xref: /freebsd/sys/kern/vfs_bio.c (revision 7be9a3b45356747f9fcb6d69a722c1c95f8060bf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/asan.h>
53 #include <sys/bio.h>
54 #include <sys/bitset.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/buf.h>
58 #include <sys/devicestat.h>
59 #include <sys/eventhandler.h>
60 #include <sys/fail.h>
61 #include <sys/ktr.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/mutex.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/vmem.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/watchdog.h>
81 #include <geom/geom.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_map.h>
91 #include <vm/swap_pager.h>
92 
93 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
94 
95 struct	bio_ops bioops;		/* I/O operation notification */
96 
97 struct	buf_ops buf_ops_bio = {
98 	.bop_name	=	"buf_ops_bio",
99 	.bop_write	=	bufwrite,
100 	.bop_strategy	=	bufstrategy,
101 	.bop_sync	=	bufsync,
102 	.bop_bdflush	=	bufbdflush,
103 };
104 
105 struct bufqueue {
106 	struct mtx_padalign	bq_lock;
107 	TAILQ_HEAD(, buf)	bq_queue;
108 	uint8_t			bq_index;
109 	uint16_t		bq_subqueue;
110 	int			bq_len;
111 } __aligned(CACHE_LINE_SIZE);
112 
113 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
114 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
115 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
116 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
117 
118 struct bufdomain {
119 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
120 	struct bufqueue bd_dirtyq;
121 	struct bufqueue	*bd_cleanq;
122 	struct mtx_padalign bd_run_lock;
123 	/* Constants */
124 	long		bd_maxbufspace;
125 	long		bd_hibufspace;
126 	long 		bd_lobufspace;
127 	long 		bd_bufspacethresh;
128 	int		bd_hifreebuffers;
129 	int		bd_lofreebuffers;
130 	int		bd_hidirtybuffers;
131 	int		bd_lodirtybuffers;
132 	int		bd_dirtybufthresh;
133 	int		bd_lim;
134 	/* atomics */
135 	int		bd_wanted;
136 	bool		bd_shutdown;
137 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
138 	int __aligned(CACHE_LINE_SIZE)	bd_running;
139 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
140 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
141 } __aligned(CACHE_LINE_SIZE);
142 
143 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
144 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
145 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
146 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
147 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
148 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
149 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
150 #define	BD_DOMAIN(bd)		(bd - bdomain)
151 
152 static char *buf;		/* buffer header pool */
153 static struct buf *
154 nbufp(unsigned i)
155 {
156 	return ((struct buf *)(buf + (sizeof(struct buf) +
157 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
158 }
159 
160 caddr_t __read_mostly unmapped_buf;
161 
162 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
163 struct proc *bufdaemonproc;
164 
165 static void vm_hold_free_pages(struct buf *bp, int newbsize);
166 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
167 		vm_offset_t to);
168 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
169 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
170 		vm_page_t m);
171 static void vfs_clean_pages_dirty_buf(struct buf *bp);
172 static void vfs_setdirty_range(struct buf *bp);
173 static void vfs_vmio_invalidate(struct buf *bp);
174 static void vfs_vmio_truncate(struct buf *bp, int npages);
175 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
176 static int vfs_bio_clcheck(struct vnode *vp, int size,
177 		daddr_t lblkno, daddr_t blkno);
178 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
179 		void (*)(struct buf *));
180 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
181 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
182 static void buf_daemon(void);
183 static __inline void bd_wakeup(void);
184 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
185 static void bufkva_reclaim(vmem_t *, int);
186 static void bufkva_free(struct buf *);
187 static int buf_import(void *, void **, int, int, int);
188 static void buf_release(void *, void **, int);
189 static void maxbcachebuf_adjust(void);
190 static inline struct bufdomain *bufdomain(struct buf *);
191 static void bq_remove(struct bufqueue *bq, struct buf *bp);
192 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
193 static int buf_recycle(struct bufdomain *, bool kva);
194 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
195 	    const char *lockname);
196 static void bd_init(struct bufdomain *bd);
197 static int bd_flushall(struct bufdomain *bd);
198 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
199 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
200 
201 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
202 int vmiodirenable = TRUE;
203 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
204     "Use the VM system for directory writes");
205 long runningbufspace;
206 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
207     "Amount of presently outstanding async buffer io");
208 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
209     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
210 static counter_u64_t bufkvaspace;
211 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
212     "Kernel virtual memory used for buffers");
213 static long maxbufspace;
214 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
215     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
216     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
217     "Maximum allowed value of bufspace (including metadata)");
218 static long bufmallocspace;
219 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
220     "Amount of malloced memory for buffers");
221 static long maxbufmallocspace;
222 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
223     0, "Maximum amount of malloced memory for buffers");
224 static long lobufspace;
225 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
226     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
227     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
228     "Minimum amount of buffers we want to have");
229 long hibufspace;
230 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
231     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
232     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
233     "Maximum allowed value of bufspace (excluding metadata)");
234 long bufspacethresh;
235 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
236     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
237     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
238     "Bufspace consumed before waking the daemon to free some");
239 static counter_u64_t buffreekvacnt;
240 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
241     "Number of times we have freed the KVA space from some buffer");
242 static counter_u64_t bufdefragcnt;
243 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
244     "Number of times we have had to repeat buffer allocation to defragment");
245 static long lorunningspace;
246 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
247     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
248     "Minimum preferred space used for in-progress I/O");
249 static long hirunningspace;
250 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
251     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
252     "Maximum amount of space to use for in-progress I/O");
253 int dirtybufferflushes;
254 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
255     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
256 int bdwriteskip;
257 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
258     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
259 int altbufferflushes;
260 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
261     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
262 static int recursiveflushes;
263 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
264     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
265 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
266 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
267     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
268     "Number of buffers that are dirty (has unwritten changes) at the moment");
269 static int lodirtybuffers;
270 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
271     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
272     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
273     "How many buffers we want to have free before bufdaemon can sleep");
274 static int hidirtybuffers;
275 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
276     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
277     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
278     "When the number of dirty buffers is considered severe");
279 int dirtybufthresh;
280 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
281     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
282     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
283     "Number of bdwrite to bawrite conversions to clear dirty buffers");
284 static int numfreebuffers;
285 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
286     "Number of free buffers");
287 static int lofreebuffers;
288 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
289     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
290     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
291    "Target number of free buffers");
292 static int hifreebuffers;
293 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
294     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
295     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
296    "Threshold for clean buffer recycling");
297 static counter_u64_t getnewbufcalls;
298 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
299    &getnewbufcalls, "Number of calls to getnewbuf");
300 static counter_u64_t getnewbufrestarts;
301 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
302     &getnewbufrestarts,
303     "Number of times getnewbuf has had to restart a buffer acquisition");
304 static counter_u64_t mappingrestarts;
305 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
306     &mappingrestarts,
307     "Number of times getblk has had to restart a buffer mapping for "
308     "unmapped buffer");
309 static counter_u64_t numbufallocfails;
310 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
311     &numbufallocfails, "Number of times buffer allocations failed");
312 static int flushbufqtarget = 100;
313 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
314     "Amount of work to do in flushbufqueues when helping bufdaemon");
315 static counter_u64_t notbufdflushes;
316 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
317     "Number of dirty buffer flushes done by the bufdaemon helpers");
318 static long barrierwrites;
319 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
320     &barrierwrites, 0, "Number of barrier writes");
321 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
322     &unmapped_buf_allowed, 0,
323     "Permit the use of the unmapped i/o");
324 int maxbcachebuf = MAXBCACHEBUF;
325 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
326     "Maximum size of a buffer cache block");
327 
328 /*
329  * This lock synchronizes access to bd_request.
330  */
331 static struct mtx_padalign __exclusive_cache_line bdlock;
332 
333 /*
334  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
335  * waitrunningbufspace().
336  */
337 static struct mtx_padalign __exclusive_cache_line rbreqlock;
338 
339 /*
340  * Lock that protects bdirtywait.
341  */
342 static struct mtx_padalign __exclusive_cache_line bdirtylock;
343 
344 /*
345  * bufdaemon shutdown request and sleep channel.
346  */
347 static bool bd_shutdown;
348 
349 /*
350  * Wakeup point for bufdaemon, as well as indicator of whether it is already
351  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
352  * is idling.
353  */
354 static int bd_request;
355 
356 /*
357  * Request for the buf daemon to write more buffers than is indicated by
358  * lodirtybuf.  This may be necessary to push out excess dependencies or
359  * defragment the address space where a simple count of the number of dirty
360  * buffers is insufficient to characterize the demand for flushing them.
361  */
362 static int bd_speedupreq;
363 
364 /*
365  * Synchronization (sleep/wakeup) variable for active buffer space requests.
366  * Set when wait starts, cleared prior to wakeup().
367  * Used in runningbufwakeup() and waitrunningbufspace().
368  */
369 static int runningbufreq;
370 
371 /*
372  * Synchronization for bwillwrite() waiters.
373  */
374 static int bdirtywait;
375 
376 /*
377  * Definitions for the buffer free lists.
378  */
379 #define QUEUE_NONE	0	/* on no queue */
380 #define QUEUE_EMPTY	1	/* empty buffer headers */
381 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
382 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
383 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
384 
385 /* Maximum number of buffer domains. */
386 #define	BUF_DOMAINS	8
387 
388 struct bufdomainset bdlodirty;		/* Domains > lodirty */
389 struct bufdomainset bdhidirty;		/* Domains > hidirty */
390 
391 /* Configured number of clean queues. */
392 static int __read_mostly buf_domains;
393 
394 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
395 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
396 struct bufqueue __exclusive_cache_line bqempty;
397 
398 /*
399  * per-cpu empty buffer cache.
400  */
401 uma_zone_t buf_zone;
402 
403 static int
404 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
405 {
406 	long value;
407 	int error;
408 
409 	value = *(long *)arg1;
410 	error = sysctl_handle_long(oidp, &value, 0, req);
411 	if (error != 0 || req->newptr == NULL)
412 		return (error);
413 	mtx_lock(&rbreqlock);
414 	if (arg1 == &hirunningspace) {
415 		if (value < lorunningspace)
416 			error = EINVAL;
417 		else
418 			hirunningspace = value;
419 	} else {
420 		KASSERT(arg1 == &lorunningspace,
421 		    ("%s: unknown arg1", __func__));
422 		if (value > hirunningspace)
423 			error = EINVAL;
424 		else
425 			lorunningspace = value;
426 	}
427 	mtx_unlock(&rbreqlock);
428 	return (error);
429 }
430 
431 static int
432 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
433 {
434 	int error;
435 	int value;
436 	int i;
437 
438 	value = *(int *)arg1;
439 	error = sysctl_handle_int(oidp, &value, 0, req);
440 	if (error != 0 || req->newptr == NULL)
441 		return (error);
442 	*(int *)arg1 = value;
443 	for (i = 0; i < buf_domains; i++)
444 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
445 		    value / buf_domains;
446 
447 	return (error);
448 }
449 
450 static int
451 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
452 {
453 	long value;
454 	int error;
455 	int i;
456 
457 	value = *(long *)arg1;
458 	error = sysctl_handle_long(oidp, &value, 0, req);
459 	if (error != 0 || req->newptr == NULL)
460 		return (error);
461 	*(long *)arg1 = value;
462 	for (i = 0; i < buf_domains; i++)
463 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
464 		    value / buf_domains;
465 
466 	return (error);
467 }
468 
469 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
470     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
471 static int
472 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
473 {
474 	long lvalue;
475 	int ivalue;
476 	int i;
477 
478 	lvalue = 0;
479 	for (i = 0; i < buf_domains; i++)
480 		lvalue += bdomain[i].bd_bufspace;
481 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
482 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
483 	if (lvalue > INT_MAX)
484 		/* On overflow, still write out a long to trigger ENOMEM. */
485 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
486 	ivalue = lvalue;
487 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
488 }
489 #else
490 static int
491 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
492 {
493 	long lvalue;
494 	int i;
495 
496 	lvalue = 0;
497 	for (i = 0; i < buf_domains; i++)
498 		lvalue += bdomain[i].bd_bufspace;
499 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
500 }
501 #endif
502 
503 static int
504 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
505 {
506 	int value;
507 	int i;
508 
509 	value = 0;
510 	for (i = 0; i < buf_domains; i++)
511 		value += bdomain[i].bd_numdirtybuffers;
512 	return (sysctl_handle_int(oidp, &value, 0, req));
513 }
514 
515 /*
516  *	bdirtywakeup:
517  *
518  *	Wakeup any bwillwrite() waiters.
519  */
520 static void
521 bdirtywakeup(void)
522 {
523 	mtx_lock(&bdirtylock);
524 	if (bdirtywait) {
525 		bdirtywait = 0;
526 		wakeup(&bdirtywait);
527 	}
528 	mtx_unlock(&bdirtylock);
529 }
530 
531 /*
532  *	bd_clear:
533  *
534  *	Clear a domain from the appropriate bitsets when dirtybuffers
535  *	is decremented.
536  */
537 static void
538 bd_clear(struct bufdomain *bd)
539 {
540 
541 	mtx_lock(&bdirtylock);
542 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
543 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
544 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
545 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
546 	mtx_unlock(&bdirtylock);
547 }
548 
549 /*
550  *	bd_set:
551  *
552  *	Set a domain in the appropriate bitsets when dirtybuffers
553  *	is incremented.
554  */
555 static void
556 bd_set(struct bufdomain *bd)
557 {
558 
559 	mtx_lock(&bdirtylock);
560 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
561 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
562 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
563 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
564 	mtx_unlock(&bdirtylock);
565 }
566 
567 /*
568  *	bdirtysub:
569  *
570  *	Decrement the numdirtybuffers count by one and wakeup any
571  *	threads blocked in bwillwrite().
572  */
573 static void
574 bdirtysub(struct buf *bp)
575 {
576 	struct bufdomain *bd;
577 	int num;
578 
579 	bd = bufdomain(bp);
580 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
581 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
582 		bdirtywakeup();
583 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
584 		bd_clear(bd);
585 }
586 
587 /*
588  *	bdirtyadd:
589  *
590  *	Increment the numdirtybuffers count by one and wakeup the buf
591  *	daemon if needed.
592  */
593 static void
594 bdirtyadd(struct buf *bp)
595 {
596 	struct bufdomain *bd;
597 	int num;
598 
599 	/*
600 	 * Only do the wakeup once as we cross the boundary.  The
601 	 * buf daemon will keep running until the condition clears.
602 	 */
603 	bd = bufdomain(bp);
604 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
605 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
606 		bd_wakeup();
607 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
608 		bd_set(bd);
609 }
610 
611 /*
612  *	bufspace_daemon_wakeup:
613  *
614  *	Wakeup the daemons responsible for freeing clean bufs.
615  */
616 static void
617 bufspace_daemon_wakeup(struct bufdomain *bd)
618 {
619 
620 	/*
621 	 * avoid the lock if the daemon is running.
622 	 */
623 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
624 		BD_RUN_LOCK(bd);
625 		atomic_store_int(&bd->bd_running, 1);
626 		wakeup(&bd->bd_running);
627 		BD_RUN_UNLOCK(bd);
628 	}
629 }
630 
631 /*
632  *	bufspace_adjust:
633  *
634  *	Adjust the reported bufspace for a KVA managed buffer, possibly
635  * 	waking any waiters.
636  */
637 static void
638 bufspace_adjust(struct buf *bp, int bufsize)
639 {
640 	struct bufdomain *bd;
641 	long space;
642 	int diff;
643 
644 	KASSERT((bp->b_flags & B_MALLOC) == 0,
645 	    ("bufspace_adjust: malloc buf %p", bp));
646 	bd = bufdomain(bp);
647 	diff = bufsize - bp->b_bufsize;
648 	if (diff < 0) {
649 		atomic_subtract_long(&bd->bd_bufspace, -diff);
650 	} else if (diff > 0) {
651 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
652 		/* Wake up the daemon on the transition. */
653 		if (space < bd->bd_bufspacethresh &&
654 		    space + diff >= bd->bd_bufspacethresh)
655 			bufspace_daemon_wakeup(bd);
656 	}
657 	bp->b_bufsize = bufsize;
658 }
659 
660 /*
661  *	bufspace_reserve:
662  *
663  *	Reserve bufspace before calling allocbuf().  metadata has a
664  *	different space limit than data.
665  */
666 static int
667 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
668 {
669 	long limit, new;
670 	long space;
671 
672 	if (metadata)
673 		limit = bd->bd_maxbufspace;
674 	else
675 		limit = bd->bd_hibufspace;
676 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
677 	new = space + size;
678 	if (new > limit) {
679 		atomic_subtract_long(&bd->bd_bufspace, size);
680 		return (ENOSPC);
681 	}
682 
683 	/* Wake up the daemon on the transition. */
684 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
685 		bufspace_daemon_wakeup(bd);
686 
687 	return (0);
688 }
689 
690 /*
691  *	bufspace_release:
692  *
693  *	Release reserved bufspace after bufspace_adjust() has consumed it.
694  */
695 static void
696 bufspace_release(struct bufdomain *bd, int size)
697 {
698 
699 	atomic_subtract_long(&bd->bd_bufspace, size);
700 }
701 
702 /*
703  *	bufspace_wait:
704  *
705  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
706  *	supplied.  bd_wanted must be set prior to polling for space.  The
707  *	operation must be re-tried on return.
708  */
709 static void
710 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
711     int slpflag, int slptimeo)
712 {
713 	struct thread *td;
714 	int error, fl, norunbuf;
715 
716 	if ((gbflags & GB_NOWAIT_BD) != 0)
717 		return;
718 
719 	td = curthread;
720 	BD_LOCK(bd);
721 	while (bd->bd_wanted) {
722 		if (vp != NULL && vp->v_type != VCHR &&
723 		    (td->td_pflags & TDP_BUFNEED) == 0) {
724 			BD_UNLOCK(bd);
725 			/*
726 			 * getblk() is called with a vnode locked, and
727 			 * some majority of the dirty buffers may as
728 			 * well belong to the vnode.  Flushing the
729 			 * buffers there would make a progress that
730 			 * cannot be achieved by the buf_daemon, that
731 			 * cannot lock the vnode.
732 			 */
733 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
734 			    (td->td_pflags & TDP_NORUNNINGBUF);
735 
736 			/*
737 			 * Play bufdaemon.  The getnewbuf() function
738 			 * may be called while the thread owns lock
739 			 * for another dirty buffer for the same
740 			 * vnode, which makes it impossible to use
741 			 * VOP_FSYNC() there, due to the buffer lock
742 			 * recursion.
743 			 */
744 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
745 			fl = buf_flush(vp, bd, flushbufqtarget);
746 			td->td_pflags &= norunbuf;
747 			BD_LOCK(bd);
748 			if (fl != 0)
749 				continue;
750 			if (bd->bd_wanted == 0)
751 				break;
752 		}
753 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
754 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
755 		if (error != 0)
756 			break;
757 	}
758 	BD_UNLOCK(bd);
759 }
760 
761 static void
762 bufspace_daemon_shutdown(void *arg, int howto __unused)
763 {
764 	struct bufdomain *bd = arg;
765 	int error;
766 
767 	BD_RUN_LOCK(bd);
768 	bd->bd_shutdown = true;
769 	wakeup(&bd->bd_running);
770 	error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
771 	    "bufspace_shutdown", 60 * hz);
772 	BD_RUN_UNLOCK(bd);
773 	if (error != 0)
774 		printf("bufspacedaemon wait error: %d\n", error);
775 }
776 
777 /*
778  *	bufspace_daemon:
779  *
780  *	buffer space management daemon.  Tries to maintain some marginal
781  *	amount of free buffer space so that requesting processes neither
782  *	block nor work to reclaim buffers.
783  */
784 static void
785 bufspace_daemon(void *arg)
786 {
787 	struct bufdomain *bd = arg;
788 
789 	EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
790 	    SHUTDOWN_PRI_LAST + 100);
791 
792 	BD_RUN_LOCK(bd);
793 	while (!bd->bd_shutdown) {
794 		BD_RUN_UNLOCK(bd);
795 
796 		/*
797 		 * Free buffers from the clean queue until we meet our
798 		 * targets.
799 		 *
800 		 * Theory of operation:  The buffer cache is most efficient
801 		 * when some free buffer headers and space are always
802 		 * available to getnewbuf().  This daemon attempts to prevent
803 		 * the excessive blocking and synchronization associated
804 		 * with shortfall.  It goes through three phases according
805 		 * demand:
806 		 *
807 		 * 1)	The daemon wakes up voluntarily once per-second
808 		 *	during idle periods when the counters are below
809 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
810 		 *
811 		 * 2)	The daemon wakes up as we cross the thresholds
812 		 *	ahead of any potential blocking.  This may bounce
813 		 *	slightly according to the rate of consumption and
814 		 *	release.
815 		 *
816 		 * 3)	The daemon and consumers are starved for working
817 		 *	clean buffers.  This is the 'bufspace' sleep below
818 		 *	which will inefficiently trade bufs with bqrelse
819 		 *	until we return to condition 2.
820 		 */
821 		while (bd->bd_bufspace > bd->bd_lobufspace ||
822 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
823 			if (buf_recycle(bd, false) != 0) {
824 				if (bd_flushall(bd))
825 					continue;
826 				/*
827 				 * Speedup dirty if we've run out of clean
828 				 * buffers.  This is possible in particular
829 				 * because softdep may held many bufs locked
830 				 * pending writes to other bufs which are
831 				 * marked for delayed write, exhausting
832 				 * clean space until they are written.
833 				 */
834 				bd_speedup();
835 				BD_LOCK(bd);
836 				if (bd->bd_wanted) {
837 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
838 					    PRIBIO|PDROP, "bufspace", hz/10);
839 				} else
840 					BD_UNLOCK(bd);
841 			}
842 			maybe_yield();
843 		}
844 
845 		/*
846 		 * Re-check our limits and sleep.  bd_running must be
847 		 * cleared prior to checking the limits to avoid missed
848 		 * wakeups.  The waker will adjust one of bufspace or
849 		 * freebuffers prior to checking bd_running.
850 		 */
851 		BD_RUN_LOCK(bd);
852 		if (bd->bd_shutdown)
853 			break;
854 		atomic_store_int(&bd->bd_running, 0);
855 		if (bd->bd_bufspace < bd->bd_bufspacethresh &&
856 		    bd->bd_freebuffers > bd->bd_lofreebuffers) {
857 			msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
858 			    PRIBIO, "-", hz);
859 		} else {
860 			/* Avoid spurious wakeups while running. */
861 			atomic_store_int(&bd->bd_running, 1);
862 		}
863 	}
864 	wakeup(&bd->bd_shutdown);
865 	BD_RUN_UNLOCK(bd);
866 	kthread_exit();
867 }
868 
869 /*
870  *	bufmallocadjust:
871  *
872  *	Adjust the reported bufspace for a malloc managed buffer, possibly
873  *	waking any waiters.
874  */
875 static void
876 bufmallocadjust(struct buf *bp, int bufsize)
877 {
878 	int diff;
879 
880 	KASSERT((bp->b_flags & B_MALLOC) != 0,
881 	    ("bufmallocadjust: non-malloc buf %p", bp));
882 	diff = bufsize - bp->b_bufsize;
883 	if (diff < 0)
884 		atomic_subtract_long(&bufmallocspace, -diff);
885 	else
886 		atomic_add_long(&bufmallocspace, diff);
887 	bp->b_bufsize = bufsize;
888 }
889 
890 /*
891  *	runningwakeup:
892  *
893  *	Wake up processes that are waiting on asynchronous writes to fall
894  *	below lorunningspace.
895  */
896 static void
897 runningwakeup(void)
898 {
899 
900 	mtx_lock(&rbreqlock);
901 	if (runningbufreq) {
902 		runningbufreq = 0;
903 		wakeup(&runningbufreq);
904 	}
905 	mtx_unlock(&rbreqlock);
906 }
907 
908 /*
909  *	runningbufwakeup:
910  *
911  *	Decrement the outstanding write count according.
912  */
913 void
914 runningbufwakeup(struct buf *bp)
915 {
916 	long space, bspace;
917 
918 	bspace = bp->b_runningbufspace;
919 	if (bspace == 0)
920 		return;
921 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
922 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
923 	    space, bspace));
924 	bp->b_runningbufspace = 0;
925 	/*
926 	 * Only acquire the lock and wakeup on the transition from exceeding
927 	 * the threshold to falling below it.
928 	 */
929 	if (space < lorunningspace)
930 		return;
931 	if (space - bspace > lorunningspace)
932 		return;
933 	runningwakeup();
934 }
935 
936 /*
937  *	waitrunningbufspace()
938  *
939  *	runningbufspace is a measure of the amount of I/O currently
940  *	running.  This routine is used in async-write situations to
941  *	prevent creating huge backups of pending writes to a device.
942  *	Only asynchronous writes are governed by this function.
943  *
944  *	This does NOT turn an async write into a sync write.  It waits
945  *	for earlier writes to complete and generally returns before the
946  *	caller's write has reached the device.
947  */
948 void
949 waitrunningbufspace(void)
950 {
951 
952 	mtx_lock(&rbreqlock);
953 	while (runningbufspace > hirunningspace) {
954 		runningbufreq = 1;
955 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
956 	}
957 	mtx_unlock(&rbreqlock);
958 }
959 
960 /*
961  *	vfs_buf_test_cache:
962  *
963  *	Called when a buffer is extended.  This function clears the B_CACHE
964  *	bit if the newly extended portion of the buffer does not contain
965  *	valid data.
966  */
967 static __inline void
968 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
969     vm_offset_t size, vm_page_t m)
970 {
971 
972 	/*
973 	 * This function and its results are protected by higher level
974 	 * synchronization requiring vnode and buf locks to page in and
975 	 * validate pages.
976 	 */
977 	if (bp->b_flags & B_CACHE) {
978 		int base = (foff + off) & PAGE_MASK;
979 		if (vm_page_is_valid(m, base, size) == 0)
980 			bp->b_flags &= ~B_CACHE;
981 	}
982 }
983 
984 /* Wake up the buffer daemon if necessary */
985 static void
986 bd_wakeup(void)
987 {
988 
989 	mtx_lock(&bdlock);
990 	if (bd_request == 0) {
991 		bd_request = 1;
992 		wakeup(&bd_request);
993 	}
994 	mtx_unlock(&bdlock);
995 }
996 
997 /*
998  * Adjust the maxbcachbuf tunable.
999  */
1000 static void
1001 maxbcachebuf_adjust(void)
1002 {
1003 	int i;
1004 
1005 	/*
1006 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1007 	 */
1008 	i = 2;
1009 	while (i * 2 <= maxbcachebuf)
1010 		i *= 2;
1011 	maxbcachebuf = i;
1012 	if (maxbcachebuf < MAXBSIZE)
1013 		maxbcachebuf = MAXBSIZE;
1014 	if (maxbcachebuf > maxphys)
1015 		maxbcachebuf = maxphys;
1016 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1017 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1018 }
1019 
1020 /*
1021  * bd_speedup - speedup the buffer cache flushing code
1022  */
1023 void
1024 bd_speedup(void)
1025 {
1026 	int needwake;
1027 
1028 	mtx_lock(&bdlock);
1029 	needwake = 0;
1030 	if (bd_speedupreq == 0 || bd_request == 0)
1031 		needwake = 1;
1032 	bd_speedupreq = 1;
1033 	bd_request = 1;
1034 	if (needwake)
1035 		wakeup(&bd_request);
1036 	mtx_unlock(&bdlock);
1037 }
1038 
1039 #ifdef __i386__
1040 #define	TRANSIENT_DENOM	5
1041 #else
1042 #define	TRANSIENT_DENOM 10
1043 #endif
1044 
1045 /*
1046  * Calculating buffer cache scaling values and reserve space for buffer
1047  * headers.  This is called during low level kernel initialization and
1048  * may be called more then once.  We CANNOT write to the memory area
1049  * being reserved at this time.
1050  */
1051 caddr_t
1052 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1053 {
1054 	int tuned_nbuf;
1055 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1056 
1057 	/*
1058 	 * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
1059 	 * this when sizing maps based on the amount of physical memory
1060 	 * available.
1061 	 */
1062 #if defined(KASAN)
1063 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1064 	    (KASAN_SHADOW_SCALE + 1);
1065 #elif defined(KMSAN)
1066 	physmem_est /= 3;
1067 
1068 	/*
1069 	 * KMSAN cannot reliably determine whether buffer data is initialized
1070 	 * unless it is updated through a KVA mapping.
1071 	 */
1072 	unmapped_buf_allowed = 0;
1073 #endif
1074 
1075 	/*
1076 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1077 	 * PAGE_SIZE is >= 1K)
1078 	 */
1079 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1080 
1081 	maxbcachebuf_adjust();
1082 	/*
1083 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1084 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1085 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1086 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1087 	 * the buffer cache we limit the eventual kva reservation to
1088 	 * maxbcache bytes.
1089 	 *
1090 	 * factor represents the 1/4 x ram conversion.
1091 	 */
1092 	if (nbuf == 0) {
1093 		int factor = 4 * BKVASIZE / 1024;
1094 
1095 		nbuf = 50;
1096 		if (physmem_est > 4096)
1097 			nbuf += min((physmem_est - 4096) / factor,
1098 			    65536 / factor);
1099 		if (physmem_est > 65536)
1100 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1101 			    32 * 1024 * 1024 / (factor * 5));
1102 
1103 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1104 			nbuf = maxbcache / BKVASIZE;
1105 		tuned_nbuf = 1;
1106 	} else
1107 		tuned_nbuf = 0;
1108 
1109 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1110 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1111 	if (nbuf > maxbuf) {
1112 		if (!tuned_nbuf)
1113 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1114 			    maxbuf);
1115 		nbuf = maxbuf;
1116 	}
1117 
1118 	/*
1119 	 * Ideal allocation size for the transient bio submap is 10%
1120 	 * of the maximal space buffer map.  This roughly corresponds
1121 	 * to the amount of the buffer mapped for typical UFS load.
1122 	 *
1123 	 * Clip the buffer map to reserve space for the transient
1124 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1125 	 * maximum buffer map extent on the platform.
1126 	 *
1127 	 * The fall-back to the maxbuf in case of maxbcache unset,
1128 	 * allows to not trim the buffer KVA for the architectures
1129 	 * with ample KVA space.
1130 	 */
1131 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1132 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1133 		buf_sz = (long)nbuf * BKVASIZE;
1134 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1135 		    (TRANSIENT_DENOM - 1)) {
1136 			/*
1137 			 * There is more KVA than memory.  Do not
1138 			 * adjust buffer map size, and assign the rest
1139 			 * of maxbuf to transient map.
1140 			 */
1141 			biotmap_sz = maxbuf_sz - buf_sz;
1142 		} else {
1143 			/*
1144 			 * Buffer map spans all KVA we could afford on
1145 			 * this platform.  Give 10% (20% on i386) of
1146 			 * the buffer map to the transient bio map.
1147 			 */
1148 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1149 			buf_sz -= biotmap_sz;
1150 		}
1151 		if (biotmap_sz / INT_MAX > maxphys)
1152 			bio_transient_maxcnt = INT_MAX;
1153 		else
1154 			bio_transient_maxcnt = biotmap_sz / maxphys;
1155 		/*
1156 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1157 		 * using the transient mapping.
1158 		 */
1159 		if (bio_transient_maxcnt > 1024)
1160 			bio_transient_maxcnt = 1024;
1161 		if (tuned_nbuf)
1162 			nbuf = buf_sz / BKVASIZE;
1163 	}
1164 
1165 	if (nswbuf == 0) {
1166 		nswbuf = min(nbuf / 4, 256);
1167 		if (nswbuf < NSWBUF_MIN)
1168 			nswbuf = NSWBUF_MIN;
1169 	}
1170 
1171 	/*
1172 	 * Reserve space for the buffer cache buffers
1173 	 */
1174 	buf = (char *)v;
1175 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1176 	    atop(maxbcachebuf)) * nbuf;
1177 
1178 	return (v);
1179 }
1180 
1181 /*
1182  * Single global constant for BUF_WMESG, to avoid getting multiple
1183  * references.
1184  */
1185 static const char buf_wmesg[] = "bufwait";
1186 
1187 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1188 void
1189 bufinit(void)
1190 {
1191 	struct buf *bp;
1192 	int i;
1193 
1194 	KASSERT(maxbcachebuf >= MAXBSIZE,
1195 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1196 	    MAXBSIZE));
1197 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1198 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1199 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1200 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1201 
1202 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
1203 
1204 	/* finally, initialize each buffer header and stick on empty q */
1205 	for (i = 0; i < nbuf; i++) {
1206 		bp = nbufp(i);
1207 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1208 		bp->b_flags = B_INVAL;
1209 		bp->b_rcred = NOCRED;
1210 		bp->b_wcred = NOCRED;
1211 		bp->b_qindex = QUEUE_NONE;
1212 		bp->b_domain = -1;
1213 		bp->b_subqueue = mp_maxid + 1;
1214 		bp->b_xflags = 0;
1215 		bp->b_data = bp->b_kvabase = unmapped_buf;
1216 		LIST_INIT(&bp->b_dep);
1217 		BUF_LOCKINIT(bp, buf_wmesg);
1218 		bq_insert(&bqempty, bp, false);
1219 	}
1220 
1221 	/*
1222 	 * maxbufspace is the absolute maximum amount of buffer space we are
1223 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1224 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1225 	 * used by most other requests.  The differential is required to
1226 	 * ensure that metadata deadlocks don't occur.
1227 	 *
1228 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1229 	 * this may result in KVM fragmentation which is not handled optimally
1230 	 * by the system. XXX This is less true with vmem.  We could use
1231 	 * PAGE_SIZE.
1232 	 */
1233 	maxbufspace = (long)nbuf * BKVASIZE;
1234 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1235 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1236 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1237 
1238 	/*
1239 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1240 	 * arbitrarily and may need further tuning. It corresponds to
1241 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1242 	 * which fits with many RAID controllers' tagged queuing limits.
1243 	 * The lower 1 MiB limit is the historical upper limit for
1244 	 * hirunningspace.
1245 	 */
1246 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1247 	    16 * 1024 * 1024), 1024 * 1024);
1248 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1249 
1250 	/*
1251 	 * Limit the amount of malloc memory since it is wired permanently into
1252 	 * the kernel space.  Even though this is accounted for in the buffer
1253 	 * allocation, we don't want the malloced region to grow uncontrolled.
1254 	 * The malloc scheme improves memory utilization significantly on
1255 	 * average (small) directories.
1256 	 */
1257 	maxbufmallocspace = hibufspace / 20;
1258 
1259 	/*
1260 	 * Reduce the chance of a deadlock occurring by limiting the number
1261 	 * of delayed-write dirty buffers we allow to stack up.
1262 	 */
1263 	hidirtybuffers = nbuf / 4 + 20;
1264 	dirtybufthresh = hidirtybuffers * 9 / 10;
1265 	/*
1266 	 * To support extreme low-memory systems, make sure hidirtybuffers
1267 	 * cannot eat up all available buffer space.  This occurs when our
1268 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1269 	 * buffer space assuming BKVASIZE'd buffers.
1270 	 */
1271 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1272 		hidirtybuffers >>= 1;
1273 	}
1274 	lodirtybuffers = hidirtybuffers / 2;
1275 
1276 	/*
1277 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1278 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1279 	 * are counted as free but will be unavailable to threads executing
1280 	 * on other cpus.
1281 	 *
1282 	 * hifreebuffers is the free target for the bufspace daemon.  This
1283 	 * should be set appropriately to limit work per-iteration.
1284 	 */
1285 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1286 	hifreebuffers = (3 * lofreebuffers) / 2;
1287 	numfreebuffers = nbuf;
1288 
1289 	/* Setup the kva and free list allocators. */
1290 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1291 	buf_zone = uma_zcache_create("buf free cache",
1292 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1293 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1294 
1295 	/*
1296 	 * Size the clean queue according to the amount of buffer space.
1297 	 * One queue per-256mb up to the max.  More queues gives better
1298 	 * concurrency but less accurate LRU.
1299 	 */
1300 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1301 	for (i = 0 ; i < buf_domains; i++) {
1302 		struct bufdomain *bd;
1303 
1304 		bd = &bdomain[i];
1305 		bd_init(bd);
1306 		bd->bd_freebuffers = nbuf / buf_domains;
1307 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1308 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1309 		bd->bd_bufspace = 0;
1310 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1311 		bd->bd_hibufspace = hibufspace / buf_domains;
1312 		bd->bd_lobufspace = lobufspace / buf_domains;
1313 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1314 		bd->bd_numdirtybuffers = 0;
1315 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1316 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1317 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1318 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1319 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1320 	}
1321 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1322 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1323 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1324 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1325 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1326 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1327 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1328 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1329 }
1330 
1331 #ifdef INVARIANTS
1332 static inline void
1333 vfs_buf_check_mapped(struct buf *bp)
1334 {
1335 
1336 	KASSERT(bp->b_kvabase != unmapped_buf,
1337 	    ("mapped buf: b_kvabase was not updated %p", bp));
1338 	KASSERT(bp->b_data != unmapped_buf,
1339 	    ("mapped buf: b_data was not updated %p", bp));
1340 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1341 	    maxphys, ("b_data + b_offset unmapped %p", bp));
1342 }
1343 
1344 static inline void
1345 vfs_buf_check_unmapped(struct buf *bp)
1346 {
1347 
1348 	KASSERT(bp->b_data == unmapped_buf,
1349 	    ("unmapped buf: corrupted b_data %p", bp));
1350 }
1351 
1352 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1353 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1354 #else
1355 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1356 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1357 #endif
1358 
1359 static int
1360 isbufbusy(struct buf *bp)
1361 {
1362 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1363 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1364 		return (1);
1365 	return (0);
1366 }
1367 
1368 /*
1369  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1370  */
1371 void
1372 bufshutdown(int show_busybufs)
1373 {
1374 	static int first_buf_printf = 1;
1375 	struct buf *bp;
1376 	int i, iter, nbusy, pbusy;
1377 #ifndef PREEMPTION
1378 	int subiter;
1379 #endif
1380 
1381 	/*
1382 	 * Sync filesystems for shutdown
1383 	 */
1384 	wdog_kern_pat(WD_LASTVAL);
1385 	kern_sync(curthread);
1386 
1387 	/*
1388 	 * With soft updates, some buffers that are
1389 	 * written will be remarked as dirty until other
1390 	 * buffers are written.
1391 	 */
1392 	for (iter = pbusy = 0; iter < 20; iter++) {
1393 		nbusy = 0;
1394 		for (i = nbuf - 1; i >= 0; i--) {
1395 			bp = nbufp(i);
1396 			if (isbufbusy(bp))
1397 				nbusy++;
1398 		}
1399 		if (nbusy == 0) {
1400 			if (first_buf_printf)
1401 				printf("All buffers synced.");
1402 			break;
1403 		}
1404 		if (first_buf_printf) {
1405 			printf("Syncing disks, buffers remaining... ");
1406 			first_buf_printf = 0;
1407 		}
1408 		printf("%d ", nbusy);
1409 		if (nbusy < pbusy)
1410 			iter = 0;
1411 		pbusy = nbusy;
1412 
1413 		wdog_kern_pat(WD_LASTVAL);
1414 		kern_sync(curthread);
1415 
1416 #ifdef PREEMPTION
1417 		/*
1418 		 * Spin for a while to allow interrupt threads to run.
1419 		 */
1420 		DELAY(50000 * iter);
1421 #else
1422 		/*
1423 		 * Context switch several times to allow interrupt
1424 		 * threads to run.
1425 		 */
1426 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1427 			thread_lock(curthread);
1428 			mi_switch(SW_VOL);
1429 			DELAY(1000);
1430 		}
1431 #endif
1432 	}
1433 	printf("\n");
1434 	/*
1435 	 * Count only busy local buffers to prevent forcing
1436 	 * a fsck if we're just a client of a wedged NFS server
1437 	 */
1438 	nbusy = 0;
1439 	for (i = nbuf - 1; i >= 0; i--) {
1440 		bp = nbufp(i);
1441 		if (isbufbusy(bp)) {
1442 #if 0
1443 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1444 			if (bp->b_dev == NULL) {
1445 				TAILQ_REMOVE(&mountlist,
1446 				    bp->b_vp->v_mount, mnt_list);
1447 				continue;
1448 			}
1449 #endif
1450 			nbusy++;
1451 			if (show_busybufs > 0) {
1452 				printf(
1453 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1454 				    nbusy, bp, bp->b_vp, bp->b_flags,
1455 				    (intmax_t)bp->b_blkno,
1456 				    (intmax_t)bp->b_lblkno);
1457 				BUF_LOCKPRINTINFO(bp);
1458 				if (show_busybufs > 1)
1459 					vn_printf(bp->b_vp,
1460 					    "vnode content: ");
1461 			}
1462 		}
1463 	}
1464 	if (nbusy) {
1465 		/*
1466 		 * Failed to sync all blocks. Indicate this and don't
1467 		 * unmount filesystems (thus forcing an fsck on reboot).
1468 		 */
1469 		printf("Giving up on %d buffers\n", nbusy);
1470 		DELAY(5000000);	/* 5 seconds */
1471 		swapoff_all();
1472 	} else {
1473 		if (!first_buf_printf)
1474 			printf("Final sync complete\n");
1475 
1476 		/*
1477 		 * Unmount filesystems and perform swapoff, to quiesce
1478 		 * the system as much as possible.  In particular, no
1479 		 * I/O should be initiated from top levels since it
1480 		 * might be abruptly terminated by reset, or otherwise
1481 		 * erronously handled because other parts of the
1482 		 * system are disabled.
1483 		 *
1484 		 * Swapoff before unmount, because file-backed swap is
1485 		 * non-operational after unmount of the underlying
1486 		 * filesystem.
1487 		 */
1488 		if (!KERNEL_PANICKED()) {
1489 			swapoff_all();
1490 			vfs_unmountall();
1491 		}
1492 	}
1493 	DELAY(100000);		/* wait for console output to finish */
1494 }
1495 
1496 static void
1497 bpmap_qenter(struct buf *bp)
1498 {
1499 
1500 	BUF_CHECK_MAPPED(bp);
1501 
1502 	/*
1503 	 * bp->b_data is relative to bp->b_offset, but
1504 	 * bp->b_offset may be offset into the first page.
1505 	 */
1506 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1507 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1508 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1509 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1510 }
1511 
1512 static inline struct bufdomain *
1513 bufdomain(struct buf *bp)
1514 {
1515 
1516 	return (&bdomain[bp->b_domain]);
1517 }
1518 
1519 static struct bufqueue *
1520 bufqueue(struct buf *bp)
1521 {
1522 
1523 	switch (bp->b_qindex) {
1524 	case QUEUE_NONE:
1525 		/* FALLTHROUGH */
1526 	case QUEUE_SENTINEL:
1527 		return (NULL);
1528 	case QUEUE_EMPTY:
1529 		return (&bqempty);
1530 	case QUEUE_DIRTY:
1531 		return (&bufdomain(bp)->bd_dirtyq);
1532 	case QUEUE_CLEAN:
1533 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1534 	default:
1535 		break;
1536 	}
1537 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1538 }
1539 
1540 /*
1541  * Return the locked bufqueue that bp is a member of.
1542  */
1543 static struct bufqueue *
1544 bufqueue_acquire(struct buf *bp)
1545 {
1546 	struct bufqueue *bq, *nbq;
1547 
1548 	/*
1549 	 * bp can be pushed from a per-cpu queue to the
1550 	 * cleanq while we're waiting on the lock.  Retry
1551 	 * if the queues don't match.
1552 	 */
1553 	bq = bufqueue(bp);
1554 	BQ_LOCK(bq);
1555 	for (;;) {
1556 		nbq = bufqueue(bp);
1557 		if (bq == nbq)
1558 			break;
1559 		BQ_UNLOCK(bq);
1560 		BQ_LOCK(nbq);
1561 		bq = nbq;
1562 	}
1563 	return (bq);
1564 }
1565 
1566 /*
1567  *	binsfree:
1568  *
1569  *	Insert the buffer into the appropriate free list.  Requires a
1570  *	locked buffer on entry and buffer is unlocked before return.
1571  */
1572 static void
1573 binsfree(struct buf *bp, int qindex)
1574 {
1575 	struct bufdomain *bd;
1576 	struct bufqueue *bq;
1577 
1578 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1579 	    ("binsfree: Invalid qindex %d", qindex));
1580 	BUF_ASSERT_XLOCKED(bp);
1581 
1582 	/*
1583 	 * Handle delayed bremfree() processing.
1584 	 */
1585 	if (bp->b_flags & B_REMFREE) {
1586 		if (bp->b_qindex == qindex) {
1587 			bp->b_flags |= B_REUSE;
1588 			bp->b_flags &= ~B_REMFREE;
1589 			BUF_UNLOCK(bp);
1590 			return;
1591 		}
1592 		bq = bufqueue_acquire(bp);
1593 		bq_remove(bq, bp);
1594 		BQ_UNLOCK(bq);
1595 	}
1596 	bd = bufdomain(bp);
1597 	if (qindex == QUEUE_CLEAN) {
1598 		if (bd->bd_lim != 0)
1599 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1600 		else
1601 			bq = bd->bd_cleanq;
1602 	} else
1603 		bq = &bd->bd_dirtyq;
1604 	bq_insert(bq, bp, true);
1605 }
1606 
1607 /*
1608  * buf_free:
1609  *
1610  *	Free a buffer to the buf zone once it no longer has valid contents.
1611  */
1612 static void
1613 buf_free(struct buf *bp)
1614 {
1615 
1616 	if (bp->b_flags & B_REMFREE)
1617 		bremfreef(bp);
1618 	if (bp->b_vflags & BV_BKGRDINPROG)
1619 		panic("losing buffer 1");
1620 	if (bp->b_rcred != NOCRED) {
1621 		crfree(bp->b_rcred);
1622 		bp->b_rcred = NOCRED;
1623 	}
1624 	if (bp->b_wcred != NOCRED) {
1625 		crfree(bp->b_wcred);
1626 		bp->b_wcred = NOCRED;
1627 	}
1628 	if (!LIST_EMPTY(&bp->b_dep))
1629 		buf_deallocate(bp);
1630 	bufkva_free(bp);
1631 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1632 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1633 	BUF_UNLOCK(bp);
1634 	uma_zfree(buf_zone, bp);
1635 }
1636 
1637 /*
1638  * buf_import:
1639  *
1640  *	Import bufs into the uma cache from the buf list.  The system still
1641  *	expects a static array of bufs and much of the synchronization
1642  *	around bufs assumes type stable storage.  As a result, UMA is used
1643  *	only as a per-cpu cache of bufs still maintained on a global list.
1644  */
1645 static int
1646 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1647 {
1648 	struct buf *bp;
1649 	int i;
1650 
1651 	BQ_LOCK(&bqempty);
1652 	for (i = 0; i < cnt; i++) {
1653 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1654 		if (bp == NULL)
1655 			break;
1656 		bq_remove(&bqempty, bp);
1657 		store[i] = bp;
1658 	}
1659 	BQ_UNLOCK(&bqempty);
1660 
1661 	return (i);
1662 }
1663 
1664 /*
1665  * buf_release:
1666  *
1667  *	Release bufs from the uma cache back to the buffer queues.
1668  */
1669 static void
1670 buf_release(void *arg, void **store, int cnt)
1671 {
1672 	struct bufqueue *bq;
1673 	struct buf *bp;
1674         int i;
1675 
1676 	bq = &bqempty;
1677 	BQ_LOCK(bq);
1678         for (i = 0; i < cnt; i++) {
1679 		bp = store[i];
1680 		/* Inline bq_insert() to batch locking. */
1681 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1682 		bp->b_flags &= ~(B_AGE | B_REUSE);
1683 		bq->bq_len++;
1684 		bp->b_qindex = bq->bq_index;
1685 	}
1686 	BQ_UNLOCK(bq);
1687 }
1688 
1689 /*
1690  * buf_alloc:
1691  *
1692  *	Allocate an empty buffer header.
1693  */
1694 static struct buf *
1695 buf_alloc(struct bufdomain *bd)
1696 {
1697 	struct buf *bp;
1698 	int freebufs, error;
1699 
1700 	/*
1701 	 * We can only run out of bufs in the buf zone if the average buf
1702 	 * is less than BKVASIZE.  In this case the actual wait/block will
1703 	 * come from buf_reycle() failing to flush one of these small bufs.
1704 	 */
1705 	bp = NULL;
1706 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1707 	if (freebufs > 0)
1708 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1709 	if (bp == NULL) {
1710 		atomic_add_int(&bd->bd_freebuffers, 1);
1711 		bufspace_daemon_wakeup(bd);
1712 		counter_u64_add(numbufallocfails, 1);
1713 		return (NULL);
1714 	}
1715 	/*
1716 	 * Wake-up the bufspace daemon on transition below threshold.
1717 	 */
1718 	if (freebufs == bd->bd_lofreebuffers)
1719 		bufspace_daemon_wakeup(bd);
1720 
1721 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
1722 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1723 	    error));
1724 	(void)error;
1725 
1726 	KASSERT(bp->b_vp == NULL,
1727 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1728 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1729 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1730 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1731 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1732 	KASSERT(bp->b_npages == 0,
1733 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1734 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1735 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1736 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1737 
1738 	bp->b_domain = BD_DOMAIN(bd);
1739 	bp->b_flags = 0;
1740 	bp->b_ioflags = 0;
1741 	bp->b_xflags = 0;
1742 	bp->b_vflags = 0;
1743 	bp->b_vp = NULL;
1744 	bp->b_blkno = bp->b_lblkno = 0;
1745 	bp->b_offset = NOOFFSET;
1746 	bp->b_iodone = 0;
1747 	bp->b_error = 0;
1748 	bp->b_resid = 0;
1749 	bp->b_bcount = 0;
1750 	bp->b_npages = 0;
1751 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1752 	bp->b_bufobj = NULL;
1753 	bp->b_data = bp->b_kvabase = unmapped_buf;
1754 	bp->b_fsprivate1 = NULL;
1755 	bp->b_fsprivate2 = NULL;
1756 	bp->b_fsprivate3 = NULL;
1757 	LIST_INIT(&bp->b_dep);
1758 
1759 	return (bp);
1760 }
1761 
1762 /*
1763  *	buf_recycle:
1764  *
1765  *	Free a buffer from the given bufqueue.  kva controls whether the
1766  *	freed buf must own some kva resources.  This is used for
1767  *	defragmenting.
1768  */
1769 static int
1770 buf_recycle(struct bufdomain *bd, bool kva)
1771 {
1772 	struct bufqueue *bq;
1773 	struct buf *bp, *nbp;
1774 
1775 	if (kva)
1776 		counter_u64_add(bufdefragcnt, 1);
1777 	nbp = NULL;
1778 	bq = bd->bd_cleanq;
1779 	BQ_LOCK(bq);
1780 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1781 	    ("buf_recycle: Locks don't match"));
1782 	nbp = TAILQ_FIRST(&bq->bq_queue);
1783 
1784 	/*
1785 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1786 	 * depending.
1787 	 */
1788 	while ((bp = nbp) != NULL) {
1789 		/*
1790 		 * Calculate next bp (we can only use it if we do not
1791 		 * release the bqlock).
1792 		 */
1793 		nbp = TAILQ_NEXT(bp, b_freelist);
1794 
1795 		/*
1796 		 * If we are defragging then we need a buffer with
1797 		 * some kva to reclaim.
1798 		 */
1799 		if (kva && bp->b_kvasize == 0)
1800 			continue;
1801 
1802 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1803 			continue;
1804 
1805 		/*
1806 		 * Implement a second chance algorithm for frequently
1807 		 * accessed buffers.
1808 		 */
1809 		if ((bp->b_flags & B_REUSE) != 0) {
1810 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1811 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1812 			bp->b_flags &= ~B_REUSE;
1813 			BUF_UNLOCK(bp);
1814 			continue;
1815 		}
1816 
1817 		/*
1818 		 * Skip buffers with background writes in progress.
1819 		 */
1820 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1821 			BUF_UNLOCK(bp);
1822 			continue;
1823 		}
1824 
1825 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1826 		    ("buf_recycle: inconsistent queue %d bp %p",
1827 		    bp->b_qindex, bp));
1828 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1829 		    ("getnewbuf: queue domain %d doesn't match request %d",
1830 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1831 		/*
1832 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1833 		 * the scan from this point on.
1834 		 */
1835 		bq_remove(bq, bp);
1836 		BQ_UNLOCK(bq);
1837 
1838 		/*
1839 		 * Requeue the background write buffer with error and
1840 		 * restart the scan.
1841 		 */
1842 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1843 			bqrelse(bp);
1844 			BQ_LOCK(bq);
1845 			nbp = TAILQ_FIRST(&bq->bq_queue);
1846 			continue;
1847 		}
1848 		bp->b_flags |= B_INVAL;
1849 		brelse(bp);
1850 		return (0);
1851 	}
1852 	bd->bd_wanted = 1;
1853 	BQ_UNLOCK(bq);
1854 
1855 	return (ENOBUFS);
1856 }
1857 
1858 /*
1859  *	bremfree:
1860  *
1861  *	Mark the buffer for removal from the appropriate free list.
1862  *
1863  */
1864 void
1865 bremfree(struct buf *bp)
1866 {
1867 
1868 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1869 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1870 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1871 	KASSERT(bp->b_qindex != QUEUE_NONE,
1872 	    ("bremfree: buffer %p not on a queue.", bp));
1873 	BUF_ASSERT_XLOCKED(bp);
1874 
1875 	bp->b_flags |= B_REMFREE;
1876 }
1877 
1878 /*
1879  *	bremfreef:
1880  *
1881  *	Force an immediate removal from a free list.  Used only in nfs when
1882  *	it abuses the b_freelist pointer.
1883  */
1884 void
1885 bremfreef(struct buf *bp)
1886 {
1887 	struct bufqueue *bq;
1888 
1889 	bq = bufqueue_acquire(bp);
1890 	bq_remove(bq, bp);
1891 	BQ_UNLOCK(bq);
1892 }
1893 
1894 static void
1895 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1896 {
1897 
1898 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1899 	TAILQ_INIT(&bq->bq_queue);
1900 	bq->bq_len = 0;
1901 	bq->bq_index = qindex;
1902 	bq->bq_subqueue = subqueue;
1903 }
1904 
1905 static void
1906 bd_init(struct bufdomain *bd)
1907 {
1908 	int i;
1909 
1910 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1911 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1912 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1913 	for (i = 0; i <= mp_maxid; i++)
1914 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1915 		    "bufq clean subqueue lock");
1916 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1917 }
1918 
1919 /*
1920  *	bq_remove:
1921  *
1922  *	Removes a buffer from the free list, must be called with the
1923  *	correct qlock held.
1924  */
1925 static void
1926 bq_remove(struct bufqueue *bq, struct buf *bp)
1927 {
1928 
1929 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1930 	    bp, bp->b_vp, bp->b_flags);
1931 	KASSERT(bp->b_qindex != QUEUE_NONE,
1932 	    ("bq_remove: buffer %p not on a queue.", bp));
1933 	KASSERT(bufqueue(bp) == bq,
1934 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1935 
1936 	BQ_ASSERT_LOCKED(bq);
1937 	if (bp->b_qindex != QUEUE_EMPTY) {
1938 		BUF_ASSERT_XLOCKED(bp);
1939 	}
1940 	KASSERT(bq->bq_len >= 1,
1941 	    ("queue %d underflow", bp->b_qindex));
1942 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1943 	bq->bq_len--;
1944 	bp->b_qindex = QUEUE_NONE;
1945 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1946 }
1947 
1948 static void
1949 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1950 {
1951 	struct buf *bp;
1952 
1953 	BQ_ASSERT_LOCKED(bq);
1954 	if (bq != bd->bd_cleanq) {
1955 		BD_LOCK(bd);
1956 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1957 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1958 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1959 			    b_freelist);
1960 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1961 		}
1962 		bd->bd_cleanq->bq_len += bq->bq_len;
1963 		bq->bq_len = 0;
1964 	}
1965 	if (bd->bd_wanted) {
1966 		bd->bd_wanted = 0;
1967 		wakeup(&bd->bd_wanted);
1968 	}
1969 	if (bq != bd->bd_cleanq)
1970 		BD_UNLOCK(bd);
1971 }
1972 
1973 static int
1974 bd_flushall(struct bufdomain *bd)
1975 {
1976 	struct bufqueue *bq;
1977 	int flushed;
1978 	int i;
1979 
1980 	if (bd->bd_lim == 0)
1981 		return (0);
1982 	flushed = 0;
1983 	for (i = 0; i <= mp_maxid; i++) {
1984 		bq = &bd->bd_subq[i];
1985 		if (bq->bq_len == 0)
1986 			continue;
1987 		BQ_LOCK(bq);
1988 		bd_flush(bd, bq);
1989 		BQ_UNLOCK(bq);
1990 		flushed++;
1991 	}
1992 
1993 	return (flushed);
1994 }
1995 
1996 static void
1997 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1998 {
1999 	struct bufdomain *bd;
2000 
2001 	if (bp->b_qindex != QUEUE_NONE)
2002 		panic("bq_insert: free buffer %p onto another queue?", bp);
2003 
2004 	bd = bufdomain(bp);
2005 	if (bp->b_flags & B_AGE) {
2006 		/* Place this buf directly on the real queue. */
2007 		if (bq->bq_index == QUEUE_CLEAN)
2008 			bq = bd->bd_cleanq;
2009 		BQ_LOCK(bq);
2010 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2011 	} else {
2012 		BQ_LOCK(bq);
2013 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2014 	}
2015 	bp->b_flags &= ~(B_AGE | B_REUSE);
2016 	bq->bq_len++;
2017 	bp->b_qindex = bq->bq_index;
2018 	bp->b_subqueue = bq->bq_subqueue;
2019 
2020 	/*
2021 	 * Unlock before we notify so that we don't wakeup a waiter that
2022 	 * fails a trylock on the buf and sleeps again.
2023 	 */
2024 	if (unlock)
2025 		BUF_UNLOCK(bp);
2026 
2027 	if (bp->b_qindex == QUEUE_CLEAN) {
2028 		/*
2029 		 * Flush the per-cpu queue and notify any waiters.
2030 		 */
2031 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2032 		    bq->bq_len >= bd->bd_lim))
2033 			bd_flush(bd, bq);
2034 	}
2035 	BQ_UNLOCK(bq);
2036 }
2037 
2038 /*
2039  *	bufkva_free:
2040  *
2041  *	Free the kva allocation for a buffer.
2042  *
2043  */
2044 static void
2045 bufkva_free(struct buf *bp)
2046 {
2047 
2048 #ifdef INVARIANTS
2049 	if (bp->b_kvasize == 0) {
2050 		KASSERT(bp->b_kvabase == unmapped_buf &&
2051 		    bp->b_data == unmapped_buf,
2052 		    ("Leaked KVA space on %p", bp));
2053 	} else if (buf_mapped(bp))
2054 		BUF_CHECK_MAPPED(bp);
2055 	else
2056 		BUF_CHECK_UNMAPPED(bp);
2057 #endif
2058 	if (bp->b_kvasize == 0)
2059 		return;
2060 
2061 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2062 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2063 	counter_u64_add(buffreekvacnt, 1);
2064 	bp->b_data = bp->b_kvabase = unmapped_buf;
2065 	bp->b_kvasize = 0;
2066 }
2067 
2068 /*
2069  *	bufkva_alloc:
2070  *
2071  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2072  */
2073 static int
2074 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2075 {
2076 	vm_offset_t addr;
2077 	int error;
2078 
2079 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2080 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2081 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
2082 	KASSERT(maxsize <= maxbcachebuf,
2083 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2084 
2085 	bufkva_free(bp);
2086 
2087 	addr = 0;
2088 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2089 	if (error != 0) {
2090 		/*
2091 		 * Buffer map is too fragmented.  Request the caller
2092 		 * to defragment the map.
2093 		 */
2094 		return (error);
2095 	}
2096 	bp->b_kvabase = (caddr_t)addr;
2097 	bp->b_kvasize = maxsize;
2098 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2099 	if ((gbflags & GB_UNMAPPED) != 0) {
2100 		bp->b_data = unmapped_buf;
2101 		BUF_CHECK_UNMAPPED(bp);
2102 	} else {
2103 		bp->b_data = bp->b_kvabase;
2104 		BUF_CHECK_MAPPED(bp);
2105 	}
2106 	return (0);
2107 }
2108 
2109 /*
2110  *	bufkva_reclaim:
2111  *
2112  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2113  *	callback that fires to avoid returning failure.
2114  */
2115 static void
2116 bufkva_reclaim(vmem_t *vmem, int flags)
2117 {
2118 	bool done;
2119 	int q;
2120 	int i;
2121 
2122 	done = false;
2123 	for (i = 0; i < 5; i++) {
2124 		for (q = 0; q < buf_domains; q++)
2125 			if (buf_recycle(&bdomain[q], true) != 0)
2126 				done = true;
2127 		if (done)
2128 			break;
2129 	}
2130 	return;
2131 }
2132 
2133 /*
2134  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2135  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2136  * the buffer is valid and we do not have to do anything.
2137  */
2138 static void
2139 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2140     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2141 {
2142 	struct buf *rabp;
2143 	struct thread *td;
2144 	int i;
2145 
2146 	td = curthread;
2147 
2148 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2149 		if (inmem(vp, *rablkno))
2150 			continue;
2151 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2152 		if ((rabp->b_flags & B_CACHE) != 0) {
2153 			brelse(rabp);
2154 			continue;
2155 		}
2156 #ifdef RACCT
2157 		if (racct_enable) {
2158 			PROC_LOCK(curproc);
2159 			racct_add_buf(curproc, rabp, 0);
2160 			PROC_UNLOCK(curproc);
2161 		}
2162 #endif /* RACCT */
2163 		td->td_ru.ru_inblock++;
2164 		rabp->b_flags |= B_ASYNC;
2165 		rabp->b_flags &= ~B_INVAL;
2166 		if ((flags & GB_CKHASH) != 0) {
2167 			rabp->b_flags |= B_CKHASH;
2168 			rabp->b_ckhashcalc = ckhashfunc;
2169 		}
2170 		rabp->b_ioflags &= ~BIO_ERROR;
2171 		rabp->b_iocmd = BIO_READ;
2172 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2173 			rabp->b_rcred = crhold(cred);
2174 		vfs_busy_pages(rabp, 0);
2175 		BUF_KERNPROC(rabp);
2176 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2177 		bstrategy(rabp);
2178 	}
2179 }
2180 
2181 /*
2182  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2183  *
2184  * Get a buffer with the specified data.  Look in the cache first.  We
2185  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2186  * is set, the buffer is valid and we do not have to do anything, see
2187  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2188  *
2189  * Always return a NULL buffer pointer (in bpp) when returning an error.
2190  *
2191  * The blkno parameter is the logical block being requested. Normally
2192  * the mapping of logical block number to disk block address is done
2193  * by calling VOP_BMAP(). However, if the mapping is already known, the
2194  * disk block address can be passed using the dblkno parameter. If the
2195  * disk block address is not known, then the same value should be passed
2196  * for blkno and dblkno.
2197  */
2198 int
2199 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2200     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2201     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2202 {
2203 	struct buf *bp;
2204 	struct thread *td;
2205 	int error, readwait, rv;
2206 
2207 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2208 	td = curthread;
2209 	/*
2210 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2211 	 * are specified.
2212 	 */
2213 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2214 	if (error != 0) {
2215 		*bpp = NULL;
2216 		return (error);
2217 	}
2218 	KASSERT(blkno == bp->b_lblkno,
2219 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2220 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2221 	flags &= ~GB_NOSPARSE;
2222 	*bpp = bp;
2223 
2224 	/*
2225 	 * If not found in cache, do some I/O
2226 	 */
2227 	readwait = 0;
2228 	if ((bp->b_flags & B_CACHE) == 0) {
2229 #ifdef RACCT
2230 		if (racct_enable) {
2231 			PROC_LOCK(td->td_proc);
2232 			racct_add_buf(td->td_proc, bp, 0);
2233 			PROC_UNLOCK(td->td_proc);
2234 		}
2235 #endif /* RACCT */
2236 		td->td_ru.ru_inblock++;
2237 		bp->b_iocmd = BIO_READ;
2238 		bp->b_flags &= ~B_INVAL;
2239 		if ((flags & GB_CKHASH) != 0) {
2240 			bp->b_flags |= B_CKHASH;
2241 			bp->b_ckhashcalc = ckhashfunc;
2242 		}
2243 		if ((flags & GB_CVTENXIO) != 0)
2244 			bp->b_xflags |= BX_CVTENXIO;
2245 		bp->b_ioflags &= ~BIO_ERROR;
2246 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2247 			bp->b_rcred = crhold(cred);
2248 		vfs_busy_pages(bp, 0);
2249 		bp->b_iooffset = dbtob(bp->b_blkno);
2250 		bstrategy(bp);
2251 		++readwait;
2252 	}
2253 
2254 	/*
2255 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2256 	 */
2257 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2258 
2259 	rv = 0;
2260 	if (readwait) {
2261 		rv = bufwait(bp);
2262 		if (rv != 0) {
2263 			brelse(bp);
2264 			*bpp = NULL;
2265 		}
2266 	}
2267 	return (rv);
2268 }
2269 
2270 /*
2271  * Write, release buffer on completion.  (Done by iodone
2272  * if async).  Do not bother writing anything if the buffer
2273  * is invalid.
2274  *
2275  * Note that we set B_CACHE here, indicating that buffer is
2276  * fully valid and thus cacheable.  This is true even of NFS
2277  * now so we set it generally.  This could be set either here
2278  * or in biodone() since the I/O is synchronous.  We put it
2279  * here.
2280  */
2281 int
2282 bufwrite(struct buf *bp)
2283 {
2284 	int oldflags;
2285 	struct vnode *vp;
2286 	long space;
2287 	int vp_md;
2288 
2289 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2290 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2291 		bp->b_flags |= B_INVAL | B_RELBUF;
2292 		bp->b_flags &= ~B_CACHE;
2293 		brelse(bp);
2294 		return (ENXIO);
2295 	}
2296 	if (bp->b_flags & B_INVAL) {
2297 		brelse(bp);
2298 		return (0);
2299 	}
2300 
2301 	if (bp->b_flags & B_BARRIER)
2302 		atomic_add_long(&barrierwrites, 1);
2303 
2304 	oldflags = bp->b_flags;
2305 
2306 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2307 	    ("FFS background buffer should not get here %p", bp));
2308 
2309 	vp = bp->b_vp;
2310 	if (vp)
2311 		vp_md = vp->v_vflag & VV_MD;
2312 	else
2313 		vp_md = 0;
2314 
2315 	/*
2316 	 * Mark the buffer clean.  Increment the bufobj write count
2317 	 * before bundirty() call, to prevent other thread from seeing
2318 	 * empty dirty list and zero counter for writes in progress,
2319 	 * falsely indicating that the bufobj is clean.
2320 	 */
2321 	bufobj_wref(bp->b_bufobj);
2322 	bundirty(bp);
2323 
2324 	bp->b_flags &= ~B_DONE;
2325 	bp->b_ioflags &= ~BIO_ERROR;
2326 	bp->b_flags |= B_CACHE;
2327 	bp->b_iocmd = BIO_WRITE;
2328 
2329 	vfs_busy_pages(bp, 1);
2330 
2331 	/*
2332 	 * Normal bwrites pipeline writes
2333 	 */
2334 	bp->b_runningbufspace = bp->b_bufsize;
2335 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2336 
2337 #ifdef RACCT
2338 	if (racct_enable) {
2339 		PROC_LOCK(curproc);
2340 		racct_add_buf(curproc, bp, 1);
2341 		PROC_UNLOCK(curproc);
2342 	}
2343 #endif /* RACCT */
2344 	curthread->td_ru.ru_oublock++;
2345 	if (oldflags & B_ASYNC)
2346 		BUF_KERNPROC(bp);
2347 	bp->b_iooffset = dbtob(bp->b_blkno);
2348 	buf_track(bp, __func__);
2349 	bstrategy(bp);
2350 
2351 	if ((oldflags & B_ASYNC) == 0) {
2352 		int rtval = bufwait(bp);
2353 		brelse(bp);
2354 		return (rtval);
2355 	} else if (space > hirunningspace) {
2356 		/*
2357 		 * don't allow the async write to saturate the I/O
2358 		 * system.  We will not deadlock here because
2359 		 * we are blocking waiting for I/O that is already in-progress
2360 		 * to complete. We do not block here if it is the update
2361 		 * or syncer daemon trying to clean up as that can lead
2362 		 * to deadlock.
2363 		 */
2364 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2365 			waitrunningbufspace();
2366 	}
2367 
2368 	return (0);
2369 }
2370 
2371 void
2372 bufbdflush(struct bufobj *bo, struct buf *bp)
2373 {
2374 	struct buf *nbp;
2375 	struct bufdomain *bd;
2376 
2377 	bd = &bdomain[bo->bo_domain];
2378 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2379 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2380 		altbufferflushes++;
2381 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2382 		BO_LOCK(bo);
2383 		/*
2384 		 * Try to find a buffer to flush.
2385 		 */
2386 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2387 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2388 			    BUF_LOCK(nbp,
2389 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2390 				continue;
2391 			if (bp == nbp)
2392 				panic("bdwrite: found ourselves");
2393 			BO_UNLOCK(bo);
2394 			/* Don't countdeps with the bo lock held. */
2395 			if (buf_countdeps(nbp, 0)) {
2396 				BO_LOCK(bo);
2397 				BUF_UNLOCK(nbp);
2398 				continue;
2399 			}
2400 			if (nbp->b_flags & B_CLUSTEROK) {
2401 				vfs_bio_awrite(nbp);
2402 			} else {
2403 				bremfree(nbp);
2404 				bawrite(nbp);
2405 			}
2406 			dirtybufferflushes++;
2407 			break;
2408 		}
2409 		if (nbp == NULL)
2410 			BO_UNLOCK(bo);
2411 	}
2412 }
2413 
2414 /*
2415  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2416  * anything if the buffer is marked invalid.
2417  *
2418  * Note that since the buffer must be completely valid, we can safely
2419  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2420  * biodone() in order to prevent getblk from writing the buffer
2421  * out synchronously.
2422  */
2423 void
2424 bdwrite(struct buf *bp)
2425 {
2426 	struct thread *td = curthread;
2427 	struct vnode *vp;
2428 	struct bufobj *bo;
2429 
2430 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2431 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2432 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2433 	    ("Barrier request in delayed write %p", bp));
2434 
2435 	if (bp->b_flags & B_INVAL) {
2436 		brelse(bp);
2437 		return;
2438 	}
2439 
2440 	/*
2441 	 * If we have too many dirty buffers, don't create any more.
2442 	 * If we are wildly over our limit, then force a complete
2443 	 * cleanup. Otherwise, just keep the situation from getting
2444 	 * out of control. Note that we have to avoid a recursive
2445 	 * disaster and not try to clean up after our own cleanup!
2446 	 */
2447 	vp = bp->b_vp;
2448 	bo = bp->b_bufobj;
2449 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2450 		td->td_pflags |= TDP_INBDFLUSH;
2451 		BO_BDFLUSH(bo, bp);
2452 		td->td_pflags &= ~TDP_INBDFLUSH;
2453 	} else
2454 		recursiveflushes++;
2455 
2456 	bdirty(bp);
2457 	/*
2458 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2459 	 * true even of NFS now.
2460 	 */
2461 	bp->b_flags |= B_CACHE;
2462 
2463 	/*
2464 	 * This bmap keeps the system from needing to do the bmap later,
2465 	 * perhaps when the system is attempting to do a sync.  Since it
2466 	 * is likely that the indirect block -- or whatever other datastructure
2467 	 * that the filesystem needs is still in memory now, it is a good
2468 	 * thing to do this.  Note also, that if the pageout daemon is
2469 	 * requesting a sync -- there might not be enough memory to do
2470 	 * the bmap then...  So, this is important to do.
2471 	 */
2472 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2473 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2474 	}
2475 
2476 	buf_track(bp, __func__);
2477 
2478 	/*
2479 	 * Set the *dirty* buffer range based upon the VM system dirty
2480 	 * pages.
2481 	 *
2482 	 * Mark the buffer pages as clean.  We need to do this here to
2483 	 * satisfy the vnode_pager and the pageout daemon, so that it
2484 	 * thinks that the pages have been "cleaned".  Note that since
2485 	 * the pages are in a delayed write buffer -- the VFS layer
2486 	 * "will" see that the pages get written out on the next sync,
2487 	 * or perhaps the cluster will be completed.
2488 	 */
2489 	vfs_clean_pages_dirty_buf(bp);
2490 	bqrelse(bp);
2491 
2492 	/*
2493 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2494 	 * due to the softdep code.
2495 	 */
2496 }
2497 
2498 /*
2499  *	bdirty:
2500  *
2501  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2502  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2503  *	itself to properly update it in the dirty/clean lists.  We mark it
2504  *	B_DONE to ensure that any asynchronization of the buffer properly
2505  *	clears B_DONE ( else a panic will occur later ).
2506  *
2507  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2508  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2509  *	should only be called if the buffer is known-good.
2510  *
2511  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2512  *	count.
2513  *
2514  *	The buffer must be on QUEUE_NONE.
2515  */
2516 void
2517 bdirty(struct buf *bp)
2518 {
2519 
2520 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2521 	    bp, bp->b_vp, bp->b_flags);
2522 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2523 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2524 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2525 	bp->b_flags &= ~(B_RELBUF);
2526 	bp->b_iocmd = BIO_WRITE;
2527 
2528 	if ((bp->b_flags & B_DELWRI) == 0) {
2529 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2530 		reassignbuf(bp);
2531 		bdirtyadd(bp);
2532 	}
2533 }
2534 
2535 /*
2536  *	bundirty:
2537  *
2538  *	Clear B_DELWRI for buffer.
2539  *
2540  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2541  *	count.
2542  *
2543  *	The buffer must be on QUEUE_NONE.
2544  */
2545 
2546 void
2547 bundirty(struct buf *bp)
2548 {
2549 
2550 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2551 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2552 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2553 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2554 
2555 	if (bp->b_flags & B_DELWRI) {
2556 		bp->b_flags &= ~B_DELWRI;
2557 		reassignbuf(bp);
2558 		bdirtysub(bp);
2559 	}
2560 	/*
2561 	 * Since it is now being written, we can clear its deferred write flag.
2562 	 */
2563 	bp->b_flags &= ~B_DEFERRED;
2564 }
2565 
2566 /*
2567  *	bawrite:
2568  *
2569  *	Asynchronous write.  Start output on a buffer, but do not wait for
2570  *	it to complete.  The buffer is released when the output completes.
2571  *
2572  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2573  *	B_INVAL buffers.  Not us.
2574  */
2575 void
2576 bawrite(struct buf *bp)
2577 {
2578 
2579 	bp->b_flags |= B_ASYNC;
2580 	(void) bwrite(bp);
2581 }
2582 
2583 /*
2584  *	babarrierwrite:
2585  *
2586  *	Asynchronous barrier write.  Start output on a buffer, but do not
2587  *	wait for it to complete.  Place a write barrier after this write so
2588  *	that this buffer and all buffers written before it are committed to
2589  *	the disk before any buffers written after this write are committed
2590  *	to the disk.  The buffer is released when the output completes.
2591  */
2592 void
2593 babarrierwrite(struct buf *bp)
2594 {
2595 
2596 	bp->b_flags |= B_ASYNC | B_BARRIER;
2597 	(void) bwrite(bp);
2598 }
2599 
2600 /*
2601  *	bbarrierwrite:
2602  *
2603  *	Synchronous barrier write.  Start output on a buffer and wait for
2604  *	it to complete.  Place a write barrier after this write so that
2605  *	this buffer and all buffers written before it are committed to
2606  *	the disk before any buffers written after this write are committed
2607  *	to the disk.  The buffer is released when the output completes.
2608  */
2609 int
2610 bbarrierwrite(struct buf *bp)
2611 {
2612 
2613 	bp->b_flags |= B_BARRIER;
2614 	return (bwrite(bp));
2615 }
2616 
2617 /*
2618  *	bwillwrite:
2619  *
2620  *	Called prior to the locking of any vnodes when we are expecting to
2621  *	write.  We do not want to starve the buffer cache with too many
2622  *	dirty buffers so we block here.  By blocking prior to the locking
2623  *	of any vnodes we attempt to avoid the situation where a locked vnode
2624  *	prevents the various system daemons from flushing related buffers.
2625  */
2626 void
2627 bwillwrite(void)
2628 {
2629 
2630 	if (buf_dirty_count_severe()) {
2631 		mtx_lock(&bdirtylock);
2632 		while (buf_dirty_count_severe()) {
2633 			bdirtywait = 1;
2634 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2635 			    "flswai", 0);
2636 		}
2637 		mtx_unlock(&bdirtylock);
2638 	}
2639 }
2640 
2641 /*
2642  * Return true if we have too many dirty buffers.
2643  */
2644 int
2645 buf_dirty_count_severe(void)
2646 {
2647 
2648 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2649 }
2650 
2651 /*
2652  *	brelse:
2653  *
2654  *	Release a busy buffer and, if requested, free its resources.  The
2655  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2656  *	to be accessed later as a cache entity or reused for other purposes.
2657  */
2658 void
2659 brelse(struct buf *bp)
2660 {
2661 	struct mount *v_mnt;
2662 	int qindex;
2663 
2664 	/*
2665 	 * Many functions erroneously call brelse with a NULL bp under rare
2666 	 * error conditions. Simply return when called with a NULL bp.
2667 	 */
2668 	if (bp == NULL)
2669 		return;
2670 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2671 	    bp, bp->b_vp, bp->b_flags);
2672 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2673 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2674 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2675 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2676 
2677 	if (BUF_LOCKRECURSED(bp)) {
2678 		/*
2679 		 * Do not process, in particular, do not handle the
2680 		 * B_INVAL/B_RELBUF and do not release to free list.
2681 		 */
2682 		BUF_UNLOCK(bp);
2683 		return;
2684 	}
2685 
2686 	if (bp->b_flags & B_MANAGED) {
2687 		bqrelse(bp);
2688 		return;
2689 	}
2690 
2691 	if (LIST_EMPTY(&bp->b_dep)) {
2692 		bp->b_flags &= ~B_IOSTARTED;
2693 	} else {
2694 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2695 		    ("brelse: SU io not finished bp %p", bp));
2696 	}
2697 
2698 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2699 		BO_LOCK(bp->b_bufobj);
2700 		bp->b_vflags &= ~BV_BKGRDERR;
2701 		BO_UNLOCK(bp->b_bufobj);
2702 		bdirty(bp);
2703 	}
2704 
2705 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2706 	    (bp->b_flags & B_INVALONERR)) {
2707 		/*
2708 		 * Forced invalidation of dirty buffer contents, to be used
2709 		 * after a failed write in the rare case that the loss of the
2710 		 * contents is acceptable.  The buffer is invalidated and
2711 		 * freed.
2712 		 */
2713 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2714 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2715 	}
2716 
2717 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2718 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2719 	    !(bp->b_flags & B_INVAL)) {
2720 		/*
2721 		 * Failed write, redirty.  All errors except ENXIO (which
2722 		 * means the device is gone) are treated as being
2723 		 * transient.
2724 		 *
2725 		 * XXX Treating EIO as transient is not correct; the
2726 		 * contract with the local storage device drivers is that
2727 		 * they will only return EIO once the I/O is no longer
2728 		 * retriable.  Network I/O also respects this through the
2729 		 * guarantees of TCP and/or the internal retries of NFS.
2730 		 * ENOMEM might be transient, but we also have no way of
2731 		 * knowing when its ok to retry/reschedule.  In general,
2732 		 * this entire case should be made obsolete through better
2733 		 * error handling/recovery and resource scheduling.
2734 		 *
2735 		 * Do this also for buffers that failed with ENXIO, but have
2736 		 * non-empty dependencies - the soft updates code might need
2737 		 * to access the buffer to untangle them.
2738 		 *
2739 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2740 		 */
2741 		bp->b_ioflags &= ~BIO_ERROR;
2742 		bdirty(bp);
2743 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2744 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2745 		/*
2746 		 * Either a failed read I/O, or we were asked to free or not
2747 		 * cache the buffer, or we failed to write to a device that's
2748 		 * no longer present.
2749 		 */
2750 		bp->b_flags |= B_INVAL;
2751 		if (!LIST_EMPTY(&bp->b_dep))
2752 			buf_deallocate(bp);
2753 		if (bp->b_flags & B_DELWRI)
2754 			bdirtysub(bp);
2755 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2756 		if ((bp->b_flags & B_VMIO) == 0) {
2757 			allocbuf(bp, 0);
2758 			if (bp->b_vp)
2759 				brelvp(bp);
2760 		}
2761 	}
2762 
2763 	/*
2764 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2765 	 * is called with B_DELWRI set, the underlying pages may wind up
2766 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2767 	 * because pages associated with a B_DELWRI bp are marked clean.
2768 	 *
2769 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2770 	 * if B_DELWRI is set.
2771 	 */
2772 	if (bp->b_flags & B_DELWRI)
2773 		bp->b_flags &= ~B_RELBUF;
2774 
2775 	/*
2776 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2777 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2778 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2779 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2780 	 *
2781 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2782 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2783 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2784 	 *
2785 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2786 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2787 	 * the commit state and we cannot afford to lose the buffer. If the
2788 	 * buffer has a background write in progress, we need to keep it
2789 	 * around to prevent it from being reconstituted and starting a second
2790 	 * background write.
2791 	 */
2792 
2793 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2794 
2795 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2796 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2797 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2798 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2799 		vfs_vmio_invalidate(bp);
2800 		allocbuf(bp, 0);
2801 	}
2802 
2803 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2804 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2805 		allocbuf(bp, 0);
2806 		bp->b_flags &= ~B_NOREUSE;
2807 		if (bp->b_vp != NULL)
2808 			brelvp(bp);
2809 	}
2810 
2811 	/*
2812 	 * If the buffer has junk contents signal it and eventually
2813 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2814 	 * doesn't find it.
2815 	 */
2816 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2817 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2818 		bp->b_flags |= B_INVAL;
2819 	if (bp->b_flags & B_INVAL) {
2820 		if (bp->b_flags & B_DELWRI)
2821 			bundirty(bp);
2822 		if (bp->b_vp)
2823 			brelvp(bp);
2824 	}
2825 
2826 	buf_track(bp, __func__);
2827 
2828 	/* buffers with no memory */
2829 	if (bp->b_bufsize == 0) {
2830 		buf_free(bp);
2831 		return;
2832 	}
2833 	/* buffers with junk contents */
2834 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2835 	    (bp->b_ioflags & BIO_ERROR)) {
2836 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2837 		if (bp->b_vflags & BV_BKGRDINPROG)
2838 			panic("losing buffer 2");
2839 		qindex = QUEUE_CLEAN;
2840 		bp->b_flags |= B_AGE;
2841 	/* remaining buffers */
2842 	} else if (bp->b_flags & B_DELWRI)
2843 		qindex = QUEUE_DIRTY;
2844 	else
2845 		qindex = QUEUE_CLEAN;
2846 
2847 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2848 		panic("brelse: not dirty");
2849 
2850 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2851 	bp->b_xflags &= ~(BX_CVTENXIO);
2852 	/* binsfree unlocks bp. */
2853 	binsfree(bp, qindex);
2854 }
2855 
2856 /*
2857  * Release a buffer back to the appropriate queue but do not try to free
2858  * it.  The buffer is expected to be used again soon.
2859  *
2860  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2861  * biodone() to requeue an async I/O on completion.  It is also used when
2862  * known good buffers need to be requeued but we think we may need the data
2863  * again soon.
2864  *
2865  * XXX we should be able to leave the B_RELBUF hint set on completion.
2866  */
2867 void
2868 bqrelse(struct buf *bp)
2869 {
2870 	int qindex;
2871 
2872 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2873 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2874 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2875 
2876 	qindex = QUEUE_NONE;
2877 	if (BUF_LOCKRECURSED(bp)) {
2878 		/* do not release to free list */
2879 		BUF_UNLOCK(bp);
2880 		return;
2881 	}
2882 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2883 	bp->b_xflags &= ~(BX_CVTENXIO);
2884 
2885 	if (LIST_EMPTY(&bp->b_dep)) {
2886 		bp->b_flags &= ~B_IOSTARTED;
2887 	} else {
2888 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2889 		    ("bqrelse: SU io not finished bp %p", bp));
2890 	}
2891 
2892 	if (bp->b_flags & B_MANAGED) {
2893 		if (bp->b_flags & B_REMFREE)
2894 			bremfreef(bp);
2895 		goto out;
2896 	}
2897 
2898 	/* buffers with stale but valid contents */
2899 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2900 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2901 		BO_LOCK(bp->b_bufobj);
2902 		bp->b_vflags &= ~BV_BKGRDERR;
2903 		BO_UNLOCK(bp->b_bufobj);
2904 		qindex = QUEUE_DIRTY;
2905 	} else {
2906 		if ((bp->b_flags & B_DELWRI) == 0 &&
2907 		    (bp->b_xflags & BX_VNDIRTY))
2908 			panic("bqrelse: not dirty");
2909 		if ((bp->b_flags & B_NOREUSE) != 0) {
2910 			brelse(bp);
2911 			return;
2912 		}
2913 		qindex = QUEUE_CLEAN;
2914 	}
2915 	buf_track(bp, __func__);
2916 	/* binsfree unlocks bp. */
2917 	binsfree(bp, qindex);
2918 	return;
2919 
2920 out:
2921 	buf_track(bp, __func__);
2922 	/* unlock */
2923 	BUF_UNLOCK(bp);
2924 }
2925 
2926 /*
2927  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2928  * restore bogus pages.
2929  */
2930 static void
2931 vfs_vmio_iodone(struct buf *bp)
2932 {
2933 	vm_ooffset_t foff;
2934 	vm_page_t m;
2935 	vm_object_t obj;
2936 	struct vnode *vp __unused;
2937 	int i, iosize, resid;
2938 	bool bogus;
2939 
2940 	obj = bp->b_bufobj->bo_object;
2941 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2942 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2943 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2944 
2945 	vp = bp->b_vp;
2946 	VNPASS(vp->v_holdcnt > 0, vp);
2947 	VNPASS(vp->v_object != NULL, vp);
2948 
2949 	foff = bp->b_offset;
2950 	KASSERT(bp->b_offset != NOOFFSET,
2951 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2952 
2953 	bogus = false;
2954 	iosize = bp->b_bcount - bp->b_resid;
2955 	for (i = 0; i < bp->b_npages; i++) {
2956 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2957 		if (resid > iosize)
2958 			resid = iosize;
2959 
2960 		/*
2961 		 * cleanup bogus pages, restoring the originals
2962 		 */
2963 		m = bp->b_pages[i];
2964 		if (m == bogus_page) {
2965 			bogus = true;
2966 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2967 			if (m == NULL)
2968 				panic("biodone: page disappeared!");
2969 			bp->b_pages[i] = m;
2970 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2971 			/*
2972 			 * In the write case, the valid and clean bits are
2973 			 * already changed correctly ( see bdwrite() ), so we
2974 			 * only need to do this here in the read case.
2975 			 */
2976 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2977 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2978 			    "has unexpected dirty bits", m));
2979 			vfs_page_set_valid(bp, foff, m);
2980 		}
2981 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2982 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2983 		    (intmax_t)foff, (uintmax_t)m->pindex));
2984 
2985 		vm_page_sunbusy(m);
2986 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2987 		iosize -= resid;
2988 	}
2989 	vm_object_pip_wakeupn(obj, bp->b_npages);
2990 	if (bogus && buf_mapped(bp)) {
2991 		BUF_CHECK_MAPPED(bp);
2992 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2993 		    bp->b_pages, bp->b_npages);
2994 	}
2995 }
2996 
2997 /*
2998  * Perform page invalidation when a buffer is released.  The fully invalid
2999  * pages will be reclaimed later in vfs_vmio_truncate().
3000  */
3001 static void
3002 vfs_vmio_invalidate(struct buf *bp)
3003 {
3004 	vm_object_t obj;
3005 	vm_page_t m;
3006 	int flags, i, resid, poffset, presid;
3007 
3008 	if (buf_mapped(bp)) {
3009 		BUF_CHECK_MAPPED(bp);
3010 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3011 	} else
3012 		BUF_CHECK_UNMAPPED(bp);
3013 	/*
3014 	 * Get the base offset and length of the buffer.  Note that
3015 	 * in the VMIO case if the buffer block size is not
3016 	 * page-aligned then b_data pointer may not be page-aligned.
3017 	 * But our b_pages[] array *IS* page aligned.
3018 	 *
3019 	 * block sizes less then DEV_BSIZE (usually 512) are not
3020 	 * supported due to the page granularity bits (m->valid,
3021 	 * m->dirty, etc...).
3022 	 *
3023 	 * See man buf(9) for more information
3024 	 */
3025 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3026 	obj = bp->b_bufobj->bo_object;
3027 	resid = bp->b_bufsize;
3028 	poffset = bp->b_offset & PAGE_MASK;
3029 	VM_OBJECT_WLOCK(obj);
3030 	for (i = 0; i < bp->b_npages; i++) {
3031 		m = bp->b_pages[i];
3032 		if (m == bogus_page)
3033 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
3034 		bp->b_pages[i] = NULL;
3035 
3036 		presid = resid > (PAGE_SIZE - poffset) ?
3037 		    (PAGE_SIZE - poffset) : resid;
3038 		KASSERT(presid >= 0, ("brelse: extra page"));
3039 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3040 		if (pmap_page_wired_mappings(m) == 0)
3041 			vm_page_set_invalid(m, poffset, presid);
3042 		vm_page_sunbusy(m);
3043 		vm_page_release_locked(m, flags);
3044 		resid -= presid;
3045 		poffset = 0;
3046 	}
3047 	VM_OBJECT_WUNLOCK(obj);
3048 	bp->b_npages = 0;
3049 }
3050 
3051 /*
3052  * Page-granular truncation of an existing VMIO buffer.
3053  */
3054 static void
3055 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3056 {
3057 	vm_object_t obj;
3058 	vm_page_t m;
3059 	int flags, i;
3060 
3061 	if (bp->b_npages == desiredpages)
3062 		return;
3063 
3064 	if (buf_mapped(bp)) {
3065 		BUF_CHECK_MAPPED(bp);
3066 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3067 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3068 	} else
3069 		BUF_CHECK_UNMAPPED(bp);
3070 
3071 	/*
3072 	 * The object lock is needed only if we will attempt to free pages.
3073 	 */
3074 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3075 	if ((bp->b_flags & B_DIRECT) != 0) {
3076 		flags |= VPR_TRYFREE;
3077 		obj = bp->b_bufobj->bo_object;
3078 		VM_OBJECT_WLOCK(obj);
3079 	} else {
3080 		obj = NULL;
3081 	}
3082 	for (i = desiredpages; i < bp->b_npages; i++) {
3083 		m = bp->b_pages[i];
3084 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3085 		bp->b_pages[i] = NULL;
3086 		if (obj != NULL)
3087 			vm_page_release_locked(m, flags);
3088 		else
3089 			vm_page_release(m, flags);
3090 	}
3091 	if (obj != NULL)
3092 		VM_OBJECT_WUNLOCK(obj);
3093 	bp->b_npages = desiredpages;
3094 }
3095 
3096 /*
3097  * Byte granular extension of VMIO buffers.
3098  */
3099 static void
3100 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3101 {
3102 	/*
3103 	 * We are growing the buffer, possibly in a
3104 	 * byte-granular fashion.
3105 	 */
3106 	vm_object_t obj;
3107 	vm_offset_t toff;
3108 	vm_offset_t tinc;
3109 	vm_page_t m;
3110 
3111 	/*
3112 	 * Step 1, bring in the VM pages from the object, allocating
3113 	 * them if necessary.  We must clear B_CACHE if these pages
3114 	 * are not valid for the range covered by the buffer.
3115 	 */
3116 	obj = bp->b_bufobj->bo_object;
3117 	if (bp->b_npages < desiredpages) {
3118 		KASSERT(desiredpages <= atop(maxbcachebuf),
3119 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3120 		    bp, desiredpages, maxbcachebuf));
3121 
3122 		/*
3123 		 * We must allocate system pages since blocking
3124 		 * here could interfere with paging I/O, no
3125 		 * matter which process we are.
3126 		 *
3127 		 * Only exclusive busy can be tested here.
3128 		 * Blocking on shared busy might lead to
3129 		 * deadlocks once allocbuf() is called after
3130 		 * pages are vfs_busy_pages().
3131 		 */
3132 		(void)vm_page_grab_pages_unlocked(obj,
3133 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3134 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3135 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3136 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3137 		bp->b_npages = desiredpages;
3138 	}
3139 
3140 	/*
3141 	 * Step 2.  We've loaded the pages into the buffer,
3142 	 * we have to figure out if we can still have B_CACHE
3143 	 * set.  Note that B_CACHE is set according to the
3144 	 * byte-granular range ( bcount and size ), not the
3145 	 * aligned range ( newbsize ).
3146 	 *
3147 	 * The VM test is against m->valid, which is DEV_BSIZE
3148 	 * aligned.  Needless to say, the validity of the data
3149 	 * needs to also be DEV_BSIZE aligned.  Note that this
3150 	 * fails with NFS if the server or some other client
3151 	 * extends the file's EOF.  If our buffer is resized,
3152 	 * B_CACHE may remain set! XXX
3153 	 */
3154 	toff = bp->b_bcount;
3155 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3156 	while ((bp->b_flags & B_CACHE) && toff < size) {
3157 		vm_pindex_t pi;
3158 
3159 		if (tinc > (size - toff))
3160 			tinc = size - toff;
3161 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3162 		m = bp->b_pages[pi];
3163 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3164 		toff += tinc;
3165 		tinc = PAGE_SIZE;
3166 	}
3167 
3168 	/*
3169 	 * Step 3, fixup the KVA pmap.
3170 	 */
3171 	if (buf_mapped(bp))
3172 		bpmap_qenter(bp);
3173 	else
3174 		BUF_CHECK_UNMAPPED(bp);
3175 }
3176 
3177 /*
3178  * Check to see if a block at a particular lbn is available for a clustered
3179  * write.
3180  */
3181 static int
3182 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3183 {
3184 	struct buf *bpa;
3185 	int match;
3186 
3187 	match = 0;
3188 
3189 	/* If the buf isn't in core skip it */
3190 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3191 		return (0);
3192 
3193 	/* If the buf is busy we don't want to wait for it */
3194 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3195 		return (0);
3196 
3197 	/* Only cluster with valid clusterable delayed write buffers */
3198 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3199 	    (B_DELWRI | B_CLUSTEROK))
3200 		goto done;
3201 
3202 	if (bpa->b_bufsize != size)
3203 		goto done;
3204 
3205 	/*
3206 	 * Check to see if it is in the expected place on disk and that the
3207 	 * block has been mapped.
3208 	 */
3209 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3210 		match = 1;
3211 done:
3212 	BUF_UNLOCK(bpa);
3213 	return (match);
3214 }
3215 
3216 /*
3217  *	vfs_bio_awrite:
3218  *
3219  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3220  *	This is much better then the old way of writing only one buffer at
3221  *	a time.  Note that we may not be presented with the buffers in the
3222  *	correct order, so we search for the cluster in both directions.
3223  */
3224 int
3225 vfs_bio_awrite(struct buf *bp)
3226 {
3227 	struct bufobj *bo;
3228 	int i;
3229 	int j;
3230 	daddr_t lblkno = bp->b_lblkno;
3231 	struct vnode *vp = bp->b_vp;
3232 	int ncl;
3233 	int nwritten;
3234 	int size;
3235 	int maxcl;
3236 	int gbflags;
3237 
3238 	bo = &vp->v_bufobj;
3239 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3240 	/*
3241 	 * right now we support clustered writing only to regular files.  If
3242 	 * we find a clusterable block we could be in the middle of a cluster
3243 	 * rather then at the beginning.
3244 	 */
3245 	if ((vp->v_type == VREG) &&
3246 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3247 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3248 		size = vp->v_mount->mnt_stat.f_iosize;
3249 		maxcl = maxphys / size;
3250 
3251 		BO_RLOCK(bo);
3252 		for (i = 1; i < maxcl; i++)
3253 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3254 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3255 				break;
3256 
3257 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3258 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3259 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3260 				break;
3261 		BO_RUNLOCK(bo);
3262 		--j;
3263 		ncl = i + j;
3264 		/*
3265 		 * this is a possible cluster write
3266 		 */
3267 		if (ncl != 1) {
3268 			BUF_UNLOCK(bp);
3269 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3270 			    gbflags);
3271 			return (nwritten);
3272 		}
3273 	}
3274 	bremfree(bp);
3275 	bp->b_flags |= B_ASYNC;
3276 	/*
3277 	 * default (old) behavior, writing out only one block
3278 	 *
3279 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3280 	 */
3281 	nwritten = bp->b_bufsize;
3282 	(void) bwrite(bp);
3283 
3284 	return (nwritten);
3285 }
3286 
3287 /*
3288  *	getnewbuf_kva:
3289  *
3290  *	Allocate KVA for an empty buf header according to gbflags.
3291  */
3292 static int
3293 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3294 {
3295 
3296 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3297 		/*
3298 		 * In order to keep fragmentation sane we only allocate kva
3299 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3300 		 */
3301 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3302 
3303 		if (maxsize != bp->b_kvasize &&
3304 		    bufkva_alloc(bp, maxsize, gbflags))
3305 			return (ENOSPC);
3306 	}
3307 	return (0);
3308 }
3309 
3310 /*
3311  *	getnewbuf:
3312  *
3313  *	Find and initialize a new buffer header, freeing up existing buffers
3314  *	in the bufqueues as necessary.  The new buffer is returned locked.
3315  *
3316  *	We block if:
3317  *		We have insufficient buffer headers
3318  *		We have insufficient buffer space
3319  *		buffer_arena is too fragmented ( space reservation fails )
3320  *		If we have to flush dirty buffers ( but we try to avoid this )
3321  *
3322  *	The caller is responsible for releasing the reserved bufspace after
3323  *	allocbuf() is called.
3324  */
3325 static struct buf *
3326 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3327 {
3328 	struct bufdomain *bd;
3329 	struct buf *bp;
3330 	bool metadata, reserved;
3331 
3332 	bp = NULL;
3333 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3334 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3335 	if (!unmapped_buf_allowed)
3336 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3337 
3338 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3339 	    vp->v_type == VCHR)
3340 		metadata = true;
3341 	else
3342 		metadata = false;
3343 	if (vp == NULL)
3344 		bd = &bdomain[0];
3345 	else
3346 		bd = &bdomain[vp->v_bufobj.bo_domain];
3347 
3348 	counter_u64_add(getnewbufcalls, 1);
3349 	reserved = false;
3350 	do {
3351 		if (reserved == false &&
3352 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3353 			counter_u64_add(getnewbufrestarts, 1);
3354 			continue;
3355 		}
3356 		reserved = true;
3357 		if ((bp = buf_alloc(bd)) == NULL) {
3358 			counter_u64_add(getnewbufrestarts, 1);
3359 			continue;
3360 		}
3361 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3362 			return (bp);
3363 		break;
3364 	} while (buf_recycle(bd, false) == 0);
3365 
3366 	if (reserved)
3367 		bufspace_release(bd, maxsize);
3368 	if (bp != NULL) {
3369 		bp->b_flags |= B_INVAL;
3370 		brelse(bp);
3371 	}
3372 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3373 
3374 	return (NULL);
3375 }
3376 
3377 /*
3378  *	buf_daemon:
3379  *
3380  *	buffer flushing daemon.  Buffers are normally flushed by the
3381  *	update daemon but if it cannot keep up this process starts to
3382  *	take the load in an attempt to prevent getnewbuf() from blocking.
3383  */
3384 static struct kproc_desc buf_kp = {
3385 	"bufdaemon",
3386 	buf_daemon,
3387 	&bufdaemonproc
3388 };
3389 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3390 
3391 static int
3392 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3393 {
3394 	int flushed;
3395 
3396 	flushed = flushbufqueues(vp, bd, target, 0);
3397 	if (flushed == 0) {
3398 		/*
3399 		 * Could not find any buffers without rollback
3400 		 * dependencies, so just write the first one
3401 		 * in the hopes of eventually making progress.
3402 		 */
3403 		if (vp != NULL && target > 2)
3404 			target /= 2;
3405 		flushbufqueues(vp, bd, target, 1);
3406 	}
3407 	return (flushed);
3408 }
3409 
3410 static void
3411 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3412 {
3413 	int error;
3414 
3415 	mtx_lock(&bdlock);
3416 	bd_shutdown = true;
3417 	wakeup(&bd_request);
3418 	error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3419 	    60 * hz);
3420 	mtx_unlock(&bdlock);
3421 	if (error != 0)
3422 		printf("bufdaemon wait error: %d\n", error);
3423 }
3424 
3425 static void
3426 buf_daemon()
3427 {
3428 	struct bufdomain *bd;
3429 	int speedupreq;
3430 	int lodirty;
3431 	int i;
3432 
3433 	/*
3434 	 * This process needs to be suspended prior to shutdown sync.
3435 	 */
3436 	EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3437 	    SHUTDOWN_PRI_LAST + 100);
3438 
3439 	/*
3440 	 * Start the buf clean daemons as children threads.
3441 	 */
3442 	for (i = 0 ; i < buf_domains; i++) {
3443 		int error;
3444 
3445 		error = kthread_add((void (*)(void *))bufspace_daemon,
3446 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3447 		if (error)
3448 			panic("error %d spawning bufspace daemon", error);
3449 	}
3450 
3451 	/*
3452 	 * This process is allowed to take the buffer cache to the limit
3453 	 */
3454 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3455 	mtx_lock(&bdlock);
3456 	while (!bd_shutdown) {
3457 		bd_request = 0;
3458 		mtx_unlock(&bdlock);
3459 
3460 		/*
3461 		 * Save speedupreq for this pass and reset to capture new
3462 		 * requests.
3463 		 */
3464 		speedupreq = bd_speedupreq;
3465 		bd_speedupreq = 0;
3466 
3467 		/*
3468 		 * Flush each domain sequentially according to its level and
3469 		 * the speedup request.
3470 		 */
3471 		for (i = 0; i < buf_domains; i++) {
3472 			bd = &bdomain[i];
3473 			if (speedupreq)
3474 				lodirty = bd->bd_numdirtybuffers / 2;
3475 			else
3476 				lodirty = bd->bd_lodirtybuffers;
3477 			while (bd->bd_numdirtybuffers > lodirty) {
3478 				if (buf_flush(NULL, bd,
3479 				    bd->bd_numdirtybuffers - lodirty) == 0)
3480 					break;
3481 				kern_yield(PRI_USER);
3482 			}
3483 		}
3484 
3485 		/*
3486 		 * Only clear bd_request if we have reached our low water
3487 		 * mark.  The buf_daemon normally waits 1 second and
3488 		 * then incrementally flushes any dirty buffers that have
3489 		 * built up, within reason.
3490 		 *
3491 		 * If we were unable to hit our low water mark and couldn't
3492 		 * find any flushable buffers, we sleep for a short period
3493 		 * to avoid endless loops on unlockable buffers.
3494 		 */
3495 		mtx_lock(&bdlock);
3496 		if (bd_shutdown)
3497 			break;
3498 		if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3499 			/*
3500 			 * We reached our low water mark, reset the
3501 			 * request and sleep until we are needed again.
3502 			 * The sleep is just so the suspend code works.
3503 			 */
3504 			bd_request = 0;
3505 			/*
3506 			 * Do an extra wakeup in case dirty threshold
3507 			 * changed via sysctl and the explicit transition
3508 			 * out of shortfall was missed.
3509 			 */
3510 			bdirtywakeup();
3511 			if (runningbufspace <= lorunningspace)
3512 				runningwakeup();
3513 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3514 		} else {
3515 			/*
3516 			 * We couldn't find any flushable dirty buffers but
3517 			 * still have too many dirty buffers, we
3518 			 * have to sleep and try again.  (rare)
3519 			 */
3520 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3521 		}
3522 	}
3523 	wakeup(&bd_shutdown);
3524 	mtx_unlock(&bdlock);
3525 	kthread_exit();
3526 }
3527 
3528 /*
3529  *	flushbufqueues:
3530  *
3531  *	Try to flush a buffer in the dirty queue.  We must be careful to
3532  *	free up B_INVAL buffers instead of write them, which NFS is
3533  *	particularly sensitive to.
3534  */
3535 static int flushwithdeps = 0;
3536 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3537     &flushwithdeps, 0,
3538     "Number of buffers flushed with dependencies that require rollbacks");
3539 
3540 static int
3541 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3542     int flushdeps)
3543 {
3544 	struct bufqueue *bq;
3545 	struct buf *sentinel;
3546 	struct vnode *vp;
3547 	struct mount *mp;
3548 	struct buf *bp;
3549 	int hasdeps;
3550 	int flushed;
3551 	int error;
3552 	bool unlock;
3553 
3554 	flushed = 0;
3555 	bq = &bd->bd_dirtyq;
3556 	bp = NULL;
3557 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3558 	sentinel->b_qindex = QUEUE_SENTINEL;
3559 	BQ_LOCK(bq);
3560 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3561 	BQ_UNLOCK(bq);
3562 	while (flushed != target) {
3563 		maybe_yield();
3564 		BQ_LOCK(bq);
3565 		bp = TAILQ_NEXT(sentinel, b_freelist);
3566 		if (bp != NULL) {
3567 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3568 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3569 			    b_freelist);
3570 		} else {
3571 			BQ_UNLOCK(bq);
3572 			break;
3573 		}
3574 		/*
3575 		 * Skip sentinels inserted by other invocations of the
3576 		 * flushbufqueues(), taking care to not reorder them.
3577 		 *
3578 		 * Only flush the buffers that belong to the
3579 		 * vnode locked by the curthread.
3580 		 */
3581 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3582 		    bp->b_vp != lvp)) {
3583 			BQ_UNLOCK(bq);
3584 			continue;
3585 		}
3586 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3587 		BQ_UNLOCK(bq);
3588 		if (error != 0)
3589 			continue;
3590 
3591 		/*
3592 		 * BKGRDINPROG can only be set with the buf and bufobj
3593 		 * locks both held.  We tolerate a race to clear it here.
3594 		 */
3595 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3596 		    (bp->b_flags & B_DELWRI) == 0) {
3597 			BUF_UNLOCK(bp);
3598 			continue;
3599 		}
3600 		if (bp->b_flags & B_INVAL) {
3601 			bremfreef(bp);
3602 			brelse(bp);
3603 			flushed++;
3604 			continue;
3605 		}
3606 
3607 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3608 			if (flushdeps == 0) {
3609 				BUF_UNLOCK(bp);
3610 				continue;
3611 			}
3612 			hasdeps = 1;
3613 		} else
3614 			hasdeps = 0;
3615 		/*
3616 		 * We must hold the lock on a vnode before writing
3617 		 * one of its buffers. Otherwise we may confuse, or
3618 		 * in the case of a snapshot vnode, deadlock the
3619 		 * system.
3620 		 *
3621 		 * The lock order here is the reverse of the normal
3622 		 * of vnode followed by buf lock.  This is ok because
3623 		 * the NOWAIT will prevent deadlock.
3624 		 */
3625 		vp = bp->b_vp;
3626 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3627 			BUF_UNLOCK(bp);
3628 			continue;
3629 		}
3630 		if (lvp == NULL) {
3631 			unlock = true;
3632 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3633 		} else {
3634 			ASSERT_VOP_LOCKED(vp, "getbuf");
3635 			unlock = false;
3636 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3637 			    vn_lock(vp, LK_TRYUPGRADE);
3638 		}
3639 		if (error == 0) {
3640 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3641 			    bp, bp->b_vp, bp->b_flags);
3642 			if (curproc == bufdaemonproc) {
3643 				vfs_bio_awrite(bp);
3644 			} else {
3645 				bremfree(bp);
3646 				bwrite(bp);
3647 				counter_u64_add(notbufdflushes, 1);
3648 			}
3649 			vn_finished_write(mp);
3650 			if (unlock)
3651 				VOP_UNLOCK(vp);
3652 			flushwithdeps += hasdeps;
3653 			flushed++;
3654 
3655 			/*
3656 			 * Sleeping on runningbufspace while holding
3657 			 * vnode lock leads to deadlock.
3658 			 */
3659 			if (curproc == bufdaemonproc &&
3660 			    runningbufspace > hirunningspace)
3661 				waitrunningbufspace();
3662 			continue;
3663 		}
3664 		vn_finished_write(mp);
3665 		BUF_UNLOCK(bp);
3666 	}
3667 	BQ_LOCK(bq);
3668 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3669 	BQ_UNLOCK(bq);
3670 	free(sentinel, M_TEMP);
3671 	return (flushed);
3672 }
3673 
3674 /*
3675  * Check to see if a block is currently memory resident.
3676  */
3677 struct buf *
3678 incore(struct bufobj *bo, daddr_t blkno)
3679 {
3680 	return (gbincore_unlocked(bo, blkno));
3681 }
3682 
3683 /*
3684  * Returns true if no I/O is needed to access the
3685  * associated VM object.  This is like incore except
3686  * it also hunts around in the VM system for the data.
3687  */
3688 bool
3689 inmem(struct vnode * vp, daddr_t blkno)
3690 {
3691 	vm_object_t obj;
3692 	vm_offset_t toff, tinc, size;
3693 	vm_page_t m, n;
3694 	vm_ooffset_t off;
3695 	int valid;
3696 
3697 	ASSERT_VOP_LOCKED(vp, "inmem");
3698 
3699 	if (incore(&vp->v_bufobj, blkno))
3700 		return (true);
3701 	if (vp->v_mount == NULL)
3702 		return (false);
3703 	obj = vp->v_object;
3704 	if (obj == NULL)
3705 		return (false);
3706 
3707 	size = PAGE_SIZE;
3708 	if (size > vp->v_mount->mnt_stat.f_iosize)
3709 		size = vp->v_mount->mnt_stat.f_iosize;
3710 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3711 
3712 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3713 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3714 recheck:
3715 		if (m == NULL)
3716 			return (false);
3717 
3718 		tinc = size;
3719 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3720 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3721 		/*
3722 		 * Consider page validity only if page mapping didn't change
3723 		 * during the check.
3724 		 */
3725 		valid = vm_page_is_valid(m,
3726 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3727 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3728 		if (m != n) {
3729 			m = n;
3730 			goto recheck;
3731 		}
3732 		if (!valid)
3733 			return (false);
3734 	}
3735 	return (true);
3736 }
3737 
3738 /*
3739  * Set the dirty range for a buffer based on the status of the dirty
3740  * bits in the pages comprising the buffer.  The range is limited
3741  * to the size of the buffer.
3742  *
3743  * Tell the VM system that the pages associated with this buffer
3744  * are clean.  This is used for delayed writes where the data is
3745  * going to go to disk eventually without additional VM intevention.
3746  *
3747  * Note that while we only really need to clean through to b_bcount, we
3748  * just go ahead and clean through to b_bufsize.
3749  */
3750 static void
3751 vfs_clean_pages_dirty_buf(struct buf *bp)
3752 {
3753 	vm_ooffset_t foff, noff, eoff;
3754 	vm_page_t m;
3755 	int i;
3756 
3757 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3758 		return;
3759 
3760 	foff = bp->b_offset;
3761 	KASSERT(bp->b_offset != NOOFFSET,
3762 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3763 
3764 	vfs_busy_pages_acquire(bp);
3765 	vfs_setdirty_range(bp);
3766 	for (i = 0; i < bp->b_npages; i++) {
3767 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3768 		eoff = noff;
3769 		if (eoff > bp->b_offset + bp->b_bufsize)
3770 			eoff = bp->b_offset + bp->b_bufsize;
3771 		m = bp->b_pages[i];
3772 		vfs_page_set_validclean(bp, foff, m);
3773 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3774 		foff = noff;
3775 	}
3776 	vfs_busy_pages_release(bp);
3777 }
3778 
3779 static void
3780 vfs_setdirty_range(struct buf *bp)
3781 {
3782 	vm_offset_t boffset;
3783 	vm_offset_t eoffset;
3784 	int i;
3785 
3786 	/*
3787 	 * test the pages to see if they have been modified directly
3788 	 * by users through the VM system.
3789 	 */
3790 	for (i = 0; i < bp->b_npages; i++)
3791 		vm_page_test_dirty(bp->b_pages[i]);
3792 
3793 	/*
3794 	 * Calculate the encompassing dirty range, boffset and eoffset,
3795 	 * (eoffset - boffset) bytes.
3796 	 */
3797 
3798 	for (i = 0; i < bp->b_npages; i++) {
3799 		if (bp->b_pages[i]->dirty)
3800 			break;
3801 	}
3802 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3803 
3804 	for (i = bp->b_npages - 1; i >= 0; --i) {
3805 		if (bp->b_pages[i]->dirty) {
3806 			break;
3807 		}
3808 	}
3809 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3810 
3811 	/*
3812 	 * Fit it to the buffer.
3813 	 */
3814 
3815 	if (eoffset > bp->b_bcount)
3816 		eoffset = bp->b_bcount;
3817 
3818 	/*
3819 	 * If we have a good dirty range, merge with the existing
3820 	 * dirty range.
3821 	 */
3822 
3823 	if (boffset < eoffset) {
3824 		if (bp->b_dirtyoff > boffset)
3825 			bp->b_dirtyoff = boffset;
3826 		if (bp->b_dirtyend < eoffset)
3827 			bp->b_dirtyend = eoffset;
3828 	}
3829 }
3830 
3831 /*
3832  * Allocate the KVA mapping for an existing buffer.
3833  * If an unmapped buffer is provided but a mapped buffer is requested, take
3834  * also care to properly setup mappings between pages and KVA.
3835  */
3836 static void
3837 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3838 {
3839 	int bsize, maxsize, need_mapping, need_kva;
3840 	off_t offset;
3841 
3842 	need_mapping = bp->b_data == unmapped_buf &&
3843 	    (gbflags & GB_UNMAPPED) == 0;
3844 	need_kva = bp->b_kvabase == unmapped_buf &&
3845 	    bp->b_data == unmapped_buf &&
3846 	    (gbflags & GB_KVAALLOC) != 0;
3847 	if (!need_mapping && !need_kva)
3848 		return;
3849 
3850 	BUF_CHECK_UNMAPPED(bp);
3851 
3852 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3853 		/*
3854 		 * Buffer is not mapped, but the KVA was already
3855 		 * reserved at the time of the instantiation.  Use the
3856 		 * allocated space.
3857 		 */
3858 		goto has_addr;
3859 	}
3860 
3861 	/*
3862 	 * Calculate the amount of the address space we would reserve
3863 	 * if the buffer was mapped.
3864 	 */
3865 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3866 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3867 	offset = blkno * bsize;
3868 	maxsize = size + (offset & PAGE_MASK);
3869 	maxsize = imax(maxsize, bsize);
3870 
3871 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3872 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3873 			/*
3874 			 * XXXKIB: defragmentation cannot
3875 			 * succeed, not sure what else to do.
3876 			 */
3877 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3878 		}
3879 		counter_u64_add(mappingrestarts, 1);
3880 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3881 	}
3882 has_addr:
3883 	if (need_mapping) {
3884 		/* b_offset is handled by bpmap_qenter. */
3885 		bp->b_data = bp->b_kvabase;
3886 		BUF_CHECK_MAPPED(bp);
3887 		bpmap_qenter(bp);
3888 	}
3889 }
3890 
3891 struct buf *
3892 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3893     int flags)
3894 {
3895 	struct buf *bp;
3896 	int error;
3897 
3898 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3899 	if (error != 0)
3900 		return (NULL);
3901 	return (bp);
3902 }
3903 
3904 /*
3905  *	getblkx:
3906  *
3907  *	Get a block given a specified block and offset into a file/device.
3908  *	The buffers B_DONE bit will be cleared on return, making it almost
3909  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3910  *	return.  The caller should clear B_INVAL prior to initiating a
3911  *	READ.
3912  *
3913  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3914  *	an existing buffer.
3915  *
3916  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3917  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3918  *	and then cleared based on the backing VM.  If the previous buffer is
3919  *	non-0-sized but invalid, B_CACHE will be cleared.
3920  *
3921  *	If getblk() must create a new buffer, the new buffer is returned with
3922  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3923  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3924  *	backing VM.
3925  *
3926  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3927  *	B_CACHE bit is clear.
3928  *
3929  *	What this means, basically, is that the caller should use B_CACHE to
3930  *	determine whether the buffer is fully valid or not and should clear
3931  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3932  *	the buffer by loading its data area with something, the caller needs
3933  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3934  *	the caller should set B_CACHE ( as an optimization ), else the caller
3935  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3936  *	a write attempt or if it was a successful read.  If the caller
3937  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3938  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3939  *
3940  *	The blkno parameter is the logical block being requested. Normally
3941  *	the mapping of logical block number to disk block address is done
3942  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3943  *	disk block address can be passed using the dblkno parameter. If the
3944  *	disk block address is not known, then the same value should be passed
3945  *	for blkno and dblkno.
3946  */
3947 int
3948 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3949     int slptimeo, int flags, struct buf **bpp)
3950 {
3951 	struct buf *bp;
3952 	struct bufobj *bo;
3953 	daddr_t d_blkno;
3954 	int bsize, error, maxsize, vmio;
3955 	off_t offset;
3956 
3957 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3958 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3959 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3960 	if (vp->v_type != VCHR)
3961 		ASSERT_VOP_LOCKED(vp, "getblk");
3962 	if (size > maxbcachebuf)
3963 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3964 		    maxbcachebuf);
3965 	if (!unmapped_buf_allowed)
3966 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3967 
3968 	bo = &vp->v_bufobj;
3969 	d_blkno = dblkno;
3970 
3971 	/* Attempt lockless lookup first. */
3972 	bp = gbincore_unlocked(bo, blkno);
3973 	if (bp == NULL) {
3974 		/*
3975 		 * With GB_NOCREAT we must be sure about not finding the buffer
3976 		 * as it may have been reassigned during unlocked lookup.
3977 		 */
3978 		if ((flags & GB_NOCREAT) != 0)
3979 			goto loop;
3980 		goto newbuf_unlocked;
3981 	}
3982 
3983 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
3984 	    0);
3985 	if (error != 0)
3986 		goto loop;
3987 
3988 	/* Verify buf identify has not changed since lookup. */
3989 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
3990 		goto foundbuf_fastpath;
3991 
3992 	/* It changed, fallback to locked lookup. */
3993 	BUF_UNLOCK_RAW(bp);
3994 
3995 loop:
3996 	BO_RLOCK(bo);
3997 	bp = gbincore(bo, blkno);
3998 	if (bp != NULL) {
3999 		int lockflags;
4000 
4001 		/*
4002 		 * Buffer is in-core.  If the buffer is not busy nor managed,
4003 		 * it must be on a queue.
4004 		 */
4005 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
4006 		    ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
4007 #ifdef WITNESS
4008 		lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
4009 #endif
4010 
4011 		error = BUF_TIMELOCK(bp, lockflags,
4012 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
4013 
4014 		/*
4015 		 * If we slept and got the lock we have to restart in case
4016 		 * the buffer changed identities.
4017 		 */
4018 		if (error == ENOLCK)
4019 			goto loop;
4020 		/* We timed out or were interrupted. */
4021 		else if (error != 0)
4022 			return (error);
4023 
4024 foundbuf_fastpath:
4025 		/* If recursed, assume caller knows the rules. */
4026 		if (BUF_LOCKRECURSED(bp))
4027 			goto end;
4028 
4029 		/*
4030 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
4031 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
4032 		 * and for a VMIO buffer B_CACHE is adjusted according to the
4033 		 * backing VM cache.
4034 		 */
4035 		if (bp->b_flags & B_INVAL)
4036 			bp->b_flags &= ~B_CACHE;
4037 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4038 			bp->b_flags |= B_CACHE;
4039 		if (bp->b_flags & B_MANAGED)
4040 			MPASS(bp->b_qindex == QUEUE_NONE);
4041 		else
4042 			bremfree(bp);
4043 
4044 		/*
4045 		 * check for size inconsistencies for non-VMIO case.
4046 		 */
4047 		if (bp->b_bcount != size) {
4048 			if ((bp->b_flags & B_VMIO) == 0 ||
4049 			    (size > bp->b_kvasize)) {
4050 				if (bp->b_flags & B_DELWRI) {
4051 					bp->b_flags |= B_NOCACHE;
4052 					bwrite(bp);
4053 				} else {
4054 					if (LIST_EMPTY(&bp->b_dep)) {
4055 						bp->b_flags |= B_RELBUF;
4056 						brelse(bp);
4057 					} else {
4058 						bp->b_flags |= B_NOCACHE;
4059 						bwrite(bp);
4060 					}
4061 				}
4062 				goto loop;
4063 			}
4064 		}
4065 
4066 		/*
4067 		 * Handle the case of unmapped buffer which should
4068 		 * become mapped, or the buffer for which KVA
4069 		 * reservation is requested.
4070 		 */
4071 		bp_unmapped_get_kva(bp, blkno, size, flags);
4072 
4073 		/*
4074 		 * If the size is inconsistent in the VMIO case, we can resize
4075 		 * the buffer.  This might lead to B_CACHE getting set or
4076 		 * cleared.  If the size has not changed, B_CACHE remains
4077 		 * unchanged from its previous state.
4078 		 */
4079 		allocbuf(bp, size);
4080 
4081 		KASSERT(bp->b_offset != NOOFFSET,
4082 		    ("getblk: no buffer offset"));
4083 
4084 		/*
4085 		 * A buffer with B_DELWRI set and B_CACHE clear must
4086 		 * be committed before we can return the buffer in
4087 		 * order to prevent the caller from issuing a read
4088 		 * ( due to B_CACHE not being set ) and overwriting
4089 		 * it.
4090 		 *
4091 		 * Most callers, including NFS and FFS, need this to
4092 		 * operate properly either because they assume they
4093 		 * can issue a read if B_CACHE is not set, or because
4094 		 * ( for example ) an uncached B_DELWRI might loop due
4095 		 * to softupdates re-dirtying the buffer.  In the latter
4096 		 * case, B_CACHE is set after the first write completes,
4097 		 * preventing further loops.
4098 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
4099 		 * above while extending the buffer, we cannot allow the
4100 		 * buffer to remain with B_CACHE set after the write
4101 		 * completes or it will represent a corrupt state.  To
4102 		 * deal with this we set B_NOCACHE to scrap the buffer
4103 		 * after the write.
4104 		 *
4105 		 * We might be able to do something fancy, like setting
4106 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
4107 		 * so the below call doesn't set B_CACHE, but that gets real
4108 		 * confusing.  This is much easier.
4109 		 */
4110 
4111 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4112 			bp->b_flags |= B_NOCACHE;
4113 			bwrite(bp);
4114 			goto loop;
4115 		}
4116 		bp->b_flags &= ~B_DONE;
4117 	} else {
4118 		/*
4119 		 * Buffer is not in-core, create new buffer.  The buffer
4120 		 * returned by getnewbuf() is locked.  Note that the returned
4121 		 * buffer is also considered valid (not marked B_INVAL).
4122 		 */
4123 		BO_RUNLOCK(bo);
4124 newbuf_unlocked:
4125 		/*
4126 		 * If the user does not want us to create the buffer, bail out
4127 		 * here.
4128 		 */
4129 		if (flags & GB_NOCREAT)
4130 			return (EEXIST);
4131 
4132 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4133 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4134 		offset = blkno * bsize;
4135 		vmio = vp->v_object != NULL;
4136 		if (vmio) {
4137 			maxsize = size + (offset & PAGE_MASK);
4138 		} else {
4139 			maxsize = size;
4140 			/* Do not allow non-VMIO notmapped buffers. */
4141 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4142 		}
4143 		maxsize = imax(maxsize, bsize);
4144 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4145 		    !vn_isdisk(vp)) {
4146 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4147 			KASSERT(error != EOPNOTSUPP,
4148 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4149 			    vp));
4150 			if (error != 0)
4151 				return (error);
4152 			if (d_blkno == -1)
4153 				return (EJUSTRETURN);
4154 		}
4155 
4156 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4157 		if (bp == NULL) {
4158 			if (slpflag || slptimeo)
4159 				return (ETIMEDOUT);
4160 			/*
4161 			 * XXX This is here until the sleep path is diagnosed
4162 			 * enough to work under very low memory conditions.
4163 			 *
4164 			 * There's an issue on low memory, 4BSD+non-preempt
4165 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4166 			 * exhaustion occurs without sleeping for buffer
4167 			 * reclaimation.  This just sticks in a loop and
4168 			 * constantly attempts to allocate a buffer, which
4169 			 * hits exhaustion and tries to wakeup bufdaemon.
4170 			 * This never happens because we never yield.
4171 			 *
4172 			 * The real solution is to identify and fix these cases
4173 			 * so we aren't effectively busy-waiting in a loop
4174 			 * until the reclaimation path has cycles to run.
4175 			 */
4176 			kern_yield(PRI_USER);
4177 			goto loop;
4178 		}
4179 
4180 		/*
4181 		 * This code is used to make sure that a buffer is not
4182 		 * created while the getnewbuf routine is blocked.
4183 		 * This can be a problem whether the vnode is locked or not.
4184 		 * If the buffer is created out from under us, we have to
4185 		 * throw away the one we just created.
4186 		 *
4187 		 * Note: this must occur before we associate the buffer
4188 		 * with the vp especially considering limitations in
4189 		 * the splay tree implementation when dealing with duplicate
4190 		 * lblkno's.
4191 		 */
4192 		BO_LOCK(bo);
4193 		if (gbincore(bo, blkno)) {
4194 			BO_UNLOCK(bo);
4195 			bp->b_flags |= B_INVAL;
4196 			bufspace_release(bufdomain(bp), maxsize);
4197 			brelse(bp);
4198 			goto loop;
4199 		}
4200 
4201 		/*
4202 		 * Insert the buffer into the hash, so that it can
4203 		 * be found by incore.
4204 		 */
4205 		bp->b_lblkno = blkno;
4206 		bp->b_blkno = d_blkno;
4207 		bp->b_offset = offset;
4208 		bgetvp(vp, bp);
4209 		BO_UNLOCK(bo);
4210 
4211 		/*
4212 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4213 		 * buffer size starts out as 0, B_CACHE will be set by
4214 		 * allocbuf() for the VMIO case prior to it testing the
4215 		 * backing store for validity.
4216 		 */
4217 
4218 		if (vmio) {
4219 			bp->b_flags |= B_VMIO;
4220 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4221 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4222 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4223 		} else {
4224 			bp->b_flags &= ~B_VMIO;
4225 			KASSERT(bp->b_bufobj->bo_object == NULL,
4226 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4227 			    bp, bp->b_bufobj->bo_object));
4228 			BUF_CHECK_MAPPED(bp);
4229 		}
4230 
4231 		allocbuf(bp, size);
4232 		bufspace_release(bufdomain(bp), maxsize);
4233 		bp->b_flags &= ~B_DONE;
4234 	}
4235 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4236 end:
4237 	buf_track(bp, __func__);
4238 	KASSERT(bp->b_bufobj == bo,
4239 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4240 	*bpp = bp;
4241 	return (0);
4242 }
4243 
4244 /*
4245  * Get an empty, disassociated buffer of given size.  The buffer is initially
4246  * set to B_INVAL.
4247  */
4248 struct buf *
4249 geteblk(int size, int flags)
4250 {
4251 	struct buf *bp;
4252 	int maxsize;
4253 
4254 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4255 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4256 		if ((flags & GB_NOWAIT_BD) &&
4257 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4258 			return (NULL);
4259 	}
4260 	allocbuf(bp, size);
4261 	bufspace_release(bufdomain(bp), maxsize);
4262 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4263 	return (bp);
4264 }
4265 
4266 /*
4267  * Truncate the backing store for a non-vmio buffer.
4268  */
4269 static void
4270 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4271 {
4272 
4273 	if (bp->b_flags & B_MALLOC) {
4274 		/*
4275 		 * malloced buffers are not shrunk
4276 		 */
4277 		if (newbsize == 0) {
4278 			bufmallocadjust(bp, 0);
4279 			free(bp->b_data, M_BIOBUF);
4280 			bp->b_data = bp->b_kvabase;
4281 			bp->b_flags &= ~B_MALLOC;
4282 		}
4283 		return;
4284 	}
4285 	vm_hold_free_pages(bp, newbsize);
4286 	bufspace_adjust(bp, newbsize);
4287 }
4288 
4289 /*
4290  * Extend the backing for a non-VMIO buffer.
4291  */
4292 static void
4293 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4294 {
4295 	caddr_t origbuf;
4296 	int origbufsize;
4297 
4298 	/*
4299 	 * We only use malloced memory on the first allocation.
4300 	 * and revert to page-allocated memory when the buffer
4301 	 * grows.
4302 	 *
4303 	 * There is a potential smp race here that could lead
4304 	 * to bufmallocspace slightly passing the max.  It
4305 	 * is probably extremely rare and not worth worrying
4306 	 * over.
4307 	 */
4308 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4309 	    bufmallocspace < maxbufmallocspace) {
4310 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4311 		bp->b_flags |= B_MALLOC;
4312 		bufmallocadjust(bp, newbsize);
4313 		return;
4314 	}
4315 
4316 	/*
4317 	 * If the buffer is growing on its other-than-first
4318 	 * allocation then we revert to the page-allocation
4319 	 * scheme.
4320 	 */
4321 	origbuf = NULL;
4322 	origbufsize = 0;
4323 	if (bp->b_flags & B_MALLOC) {
4324 		origbuf = bp->b_data;
4325 		origbufsize = bp->b_bufsize;
4326 		bp->b_data = bp->b_kvabase;
4327 		bufmallocadjust(bp, 0);
4328 		bp->b_flags &= ~B_MALLOC;
4329 		newbsize = round_page(newbsize);
4330 	}
4331 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4332 	    (vm_offset_t) bp->b_data + newbsize);
4333 	if (origbuf != NULL) {
4334 		bcopy(origbuf, bp->b_data, origbufsize);
4335 		free(origbuf, M_BIOBUF);
4336 	}
4337 	bufspace_adjust(bp, newbsize);
4338 }
4339 
4340 /*
4341  * This code constitutes the buffer memory from either anonymous system
4342  * memory (in the case of non-VMIO operations) or from an associated
4343  * VM object (in the case of VMIO operations).  This code is able to
4344  * resize a buffer up or down.
4345  *
4346  * Note that this code is tricky, and has many complications to resolve
4347  * deadlock or inconsistent data situations.  Tread lightly!!!
4348  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4349  * the caller.  Calling this code willy nilly can result in the loss of data.
4350  *
4351  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4352  * B_CACHE for the non-VMIO case.
4353  */
4354 int
4355 allocbuf(struct buf *bp, int size)
4356 {
4357 	int newbsize;
4358 
4359 	if (bp->b_bcount == size)
4360 		return (1);
4361 
4362 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4363 		panic("allocbuf: buffer too small");
4364 
4365 	newbsize = roundup2(size, DEV_BSIZE);
4366 	if ((bp->b_flags & B_VMIO) == 0) {
4367 		if ((bp->b_flags & B_MALLOC) == 0)
4368 			newbsize = round_page(newbsize);
4369 		/*
4370 		 * Just get anonymous memory from the kernel.  Don't
4371 		 * mess with B_CACHE.
4372 		 */
4373 		if (newbsize < bp->b_bufsize)
4374 			vfs_nonvmio_truncate(bp, newbsize);
4375 		else if (newbsize > bp->b_bufsize)
4376 			vfs_nonvmio_extend(bp, newbsize);
4377 	} else {
4378 		int desiredpages;
4379 
4380 		desiredpages = (size == 0) ? 0 :
4381 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4382 
4383 		if (bp->b_flags & B_MALLOC)
4384 			panic("allocbuf: VMIO buffer can't be malloced");
4385 		/*
4386 		 * Set B_CACHE initially if buffer is 0 length or will become
4387 		 * 0-length.
4388 		 */
4389 		if (size == 0 || bp->b_bufsize == 0)
4390 			bp->b_flags |= B_CACHE;
4391 
4392 		if (newbsize < bp->b_bufsize)
4393 			vfs_vmio_truncate(bp, desiredpages);
4394 		/* XXX This looks as if it should be newbsize > b_bufsize */
4395 		else if (size > bp->b_bcount)
4396 			vfs_vmio_extend(bp, desiredpages, size);
4397 		bufspace_adjust(bp, newbsize);
4398 	}
4399 	bp->b_bcount = size;		/* requested buffer size. */
4400 	return (1);
4401 }
4402 
4403 extern int inflight_transient_maps;
4404 
4405 static struct bio_queue nondump_bios;
4406 
4407 void
4408 biodone(struct bio *bp)
4409 {
4410 	struct mtx *mtxp;
4411 	void (*done)(struct bio *);
4412 	vm_offset_t start, end;
4413 
4414 	biotrack(bp, __func__);
4415 
4416 	/*
4417 	 * Avoid completing I/O when dumping after a panic since that may
4418 	 * result in a deadlock in the filesystem or pager code.  Note that
4419 	 * this doesn't affect dumps that were started manually since we aim
4420 	 * to keep the system usable after it has been resumed.
4421 	 */
4422 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4423 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4424 		return;
4425 	}
4426 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4427 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4428 		bp->bio_flags |= BIO_UNMAPPED;
4429 		start = trunc_page((vm_offset_t)bp->bio_data);
4430 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4431 		bp->bio_data = unmapped_buf;
4432 		pmap_qremove(start, atop(end - start));
4433 		vmem_free(transient_arena, start, end - start);
4434 		atomic_add_int(&inflight_transient_maps, -1);
4435 	}
4436 	done = bp->bio_done;
4437 	/*
4438 	 * The check for done == biodone is to allow biodone to be
4439 	 * used as a bio_done routine.
4440 	 */
4441 	if (done == NULL || done == biodone) {
4442 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4443 		mtx_lock(mtxp);
4444 		bp->bio_flags |= BIO_DONE;
4445 		wakeup(bp);
4446 		mtx_unlock(mtxp);
4447 	} else
4448 		done(bp);
4449 }
4450 
4451 /*
4452  * Wait for a BIO to finish.
4453  */
4454 int
4455 biowait(struct bio *bp, const char *wmesg)
4456 {
4457 	struct mtx *mtxp;
4458 
4459 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4460 	mtx_lock(mtxp);
4461 	while ((bp->bio_flags & BIO_DONE) == 0)
4462 		msleep(bp, mtxp, PRIBIO, wmesg, 0);
4463 	mtx_unlock(mtxp);
4464 	if (bp->bio_error != 0)
4465 		return (bp->bio_error);
4466 	if (!(bp->bio_flags & BIO_ERROR))
4467 		return (0);
4468 	return (EIO);
4469 }
4470 
4471 void
4472 biofinish(struct bio *bp, struct devstat *stat, int error)
4473 {
4474 
4475 	if (error) {
4476 		bp->bio_error = error;
4477 		bp->bio_flags |= BIO_ERROR;
4478 	}
4479 	if (stat != NULL)
4480 		devstat_end_transaction_bio(stat, bp);
4481 	biodone(bp);
4482 }
4483 
4484 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4485 void
4486 biotrack_buf(struct bio *bp, const char *location)
4487 {
4488 
4489 	buf_track(bp->bio_track_bp, location);
4490 }
4491 #endif
4492 
4493 /*
4494  *	bufwait:
4495  *
4496  *	Wait for buffer I/O completion, returning error status.  The buffer
4497  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4498  *	error and cleared.
4499  */
4500 int
4501 bufwait(struct buf *bp)
4502 {
4503 	if (bp->b_iocmd == BIO_READ)
4504 		bwait(bp, PRIBIO, "biord");
4505 	else
4506 		bwait(bp, PRIBIO, "biowr");
4507 	if (bp->b_flags & B_EINTR) {
4508 		bp->b_flags &= ~B_EINTR;
4509 		return (EINTR);
4510 	}
4511 	if (bp->b_ioflags & BIO_ERROR) {
4512 		return (bp->b_error ? bp->b_error : EIO);
4513 	} else {
4514 		return (0);
4515 	}
4516 }
4517 
4518 /*
4519  *	bufdone:
4520  *
4521  *	Finish I/O on a buffer, optionally calling a completion function.
4522  *	This is usually called from an interrupt so process blocking is
4523  *	not allowed.
4524  *
4525  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4526  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4527  *	assuming B_INVAL is clear.
4528  *
4529  *	For the VMIO case, we set B_CACHE if the op was a read and no
4530  *	read error occurred, or if the op was a write.  B_CACHE is never
4531  *	set if the buffer is invalid or otherwise uncacheable.
4532  *
4533  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4534  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4535  *	in the biodone routine.
4536  */
4537 void
4538 bufdone(struct buf *bp)
4539 {
4540 	struct bufobj *dropobj;
4541 	void    (*biodone)(struct buf *);
4542 
4543 	buf_track(bp, __func__);
4544 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4545 	dropobj = NULL;
4546 
4547 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4548 
4549 	runningbufwakeup(bp);
4550 	if (bp->b_iocmd == BIO_WRITE)
4551 		dropobj = bp->b_bufobj;
4552 	/* call optional completion function if requested */
4553 	if (bp->b_iodone != NULL) {
4554 		biodone = bp->b_iodone;
4555 		bp->b_iodone = NULL;
4556 		(*biodone) (bp);
4557 		if (dropobj)
4558 			bufobj_wdrop(dropobj);
4559 		return;
4560 	}
4561 	if (bp->b_flags & B_VMIO) {
4562 		/*
4563 		 * Set B_CACHE if the op was a normal read and no error
4564 		 * occurred.  B_CACHE is set for writes in the b*write()
4565 		 * routines.
4566 		 */
4567 		if (bp->b_iocmd == BIO_READ &&
4568 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4569 		    !(bp->b_ioflags & BIO_ERROR))
4570 			bp->b_flags |= B_CACHE;
4571 		vfs_vmio_iodone(bp);
4572 	}
4573 	if (!LIST_EMPTY(&bp->b_dep))
4574 		buf_complete(bp);
4575 	if ((bp->b_flags & B_CKHASH) != 0) {
4576 		KASSERT(bp->b_iocmd == BIO_READ,
4577 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4578 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4579 		(*bp->b_ckhashcalc)(bp);
4580 	}
4581 	/*
4582 	 * For asynchronous completions, release the buffer now. The brelse
4583 	 * will do a wakeup there if necessary - so no need to do a wakeup
4584 	 * here in the async case. The sync case always needs to do a wakeup.
4585 	 */
4586 	if (bp->b_flags & B_ASYNC) {
4587 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4588 		    (bp->b_ioflags & BIO_ERROR))
4589 			brelse(bp);
4590 		else
4591 			bqrelse(bp);
4592 	} else
4593 		bdone(bp);
4594 	if (dropobj)
4595 		bufobj_wdrop(dropobj);
4596 }
4597 
4598 /*
4599  * This routine is called in lieu of iodone in the case of
4600  * incomplete I/O.  This keeps the busy status for pages
4601  * consistent.
4602  */
4603 void
4604 vfs_unbusy_pages(struct buf *bp)
4605 {
4606 	int i;
4607 	vm_object_t obj;
4608 	vm_page_t m;
4609 
4610 	runningbufwakeup(bp);
4611 	if (!(bp->b_flags & B_VMIO))
4612 		return;
4613 
4614 	obj = bp->b_bufobj->bo_object;
4615 	for (i = 0; i < bp->b_npages; i++) {
4616 		m = bp->b_pages[i];
4617 		if (m == bogus_page) {
4618 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4619 			if (!m)
4620 				panic("vfs_unbusy_pages: page missing\n");
4621 			bp->b_pages[i] = m;
4622 			if (buf_mapped(bp)) {
4623 				BUF_CHECK_MAPPED(bp);
4624 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4625 				    bp->b_pages, bp->b_npages);
4626 			} else
4627 				BUF_CHECK_UNMAPPED(bp);
4628 		}
4629 		vm_page_sunbusy(m);
4630 	}
4631 	vm_object_pip_wakeupn(obj, bp->b_npages);
4632 }
4633 
4634 /*
4635  * vfs_page_set_valid:
4636  *
4637  *	Set the valid bits in a page based on the supplied offset.   The
4638  *	range is restricted to the buffer's size.
4639  *
4640  *	This routine is typically called after a read completes.
4641  */
4642 static void
4643 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4644 {
4645 	vm_ooffset_t eoff;
4646 
4647 	/*
4648 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4649 	 * page boundary and eoff is not greater than the end of the buffer.
4650 	 * The end of the buffer, in this case, is our file EOF, not the
4651 	 * allocation size of the buffer.
4652 	 */
4653 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4654 	if (eoff > bp->b_offset + bp->b_bcount)
4655 		eoff = bp->b_offset + bp->b_bcount;
4656 
4657 	/*
4658 	 * Set valid range.  This is typically the entire buffer and thus the
4659 	 * entire page.
4660 	 */
4661 	if (eoff > off)
4662 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4663 }
4664 
4665 /*
4666  * vfs_page_set_validclean:
4667  *
4668  *	Set the valid bits and clear the dirty bits in a page based on the
4669  *	supplied offset.   The range is restricted to the buffer's size.
4670  */
4671 static void
4672 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4673 {
4674 	vm_ooffset_t soff, eoff;
4675 
4676 	/*
4677 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4678 	 * page boundary or cross the end of the buffer.  The end of the
4679 	 * buffer, in this case, is our file EOF, not the allocation size
4680 	 * of the buffer.
4681 	 */
4682 	soff = off;
4683 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4684 	if (eoff > bp->b_offset + bp->b_bcount)
4685 		eoff = bp->b_offset + bp->b_bcount;
4686 
4687 	/*
4688 	 * Set valid range.  This is typically the entire buffer and thus the
4689 	 * entire page.
4690 	 */
4691 	if (eoff > soff) {
4692 		vm_page_set_validclean(
4693 		    m,
4694 		   (vm_offset_t) (soff & PAGE_MASK),
4695 		   (vm_offset_t) (eoff - soff)
4696 		);
4697 	}
4698 }
4699 
4700 /*
4701  * Acquire a shared busy on all pages in the buf.
4702  */
4703 void
4704 vfs_busy_pages_acquire(struct buf *bp)
4705 {
4706 	int i;
4707 
4708 	for (i = 0; i < bp->b_npages; i++)
4709 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4710 }
4711 
4712 void
4713 vfs_busy_pages_release(struct buf *bp)
4714 {
4715 	int i;
4716 
4717 	for (i = 0; i < bp->b_npages; i++)
4718 		vm_page_sunbusy(bp->b_pages[i]);
4719 }
4720 
4721 /*
4722  * This routine is called before a device strategy routine.
4723  * It is used to tell the VM system that paging I/O is in
4724  * progress, and treat the pages associated with the buffer
4725  * almost as being exclusive busy.  Also the object paging_in_progress
4726  * flag is handled to make sure that the object doesn't become
4727  * inconsistent.
4728  *
4729  * Since I/O has not been initiated yet, certain buffer flags
4730  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4731  * and should be ignored.
4732  */
4733 void
4734 vfs_busy_pages(struct buf *bp, int clear_modify)
4735 {
4736 	vm_object_t obj;
4737 	vm_ooffset_t foff;
4738 	vm_page_t m;
4739 	int i;
4740 	bool bogus;
4741 
4742 	if (!(bp->b_flags & B_VMIO))
4743 		return;
4744 
4745 	obj = bp->b_bufobj->bo_object;
4746 	foff = bp->b_offset;
4747 	KASSERT(bp->b_offset != NOOFFSET,
4748 	    ("vfs_busy_pages: no buffer offset"));
4749 	if ((bp->b_flags & B_CLUSTER) == 0) {
4750 		vm_object_pip_add(obj, bp->b_npages);
4751 		vfs_busy_pages_acquire(bp);
4752 	}
4753 	if (bp->b_bufsize != 0)
4754 		vfs_setdirty_range(bp);
4755 	bogus = false;
4756 	for (i = 0; i < bp->b_npages; i++) {
4757 		m = bp->b_pages[i];
4758 		vm_page_assert_sbusied(m);
4759 
4760 		/*
4761 		 * When readying a buffer for a read ( i.e
4762 		 * clear_modify == 0 ), it is important to do
4763 		 * bogus_page replacement for valid pages in
4764 		 * partially instantiated buffers.  Partially
4765 		 * instantiated buffers can, in turn, occur when
4766 		 * reconstituting a buffer from its VM backing store
4767 		 * base.  We only have to do this if B_CACHE is
4768 		 * clear ( which causes the I/O to occur in the
4769 		 * first place ).  The replacement prevents the read
4770 		 * I/O from overwriting potentially dirty VM-backed
4771 		 * pages.  XXX bogus page replacement is, uh, bogus.
4772 		 * It may not work properly with small-block devices.
4773 		 * We need to find a better way.
4774 		 */
4775 		if (clear_modify) {
4776 			pmap_remove_write(m);
4777 			vfs_page_set_validclean(bp, foff, m);
4778 		} else if (vm_page_all_valid(m) &&
4779 		    (bp->b_flags & B_CACHE) == 0) {
4780 			bp->b_pages[i] = bogus_page;
4781 			bogus = true;
4782 		}
4783 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4784 	}
4785 	if (bogus && buf_mapped(bp)) {
4786 		BUF_CHECK_MAPPED(bp);
4787 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4788 		    bp->b_pages, bp->b_npages);
4789 	}
4790 }
4791 
4792 /*
4793  *	vfs_bio_set_valid:
4794  *
4795  *	Set the range within the buffer to valid.  The range is
4796  *	relative to the beginning of the buffer, b_offset.  Note that
4797  *	b_offset itself may be offset from the beginning of the first
4798  *	page.
4799  */
4800 void
4801 vfs_bio_set_valid(struct buf *bp, int base, int size)
4802 {
4803 	int i, n;
4804 	vm_page_t m;
4805 
4806 	if (!(bp->b_flags & B_VMIO))
4807 		return;
4808 
4809 	/*
4810 	 * Fixup base to be relative to beginning of first page.
4811 	 * Set initial n to be the maximum number of bytes in the
4812 	 * first page that can be validated.
4813 	 */
4814 	base += (bp->b_offset & PAGE_MASK);
4815 	n = PAGE_SIZE - (base & PAGE_MASK);
4816 
4817 	/*
4818 	 * Busy may not be strictly necessary here because the pages are
4819 	 * unlikely to be fully valid and the vnode lock will synchronize
4820 	 * their access via getpages.  It is grabbed for consistency with
4821 	 * other page validation.
4822 	 */
4823 	vfs_busy_pages_acquire(bp);
4824 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4825 		m = bp->b_pages[i];
4826 		if (n > size)
4827 			n = size;
4828 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4829 		base += n;
4830 		size -= n;
4831 		n = PAGE_SIZE;
4832 	}
4833 	vfs_busy_pages_release(bp);
4834 }
4835 
4836 /*
4837  *	vfs_bio_clrbuf:
4838  *
4839  *	If the specified buffer is a non-VMIO buffer, clear the entire
4840  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4841  *	validate only the previously invalid portions of the buffer.
4842  *	This routine essentially fakes an I/O, so we need to clear
4843  *	BIO_ERROR and B_INVAL.
4844  *
4845  *	Note that while we only theoretically need to clear through b_bcount,
4846  *	we go ahead and clear through b_bufsize.
4847  */
4848 void
4849 vfs_bio_clrbuf(struct buf *bp)
4850 {
4851 	int i, j, mask, sa, ea, slide;
4852 
4853 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4854 		clrbuf(bp);
4855 		return;
4856 	}
4857 	bp->b_flags &= ~B_INVAL;
4858 	bp->b_ioflags &= ~BIO_ERROR;
4859 	vfs_busy_pages_acquire(bp);
4860 	sa = bp->b_offset & PAGE_MASK;
4861 	slide = 0;
4862 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4863 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4864 		ea = slide & PAGE_MASK;
4865 		if (ea == 0)
4866 			ea = PAGE_SIZE;
4867 		if (bp->b_pages[i] == bogus_page)
4868 			continue;
4869 		j = sa / DEV_BSIZE;
4870 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4871 		if ((bp->b_pages[i]->valid & mask) == mask)
4872 			continue;
4873 		if ((bp->b_pages[i]->valid & mask) == 0)
4874 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4875 		else {
4876 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4877 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4878 					pmap_zero_page_area(bp->b_pages[i],
4879 					    sa, DEV_BSIZE);
4880 				}
4881 			}
4882 		}
4883 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4884 		    roundup2(ea - sa, DEV_BSIZE));
4885 	}
4886 	vfs_busy_pages_release(bp);
4887 	bp->b_resid = 0;
4888 }
4889 
4890 void
4891 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4892 {
4893 	vm_page_t m;
4894 	int i, n;
4895 
4896 	if (buf_mapped(bp)) {
4897 		BUF_CHECK_MAPPED(bp);
4898 		bzero(bp->b_data + base, size);
4899 	} else {
4900 		BUF_CHECK_UNMAPPED(bp);
4901 		n = PAGE_SIZE - (base & PAGE_MASK);
4902 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4903 			m = bp->b_pages[i];
4904 			if (n > size)
4905 				n = size;
4906 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4907 			base += n;
4908 			size -= n;
4909 			n = PAGE_SIZE;
4910 		}
4911 	}
4912 }
4913 
4914 /*
4915  * Update buffer flags based on I/O request parameters, optionally releasing the
4916  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4917  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4918  * I/O).  Otherwise the buffer is released to the cache.
4919  */
4920 static void
4921 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4922 {
4923 
4924 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4925 	    ("buf %p non-VMIO noreuse", bp));
4926 
4927 	if ((ioflag & IO_DIRECT) != 0)
4928 		bp->b_flags |= B_DIRECT;
4929 	if ((ioflag & IO_EXT) != 0)
4930 		bp->b_xflags |= BX_ALTDATA;
4931 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4932 		bp->b_flags |= B_RELBUF;
4933 		if ((ioflag & IO_NOREUSE) != 0)
4934 			bp->b_flags |= B_NOREUSE;
4935 		if (release)
4936 			brelse(bp);
4937 	} else if (release)
4938 		bqrelse(bp);
4939 }
4940 
4941 void
4942 vfs_bio_brelse(struct buf *bp, int ioflag)
4943 {
4944 
4945 	b_io_dismiss(bp, ioflag, true);
4946 }
4947 
4948 void
4949 vfs_bio_set_flags(struct buf *bp, int ioflag)
4950 {
4951 
4952 	b_io_dismiss(bp, ioflag, false);
4953 }
4954 
4955 /*
4956  * vm_hold_load_pages and vm_hold_free_pages get pages into
4957  * a buffers address space.  The pages are anonymous and are
4958  * not associated with a file object.
4959  */
4960 static void
4961 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4962 {
4963 	vm_offset_t pg;
4964 	vm_page_t p;
4965 	int index;
4966 
4967 	BUF_CHECK_MAPPED(bp);
4968 
4969 	to = round_page(to);
4970 	from = round_page(from);
4971 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4972 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
4973 	KASSERT(to - from <= maxbcachebuf,
4974 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
4975 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
4976 
4977 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4978 		/*
4979 		 * note: must allocate system pages since blocking here
4980 		 * could interfere with paging I/O, no matter which
4981 		 * process we are.
4982 		 */
4983 		p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
4984 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
4985 		pmap_qenter(pg, &p, 1);
4986 		bp->b_pages[index] = p;
4987 	}
4988 	bp->b_npages = index;
4989 }
4990 
4991 /* Return pages associated with this buf to the vm system */
4992 static void
4993 vm_hold_free_pages(struct buf *bp, int newbsize)
4994 {
4995 	vm_offset_t from;
4996 	vm_page_t p;
4997 	int index, newnpages;
4998 
4999 	BUF_CHECK_MAPPED(bp);
5000 
5001 	from = round_page((vm_offset_t)bp->b_data + newbsize);
5002 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5003 	if (bp->b_npages > newnpages)
5004 		pmap_qremove(from, bp->b_npages - newnpages);
5005 	for (index = newnpages; index < bp->b_npages; index++) {
5006 		p = bp->b_pages[index];
5007 		bp->b_pages[index] = NULL;
5008 		vm_page_unwire_noq(p);
5009 		vm_page_free(p);
5010 	}
5011 	bp->b_npages = newnpages;
5012 }
5013 
5014 /*
5015  * Map an IO request into kernel virtual address space.
5016  *
5017  * All requests are (re)mapped into kernel VA space.
5018  * Notice that we use b_bufsize for the size of the buffer
5019  * to be mapped.  b_bcount might be modified by the driver.
5020  *
5021  * Note that even if the caller determines that the address space should
5022  * be valid, a race or a smaller-file mapped into a larger space may
5023  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5024  * check the return value.
5025  *
5026  * This function only works with pager buffers.
5027  */
5028 int
5029 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5030 {
5031 	vm_prot_t prot;
5032 	int pidx;
5033 
5034 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
5035 	prot = VM_PROT_READ;
5036 	if (bp->b_iocmd == BIO_READ)
5037 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
5038 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5039 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5040 	if (pidx < 0)
5041 		return (-1);
5042 	bp->b_bufsize = len;
5043 	bp->b_npages = pidx;
5044 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5045 	if (mapbuf || !unmapped_buf_allowed) {
5046 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5047 		bp->b_data = bp->b_kvabase + bp->b_offset;
5048 	} else
5049 		bp->b_data = unmapped_buf;
5050 	return (0);
5051 }
5052 
5053 /*
5054  * Free the io map PTEs associated with this IO operation.
5055  * We also invalidate the TLB entries and restore the original b_addr.
5056  *
5057  * This function only works with pager buffers.
5058  */
5059 void
5060 vunmapbuf(struct buf *bp)
5061 {
5062 	int npages;
5063 
5064 	npages = bp->b_npages;
5065 	if (buf_mapped(bp))
5066 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5067 	vm_page_unhold_pages(bp->b_pages, npages);
5068 
5069 	bp->b_data = unmapped_buf;
5070 }
5071 
5072 void
5073 bdone(struct buf *bp)
5074 {
5075 	struct mtx *mtxp;
5076 
5077 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5078 	mtx_lock(mtxp);
5079 	bp->b_flags |= B_DONE;
5080 	wakeup(bp);
5081 	mtx_unlock(mtxp);
5082 }
5083 
5084 void
5085 bwait(struct buf *bp, u_char pri, const char *wchan)
5086 {
5087 	struct mtx *mtxp;
5088 
5089 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5090 	mtx_lock(mtxp);
5091 	while ((bp->b_flags & B_DONE) == 0)
5092 		msleep(bp, mtxp, pri, wchan, 0);
5093 	mtx_unlock(mtxp);
5094 }
5095 
5096 int
5097 bufsync(struct bufobj *bo, int waitfor)
5098 {
5099 
5100 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5101 }
5102 
5103 void
5104 bufstrategy(struct bufobj *bo, struct buf *bp)
5105 {
5106 	int i __unused;
5107 	struct vnode *vp;
5108 
5109 	vp = bp->b_vp;
5110 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5111 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5112 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5113 	i = VOP_STRATEGY(vp, bp);
5114 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5115 }
5116 
5117 /*
5118  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5119  */
5120 void
5121 bufobj_init(struct bufobj *bo, void *private)
5122 {
5123 	static volatile int bufobj_cleanq;
5124 
5125         bo->bo_domain =
5126             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5127         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5128         bo->bo_private = private;
5129         TAILQ_INIT(&bo->bo_clean.bv_hd);
5130         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5131 }
5132 
5133 void
5134 bufobj_wrefl(struct bufobj *bo)
5135 {
5136 
5137 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5138 	ASSERT_BO_WLOCKED(bo);
5139 	bo->bo_numoutput++;
5140 }
5141 
5142 void
5143 bufobj_wref(struct bufobj *bo)
5144 {
5145 
5146 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5147 	BO_LOCK(bo);
5148 	bo->bo_numoutput++;
5149 	BO_UNLOCK(bo);
5150 }
5151 
5152 void
5153 bufobj_wdrop(struct bufobj *bo)
5154 {
5155 
5156 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5157 	BO_LOCK(bo);
5158 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5159 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5160 		bo->bo_flag &= ~BO_WWAIT;
5161 		wakeup(&bo->bo_numoutput);
5162 	}
5163 	BO_UNLOCK(bo);
5164 }
5165 
5166 int
5167 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5168 {
5169 	int error;
5170 
5171 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5172 	ASSERT_BO_WLOCKED(bo);
5173 	error = 0;
5174 	while (bo->bo_numoutput) {
5175 		bo->bo_flag |= BO_WWAIT;
5176 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5177 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5178 		if (error)
5179 			break;
5180 	}
5181 	return (error);
5182 }
5183 
5184 /*
5185  * Set bio_data or bio_ma for struct bio from the struct buf.
5186  */
5187 void
5188 bdata2bio(struct buf *bp, struct bio *bip)
5189 {
5190 
5191 	if (!buf_mapped(bp)) {
5192 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5193 		bip->bio_ma = bp->b_pages;
5194 		bip->bio_ma_n = bp->b_npages;
5195 		bip->bio_data = unmapped_buf;
5196 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5197 		bip->bio_flags |= BIO_UNMAPPED;
5198 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5199 		    PAGE_SIZE == bp->b_npages,
5200 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5201 		    (long long)bip->bio_length, bip->bio_ma_n));
5202 	} else {
5203 		bip->bio_data = bp->b_data;
5204 		bip->bio_ma = NULL;
5205 	}
5206 }
5207 
5208 /*
5209  * The MIPS pmap code currently doesn't handle aliased pages.
5210  * The VIPT caches may not handle page aliasing themselves, leading
5211  * to data corruption.
5212  *
5213  * As such, this code makes a system extremely unhappy if said
5214  * system doesn't support unaliasing the above situation in hardware.
5215  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5216  * this feature at build time, so it has to be handled in software.
5217  *
5218  * Once the MIPS pmap/cache code grows to support this function on
5219  * earlier chips, it should be flipped back off.
5220  */
5221 #ifdef	__mips__
5222 static int buf_pager_relbuf = 1;
5223 #else
5224 static int buf_pager_relbuf = 0;
5225 #endif
5226 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5227     &buf_pager_relbuf, 0,
5228     "Make buffer pager release buffers after reading");
5229 
5230 /*
5231  * The buffer pager.  It uses buffer reads to validate pages.
5232  *
5233  * In contrast to the generic local pager from vm/vnode_pager.c, this
5234  * pager correctly and easily handles volumes where the underlying
5235  * device block size is greater than the machine page size.  The
5236  * buffer cache transparently extends the requested page run to be
5237  * aligned at the block boundary, and does the necessary bogus page
5238  * replacements in the addends to avoid obliterating already valid
5239  * pages.
5240  *
5241  * The only non-trivial issue is that the exclusive busy state for
5242  * pages, which is assumed by the vm_pager_getpages() interface, is
5243  * incompatible with the VMIO buffer cache's desire to share-busy the
5244  * pages.  This function performs a trivial downgrade of the pages'
5245  * state before reading buffers, and a less trivial upgrade from the
5246  * shared-busy to excl-busy state after the read.
5247  */
5248 int
5249 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5250     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5251     vbg_get_blksize_t get_blksize)
5252 {
5253 	vm_page_t m;
5254 	vm_object_t object;
5255 	struct buf *bp;
5256 	struct mount *mp;
5257 	daddr_t lbn, lbnp;
5258 	vm_ooffset_t la, lb, poff, poffe;
5259 	long bo_bs, bsize;
5260 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5261 	bool redo, lpart;
5262 
5263 	object = vp->v_object;
5264 	mp = vp->v_mount;
5265 	error = 0;
5266 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5267 	if (la >= object->un_pager.vnp.vnp_size)
5268 		return (VM_PAGER_BAD);
5269 
5270 	/*
5271 	 * Change the meaning of la from where the last requested page starts
5272 	 * to where it ends, because that's the end of the requested region
5273 	 * and the start of the potential read-ahead region.
5274 	 */
5275 	la += PAGE_SIZE;
5276 	lpart = la > object->un_pager.vnp.vnp_size;
5277 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5278 	    &bo_bs);
5279 	if (error != 0)
5280 		return (VM_PAGER_ERROR);
5281 
5282 	/*
5283 	 * Calculate read-ahead, behind and total pages.
5284 	 */
5285 	pgsin = count;
5286 	lb = IDX_TO_OFF(ma[0]->pindex);
5287 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5288 	pgsin += pgsin_b;
5289 	if (rbehind != NULL)
5290 		*rbehind = pgsin_b;
5291 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5292 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5293 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5294 		    PAGE_SIZE) - la);
5295 	pgsin += pgsin_a;
5296 	if (rahead != NULL)
5297 		*rahead = pgsin_a;
5298 	VM_CNT_INC(v_vnodein);
5299 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5300 
5301 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5302 	    != 0) ? GB_UNMAPPED : 0;
5303 again:
5304 	for (i = 0; i < count; i++) {
5305 		if (ma[i] != bogus_page)
5306 			vm_page_busy_downgrade(ma[i]);
5307 	}
5308 
5309 	lbnp = -1;
5310 	for (i = 0; i < count; i++) {
5311 		m = ma[i];
5312 		if (m == bogus_page)
5313 			continue;
5314 
5315 		/*
5316 		 * Pages are shared busy and the object lock is not
5317 		 * owned, which together allow for the pages'
5318 		 * invalidation.  The racy test for validity avoids
5319 		 * useless creation of the buffer for the most typical
5320 		 * case when invalidation is not used in redo or for
5321 		 * parallel read.  The shared->excl upgrade loop at
5322 		 * the end of the function catches the race in a
5323 		 * reliable way (protected by the object lock).
5324 		 */
5325 		if (vm_page_all_valid(m))
5326 			continue;
5327 
5328 		poff = IDX_TO_OFF(m->pindex);
5329 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5330 		for (; poff < poffe; poff += bsize) {
5331 			lbn = get_lblkno(vp, poff);
5332 			if (lbn == lbnp)
5333 				goto next_page;
5334 			lbnp = lbn;
5335 
5336 			error = get_blksize(vp, lbn, &bsize);
5337 			if (error == 0)
5338 				error = bread_gb(vp, lbn, bsize,
5339 				    curthread->td_ucred, br_flags, &bp);
5340 			if (error != 0)
5341 				goto end_pages;
5342 			if (bp->b_rcred == curthread->td_ucred) {
5343 				crfree(bp->b_rcred);
5344 				bp->b_rcred = NOCRED;
5345 			}
5346 			if (LIST_EMPTY(&bp->b_dep)) {
5347 				/*
5348 				 * Invalidation clears m->valid, but
5349 				 * may leave B_CACHE flag if the
5350 				 * buffer existed at the invalidation
5351 				 * time.  In this case, recycle the
5352 				 * buffer to do real read on next
5353 				 * bread() after redo.
5354 				 *
5355 				 * Otherwise B_RELBUF is not strictly
5356 				 * necessary, enable to reduce buf
5357 				 * cache pressure.
5358 				 */
5359 				if (buf_pager_relbuf ||
5360 				    !vm_page_all_valid(m))
5361 					bp->b_flags |= B_RELBUF;
5362 
5363 				bp->b_flags &= ~B_NOCACHE;
5364 				brelse(bp);
5365 			} else {
5366 				bqrelse(bp);
5367 			}
5368 		}
5369 		KASSERT(1 /* racy, enable for debugging */ ||
5370 		    vm_page_all_valid(m) || i == count - 1,
5371 		    ("buf %d %p invalid", i, m));
5372 		if (i == count - 1 && lpart) {
5373 			if (!vm_page_none_valid(m) &&
5374 			    !vm_page_all_valid(m))
5375 				vm_page_zero_invalid(m, TRUE);
5376 		}
5377 next_page:;
5378 	}
5379 end_pages:
5380 
5381 	redo = false;
5382 	for (i = 0; i < count; i++) {
5383 		if (ma[i] == bogus_page)
5384 			continue;
5385 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5386 			vm_page_sunbusy(ma[i]);
5387 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5388 			    VM_ALLOC_NORMAL);
5389 		}
5390 
5391 		/*
5392 		 * Since the pages were only sbusy while neither the
5393 		 * buffer nor the object lock was held by us, or
5394 		 * reallocated while vm_page_grab() slept for busy
5395 		 * relinguish, they could have been invalidated.
5396 		 * Recheck the valid bits and re-read as needed.
5397 		 *
5398 		 * Note that the last page is made fully valid in the
5399 		 * read loop, and partial validity for the page at
5400 		 * index count - 1 could mean that the page was
5401 		 * invalidated or removed, so we must restart for
5402 		 * safety as well.
5403 		 */
5404 		if (!vm_page_all_valid(ma[i]))
5405 			redo = true;
5406 	}
5407 	if (redo && error == 0)
5408 		goto again;
5409 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5410 }
5411 
5412 #include "opt_ddb.h"
5413 #ifdef DDB
5414 #include <ddb/ddb.h>
5415 
5416 /* DDB command to show buffer data */
5417 DB_SHOW_COMMAND(buffer, db_show_buffer)
5418 {
5419 	/* get args */
5420 	struct buf *bp = (struct buf *)addr;
5421 #ifdef FULL_BUF_TRACKING
5422 	uint32_t i, j;
5423 #endif
5424 
5425 	if (!have_addr) {
5426 		db_printf("usage: show buffer <addr>\n");
5427 		return;
5428 	}
5429 
5430 	db_printf("buf at %p\n", bp);
5431 	db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5432 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5433 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5434 	db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5435 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5436 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5437 	db_printf(
5438 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5439 	    "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
5440 	    "b_vp = %p, b_dep = %p\n",
5441 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5442 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5443 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5444 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5445 	    bp->b_kvabase, bp->b_kvasize);
5446 	if (bp->b_npages) {
5447 		int i;
5448 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5449 		for (i = 0; i < bp->b_npages; i++) {
5450 			vm_page_t m;
5451 			m = bp->b_pages[i];
5452 			if (m != NULL)
5453 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5454 				    (u_long)m->pindex,
5455 				    (u_long)VM_PAGE_TO_PHYS(m));
5456 			else
5457 				db_printf("( ??? )");
5458 			if ((i + 1) < bp->b_npages)
5459 				db_printf(",");
5460 		}
5461 		db_printf("\n");
5462 	}
5463 	BUF_LOCKPRINTINFO(bp);
5464 #if defined(FULL_BUF_TRACKING)
5465 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5466 
5467 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5468 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5469 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5470 			continue;
5471 		db_printf(" %2u: %s\n", j,
5472 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5473 	}
5474 #elif defined(BUF_TRACKING)
5475 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5476 #endif
5477 	db_printf(" ");
5478 }
5479 
5480 DB_SHOW_COMMAND(bufqueues, bufqueues)
5481 {
5482 	struct bufdomain *bd;
5483 	struct buf *bp;
5484 	long total;
5485 	int i, j, cnt;
5486 
5487 	db_printf("bqempty: %d\n", bqempty.bq_len);
5488 
5489 	for (i = 0; i < buf_domains; i++) {
5490 		bd = &bdomain[i];
5491 		db_printf("Buf domain %d\n", i);
5492 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5493 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5494 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5495 		db_printf("\n");
5496 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5497 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5498 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5499 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5500 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5501 		db_printf("\n");
5502 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5503 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5504 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5505 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5506 		db_printf("\n");
5507 		total = 0;
5508 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5509 			total += bp->b_bufsize;
5510 		db_printf("\tcleanq count\t%d (%ld)\n",
5511 		    bd->bd_cleanq->bq_len, total);
5512 		total = 0;
5513 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5514 			total += bp->b_bufsize;
5515 		db_printf("\tdirtyq count\t%d (%ld)\n",
5516 		    bd->bd_dirtyq.bq_len, total);
5517 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5518 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5519 		db_printf("\tCPU ");
5520 		for (j = 0; j <= mp_maxid; j++)
5521 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5522 		db_printf("\n");
5523 		cnt = 0;
5524 		total = 0;
5525 		for (j = 0; j < nbuf; j++) {
5526 			bp = nbufp(j);
5527 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5528 				cnt++;
5529 				total += bp->b_bufsize;
5530 			}
5531 		}
5532 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5533 		cnt = 0;
5534 		total = 0;
5535 		for (j = 0; j < nbuf; j++) {
5536 			bp = nbufp(j);
5537 			if (bp->b_domain == i) {
5538 				cnt++;
5539 				total += bp->b_bufsize;
5540 			}
5541 		}
5542 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5543 	}
5544 }
5545 
5546 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5547 {
5548 	struct buf *bp;
5549 	int i;
5550 
5551 	for (i = 0; i < nbuf; i++) {
5552 		bp = nbufp(i);
5553 		if (BUF_ISLOCKED(bp)) {
5554 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5555 			db_printf("\n");
5556 			if (db_pager_quit)
5557 				break;
5558 		}
5559 	}
5560 }
5561 
5562 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5563 {
5564 	struct vnode *vp;
5565 	struct buf *bp;
5566 
5567 	if (!have_addr) {
5568 		db_printf("usage: show vnodebufs <addr>\n");
5569 		return;
5570 	}
5571 	vp = (struct vnode *)addr;
5572 	db_printf("Clean buffers:\n");
5573 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5574 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5575 		db_printf("\n");
5576 	}
5577 	db_printf("Dirty buffers:\n");
5578 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5579 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5580 		db_printf("\n");
5581 	}
5582 }
5583 
5584 DB_COMMAND(countfreebufs, db_coundfreebufs)
5585 {
5586 	struct buf *bp;
5587 	int i, used = 0, nfree = 0;
5588 
5589 	if (have_addr) {
5590 		db_printf("usage: countfreebufs\n");
5591 		return;
5592 	}
5593 
5594 	for (i = 0; i < nbuf; i++) {
5595 		bp = nbufp(i);
5596 		if (bp->b_qindex == QUEUE_EMPTY)
5597 			nfree++;
5598 		else
5599 			used++;
5600 	}
5601 
5602 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5603 	    nfree + used);
5604 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5605 }
5606 #endif /* DDB */
5607