp)) {
4061 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4062 			db_printf("\n");
4063 		}
4064 	}
4065 }
4066 
4067 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4068 {
4069 	struct vnode *vp;
4070 	struct buf *bp;
4071 
4072 	if (!have_addr) {
4073 		db_printf("usage: show vnodebufs <addr>\n");
4074 		return;
4075 	}
4076 	vp = (struct vnode *)addr;
4077 	db_printf("Clean buffers:\n");
4078 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4079 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4080 		db_printf("\n");
4081 	}
4082 	db_printf("Dirty buffers:\n");
4083 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4084 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4085 		db_printf("\n");
4086 	}
4087 }
4088 
4089 DB_COMMAND(countfreebufs, db_coundfreebufs)
4090 {
4091 	struct buf *bp;
4092 	int i, used = 0, nfree = 0;
4093 
4094 	if (have_addr) {
4095 		db_printf("usage: countfreebufs\n");
4096 		return;
4097 	}
4098 
4099 	for (i = 0; i < nbuf; i++) {
4100 		bp = &buf[i];
4101 		if ((bp->b_vflags & BV_INFREECNT) != 0)
4102 			nfree++;
4103 		else
4104 			used++;
4105 	}
4106 
4107 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4108 	    nfree + used);
4109 	db_printf("numfreebuffers is %d\n", numfreebuffers);
4110 }
4111 #endif /* DDB */
4112