1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bio.h> 33 #include <sys/buf.h> 34 #include <sys/devicestat.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/mutex.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <vm/vm.h> 48 #include <vm/vm_param.h> 49 #include <vm/vm_kern.h> 50 #include <vm/vm_pageout.h> 51 #include <vm/vm_page.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_map.h> 55 #include "opt_directio.h" 56 #include "opt_swap.h" 57 58 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 59 60 struct bio_ops bioops; /* I/O operation notification */ 61 62 struct buf_ops buf_ops_bio = { 63 "buf_ops_bio", 64 bwrite 65 }; 66 67 /* 68 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 69 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 70 */ 71 struct buf *buf; /* buffer header pool */ 72 73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 74 vm_offset_t to); 75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 76 vm_offset_t to); 77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 78 int pageno, vm_page_t m); 79 static void vfs_clean_pages(struct buf * bp); 80 static void vfs_setdirty(struct buf *bp); 81 static void vfs_vmio_release(struct buf *bp); 82 static void vfs_backgroundwritedone(struct buf *bp); 83 static int vfs_bio_clcheck(struct vnode *vp, int size, 84 daddr_t lblkno, daddr_t blkno); 85 static int flushbufqueues(int flushdeps); 86 static void buf_daemon(void); 87 void bremfreel(struct buf * bp); 88 89 int vmiodirenable = TRUE; 90 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 91 "Use the VM system for directory writes"); 92 int runningbufspace; 93 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 94 "Amount of presently outstanding async buffer io"); 95 static int bufspace; 96 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 97 "KVA memory used for bufs"); 98 static int maxbufspace; 99 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 100 "Maximum allowed value of bufspace (including buf_daemon)"); 101 static int bufmallocspace; 102 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 103 "Amount of malloced memory for buffers"); 104 static int maxbufmallocspace; 105 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 106 "Maximum amount of malloced memory for buffers"); 107 static int lobufspace; 108 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 109 "Minimum amount of buffers we want to have"); 110 static int hibufspace; 111 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 112 "Maximum allowed value of bufspace (excluding buf_daemon)"); 113 static int bufreusecnt; 114 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 115 "Number of times we have reused a buffer"); 116 static int buffreekvacnt; 117 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 118 "Number of times we have freed the KVA space from some buffer"); 119 static int bufdefragcnt; 120 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 121 "Number of times we have had to repeat buffer allocation to defragment"); 122 static int lorunningspace; 123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 124 "Minimum preferred space used for in-progress I/O"); 125 static int hirunningspace; 126 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 127 "Maximum amount of space to use for in-progress I/O"); 128 static int dirtybufferflushes; 129 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 130 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 131 static int altbufferflushes; 132 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes, 133 0, "Number of fsync flushes to limit dirty buffers"); 134 static int recursiveflushes; 135 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes, 136 0, "Number of flushes skipped due to being recursive"); 137 static int numdirtybuffers; 138 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 139 "Number of buffers that are dirty (has unwritten changes) at the moment"); 140 static int lodirtybuffers; 141 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 142 "How many buffers we want to have free before bufdaemon can sleep"); 143 static int hidirtybuffers; 144 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 145 "When the number of dirty buffers is considered severe"); 146 static int dirtybufthresh; 147 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh, 148 0, "Number of bdwrite to bawrite conversions to clear dirty buffers"); 149 static int numfreebuffers; 150 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 151 "Number of free buffers"); 152 static int lofreebuffers; 153 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 154 "XXX Unused"); 155 static int hifreebuffers; 156 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 157 "XXX Complicatedly unused"); 158 static int getnewbufcalls; 159 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 160 "Number of calls to getnewbuf"); 161 static int getnewbufrestarts; 162 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 163 "Number of times getnewbuf has had to restart a buffer aquisition"); 164 static int dobkgrdwrite = 1; 165 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 166 "Do background writes (honoring the BX_BKGRDWRITE flag)?"); 167 168 /* 169 * Wakeup point for bufdaemon, as well as indicator of whether it is already 170 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 171 * is idling. 172 */ 173 static int bd_request; 174 175 /* 176 * This lock synchronizes access to bd_request. 177 */ 178 static struct mtx bdlock; 179 180 /* 181 * bogus page -- for I/O to/from partially complete buffers 182 * this is a temporary solution to the problem, but it is not 183 * really that bad. it would be better to split the buffer 184 * for input in the case of buffers partially already in memory, 185 * but the code is intricate enough already. 186 */ 187 vm_page_t bogus_page; 188 189 /* 190 * Synchronization (sleep/wakeup) variable for active buffer space requests. 191 * Set when wait starts, cleared prior to wakeup(). 192 * Used in runningbufwakeup() and waitrunningbufspace(). 193 */ 194 static int runningbufreq; 195 196 /* 197 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 198 * waitrunningbufspace(). 199 */ 200 static struct mtx rbreqlock; 201 202 /* 203 * Synchronization (sleep/wakeup) variable for buffer requests. 204 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 205 * by and/or. 206 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(), 207 * getnewbuf(), and getblk(). 208 */ 209 static int needsbuffer; 210 211 /* 212 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it. 213 */ 214 static struct mtx nblock; 215 216 /* 217 * Lock that protects against bwait()/bdone()/B_DONE races. 218 */ 219 220 static struct mtx bdonelock; 221 222 /* 223 * Definitions for the buffer free lists. 224 */ 225 #define BUFFER_QUEUES 6 /* number of free buffer queues */ 226 227 #define QUEUE_NONE 0 /* on no queue */ 228 #define QUEUE_LOCKED 1 /* locked buffers */ 229 #define QUEUE_CLEAN 2 /* non-B_DELWRI buffers */ 230 #define QUEUE_DIRTY 3 /* B_DELWRI buffers */ 231 #define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */ 232 #define QUEUE_EMPTY 5 /* empty buffer headers */ 233 234 /* Queues for free buffers with various properties */ 235 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 236 237 /* Lock for the bufqueues */ 238 static struct mtx bqlock; 239 240 /* 241 * Single global constant for BUF_WMESG, to avoid getting multiple references. 242 * buf_wmesg is referred from macros. 243 */ 244 const char *buf_wmesg = BUF_WMESG; 245 246 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 247 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 248 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 249 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 250 251 #ifdef DIRECTIO 252 extern void ffs_rawread_setup(void); 253 #endif /* DIRECTIO */ 254 /* 255 * numdirtywakeup: 256 * 257 * If someone is blocked due to there being too many dirty buffers, 258 * and numdirtybuffers is now reasonable, wake them up. 259 */ 260 261 static __inline void 262 numdirtywakeup(int level) 263 { 264 if (numdirtybuffers <= level) { 265 mtx_lock(&nblock); 266 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 267 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 268 wakeup(&needsbuffer); 269 } 270 mtx_unlock(&nblock); 271 } 272 } 273 274 /* 275 * bufspacewakeup: 276 * 277 * Called when buffer space is potentially available for recovery. 278 * getnewbuf() will block on this flag when it is unable to free 279 * sufficient buffer space. Buffer space becomes recoverable when 280 * bp's get placed back in the queues. 281 */ 282 283 static __inline void 284 bufspacewakeup(void) 285 { 286 /* 287 * If someone is waiting for BUF space, wake them up. Even 288 * though we haven't freed the kva space yet, the waiting 289 * process will be able to now. 290 */ 291 mtx_lock(&nblock); 292 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 293 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 294 wakeup(&needsbuffer); 295 } 296 mtx_unlock(&nblock); 297 } 298 299 /* 300 * runningbufwakeup() - in-progress I/O accounting. 301 * 302 */ 303 static __inline void 304 runningbufwakeup(struct buf *bp) 305 { 306 if (bp->b_runningbufspace) { 307 atomic_subtract_int(&runningbufspace, bp->b_runningbufspace); 308 bp->b_runningbufspace = 0; 309 mtx_lock(&rbreqlock); 310 if (runningbufreq && runningbufspace <= lorunningspace) { 311 runningbufreq = 0; 312 wakeup(&runningbufreq); 313 } 314 mtx_unlock(&rbreqlock); 315 } 316 } 317 318 /* 319 * bufcountwakeup: 320 * 321 * Called when a buffer has been added to one of the free queues to 322 * account for the buffer and to wakeup anyone waiting for free buffers. 323 * This typically occurs when large amounts of metadata are being handled 324 * by the buffer cache ( else buffer space runs out first, usually ). 325 */ 326 327 static __inline void 328 bufcountwakeup(void) 329 { 330 atomic_add_int(&numfreebuffers, 1); 331 mtx_lock(&nblock); 332 if (needsbuffer) { 333 needsbuffer &= ~VFS_BIO_NEED_ANY; 334 if (numfreebuffers >= hifreebuffers) 335 needsbuffer &= ~VFS_BIO_NEED_FREE; 336 wakeup(&needsbuffer); 337 } 338 mtx_unlock(&nblock); 339 } 340 341 /* 342 * waitrunningbufspace() 343 * 344 * runningbufspace is a measure of the amount of I/O currently 345 * running. This routine is used in async-write situations to 346 * prevent creating huge backups of pending writes to a device. 347 * Only asynchronous writes are governed by this function. 348 * 349 * Reads will adjust runningbufspace, but will not block based on it. 350 * The read load has a side effect of reducing the allowed write load. 351 * 352 * This does NOT turn an async write into a sync write. It waits 353 * for earlier writes to complete and generally returns before the 354 * caller's write has reached the device. 355 */ 356 static __inline void 357 waitrunningbufspace(void) 358 { 359 mtx_lock(&rbreqlock); 360 while (runningbufspace > hirunningspace) { 361 ++runningbufreq; 362 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 363 } 364 mtx_unlock(&rbreqlock); 365 } 366 367 368 /* 369 * vfs_buf_test_cache: 370 * 371 * Called when a buffer is extended. This function clears the B_CACHE 372 * bit if the newly extended portion of the buffer does not contain 373 * valid data. 374 */ 375 static __inline__ 376 void 377 vfs_buf_test_cache(struct buf *bp, 378 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 379 vm_page_t m) 380 { 381 GIANT_REQUIRED; 382 383 if (bp->b_flags & B_CACHE) { 384 int base = (foff + off) & PAGE_MASK; 385 if (vm_page_is_valid(m, base, size) == 0) 386 bp->b_flags &= ~B_CACHE; 387 } 388 } 389 390 /* Wake up the buffer deamon if necessary */ 391 static __inline__ 392 void 393 bd_wakeup(int dirtybuflevel) 394 { 395 mtx_lock(&bdlock); 396 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 397 bd_request = 1; 398 wakeup(&bd_request); 399 } 400 mtx_unlock(&bdlock); 401 } 402 403 /* 404 * bd_speedup - speedup the buffer cache flushing code 405 */ 406 407 static __inline__ 408 void 409 bd_speedup(void) 410 { 411 bd_wakeup(1); 412 } 413 414 /* 415 * Calculating buffer cache scaling values and reserve space for buffer 416 * headers. This is called during low level kernel initialization and 417 * may be called more then once. We CANNOT write to the memory area 418 * being reserved at this time. 419 */ 420 caddr_t 421 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 422 { 423 /* 424 * physmem_est is in pages. Convert it to kilobytes (assumes 425 * PAGE_SIZE is >= 1K) 426 */ 427 physmem_est = physmem_est * (PAGE_SIZE / 1024); 428 429 /* 430 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 431 * For the first 64MB of ram nominally allocate sufficient buffers to 432 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 433 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing 434 * the buffer cache we limit the eventual kva reservation to 435 * maxbcache bytes. 436 * 437 * factor represents the 1/4 x ram conversion. 438 */ 439 if (nbuf == 0) { 440 int factor = 4 * BKVASIZE / 1024; 441 442 nbuf = 50; 443 if (physmem_est > 4096) 444 nbuf += min((physmem_est - 4096) / factor, 445 65536 / factor); 446 if (physmem_est > 65536) 447 nbuf += (physmem_est - 65536) * 2 / (factor * 5); 448 449 if (maxbcache && nbuf > maxbcache / BKVASIZE) 450 nbuf = maxbcache / BKVASIZE; 451 } 452 453 #if 0 454 /* 455 * Do not allow the buffer_map to be more then 1/2 the size of the 456 * kernel_map. 457 */ 458 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 459 (BKVASIZE * 2)) { 460 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 461 (BKVASIZE * 2); 462 printf("Warning: nbufs capped at %d\n", nbuf); 463 } 464 #endif 465 466 /* 467 * swbufs are used as temporary holders for I/O, such as paging I/O. 468 * We have no less then 16 and no more then 256. 469 */ 470 nswbuf = max(min(nbuf/4, 256), 16); 471 #ifdef NSWBUF_MIN 472 if (nswbuf < NSWBUF_MIN) 473 nswbuf = NSWBUF_MIN; 474 #endif 475 #ifdef DIRECTIO 476 ffs_rawread_setup(); 477 #endif 478 479 /* 480 * Reserve space for the buffer cache buffers 481 */ 482 swbuf = (void *)v; 483 v = (caddr_t)(swbuf + nswbuf); 484 buf = (void *)v; 485 v = (caddr_t)(buf + nbuf); 486 487 return(v); 488 } 489 490 /* Initialize the buffer subsystem. Called before use of any buffers. */ 491 void 492 bufinit(void) 493 { 494 struct buf *bp; 495 vm_offset_t bogus_offset; 496 int i; 497 498 GIANT_REQUIRED; 499 500 mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF); 501 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 502 mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF); 503 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 504 mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF); 505 506 /* next, make a null set of free lists */ 507 for (i = 0; i < BUFFER_QUEUES; i++) 508 TAILQ_INIT(&bufqueues[i]); 509 510 /* finally, initialize each buffer header and stick on empty q */ 511 for (i = 0; i < nbuf; i++) { 512 bp = &buf[i]; 513 bzero(bp, sizeof *bp); 514 bp->b_flags = B_INVAL; /* we're just an empty header */ 515 bp->b_dev = NODEV; 516 bp->b_rcred = NOCRED; 517 bp->b_wcred = NOCRED; 518 bp->b_qindex = QUEUE_EMPTY; 519 bp->b_vflags = 0; 520 bp->b_xflags = 0; 521 LIST_INIT(&bp->b_dep); 522 BUF_LOCKINIT(bp); 523 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 524 } 525 526 /* 527 * maxbufspace is the absolute maximum amount of buffer space we are 528 * allowed to reserve in KVM and in real terms. The absolute maximum 529 * is nominally used by buf_daemon. hibufspace is the nominal maximum 530 * used by most other processes. The differential is required to 531 * ensure that buf_daemon is able to run when other processes might 532 * be blocked waiting for buffer space. 533 * 534 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 535 * this may result in KVM fragmentation which is not handled optimally 536 * by the system. 537 */ 538 maxbufspace = nbuf * BKVASIZE; 539 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 540 lobufspace = hibufspace - MAXBSIZE; 541 542 lorunningspace = 512 * 1024; 543 hirunningspace = 1024 * 1024; 544 545 /* 546 * Limit the amount of malloc memory since it is wired permanently into 547 * the kernel space. Even though this is accounted for in the buffer 548 * allocation, we don't want the malloced region to grow uncontrolled. 549 * The malloc scheme improves memory utilization significantly on average 550 * (small) directories. 551 */ 552 maxbufmallocspace = hibufspace / 20; 553 554 /* 555 * Reduce the chance of a deadlock occuring by limiting the number 556 * of delayed-write dirty buffers we allow to stack up. 557 */ 558 hidirtybuffers = nbuf / 4 + 20; 559 dirtybufthresh = hidirtybuffers * 9 / 10; 560 numdirtybuffers = 0; 561 /* 562 * To support extreme low-memory systems, make sure hidirtybuffers cannot 563 * eat up all available buffer space. This occurs when our minimum cannot 564 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 565 * BKVASIZE'd (8K) buffers. 566 */ 567 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 568 hidirtybuffers >>= 1; 569 } 570 lodirtybuffers = hidirtybuffers / 2; 571 572 /* 573 * Try to keep the number of free buffers in the specified range, 574 * and give special processes (e.g. like buf_daemon) access to an 575 * emergency reserve. 576 */ 577 lofreebuffers = nbuf / 18 + 5; 578 hifreebuffers = 2 * lofreebuffers; 579 numfreebuffers = nbuf; 580 581 /* 582 * Maximum number of async ops initiated per buf_daemon loop. This is 583 * somewhat of a hack at the moment, we really need to limit ourselves 584 * based on the number of bytes of I/O in-transit that were initiated 585 * from buf_daemon. 586 */ 587 588 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 589 VM_OBJECT_LOCK(kernel_object); 590 bogus_page = vm_page_alloc(kernel_object, 591 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 592 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 593 VM_OBJECT_UNLOCK(kernel_object); 594 } 595 596 /* 597 * bfreekva() - free the kva allocation for a buffer. 598 * 599 * Must be called at splbio() or higher as this is the only locking for 600 * buffer_map. 601 * 602 * Since this call frees up buffer space, we call bufspacewakeup(). 603 */ 604 static void 605 bfreekva(struct buf * bp) 606 { 607 GIANT_REQUIRED; 608 609 if (bp->b_kvasize) { 610 atomic_add_int(&buffreekvacnt, 1); 611 atomic_subtract_int(&bufspace, bp->b_kvasize); 612 vm_map_delete(buffer_map, 613 (vm_offset_t) bp->b_kvabase, 614 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 615 ); 616 bp->b_kvasize = 0; 617 bufspacewakeup(); 618 } 619 } 620 621 /* 622 * bremfree: 623 * 624 * Remove the buffer from the appropriate free list. 625 */ 626 void 627 bremfree(struct buf * bp) 628 { 629 mtx_lock(&bqlock); 630 bremfreel(bp); 631 mtx_unlock(&bqlock); 632 } 633 634 void 635 bremfreel(struct buf * bp) 636 { 637 int s = splbio(); 638 int old_qindex = bp->b_qindex; 639 640 GIANT_REQUIRED; 641 642 if (bp->b_qindex != QUEUE_NONE) { 643 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 644 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 645 bp->b_qindex = QUEUE_NONE; 646 } else { 647 if (BUF_REFCNT(bp) <= 1) 648 panic("bremfree: removing a buffer not on a queue"); 649 } 650 651 /* 652 * Fixup numfreebuffers count. If the buffer is invalid or not 653 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 654 * the buffer was free and we must decrement numfreebuffers. 655 */ 656 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 657 switch(old_qindex) { 658 case QUEUE_DIRTY: 659 case QUEUE_CLEAN: 660 case QUEUE_EMPTY: 661 case QUEUE_EMPTYKVA: 662 atomic_subtract_int(&numfreebuffers, 1); 663 break; 664 default: 665 break; 666 } 667 } 668 splx(s); 669 } 670 671 672 /* 673 * Get a buffer with the specified data. Look in the cache first. We 674 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 675 * is set, the buffer is valid and we do not have to do anything ( see 676 * getblk() ). This is really just a special case of breadn(). 677 */ 678 int 679 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 680 struct buf ** bpp) 681 { 682 683 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 684 } 685 686 /* 687 * Operates like bread, but also starts asynchronous I/O on 688 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 689 * to initiating I/O . If B_CACHE is set, the buffer is valid 690 * and we do not have to do anything. 691 */ 692 int 693 breadn(struct vnode * vp, daddr_t blkno, int size, 694 daddr_t * rablkno, int *rabsize, 695 int cnt, struct ucred * cred, struct buf ** bpp) 696 { 697 struct buf *bp, *rabp; 698 int i; 699 int rv = 0, readwait = 0; 700 701 *bpp = bp = getblk(vp, blkno, size, 0, 0, 0); 702 703 /* if not found in cache, do some I/O */ 704 if ((bp->b_flags & B_CACHE) == 0) { 705 if (curthread != PCPU_GET(idlethread)) 706 curthread->td_proc->p_stats->p_ru.ru_inblock++; 707 bp->b_iocmd = BIO_READ; 708 bp->b_flags &= ~B_INVAL; 709 bp->b_ioflags &= ~BIO_ERROR; 710 if (bp->b_rcred == NOCRED && cred != NOCRED) 711 bp->b_rcred = crhold(cred); 712 vfs_busy_pages(bp, 0); 713 if (vp->v_type == VCHR) 714 VOP_SPECSTRATEGY(vp, bp); 715 else 716 VOP_STRATEGY(vp, bp); 717 ++readwait; 718 } 719 720 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 721 if (inmem(vp, *rablkno)) 722 continue; 723 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 724 725 if ((rabp->b_flags & B_CACHE) == 0) { 726 if (curthread != PCPU_GET(idlethread)) 727 curthread->td_proc->p_stats->p_ru.ru_inblock++; 728 rabp->b_flags |= B_ASYNC; 729 rabp->b_flags &= ~B_INVAL; 730 rabp->b_ioflags &= ~BIO_ERROR; 731 rabp->b_iocmd = BIO_READ; 732 if (rabp->b_rcred == NOCRED && cred != NOCRED) 733 rabp->b_rcred = crhold(cred); 734 vfs_busy_pages(rabp, 0); 735 BUF_KERNPROC(rabp); 736 if (vp->v_type == VCHR) 737 VOP_SPECSTRATEGY(vp, rabp); 738 else 739 VOP_STRATEGY(vp, rabp); 740 } else { 741 brelse(rabp); 742 } 743 } 744 745 if (readwait) { 746 rv = bufwait(bp); 747 } 748 return (rv); 749 } 750 751 /* 752 * Write, release buffer on completion. (Done by iodone 753 * if async). Do not bother writing anything if the buffer 754 * is invalid. 755 * 756 * Note that we set B_CACHE here, indicating that buffer is 757 * fully valid and thus cacheable. This is true even of NFS 758 * now so we set it generally. This could be set either here 759 * or in biodone() since the I/O is synchronous. We put it 760 * here. 761 */ 762 763 int 764 bwrite(struct buf * bp) 765 { 766 int oldflags, s; 767 struct buf *newbp; 768 769 if (bp->b_flags & B_INVAL) { 770 brelse(bp); 771 return (0); 772 } 773 774 oldflags = bp->b_flags; 775 776 if (BUF_REFCNT(bp) == 0) 777 panic("bwrite: buffer is not busy???"); 778 s = splbio(); 779 /* 780 * If a background write is already in progress, delay 781 * writing this block if it is asynchronous. Otherwise 782 * wait for the background write to complete. 783 */ 784 if (bp->b_xflags & BX_BKGRDINPROG) { 785 if (bp->b_flags & B_ASYNC) { 786 splx(s); 787 bdwrite(bp); 788 return (0); 789 } 790 bp->b_xflags |= BX_BKGRDWAIT; 791 tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0); 792 if (bp->b_xflags & BX_BKGRDINPROG) 793 panic("bwrite: still writing"); 794 } 795 796 /* Mark the buffer clean */ 797 bundirty(bp); 798 799 /* 800 * If this buffer is marked for background writing and we 801 * do not have to wait for it, make a copy and write the 802 * copy so as to leave this buffer ready for further use. 803 * 804 * This optimization eats a lot of memory. If we have a page 805 * or buffer shortfall we can't do it. 806 */ 807 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 808 (bp->b_flags & B_ASYNC) && 809 !vm_page_count_severe() && 810 !buf_dirty_count_severe()) { 811 if (bp->b_iodone != NULL) { 812 printf("bp->b_iodone = %p\n", bp->b_iodone); 813 panic("bwrite: need chained iodone"); 814 } 815 816 /* get a new block */ 817 newbp = geteblk(bp->b_bufsize); 818 819 /* 820 * set it to be identical to the old block. We have to 821 * set b_lblkno and BKGRDMARKER before calling bgetvp() 822 * to avoid confusing the splay tree and gbincore(). 823 */ 824 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 825 newbp->b_lblkno = bp->b_lblkno; 826 newbp->b_xflags |= BX_BKGRDMARKER; 827 /* XXX The BX_ flags need to be protected as well */ 828 VI_LOCK(bp->b_vp); 829 bgetvp(bp->b_vp, newbp); 830 VI_UNLOCK(bp->b_vp); 831 newbp->b_blkno = bp->b_blkno; 832 newbp->b_offset = bp->b_offset; 833 newbp->b_iodone = vfs_backgroundwritedone; 834 newbp->b_flags |= B_ASYNC; 835 newbp->b_flags &= ~B_INVAL; 836 837 /* move over the dependencies */ 838 if (LIST_FIRST(&bp->b_dep) != NULL) 839 buf_movedeps(bp, newbp); 840 841 /* 842 * Initiate write on the copy, release the original to 843 * the B_LOCKED queue so that it cannot go away until 844 * the background write completes. If not locked it could go 845 * away and then be reconstituted while it was being written. 846 * If the reconstituted buffer were written, we could end up 847 * with two background copies being written at the same time. 848 */ 849 bp->b_xflags |= BX_BKGRDINPROG; 850 bp->b_flags |= B_LOCKED; 851 bqrelse(bp); 852 bp = newbp; 853 } 854 855 bp->b_flags &= ~B_DONE; 856 bp->b_ioflags &= ~BIO_ERROR; 857 bp->b_flags |= B_WRITEINPROG | B_CACHE; 858 bp->b_iocmd = BIO_WRITE; 859 860 VI_LOCK(bp->b_vp); 861 bp->b_vp->v_numoutput++; 862 VI_UNLOCK(bp->b_vp); 863 vfs_busy_pages(bp, 1); 864 865 /* 866 * Normal bwrites pipeline writes 867 */ 868 bp->b_runningbufspace = bp->b_bufsize; 869 atomic_add_int(&runningbufspace, bp->b_runningbufspace); 870 871 if (curthread != PCPU_GET(idlethread)) 872 curthread->td_proc->p_stats->p_ru.ru_oublock++; 873 splx(s); 874 if (oldflags & B_ASYNC) 875 BUF_KERNPROC(bp); 876 if (bp->b_vp->v_type == VCHR) 877 VOP_SPECSTRATEGY(bp->b_vp, bp); 878 else 879 VOP_STRATEGY(bp->b_vp, bp); 880 881 if ((oldflags & B_ASYNC) == 0) { 882 int rtval = bufwait(bp); 883 brelse(bp); 884 return (rtval); 885 } else if ((oldflags & B_NOWDRAIN) == 0) { 886 /* 887 * don't allow the async write to saturate the I/O 888 * system. Deadlocks can occur only if a device strategy 889 * routine (like in MD) turns around and issues another 890 * high-level write, in which case B_NOWDRAIN is expected 891 * to be set. Otherwise we will not deadlock here because 892 * we are blocking waiting for I/O that is already in-progress 893 * to complete. 894 */ 895 waitrunningbufspace(); 896 } 897 898 return (0); 899 } 900 901 /* 902 * Complete a background write started from bwrite. 903 */ 904 static void 905 vfs_backgroundwritedone(bp) 906 struct buf *bp; 907 { 908 struct buf *origbp; 909 910 /* 911 * Find the original buffer that we are writing. 912 */ 913 VI_LOCK(bp->b_vp); 914 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 915 panic("backgroundwritedone: lost buffer"); 916 VI_UNLOCK(bp->b_vp); 917 /* 918 * Process dependencies then return any unfinished ones. 919 */ 920 if (LIST_FIRST(&bp->b_dep) != NULL) 921 buf_complete(bp); 922 if (LIST_FIRST(&bp->b_dep) != NULL) 923 buf_movedeps(bp, origbp); 924 925 /* XXX Find out if origbp can disappear or get inconsistent */ 926 /* 927 * Clear the BX_BKGRDINPROG flag in the original buffer 928 * and awaken it if it is waiting for the write to complete. 929 * If BX_BKGRDINPROG is not set in the original buffer it must 930 * have been released and re-instantiated - which is not legal. 931 */ 932 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), 933 ("backgroundwritedone: lost buffer2")); 934 origbp->b_xflags &= ~BX_BKGRDINPROG; 935 if (origbp->b_xflags & BX_BKGRDWAIT) { 936 origbp->b_xflags &= ~BX_BKGRDWAIT; 937 wakeup(&origbp->b_xflags); 938 } 939 /* 940 * Clear the B_LOCKED flag and remove it from the locked 941 * queue if it currently resides there. 942 */ 943 origbp->b_flags &= ~B_LOCKED; 944 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 945 bremfree(origbp); 946 bqrelse(origbp); 947 } 948 /* 949 * This buffer is marked B_NOCACHE, so when it is released 950 * by biodone, it will be tossed. We mark it with BIO_READ 951 * to avoid biodone doing a second vwakeup. 952 */ 953 bp->b_flags |= B_NOCACHE; 954 bp->b_iocmd = BIO_READ; 955 bp->b_flags &= ~(B_CACHE | B_DONE); 956 bp->b_iodone = 0; 957 bufdone(bp); 958 } 959 960 /* 961 * Delayed write. (Buffer is marked dirty). Do not bother writing 962 * anything if the buffer is marked invalid. 963 * 964 * Note that since the buffer must be completely valid, we can safely 965 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 966 * biodone() in order to prevent getblk from writing the buffer 967 * out synchronously. 968 */ 969 void 970 bdwrite(struct buf * bp) 971 { 972 struct thread *td = curthread; 973 struct vnode *vp; 974 struct buf *nbp; 975 976 GIANT_REQUIRED; 977 978 if (BUF_REFCNT(bp) == 0) 979 panic("bdwrite: buffer is not busy"); 980 981 if (bp->b_flags & B_INVAL) { 982 brelse(bp); 983 return; 984 } 985 986 /* 987 * If we have too many dirty buffers, don't create any more. 988 * If we are wildly over our limit, then force a complete 989 * cleanup. Otherwise, just keep the situation from getting 990 * out of control. Note that we have to avoid a recursive 991 * disaster and not try to clean up after our own cleanup! 992 */ 993 vp = bp->b_vp; 994 VI_LOCK(vp); 995 if (td->td_proc->p_flag & P_COWINPROGRESS) { 996 recursiveflushes++; 997 } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) { 998 VI_UNLOCK(vp); 999 (void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td); 1000 VI_LOCK(vp); 1001 altbufferflushes++; 1002 } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) { 1003 /* 1004 * Try to find a buffer to flush. 1005 */ 1006 TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) { 1007 if ((nbp->b_xflags & BX_BKGRDINPROG) || 1008 buf_countdeps(nbp, 0) || 1009 BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 1010 continue; 1011 if (bp == nbp) 1012 panic("bdwrite: found ourselves"); 1013 VI_UNLOCK(vp); 1014 if (nbp->b_flags & B_CLUSTEROK) { 1015 vfs_bio_awrite(nbp); 1016 } else { 1017 bremfree(nbp); 1018 bawrite(nbp); 1019 } 1020 VI_LOCK(vp); 1021 dirtybufferflushes++; 1022 break; 1023 } 1024 } 1025 VI_UNLOCK(vp); 1026 1027 bdirty(bp); 1028 /* 1029 * Set B_CACHE, indicating that the buffer is fully valid. This is 1030 * true even of NFS now. 1031 */ 1032 bp->b_flags |= B_CACHE; 1033 1034 /* 1035 * This bmap keeps the system from needing to do the bmap later, 1036 * perhaps when the system is attempting to do a sync. Since it 1037 * is likely that the indirect block -- or whatever other datastructure 1038 * that the filesystem needs is still in memory now, it is a good 1039 * thing to do this. Note also, that if the pageout daemon is 1040 * requesting a sync -- there might not be enough memory to do 1041 * the bmap then... So, this is important to do. 1042 */ 1043 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 1044 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 1045 } 1046 1047 /* 1048 * Set the *dirty* buffer range based upon the VM system dirty pages. 1049 */ 1050 vfs_setdirty(bp); 1051 1052 /* 1053 * We need to do this here to satisfy the vnode_pager and the 1054 * pageout daemon, so that it thinks that the pages have been 1055 * "cleaned". Note that since the pages are in a delayed write 1056 * buffer -- the VFS layer "will" see that the pages get written 1057 * out on the next sync, or perhaps the cluster will be completed. 1058 */ 1059 vfs_clean_pages(bp); 1060 bqrelse(bp); 1061 1062 /* 1063 * Wakeup the buffer flushing daemon if we have a lot of dirty 1064 * buffers (midpoint between our recovery point and our stall 1065 * point). 1066 */ 1067 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1068 1069 /* 1070 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1071 * due to the softdep code. 1072 */ 1073 } 1074 1075 /* 1076 * bdirty: 1077 * 1078 * Turn buffer into delayed write request. We must clear BIO_READ and 1079 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 1080 * itself to properly update it in the dirty/clean lists. We mark it 1081 * B_DONE to ensure that any asynchronization of the buffer properly 1082 * clears B_DONE ( else a panic will occur later ). 1083 * 1084 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 1085 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 1086 * should only be called if the buffer is known-good. 1087 * 1088 * Since the buffer is not on a queue, we do not update the numfreebuffers 1089 * count. 1090 * 1091 * Must be called at splbio(). 1092 * The buffer must be on QUEUE_NONE. 1093 */ 1094 void 1095 bdirty(bp) 1096 struct buf *bp; 1097 { 1098 KASSERT(bp->b_qindex == QUEUE_NONE, 1099 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1100 bp->b_flags &= ~(B_RELBUF); 1101 bp->b_iocmd = BIO_WRITE; 1102 1103 if ((bp->b_flags & B_DELWRI) == 0) { 1104 bp->b_flags |= B_DONE | B_DELWRI; 1105 reassignbuf(bp, bp->b_vp); 1106 atomic_add_int(&numdirtybuffers, 1); 1107 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1108 } 1109 } 1110 1111 /* 1112 * bundirty: 1113 * 1114 * Clear B_DELWRI for buffer. 1115 * 1116 * Since the buffer is not on a queue, we do not update the numfreebuffers 1117 * count. 1118 * 1119 * Must be called at splbio(). 1120 * The buffer must be on QUEUE_NONE. 1121 */ 1122 1123 void 1124 bundirty(bp) 1125 struct buf *bp; 1126 { 1127 KASSERT(bp->b_qindex == QUEUE_NONE, 1128 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1129 1130 if (bp->b_flags & B_DELWRI) { 1131 bp->b_flags &= ~B_DELWRI; 1132 reassignbuf(bp, bp->b_vp); 1133 atomic_subtract_int(&numdirtybuffers, 1); 1134 numdirtywakeup(lodirtybuffers); 1135 } 1136 /* 1137 * Since it is now being written, we can clear its deferred write flag. 1138 */ 1139 bp->b_flags &= ~B_DEFERRED; 1140 } 1141 1142 /* 1143 * bawrite: 1144 * 1145 * Asynchronous write. Start output on a buffer, but do not wait for 1146 * it to complete. The buffer is released when the output completes. 1147 * 1148 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1149 * B_INVAL buffers. Not us. 1150 */ 1151 void 1152 bawrite(struct buf * bp) 1153 { 1154 bp->b_flags |= B_ASYNC; 1155 (void) BUF_WRITE(bp); 1156 } 1157 1158 /* 1159 * bwillwrite: 1160 * 1161 * Called prior to the locking of any vnodes when we are expecting to 1162 * write. We do not want to starve the buffer cache with too many 1163 * dirty buffers so we block here. By blocking prior to the locking 1164 * of any vnodes we attempt to avoid the situation where a locked vnode 1165 * prevents the various system daemons from flushing related buffers. 1166 */ 1167 1168 void 1169 bwillwrite(void) 1170 { 1171 if (numdirtybuffers >= hidirtybuffers) { 1172 int s; 1173 1174 mtx_lock(&Giant); 1175 s = splbio(); 1176 mtx_lock(&nblock); 1177 while (numdirtybuffers >= hidirtybuffers) { 1178 bd_wakeup(1); 1179 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1180 msleep(&needsbuffer, &nblock, 1181 (PRIBIO + 4), "flswai", 0); 1182 } 1183 splx(s); 1184 mtx_unlock(&nblock); 1185 mtx_unlock(&Giant); 1186 } 1187 } 1188 1189 /* 1190 * Return true if we have too many dirty buffers. 1191 */ 1192 int 1193 buf_dirty_count_severe(void) 1194 { 1195 return(numdirtybuffers >= hidirtybuffers); 1196 } 1197 1198 /* 1199 * brelse: 1200 * 1201 * Release a busy buffer and, if requested, free its resources. The 1202 * buffer will be stashed in the appropriate bufqueue[] allowing it 1203 * to be accessed later as a cache entity or reused for other purposes. 1204 */ 1205 void 1206 brelse(struct buf * bp) 1207 { 1208 int s; 1209 1210 GIANT_REQUIRED; 1211 1212 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1213 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1214 1215 s = splbio(); 1216 1217 if (bp->b_flags & B_LOCKED) 1218 bp->b_ioflags &= ~BIO_ERROR; 1219 1220 if (bp->b_iocmd == BIO_WRITE && 1221 (bp->b_ioflags & BIO_ERROR) && 1222 !(bp->b_flags & B_INVAL)) { 1223 /* 1224 * Failed write, redirty. Must clear BIO_ERROR to prevent 1225 * pages from being scrapped. If B_INVAL is set then 1226 * this case is not run and the next case is run to 1227 * destroy the buffer. B_INVAL can occur if the buffer 1228 * is outside the range supported by the underlying device. 1229 */ 1230 bp->b_ioflags &= ~BIO_ERROR; 1231 bdirty(bp); 1232 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1233 (bp->b_ioflags & BIO_ERROR) || 1234 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1235 /* 1236 * Either a failed I/O or we were asked to free or not 1237 * cache the buffer. 1238 */ 1239 bp->b_flags |= B_INVAL; 1240 if (LIST_FIRST(&bp->b_dep) != NULL) 1241 buf_deallocate(bp); 1242 if (bp->b_flags & B_DELWRI) { 1243 atomic_subtract_int(&numdirtybuffers, 1); 1244 numdirtywakeup(lodirtybuffers); 1245 } 1246 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1247 if ((bp->b_flags & B_VMIO) == 0) { 1248 if (bp->b_bufsize) 1249 allocbuf(bp, 0); 1250 if (bp->b_vp) 1251 brelvp(bp); 1252 } 1253 } 1254 1255 /* 1256 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1257 * is called with B_DELWRI set, the underlying pages may wind up 1258 * getting freed causing a previous write (bdwrite()) to get 'lost' 1259 * because pages associated with a B_DELWRI bp are marked clean. 1260 * 1261 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1262 * if B_DELWRI is set. 1263 * 1264 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1265 * on pages to return pages to the VM page queues. 1266 */ 1267 if (bp->b_flags & B_DELWRI) 1268 bp->b_flags &= ~B_RELBUF; 1269 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1270 bp->b_flags |= B_RELBUF; 1271 1272 /* 1273 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1274 * constituted, not even NFS buffers now. Two flags effect this. If 1275 * B_INVAL, the struct buf is invalidated but the VM object is kept 1276 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1277 * 1278 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1279 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1280 * buffer is also B_INVAL because it hits the re-dirtying code above. 1281 * 1282 * Normally we can do this whether a buffer is B_DELWRI or not. If 1283 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1284 * the commit state and we cannot afford to lose the buffer. If the 1285 * buffer has a background write in progress, we need to keep it 1286 * around to prevent it from being reconstituted and starting a second 1287 * background write. 1288 */ 1289 if ((bp->b_flags & B_VMIO) 1290 && !(bp->b_vp->v_mount != NULL && 1291 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1292 !vn_isdisk(bp->b_vp, NULL) && 1293 (bp->b_flags & B_DELWRI)) 1294 ) { 1295 1296 int i, j, resid; 1297 vm_page_t m; 1298 off_t foff; 1299 vm_pindex_t poff; 1300 vm_object_t obj; 1301 struct vnode *vp; 1302 1303 vp = bp->b_vp; 1304 obj = bp->b_object; 1305 1306 /* 1307 * Get the base offset and length of the buffer. Note that 1308 * in the VMIO case if the buffer block size is not 1309 * page-aligned then b_data pointer may not be page-aligned. 1310 * But our b_pages[] array *IS* page aligned. 1311 * 1312 * block sizes less then DEV_BSIZE (usually 512) are not 1313 * supported due to the page granularity bits (m->valid, 1314 * m->dirty, etc...). 1315 * 1316 * See man buf(9) for more information 1317 */ 1318 resid = bp->b_bufsize; 1319 foff = bp->b_offset; 1320 if (obj != NULL) 1321 VM_OBJECT_LOCK(obj); 1322 for (i = 0; i < bp->b_npages; i++) { 1323 int had_bogus = 0; 1324 1325 m = bp->b_pages[i]; 1326 vm_page_lock_queues(); 1327 vm_page_flag_clear(m, PG_ZERO); 1328 vm_page_unlock_queues(); 1329 1330 /* 1331 * If we hit a bogus page, fixup *all* the bogus pages 1332 * now. 1333 */ 1334 if (m == bogus_page) { 1335 poff = OFF_TO_IDX(bp->b_offset); 1336 had_bogus = 1; 1337 1338 for (j = i; j < bp->b_npages; j++) { 1339 vm_page_t mtmp; 1340 mtmp = bp->b_pages[j]; 1341 if (mtmp == bogus_page) { 1342 mtmp = vm_page_lookup(obj, poff + j); 1343 if (!mtmp) { 1344 panic("brelse: page missing\n"); 1345 } 1346 bp->b_pages[j] = mtmp; 1347 } 1348 } 1349 1350 if ((bp->b_flags & B_INVAL) == 0) { 1351 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1352 } 1353 m = bp->b_pages[i]; 1354 } 1355 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1356 int poffset = foff & PAGE_MASK; 1357 int presid = resid > (PAGE_SIZE - poffset) ? 1358 (PAGE_SIZE - poffset) : resid; 1359 1360 KASSERT(presid >= 0, ("brelse: extra page")); 1361 vm_page_set_invalid(m, poffset, presid); 1362 if (had_bogus) 1363 printf("avoided corruption bug in bogus_page/brelse code\n"); 1364 } 1365 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1366 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1367 } 1368 if (obj != NULL) 1369 VM_OBJECT_UNLOCK(obj); 1370 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1371 vfs_vmio_release(bp); 1372 1373 } else if (bp->b_flags & B_VMIO) { 1374 1375 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1376 vfs_vmio_release(bp); 1377 } 1378 1379 } 1380 1381 if (bp->b_qindex != QUEUE_NONE) 1382 panic("brelse: free buffer onto another queue???"); 1383 if (BUF_REFCNT(bp) > 1) { 1384 /* do not release to free list */ 1385 BUF_UNLOCK(bp); 1386 splx(s); 1387 return; 1388 } 1389 1390 /* enqueue */ 1391 mtx_lock(&bqlock); 1392 1393 /* buffers with no memory */ 1394 if (bp->b_bufsize == 0) { 1395 bp->b_flags |= B_INVAL; 1396 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1397 if (bp->b_xflags & BX_BKGRDINPROG) 1398 panic("losing buffer 1"); 1399 if (bp->b_kvasize) { 1400 bp->b_qindex = QUEUE_EMPTYKVA; 1401 } else { 1402 bp->b_qindex = QUEUE_EMPTY; 1403 } 1404 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1405 bp->b_dev = NODEV; 1406 /* buffers with junk contents */ 1407 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1408 (bp->b_ioflags & BIO_ERROR)) { 1409 bp->b_flags |= B_INVAL; 1410 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1411 if (bp->b_xflags & BX_BKGRDINPROG) 1412 panic("losing buffer 2"); 1413 bp->b_qindex = QUEUE_CLEAN; 1414 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1415 bp->b_dev = NODEV; 1416 1417 /* buffers that are locked */ 1418 } else if (bp->b_flags & B_LOCKED) { 1419 bp->b_qindex = QUEUE_LOCKED; 1420 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1421 1422 /* remaining buffers */ 1423 } else { 1424 if (bp->b_flags & B_DELWRI) 1425 bp->b_qindex = QUEUE_DIRTY; 1426 else 1427 bp->b_qindex = QUEUE_CLEAN; 1428 if (bp->b_flags & B_AGE) 1429 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1430 else 1431 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1432 } 1433 mtx_unlock(&bqlock); 1434 1435 /* 1436 * If B_INVAL and B_DELWRI is set, clear B_DELWRI. We have already 1437 * placed the buffer on the correct queue. We must also disassociate 1438 * the device and vnode for a B_INVAL buffer so gbincore() doesn't 1439 * find it. 1440 */ 1441 if (bp->b_flags & B_INVAL) { 1442 if (bp->b_flags & B_DELWRI) 1443 bundirty(bp); 1444 if (bp->b_vp) 1445 brelvp(bp); 1446 } 1447 1448 /* 1449 * Fixup numfreebuffers count. The bp is on an appropriate queue 1450 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1451 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1452 * if B_INVAL is set ). 1453 */ 1454 1455 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1456 bufcountwakeup(); 1457 1458 /* 1459 * Something we can maybe free or reuse 1460 */ 1461 if (bp->b_bufsize || bp->b_kvasize) 1462 bufspacewakeup(); 1463 1464 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1465 B_DIRECT | B_NOWDRAIN); 1466 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1467 panic("brelse: not dirty"); 1468 /* unlock */ 1469 BUF_UNLOCK(bp); 1470 splx(s); 1471 } 1472 1473 /* 1474 * Release a buffer back to the appropriate queue but do not try to free 1475 * it. The buffer is expected to be used again soon. 1476 * 1477 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1478 * biodone() to requeue an async I/O on completion. It is also used when 1479 * known good buffers need to be requeued but we think we may need the data 1480 * again soon. 1481 * 1482 * XXX we should be able to leave the B_RELBUF hint set on completion. 1483 */ 1484 void 1485 bqrelse(struct buf * bp) 1486 { 1487 int s; 1488 1489 s = splbio(); 1490 1491 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1492 1493 if (bp->b_qindex != QUEUE_NONE) 1494 panic("bqrelse: free buffer onto another queue???"); 1495 if (BUF_REFCNT(bp) > 1) { 1496 /* do not release to free list */ 1497 BUF_UNLOCK(bp); 1498 splx(s); 1499 return; 1500 } 1501 mtx_lock(&bqlock); 1502 if (bp->b_flags & B_LOCKED) { 1503 bp->b_ioflags &= ~BIO_ERROR; 1504 bp->b_qindex = QUEUE_LOCKED; 1505 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1506 /* buffers with stale but valid contents */ 1507 } else if (bp->b_flags & B_DELWRI) { 1508 bp->b_qindex = QUEUE_DIRTY; 1509 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1510 } else if (vm_page_count_severe()) { 1511 /* 1512 * We are too low on memory, we have to try to free the 1513 * buffer (most importantly: the wired pages making up its 1514 * backing store) *now*. 1515 */ 1516 mtx_unlock(&bqlock); 1517 splx(s); 1518 brelse(bp); 1519 return; 1520 } else { 1521 bp->b_qindex = QUEUE_CLEAN; 1522 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1523 } 1524 mtx_unlock(&bqlock); 1525 1526 if ((bp->b_flags & B_LOCKED) == 0 && 1527 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1528 bufcountwakeup(); 1529 } 1530 1531 /* 1532 * Something we can maybe free or reuse. 1533 */ 1534 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1535 bufspacewakeup(); 1536 1537 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1538 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1539 panic("bqrelse: not dirty"); 1540 /* unlock */ 1541 BUF_UNLOCK(bp); 1542 splx(s); 1543 } 1544 1545 /* Give pages used by the bp back to the VM system (where possible) */ 1546 static void 1547 vfs_vmio_release(bp) 1548 struct buf *bp; 1549 { 1550 int i; 1551 vm_page_t m; 1552 1553 GIANT_REQUIRED; 1554 vm_page_lock_queues(); 1555 for (i = 0; i < bp->b_npages; i++) { 1556 m = bp->b_pages[i]; 1557 bp->b_pages[i] = NULL; 1558 /* 1559 * In order to keep page LRU ordering consistent, put 1560 * everything on the inactive queue. 1561 */ 1562 vm_page_unwire(m, 0); 1563 /* 1564 * We don't mess with busy pages, it is 1565 * the responsibility of the process that 1566 * busied the pages to deal with them. 1567 */ 1568 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1569 continue; 1570 1571 if (m->wire_count == 0) { 1572 vm_page_flag_clear(m, PG_ZERO); 1573 /* 1574 * Might as well free the page if we can and it has 1575 * no valid data. We also free the page if the 1576 * buffer was used for direct I/O 1577 */ 1578 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1579 m->hold_count == 0) { 1580 vm_page_busy(m); 1581 pmap_remove_all(m); 1582 vm_page_free(m); 1583 } else if (bp->b_flags & B_DIRECT) { 1584 vm_page_try_to_free(m); 1585 } else if (vm_page_count_severe()) { 1586 vm_page_try_to_cache(m); 1587 } 1588 } 1589 } 1590 vm_page_unlock_queues(); 1591 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1592 1593 if (bp->b_bufsize) { 1594 bufspacewakeup(); 1595 bp->b_bufsize = 0; 1596 } 1597 bp->b_npages = 0; 1598 bp->b_flags &= ~B_VMIO; 1599 if (bp->b_vp) 1600 brelvp(bp); 1601 } 1602 1603 /* 1604 * Check to see if a block at a particular lbn is available for a clustered 1605 * write. 1606 */ 1607 static int 1608 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 1609 { 1610 struct buf *bpa; 1611 int match; 1612 1613 match = 0; 1614 1615 /* If the buf isn't in core skip it */ 1616 if ((bpa = gbincore(vp, lblkno)) == NULL) 1617 return (0); 1618 1619 /* If the buf is busy we don't want to wait for it */ 1620 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1621 return (0); 1622 1623 /* Only cluster with valid clusterable delayed write buffers */ 1624 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 1625 (B_DELWRI | B_CLUSTEROK)) 1626 goto done; 1627 1628 if (bpa->b_bufsize != size) 1629 goto done; 1630 1631 /* 1632 * Check to see if it is in the expected place on disk and that the 1633 * block has been mapped. 1634 */ 1635 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 1636 match = 1; 1637 done: 1638 BUF_UNLOCK(bpa); 1639 return (match); 1640 } 1641 1642 /* 1643 * vfs_bio_awrite: 1644 * 1645 * Implement clustered async writes for clearing out B_DELWRI buffers. 1646 * This is much better then the old way of writing only one buffer at 1647 * a time. Note that we may not be presented with the buffers in the 1648 * correct order, so we search for the cluster in both directions. 1649 */ 1650 int 1651 vfs_bio_awrite(struct buf * bp) 1652 { 1653 int i; 1654 int j; 1655 daddr_t lblkno = bp->b_lblkno; 1656 struct vnode *vp = bp->b_vp; 1657 int s; 1658 int ncl; 1659 int nwritten; 1660 int size; 1661 int maxcl; 1662 1663 s = splbio(); 1664 /* 1665 * right now we support clustered writing only to regular files. If 1666 * we find a clusterable block we could be in the middle of a cluster 1667 * rather then at the beginning. 1668 */ 1669 if ((vp->v_type == VREG) && 1670 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1671 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1672 1673 size = vp->v_mount->mnt_stat.f_iosize; 1674 maxcl = MAXPHYS / size; 1675 1676 VI_LOCK(vp); 1677 for (i = 1; i < maxcl; i++) 1678 if (vfs_bio_clcheck(vp, size, lblkno + i, 1679 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 1680 break; 1681 1682 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 1683 if (vfs_bio_clcheck(vp, size, lblkno - j, 1684 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 1685 break; 1686 1687 VI_UNLOCK(vp); 1688 --j; 1689 ncl = i + j; 1690 /* 1691 * this is a possible cluster write 1692 */ 1693 if (ncl != 1) { 1694 BUF_UNLOCK(bp); 1695 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1696 splx(s); 1697 return nwritten; 1698 } 1699 } 1700 1701 bremfree(bp); 1702 bp->b_flags |= B_ASYNC; 1703 1704 splx(s); 1705 /* 1706 * default (old) behavior, writing out only one block 1707 * 1708 * XXX returns b_bufsize instead of b_bcount for nwritten? 1709 */ 1710 nwritten = bp->b_bufsize; 1711 (void) BUF_WRITE(bp); 1712 1713 return nwritten; 1714 } 1715 1716 /* 1717 * getnewbuf: 1718 * 1719 * Find and initialize a new buffer header, freeing up existing buffers 1720 * in the bufqueues as necessary. The new buffer is returned locked. 1721 * 1722 * Important: B_INVAL is not set. If the caller wishes to throw the 1723 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1724 * 1725 * We block if: 1726 * We have insufficient buffer headers 1727 * We have insufficient buffer space 1728 * buffer_map is too fragmented ( space reservation fails ) 1729 * If we have to flush dirty buffers ( but we try to avoid this ) 1730 * 1731 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1732 * Instead we ask the buf daemon to do it for us. We attempt to 1733 * avoid piecemeal wakeups of the pageout daemon. 1734 */ 1735 1736 static struct buf * 1737 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1738 { 1739 struct buf *bp; 1740 struct buf *nbp; 1741 int defrag = 0; 1742 int nqindex; 1743 static int flushingbufs; 1744 1745 GIANT_REQUIRED; 1746 1747 /* 1748 * We can't afford to block since we might be holding a vnode lock, 1749 * which may prevent system daemons from running. We deal with 1750 * low-memory situations by proactively returning memory and running 1751 * async I/O rather then sync I/O. 1752 */ 1753 1754 atomic_add_int(&getnewbufcalls, 1); 1755 atomic_subtract_int(&getnewbufrestarts, 1); 1756 restart: 1757 atomic_add_int(&getnewbufrestarts, 1); 1758 1759 /* 1760 * Setup for scan. If we do not have enough free buffers, 1761 * we setup a degenerate case that immediately fails. Note 1762 * that if we are specially marked process, we are allowed to 1763 * dip into our reserves. 1764 * 1765 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1766 * 1767 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1768 * However, there are a number of cases (defragging, reusing, ...) 1769 * where we cannot backup. 1770 */ 1771 mtx_lock(&bqlock); 1772 nqindex = QUEUE_EMPTYKVA; 1773 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1774 1775 if (nbp == NULL) { 1776 /* 1777 * If no EMPTYKVA buffers and we are either 1778 * defragging or reusing, locate a CLEAN buffer 1779 * to free or reuse. If bufspace useage is low 1780 * skip this step so we can allocate a new buffer. 1781 */ 1782 if (defrag || bufspace >= lobufspace) { 1783 nqindex = QUEUE_CLEAN; 1784 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1785 } 1786 1787 /* 1788 * If we could not find or were not allowed to reuse a 1789 * CLEAN buffer, check to see if it is ok to use an EMPTY 1790 * buffer. We can only use an EMPTY buffer if allocating 1791 * its KVA would not otherwise run us out of buffer space. 1792 */ 1793 if (nbp == NULL && defrag == 0 && 1794 bufspace + maxsize < hibufspace) { 1795 nqindex = QUEUE_EMPTY; 1796 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1797 } 1798 } 1799 1800 /* 1801 * Run scan, possibly freeing data and/or kva mappings on the fly 1802 * depending. 1803 */ 1804 1805 while ((bp = nbp) != NULL) { 1806 int qindex = nqindex; 1807 1808 /* 1809 * Calculate next bp ( we can only use it if we do not block 1810 * or do other fancy things ). 1811 */ 1812 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1813 switch(qindex) { 1814 case QUEUE_EMPTY: 1815 nqindex = QUEUE_EMPTYKVA; 1816 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1817 break; 1818 /* FALLTHROUGH */ 1819 case QUEUE_EMPTYKVA: 1820 nqindex = QUEUE_CLEAN; 1821 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1822 break; 1823 /* FALLTHROUGH */ 1824 case QUEUE_CLEAN: 1825 /* 1826 * nbp is NULL. 1827 */ 1828 break; 1829 } 1830 } 1831 1832 /* 1833 * Sanity Checks 1834 */ 1835 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1836 1837 /* 1838 * Note: we no longer distinguish between VMIO and non-VMIO 1839 * buffers. 1840 */ 1841 1842 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1843 1844 /* 1845 * If we are defragging then we need a buffer with 1846 * b_kvasize != 0. XXX this situation should no longer 1847 * occur, if defrag is non-zero the buffer's b_kvasize 1848 * should also be non-zero at this point. XXX 1849 */ 1850 if (defrag && bp->b_kvasize == 0) { 1851 printf("Warning: defrag empty buffer %p\n", bp); 1852 continue; 1853 } 1854 1855 /* 1856 * Start freeing the bp. This is somewhat involved. nbp 1857 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1858 */ 1859 1860 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1861 panic("getnewbuf: locked buf"); 1862 bremfreel(bp); 1863 mtx_unlock(&bqlock); 1864 1865 if (qindex == QUEUE_CLEAN) { 1866 if (bp->b_flags & B_VMIO) { 1867 bp->b_flags &= ~B_ASYNC; 1868 vfs_vmio_release(bp); 1869 } 1870 if (bp->b_vp) 1871 brelvp(bp); 1872 } 1873 1874 /* 1875 * NOTE: nbp is now entirely invalid. We can only restart 1876 * the scan from this point on. 1877 * 1878 * Get the rest of the buffer freed up. b_kva* is still 1879 * valid after this operation. 1880 */ 1881 1882 if (bp->b_rcred != NOCRED) { 1883 crfree(bp->b_rcred); 1884 bp->b_rcred = NOCRED; 1885 } 1886 if (bp->b_wcred != NOCRED) { 1887 crfree(bp->b_wcred); 1888 bp->b_wcred = NOCRED; 1889 } 1890 if (LIST_FIRST(&bp->b_dep) != NULL) 1891 buf_deallocate(bp); 1892 if (bp->b_xflags & BX_BKGRDINPROG) 1893 panic("losing buffer 3"); 1894 1895 if (bp->b_bufsize) 1896 allocbuf(bp, 0); 1897 1898 bp->b_flags = 0; 1899 bp->b_ioflags = 0; 1900 bp->b_xflags = 0; 1901 bp->b_vflags = 0; 1902 bp->b_dev = NODEV; 1903 bp->b_vp = NULL; 1904 bp->b_blkno = bp->b_lblkno = 0; 1905 bp->b_offset = NOOFFSET; 1906 bp->b_iodone = 0; 1907 bp->b_error = 0; 1908 bp->b_resid = 0; 1909 bp->b_bcount = 0; 1910 bp->b_npages = 0; 1911 bp->b_dirtyoff = bp->b_dirtyend = 0; 1912 bp->b_magic = B_MAGIC_BIO; 1913 bp->b_op = &buf_ops_bio; 1914 bp->b_object = NULL; 1915 1916 LIST_INIT(&bp->b_dep); 1917 1918 /* 1919 * If we are defragging then free the buffer. 1920 */ 1921 if (defrag) { 1922 bp->b_flags |= B_INVAL; 1923 bfreekva(bp); 1924 brelse(bp); 1925 defrag = 0; 1926 goto restart; 1927 } 1928 1929 /* 1930 * If we are overcomitted then recover the buffer and its 1931 * KVM space. This occurs in rare situations when multiple 1932 * processes are blocked in getnewbuf() or allocbuf(). 1933 */ 1934 if (bufspace >= hibufspace) 1935 flushingbufs = 1; 1936 if (flushingbufs && bp->b_kvasize != 0) { 1937 bp->b_flags |= B_INVAL; 1938 bfreekva(bp); 1939 brelse(bp); 1940 goto restart; 1941 } 1942 if (bufspace < lobufspace) 1943 flushingbufs = 0; 1944 break; 1945 } 1946 1947 /* 1948 * If we exhausted our list, sleep as appropriate. We may have to 1949 * wakeup various daemons and write out some dirty buffers. 1950 * 1951 * Generally we are sleeping due to insufficient buffer space. 1952 */ 1953 1954 if (bp == NULL) { 1955 int flags; 1956 char *waitmsg; 1957 1958 mtx_unlock(&bqlock); 1959 if (defrag) { 1960 flags = VFS_BIO_NEED_BUFSPACE; 1961 waitmsg = "nbufkv"; 1962 } else if (bufspace >= hibufspace) { 1963 waitmsg = "nbufbs"; 1964 flags = VFS_BIO_NEED_BUFSPACE; 1965 } else { 1966 waitmsg = "newbuf"; 1967 flags = VFS_BIO_NEED_ANY; 1968 } 1969 1970 bd_speedup(); /* heeeelp */ 1971 1972 mtx_lock(&nblock); 1973 needsbuffer |= flags; 1974 while (needsbuffer & flags) { 1975 if (msleep(&needsbuffer, &nblock, 1976 (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) { 1977 mtx_unlock(&nblock); 1978 return (NULL); 1979 } 1980 } 1981 mtx_unlock(&nblock); 1982 } else { 1983 /* 1984 * We finally have a valid bp. We aren't quite out of the 1985 * woods, we still have to reserve kva space. In order 1986 * to keep fragmentation sane we only allocate kva in 1987 * BKVASIZE chunks. 1988 */ 1989 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1990 1991 if (maxsize != bp->b_kvasize) { 1992 vm_offset_t addr = 0; 1993 1994 bfreekva(bp); 1995 1996 if (vm_map_findspace(buffer_map, 1997 vm_map_min(buffer_map), maxsize, &addr)) { 1998 /* 1999 * Uh oh. Buffer map is to fragmented. We 2000 * must defragment the map. 2001 */ 2002 atomic_add_int(&bufdefragcnt, 1); 2003 defrag = 1; 2004 bp->b_flags |= B_INVAL; 2005 brelse(bp); 2006 goto restart; 2007 } 2008 if (addr) { 2009 vm_map_insert(buffer_map, NULL, 0, 2010 addr, addr + maxsize, 2011 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 2012 2013 bp->b_kvabase = (caddr_t) addr; 2014 bp->b_kvasize = maxsize; 2015 atomic_add_int(&bufspace, bp->b_kvasize); 2016 atomic_add_int(&bufreusecnt, 1); 2017 } 2018 } 2019 bp->b_data = bp->b_kvabase; 2020 } 2021 return(bp); 2022 } 2023 2024 /* 2025 * buf_daemon: 2026 * 2027 * buffer flushing daemon. Buffers are normally flushed by the 2028 * update daemon but if it cannot keep up this process starts to 2029 * take the load in an attempt to prevent getnewbuf() from blocking. 2030 */ 2031 2032 static struct proc *bufdaemonproc; 2033 2034 static struct kproc_desc buf_kp = { 2035 "bufdaemon", 2036 buf_daemon, 2037 &bufdaemonproc 2038 }; 2039 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 2040 2041 static void 2042 buf_daemon() 2043 { 2044 int s; 2045 2046 mtx_lock(&Giant); 2047 2048 /* 2049 * This process needs to be suspended prior to shutdown sync. 2050 */ 2051 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 2052 SHUTDOWN_PRI_LAST); 2053 2054 /* 2055 * This process is allowed to take the buffer cache to the limit 2056 */ 2057 s = splbio(); 2058 mtx_lock(&bdlock); 2059 2060 for (;;) { 2061 bd_request = 0; 2062 mtx_unlock(&bdlock); 2063 2064 kthread_suspend_check(bufdaemonproc); 2065 2066 /* 2067 * Do the flush. Limit the amount of in-transit I/O we 2068 * allow to build up, otherwise we would completely saturate 2069 * the I/O system. Wakeup any waiting processes before we 2070 * normally would so they can run in parallel with our drain. 2071 */ 2072 while (numdirtybuffers > lodirtybuffers) { 2073 if (flushbufqueues(0) == 0) { 2074 /* 2075 * Could not find any buffers without rollback 2076 * dependencies, so just write the first one 2077 * in the hopes of eventually making progress. 2078 */ 2079 flushbufqueues(1); 2080 break; 2081 } 2082 waitrunningbufspace(); 2083 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 2084 } 2085 2086 /* 2087 * Only clear bd_request if we have reached our low water 2088 * mark. The buf_daemon normally waits 1 second and 2089 * then incrementally flushes any dirty buffers that have 2090 * built up, within reason. 2091 * 2092 * If we were unable to hit our low water mark and couldn't 2093 * find any flushable buffers, we sleep half a second. 2094 * Otherwise we loop immediately. 2095 */ 2096 mtx_lock(&bdlock); 2097 if (numdirtybuffers <= lodirtybuffers) { 2098 /* 2099 * We reached our low water mark, reset the 2100 * request and sleep until we are needed again. 2101 * The sleep is just so the suspend code works. 2102 */ 2103 bd_request = 0; 2104 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 2105 } else { 2106 /* 2107 * We couldn't find any flushable dirty buffers but 2108 * still have too many dirty buffers, we 2109 * have to sleep and try again. (rare) 2110 */ 2111 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 2112 } 2113 } 2114 } 2115 2116 /* 2117 * flushbufqueues: 2118 * 2119 * Try to flush a buffer in the dirty queue. We must be careful to 2120 * free up B_INVAL buffers instead of write them, which NFS is 2121 * particularly sensitive to. 2122 */ 2123 int flushwithdeps = 0; 2124 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 2125 0, "Number of buffers flushed with dependecies that require rollbacks"); 2126 static int 2127 flushbufqueues(int flushdeps) 2128 { 2129 struct thread *td = curthread; 2130 struct vnode *vp; 2131 struct buf *bp; 2132 int hasdeps; 2133 2134 mtx_lock(&bqlock); 2135 TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) { 2136 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2137 continue; 2138 KASSERT((bp->b_flags & B_DELWRI), 2139 ("unexpected clean buffer %p", bp)); 2140 if ((bp->b_xflags & BX_BKGRDINPROG) != 0) { 2141 BUF_UNLOCK(bp); 2142 continue; 2143 } 2144 if (bp->b_flags & B_INVAL) { 2145 bremfreel(bp); 2146 mtx_unlock(&bqlock); 2147 brelse(bp); 2148 return (1); 2149 } 2150 2151 if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) { 2152 if (flushdeps == 0) { 2153 BUF_UNLOCK(bp); 2154 continue; 2155 } 2156 hasdeps = 1; 2157 } else 2158 hasdeps = 0; 2159 /* 2160 * We must hold the lock on a vnode before writing 2161 * one of its buffers. Otherwise we may confuse, or 2162 * in the case of a snapshot vnode, deadlock the 2163 * system. 2164 * 2165 * The lock order here is the reverse of the normal 2166 * of vnode followed by buf lock. This is ok because 2167 * the NOWAIT will prevent deadlock. 2168 */ 2169 if ((vp = bp->b_vp) == NULL || 2170 vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) { 2171 mtx_unlock(&bqlock); 2172 vfs_bio_awrite(bp); 2173 if (vp != NULL) 2174 VOP_UNLOCK(vp, 0, td); 2175 flushwithdeps += hasdeps; 2176 return (1); 2177 } 2178 BUF_UNLOCK(bp); 2179 } 2180 mtx_unlock(&bqlock); 2181 return (0); 2182 } 2183 2184 /* 2185 * Check to see if a block is currently memory resident. 2186 */ 2187 struct buf * 2188 incore(struct vnode * vp, daddr_t blkno) 2189 { 2190 struct buf *bp; 2191 2192 int s = splbio(); 2193 VI_LOCK(vp); 2194 bp = gbincore(vp, blkno); 2195 VI_UNLOCK(vp); 2196 splx(s); 2197 return (bp); 2198 } 2199 2200 /* 2201 * Returns true if no I/O is needed to access the 2202 * associated VM object. This is like incore except 2203 * it also hunts around in the VM system for the data. 2204 */ 2205 2206 int 2207 inmem(struct vnode * vp, daddr_t blkno) 2208 { 2209 vm_object_t obj; 2210 vm_offset_t toff, tinc, size; 2211 vm_page_t m; 2212 vm_ooffset_t off; 2213 2214 GIANT_REQUIRED; 2215 ASSERT_VOP_LOCKED(vp, "inmem"); 2216 2217 if (incore(vp, blkno)) 2218 return 1; 2219 if (vp->v_mount == NULL) 2220 return 0; 2221 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0) 2222 return 0; 2223 2224 size = PAGE_SIZE; 2225 if (size > vp->v_mount->mnt_stat.f_iosize) 2226 size = vp->v_mount->mnt_stat.f_iosize; 2227 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2228 2229 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2230 VM_OBJECT_LOCK(obj); 2231 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2232 VM_OBJECT_UNLOCK(obj); 2233 if (!m) 2234 goto notinmem; 2235 tinc = size; 2236 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2237 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2238 if (vm_page_is_valid(m, 2239 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2240 goto notinmem; 2241 } 2242 return 1; 2243 2244 notinmem: 2245 return (0); 2246 } 2247 2248 /* 2249 * vfs_setdirty: 2250 * 2251 * Sets the dirty range for a buffer based on the status of the dirty 2252 * bits in the pages comprising the buffer. 2253 * 2254 * The range is limited to the size of the buffer. 2255 * 2256 * This routine is primarily used by NFS, but is generalized for the 2257 * B_VMIO case. 2258 */ 2259 static void 2260 vfs_setdirty(struct buf *bp) 2261 { 2262 int i; 2263 vm_object_t object; 2264 2265 GIANT_REQUIRED; 2266 /* 2267 * Degenerate case - empty buffer 2268 */ 2269 2270 if (bp->b_bufsize == 0) 2271 return; 2272 2273 /* 2274 * We qualify the scan for modified pages on whether the 2275 * object has been flushed yet. The OBJ_WRITEABLE flag 2276 * is not cleared simply by protecting pages off. 2277 */ 2278 2279 if ((bp->b_flags & B_VMIO) == 0) 2280 return; 2281 2282 object = bp->b_pages[0]->object; 2283 VM_OBJECT_LOCK(object); 2284 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2285 printf("Warning: object %p writeable but not mightbedirty\n", object); 2286 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2287 printf("Warning: object %p mightbedirty but not writeable\n", object); 2288 2289 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2290 vm_offset_t boffset; 2291 vm_offset_t eoffset; 2292 2293 vm_page_lock_queues(); 2294 /* 2295 * test the pages to see if they have been modified directly 2296 * by users through the VM system. 2297 */ 2298 for (i = 0; i < bp->b_npages; i++) { 2299 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2300 vm_page_test_dirty(bp->b_pages[i]); 2301 } 2302 2303 /* 2304 * Calculate the encompassing dirty range, boffset and eoffset, 2305 * (eoffset - boffset) bytes. 2306 */ 2307 2308 for (i = 0; i < bp->b_npages; i++) { 2309 if (bp->b_pages[i]->dirty) 2310 break; 2311 } 2312 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2313 2314 for (i = bp->b_npages - 1; i >= 0; --i) { 2315 if (bp->b_pages[i]->dirty) { 2316 break; 2317 } 2318 } 2319 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2320 2321 vm_page_unlock_queues(); 2322 /* 2323 * Fit it to the buffer. 2324 */ 2325 2326 if (eoffset > bp->b_bcount) 2327 eoffset = bp->b_bcount; 2328 2329 /* 2330 * If we have a good dirty range, merge with the existing 2331 * dirty range. 2332 */ 2333 2334 if (boffset < eoffset) { 2335 if (bp->b_dirtyoff > boffset) 2336 bp->b_dirtyoff = boffset; 2337 if (bp->b_dirtyend < eoffset) 2338 bp->b_dirtyend = eoffset; 2339 } 2340 } 2341 VM_OBJECT_UNLOCK(object); 2342 } 2343 2344 /* 2345 * getblk: 2346 * 2347 * Get a block given a specified block and offset into a file/device. 2348 * The buffers B_DONE bit will be cleared on return, making it almost 2349 * ready for an I/O initiation. B_INVAL may or may not be set on 2350 * return. The caller should clear B_INVAL prior to initiating a 2351 * READ. 2352 * 2353 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2354 * an existing buffer. 2355 * 2356 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2357 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2358 * and then cleared based on the backing VM. If the previous buffer is 2359 * non-0-sized but invalid, B_CACHE will be cleared. 2360 * 2361 * If getblk() must create a new buffer, the new buffer is returned with 2362 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2363 * case it is returned with B_INVAL clear and B_CACHE set based on the 2364 * backing VM. 2365 * 2366 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2367 * B_CACHE bit is clear. 2368 * 2369 * What this means, basically, is that the caller should use B_CACHE to 2370 * determine whether the buffer is fully valid or not and should clear 2371 * B_INVAL prior to issuing a read. If the caller intends to validate 2372 * the buffer by loading its data area with something, the caller needs 2373 * to clear B_INVAL. If the caller does this without issuing an I/O, 2374 * the caller should set B_CACHE ( as an optimization ), else the caller 2375 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2376 * a write attempt or if it was a successfull read. If the caller 2377 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2378 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2379 */ 2380 struct buf * 2381 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo, 2382 int flags) 2383 { 2384 struct buf *bp; 2385 int s; 2386 int error; 2387 ASSERT_VOP_LOCKED(vp, "getblk"); 2388 2389 if (size > MAXBSIZE) 2390 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2391 2392 s = splbio(); 2393 loop: 2394 /* 2395 * Block if we are low on buffers. Certain processes are allowed 2396 * to completely exhaust the buffer cache. 2397 * 2398 * If this check ever becomes a bottleneck it may be better to 2399 * move it into the else, when gbincore() fails. At the moment 2400 * it isn't a problem. 2401 * 2402 * XXX remove if 0 sections (clean this up after its proven) 2403 */ 2404 if (numfreebuffers == 0) { 2405 if (curthread == PCPU_GET(idlethread)) 2406 return NULL; 2407 mtx_lock(&nblock); 2408 needsbuffer |= VFS_BIO_NEED_ANY; 2409 mtx_unlock(&nblock); 2410 } 2411 2412 VI_LOCK(vp); 2413 if ((bp = gbincore(vp, blkno))) { 2414 int lockflags; 2415 /* 2416 * Buffer is in-core. If the buffer is not busy, it must 2417 * be on a queue. 2418 */ 2419 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK; 2420 2421 if (flags & GB_LOCK_NOWAIT) 2422 lockflags |= LK_NOWAIT; 2423 2424 error = BUF_TIMELOCK(bp, lockflags, 2425 VI_MTX(vp), "getblk", slpflag, slptimeo); 2426 2427 /* 2428 * If we slept and got the lock we have to restart in case 2429 * the buffer changed identities. 2430 */ 2431 if (error == ENOLCK) 2432 goto loop; 2433 /* We timed out or were interrupted. */ 2434 else if (error) 2435 return (NULL); 2436 2437 /* 2438 * The buffer is locked. B_CACHE is cleared if the buffer is 2439 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 2440 * and for a VMIO buffer B_CACHE is adjusted according to the 2441 * backing VM cache. 2442 */ 2443 if (bp->b_flags & B_INVAL) 2444 bp->b_flags &= ~B_CACHE; 2445 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2446 bp->b_flags |= B_CACHE; 2447 bremfree(bp); 2448 2449 /* 2450 * check for size inconsistancies for non-VMIO case. 2451 */ 2452 2453 if (bp->b_bcount != size) { 2454 if ((bp->b_flags & B_VMIO) == 0 || 2455 (size > bp->b_kvasize)) { 2456 if (bp->b_flags & B_DELWRI) { 2457 bp->b_flags |= B_NOCACHE; 2458 BUF_WRITE(bp); 2459 } else { 2460 if ((bp->b_flags & B_VMIO) && 2461 (LIST_FIRST(&bp->b_dep) == NULL)) { 2462 bp->b_flags |= B_RELBUF; 2463 brelse(bp); 2464 } else { 2465 bp->b_flags |= B_NOCACHE; 2466 BUF_WRITE(bp); 2467 } 2468 } 2469 goto loop; 2470 } 2471 } 2472 2473 /* 2474 * If the size is inconsistant in the VMIO case, we can resize 2475 * the buffer. This might lead to B_CACHE getting set or 2476 * cleared. If the size has not changed, B_CACHE remains 2477 * unchanged from its previous state. 2478 */ 2479 2480 if (bp->b_bcount != size) 2481 allocbuf(bp, size); 2482 2483 KASSERT(bp->b_offset != NOOFFSET, 2484 ("getblk: no buffer offset")); 2485 2486 /* 2487 * A buffer with B_DELWRI set and B_CACHE clear must 2488 * be committed before we can return the buffer in 2489 * order to prevent the caller from issuing a read 2490 * ( due to B_CACHE not being set ) and overwriting 2491 * it. 2492 * 2493 * Most callers, including NFS and FFS, need this to 2494 * operate properly either because they assume they 2495 * can issue a read if B_CACHE is not set, or because 2496 * ( for example ) an uncached B_DELWRI might loop due 2497 * to softupdates re-dirtying the buffer. In the latter 2498 * case, B_CACHE is set after the first write completes, 2499 * preventing further loops. 2500 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2501 * above while extending the buffer, we cannot allow the 2502 * buffer to remain with B_CACHE set after the write 2503 * completes or it will represent a corrupt state. To 2504 * deal with this we set B_NOCACHE to scrap the buffer 2505 * after the write. 2506 * 2507 * We might be able to do something fancy, like setting 2508 * B_CACHE in bwrite() except if B_DELWRI is already set, 2509 * so the below call doesn't set B_CACHE, but that gets real 2510 * confusing. This is much easier. 2511 */ 2512 2513 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2514 bp->b_flags |= B_NOCACHE; 2515 BUF_WRITE(bp); 2516 goto loop; 2517 } 2518 2519 splx(s); 2520 bp->b_flags &= ~B_DONE; 2521 } else { 2522 int bsize, maxsize, vmio; 2523 off_t offset; 2524 2525 /* 2526 * Buffer is not in-core, create new buffer. The buffer 2527 * returned by getnewbuf() is locked. Note that the returned 2528 * buffer is also considered valid (not marked B_INVAL). 2529 */ 2530 VI_UNLOCK(vp); 2531 if (vn_isdisk(vp, NULL)) 2532 bsize = DEV_BSIZE; 2533 else if (vp->v_mountedhere) 2534 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2535 else if (vp->v_mount) 2536 bsize = vp->v_mount->mnt_stat.f_iosize; 2537 else 2538 bsize = size; 2539 2540 offset = blkno * bsize; 2541 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && 2542 (vp->v_vflag & VV_OBJBUF); 2543 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2544 maxsize = imax(maxsize, bsize); 2545 2546 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2547 if (slpflag || slptimeo) { 2548 splx(s); 2549 return NULL; 2550 } 2551 goto loop; 2552 } 2553 2554 /* 2555 * This code is used to make sure that a buffer is not 2556 * created while the getnewbuf routine is blocked. 2557 * This can be a problem whether the vnode is locked or not. 2558 * If the buffer is created out from under us, we have to 2559 * throw away the one we just created. There is now window 2560 * race because we are safely running at splbio() from the 2561 * point of the duplicate buffer creation through to here, 2562 * and we've locked the buffer. 2563 * 2564 * Note: this must occur before we associate the buffer 2565 * with the vp especially considering limitations in 2566 * the splay tree implementation when dealing with duplicate 2567 * lblkno's. 2568 */ 2569 VI_LOCK(vp); 2570 if (gbincore(vp, blkno)) { 2571 VI_UNLOCK(vp); 2572 bp->b_flags |= B_INVAL; 2573 brelse(bp); 2574 goto loop; 2575 } 2576 2577 /* 2578 * Insert the buffer into the hash, so that it can 2579 * be found by incore. 2580 */ 2581 bp->b_blkno = bp->b_lblkno = blkno; 2582 bp->b_offset = offset; 2583 2584 bgetvp(vp, bp); 2585 VI_UNLOCK(vp); 2586 2587 /* 2588 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2589 * buffer size starts out as 0, B_CACHE will be set by 2590 * allocbuf() for the VMIO case prior to it testing the 2591 * backing store for validity. 2592 */ 2593 2594 if (vmio) { 2595 bp->b_flags |= B_VMIO; 2596 #if defined(VFS_BIO_DEBUG) 2597 if (vp->v_type != VREG) 2598 printf("getblk: vmioing file type %d???\n", vp->v_type); 2599 #endif 2600 VOP_GETVOBJECT(vp, &bp->b_object); 2601 } else { 2602 bp->b_flags &= ~B_VMIO; 2603 bp->b_object = NULL; 2604 } 2605 2606 allocbuf(bp, size); 2607 2608 splx(s); 2609 bp->b_flags &= ~B_DONE; 2610 } 2611 KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp)); 2612 return (bp); 2613 } 2614 2615 /* 2616 * Get an empty, disassociated buffer of given size. The buffer is initially 2617 * set to B_INVAL. 2618 */ 2619 struct buf * 2620 geteblk(int size) 2621 { 2622 struct buf *bp; 2623 int s; 2624 int maxsize; 2625 2626 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2627 2628 s = splbio(); 2629 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2630 continue; 2631 splx(s); 2632 allocbuf(bp, size); 2633 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2634 KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp)); 2635 return (bp); 2636 } 2637 2638 2639 /* 2640 * This code constitutes the buffer memory from either anonymous system 2641 * memory (in the case of non-VMIO operations) or from an associated 2642 * VM object (in the case of VMIO operations). This code is able to 2643 * resize a buffer up or down. 2644 * 2645 * Note that this code is tricky, and has many complications to resolve 2646 * deadlock or inconsistant data situations. Tread lightly!!! 2647 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2648 * the caller. Calling this code willy nilly can result in the loss of data. 2649 * 2650 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2651 * B_CACHE for the non-VMIO case. 2652 */ 2653 2654 int 2655 allocbuf(struct buf *bp, int size) 2656 { 2657 int newbsize, mbsize; 2658 int i; 2659 2660 GIANT_REQUIRED; 2661 2662 if (BUF_REFCNT(bp) == 0) 2663 panic("allocbuf: buffer not busy"); 2664 2665 if (bp->b_kvasize < size) 2666 panic("allocbuf: buffer too small"); 2667 2668 if ((bp->b_flags & B_VMIO) == 0) { 2669 caddr_t origbuf; 2670 int origbufsize; 2671 /* 2672 * Just get anonymous memory from the kernel. Don't 2673 * mess with B_CACHE. 2674 */ 2675 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2676 if (bp->b_flags & B_MALLOC) 2677 newbsize = mbsize; 2678 else 2679 newbsize = round_page(size); 2680 2681 if (newbsize < bp->b_bufsize) { 2682 /* 2683 * malloced buffers are not shrunk 2684 */ 2685 if (bp->b_flags & B_MALLOC) { 2686 if (newbsize) { 2687 bp->b_bcount = size; 2688 } else { 2689 free(bp->b_data, M_BIOBUF); 2690 if (bp->b_bufsize) { 2691 atomic_subtract_int( 2692 &bufmallocspace, 2693 bp->b_bufsize); 2694 bufspacewakeup(); 2695 bp->b_bufsize = 0; 2696 } 2697 bp->b_data = bp->b_kvabase; 2698 bp->b_bcount = 0; 2699 bp->b_flags &= ~B_MALLOC; 2700 } 2701 return 1; 2702 } 2703 vm_hold_free_pages( 2704 bp, 2705 (vm_offset_t) bp->b_data + newbsize, 2706 (vm_offset_t) bp->b_data + bp->b_bufsize); 2707 } else if (newbsize > bp->b_bufsize) { 2708 /* 2709 * We only use malloced memory on the first allocation. 2710 * and revert to page-allocated memory when the buffer 2711 * grows. 2712 */ 2713 /* 2714 * There is a potential smp race here that could lead 2715 * to bufmallocspace slightly passing the max. It 2716 * is probably extremely rare and not worth worrying 2717 * over. 2718 */ 2719 if ( (bufmallocspace < maxbufmallocspace) && 2720 (bp->b_bufsize == 0) && 2721 (mbsize <= PAGE_SIZE/2)) { 2722 2723 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2724 bp->b_bufsize = mbsize; 2725 bp->b_bcount = size; 2726 bp->b_flags |= B_MALLOC; 2727 atomic_add_int(&bufmallocspace, mbsize); 2728 return 1; 2729 } 2730 origbuf = NULL; 2731 origbufsize = 0; 2732 /* 2733 * If the buffer is growing on its other-than-first allocation, 2734 * then we revert to the page-allocation scheme. 2735 */ 2736 if (bp->b_flags & B_MALLOC) { 2737 origbuf = bp->b_data; 2738 origbufsize = bp->b_bufsize; 2739 bp->b_data = bp->b_kvabase; 2740 if (bp->b_bufsize) { 2741 atomic_subtract_int(&bufmallocspace, 2742 bp->b_bufsize); 2743 bufspacewakeup(); 2744 bp->b_bufsize = 0; 2745 } 2746 bp->b_flags &= ~B_MALLOC; 2747 newbsize = round_page(newbsize); 2748 } 2749 vm_hold_load_pages( 2750 bp, 2751 (vm_offset_t) bp->b_data + bp->b_bufsize, 2752 (vm_offset_t) bp->b_data + newbsize); 2753 if (origbuf) { 2754 bcopy(origbuf, bp->b_data, origbufsize); 2755 free(origbuf, M_BIOBUF); 2756 } 2757 } 2758 } else { 2759 int desiredpages; 2760 2761 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2762 desiredpages = (size == 0) ? 0 : 2763 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2764 2765 if (bp->b_flags & B_MALLOC) 2766 panic("allocbuf: VMIO buffer can't be malloced"); 2767 /* 2768 * Set B_CACHE initially if buffer is 0 length or will become 2769 * 0-length. 2770 */ 2771 if (size == 0 || bp->b_bufsize == 0) 2772 bp->b_flags |= B_CACHE; 2773 2774 if (newbsize < bp->b_bufsize) { 2775 /* 2776 * DEV_BSIZE aligned new buffer size is less then the 2777 * DEV_BSIZE aligned existing buffer size. Figure out 2778 * if we have to remove any pages. 2779 */ 2780 if (desiredpages < bp->b_npages) { 2781 vm_page_t m; 2782 2783 vm_page_lock_queues(); 2784 for (i = desiredpages; i < bp->b_npages; i++) { 2785 /* 2786 * the page is not freed here -- it 2787 * is the responsibility of 2788 * vnode_pager_setsize 2789 */ 2790 m = bp->b_pages[i]; 2791 KASSERT(m != bogus_page, 2792 ("allocbuf: bogus page found")); 2793 while (vm_page_sleep_if_busy(m, TRUE, "biodep")) 2794 vm_page_lock_queues(); 2795 2796 bp->b_pages[i] = NULL; 2797 vm_page_unwire(m, 0); 2798 } 2799 vm_page_unlock_queues(); 2800 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2801 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2802 bp->b_npages = desiredpages; 2803 } 2804 } else if (size > bp->b_bcount) { 2805 /* 2806 * We are growing the buffer, possibly in a 2807 * byte-granular fashion. 2808 */ 2809 struct vnode *vp; 2810 vm_object_t obj; 2811 vm_offset_t toff; 2812 vm_offset_t tinc; 2813 2814 /* 2815 * Step 1, bring in the VM pages from the object, 2816 * allocating them if necessary. We must clear 2817 * B_CACHE if these pages are not valid for the 2818 * range covered by the buffer. 2819 */ 2820 2821 vp = bp->b_vp; 2822 obj = bp->b_object; 2823 2824 VM_OBJECT_LOCK(obj); 2825 while (bp->b_npages < desiredpages) { 2826 vm_page_t m; 2827 vm_pindex_t pi; 2828 2829 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2830 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2831 /* 2832 * note: must allocate system pages 2833 * since blocking here could intefere 2834 * with paging I/O, no matter which 2835 * process we are. 2836 */ 2837 m = vm_page_alloc(obj, pi, 2838 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 2839 if (m == NULL) { 2840 atomic_add_int(&vm_pageout_deficit, 2841 desiredpages - bp->b_npages); 2842 VM_OBJECT_UNLOCK(obj); 2843 VM_WAIT; 2844 VM_OBJECT_LOCK(obj); 2845 } else { 2846 vm_page_lock_queues(); 2847 vm_page_wakeup(m); 2848 vm_page_unlock_queues(); 2849 bp->b_flags &= ~B_CACHE; 2850 bp->b_pages[bp->b_npages] = m; 2851 ++bp->b_npages; 2852 } 2853 continue; 2854 } 2855 2856 /* 2857 * We found a page. If we have to sleep on it, 2858 * retry because it might have gotten freed out 2859 * from under us. 2860 * 2861 * We can only test PG_BUSY here. Blocking on 2862 * m->busy might lead to a deadlock: 2863 * 2864 * vm_fault->getpages->cluster_read->allocbuf 2865 * 2866 */ 2867 vm_page_lock_queues(); 2868 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk")) 2869 continue; 2870 2871 /* 2872 * We have a good page. Should we wakeup the 2873 * page daemon? 2874 */ 2875 if ((curproc != pageproc) && 2876 ((m->queue - m->pc) == PQ_CACHE) && 2877 ((cnt.v_free_count + cnt.v_cache_count) < 2878 (cnt.v_free_min + cnt.v_cache_min))) { 2879 pagedaemon_wakeup(); 2880 } 2881 vm_page_flag_clear(m, PG_ZERO); 2882 vm_page_wire(m); 2883 vm_page_unlock_queues(); 2884 bp->b_pages[bp->b_npages] = m; 2885 ++bp->b_npages; 2886 } 2887 VM_OBJECT_UNLOCK(obj); 2888 2889 /* 2890 * Step 2. We've loaded the pages into the buffer, 2891 * we have to figure out if we can still have B_CACHE 2892 * set. Note that B_CACHE is set according to the 2893 * byte-granular range ( bcount and size ), new the 2894 * aligned range ( newbsize ). 2895 * 2896 * The VM test is against m->valid, which is DEV_BSIZE 2897 * aligned. Needless to say, the validity of the data 2898 * needs to also be DEV_BSIZE aligned. Note that this 2899 * fails with NFS if the server or some other client 2900 * extends the file's EOF. If our buffer is resized, 2901 * B_CACHE may remain set! XXX 2902 */ 2903 2904 toff = bp->b_bcount; 2905 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2906 2907 while ((bp->b_flags & B_CACHE) && toff < size) { 2908 vm_pindex_t pi; 2909 2910 if (tinc > (size - toff)) 2911 tinc = size - toff; 2912 2913 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2914 PAGE_SHIFT; 2915 2916 vfs_buf_test_cache( 2917 bp, 2918 bp->b_offset, 2919 toff, 2920 tinc, 2921 bp->b_pages[pi] 2922 ); 2923 toff += tinc; 2924 tinc = PAGE_SIZE; 2925 } 2926 2927 /* 2928 * Step 3, fixup the KVM pmap. Remember that 2929 * bp->b_data is relative to bp->b_offset, but 2930 * bp->b_offset may be offset into the first page. 2931 */ 2932 2933 bp->b_data = (caddr_t) 2934 trunc_page((vm_offset_t)bp->b_data); 2935 pmap_qenter( 2936 (vm_offset_t)bp->b_data, 2937 bp->b_pages, 2938 bp->b_npages 2939 ); 2940 2941 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2942 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2943 } 2944 } 2945 if (newbsize < bp->b_bufsize) 2946 bufspacewakeup(); 2947 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2948 bp->b_bcount = size; /* requested buffer size */ 2949 return 1; 2950 } 2951 2952 void 2953 biodone(struct bio *bp) 2954 { 2955 mtx_lock(&bdonelock); 2956 bp->bio_flags |= BIO_DONE; 2957 if (bp->bio_done == NULL) 2958 wakeup(bp); 2959 mtx_unlock(&bdonelock); 2960 if (bp->bio_done != NULL) 2961 bp->bio_done(bp); 2962 } 2963 2964 /* 2965 * Wait for a BIO to finish. 2966 * 2967 * XXX: resort to a timeout for now. The optimal locking (if any) for this 2968 * case is not yet clear. 2969 */ 2970 int 2971 biowait(struct bio *bp, const char *wchan) 2972 { 2973 2974 mtx_lock(&bdonelock); 2975 while ((bp->bio_flags & BIO_DONE) == 0) 2976 msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10); 2977 mtx_unlock(&bdonelock); 2978 if (bp->bio_error != 0) 2979 return (bp->bio_error); 2980 if (!(bp->bio_flags & BIO_ERROR)) 2981 return (0); 2982 return (EIO); 2983 } 2984 2985 void 2986 biofinish(struct bio *bp, struct devstat *stat, int error) 2987 { 2988 2989 if (error) { 2990 bp->bio_error = error; 2991 bp->bio_flags |= BIO_ERROR; 2992 } 2993 if (stat != NULL) 2994 devstat_end_transaction_bio(stat, bp); 2995 biodone(bp); 2996 } 2997 2998 /* 2999 * bufwait: 3000 * 3001 * Wait for buffer I/O completion, returning error status. The buffer 3002 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 3003 * error and cleared. 3004 */ 3005 int 3006 bufwait(register struct buf * bp) 3007 { 3008 int s; 3009 3010 s = splbio(); 3011 if (bp->b_iocmd == BIO_READ) 3012 bwait(bp, PRIBIO, "biord"); 3013 else 3014 bwait(bp, PRIBIO, "biowr"); 3015 splx(s); 3016 if (bp->b_flags & B_EINTR) { 3017 bp->b_flags &= ~B_EINTR; 3018 return (EINTR); 3019 } 3020 if (bp->b_ioflags & BIO_ERROR) { 3021 return (bp->b_error ? bp->b_error : EIO); 3022 } else { 3023 return (0); 3024 } 3025 } 3026 3027 /* 3028 * Call back function from struct bio back up to struct buf. 3029 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 3030 */ 3031 void 3032 bufdonebio(struct bio *bp) 3033 { 3034 bufdone(bp->bio_caller2); 3035 } 3036 3037 /* 3038 * bufdone: 3039 * 3040 * Finish I/O on a buffer, optionally calling a completion function. 3041 * This is usually called from an interrupt so process blocking is 3042 * not allowed. 3043 * 3044 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3045 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3046 * assuming B_INVAL is clear. 3047 * 3048 * For the VMIO case, we set B_CACHE if the op was a read and no 3049 * read error occured, or if the op was a write. B_CACHE is never 3050 * set if the buffer is invalid or otherwise uncacheable. 3051 * 3052 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3053 * initiator to leave B_INVAL set to brelse the buffer out of existance 3054 * in the biodone routine. 3055 */ 3056 void 3057 bufdone(struct buf *bp) 3058 { 3059 int s; 3060 void (*biodone)(struct buf *); 3061 3062 GIANT_REQUIRED; 3063 3064 s = splbio(); 3065 3066 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 3067 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 3068 3069 bp->b_flags |= B_DONE; 3070 runningbufwakeup(bp); 3071 3072 if (bp->b_iocmd == BIO_DELETE) { 3073 brelse(bp); 3074 splx(s); 3075 return; 3076 } 3077 3078 if (bp->b_iocmd == BIO_WRITE) { 3079 vwakeup(bp); 3080 } 3081 3082 /* call optional completion function if requested */ 3083 if (bp->b_iodone != NULL) { 3084 biodone = bp->b_iodone; 3085 bp->b_iodone = NULL; 3086 (*biodone) (bp); 3087 splx(s); 3088 return; 3089 } 3090 if (LIST_FIRST(&bp->b_dep) != NULL) 3091 buf_complete(bp); 3092 3093 if (bp->b_flags & B_VMIO) { 3094 int i; 3095 vm_ooffset_t foff; 3096 vm_page_t m; 3097 vm_object_t obj; 3098 int iosize; 3099 struct vnode *vp = bp->b_vp; 3100 3101 obj = bp->b_object; 3102 3103 #if defined(VFS_BIO_DEBUG) 3104 mp_fixme("usecount and vflag accessed without locks."); 3105 if (vp->v_usecount == 0) { 3106 panic("biodone: zero vnode ref count"); 3107 } 3108 3109 if ((vp->v_vflag & VV_OBJBUF) == 0) { 3110 panic("biodone: vnode is not setup for merged cache"); 3111 } 3112 #endif 3113 3114 foff = bp->b_offset; 3115 KASSERT(bp->b_offset != NOOFFSET, 3116 ("biodone: no buffer offset")); 3117 3118 if (obj != NULL) 3119 VM_OBJECT_LOCK(obj); 3120 #if defined(VFS_BIO_DEBUG) 3121 if (obj->paging_in_progress < bp->b_npages) { 3122 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 3123 obj->paging_in_progress, bp->b_npages); 3124 } 3125 #endif 3126 3127 /* 3128 * Set B_CACHE if the op was a normal read and no error 3129 * occured. B_CACHE is set for writes in the b*write() 3130 * routines. 3131 */ 3132 iosize = bp->b_bcount - bp->b_resid; 3133 if (bp->b_iocmd == BIO_READ && 3134 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 3135 !(bp->b_ioflags & BIO_ERROR)) { 3136 bp->b_flags |= B_CACHE; 3137 } 3138 vm_page_lock_queues(); 3139 for (i = 0; i < bp->b_npages; i++) { 3140 int bogusflag = 0; 3141 int resid; 3142 3143 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3144 if (resid > iosize) 3145 resid = iosize; 3146 3147 /* 3148 * cleanup bogus pages, restoring the originals 3149 */ 3150 m = bp->b_pages[i]; 3151 if (m == bogus_page) { 3152 bogusflag = 1; 3153 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3154 if (m == NULL) 3155 panic("biodone: page disappeared!"); 3156 bp->b_pages[i] = m; 3157 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3158 } 3159 #if defined(VFS_BIO_DEBUG) 3160 if (OFF_TO_IDX(foff) != m->pindex) { 3161 printf( 3162 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n", 3163 (intmax_t)foff, (uintmax_t)m->pindex); 3164 } 3165 #endif 3166 3167 /* 3168 * In the write case, the valid and clean bits are 3169 * already changed correctly ( see bdwrite() ), so we 3170 * only need to do this here in the read case. 3171 */ 3172 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 3173 vfs_page_set_valid(bp, foff, i, m); 3174 } 3175 vm_page_flag_clear(m, PG_ZERO); 3176 3177 /* 3178 * when debugging new filesystems or buffer I/O methods, this 3179 * is the most common error that pops up. if you see this, you 3180 * have not set the page busy flag correctly!!! 3181 */ 3182 if (m->busy == 0) { 3183 printf("biodone: page busy < 0, " 3184 "pindex: %d, foff: 0x(%x,%x), " 3185 "resid: %d, index: %d\n", 3186 (int) m->pindex, (int)(foff >> 32), 3187 (int) foff & 0xffffffff, resid, i); 3188 if (!vn_isdisk(vp, NULL)) 3189 printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n", 3190 bp->b_vp->v_mount->mnt_stat.f_iosize, 3191 (intmax_t) bp->b_lblkno, 3192 bp->b_flags, bp->b_npages); 3193 else 3194 printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n", 3195 (intmax_t) bp->b_lblkno, 3196 bp->b_flags, bp->b_npages); 3197 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3198 m->valid, m->dirty, m->wire_count); 3199 panic("biodone: page busy < 0\n"); 3200 } 3201 vm_page_io_finish(m); 3202 vm_object_pip_subtract(obj, 1); 3203 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3204 iosize -= resid; 3205 } 3206 vm_page_unlock_queues(); 3207 if (obj != NULL) { 3208 vm_object_pip_wakeupn(obj, 0); 3209 VM_OBJECT_UNLOCK(obj); 3210 } 3211 } 3212 3213 /* 3214 * For asynchronous completions, release the buffer now. The brelse 3215 * will do a wakeup there if necessary - so no need to do a wakeup 3216 * here in the async case. The sync case always needs to do a wakeup. 3217 */ 3218 3219 if (bp->b_flags & B_ASYNC) { 3220 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 3221 brelse(bp); 3222 else 3223 bqrelse(bp); 3224 } else { 3225 bdone(bp); 3226 } 3227 splx(s); 3228 } 3229 3230 /* 3231 * This routine is called in lieu of iodone in the case of 3232 * incomplete I/O. This keeps the busy status for pages 3233 * consistant. 3234 */ 3235 void 3236 vfs_unbusy_pages(struct buf * bp) 3237 { 3238 int i; 3239 3240 GIANT_REQUIRED; 3241 3242 runningbufwakeup(bp); 3243 if (bp->b_flags & B_VMIO) { 3244 vm_object_t obj; 3245 3246 obj = bp->b_object; 3247 VM_OBJECT_LOCK(obj); 3248 vm_page_lock_queues(); 3249 for (i = 0; i < bp->b_npages; i++) { 3250 vm_page_t m = bp->b_pages[i]; 3251 3252 if (m == bogus_page) { 3253 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3254 if (!m) { 3255 panic("vfs_unbusy_pages: page missing\n"); 3256 } 3257 bp->b_pages[i] = m; 3258 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3259 } 3260 vm_object_pip_subtract(obj, 1); 3261 vm_page_flag_clear(m, PG_ZERO); 3262 vm_page_io_finish(m); 3263 } 3264 vm_page_unlock_queues(); 3265 vm_object_pip_wakeupn(obj, 0); 3266 VM_OBJECT_UNLOCK(obj); 3267 } 3268 } 3269 3270 /* 3271 * vfs_page_set_valid: 3272 * 3273 * Set the valid bits in a page based on the supplied offset. The 3274 * range is restricted to the buffer's size. 3275 * 3276 * This routine is typically called after a read completes. 3277 */ 3278 static void 3279 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3280 { 3281 vm_ooffset_t soff, eoff; 3282 3283 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 3284 /* 3285 * Start and end offsets in buffer. eoff - soff may not cross a 3286 * page boundry or cross the end of the buffer. The end of the 3287 * buffer, in this case, is our file EOF, not the allocation size 3288 * of the buffer. 3289 */ 3290 soff = off; 3291 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3292 if (eoff > bp->b_offset + bp->b_bcount) 3293 eoff = bp->b_offset + bp->b_bcount; 3294 3295 /* 3296 * Set valid range. This is typically the entire buffer and thus the 3297 * entire page. 3298 */ 3299 if (eoff > soff) { 3300 vm_page_set_validclean( 3301 m, 3302 (vm_offset_t) (soff & PAGE_MASK), 3303 (vm_offset_t) (eoff - soff) 3304 ); 3305 } 3306 } 3307 3308 /* 3309 * This routine is called before a device strategy routine. 3310 * It is used to tell the VM system that paging I/O is in 3311 * progress, and treat the pages associated with the buffer 3312 * almost as being PG_BUSY. Also the object paging_in_progress 3313 * flag is handled to make sure that the object doesn't become 3314 * inconsistant. 3315 * 3316 * Since I/O has not been initiated yet, certain buffer flags 3317 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 3318 * and should be ignored. 3319 */ 3320 void 3321 vfs_busy_pages(struct buf * bp, int clear_modify) 3322 { 3323 int i, bogus; 3324 3325 if (bp->b_flags & B_VMIO) { 3326 vm_object_t obj; 3327 vm_ooffset_t foff; 3328 3329 obj = bp->b_object; 3330 foff = bp->b_offset; 3331 KASSERT(bp->b_offset != NOOFFSET, 3332 ("vfs_busy_pages: no buffer offset")); 3333 vfs_setdirty(bp); 3334 if (obj != NULL) 3335 VM_OBJECT_LOCK(obj); 3336 retry: 3337 vm_page_lock_queues(); 3338 for (i = 0; i < bp->b_npages; i++) { 3339 vm_page_t m = bp->b_pages[i]; 3340 3341 if (vm_page_sleep_if_busy(m, FALSE, "vbpage")) 3342 goto retry; 3343 } 3344 bogus = 0; 3345 for (i = 0; i < bp->b_npages; i++) { 3346 vm_page_t m = bp->b_pages[i]; 3347 3348 vm_page_flag_clear(m, PG_ZERO); 3349 if ((bp->b_flags & B_CLUSTER) == 0) { 3350 vm_object_pip_add(obj, 1); 3351 vm_page_io_start(m); 3352 } 3353 /* 3354 * When readying a buffer for a read ( i.e 3355 * clear_modify == 0 ), it is important to do 3356 * bogus_page replacement for valid pages in 3357 * partially instantiated buffers. Partially 3358 * instantiated buffers can, in turn, occur when 3359 * reconstituting a buffer from its VM backing store 3360 * base. We only have to do this if B_CACHE is 3361 * clear ( which causes the I/O to occur in the 3362 * first place ). The replacement prevents the read 3363 * I/O from overwriting potentially dirty VM-backed 3364 * pages. XXX bogus page replacement is, uh, bogus. 3365 * It may not work properly with small-block devices. 3366 * We need to find a better way. 3367 */ 3368 pmap_remove_all(m); 3369 if (clear_modify) 3370 vfs_page_set_valid(bp, foff, i, m); 3371 else if (m->valid == VM_PAGE_BITS_ALL && 3372 (bp->b_flags & B_CACHE) == 0) { 3373 bp->b_pages[i] = bogus_page; 3374 bogus++; 3375 } 3376 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3377 } 3378 vm_page_unlock_queues(); 3379 if (obj != NULL) 3380 VM_OBJECT_UNLOCK(obj); 3381 if (bogus) 3382 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3383 } 3384 } 3385 3386 /* 3387 * Tell the VM system that the pages associated with this buffer 3388 * are clean. This is used for delayed writes where the data is 3389 * going to go to disk eventually without additional VM intevention. 3390 * 3391 * Note that while we only really need to clean through to b_bcount, we 3392 * just go ahead and clean through to b_bufsize. 3393 */ 3394 static void 3395 vfs_clean_pages(struct buf * bp) 3396 { 3397 int i; 3398 3399 GIANT_REQUIRED; 3400 3401 if (bp->b_flags & B_VMIO) { 3402 vm_ooffset_t foff; 3403 3404 foff = bp->b_offset; 3405 KASSERT(bp->b_offset != NOOFFSET, 3406 ("vfs_clean_pages: no buffer offset")); 3407 vm_page_lock_queues(); 3408 for (i = 0; i < bp->b_npages; i++) { 3409 vm_page_t m = bp->b_pages[i]; 3410 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3411 vm_ooffset_t eoff = noff; 3412 3413 if (eoff > bp->b_offset + bp->b_bufsize) 3414 eoff = bp->b_offset + bp->b_bufsize; 3415 vfs_page_set_valid(bp, foff, i, m); 3416 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3417 foff = noff; 3418 } 3419 vm_page_unlock_queues(); 3420 } 3421 } 3422 3423 /* 3424 * vfs_bio_set_validclean: 3425 * 3426 * Set the range within the buffer to valid and clean. The range is 3427 * relative to the beginning of the buffer, b_offset. Note that b_offset 3428 * itself may be offset from the beginning of the first page. 3429 * 3430 */ 3431 3432 void 3433 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3434 { 3435 if (bp->b_flags & B_VMIO) { 3436 int i; 3437 int n; 3438 3439 /* 3440 * Fixup base to be relative to beginning of first page. 3441 * Set initial n to be the maximum number of bytes in the 3442 * first page that can be validated. 3443 */ 3444 3445 base += (bp->b_offset & PAGE_MASK); 3446 n = PAGE_SIZE - (base & PAGE_MASK); 3447 3448 vm_page_lock_queues(); 3449 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3450 vm_page_t m = bp->b_pages[i]; 3451 3452 if (n > size) 3453 n = size; 3454 3455 vm_page_set_validclean(m, base & PAGE_MASK, n); 3456 base += n; 3457 size -= n; 3458 n = PAGE_SIZE; 3459 } 3460 vm_page_unlock_queues(); 3461 } 3462 } 3463 3464 /* 3465 * vfs_bio_clrbuf: 3466 * 3467 * clear a buffer. This routine essentially fakes an I/O, so we need 3468 * to clear BIO_ERROR and B_INVAL. 3469 * 3470 * Note that while we only theoretically need to clear through b_bcount, 3471 * we go ahead and clear through b_bufsize. 3472 */ 3473 3474 void 3475 vfs_bio_clrbuf(struct buf *bp) 3476 { 3477 int i, mask = 0; 3478 caddr_t sa, ea; 3479 3480 GIANT_REQUIRED; 3481 3482 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3483 bp->b_flags &= ~B_INVAL; 3484 bp->b_ioflags &= ~BIO_ERROR; 3485 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3486 (bp->b_offset & PAGE_MASK) == 0) { 3487 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3488 if ((bp->b_pages[0]->valid & mask) == mask) { 3489 bp->b_resid = 0; 3490 return; 3491 } 3492 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3493 ((bp->b_pages[0]->valid & mask) == 0)) { 3494 bzero(bp->b_data, bp->b_bufsize); 3495 bp->b_pages[0]->valid |= mask; 3496 bp->b_resid = 0; 3497 return; 3498 } 3499 } 3500 ea = sa = bp->b_data; 3501 for(i=0;i<bp->b_npages;i++,sa=ea) { 3502 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3503 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3504 ea = (caddr_t)(vm_offset_t)ulmin( 3505 (u_long)(vm_offset_t)ea, 3506 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3507 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3508 if ((bp->b_pages[i]->valid & mask) == mask) 3509 continue; 3510 if ((bp->b_pages[i]->valid & mask) == 0) { 3511 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3512 bzero(sa, ea - sa); 3513 } 3514 } else { 3515 for (; sa < ea; sa += DEV_BSIZE, j++) { 3516 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3517 (bp->b_pages[i]->valid & (1<<j)) == 0) 3518 bzero(sa, DEV_BSIZE); 3519 } 3520 } 3521 bp->b_pages[i]->valid |= mask; 3522 vm_page_lock_queues(); 3523 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3524 vm_page_unlock_queues(); 3525 } 3526 bp->b_resid = 0; 3527 } else { 3528 clrbuf(bp); 3529 } 3530 } 3531 3532 /* 3533 * vm_hold_load_pages and vm_hold_free_pages get pages into 3534 * a buffers address space. The pages are anonymous and are 3535 * not associated with a file object. 3536 */ 3537 static void 3538 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3539 { 3540 vm_offset_t pg; 3541 vm_page_t p; 3542 int index; 3543 3544 GIANT_REQUIRED; 3545 3546 to = round_page(to); 3547 from = round_page(from); 3548 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3549 3550 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3551 tryagain: 3552 /* 3553 * note: must allocate system pages since blocking here 3554 * could intefere with paging I/O, no matter which 3555 * process we are. 3556 */ 3557 VM_OBJECT_LOCK(kernel_object); 3558 p = vm_page_alloc(kernel_object, 3559 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3560 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 3561 VM_OBJECT_UNLOCK(kernel_object); 3562 if (!p) { 3563 atomic_add_int(&vm_pageout_deficit, 3564 (to - pg) >> PAGE_SHIFT); 3565 VM_WAIT; 3566 goto tryagain; 3567 } 3568 vm_page_lock_queues(); 3569 p->valid = VM_PAGE_BITS_ALL; 3570 vm_page_unlock_queues(); 3571 pmap_qenter(pg, &p, 1); 3572 bp->b_pages[index] = p; 3573 vm_page_lock_queues(); 3574 vm_page_wakeup(p); 3575 vm_page_unlock_queues(); 3576 } 3577 bp->b_npages = index; 3578 } 3579 3580 /* Return pages associated with this buf to the vm system */ 3581 static void 3582 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3583 { 3584 vm_offset_t pg; 3585 vm_page_t p; 3586 int index, newnpages; 3587 3588 GIANT_REQUIRED; 3589 3590 from = round_page(from); 3591 to = round_page(to); 3592 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3593 3594 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3595 p = bp->b_pages[index]; 3596 if (p && (index < bp->b_npages)) { 3597 if (p->busy) { 3598 printf( 3599 "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 3600 (intmax_t)bp->b_blkno, 3601 (intmax_t)bp->b_lblkno); 3602 } 3603 bp->b_pages[index] = NULL; 3604 pmap_qremove(pg, 1); 3605 vm_page_lock_queues(); 3606 vm_page_busy(p); 3607 vm_page_unwire(p, 0); 3608 vm_page_free(p); 3609 vm_page_unlock_queues(); 3610 } 3611 } 3612 bp->b_npages = newnpages; 3613 } 3614 3615 /* 3616 * Map an IO request into kernel virtual address space. 3617 * 3618 * All requests are (re)mapped into kernel VA space. 3619 * Notice that we use b_bufsize for the size of the buffer 3620 * to be mapped. b_bcount might be modified by the driver. 3621 * 3622 * Note that even if the caller determines that the address space should 3623 * be valid, a race or a smaller-file mapped into a larger space may 3624 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 3625 * check the return value. 3626 */ 3627 int 3628 vmapbuf(struct buf *bp) 3629 { 3630 caddr_t addr, kva; 3631 vm_paddr_t pa; 3632 int pidx, i; 3633 struct vm_page *m; 3634 struct pmap *pmap = &curproc->p_vmspace->vm_pmap; 3635 3636 GIANT_REQUIRED; 3637 3638 if ((bp->b_flags & B_PHYS) == 0) 3639 panic("vmapbuf"); 3640 if (bp->b_bufsize < 0) 3641 return (-1); 3642 for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0; 3643 addr < bp->b_data + bp->b_bufsize; 3644 addr += PAGE_SIZE, pidx++) { 3645 /* 3646 * Do the vm_fault if needed; do the copy-on-write thing 3647 * when reading stuff off device into memory. 3648 * 3649 * NOTE! Must use pmap_extract() because addr may be in 3650 * the userland address space, and kextract is only guarenteed 3651 * to work for the kernland address space (see: sparc64 port). 3652 */ 3653 retry: 3654 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3655 (bp->b_iocmd == BIO_READ) ? 3656 (VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ); 3657 if (i < 0) { 3658 vm_page_lock_queues(); 3659 for (i = 0; i < pidx; ++i) { 3660 vm_page_unhold(bp->b_pages[i]); 3661 bp->b_pages[i] = NULL; 3662 } 3663 vm_page_unlock_queues(); 3664 return(-1); 3665 } 3666 pa = pmap_extract(pmap, (vm_offset_t)addr); 3667 if (pa == 0) { 3668 printf("vmapbuf: warning, race against user address during I/O"); 3669 goto retry; 3670 } 3671 m = PHYS_TO_VM_PAGE(pa); 3672 vm_page_lock_queues(); 3673 vm_page_hold(m); 3674 vm_page_unlock_queues(); 3675 bp->b_pages[pidx] = m; 3676 } 3677 if (pidx > btoc(MAXPHYS)) 3678 panic("vmapbuf: mapped more than MAXPHYS"); 3679 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 3680 3681 kva = bp->b_saveaddr; 3682 bp->b_npages = pidx; 3683 bp->b_saveaddr = bp->b_data; 3684 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3685 return(0); 3686 } 3687 3688 /* 3689 * Free the io map PTEs associated with this IO operation. 3690 * We also invalidate the TLB entries and restore the original b_addr. 3691 */ 3692 void 3693 vunmapbuf(struct buf *bp) 3694 { 3695 int pidx; 3696 int npages; 3697 3698 GIANT_REQUIRED; 3699 3700 if ((bp->b_flags & B_PHYS) == 0) 3701 panic("vunmapbuf"); 3702 3703 npages = bp->b_npages; 3704 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3705 npages); 3706 vm_page_lock_queues(); 3707 for (pidx = 0; pidx < npages; pidx++) 3708 vm_page_unhold(bp->b_pages[pidx]); 3709 vm_page_unlock_queues(); 3710 3711 bp->b_data = bp->b_saveaddr; 3712 } 3713 3714 void 3715 bdone(struct buf *bp) 3716 { 3717 mtx_lock(&bdonelock); 3718 bp->b_flags |= B_DONE; 3719 wakeup(bp); 3720 mtx_unlock(&bdonelock); 3721 } 3722 3723 void 3724 bwait(struct buf *bp, u_char pri, const char *wchan) 3725 { 3726 mtx_lock(&bdonelock); 3727 while ((bp->b_flags & B_DONE) == 0) 3728 msleep(bp, &bdonelock, pri, wchan, 0); 3729 mtx_unlock(&bdonelock); 3730 } 3731 3732 #include "opt_ddb.h" 3733 #ifdef DDB 3734 #include <ddb/ddb.h> 3735 3736 /* DDB command to show buffer data */ 3737 DB_SHOW_COMMAND(buffer, db_show_buffer) 3738 { 3739 /* get args */ 3740 struct buf *bp = (struct buf *)addr; 3741 3742 if (!have_addr) { 3743 db_printf("usage: show buffer <addr>\n"); 3744 return; 3745 } 3746 3747 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3748 db_printf( 3749 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 3750 "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n", 3751 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3752 major(bp->b_dev), minor(bp->b_dev), bp->b_data, 3753 (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno); 3754 if (bp->b_npages) { 3755 int i; 3756 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3757 for (i = 0; i < bp->b_npages; i++) { 3758 vm_page_t m; 3759 m = bp->b_pages[i]; 3760 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3761 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3762 if ((i + 1) < bp->b_npages) 3763 db_printf(","); 3764 } 3765 db_printf("\n"); 3766 } 3767 } 3768 #endif /* DDB */ 3769