xref: /freebsd/sys/kern/vfs_bio.c (revision 78007886c995898a9494648343e5236bca1cbba3)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * this file contains a new buffer I/O scheme implementing a coherent
30  * VM object and buffer cache scheme.  Pains have been taken to make
31  * sure that the performance degradation associated with schemes such
32  * as this is not realized.
33  *
34  * Author:  John S. Dyson
35  * Significant help during the development and debugging phases
36  * had been provided by David Greenman, also of the FreeBSD core team.
37  *
38  * see man buf(9) for more info.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bio.h>
47 #include <sys/conf.h>
48 #include <sys/buf.h>
49 #include <sys/devicestat.h>
50 #include <sys/eventhandler.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/proc.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sysctl.h>
60 #include <sys/vmmeter.h>
61 #include <sys/vnode.h>
62 #include <geom/geom.h>
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_pageout.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_map.h>
71 #include "opt_directio.h"
72 #include "opt_swap.h"
73 
74 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75 
76 struct	bio_ops bioops;		/* I/O operation notification */
77 
78 struct	buf_ops buf_ops_bio = {
79 	.bop_name	=	"buf_ops_bio",
80 	.bop_write	=	bufwrite,
81 	.bop_strategy	=	bufstrategy,
82 	.bop_sync	=	bufsync,
83 	.bop_bdflush	=	bufbdflush,
84 };
85 
86 /*
87  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
88  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
89  */
90 struct buf *buf;		/* buffer header pool */
91 
92 static struct proc *bufdaemonproc;
93 
94 static int inmem(struct vnode *vp, daddr_t blkno);
95 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
96 		vm_offset_t to);
97 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
98 		vm_offset_t to);
99 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
100 			       int pageno, vm_page_t m);
101 static void vfs_clean_pages(struct buf *bp);
102 static void vfs_setdirty(struct buf *bp);
103 static void vfs_setdirty_locked_object(struct buf *bp);
104 static void vfs_vmio_release(struct buf *bp);
105 static int vfs_bio_clcheck(struct vnode *vp, int size,
106 		daddr_t lblkno, daddr_t blkno);
107 static int flushbufqueues(int, int);
108 static void buf_daemon(void);
109 static void bremfreel(struct buf *bp);
110 
111 int vmiodirenable = TRUE;
112 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
113     "Use the VM system for directory writes");
114 int runningbufspace;
115 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
116     "Amount of presently outstanding async buffer io");
117 static int bufspace;
118 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
119     "KVA memory used for bufs");
120 static int maxbufspace;
121 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
122     "Maximum allowed value of bufspace (including buf_daemon)");
123 static int bufmallocspace;
124 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
125     "Amount of malloced memory for buffers");
126 static int maxbufmallocspace;
127 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
128     "Maximum amount of malloced memory for buffers");
129 static int lobufspace;
130 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
131     "Minimum amount of buffers we want to have");
132 int hibufspace;
133 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
134     "Maximum allowed value of bufspace (excluding buf_daemon)");
135 static int bufreusecnt;
136 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
137     "Number of times we have reused a buffer");
138 static int buffreekvacnt;
139 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
140     "Number of times we have freed the KVA space from some buffer");
141 static int bufdefragcnt;
142 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
143     "Number of times we have had to repeat buffer allocation to defragment");
144 static int lorunningspace;
145 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
146     "Minimum preferred space used for in-progress I/O");
147 static int hirunningspace;
148 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
149     "Maximum amount of space to use for in-progress I/O");
150 int dirtybufferflushes;
151 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
152     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
153 int bdwriteskip;
154 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
155     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
156 int altbufferflushes;
157 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
158     0, "Number of fsync flushes to limit dirty buffers");
159 static int recursiveflushes;
160 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
161     0, "Number of flushes skipped due to being recursive");
162 static int numdirtybuffers;
163 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
164     "Number of buffers that are dirty (has unwritten changes) at the moment");
165 static int lodirtybuffers;
166 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
167     "How many buffers we want to have free before bufdaemon can sleep");
168 static int hidirtybuffers;
169 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
170     "When the number of dirty buffers is considered severe");
171 int dirtybufthresh;
172 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
173     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
174 static int numfreebuffers;
175 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
176     "Number of free buffers");
177 static int lofreebuffers;
178 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
179    "XXX Unused");
180 static int hifreebuffers;
181 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
182    "XXX Complicatedly unused");
183 static int getnewbufcalls;
184 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
185    "Number of calls to getnewbuf");
186 static int getnewbufrestarts;
187 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
188     "Number of times getnewbuf has had to restart a buffer aquisition");
189 
190 /*
191  * Wakeup point for bufdaemon, as well as indicator of whether it is already
192  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
193  * is idling.
194  */
195 static int bd_request;
196 
197 /*
198  * This lock synchronizes access to bd_request.
199  */
200 static struct mtx bdlock;
201 
202 /*
203  * bogus page -- for I/O to/from partially complete buffers
204  * this is a temporary solution to the problem, but it is not
205  * really that bad.  it would be better to split the buffer
206  * for input in the case of buffers partially already in memory,
207  * but the code is intricate enough already.
208  */
209 vm_page_t bogus_page;
210 
211 /*
212  * Synchronization (sleep/wakeup) variable for active buffer space requests.
213  * Set when wait starts, cleared prior to wakeup().
214  * Used in runningbufwakeup() and waitrunningbufspace().
215  */
216 static int runningbufreq;
217 
218 /*
219  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
220  * waitrunningbufspace().
221  */
222 static struct mtx rbreqlock;
223 
224 /*
225  * Synchronization (sleep/wakeup) variable for buffer requests.
226  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
227  * by and/or.
228  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
229  * getnewbuf(), and getblk().
230  */
231 static int needsbuffer;
232 
233 /*
234  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
235  */
236 static struct mtx nblock;
237 
238 /*
239  * Lock that protects against bwait()/bdone()/B_DONE races.
240  */
241 
242 static struct mtx bdonelock;
243 
244 /*
245  * Lock that protects against bwait()/bdone()/B_DONE races.
246  */
247 static struct mtx bpinlock;
248 
249 /*
250  * Definitions for the buffer free lists.
251  */
252 #define BUFFER_QUEUES	6	/* number of free buffer queues */
253 
254 #define QUEUE_NONE	0	/* on no queue */
255 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
256 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
257 #define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
258 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
259 #define QUEUE_EMPTY	5	/* empty buffer headers */
260 
261 /* Queues for free buffers with various properties */
262 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
263 
264 /* Lock for the bufqueues */
265 static struct mtx bqlock;
266 
267 /*
268  * Single global constant for BUF_WMESG, to avoid getting multiple references.
269  * buf_wmesg is referred from macros.
270  */
271 const char *buf_wmesg = BUF_WMESG;
272 
273 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
274 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
275 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
276 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
277 
278 #ifdef DIRECTIO
279 extern void ffs_rawread_setup(void);
280 #endif /* DIRECTIO */
281 /*
282  *	numdirtywakeup:
283  *
284  *	If someone is blocked due to there being too many dirty buffers,
285  *	and numdirtybuffers is now reasonable, wake them up.
286  */
287 
288 static __inline void
289 numdirtywakeup(int level)
290 {
291 
292 	if (numdirtybuffers <= level) {
293 		mtx_lock(&nblock);
294 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
295 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
296 			wakeup(&needsbuffer);
297 		}
298 		mtx_unlock(&nblock);
299 	}
300 }
301 
302 /*
303  *	bufspacewakeup:
304  *
305  *	Called when buffer space is potentially available for recovery.
306  *	getnewbuf() will block on this flag when it is unable to free
307  *	sufficient buffer space.  Buffer space becomes recoverable when
308  *	bp's get placed back in the queues.
309  */
310 
311 static __inline void
312 bufspacewakeup(void)
313 {
314 
315 	/*
316 	 * If someone is waiting for BUF space, wake them up.  Even
317 	 * though we haven't freed the kva space yet, the waiting
318 	 * process will be able to now.
319 	 */
320 	mtx_lock(&nblock);
321 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
322 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
323 		wakeup(&needsbuffer);
324 	}
325 	mtx_unlock(&nblock);
326 }
327 
328 /*
329  * runningbufwakeup() - in-progress I/O accounting.
330  *
331  */
332 void
333 runningbufwakeup(struct buf *bp)
334 {
335 
336 	if (bp->b_runningbufspace) {
337 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
338 		bp->b_runningbufspace = 0;
339 		mtx_lock(&rbreqlock);
340 		if (runningbufreq && runningbufspace <= lorunningspace) {
341 			runningbufreq = 0;
342 			wakeup(&runningbufreq);
343 		}
344 		mtx_unlock(&rbreqlock);
345 	}
346 }
347 
348 /*
349  *	bufcountwakeup:
350  *
351  *	Called when a buffer has been added to one of the free queues to
352  *	account for the buffer and to wakeup anyone waiting for free buffers.
353  *	This typically occurs when large amounts of metadata are being handled
354  *	by the buffer cache ( else buffer space runs out first, usually ).
355  */
356 
357 static __inline void
358 bufcountwakeup(void)
359 {
360 
361 	atomic_add_int(&numfreebuffers, 1);
362 	mtx_lock(&nblock);
363 	if (needsbuffer) {
364 		needsbuffer &= ~VFS_BIO_NEED_ANY;
365 		if (numfreebuffers >= hifreebuffers)
366 			needsbuffer &= ~VFS_BIO_NEED_FREE;
367 		wakeup(&needsbuffer);
368 	}
369 	mtx_unlock(&nblock);
370 }
371 
372 /*
373  *	waitrunningbufspace()
374  *
375  *	runningbufspace is a measure of the amount of I/O currently
376  *	running.  This routine is used in async-write situations to
377  *	prevent creating huge backups of pending writes to a device.
378  *	Only asynchronous writes are governed by this function.
379  *
380  *	Reads will adjust runningbufspace, but will not block based on it.
381  *	The read load has a side effect of reducing the allowed write load.
382  *
383  *	This does NOT turn an async write into a sync write.  It waits
384  *	for earlier writes to complete and generally returns before the
385  *	caller's write has reached the device.
386  */
387 void
388 waitrunningbufspace(void)
389 {
390 
391 	mtx_lock(&rbreqlock);
392 	while (runningbufspace > hirunningspace) {
393 		++runningbufreq;
394 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
395 	}
396 	mtx_unlock(&rbreqlock);
397 }
398 
399 
400 /*
401  *	vfs_buf_test_cache:
402  *
403  *	Called when a buffer is extended.  This function clears the B_CACHE
404  *	bit if the newly extended portion of the buffer does not contain
405  *	valid data.
406  */
407 static __inline
408 void
409 vfs_buf_test_cache(struct buf *bp,
410 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
411 		  vm_page_t m)
412 {
413 
414 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
415 	if (bp->b_flags & B_CACHE) {
416 		int base = (foff + off) & PAGE_MASK;
417 		if (vm_page_is_valid(m, base, size) == 0)
418 			bp->b_flags &= ~B_CACHE;
419 	}
420 }
421 
422 /* Wake up the buffer daemon if necessary */
423 static __inline
424 void
425 bd_wakeup(int dirtybuflevel)
426 {
427 
428 	mtx_lock(&bdlock);
429 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
430 		bd_request = 1;
431 		wakeup(&bd_request);
432 	}
433 	mtx_unlock(&bdlock);
434 }
435 
436 /*
437  * bd_speedup - speedup the buffer cache flushing code
438  */
439 
440 static __inline
441 void
442 bd_speedup(void)
443 {
444 
445 	bd_wakeup(1);
446 }
447 
448 /*
449  * Calculating buffer cache scaling values and reserve space for buffer
450  * headers.  This is called during low level kernel initialization and
451  * may be called more then once.  We CANNOT write to the memory area
452  * being reserved at this time.
453  */
454 caddr_t
455 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
456 {
457 
458 	/*
459 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
460 	 * PAGE_SIZE is >= 1K)
461 	 */
462 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
463 
464 	/*
465 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
466 	 * For the first 64MB of ram nominally allocate sufficient buffers to
467 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
468 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
469 	 * the buffer cache we limit the eventual kva reservation to
470 	 * maxbcache bytes.
471 	 *
472 	 * factor represents the 1/4 x ram conversion.
473 	 */
474 	if (nbuf == 0) {
475 		int factor = 4 * BKVASIZE / 1024;
476 
477 		nbuf = 50;
478 		if (physmem_est > 4096)
479 			nbuf += min((physmem_est - 4096) / factor,
480 			    65536 / factor);
481 		if (physmem_est > 65536)
482 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
483 
484 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
485 			nbuf = maxbcache / BKVASIZE;
486 	}
487 
488 #if 0
489 	/*
490 	 * Do not allow the buffer_map to be more then 1/2 the size of the
491 	 * kernel_map.
492 	 */
493 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
494 	    (BKVASIZE * 2)) {
495 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
496 		    (BKVASIZE * 2);
497 		printf("Warning: nbufs capped at %d\n", nbuf);
498 	}
499 #endif
500 
501 	/*
502 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
503 	 * We have no less then 16 and no more then 256.
504 	 */
505 	nswbuf = max(min(nbuf/4, 256), 16);
506 #ifdef NSWBUF_MIN
507 	if (nswbuf < NSWBUF_MIN)
508 		nswbuf = NSWBUF_MIN;
509 #endif
510 #ifdef DIRECTIO
511 	ffs_rawread_setup();
512 #endif
513 
514 	/*
515 	 * Reserve space for the buffer cache buffers
516 	 */
517 	swbuf = (void *)v;
518 	v = (caddr_t)(swbuf + nswbuf);
519 	buf = (void *)v;
520 	v = (caddr_t)(buf + nbuf);
521 
522 	return(v);
523 }
524 
525 /* Initialize the buffer subsystem.  Called before use of any buffers. */
526 void
527 bufinit(void)
528 {
529 	struct buf *bp;
530 	int i;
531 
532 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
533 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
534 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
535 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
536 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
537 	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
538 
539 	/* next, make a null set of free lists */
540 	for (i = 0; i < BUFFER_QUEUES; i++)
541 		TAILQ_INIT(&bufqueues[i]);
542 
543 	/* finally, initialize each buffer header and stick on empty q */
544 	for (i = 0; i < nbuf; i++) {
545 		bp = &buf[i];
546 		bzero(bp, sizeof *bp);
547 		bp->b_flags = B_INVAL;	/* we're just an empty header */
548 		bp->b_rcred = NOCRED;
549 		bp->b_wcred = NOCRED;
550 		bp->b_qindex = QUEUE_EMPTY;
551 		bp->b_vflags = 0;
552 		bp->b_xflags = 0;
553 		LIST_INIT(&bp->b_dep);
554 		BUF_LOCKINIT(bp);
555 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
556 	}
557 
558 	/*
559 	 * maxbufspace is the absolute maximum amount of buffer space we are
560 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
561 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
562 	 * used by most other processes.  The differential is required to
563 	 * ensure that buf_daemon is able to run when other processes might
564 	 * be blocked waiting for buffer space.
565 	 *
566 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
567 	 * this may result in KVM fragmentation which is not handled optimally
568 	 * by the system.
569 	 */
570 	maxbufspace = nbuf * BKVASIZE;
571 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
572 	lobufspace = hibufspace - MAXBSIZE;
573 
574 	lorunningspace = 512 * 1024;
575 	hirunningspace = 1024 * 1024;
576 
577 /*
578  * Limit the amount of malloc memory since it is wired permanently into
579  * the kernel space.  Even though this is accounted for in the buffer
580  * allocation, we don't want the malloced region to grow uncontrolled.
581  * The malloc scheme improves memory utilization significantly on average
582  * (small) directories.
583  */
584 	maxbufmallocspace = hibufspace / 20;
585 
586 /*
587  * Reduce the chance of a deadlock occuring by limiting the number
588  * of delayed-write dirty buffers we allow to stack up.
589  */
590 	hidirtybuffers = nbuf / 4 + 20;
591 	dirtybufthresh = hidirtybuffers * 9 / 10;
592 	numdirtybuffers = 0;
593 /*
594  * To support extreme low-memory systems, make sure hidirtybuffers cannot
595  * eat up all available buffer space.  This occurs when our minimum cannot
596  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
597  * BKVASIZE'd (8K) buffers.
598  */
599 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
600 		hidirtybuffers >>= 1;
601 	}
602 	lodirtybuffers = hidirtybuffers / 2;
603 
604 /*
605  * Try to keep the number of free buffers in the specified range,
606  * and give special processes (e.g. like buf_daemon) access to an
607  * emergency reserve.
608  */
609 	lofreebuffers = nbuf / 18 + 5;
610 	hifreebuffers = 2 * lofreebuffers;
611 	numfreebuffers = nbuf;
612 
613 /*
614  * Maximum number of async ops initiated per buf_daemon loop.  This is
615  * somewhat of a hack at the moment, we really need to limit ourselves
616  * based on the number of bytes of I/O in-transit that were initiated
617  * from buf_daemon.
618  */
619 
620 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
621 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
622 }
623 
624 /*
625  * bfreekva() - free the kva allocation for a buffer.
626  *
627  *	Since this call frees up buffer space, we call bufspacewakeup().
628  */
629 static void
630 bfreekva(struct buf *bp)
631 {
632 
633 	if (bp->b_kvasize) {
634 		atomic_add_int(&buffreekvacnt, 1);
635 		atomic_subtract_int(&bufspace, bp->b_kvasize);
636 		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
637 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
638 		bp->b_kvasize = 0;
639 		bufspacewakeup();
640 	}
641 }
642 
643 /*
644  *	bremfree:
645  *
646  *	Mark the buffer for removal from the appropriate free list in brelse.
647  *
648  */
649 void
650 bremfree(struct buf *bp)
651 {
652 
653 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
654 	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
655 	KASSERT((bp->b_flags & B_REMFREE) == 0,
656 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
657 	KASSERT(bp->b_qindex != QUEUE_NONE,
658 	    ("bremfree: buffer %p not on a queue.", bp));
659 
660 	bp->b_flags |= B_REMFREE;
661 	/* Fixup numfreebuffers count.  */
662 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
663 		atomic_subtract_int(&numfreebuffers, 1);
664 }
665 
666 /*
667  *	bremfreef:
668  *
669  *	Force an immediate removal from a free list.  Used only in nfs when
670  *	it abuses the b_freelist pointer.
671  */
672 void
673 bremfreef(struct buf *bp)
674 {
675 	mtx_lock(&bqlock);
676 	bremfreel(bp);
677 	mtx_unlock(&bqlock);
678 }
679 
680 /*
681  *	bremfreel:
682  *
683  *	Removes a buffer from the free list, must be called with the
684  *	bqlock held.
685  */
686 static void
687 bremfreel(struct buf *bp)
688 {
689 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
690 	    bp, bp->b_vp, bp->b_flags);
691 	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
692 	KASSERT(bp->b_qindex != QUEUE_NONE,
693 	    ("bremfreel: buffer %p not on a queue.", bp));
694 	mtx_assert(&bqlock, MA_OWNED);
695 
696 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
697 	bp->b_qindex = QUEUE_NONE;
698 	/*
699 	 * If this was a delayed bremfree() we only need to remove the buffer
700 	 * from the queue and return the stats are already done.
701 	 */
702 	if (bp->b_flags & B_REMFREE) {
703 		bp->b_flags &= ~B_REMFREE;
704 		return;
705 	}
706 	/*
707 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
708 	 * delayed-write, the buffer was free and we must decrement
709 	 * numfreebuffers.
710 	 */
711 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
712 		atomic_subtract_int(&numfreebuffers, 1);
713 }
714 
715 
716 /*
717  * Get a buffer with the specified data.  Look in the cache first.  We
718  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
719  * is set, the buffer is valid and we do not have to do anything ( see
720  * getblk() ).  This is really just a special case of breadn().
721  */
722 int
723 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
724     struct buf **bpp)
725 {
726 
727 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
728 }
729 
730 /*
731  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
732  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
733  * the buffer is valid and we do not have to do anything.
734  */
735 void
736 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
737     int cnt, struct ucred * cred)
738 {
739 	struct buf *rabp;
740 	int i;
741 
742 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
743 		if (inmem(vp, *rablkno))
744 			continue;
745 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
746 
747 		if ((rabp->b_flags & B_CACHE) == 0) {
748 			if (!TD_IS_IDLETHREAD(curthread))
749 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
750 			rabp->b_flags |= B_ASYNC;
751 			rabp->b_flags &= ~B_INVAL;
752 			rabp->b_ioflags &= ~BIO_ERROR;
753 			rabp->b_iocmd = BIO_READ;
754 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
755 				rabp->b_rcred = crhold(cred);
756 			vfs_busy_pages(rabp, 0);
757 			BUF_KERNPROC(rabp);
758 			rabp->b_iooffset = dbtob(rabp->b_blkno);
759 			bstrategy(rabp);
760 		} else {
761 			brelse(rabp);
762 		}
763 	}
764 }
765 
766 /*
767  * Operates like bread, but also starts asynchronous I/O on
768  * read-ahead blocks.
769  */
770 int
771 breadn(struct vnode * vp, daddr_t blkno, int size,
772     daddr_t * rablkno, int *rabsize,
773     int cnt, struct ucred * cred, struct buf **bpp)
774 {
775 	struct buf *bp;
776 	int rv = 0, readwait = 0;
777 
778 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
779 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
780 
781 	/* if not found in cache, do some I/O */
782 	if ((bp->b_flags & B_CACHE) == 0) {
783 		if (!TD_IS_IDLETHREAD(curthread))
784 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
785 		bp->b_iocmd = BIO_READ;
786 		bp->b_flags &= ~B_INVAL;
787 		bp->b_ioflags &= ~BIO_ERROR;
788 		if (bp->b_rcred == NOCRED && cred != NOCRED)
789 			bp->b_rcred = crhold(cred);
790 		vfs_busy_pages(bp, 0);
791 		bp->b_iooffset = dbtob(bp->b_blkno);
792 		bstrategy(bp);
793 		++readwait;
794 	}
795 
796 	breada(vp, rablkno, rabsize, cnt, cred);
797 
798 	if (readwait) {
799 		rv = bufwait(bp);
800 	}
801 	return (rv);
802 }
803 
804 /*
805  * Write, release buffer on completion.  (Done by iodone
806  * if async).  Do not bother writing anything if the buffer
807  * is invalid.
808  *
809  * Note that we set B_CACHE here, indicating that buffer is
810  * fully valid and thus cacheable.  This is true even of NFS
811  * now so we set it generally.  This could be set either here
812  * or in biodone() since the I/O is synchronous.  We put it
813  * here.
814  */
815 int
816 bufwrite(struct buf *bp)
817 {
818 	int oldflags;
819 	struct vnode *vp;
820 	int vp_md;
821 
822 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
823 	if (bp->b_flags & B_INVAL) {
824 		brelse(bp);
825 		return (0);
826 	}
827 
828 	oldflags = bp->b_flags;
829 
830 	if (BUF_REFCNT(bp) == 0)
831 		panic("bufwrite: buffer is not busy???");
832 
833 	if (bp->b_pin_count > 0)
834 		bunpin_wait(bp);
835 
836 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
837 	    ("FFS background buffer should not get here %p", bp));
838 
839 	vp = bp->b_vp;
840 	if (vp)
841 		vp_md = vp->v_vflag & VV_MD;
842 	else
843 		vp_md = 0;
844 
845 	/* Mark the buffer clean */
846 	bundirty(bp);
847 
848 	bp->b_flags &= ~B_DONE;
849 	bp->b_ioflags &= ~BIO_ERROR;
850 	bp->b_flags |= B_CACHE;
851 	bp->b_iocmd = BIO_WRITE;
852 
853 	bufobj_wref(bp->b_bufobj);
854 	vfs_busy_pages(bp, 1);
855 
856 	/*
857 	 * Normal bwrites pipeline writes
858 	 */
859 	bp->b_runningbufspace = bp->b_bufsize;
860 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
861 
862 	if (!TD_IS_IDLETHREAD(curthread))
863 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
864 	if (oldflags & B_ASYNC)
865 		BUF_KERNPROC(bp);
866 	bp->b_iooffset = dbtob(bp->b_blkno);
867 	bstrategy(bp);
868 
869 	if ((oldflags & B_ASYNC) == 0) {
870 		int rtval = bufwait(bp);
871 		brelse(bp);
872 		return (rtval);
873 	} else {
874 		/*
875 		 * don't allow the async write to saturate the I/O
876 		 * system.  We will not deadlock here because
877 		 * we are blocking waiting for I/O that is already in-progress
878 		 * to complete. We do not block here if it is the update
879 		 * or syncer daemon trying to clean up as that can lead
880 		 * to deadlock.
881 		 */
882 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
883 			waitrunningbufspace();
884 	}
885 
886 	return (0);
887 }
888 
889 void
890 bufbdflush(struct bufobj *bo, struct buf *bp)
891 {
892 	struct buf *nbp;
893 
894 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
895 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
896 		altbufferflushes++;
897 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
898 		BO_LOCK(bo);
899 		/*
900 		 * Try to find a buffer to flush.
901 		 */
902 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
903 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
904 			    BUF_LOCK(nbp,
905 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
906 				continue;
907 			if (bp == nbp)
908 				panic("bdwrite: found ourselves");
909 			BO_UNLOCK(bo);
910 			/* Don't countdeps with the bo lock held. */
911 			if (buf_countdeps(nbp, 0)) {
912 				BO_LOCK(bo);
913 				BUF_UNLOCK(nbp);
914 				continue;
915 			}
916 			if (nbp->b_flags & B_CLUSTEROK) {
917 				vfs_bio_awrite(nbp);
918 			} else {
919 				bremfree(nbp);
920 				bawrite(nbp);
921 			}
922 			dirtybufferflushes++;
923 			break;
924 		}
925 		if (nbp == NULL)
926 			BO_UNLOCK(bo);
927 	}
928 }
929 
930 /*
931  * Delayed write. (Buffer is marked dirty).  Do not bother writing
932  * anything if the buffer is marked invalid.
933  *
934  * Note that since the buffer must be completely valid, we can safely
935  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
936  * biodone() in order to prevent getblk from writing the buffer
937  * out synchronously.
938  */
939 void
940 bdwrite(struct buf *bp)
941 {
942 	struct thread *td = curthread;
943 	struct vnode *vp;
944 	struct bufobj *bo;
945 
946 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
947 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
948 	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
949 
950 	if (bp->b_flags & B_INVAL) {
951 		brelse(bp);
952 		return;
953 	}
954 
955 	/*
956 	 * If we have too many dirty buffers, don't create any more.
957 	 * If we are wildly over our limit, then force a complete
958 	 * cleanup. Otherwise, just keep the situation from getting
959 	 * out of control. Note that we have to avoid a recursive
960 	 * disaster and not try to clean up after our own cleanup!
961 	 */
962 	vp = bp->b_vp;
963 	bo = bp->b_bufobj;
964 	if ((td->td_pflags & TDP_COWINPROGRESS) == 0)
965 		BO_BDFLUSH(bo, bp);
966 	else
967 		recursiveflushes++;
968 
969 	bdirty(bp);
970 	/*
971 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
972 	 * true even of NFS now.
973 	 */
974 	bp->b_flags |= B_CACHE;
975 
976 	/*
977 	 * This bmap keeps the system from needing to do the bmap later,
978 	 * perhaps when the system is attempting to do a sync.  Since it
979 	 * is likely that the indirect block -- or whatever other datastructure
980 	 * that the filesystem needs is still in memory now, it is a good
981 	 * thing to do this.  Note also, that if the pageout daemon is
982 	 * requesting a sync -- there might not be enough memory to do
983 	 * the bmap then...  So, this is important to do.
984 	 */
985 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
986 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
987 	}
988 
989 	/*
990 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
991 	 */
992 	vfs_setdirty(bp);
993 
994 	/*
995 	 * We need to do this here to satisfy the vnode_pager and the
996 	 * pageout daemon, so that it thinks that the pages have been
997 	 * "cleaned".  Note that since the pages are in a delayed write
998 	 * buffer -- the VFS layer "will" see that the pages get written
999 	 * out on the next sync, or perhaps the cluster will be completed.
1000 	 */
1001 	vfs_clean_pages(bp);
1002 	bqrelse(bp);
1003 
1004 	/*
1005 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1006 	 * buffers (midpoint between our recovery point and our stall
1007 	 * point).
1008 	 */
1009 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1010 
1011 	/*
1012 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1013 	 * due to the softdep code.
1014 	 */
1015 }
1016 
1017 /*
1018  *	bdirty:
1019  *
1020  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1021  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1022  *	itself to properly update it in the dirty/clean lists.  We mark it
1023  *	B_DONE to ensure that any asynchronization of the buffer properly
1024  *	clears B_DONE ( else a panic will occur later ).
1025  *
1026  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1027  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1028  *	should only be called if the buffer is known-good.
1029  *
1030  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1031  *	count.
1032  *
1033  *	The buffer must be on QUEUE_NONE.
1034  */
1035 void
1036 bdirty(struct buf *bp)
1037 {
1038 
1039 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1040 	    bp, bp->b_vp, bp->b_flags);
1041 	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1042 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1043 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1044 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1045 	bp->b_flags &= ~(B_RELBUF);
1046 	bp->b_iocmd = BIO_WRITE;
1047 
1048 	if ((bp->b_flags & B_DELWRI) == 0) {
1049 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1050 		reassignbuf(bp);
1051 		atomic_add_int(&numdirtybuffers, 1);
1052 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1053 	}
1054 }
1055 
1056 /*
1057  *	bundirty:
1058  *
1059  *	Clear B_DELWRI for buffer.
1060  *
1061  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1062  *	count.
1063  *
1064  *	The buffer must be on QUEUE_NONE.
1065  */
1066 
1067 void
1068 bundirty(struct buf *bp)
1069 {
1070 
1071 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1072 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1073 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1074 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1075 	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1076 
1077 	if (bp->b_flags & B_DELWRI) {
1078 		bp->b_flags &= ~B_DELWRI;
1079 		reassignbuf(bp);
1080 		atomic_subtract_int(&numdirtybuffers, 1);
1081 		numdirtywakeup(lodirtybuffers);
1082 	}
1083 	/*
1084 	 * Since it is now being written, we can clear its deferred write flag.
1085 	 */
1086 	bp->b_flags &= ~B_DEFERRED;
1087 }
1088 
1089 /*
1090  *	bawrite:
1091  *
1092  *	Asynchronous write.  Start output on a buffer, but do not wait for
1093  *	it to complete.  The buffer is released when the output completes.
1094  *
1095  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1096  *	B_INVAL buffers.  Not us.
1097  */
1098 void
1099 bawrite(struct buf *bp)
1100 {
1101 
1102 	bp->b_flags |= B_ASYNC;
1103 	(void) bwrite(bp);
1104 }
1105 
1106 /*
1107  *	bwillwrite:
1108  *
1109  *	Called prior to the locking of any vnodes when we are expecting to
1110  *	write.  We do not want to starve the buffer cache with too many
1111  *	dirty buffers so we block here.  By blocking prior to the locking
1112  *	of any vnodes we attempt to avoid the situation where a locked vnode
1113  *	prevents the various system daemons from flushing related buffers.
1114  */
1115 
1116 void
1117 bwillwrite(void)
1118 {
1119 
1120 	if (numdirtybuffers >= hidirtybuffers) {
1121 		mtx_lock(&nblock);
1122 		while (numdirtybuffers >= hidirtybuffers) {
1123 			bd_wakeup(1);
1124 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1125 			msleep(&needsbuffer, &nblock,
1126 			    (PRIBIO + 4), "flswai", 0);
1127 		}
1128 		mtx_unlock(&nblock);
1129 	}
1130 }
1131 
1132 /*
1133  * Return true if we have too many dirty buffers.
1134  */
1135 int
1136 buf_dirty_count_severe(void)
1137 {
1138 
1139 	return(numdirtybuffers >= hidirtybuffers);
1140 }
1141 
1142 /*
1143  *	brelse:
1144  *
1145  *	Release a busy buffer and, if requested, free its resources.  The
1146  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1147  *	to be accessed later as a cache entity or reused for other purposes.
1148  */
1149 void
1150 brelse(struct buf *bp)
1151 {
1152 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1153 	    bp, bp->b_vp, bp->b_flags);
1154 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1155 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1156 
1157 	if (bp->b_flags & B_MANAGED) {
1158 		bqrelse(bp);
1159 		return;
1160 	}
1161 
1162 	if (bp->b_iocmd == BIO_WRITE &&
1163 	    (bp->b_ioflags & BIO_ERROR) &&
1164 	    !(bp->b_flags & B_INVAL)) {
1165 		/*
1166 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1167 		 * pages from being scrapped.  If B_INVAL is set then
1168 		 * this case is not run and the next case is run to
1169 		 * destroy the buffer.  B_INVAL can occur if the buffer
1170 		 * is outside the range supported by the underlying device.
1171 		 */
1172 		bp->b_ioflags &= ~BIO_ERROR;
1173 		bdirty(bp);
1174 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1175 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1176 		/*
1177 		 * Either a failed I/O or we were asked to free or not
1178 		 * cache the buffer.
1179 		 */
1180 		bp->b_flags |= B_INVAL;
1181 		if (!LIST_EMPTY(&bp->b_dep))
1182 			buf_deallocate(bp);
1183 		if (bp->b_flags & B_DELWRI) {
1184 			atomic_subtract_int(&numdirtybuffers, 1);
1185 			numdirtywakeup(lodirtybuffers);
1186 		}
1187 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1188 		if ((bp->b_flags & B_VMIO) == 0) {
1189 			if (bp->b_bufsize)
1190 				allocbuf(bp, 0);
1191 			if (bp->b_vp)
1192 				brelvp(bp);
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1198 	 * is called with B_DELWRI set, the underlying pages may wind up
1199 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1200 	 * because pages associated with a B_DELWRI bp are marked clean.
1201 	 *
1202 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1203 	 * if B_DELWRI is set.
1204 	 *
1205 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1206 	 * on pages to return pages to the VM page queues.
1207 	 */
1208 	if (bp->b_flags & B_DELWRI)
1209 		bp->b_flags &= ~B_RELBUF;
1210 	else if (vm_page_count_severe()) {
1211 		/*
1212 		 * XXX This lock may not be necessary since BKGRDINPROG
1213 		 * cannot be set while we hold the buf lock, it can only be
1214 		 * cleared if it is already pending.
1215 		 */
1216 		if (bp->b_vp) {
1217 			BO_LOCK(bp->b_bufobj);
1218 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1219 				bp->b_flags |= B_RELBUF;
1220 			BO_UNLOCK(bp->b_bufobj);
1221 		} else
1222 			bp->b_flags |= B_RELBUF;
1223 	}
1224 
1225 	/*
1226 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1227 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1228 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1229 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1230 	 *
1231 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1232 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1233 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1234 	 *
1235 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1236 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1237 	 * the commit state and we cannot afford to lose the buffer. If the
1238 	 * buffer has a background write in progress, we need to keep it
1239 	 * around to prevent it from being reconstituted and starting a second
1240 	 * background write.
1241 	 */
1242 	if ((bp->b_flags & B_VMIO)
1243 	    && !(bp->b_vp->v_mount != NULL &&
1244 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1245 		 !vn_isdisk(bp->b_vp, NULL) &&
1246 		 (bp->b_flags & B_DELWRI))
1247 	    ) {
1248 
1249 		int i, j, resid;
1250 		vm_page_t m;
1251 		off_t foff;
1252 		vm_pindex_t poff;
1253 		vm_object_t obj;
1254 
1255 		obj = bp->b_bufobj->bo_object;
1256 
1257 		/*
1258 		 * Get the base offset and length of the buffer.  Note that
1259 		 * in the VMIO case if the buffer block size is not
1260 		 * page-aligned then b_data pointer may not be page-aligned.
1261 		 * But our b_pages[] array *IS* page aligned.
1262 		 *
1263 		 * block sizes less then DEV_BSIZE (usually 512) are not
1264 		 * supported due to the page granularity bits (m->valid,
1265 		 * m->dirty, etc...).
1266 		 *
1267 		 * See man buf(9) for more information
1268 		 */
1269 		resid = bp->b_bufsize;
1270 		foff = bp->b_offset;
1271 		VM_OBJECT_LOCK(obj);
1272 		for (i = 0; i < bp->b_npages; i++) {
1273 			int had_bogus = 0;
1274 
1275 			m = bp->b_pages[i];
1276 
1277 			/*
1278 			 * If we hit a bogus page, fixup *all* the bogus pages
1279 			 * now.
1280 			 */
1281 			if (m == bogus_page) {
1282 				poff = OFF_TO_IDX(bp->b_offset);
1283 				had_bogus = 1;
1284 
1285 				for (j = i; j < bp->b_npages; j++) {
1286 					vm_page_t mtmp;
1287 					mtmp = bp->b_pages[j];
1288 					if (mtmp == bogus_page) {
1289 						mtmp = vm_page_lookup(obj, poff + j);
1290 						if (!mtmp) {
1291 							panic("brelse: page missing\n");
1292 						}
1293 						bp->b_pages[j] = mtmp;
1294 					}
1295 				}
1296 
1297 				if ((bp->b_flags & B_INVAL) == 0) {
1298 					pmap_qenter(
1299 					    trunc_page((vm_offset_t)bp->b_data),
1300 					    bp->b_pages, bp->b_npages);
1301 				}
1302 				m = bp->b_pages[i];
1303 			}
1304 			if ((bp->b_flags & B_NOCACHE) ||
1305 			    (bp->b_ioflags & BIO_ERROR)) {
1306 				int poffset = foff & PAGE_MASK;
1307 				int presid = resid > (PAGE_SIZE - poffset) ?
1308 					(PAGE_SIZE - poffset) : resid;
1309 
1310 				KASSERT(presid >= 0, ("brelse: extra page"));
1311 				vm_page_lock_queues();
1312 				vm_page_set_invalid(m, poffset, presid);
1313 				vm_page_unlock_queues();
1314 				if (had_bogus)
1315 					printf("avoided corruption bug in bogus_page/brelse code\n");
1316 			}
1317 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1318 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1319 		}
1320 		VM_OBJECT_UNLOCK(obj);
1321 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1322 			vfs_vmio_release(bp);
1323 
1324 	} else if (bp->b_flags & B_VMIO) {
1325 
1326 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1327 			vfs_vmio_release(bp);
1328 		}
1329 
1330 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1331 		if (bp->b_bufsize != 0)
1332 			allocbuf(bp, 0);
1333 		if (bp->b_vp != NULL)
1334 			brelvp(bp);
1335 	}
1336 
1337 	if (BUF_REFCNT(bp) > 1) {
1338 		/* do not release to free list */
1339 		BUF_UNLOCK(bp);
1340 		return;
1341 	}
1342 
1343 	/* enqueue */
1344 	mtx_lock(&bqlock);
1345 	/* Handle delayed bremfree() processing. */
1346 	if (bp->b_flags & B_REMFREE)
1347 		bremfreel(bp);
1348 	if (bp->b_qindex != QUEUE_NONE)
1349 		panic("brelse: free buffer onto another queue???");
1350 
1351 	/* buffers with no memory */
1352 	if (bp->b_bufsize == 0) {
1353 		bp->b_flags |= B_INVAL;
1354 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1355 		if (bp->b_vflags & BV_BKGRDINPROG)
1356 			panic("losing buffer 1");
1357 		if (bp->b_kvasize) {
1358 			bp->b_qindex = QUEUE_EMPTYKVA;
1359 		} else {
1360 			bp->b_qindex = QUEUE_EMPTY;
1361 		}
1362 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1363 	/* buffers with junk contents */
1364 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1365 	    (bp->b_ioflags & BIO_ERROR)) {
1366 		bp->b_flags |= B_INVAL;
1367 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1368 		if (bp->b_vflags & BV_BKGRDINPROG)
1369 			panic("losing buffer 2");
1370 		bp->b_qindex = QUEUE_CLEAN;
1371 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1372 	/* remaining buffers */
1373 	} else {
1374 		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1375 		    (B_DELWRI|B_NEEDSGIANT))
1376 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1377 		if (bp->b_flags & B_DELWRI)
1378 			bp->b_qindex = QUEUE_DIRTY;
1379 		else
1380 			bp->b_qindex = QUEUE_CLEAN;
1381 		if (bp->b_flags & B_AGE)
1382 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1383 		else
1384 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1385 	}
1386 	mtx_unlock(&bqlock);
1387 
1388 	/*
1389 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1390 	 * placed the buffer on the correct queue.  We must also disassociate
1391 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1392 	 * find it.
1393 	 */
1394 	if (bp->b_flags & B_INVAL) {
1395 		if (bp->b_flags & B_DELWRI)
1396 			bundirty(bp);
1397 		if (bp->b_vp)
1398 			brelvp(bp);
1399 	}
1400 
1401 	/*
1402 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1403 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1404 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1405 	 * if B_INVAL is set ).
1406 	 */
1407 
1408 	if (!(bp->b_flags & B_DELWRI))
1409 		bufcountwakeup();
1410 
1411 	/*
1412 	 * Something we can maybe free or reuse
1413 	 */
1414 	if (bp->b_bufsize || bp->b_kvasize)
1415 		bufspacewakeup();
1416 
1417 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1418 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1419 		panic("brelse: not dirty");
1420 	/* unlock */
1421 	BUF_UNLOCK(bp);
1422 }
1423 
1424 /*
1425  * Release a buffer back to the appropriate queue but do not try to free
1426  * it.  The buffer is expected to be used again soon.
1427  *
1428  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1429  * biodone() to requeue an async I/O on completion.  It is also used when
1430  * known good buffers need to be requeued but we think we may need the data
1431  * again soon.
1432  *
1433  * XXX we should be able to leave the B_RELBUF hint set on completion.
1434  */
1435 void
1436 bqrelse(struct buf *bp)
1437 {
1438 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1439 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1440 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1441 
1442 	if (BUF_REFCNT(bp) > 1) {
1443 		/* do not release to free list */
1444 		BUF_UNLOCK(bp);
1445 		return;
1446 	}
1447 
1448 	if (bp->b_flags & B_MANAGED) {
1449 		if (bp->b_flags & B_REMFREE) {
1450 			mtx_lock(&bqlock);
1451 			bremfreel(bp);
1452 			mtx_unlock(&bqlock);
1453 		}
1454 		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1455 		BUF_UNLOCK(bp);
1456 		return;
1457 	}
1458 
1459 	mtx_lock(&bqlock);
1460 	/* Handle delayed bremfree() processing. */
1461 	if (bp->b_flags & B_REMFREE)
1462 		bremfreel(bp);
1463 	if (bp->b_qindex != QUEUE_NONE)
1464 		panic("bqrelse: free buffer onto another queue???");
1465 	/* buffers with stale but valid contents */
1466 	if (bp->b_flags & B_DELWRI) {
1467 		if (bp->b_flags & B_NEEDSGIANT)
1468 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1469 		else
1470 			bp->b_qindex = QUEUE_DIRTY;
1471 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1472 	} else {
1473 		/*
1474 		 * XXX This lock may not be necessary since BKGRDINPROG
1475 		 * cannot be set while we hold the buf lock, it can only be
1476 		 * cleared if it is already pending.
1477 		 */
1478 		BO_LOCK(bp->b_bufobj);
1479 		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1480 			BO_UNLOCK(bp->b_bufobj);
1481 			bp->b_qindex = QUEUE_CLEAN;
1482 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1483 			    b_freelist);
1484 		} else {
1485 			/*
1486 			 * We are too low on memory, we have to try to free
1487 			 * the buffer (most importantly: the wired pages
1488 			 * making up its backing store) *now*.
1489 			 */
1490 			BO_UNLOCK(bp->b_bufobj);
1491 			mtx_unlock(&bqlock);
1492 			brelse(bp);
1493 			return;
1494 		}
1495 	}
1496 	mtx_unlock(&bqlock);
1497 
1498 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1499 		bufcountwakeup();
1500 
1501 	/*
1502 	 * Something we can maybe free or reuse.
1503 	 */
1504 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1505 		bufspacewakeup();
1506 
1507 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1508 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1509 		panic("bqrelse: not dirty");
1510 	/* unlock */
1511 	BUF_UNLOCK(bp);
1512 }
1513 
1514 /* Give pages used by the bp back to the VM system (where possible) */
1515 static void
1516 vfs_vmio_release(struct buf *bp)
1517 {
1518 	int i;
1519 	vm_page_t m;
1520 
1521 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1522 	vm_page_lock_queues();
1523 	for (i = 0; i < bp->b_npages; i++) {
1524 		m = bp->b_pages[i];
1525 		bp->b_pages[i] = NULL;
1526 		/*
1527 		 * In order to keep page LRU ordering consistent, put
1528 		 * everything on the inactive queue.
1529 		 */
1530 		vm_page_unwire(m, 0);
1531 		/*
1532 		 * We don't mess with busy pages, it is
1533 		 * the responsibility of the process that
1534 		 * busied the pages to deal with them.
1535 		 */
1536 		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1537 			continue;
1538 
1539 		if (m->wire_count == 0) {
1540 			/*
1541 			 * Might as well free the page if we can and it has
1542 			 * no valid data.  We also free the page if the
1543 			 * buffer was used for direct I/O
1544 			 */
1545 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1546 			    m->hold_count == 0) {
1547 				vm_page_free(m);
1548 			} else if (bp->b_flags & B_DIRECT) {
1549 				vm_page_try_to_free(m);
1550 			} else if (vm_page_count_severe()) {
1551 				vm_page_try_to_cache(m);
1552 			}
1553 		}
1554 	}
1555 	vm_page_unlock_queues();
1556 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1557 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1558 
1559 	if (bp->b_bufsize) {
1560 		bufspacewakeup();
1561 		bp->b_bufsize = 0;
1562 	}
1563 	bp->b_npages = 0;
1564 	bp->b_flags &= ~B_VMIO;
1565 	if (bp->b_vp)
1566 		brelvp(bp);
1567 }
1568 
1569 /*
1570  * Check to see if a block at a particular lbn is available for a clustered
1571  * write.
1572  */
1573 static int
1574 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1575 {
1576 	struct buf *bpa;
1577 	int match;
1578 
1579 	match = 0;
1580 
1581 	/* If the buf isn't in core skip it */
1582 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1583 		return (0);
1584 
1585 	/* If the buf is busy we don't want to wait for it */
1586 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1587 		return (0);
1588 
1589 	/* Only cluster with valid clusterable delayed write buffers */
1590 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1591 	    (B_DELWRI | B_CLUSTEROK))
1592 		goto done;
1593 
1594 	if (bpa->b_bufsize != size)
1595 		goto done;
1596 
1597 	/*
1598 	 * Check to see if it is in the expected place on disk and that the
1599 	 * block has been mapped.
1600 	 */
1601 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1602 		match = 1;
1603 done:
1604 	BUF_UNLOCK(bpa);
1605 	return (match);
1606 }
1607 
1608 /*
1609  *	vfs_bio_awrite:
1610  *
1611  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1612  *	This is much better then the old way of writing only one buffer at
1613  *	a time.  Note that we may not be presented with the buffers in the
1614  *	correct order, so we search for the cluster in both directions.
1615  */
1616 int
1617 vfs_bio_awrite(struct buf *bp)
1618 {
1619 	int i;
1620 	int j;
1621 	daddr_t lblkno = bp->b_lblkno;
1622 	struct vnode *vp = bp->b_vp;
1623 	int ncl;
1624 	int nwritten;
1625 	int size;
1626 	int maxcl;
1627 
1628 	/*
1629 	 * right now we support clustered writing only to regular files.  If
1630 	 * we find a clusterable block we could be in the middle of a cluster
1631 	 * rather then at the beginning.
1632 	 */
1633 	if ((vp->v_type == VREG) &&
1634 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1635 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1636 
1637 		size = vp->v_mount->mnt_stat.f_iosize;
1638 		maxcl = MAXPHYS / size;
1639 
1640 		VI_LOCK(vp);
1641 		for (i = 1; i < maxcl; i++)
1642 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1643 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1644 				break;
1645 
1646 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1647 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1648 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1649 				break;
1650 
1651 		VI_UNLOCK(vp);
1652 		--j;
1653 		ncl = i + j;
1654 		/*
1655 		 * this is a possible cluster write
1656 		 */
1657 		if (ncl != 1) {
1658 			BUF_UNLOCK(bp);
1659 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1660 			return nwritten;
1661 		}
1662 	}
1663 	bremfree(bp);
1664 	bp->b_flags |= B_ASYNC;
1665 	/*
1666 	 * default (old) behavior, writing out only one block
1667 	 *
1668 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1669 	 */
1670 	nwritten = bp->b_bufsize;
1671 	(void) bwrite(bp);
1672 
1673 	return nwritten;
1674 }
1675 
1676 /*
1677  *	getnewbuf:
1678  *
1679  *	Find and initialize a new buffer header, freeing up existing buffers
1680  *	in the bufqueues as necessary.  The new buffer is returned locked.
1681  *
1682  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1683  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1684  *
1685  *	We block if:
1686  *		We have insufficient buffer headers
1687  *		We have insufficient buffer space
1688  *		buffer_map is too fragmented ( space reservation fails )
1689  *		If we have to flush dirty buffers ( but we try to avoid this )
1690  *
1691  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1692  *	Instead we ask the buf daemon to do it for us.  We attempt to
1693  *	avoid piecemeal wakeups of the pageout daemon.
1694  */
1695 
1696 static struct buf *
1697 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1698 {
1699 	struct buf *bp;
1700 	struct buf *nbp;
1701 	int defrag = 0;
1702 	int nqindex;
1703 	static int flushingbufs;
1704 
1705 	/*
1706 	 * We can't afford to block since we might be holding a vnode lock,
1707 	 * which may prevent system daemons from running.  We deal with
1708 	 * low-memory situations by proactively returning memory and running
1709 	 * async I/O rather then sync I/O.
1710 	 */
1711 
1712 	atomic_add_int(&getnewbufcalls, 1);
1713 	atomic_subtract_int(&getnewbufrestarts, 1);
1714 restart:
1715 	atomic_add_int(&getnewbufrestarts, 1);
1716 
1717 	/*
1718 	 * Setup for scan.  If we do not have enough free buffers,
1719 	 * we setup a degenerate case that immediately fails.  Note
1720 	 * that if we are specially marked process, we are allowed to
1721 	 * dip into our reserves.
1722 	 *
1723 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1724 	 *
1725 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1726 	 * However, there are a number of cases (defragging, reusing, ...)
1727 	 * where we cannot backup.
1728 	 */
1729 	mtx_lock(&bqlock);
1730 	nqindex = QUEUE_EMPTYKVA;
1731 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1732 
1733 	if (nbp == NULL) {
1734 		/*
1735 		 * If no EMPTYKVA buffers and we are either
1736 		 * defragging or reusing, locate a CLEAN buffer
1737 		 * to free or reuse.  If bufspace useage is low
1738 		 * skip this step so we can allocate a new buffer.
1739 		 */
1740 		if (defrag || bufspace >= lobufspace) {
1741 			nqindex = QUEUE_CLEAN;
1742 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1743 		}
1744 
1745 		/*
1746 		 * If we could not find or were not allowed to reuse a
1747 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1748 		 * buffer.  We can only use an EMPTY buffer if allocating
1749 		 * its KVA would not otherwise run us out of buffer space.
1750 		 */
1751 		if (nbp == NULL && defrag == 0 &&
1752 		    bufspace + maxsize < hibufspace) {
1753 			nqindex = QUEUE_EMPTY;
1754 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1755 		}
1756 	}
1757 
1758 	/*
1759 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1760 	 * depending.
1761 	 */
1762 
1763 	while ((bp = nbp) != NULL) {
1764 		int qindex = nqindex;
1765 
1766 		/*
1767 		 * Calculate next bp ( we can only use it if we do not block
1768 		 * or do other fancy things ).
1769 		 */
1770 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1771 			switch(qindex) {
1772 			case QUEUE_EMPTY:
1773 				nqindex = QUEUE_EMPTYKVA;
1774 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1775 					break;
1776 				/* FALLTHROUGH */
1777 			case QUEUE_EMPTYKVA:
1778 				nqindex = QUEUE_CLEAN;
1779 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1780 					break;
1781 				/* FALLTHROUGH */
1782 			case QUEUE_CLEAN:
1783 				/*
1784 				 * nbp is NULL.
1785 				 */
1786 				break;
1787 			}
1788 		}
1789 		/*
1790 		 * If we are defragging then we need a buffer with
1791 		 * b_kvasize != 0.  XXX this situation should no longer
1792 		 * occur, if defrag is non-zero the buffer's b_kvasize
1793 		 * should also be non-zero at this point.  XXX
1794 		 */
1795 		if (defrag && bp->b_kvasize == 0) {
1796 			printf("Warning: defrag empty buffer %p\n", bp);
1797 			continue;
1798 		}
1799 
1800 		/*
1801 		 * Start freeing the bp.  This is somewhat involved.  nbp
1802 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1803 		 */
1804 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1805 			continue;
1806 		if (bp->b_vp) {
1807 			BO_LOCK(bp->b_bufobj);
1808 			if (bp->b_vflags & BV_BKGRDINPROG) {
1809 				BO_UNLOCK(bp->b_bufobj);
1810 				BUF_UNLOCK(bp);
1811 				continue;
1812 			}
1813 			BO_UNLOCK(bp->b_bufobj);
1814 		}
1815 		CTR6(KTR_BUF,
1816 		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1817 		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1818 		    bp->b_kvasize, bp->b_bufsize, qindex);
1819 
1820 		/*
1821 		 * Sanity Checks
1822 		 */
1823 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1824 
1825 		/*
1826 		 * Note: we no longer distinguish between VMIO and non-VMIO
1827 		 * buffers.
1828 		 */
1829 
1830 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1831 
1832 		bremfreel(bp);
1833 		mtx_unlock(&bqlock);
1834 
1835 		if (qindex == QUEUE_CLEAN) {
1836 			if (bp->b_flags & B_VMIO) {
1837 				bp->b_flags &= ~B_ASYNC;
1838 				vfs_vmio_release(bp);
1839 			}
1840 			if (bp->b_vp)
1841 				brelvp(bp);
1842 		}
1843 
1844 		/*
1845 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1846 		 * the scan from this point on.
1847 		 *
1848 		 * Get the rest of the buffer freed up.  b_kva* is still
1849 		 * valid after this operation.
1850 		 */
1851 
1852 		if (bp->b_rcred != NOCRED) {
1853 			crfree(bp->b_rcred);
1854 			bp->b_rcred = NOCRED;
1855 		}
1856 		if (bp->b_wcred != NOCRED) {
1857 			crfree(bp->b_wcred);
1858 			bp->b_wcred = NOCRED;
1859 		}
1860 		if (!LIST_EMPTY(&bp->b_dep))
1861 			buf_deallocate(bp);
1862 		if (bp->b_vflags & BV_BKGRDINPROG)
1863 			panic("losing buffer 3");
1864 		KASSERT(bp->b_vp == NULL,
1865 		    ("bp: %p still has vnode %p.  qindex: %d",
1866 		    bp, bp->b_vp, qindex));
1867 		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1868 		   ("bp: %p still on a buffer list. xflags %X",
1869 		    bp, bp->b_xflags));
1870 
1871 		if (bp->b_bufsize)
1872 			allocbuf(bp, 0);
1873 
1874 		bp->b_flags = 0;
1875 		bp->b_ioflags = 0;
1876 		bp->b_xflags = 0;
1877 		bp->b_vflags = 0;
1878 		bp->b_vp = NULL;
1879 		bp->b_blkno = bp->b_lblkno = 0;
1880 		bp->b_offset = NOOFFSET;
1881 		bp->b_iodone = 0;
1882 		bp->b_error = 0;
1883 		bp->b_resid = 0;
1884 		bp->b_bcount = 0;
1885 		bp->b_npages = 0;
1886 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1887 		bp->b_bufobj = NULL;
1888 		bp->b_pin_count = 0;
1889 		bp->b_fsprivate1 = NULL;
1890 		bp->b_fsprivate2 = NULL;
1891 		bp->b_fsprivate3 = NULL;
1892 
1893 		LIST_INIT(&bp->b_dep);
1894 
1895 		/*
1896 		 * If we are defragging then free the buffer.
1897 		 */
1898 		if (defrag) {
1899 			bp->b_flags |= B_INVAL;
1900 			bfreekva(bp);
1901 			brelse(bp);
1902 			defrag = 0;
1903 			goto restart;
1904 		}
1905 
1906 		/*
1907 		 * Notify any waiters for the buffer lock about
1908 		 * identity change by freeing the buffer.
1909 		 */
1910 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
1911 			bp->b_flags |= B_INVAL;
1912 			bfreekva(bp);
1913 			brelse(bp);
1914 			goto restart;
1915 		}
1916 
1917 		/*
1918 		 * If we are overcomitted then recover the buffer and its
1919 		 * KVM space.  This occurs in rare situations when multiple
1920 		 * processes are blocked in getnewbuf() or allocbuf().
1921 		 */
1922 		if (bufspace >= hibufspace)
1923 			flushingbufs = 1;
1924 		if (flushingbufs && bp->b_kvasize != 0) {
1925 			bp->b_flags |= B_INVAL;
1926 			bfreekva(bp);
1927 			brelse(bp);
1928 			goto restart;
1929 		}
1930 		if (bufspace < lobufspace)
1931 			flushingbufs = 0;
1932 		break;
1933 	}
1934 
1935 	/*
1936 	 * If we exhausted our list, sleep as appropriate.  We may have to
1937 	 * wakeup various daemons and write out some dirty buffers.
1938 	 *
1939 	 * Generally we are sleeping due to insufficient buffer space.
1940 	 */
1941 
1942 	if (bp == NULL) {
1943 		int flags;
1944 		char *waitmsg;
1945 
1946 		if (defrag) {
1947 			flags = VFS_BIO_NEED_BUFSPACE;
1948 			waitmsg = "nbufkv";
1949 		} else if (bufspace >= hibufspace) {
1950 			waitmsg = "nbufbs";
1951 			flags = VFS_BIO_NEED_BUFSPACE;
1952 		} else {
1953 			waitmsg = "newbuf";
1954 			flags = VFS_BIO_NEED_ANY;
1955 		}
1956 		mtx_lock(&nblock);
1957 		needsbuffer |= flags;
1958 		mtx_unlock(&nblock);
1959 		mtx_unlock(&bqlock);
1960 
1961 		bd_speedup();	/* heeeelp */
1962 
1963 		mtx_lock(&nblock);
1964 		while (needsbuffer & flags) {
1965 			if (msleep(&needsbuffer, &nblock,
1966 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1967 				mtx_unlock(&nblock);
1968 				return (NULL);
1969 			}
1970 		}
1971 		mtx_unlock(&nblock);
1972 	} else {
1973 		/*
1974 		 * We finally have a valid bp.  We aren't quite out of the
1975 		 * woods, we still have to reserve kva space.  In order
1976 		 * to keep fragmentation sane we only allocate kva in
1977 		 * BKVASIZE chunks.
1978 		 */
1979 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1980 
1981 		if (maxsize != bp->b_kvasize) {
1982 			vm_offset_t addr = 0;
1983 
1984 			bfreekva(bp);
1985 
1986 			vm_map_lock(buffer_map);
1987 			if (vm_map_findspace(buffer_map,
1988 				vm_map_min(buffer_map), maxsize, &addr)) {
1989 				/*
1990 				 * Uh oh.  Buffer map is to fragmented.  We
1991 				 * must defragment the map.
1992 				 */
1993 				atomic_add_int(&bufdefragcnt, 1);
1994 				vm_map_unlock(buffer_map);
1995 				defrag = 1;
1996 				bp->b_flags |= B_INVAL;
1997 				brelse(bp);
1998 				goto restart;
1999 			}
2000 			if (addr) {
2001 				vm_map_insert(buffer_map, NULL, 0,
2002 					addr, addr + maxsize,
2003 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2004 
2005 				bp->b_kvabase = (caddr_t) addr;
2006 				bp->b_kvasize = maxsize;
2007 				atomic_add_int(&bufspace, bp->b_kvasize);
2008 				atomic_add_int(&bufreusecnt, 1);
2009 			}
2010 			vm_map_unlock(buffer_map);
2011 		}
2012 		bp->b_saveaddr = bp->b_kvabase;
2013 		bp->b_data = bp->b_saveaddr;
2014 	}
2015 	return(bp);
2016 }
2017 
2018 /*
2019  *	buf_daemon:
2020  *
2021  *	buffer flushing daemon.  Buffers are normally flushed by the
2022  *	update daemon but if it cannot keep up this process starts to
2023  *	take the load in an attempt to prevent getnewbuf() from blocking.
2024  */
2025 
2026 static struct kproc_desc buf_kp = {
2027 	"bufdaemon",
2028 	buf_daemon,
2029 	&bufdaemonproc
2030 };
2031 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2032 
2033 static void
2034 buf_daemon()
2035 {
2036 
2037 	/*
2038 	 * This process needs to be suspended prior to shutdown sync.
2039 	 */
2040 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2041 	    SHUTDOWN_PRI_LAST);
2042 
2043 	/*
2044 	 * This process is allowed to take the buffer cache to the limit
2045 	 */
2046 	curthread->td_pflags |= TDP_NORUNNINGBUF;
2047 	mtx_lock(&bdlock);
2048 	for (;;) {
2049 		bd_request = 0;
2050 		mtx_unlock(&bdlock);
2051 
2052 		kthread_suspend_check(bufdaemonproc);
2053 
2054 		/*
2055 		 * Do the flush.  Limit the amount of in-transit I/O we
2056 		 * allow to build up, otherwise we would completely saturate
2057 		 * the I/O system.  Wakeup any waiting processes before we
2058 		 * normally would so they can run in parallel with our drain.
2059 		 */
2060 		while (numdirtybuffers > lodirtybuffers) {
2061 			int flushed;
2062 
2063 			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2064 			/* The list empty check here is slightly racy */
2065 			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2066 				mtx_lock(&Giant);
2067 				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2068 				mtx_unlock(&Giant);
2069 			}
2070 			if (flushed == 0) {
2071 				/*
2072 				 * Could not find any buffers without rollback
2073 				 * dependencies, so just write the first one
2074 				 * in the hopes of eventually making progress.
2075 				 */
2076 				flushbufqueues(QUEUE_DIRTY, 1);
2077 				if (!TAILQ_EMPTY(
2078 				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2079 					mtx_lock(&Giant);
2080 					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2081 					mtx_unlock(&Giant);
2082 				}
2083 				break;
2084 			}
2085 			uio_yield();
2086 		}
2087 
2088 		/*
2089 		 * Only clear bd_request if we have reached our low water
2090 		 * mark.  The buf_daemon normally waits 1 second and
2091 		 * then incrementally flushes any dirty buffers that have
2092 		 * built up, within reason.
2093 		 *
2094 		 * If we were unable to hit our low water mark and couldn't
2095 		 * find any flushable buffers, we sleep half a second.
2096 		 * Otherwise we loop immediately.
2097 		 */
2098 		mtx_lock(&bdlock);
2099 		if (numdirtybuffers <= lodirtybuffers) {
2100 			/*
2101 			 * We reached our low water mark, reset the
2102 			 * request and sleep until we are needed again.
2103 			 * The sleep is just so the suspend code works.
2104 			 */
2105 			bd_request = 0;
2106 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2107 		} else {
2108 			/*
2109 			 * We couldn't find any flushable dirty buffers but
2110 			 * still have too many dirty buffers, we
2111 			 * have to sleep and try again.  (rare)
2112 			 */
2113 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2114 		}
2115 	}
2116 }
2117 
2118 /*
2119  *	flushbufqueues:
2120  *
2121  *	Try to flush a buffer in the dirty queue.  We must be careful to
2122  *	free up B_INVAL buffers instead of write them, which NFS is
2123  *	particularly sensitive to.
2124  */
2125 static int flushwithdeps = 0;
2126 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2127     0, "Number of buffers flushed with dependecies that require rollbacks");
2128 
2129 static int
2130 flushbufqueues(int queue, int flushdeps)
2131 {
2132 	struct thread *td = curthread;
2133 	struct buf sentinel;
2134 	struct vnode *vp;
2135 	struct mount *mp;
2136 	struct buf *bp;
2137 	int hasdeps;
2138 	int flushed;
2139 	int target;
2140 
2141 	target = numdirtybuffers - lodirtybuffers;
2142 	if (flushdeps && target > 2)
2143 		target /= 2;
2144 	flushed = 0;
2145 	bp = NULL;
2146 	mtx_lock(&bqlock);
2147 	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2148 	while (flushed != target) {
2149 		bp = TAILQ_FIRST(&bufqueues[queue]);
2150 		if (bp == &sentinel)
2151 			break;
2152 		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2153 		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2154 
2155 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2156 			continue;
2157 		if (bp->b_pin_count > 0) {
2158 			BUF_UNLOCK(bp);
2159 			continue;
2160 		}
2161 		BO_LOCK(bp->b_bufobj);
2162 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2163 		    (bp->b_flags & B_DELWRI) == 0) {
2164 			BO_UNLOCK(bp->b_bufobj);
2165 			BUF_UNLOCK(bp);
2166 			continue;
2167 		}
2168 		BO_UNLOCK(bp->b_bufobj);
2169 		if (bp->b_flags & B_INVAL) {
2170 			bremfreel(bp);
2171 			mtx_unlock(&bqlock);
2172 			brelse(bp);
2173 			flushed++;
2174 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2175 			mtx_lock(&bqlock);
2176 			continue;
2177 		}
2178 
2179 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2180 			if (flushdeps == 0) {
2181 				BUF_UNLOCK(bp);
2182 				continue;
2183 			}
2184 			hasdeps = 1;
2185 		} else
2186 			hasdeps = 0;
2187 		/*
2188 		 * We must hold the lock on a vnode before writing
2189 		 * one of its buffers. Otherwise we may confuse, or
2190 		 * in the case of a snapshot vnode, deadlock the
2191 		 * system.
2192 		 *
2193 		 * The lock order here is the reverse of the normal
2194 		 * of vnode followed by buf lock.  This is ok because
2195 		 * the NOWAIT will prevent deadlock.
2196 		 */
2197 		vp = bp->b_vp;
2198 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2199 			BUF_UNLOCK(bp);
2200 			continue;
2201 		}
2202 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2203 			mtx_unlock(&bqlock);
2204 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2205 			    bp, bp->b_vp, bp->b_flags);
2206 			vfs_bio_awrite(bp);
2207 			vn_finished_write(mp);
2208 			VOP_UNLOCK(vp, 0, td);
2209 			flushwithdeps += hasdeps;
2210 			flushed++;
2211 			waitrunningbufspace();
2212 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2213 			mtx_lock(&bqlock);
2214 			continue;
2215 		}
2216 		vn_finished_write(mp);
2217 		BUF_UNLOCK(bp);
2218 	}
2219 	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2220 	mtx_unlock(&bqlock);
2221 	return (flushed);
2222 }
2223 
2224 /*
2225  * Check to see if a block is currently memory resident.
2226  */
2227 struct buf *
2228 incore(struct bufobj *bo, daddr_t blkno)
2229 {
2230 	struct buf *bp;
2231 
2232 	BO_LOCK(bo);
2233 	bp = gbincore(bo, blkno);
2234 	BO_UNLOCK(bo);
2235 	return (bp);
2236 }
2237 
2238 /*
2239  * Returns true if no I/O is needed to access the
2240  * associated VM object.  This is like incore except
2241  * it also hunts around in the VM system for the data.
2242  */
2243 
2244 static int
2245 inmem(struct vnode * vp, daddr_t blkno)
2246 {
2247 	vm_object_t obj;
2248 	vm_offset_t toff, tinc, size;
2249 	vm_page_t m;
2250 	vm_ooffset_t off;
2251 
2252 	ASSERT_VOP_LOCKED(vp, "inmem");
2253 
2254 	if (incore(&vp->v_bufobj, blkno))
2255 		return 1;
2256 	if (vp->v_mount == NULL)
2257 		return 0;
2258 	obj = vp->v_object;
2259 	if (obj == NULL)
2260 		return (0);
2261 
2262 	size = PAGE_SIZE;
2263 	if (size > vp->v_mount->mnt_stat.f_iosize)
2264 		size = vp->v_mount->mnt_stat.f_iosize;
2265 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2266 
2267 	VM_OBJECT_LOCK(obj);
2268 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2269 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2270 		if (!m)
2271 			goto notinmem;
2272 		tinc = size;
2273 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2274 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2275 		if (vm_page_is_valid(m,
2276 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2277 			goto notinmem;
2278 	}
2279 	VM_OBJECT_UNLOCK(obj);
2280 	return 1;
2281 
2282 notinmem:
2283 	VM_OBJECT_UNLOCK(obj);
2284 	return (0);
2285 }
2286 
2287 /*
2288  *	vfs_setdirty:
2289  *
2290  *	Sets the dirty range for a buffer based on the status of the dirty
2291  *	bits in the pages comprising the buffer.
2292  *
2293  *	The range is limited to the size of the buffer.
2294  *
2295  *	This routine is primarily used by NFS, but is generalized for the
2296  *	B_VMIO case.
2297  */
2298 static void
2299 vfs_setdirty(struct buf *bp)
2300 {
2301 
2302 	/*
2303 	 * Degenerate case - empty buffer
2304 	 */
2305 
2306 	if (bp->b_bufsize == 0)
2307 		return;
2308 
2309 	/*
2310 	 * We qualify the scan for modified pages on whether the
2311 	 * object has been flushed yet.
2312 	 */
2313 
2314 	if ((bp->b_flags & B_VMIO) == 0)
2315 		return;
2316 
2317 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2318 	vfs_setdirty_locked_object(bp);
2319 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2320 }
2321 
2322 static void
2323 vfs_setdirty_locked_object(struct buf *bp)
2324 {
2325 	vm_object_t object;
2326 	int i;
2327 
2328 	object = bp->b_bufobj->bo_object;
2329 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2330 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2331 		vm_offset_t boffset;
2332 		vm_offset_t eoffset;
2333 
2334 		vm_page_lock_queues();
2335 		/*
2336 		 * test the pages to see if they have been modified directly
2337 		 * by users through the VM system.
2338 		 */
2339 		for (i = 0; i < bp->b_npages; i++)
2340 			vm_page_test_dirty(bp->b_pages[i]);
2341 
2342 		/*
2343 		 * Calculate the encompassing dirty range, boffset and eoffset,
2344 		 * (eoffset - boffset) bytes.
2345 		 */
2346 
2347 		for (i = 0; i < bp->b_npages; i++) {
2348 			if (bp->b_pages[i]->dirty)
2349 				break;
2350 		}
2351 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2352 
2353 		for (i = bp->b_npages - 1; i >= 0; --i) {
2354 			if (bp->b_pages[i]->dirty) {
2355 				break;
2356 			}
2357 		}
2358 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2359 
2360 		vm_page_unlock_queues();
2361 		/*
2362 		 * Fit it to the buffer.
2363 		 */
2364 
2365 		if (eoffset > bp->b_bcount)
2366 			eoffset = bp->b_bcount;
2367 
2368 		/*
2369 		 * If we have a good dirty range, merge with the existing
2370 		 * dirty range.
2371 		 */
2372 
2373 		if (boffset < eoffset) {
2374 			if (bp->b_dirtyoff > boffset)
2375 				bp->b_dirtyoff = boffset;
2376 			if (bp->b_dirtyend < eoffset)
2377 				bp->b_dirtyend = eoffset;
2378 		}
2379 	}
2380 }
2381 
2382 /*
2383  *	getblk:
2384  *
2385  *	Get a block given a specified block and offset into a file/device.
2386  *	The buffers B_DONE bit will be cleared on return, making it almost
2387  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2388  *	return.  The caller should clear B_INVAL prior to initiating a
2389  *	READ.
2390  *
2391  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2392  *	an existing buffer.
2393  *
2394  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2395  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2396  *	and then cleared based on the backing VM.  If the previous buffer is
2397  *	non-0-sized but invalid, B_CACHE will be cleared.
2398  *
2399  *	If getblk() must create a new buffer, the new buffer is returned with
2400  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2401  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2402  *	backing VM.
2403  *
2404  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2405  *	B_CACHE bit is clear.
2406  *
2407  *	What this means, basically, is that the caller should use B_CACHE to
2408  *	determine whether the buffer is fully valid or not and should clear
2409  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2410  *	the buffer by loading its data area with something, the caller needs
2411  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2412  *	the caller should set B_CACHE ( as an optimization ), else the caller
2413  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2414  *	a write attempt or if it was a successfull read.  If the caller
2415  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2416  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2417  */
2418 struct buf *
2419 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2420     int flags)
2421 {
2422 	struct buf *bp;
2423 	struct bufobj *bo;
2424 	int error;
2425 
2426 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2427 	ASSERT_VOP_LOCKED(vp, "getblk");
2428 	if (size > MAXBSIZE)
2429 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2430 
2431 	bo = &vp->v_bufobj;
2432 loop:
2433 	/*
2434 	 * Block if we are low on buffers.   Certain processes are allowed
2435 	 * to completely exhaust the buffer cache.
2436          *
2437          * If this check ever becomes a bottleneck it may be better to
2438          * move it into the else, when gbincore() fails.  At the moment
2439          * it isn't a problem.
2440 	 *
2441 	 * XXX remove if 0 sections (clean this up after its proven)
2442          */
2443 	if (numfreebuffers == 0) {
2444 		if (TD_IS_IDLETHREAD(curthread))
2445 			return NULL;
2446 		mtx_lock(&nblock);
2447 		needsbuffer |= VFS_BIO_NEED_ANY;
2448 		mtx_unlock(&nblock);
2449 	}
2450 
2451 	VI_LOCK(vp);
2452 	bp = gbincore(bo, blkno);
2453 	if (bp != NULL) {
2454 		int lockflags;
2455 		/*
2456 		 * Buffer is in-core.  If the buffer is not busy, it must
2457 		 * be on a queue.
2458 		 */
2459 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2460 
2461 		if (flags & GB_LOCK_NOWAIT)
2462 			lockflags |= LK_NOWAIT;
2463 
2464 		error = BUF_TIMELOCK(bp, lockflags,
2465 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2466 
2467 		/*
2468 		 * If we slept and got the lock we have to restart in case
2469 		 * the buffer changed identities.
2470 		 */
2471 		if (error == ENOLCK)
2472 			goto loop;
2473 		/* We timed out or were interrupted. */
2474 		else if (error)
2475 			return (NULL);
2476 
2477 		/*
2478 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2479 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2480 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2481 		 * backing VM cache.
2482 		 */
2483 		if (bp->b_flags & B_INVAL)
2484 			bp->b_flags &= ~B_CACHE;
2485 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2486 			bp->b_flags |= B_CACHE;
2487 		bremfree(bp);
2488 
2489 		/*
2490 		 * check for size inconsistancies for non-VMIO case.
2491 		 */
2492 
2493 		if (bp->b_bcount != size) {
2494 			if ((bp->b_flags & B_VMIO) == 0 ||
2495 			    (size > bp->b_kvasize)) {
2496 				if (bp->b_flags & B_DELWRI) {
2497 					/*
2498 					 * If buffer is pinned and caller does
2499 					 * not want sleep  waiting for it to be
2500 					 * unpinned, bail out
2501 					 * */
2502 					if (bp->b_pin_count > 0) {
2503 						if (flags & GB_LOCK_NOWAIT) {
2504 							bqrelse(bp);
2505 							return (NULL);
2506 						} else {
2507 							bunpin_wait(bp);
2508 						}
2509 					}
2510 					bp->b_flags |= B_NOCACHE;
2511 					bwrite(bp);
2512 				} else {
2513 					if (LIST_EMPTY(&bp->b_dep)) {
2514 						bp->b_flags |= B_RELBUF;
2515 						brelse(bp);
2516 					} else {
2517 						bp->b_flags |= B_NOCACHE;
2518 						bwrite(bp);
2519 					}
2520 				}
2521 				goto loop;
2522 			}
2523 		}
2524 
2525 		/*
2526 		 * If the size is inconsistant in the VMIO case, we can resize
2527 		 * the buffer.  This might lead to B_CACHE getting set or
2528 		 * cleared.  If the size has not changed, B_CACHE remains
2529 		 * unchanged from its previous state.
2530 		 */
2531 
2532 		if (bp->b_bcount != size)
2533 			allocbuf(bp, size);
2534 
2535 		KASSERT(bp->b_offset != NOOFFSET,
2536 		    ("getblk: no buffer offset"));
2537 
2538 		/*
2539 		 * A buffer with B_DELWRI set and B_CACHE clear must
2540 		 * be committed before we can return the buffer in
2541 		 * order to prevent the caller from issuing a read
2542 		 * ( due to B_CACHE not being set ) and overwriting
2543 		 * it.
2544 		 *
2545 		 * Most callers, including NFS and FFS, need this to
2546 		 * operate properly either because they assume they
2547 		 * can issue a read if B_CACHE is not set, or because
2548 		 * ( for example ) an uncached B_DELWRI might loop due
2549 		 * to softupdates re-dirtying the buffer.  In the latter
2550 		 * case, B_CACHE is set after the first write completes,
2551 		 * preventing further loops.
2552 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2553 		 * above while extending the buffer, we cannot allow the
2554 		 * buffer to remain with B_CACHE set after the write
2555 		 * completes or it will represent a corrupt state.  To
2556 		 * deal with this we set B_NOCACHE to scrap the buffer
2557 		 * after the write.
2558 		 *
2559 		 * We might be able to do something fancy, like setting
2560 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2561 		 * so the below call doesn't set B_CACHE, but that gets real
2562 		 * confusing.  This is much easier.
2563 		 */
2564 
2565 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2566 			bp->b_flags |= B_NOCACHE;
2567 			bwrite(bp);
2568 			goto loop;
2569 		}
2570 		bp->b_flags &= ~B_DONE;
2571 	} else {
2572 		int bsize, maxsize, vmio;
2573 		off_t offset;
2574 
2575 		/*
2576 		 * Buffer is not in-core, create new buffer.  The buffer
2577 		 * returned by getnewbuf() is locked.  Note that the returned
2578 		 * buffer is also considered valid (not marked B_INVAL).
2579 		 */
2580 		VI_UNLOCK(vp);
2581 		/*
2582 		 * If the user does not want us to create the buffer, bail out
2583 		 * here.
2584 		 */
2585 		if (flags & GB_NOCREAT)
2586 			return NULL;
2587 		bsize = bo->bo_bsize;
2588 		offset = blkno * bsize;
2589 		vmio = vp->v_object != NULL;
2590 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2591 		maxsize = imax(maxsize, bsize);
2592 
2593 		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2594 		if (bp == NULL) {
2595 			if (slpflag || slptimeo)
2596 				return NULL;
2597 			goto loop;
2598 		}
2599 
2600 		/*
2601 		 * This code is used to make sure that a buffer is not
2602 		 * created while the getnewbuf routine is blocked.
2603 		 * This can be a problem whether the vnode is locked or not.
2604 		 * If the buffer is created out from under us, we have to
2605 		 * throw away the one we just created.
2606 		 *
2607 		 * Note: this must occur before we associate the buffer
2608 		 * with the vp especially considering limitations in
2609 		 * the splay tree implementation when dealing with duplicate
2610 		 * lblkno's.
2611 		 */
2612 		BO_LOCK(bo);
2613 		if (gbincore(bo, blkno)) {
2614 			BO_UNLOCK(bo);
2615 			bp->b_flags |= B_INVAL;
2616 			brelse(bp);
2617 			goto loop;
2618 		}
2619 
2620 		/*
2621 		 * Insert the buffer into the hash, so that it can
2622 		 * be found by incore.
2623 		 */
2624 		bp->b_blkno = bp->b_lblkno = blkno;
2625 		bp->b_offset = offset;
2626 		bgetvp(vp, bp);
2627 		BO_UNLOCK(bo);
2628 
2629 		/*
2630 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2631 		 * buffer size starts out as 0, B_CACHE will be set by
2632 		 * allocbuf() for the VMIO case prior to it testing the
2633 		 * backing store for validity.
2634 		 */
2635 
2636 		if (vmio) {
2637 			bp->b_flags |= B_VMIO;
2638 #if defined(VFS_BIO_DEBUG)
2639 			if (vn_canvmio(vp) != TRUE)
2640 				printf("getblk: VMIO on vnode type %d\n",
2641 					vp->v_type);
2642 #endif
2643 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2644 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2645 			    bp, vp->v_object, bp->b_bufobj->bo_object));
2646 		} else {
2647 			bp->b_flags &= ~B_VMIO;
2648 			KASSERT(bp->b_bufobj->bo_object == NULL,
2649 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2650 			    bp, bp->b_bufobj->bo_object));
2651 		}
2652 
2653 		allocbuf(bp, size);
2654 		bp->b_flags &= ~B_DONE;
2655 	}
2656 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2657 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2658 	KASSERT(bp->b_bufobj == bo,
2659 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2660 	return (bp);
2661 }
2662 
2663 /*
2664  * Get an empty, disassociated buffer of given size.  The buffer is initially
2665  * set to B_INVAL.
2666  */
2667 struct buf *
2668 geteblk(int size)
2669 {
2670 	struct buf *bp;
2671 	int maxsize;
2672 
2673 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2674 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2675 		continue;
2676 	allocbuf(bp, size);
2677 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2678 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2679 	return (bp);
2680 }
2681 
2682 
2683 /*
2684  * This code constitutes the buffer memory from either anonymous system
2685  * memory (in the case of non-VMIO operations) or from an associated
2686  * VM object (in the case of VMIO operations).  This code is able to
2687  * resize a buffer up or down.
2688  *
2689  * Note that this code is tricky, and has many complications to resolve
2690  * deadlock or inconsistant data situations.  Tread lightly!!!
2691  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2692  * the caller.  Calling this code willy nilly can result in the loss of data.
2693  *
2694  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2695  * B_CACHE for the non-VMIO case.
2696  */
2697 
2698 int
2699 allocbuf(struct buf *bp, int size)
2700 {
2701 	int newbsize, mbsize;
2702 	int i;
2703 
2704 	if (BUF_REFCNT(bp) == 0)
2705 		panic("allocbuf: buffer not busy");
2706 
2707 	if (bp->b_kvasize < size)
2708 		panic("allocbuf: buffer too small");
2709 
2710 	if ((bp->b_flags & B_VMIO) == 0) {
2711 		caddr_t origbuf;
2712 		int origbufsize;
2713 		/*
2714 		 * Just get anonymous memory from the kernel.  Don't
2715 		 * mess with B_CACHE.
2716 		 */
2717 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2718 		if (bp->b_flags & B_MALLOC)
2719 			newbsize = mbsize;
2720 		else
2721 			newbsize = round_page(size);
2722 
2723 		if (newbsize < bp->b_bufsize) {
2724 			/*
2725 			 * malloced buffers are not shrunk
2726 			 */
2727 			if (bp->b_flags & B_MALLOC) {
2728 				if (newbsize) {
2729 					bp->b_bcount = size;
2730 				} else {
2731 					free(bp->b_data, M_BIOBUF);
2732 					if (bp->b_bufsize) {
2733 						atomic_subtract_int(
2734 						    &bufmallocspace,
2735 						    bp->b_bufsize);
2736 						bufspacewakeup();
2737 						bp->b_bufsize = 0;
2738 					}
2739 					bp->b_saveaddr = bp->b_kvabase;
2740 					bp->b_data = bp->b_saveaddr;
2741 					bp->b_bcount = 0;
2742 					bp->b_flags &= ~B_MALLOC;
2743 				}
2744 				return 1;
2745 			}
2746 			vm_hold_free_pages(
2747 			    bp,
2748 			    (vm_offset_t) bp->b_data + newbsize,
2749 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2750 		} else if (newbsize > bp->b_bufsize) {
2751 			/*
2752 			 * We only use malloced memory on the first allocation.
2753 			 * and revert to page-allocated memory when the buffer
2754 			 * grows.
2755 			 */
2756 			/*
2757 			 * There is a potential smp race here that could lead
2758 			 * to bufmallocspace slightly passing the max.  It
2759 			 * is probably extremely rare and not worth worrying
2760 			 * over.
2761 			 */
2762 			if ( (bufmallocspace < maxbufmallocspace) &&
2763 				(bp->b_bufsize == 0) &&
2764 				(mbsize <= PAGE_SIZE/2)) {
2765 
2766 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2767 				bp->b_bufsize = mbsize;
2768 				bp->b_bcount = size;
2769 				bp->b_flags |= B_MALLOC;
2770 				atomic_add_int(&bufmallocspace, mbsize);
2771 				return 1;
2772 			}
2773 			origbuf = NULL;
2774 			origbufsize = 0;
2775 			/*
2776 			 * If the buffer is growing on its other-than-first allocation,
2777 			 * then we revert to the page-allocation scheme.
2778 			 */
2779 			if (bp->b_flags & B_MALLOC) {
2780 				origbuf = bp->b_data;
2781 				origbufsize = bp->b_bufsize;
2782 				bp->b_data = bp->b_kvabase;
2783 				if (bp->b_bufsize) {
2784 					atomic_subtract_int(&bufmallocspace,
2785 					    bp->b_bufsize);
2786 					bufspacewakeup();
2787 					bp->b_bufsize = 0;
2788 				}
2789 				bp->b_flags &= ~B_MALLOC;
2790 				newbsize = round_page(newbsize);
2791 			}
2792 			vm_hold_load_pages(
2793 			    bp,
2794 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2795 			    (vm_offset_t) bp->b_data + newbsize);
2796 			if (origbuf) {
2797 				bcopy(origbuf, bp->b_data, origbufsize);
2798 				free(origbuf, M_BIOBUF);
2799 			}
2800 		}
2801 	} else {
2802 		int desiredpages;
2803 
2804 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2805 		desiredpages = (size == 0) ? 0 :
2806 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2807 
2808 		if (bp->b_flags & B_MALLOC)
2809 			panic("allocbuf: VMIO buffer can't be malloced");
2810 		/*
2811 		 * Set B_CACHE initially if buffer is 0 length or will become
2812 		 * 0-length.
2813 		 */
2814 		if (size == 0 || bp->b_bufsize == 0)
2815 			bp->b_flags |= B_CACHE;
2816 
2817 		if (newbsize < bp->b_bufsize) {
2818 			/*
2819 			 * DEV_BSIZE aligned new buffer size is less then the
2820 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2821 			 * if we have to remove any pages.
2822 			 */
2823 			if (desiredpages < bp->b_npages) {
2824 				vm_page_t m;
2825 
2826 				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2827 				vm_page_lock_queues();
2828 				for (i = desiredpages; i < bp->b_npages; i++) {
2829 					/*
2830 					 * the page is not freed here -- it
2831 					 * is the responsibility of
2832 					 * vnode_pager_setsize
2833 					 */
2834 					m = bp->b_pages[i];
2835 					KASSERT(m != bogus_page,
2836 					    ("allocbuf: bogus page found"));
2837 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2838 						vm_page_lock_queues();
2839 
2840 					bp->b_pages[i] = NULL;
2841 					vm_page_unwire(m, 0);
2842 				}
2843 				vm_page_unlock_queues();
2844 				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2845 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2846 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2847 				bp->b_npages = desiredpages;
2848 			}
2849 		} else if (size > bp->b_bcount) {
2850 			/*
2851 			 * We are growing the buffer, possibly in a
2852 			 * byte-granular fashion.
2853 			 */
2854 			struct vnode *vp;
2855 			vm_object_t obj;
2856 			vm_offset_t toff;
2857 			vm_offset_t tinc;
2858 
2859 			/*
2860 			 * Step 1, bring in the VM pages from the object,
2861 			 * allocating them if necessary.  We must clear
2862 			 * B_CACHE if these pages are not valid for the
2863 			 * range covered by the buffer.
2864 			 */
2865 
2866 			vp = bp->b_vp;
2867 			obj = bp->b_bufobj->bo_object;
2868 
2869 			VM_OBJECT_LOCK(obj);
2870 			while (bp->b_npages < desiredpages) {
2871 				vm_page_t m;
2872 				vm_pindex_t pi;
2873 
2874 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2875 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2876 					/*
2877 					 * note: must allocate system pages
2878 					 * since blocking here could intefere
2879 					 * with paging I/O, no matter which
2880 					 * process we are.
2881 					 */
2882 					m = vm_page_alloc(obj, pi,
2883 					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2884 					    VM_ALLOC_WIRED);
2885 					if (m == NULL) {
2886 						atomic_add_int(&vm_pageout_deficit,
2887 						    desiredpages - bp->b_npages);
2888 						VM_OBJECT_UNLOCK(obj);
2889 						VM_WAIT;
2890 						VM_OBJECT_LOCK(obj);
2891 					} else {
2892 						bp->b_flags &= ~B_CACHE;
2893 						bp->b_pages[bp->b_npages] = m;
2894 						++bp->b_npages;
2895 					}
2896 					continue;
2897 				}
2898 
2899 				/*
2900 				 * We found a page.  If we have to sleep on it,
2901 				 * retry because it might have gotten freed out
2902 				 * from under us.
2903 				 *
2904 				 * We can only test VPO_BUSY here.  Blocking on
2905 				 * m->busy might lead to a deadlock:
2906 				 *
2907 				 *  vm_fault->getpages->cluster_read->allocbuf
2908 				 *
2909 				 */
2910 				vm_page_lock_queues();
2911 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2912 					continue;
2913 
2914 				/*
2915 				 * We have a good page.  Should we wakeup the
2916 				 * page daemon?
2917 				 */
2918 				if ((curproc != pageproc) &&
2919 				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2920 				    ((cnt.v_free_count + cnt.v_cache_count) <
2921 			 		(cnt.v_free_min + cnt.v_cache_min))) {
2922 					pagedaemon_wakeup();
2923 				}
2924 				vm_page_wire(m);
2925 				vm_page_unlock_queues();
2926 				bp->b_pages[bp->b_npages] = m;
2927 				++bp->b_npages;
2928 			}
2929 
2930 			/*
2931 			 * Step 2.  We've loaded the pages into the buffer,
2932 			 * we have to figure out if we can still have B_CACHE
2933 			 * set.  Note that B_CACHE is set according to the
2934 			 * byte-granular range ( bcount and size ), new the
2935 			 * aligned range ( newbsize ).
2936 			 *
2937 			 * The VM test is against m->valid, which is DEV_BSIZE
2938 			 * aligned.  Needless to say, the validity of the data
2939 			 * needs to also be DEV_BSIZE aligned.  Note that this
2940 			 * fails with NFS if the server or some other client
2941 			 * extends the file's EOF.  If our buffer is resized,
2942 			 * B_CACHE may remain set! XXX
2943 			 */
2944 
2945 			toff = bp->b_bcount;
2946 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2947 
2948 			while ((bp->b_flags & B_CACHE) && toff < size) {
2949 				vm_pindex_t pi;
2950 
2951 				if (tinc > (size - toff))
2952 					tinc = size - toff;
2953 
2954 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2955 				    PAGE_SHIFT;
2956 
2957 				vfs_buf_test_cache(
2958 				    bp,
2959 				    bp->b_offset,
2960 				    toff,
2961 				    tinc,
2962 				    bp->b_pages[pi]
2963 				);
2964 				toff += tinc;
2965 				tinc = PAGE_SIZE;
2966 			}
2967 			VM_OBJECT_UNLOCK(obj);
2968 
2969 			/*
2970 			 * Step 3, fixup the KVM pmap.  Remember that
2971 			 * bp->b_data is relative to bp->b_offset, but
2972 			 * bp->b_offset may be offset into the first page.
2973 			 */
2974 
2975 			bp->b_data = (caddr_t)
2976 			    trunc_page((vm_offset_t)bp->b_data);
2977 			pmap_qenter(
2978 			    (vm_offset_t)bp->b_data,
2979 			    bp->b_pages,
2980 			    bp->b_npages
2981 			);
2982 
2983 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2984 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2985 		}
2986 	}
2987 	if (newbsize < bp->b_bufsize)
2988 		bufspacewakeup();
2989 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2990 	bp->b_bcount = size;		/* requested buffer size	*/
2991 	return 1;
2992 }
2993 
2994 void
2995 biodone(struct bio *bp)
2996 {
2997 	void (*done)(struct bio *);
2998 
2999 	mtx_lock(&bdonelock);
3000 	bp->bio_flags |= BIO_DONE;
3001 	done = bp->bio_done;
3002 	if (done == NULL)
3003 		wakeup(bp);
3004 	mtx_unlock(&bdonelock);
3005 	if (done != NULL)
3006 		done(bp);
3007 }
3008 
3009 /*
3010  * Wait for a BIO to finish.
3011  *
3012  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3013  * case is not yet clear.
3014  */
3015 int
3016 biowait(struct bio *bp, const char *wchan)
3017 {
3018 
3019 	mtx_lock(&bdonelock);
3020 	while ((bp->bio_flags & BIO_DONE) == 0)
3021 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3022 	mtx_unlock(&bdonelock);
3023 	if (bp->bio_error != 0)
3024 		return (bp->bio_error);
3025 	if (!(bp->bio_flags & BIO_ERROR))
3026 		return (0);
3027 	return (EIO);
3028 }
3029 
3030 void
3031 biofinish(struct bio *bp, struct devstat *stat, int error)
3032 {
3033 
3034 	if (error) {
3035 		bp->bio_error = error;
3036 		bp->bio_flags |= BIO_ERROR;
3037 	}
3038 	if (stat != NULL)
3039 		devstat_end_transaction_bio(stat, bp);
3040 	biodone(bp);
3041 }
3042 
3043 /*
3044  *	bufwait:
3045  *
3046  *	Wait for buffer I/O completion, returning error status.  The buffer
3047  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3048  *	error and cleared.
3049  */
3050 int
3051 bufwait(struct buf *bp)
3052 {
3053 	if (bp->b_iocmd == BIO_READ)
3054 		bwait(bp, PRIBIO, "biord");
3055 	else
3056 		bwait(bp, PRIBIO, "biowr");
3057 	if (bp->b_flags & B_EINTR) {
3058 		bp->b_flags &= ~B_EINTR;
3059 		return (EINTR);
3060 	}
3061 	if (bp->b_ioflags & BIO_ERROR) {
3062 		return (bp->b_error ? bp->b_error : EIO);
3063 	} else {
3064 		return (0);
3065 	}
3066 }
3067 
3068  /*
3069   * Call back function from struct bio back up to struct buf.
3070   */
3071 static void
3072 bufdonebio(struct bio *bip)
3073 {
3074 	struct buf *bp;
3075 
3076 	bp = bip->bio_caller2;
3077 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3078 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3079 	bp->b_ioflags = bip->bio_flags;
3080 	bp->b_error = bip->bio_error;
3081 	if (bp->b_error)
3082 		bp->b_ioflags |= BIO_ERROR;
3083 	bufdone(bp);
3084 	g_destroy_bio(bip);
3085 }
3086 
3087 void
3088 dev_strategy(struct cdev *dev, struct buf *bp)
3089 {
3090 	struct cdevsw *csw;
3091 	struct bio *bip;
3092 
3093 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3094 		panic("b_iocmd botch");
3095 	for (;;) {
3096 		bip = g_new_bio();
3097 		if (bip != NULL)
3098 			break;
3099 		/* Try again later */
3100 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3101 	}
3102 	bip->bio_cmd = bp->b_iocmd;
3103 	bip->bio_offset = bp->b_iooffset;
3104 	bip->bio_length = bp->b_bcount;
3105 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3106 	bip->bio_data = bp->b_data;
3107 	bip->bio_done = bufdonebio;
3108 	bip->bio_caller2 = bp;
3109 	bip->bio_dev = dev;
3110 	KASSERT(dev->si_refcount > 0,
3111 	    ("dev_strategy on un-referenced struct cdev *(%s)",
3112 	    devtoname(dev)));
3113 	csw = dev_refthread(dev);
3114 	if (csw == NULL) {
3115 		g_destroy_bio(bip);
3116 		bp->b_error = ENXIO;
3117 		bp->b_ioflags = BIO_ERROR;
3118 		bufdone(bp);
3119 		return;
3120 	}
3121 	(*csw->d_strategy)(bip);
3122 	dev_relthread(dev);
3123 }
3124 
3125 /*
3126  *	bufdone:
3127  *
3128  *	Finish I/O on a buffer, optionally calling a completion function.
3129  *	This is usually called from an interrupt so process blocking is
3130  *	not allowed.
3131  *
3132  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3133  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3134  *	assuming B_INVAL is clear.
3135  *
3136  *	For the VMIO case, we set B_CACHE if the op was a read and no
3137  *	read error occured, or if the op was a write.  B_CACHE is never
3138  *	set if the buffer is invalid or otherwise uncacheable.
3139  *
3140  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3141  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3142  *	in the biodone routine.
3143  */
3144 void
3145 bufdone(struct buf *bp)
3146 {
3147 	struct bufobj *dropobj;
3148 	void    (*biodone)(struct buf *);
3149 
3150 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3151 	dropobj = NULL;
3152 
3153 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3154 	    BUF_REFCNT(bp)));
3155 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3156 
3157 	runningbufwakeup(bp);
3158 	if (bp->b_iocmd == BIO_WRITE)
3159 		dropobj = bp->b_bufobj;
3160 	/* call optional completion function if requested */
3161 	if (bp->b_iodone != NULL) {
3162 		biodone = bp->b_iodone;
3163 		bp->b_iodone = NULL;
3164 		(*biodone) (bp);
3165 		if (dropobj)
3166 			bufobj_wdrop(dropobj);
3167 		return;
3168 	}
3169 
3170 	bufdone_finish(bp);
3171 
3172 	if (dropobj)
3173 		bufobj_wdrop(dropobj);
3174 }
3175 
3176 void
3177 bufdone_finish(struct buf *bp)
3178 {
3179 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3180 	    BUF_REFCNT(bp)));
3181 
3182 	if (!LIST_EMPTY(&bp->b_dep))
3183 		buf_complete(bp);
3184 
3185 	if (bp->b_flags & B_VMIO) {
3186 		int i;
3187 		vm_ooffset_t foff;
3188 		vm_page_t m;
3189 		vm_object_t obj;
3190 		int iosize;
3191 		struct vnode *vp = bp->b_vp;
3192 		boolean_t are_queues_locked;
3193 
3194 		obj = bp->b_bufobj->bo_object;
3195 
3196 #if defined(VFS_BIO_DEBUG)
3197 		mp_fixme("usecount and vflag accessed without locks.");
3198 		if (vp->v_usecount == 0) {
3199 			panic("biodone: zero vnode ref count");
3200 		}
3201 
3202 		KASSERT(vp->v_object != NULL,
3203 			("biodone: vnode %p has no vm_object", vp));
3204 #endif
3205 
3206 		foff = bp->b_offset;
3207 		KASSERT(bp->b_offset != NOOFFSET,
3208 		    ("biodone: no buffer offset"));
3209 
3210 		VM_OBJECT_LOCK(obj);
3211 #if defined(VFS_BIO_DEBUG)
3212 		if (obj->paging_in_progress < bp->b_npages) {
3213 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3214 			    obj->paging_in_progress, bp->b_npages);
3215 		}
3216 #endif
3217 
3218 		/*
3219 		 * Set B_CACHE if the op was a normal read and no error
3220 		 * occured.  B_CACHE is set for writes in the b*write()
3221 		 * routines.
3222 		 */
3223 		iosize = bp->b_bcount - bp->b_resid;
3224 		if (bp->b_iocmd == BIO_READ &&
3225 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3226 		    !(bp->b_ioflags & BIO_ERROR)) {
3227 			bp->b_flags |= B_CACHE;
3228 		}
3229 		if (bp->b_iocmd == BIO_READ) {
3230 			vm_page_lock_queues();
3231 			are_queues_locked = TRUE;
3232 		} else
3233 			are_queues_locked = FALSE;
3234 		for (i = 0; i < bp->b_npages; i++) {
3235 			int bogusflag = 0;
3236 			int resid;
3237 
3238 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3239 			if (resid > iosize)
3240 				resid = iosize;
3241 
3242 			/*
3243 			 * cleanup bogus pages, restoring the originals
3244 			 */
3245 			m = bp->b_pages[i];
3246 			if (m == bogus_page) {
3247 				bogusflag = 1;
3248 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3249 				if (m == NULL)
3250 					panic("biodone: page disappeared!");
3251 				bp->b_pages[i] = m;
3252 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3253 				    bp->b_pages, bp->b_npages);
3254 			}
3255 #if defined(VFS_BIO_DEBUG)
3256 			if (OFF_TO_IDX(foff) != m->pindex) {
3257 				printf(
3258 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3259 				    (intmax_t)foff, (uintmax_t)m->pindex);
3260 			}
3261 #endif
3262 
3263 			/*
3264 			 * In the write case, the valid and clean bits are
3265 			 * already changed correctly ( see bdwrite() ), so we
3266 			 * only need to do this here in the read case.
3267 			 */
3268 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3269 				vfs_page_set_valid(bp, foff, i, m);
3270 			}
3271 
3272 			/*
3273 			 * when debugging new filesystems or buffer I/O methods, this
3274 			 * is the most common error that pops up.  if you see this, you
3275 			 * have not set the page busy flag correctly!!!
3276 			 */
3277 			if (m->busy == 0) {
3278 				printf("biodone: page busy < 0, "
3279 				    "pindex: %d, foff: 0x(%x,%x), "
3280 				    "resid: %d, index: %d\n",
3281 				    (int) m->pindex, (int)(foff >> 32),
3282 						(int) foff & 0xffffffff, resid, i);
3283 				if (!vn_isdisk(vp, NULL))
3284 					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3285 					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3286 					    (intmax_t) bp->b_lblkno,
3287 					    bp->b_flags, bp->b_npages);
3288 				else
3289 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3290 					    (intmax_t) bp->b_lblkno,
3291 					    bp->b_flags, bp->b_npages);
3292 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3293 				    (u_long)m->valid, (u_long)m->dirty,
3294 				    m->wire_count);
3295 				panic("biodone: page busy < 0\n");
3296 			}
3297 			vm_page_io_finish(m);
3298 			vm_object_pip_subtract(obj, 1);
3299 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3300 			iosize -= resid;
3301 		}
3302 		if (are_queues_locked)
3303 			vm_page_unlock_queues();
3304 		vm_object_pip_wakeupn(obj, 0);
3305 		VM_OBJECT_UNLOCK(obj);
3306 	}
3307 
3308 	/*
3309 	 * For asynchronous completions, release the buffer now. The brelse
3310 	 * will do a wakeup there if necessary - so no need to do a wakeup
3311 	 * here in the async case. The sync case always needs to do a wakeup.
3312 	 */
3313 
3314 	if (bp->b_flags & B_ASYNC) {
3315 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3316 			brelse(bp);
3317 		else
3318 			bqrelse(bp);
3319 	} else
3320 		bdone(bp);
3321 }
3322 
3323 /*
3324  * This routine is called in lieu of iodone in the case of
3325  * incomplete I/O.  This keeps the busy status for pages
3326  * consistant.
3327  */
3328 void
3329 vfs_unbusy_pages(struct buf *bp)
3330 {
3331 	int i;
3332 	vm_object_t obj;
3333 	vm_page_t m;
3334 
3335 	runningbufwakeup(bp);
3336 	if (!(bp->b_flags & B_VMIO))
3337 		return;
3338 
3339 	obj = bp->b_bufobj->bo_object;
3340 	VM_OBJECT_LOCK(obj);
3341 	for (i = 0; i < bp->b_npages; i++) {
3342 		m = bp->b_pages[i];
3343 		if (m == bogus_page) {
3344 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3345 			if (!m)
3346 				panic("vfs_unbusy_pages: page missing\n");
3347 			bp->b_pages[i] = m;
3348 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3349 			    bp->b_pages, bp->b_npages);
3350 		}
3351 		vm_object_pip_subtract(obj, 1);
3352 		vm_page_io_finish(m);
3353 	}
3354 	vm_object_pip_wakeupn(obj, 0);
3355 	VM_OBJECT_UNLOCK(obj);
3356 }
3357 
3358 /*
3359  * vfs_page_set_valid:
3360  *
3361  *	Set the valid bits in a page based on the supplied offset.   The
3362  *	range is restricted to the buffer's size.
3363  *
3364  *	This routine is typically called after a read completes.
3365  */
3366 static void
3367 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3368 {
3369 	vm_ooffset_t soff, eoff;
3370 
3371 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3372 	/*
3373 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3374 	 * page boundry or cross the end of the buffer.  The end of the
3375 	 * buffer, in this case, is our file EOF, not the allocation size
3376 	 * of the buffer.
3377 	 */
3378 	soff = off;
3379 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3380 	if (eoff > bp->b_offset + bp->b_bcount)
3381 		eoff = bp->b_offset + bp->b_bcount;
3382 
3383 	/*
3384 	 * Set valid range.  This is typically the entire buffer and thus the
3385 	 * entire page.
3386 	 */
3387 	if (eoff > soff) {
3388 		vm_page_set_validclean(
3389 		    m,
3390 		   (vm_offset_t) (soff & PAGE_MASK),
3391 		   (vm_offset_t) (eoff - soff)
3392 		);
3393 	}
3394 }
3395 
3396 /*
3397  * This routine is called before a device strategy routine.
3398  * It is used to tell the VM system that paging I/O is in
3399  * progress, and treat the pages associated with the buffer
3400  * almost as being VPO_BUSY.  Also the object paging_in_progress
3401  * flag is handled to make sure that the object doesn't become
3402  * inconsistant.
3403  *
3404  * Since I/O has not been initiated yet, certain buffer flags
3405  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3406  * and should be ignored.
3407  */
3408 void
3409 vfs_busy_pages(struct buf *bp, int clear_modify)
3410 {
3411 	int i, bogus;
3412 	vm_object_t obj;
3413 	vm_ooffset_t foff;
3414 	vm_page_t m;
3415 
3416 	if (!(bp->b_flags & B_VMIO))
3417 		return;
3418 
3419 	obj = bp->b_bufobj->bo_object;
3420 	foff = bp->b_offset;
3421 	KASSERT(bp->b_offset != NOOFFSET,
3422 	    ("vfs_busy_pages: no buffer offset"));
3423 	VM_OBJECT_LOCK(obj);
3424 	if (bp->b_bufsize != 0)
3425 		vfs_setdirty_locked_object(bp);
3426 retry:
3427 	for (i = 0; i < bp->b_npages; i++) {
3428 		m = bp->b_pages[i];
3429 
3430 		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3431 			goto retry;
3432 	}
3433 	bogus = 0;
3434 	vm_page_lock_queues();
3435 	for (i = 0; i < bp->b_npages; i++) {
3436 		m = bp->b_pages[i];
3437 
3438 		if ((bp->b_flags & B_CLUSTER) == 0) {
3439 			vm_object_pip_add(obj, 1);
3440 			vm_page_io_start(m);
3441 		}
3442 		/*
3443 		 * When readying a buffer for a read ( i.e
3444 		 * clear_modify == 0 ), it is important to do
3445 		 * bogus_page replacement for valid pages in
3446 		 * partially instantiated buffers.  Partially
3447 		 * instantiated buffers can, in turn, occur when
3448 		 * reconstituting a buffer from its VM backing store
3449 		 * base.  We only have to do this if B_CACHE is
3450 		 * clear ( which causes the I/O to occur in the
3451 		 * first place ).  The replacement prevents the read
3452 		 * I/O from overwriting potentially dirty VM-backed
3453 		 * pages.  XXX bogus page replacement is, uh, bogus.
3454 		 * It may not work properly with small-block devices.
3455 		 * We need to find a better way.
3456 		 */
3457 		pmap_remove_all(m);
3458 		if (clear_modify)
3459 			vfs_page_set_valid(bp, foff, i, m);
3460 		else if (m->valid == VM_PAGE_BITS_ALL &&
3461 		    (bp->b_flags & B_CACHE) == 0) {
3462 			bp->b_pages[i] = bogus_page;
3463 			bogus++;
3464 		}
3465 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3466 	}
3467 	vm_page_unlock_queues();
3468 	VM_OBJECT_UNLOCK(obj);
3469 	if (bogus)
3470 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3471 		    bp->b_pages, bp->b_npages);
3472 }
3473 
3474 /*
3475  * Tell the VM system that the pages associated with this buffer
3476  * are clean.  This is used for delayed writes where the data is
3477  * going to go to disk eventually without additional VM intevention.
3478  *
3479  * Note that while we only really need to clean through to b_bcount, we
3480  * just go ahead and clean through to b_bufsize.
3481  */
3482 static void
3483 vfs_clean_pages(struct buf *bp)
3484 {
3485 	int i;
3486 	vm_ooffset_t foff, noff, eoff;
3487 	vm_page_t m;
3488 
3489 	if (!(bp->b_flags & B_VMIO))
3490 		return;
3491 
3492 	foff = bp->b_offset;
3493 	KASSERT(bp->b_offset != NOOFFSET,
3494 	    ("vfs_clean_pages: no buffer offset"));
3495 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3496 	vm_page_lock_queues();
3497 	for (i = 0; i < bp->b_npages; i++) {
3498 		m = bp->b_pages[i];
3499 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3500 		eoff = noff;
3501 
3502 		if (eoff > bp->b_offset + bp->b_bufsize)
3503 			eoff = bp->b_offset + bp->b_bufsize;
3504 		vfs_page_set_valid(bp, foff, i, m);
3505 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3506 		foff = noff;
3507 	}
3508 	vm_page_unlock_queues();
3509 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3510 }
3511 
3512 /*
3513  *	vfs_bio_set_validclean:
3514  *
3515  *	Set the range within the buffer to valid and clean.  The range is
3516  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3517  *	itself may be offset from the beginning of the first page.
3518  *
3519  */
3520 
3521 void
3522 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3523 {
3524 	int i, n;
3525 	vm_page_t m;
3526 
3527 	if (!(bp->b_flags & B_VMIO))
3528 		return;
3529 	/*
3530 	 * Fixup base to be relative to beginning of first page.
3531 	 * Set initial n to be the maximum number of bytes in the
3532 	 * first page that can be validated.
3533 	 */
3534 
3535 	base += (bp->b_offset & PAGE_MASK);
3536 	n = PAGE_SIZE - (base & PAGE_MASK);
3537 
3538 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3539 	vm_page_lock_queues();
3540 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3541 		m = bp->b_pages[i];
3542 		if (n > size)
3543 			n = size;
3544 		vm_page_set_validclean(m, base & PAGE_MASK, n);
3545 		base += n;
3546 		size -= n;
3547 		n = PAGE_SIZE;
3548 	}
3549 	vm_page_unlock_queues();
3550 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3551 }
3552 
3553 /*
3554  *	vfs_bio_clrbuf:
3555  *
3556  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3557  *	to clear BIO_ERROR and B_INVAL.
3558  *
3559  *	Note that while we only theoretically need to clear through b_bcount,
3560  *	we go ahead and clear through b_bufsize.
3561  */
3562 
3563 void
3564 vfs_bio_clrbuf(struct buf *bp)
3565 {
3566 	int i, j, mask = 0;
3567 	caddr_t sa, ea;
3568 
3569 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3570 		clrbuf(bp);
3571 		return;
3572 	}
3573 
3574 	bp->b_flags &= ~B_INVAL;
3575 	bp->b_ioflags &= ~BIO_ERROR;
3576 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3577 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3578 	    (bp->b_offset & PAGE_MASK) == 0) {
3579 		if (bp->b_pages[0] == bogus_page)
3580 			goto unlock;
3581 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3582 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3583 		if ((bp->b_pages[0]->valid & mask) == mask)
3584 			goto unlock;
3585 		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3586 		    ((bp->b_pages[0]->valid & mask) == 0)) {
3587 			bzero(bp->b_data, bp->b_bufsize);
3588 			bp->b_pages[0]->valid |= mask;
3589 			goto unlock;
3590 		}
3591 	}
3592 	ea = sa = bp->b_data;
3593 	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3594 		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3595 		ea = (caddr_t)(vm_offset_t)ulmin(
3596 		    (u_long)(vm_offset_t)ea,
3597 		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3598 		if (bp->b_pages[i] == bogus_page)
3599 			continue;
3600 		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3601 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3602 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3603 		if ((bp->b_pages[i]->valid & mask) == mask)
3604 			continue;
3605 		if ((bp->b_pages[i]->valid & mask) == 0) {
3606 			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3607 				bzero(sa, ea - sa);
3608 		} else {
3609 			for (; sa < ea; sa += DEV_BSIZE, j++) {
3610 				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3611 				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3612 					bzero(sa, DEV_BSIZE);
3613 			}
3614 		}
3615 		bp->b_pages[i]->valid |= mask;
3616 	}
3617 unlock:
3618 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3619 	bp->b_resid = 0;
3620 }
3621 
3622 /*
3623  * vm_hold_load_pages and vm_hold_free_pages get pages into
3624  * a buffers address space.  The pages are anonymous and are
3625  * not associated with a file object.
3626  */
3627 static void
3628 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3629 {
3630 	vm_offset_t pg;
3631 	vm_page_t p;
3632 	int index;
3633 
3634 	to = round_page(to);
3635 	from = round_page(from);
3636 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3637 
3638 	VM_OBJECT_LOCK(kernel_object);
3639 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3640 tryagain:
3641 		/*
3642 		 * note: must allocate system pages since blocking here
3643 		 * could intefere with paging I/O, no matter which
3644 		 * process we are.
3645 		 */
3646 		p = vm_page_alloc(kernel_object,
3647 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3648 		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3649 		if (!p) {
3650 			atomic_add_int(&vm_pageout_deficit,
3651 			    (to - pg) >> PAGE_SHIFT);
3652 			VM_OBJECT_UNLOCK(kernel_object);
3653 			VM_WAIT;
3654 			VM_OBJECT_LOCK(kernel_object);
3655 			goto tryagain;
3656 		}
3657 		p->valid = VM_PAGE_BITS_ALL;
3658 		pmap_qenter(pg, &p, 1);
3659 		bp->b_pages[index] = p;
3660 	}
3661 	VM_OBJECT_UNLOCK(kernel_object);
3662 	bp->b_npages = index;
3663 }
3664 
3665 /* Return pages associated with this buf to the vm system */
3666 static void
3667 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3668 {
3669 	vm_offset_t pg;
3670 	vm_page_t p;
3671 	int index, newnpages;
3672 
3673 	from = round_page(from);
3674 	to = round_page(to);
3675 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3676 
3677 	VM_OBJECT_LOCK(kernel_object);
3678 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3679 		p = bp->b_pages[index];
3680 		if (p && (index < bp->b_npages)) {
3681 			if (p->busy) {
3682 				printf(
3683 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3684 				    (intmax_t)bp->b_blkno,
3685 				    (intmax_t)bp->b_lblkno);
3686 			}
3687 			bp->b_pages[index] = NULL;
3688 			pmap_qremove(pg, 1);
3689 			vm_page_lock_queues();
3690 			vm_page_unwire(p, 0);
3691 			vm_page_free(p);
3692 			vm_page_unlock_queues();
3693 		}
3694 	}
3695 	VM_OBJECT_UNLOCK(kernel_object);
3696 	bp->b_npages = newnpages;
3697 }
3698 
3699 /*
3700  * Map an IO request into kernel virtual address space.
3701  *
3702  * All requests are (re)mapped into kernel VA space.
3703  * Notice that we use b_bufsize for the size of the buffer
3704  * to be mapped.  b_bcount might be modified by the driver.
3705  *
3706  * Note that even if the caller determines that the address space should
3707  * be valid, a race or a smaller-file mapped into a larger space may
3708  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3709  * check the return value.
3710  */
3711 int
3712 vmapbuf(struct buf *bp)
3713 {
3714 	caddr_t addr, kva;
3715 	vm_prot_t prot;
3716 	int pidx, i;
3717 	struct vm_page *m;
3718 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3719 
3720 	if (bp->b_bufsize < 0)
3721 		return (-1);
3722 	prot = VM_PROT_READ;
3723 	if (bp->b_iocmd == BIO_READ)
3724 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3725 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3726 	     addr < bp->b_data + bp->b_bufsize;
3727 	     addr += PAGE_SIZE, pidx++) {
3728 		/*
3729 		 * Do the vm_fault if needed; do the copy-on-write thing
3730 		 * when reading stuff off device into memory.
3731 		 *
3732 		 * NOTE! Must use pmap_extract() because addr may be in
3733 		 * the userland address space, and kextract is only guarenteed
3734 		 * to work for the kernland address space (see: sparc64 port).
3735 		 */
3736 retry:
3737 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3738 		    prot) < 0) {
3739 			vm_page_lock_queues();
3740 			for (i = 0; i < pidx; ++i) {
3741 				vm_page_unhold(bp->b_pages[i]);
3742 				bp->b_pages[i] = NULL;
3743 			}
3744 			vm_page_unlock_queues();
3745 			return(-1);
3746 		}
3747 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3748 		if (m == NULL)
3749 			goto retry;
3750 		bp->b_pages[pidx] = m;
3751 	}
3752 	if (pidx > btoc(MAXPHYS))
3753 		panic("vmapbuf: mapped more than MAXPHYS");
3754 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3755 
3756 	kva = bp->b_saveaddr;
3757 	bp->b_npages = pidx;
3758 	bp->b_saveaddr = bp->b_data;
3759 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3760 	return(0);
3761 }
3762 
3763 /*
3764  * Free the io map PTEs associated with this IO operation.
3765  * We also invalidate the TLB entries and restore the original b_addr.
3766  */
3767 void
3768 vunmapbuf(struct buf *bp)
3769 {
3770 	int pidx;
3771 	int npages;
3772 
3773 	npages = bp->b_npages;
3774 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3775 	vm_page_lock_queues();
3776 	for (pidx = 0; pidx < npages; pidx++)
3777 		vm_page_unhold(bp->b_pages[pidx]);
3778 	vm_page_unlock_queues();
3779 
3780 	bp->b_data = bp->b_saveaddr;
3781 }
3782 
3783 void
3784 bdone(struct buf *bp)
3785 {
3786 
3787 	mtx_lock(&bdonelock);
3788 	bp->b_flags |= B_DONE;
3789 	wakeup(bp);
3790 	mtx_unlock(&bdonelock);
3791 }
3792 
3793 void
3794 bwait(struct buf *bp, u_char pri, const char *wchan)
3795 {
3796 
3797 	mtx_lock(&bdonelock);
3798 	while ((bp->b_flags & B_DONE) == 0)
3799 		msleep(bp, &bdonelock, pri, wchan, 0);
3800 	mtx_unlock(&bdonelock);
3801 }
3802 
3803 int
3804 bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3805 {
3806 
3807 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3808 }
3809 
3810 void
3811 bufstrategy(struct bufobj *bo, struct buf *bp)
3812 {
3813 	int i = 0;
3814 	struct vnode *vp;
3815 
3816 	vp = bp->b_vp;
3817 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3818 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3819 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3820 	i = VOP_STRATEGY(vp, bp);
3821 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3822 }
3823 
3824 void
3825 bufobj_wrefl(struct bufobj *bo)
3826 {
3827 
3828 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3829 	ASSERT_BO_LOCKED(bo);
3830 	bo->bo_numoutput++;
3831 }
3832 
3833 void
3834 bufobj_wref(struct bufobj *bo)
3835 {
3836 
3837 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3838 	BO_LOCK(bo);
3839 	bo->bo_numoutput++;
3840 	BO_UNLOCK(bo);
3841 }
3842 
3843 void
3844 bufobj_wdrop(struct bufobj *bo)
3845 {
3846 
3847 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3848 	BO_LOCK(bo);
3849 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3850 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3851 		bo->bo_flag &= ~BO_WWAIT;
3852 		wakeup(&bo->bo_numoutput);
3853 	}
3854 	BO_UNLOCK(bo);
3855 }
3856 
3857 int
3858 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3859 {
3860 	int error;
3861 
3862 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3863 	ASSERT_BO_LOCKED(bo);
3864 	error = 0;
3865 	while (bo->bo_numoutput) {
3866 		bo->bo_flag |= BO_WWAIT;
3867 		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3868 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3869 		if (error)
3870 			break;
3871 	}
3872 	return (error);
3873 }
3874 
3875 void
3876 bpin(struct buf *bp)
3877 {
3878 	mtx_lock(&bpinlock);
3879 	bp->b_pin_count++;
3880 	mtx_unlock(&bpinlock);
3881 }
3882 
3883 void
3884 bunpin(struct buf *bp)
3885 {
3886 	mtx_lock(&bpinlock);
3887 	if (--bp->b_pin_count == 0)
3888 		wakeup(bp);
3889 	mtx_unlock(&bpinlock);
3890 }
3891 
3892 void
3893 bunpin_wait(struct buf *bp)
3894 {
3895 	mtx_lock(&bpinlock);
3896 	while (bp->b_pin_count > 0)
3897 		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3898 	mtx_unlock(&bpinlock);
3899 }
3900 
3901 #include "opt_ddb.h"
3902 #ifdef DDB
3903 #include <ddb/ddb.h>
3904 
3905 /* DDB command to show buffer data */
3906 DB_SHOW_COMMAND(buffer, db_show_buffer)
3907 {
3908 	/* get args */
3909 	struct buf *bp = (struct buf *)addr;
3910 
3911 	if (!have_addr) {
3912 		db_printf("usage: show buffer <addr>\n");
3913 		return;
3914 	}
3915 
3916 	db_printf("buf at %p\n", bp);
3917 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3918 	db_printf(
3919 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3920 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3921 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3922 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3923 	if (bp->b_npages) {
3924 		int i;
3925 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3926 		for (i = 0; i < bp->b_npages; i++) {
3927 			vm_page_t m;
3928 			m = bp->b_pages[i];
3929 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3930 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3931 			if ((i + 1) < bp->b_npages)
3932 				db_printf(",");
3933 		}
3934 		db_printf("\n");
3935 	}
3936 	lockmgr_printinfo(&bp->b_lock);
3937 }
3938 
3939 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3940 {
3941 	struct buf *bp;
3942 	int i;
3943 
3944 	for (i = 0; i < nbuf; i++) {
3945 		bp = &buf[i];
3946 		if (lockcount(&bp->b_lock)) {
3947 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3948 			db_printf("\n");
3949 		}
3950 	}
3951 }
3952 #endif /* DDB */
3953