xref: /freebsd/sys/kern/vfs_bio.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  */
14 
15 /*
16  * this file contains a new buffer I/O scheme implementing a coherent
17  * VM object and buffer cache scheme.  Pains have been taken to make
18  * sure that the performance degradation associated with schemes such
19  * as this is not realized.
20  *
21  * Author:  John S. Dyson
22  * Significant help during the development and debugging phases
23  * had been provided by David Greenman, also of the FreeBSD core team.
24  *
25  * see man buf(9) for more info.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/mutex.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/proc.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include "opt_directio.h"
57 #include "opt_swap.h"
58 
59 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
60 
61 struct	bio_ops bioops;		/* I/O operation notification */
62 
63 struct	buf_ops buf_ops_bio = {
64 	"buf_ops_bio",
65 	bwrite
66 };
67 
68 /*
69  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
70  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
71  */
72 struct buf *buf;		/* buffer header pool */
73 
74 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
75 		vm_offset_t to);
76 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
77 		vm_offset_t to);
78 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
79 			       int pageno, vm_page_t m);
80 static void vfs_clean_pages(struct buf * bp);
81 static void vfs_setdirty(struct buf *bp);
82 static void vfs_vmio_release(struct buf *bp);
83 static void vfs_backgroundwritedone(struct buf *bp);
84 static int vfs_bio_clcheck(struct vnode *vp, int size,
85 		daddr_t lblkno, daddr_t blkno);
86 static int flushbufqueues(int flushdeps);
87 static void buf_daemon(void);
88 void bremfreel(struct buf * bp);
89 
90 int vmiodirenable = TRUE;
91 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
92     "Use the VM system for directory writes");
93 int runningbufspace;
94 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
95     "Amount of presently outstanding async buffer io");
96 static int bufspace;
97 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
98     "KVA memory used for bufs");
99 static int maxbufspace;
100 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
101     "Maximum allowed value of bufspace (including buf_daemon)");
102 static int bufmallocspace;
103 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
104     "Amount of malloced memory for buffers");
105 static int maxbufmallocspace;
106 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
107     "Maximum amount of malloced memory for buffers");
108 static int lobufspace;
109 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
110     "Minimum amount of buffers we want to have");
111 static int hibufspace;
112 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
113     "Maximum allowed value of bufspace (excluding buf_daemon)");
114 static int bufreusecnt;
115 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
116     "Number of times we have reused a buffer");
117 static int buffreekvacnt;
118 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
119     "Number of times we have freed the KVA space from some buffer");
120 static int bufdefragcnt;
121 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
122     "Number of times we have had to repeat buffer allocation to defragment");
123 static int lorunningspace;
124 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
125     "Minimum preferred space used for in-progress I/O");
126 static int hirunningspace;
127 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
128     "Maximum amount of space to use for in-progress I/O");
129 static int dirtybufferflushes;
130 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
131     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
132 static int altbufferflushes;
133 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
134     0, "Number of fsync flushes to limit dirty buffers");
135 static int recursiveflushes;
136 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
137     0, "Number of flushes skipped due to being recursive");
138 static int numdirtybuffers;
139 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
140     "Number of buffers that are dirty (has unwritten changes) at the moment");
141 static int lodirtybuffers;
142 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
143     "How many buffers we want to have free before bufdaemon can sleep");
144 static int hidirtybuffers;
145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
146     "When the number of dirty buffers is considered severe");
147 static int dirtybufthresh;
148 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
149     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
150 static int numfreebuffers;
151 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
152     "Number of free buffers");
153 static int lofreebuffers;
154 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
155    "XXX Unused");
156 static int hifreebuffers;
157 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
158    "XXX Complicatedly unused");
159 static int getnewbufcalls;
160 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
161    "Number of calls to getnewbuf");
162 static int getnewbufrestarts;
163 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
164     "Number of times getnewbuf has had to restart a buffer aquisition");
165 static int dobkgrdwrite = 1;
166 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
167     "Do background writes (honoring the BV_BKGRDWRITE flag)?");
168 
169 /*
170  * Wakeup point for bufdaemon, as well as indicator of whether it is already
171  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
172  * is idling.
173  */
174 static int bd_request;
175 
176 /*
177  * This lock synchronizes access to bd_request.
178  */
179 static struct mtx bdlock;
180 
181 /*
182  * bogus page -- for I/O to/from partially complete buffers
183  * this is a temporary solution to the problem, but it is not
184  * really that bad.  it would be better to split the buffer
185  * for input in the case of buffers partially already in memory,
186  * but the code is intricate enough already.
187  */
188 vm_page_t bogus_page;
189 
190 /*
191  * Synchronization (sleep/wakeup) variable for active buffer space requests.
192  * Set when wait starts, cleared prior to wakeup().
193  * Used in runningbufwakeup() and waitrunningbufspace().
194  */
195 static int runningbufreq;
196 
197 /*
198  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
199  * waitrunningbufspace().
200  */
201 static struct mtx rbreqlock;
202 
203 /*
204  * Synchronization (sleep/wakeup) variable for buffer requests.
205  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
206  * by and/or.
207  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
208  * getnewbuf(), and getblk().
209  */
210 static int needsbuffer;
211 
212 /*
213  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
214  */
215 static struct mtx nblock;
216 
217 /*
218  * Lock that protects against bwait()/bdone()/B_DONE races.
219  */
220 
221 static struct mtx bdonelock;
222 
223 /*
224  * Definitions for the buffer free lists.
225  */
226 #define BUFFER_QUEUES	5	/* number of free buffer queues */
227 
228 #define QUEUE_NONE	0	/* on no queue */
229 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
230 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
231 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
232 #define QUEUE_EMPTY	4	/* empty buffer headers */
233 
234 /* Queues for free buffers with various properties */
235 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
236 
237 /* Lock for the bufqueues */
238 static struct mtx bqlock;
239 
240 /*
241  * Single global constant for BUF_WMESG, to avoid getting multiple references.
242  * buf_wmesg is referred from macros.
243  */
244 const char *buf_wmesg = BUF_WMESG;
245 
246 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
247 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
248 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
249 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
250 
251 #ifdef DIRECTIO
252 extern void ffs_rawread_setup(void);
253 #endif /* DIRECTIO */
254 /*
255  *	numdirtywakeup:
256  *
257  *	If someone is blocked due to there being too many dirty buffers,
258  *	and numdirtybuffers is now reasonable, wake them up.
259  */
260 
261 static __inline void
262 numdirtywakeup(int level)
263 {
264 	if (numdirtybuffers <= level) {
265 		mtx_lock(&nblock);
266 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
267 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
268 			wakeup(&needsbuffer);
269 		}
270 		mtx_unlock(&nblock);
271 	}
272 }
273 
274 /*
275  *	bufspacewakeup:
276  *
277  *	Called when buffer space is potentially available for recovery.
278  *	getnewbuf() will block on this flag when it is unable to free
279  *	sufficient buffer space.  Buffer space becomes recoverable when
280  *	bp's get placed back in the queues.
281  */
282 
283 static __inline void
284 bufspacewakeup(void)
285 {
286 	/*
287 	 * If someone is waiting for BUF space, wake them up.  Even
288 	 * though we haven't freed the kva space yet, the waiting
289 	 * process will be able to now.
290 	 */
291 	mtx_lock(&nblock);
292 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
293 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
294 		wakeup(&needsbuffer);
295 	}
296 	mtx_unlock(&nblock);
297 }
298 
299 /*
300  * runningbufwakeup() - in-progress I/O accounting.
301  *
302  */
303 static __inline void
304 runningbufwakeup(struct buf *bp)
305 {
306 	if (bp->b_runningbufspace) {
307 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
308 		bp->b_runningbufspace = 0;
309 		mtx_lock(&rbreqlock);
310 		if (runningbufreq && runningbufspace <= lorunningspace) {
311 			runningbufreq = 0;
312 			wakeup(&runningbufreq);
313 		}
314 		mtx_unlock(&rbreqlock);
315 	}
316 }
317 
318 /*
319  *	bufcountwakeup:
320  *
321  *	Called when a buffer has been added to one of the free queues to
322  *	account for the buffer and to wakeup anyone waiting for free buffers.
323  *	This typically occurs when large amounts of metadata are being handled
324  *	by the buffer cache ( else buffer space runs out first, usually ).
325  */
326 
327 static __inline void
328 bufcountwakeup(void)
329 {
330 	atomic_add_int(&numfreebuffers, 1);
331 	mtx_lock(&nblock);
332 	if (needsbuffer) {
333 		needsbuffer &= ~VFS_BIO_NEED_ANY;
334 		if (numfreebuffers >= hifreebuffers)
335 			needsbuffer &= ~VFS_BIO_NEED_FREE;
336 		wakeup(&needsbuffer);
337 	}
338 	mtx_unlock(&nblock);
339 }
340 
341 /*
342  *	waitrunningbufspace()
343  *
344  *	runningbufspace is a measure of the amount of I/O currently
345  *	running.  This routine is used in async-write situations to
346  *	prevent creating huge backups of pending writes to a device.
347  *	Only asynchronous writes are governed by this function.
348  *
349  *	Reads will adjust runningbufspace, but will not block based on it.
350  *	The read load has a side effect of reducing the allowed write load.
351  *
352  *	This does NOT turn an async write into a sync write.  It waits
353  *	for earlier writes to complete and generally returns before the
354  *	caller's write has reached the device.
355  */
356 static __inline void
357 waitrunningbufspace(void)
358 {
359 	mtx_lock(&rbreqlock);
360 	while (runningbufspace > hirunningspace) {
361 		++runningbufreq;
362 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
363 	}
364 	mtx_unlock(&rbreqlock);
365 }
366 
367 
368 /*
369  *	vfs_buf_test_cache:
370  *
371  *	Called when a buffer is extended.  This function clears the B_CACHE
372  *	bit if the newly extended portion of the buffer does not contain
373  *	valid data.
374  */
375 static __inline__
376 void
377 vfs_buf_test_cache(struct buf *bp,
378 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
379 		  vm_page_t m)
380 {
381 	GIANT_REQUIRED;
382 
383 	if (bp->b_flags & B_CACHE) {
384 		int base = (foff + off) & PAGE_MASK;
385 		if (vm_page_is_valid(m, base, size) == 0)
386 			bp->b_flags &= ~B_CACHE;
387 	}
388 }
389 
390 /* Wake up the buffer deamon if necessary */
391 static __inline__
392 void
393 bd_wakeup(int dirtybuflevel)
394 {
395 	mtx_lock(&bdlock);
396 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
397 		bd_request = 1;
398 		wakeup(&bd_request);
399 	}
400 	mtx_unlock(&bdlock);
401 }
402 
403 /*
404  * bd_speedup - speedup the buffer cache flushing code
405  */
406 
407 static __inline__
408 void
409 bd_speedup(void)
410 {
411 	bd_wakeup(1);
412 }
413 
414 /*
415  * Calculating buffer cache scaling values and reserve space for buffer
416  * headers.  This is called during low level kernel initialization and
417  * may be called more then once.  We CANNOT write to the memory area
418  * being reserved at this time.
419  */
420 caddr_t
421 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
422 {
423 	/*
424 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
425 	 * PAGE_SIZE is >= 1K)
426 	 */
427 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
428 
429 	/*
430 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
431 	 * For the first 64MB of ram nominally allocate sufficient buffers to
432 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
433 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
434 	 * the buffer cache we limit the eventual kva reservation to
435 	 * maxbcache bytes.
436 	 *
437 	 * factor represents the 1/4 x ram conversion.
438 	 */
439 	if (nbuf == 0) {
440 		int factor = 4 * BKVASIZE / 1024;
441 
442 		nbuf = 50;
443 		if (physmem_est > 4096)
444 			nbuf += min((physmem_est - 4096) / factor,
445 			    65536 / factor);
446 		if (physmem_est > 65536)
447 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
448 
449 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
450 			nbuf = maxbcache / BKVASIZE;
451 	}
452 
453 #if 0
454 	/*
455 	 * Do not allow the buffer_map to be more then 1/2 the size of the
456 	 * kernel_map.
457 	 */
458 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
459 	    (BKVASIZE * 2)) {
460 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
461 		    (BKVASIZE * 2);
462 		printf("Warning: nbufs capped at %d\n", nbuf);
463 	}
464 #endif
465 
466 	/*
467 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
468 	 * We have no less then 16 and no more then 256.
469 	 */
470 	nswbuf = max(min(nbuf/4, 256), 16);
471 #ifdef NSWBUF_MIN
472 	if (nswbuf < NSWBUF_MIN)
473 		nswbuf = NSWBUF_MIN;
474 #endif
475 #ifdef DIRECTIO
476 	ffs_rawread_setup();
477 #endif
478 
479 	/*
480 	 * Reserve space for the buffer cache buffers
481 	 */
482 	swbuf = (void *)v;
483 	v = (caddr_t)(swbuf + nswbuf);
484 	buf = (void *)v;
485 	v = (caddr_t)(buf + nbuf);
486 
487 	return(v);
488 }
489 
490 /* Initialize the buffer subsystem.  Called before use of any buffers. */
491 void
492 bufinit(void)
493 {
494 	struct buf *bp;
495 	int i;
496 
497 	GIANT_REQUIRED;
498 
499 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
500 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
501 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
502 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
503 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
504 
505 	/* next, make a null set of free lists */
506 	for (i = 0; i < BUFFER_QUEUES; i++)
507 		TAILQ_INIT(&bufqueues[i]);
508 
509 	/* finally, initialize each buffer header and stick on empty q */
510 	for (i = 0; i < nbuf; i++) {
511 		bp = &buf[i];
512 		bzero(bp, sizeof *bp);
513 		bp->b_flags = B_INVAL;	/* we're just an empty header */
514 		bp->b_dev = NODEV;
515 		bp->b_rcred = NOCRED;
516 		bp->b_wcred = NOCRED;
517 		bp->b_qindex = QUEUE_EMPTY;
518 		bp->b_vflags = 0;
519 		bp->b_xflags = 0;
520 		LIST_INIT(&bp->b_dep);
521 		BUF_LOCKINIT(bp);
522 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
523 	}
524 
525 	/*
526 	 * maxbufspace is the absolute maximum amount of buffer space we are
527 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
528 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
529 	 * used by most other processes.  The differential is required to
530 	 * ensure that buf_daemon is able to run when other processes might
531 	 * be blocked waiting for buffer space.
532 	 *
533 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
534 	 * this may result in KVM fragmentation which is not handled optimally
535 	 * by the system.
536 	 */
537 	maxbufspace = nbuf * BKVASIZE;
538 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
539 	lobufspace = hibufspace - MAXBSIZE;
540 
541 	lorunningspace = 512 * 1024;
542 	hirunningspace = 1024 * 1024;
543 
544 /*
545  * Limit the amount of malloc memory since it is wired permanently into
546  * the kernel space.  Even though this is accounted for in the buffer
547  * allocation, we don't want the malloced region to grow uncontrolled.
548  * The malloc scheme improves memory utilization significantly on average
549  * (small) directories.
550  */
551 	maxbufmallocspace = hibufspace / 20;
552 
553 /*
554  * Reduce the chance of a deadlock occuring by limiting the number
555  * of delayed-write dirty buffers we allow to stack up.
556  */
557 	hidirtybuffers = nbuf / 4 + 20;
558 	dirtybufthresh = hidirtybuffers * 9 / 10;
559 	numdirtybuffers = 0;
560 /*
561  * To support extreme low-memory systems, make sure hidirtybuffers cannot
562  * eat up all available buffer space.  This occurs when our minimum cannot
563  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
564  * BKVASIZE'd (8K) buffers.
565  */
566 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
567 		hidirtybuffers >>= 1;
568 	}
569 	lodirtybuffers = hidirtybuffers / 2;
570 
571 /*
572  * Try to keep the number of free buffers in the specified range,
573  * and give special processes (e.g. like buf_daemon) access to an
574  * emergency reserve.
575  */
576 	lofreebuffers = nbuf / 18 + 5;
577 	hifreebuffers = 2 * lofreebuffers;
578 	numfreebuffers = nbuf;
579 
580 /*
581  * Maximum number of async ops initiated per buf_daemon loop.  This is
582  * somewhat of a hack at the moment, we really need to limit ourselves
583  * based on the number of bytes of I/O in-transit that were initiated
584  * from buf_daemon.
585  */
586 
587 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
588 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
589 }
590 
591 /*
592  * bfreekva() - free the kva allocation for a buffer.
593  *
594  *	Must be called at splbio() or higher as this is the only locking for
595  *	buffer_map.
596  *
597  *	Since this call frees up buffer space, we call bufspacewakeup().
598  */
599 static void
600 bfreekva(struct buf * bp)
601 {
602 	GIANT_REQUIRED;
603 
604 	if (bp->b_kvasize) {
605 		atomic_add_int(&buffreekvacnt, 1);
606 		atomic_subtract_int(&bufspace, bp->b_kvasize);
607 		vm_map_delete(buffer_map,
608 		    (vm_offset_t) bp->b_kvabase,
609 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
610 		);
611 		bp->b_kvasize = 0;
612 		bufspacewakeup();
613 	}
614 }
615 
616 /*
617  *	bremfree:
618  *
619  *	Remove the buffer from the appropriate free list.
620  */
621 void
622 bremfree(struct buf * bp)
623 {
624 	mtx_lock(&bqlock);
625 	bremfreel(bp);
626 	mtx_unlock(&bqlock);
627 }
628 
629 void
630 bremfreel(struct buf * bp)
631 {
632 	int s = splbio();
633 	int old_qindex = bp->b_qindex;
634 
635 	GIANT_REQUIRED;
636 
637 	if (bp->b_qindex != QUEUE_NONE) {
638 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
639 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
640 		bp->b_qindex = QUEUE_NONE;
641 	} else {
642 		if (BUF_REFCNT(bp) <= 1)
643 			panic("bremfree: removing a buffer not on a queue");
644 	}
645 
646 	/*
647 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
648 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
649 	 * the buffer was free and we must decrement numfreebuffers.
650 	 */
651 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
652 		switch(old_qindex) {
653 		case QUEUE_DIRTY:
654 		case QUEUE_CLEAN:
655 		case QUEUE_EMPTY:
656 		case QUEUE_EMPTYKVA:
657 			atomic_subtract_int(&numfreebuffers, 1);
658 			break;
659 		default:
660 			break;
661 		}
662 	}
663 	splx(s);
664 }
665 
666 
667 /*
668  * Get a buffer with the specified data.  Look in the cache first.  We
669  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
670  * is set, the buffer is valid and we do not have to do anything ( see
671  * getblk() ).  This is really just a special case of breadn().
672  */
673 int
674 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
675     struct buf ** bpp)
676 {
677 
678 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
679 }
680 
681 /*
682  * Operates like bread, but also starts asynchronous I/O on
683  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
684  * to initiating I/O . If B_CACHE is set, the buffer is valid
685  * and we do not have to do anything.
686  */
687 int
688 breadn(struct vnode * vp, daddr_t blkno, int size,
689     daddr_t * rablkno, int *rabsize,
690     int cnt, struct ucred * cred, struct buf ** bpp)
691 {
692 	struct buf *bp, *rabp;
693 	int i;
694 	int rv = 0, readwait = 0;
695 
696 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
697 
698 	/* if not found in cache, do some I/O */
699 	if ((bp->b_flags & B_CACHE) == 0) {
700 		if (curthread != PCPU_GET(idlethread))
701 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
702 		bp->b_iocmd = BIO_READ;
703 		bp->b_flags &= ~B_INVAL;
704 		bp->b_ioflags &= ~BIO_ERROR;
705 		if (bp->b_rcred == NOCRED && cred != NOCRED)
706 			bp->b_rcred = crhold(cred);
707 		vfs_busy_pages(bp, 0);
708 		if (vp->v_type == VCHR)
709 			VOP_SPECSTRATEGY(vp, bp);
710 		else
711 			VOP_STRATEGY(vp, bp);
712 		++readwait;
713 	}
714 
715 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
716 		if (inmem(vp, *rablkno))
717 			continue;
718 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
719 
720 		if ((rabp->b_flags & B_CACHE) == 0) {
721 			if (curthread != PCPU_GET(idlethread))
722 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
723 			rabp->b_flags |= B_ASYNC;
724 			rabp->b_flags &= ~B_INVAL;
725 			rabp->b_ioflags &= ~BIO_ERROR;
726 			rabp->b_iocmd = BIO_READ;
727 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
728 				rabp->b_rcred = crhold(cred);
729 			vfs_busy_pages(rabp, 0);
730 			BUF_KERNPROC(rabp);
731 			if (vp->v_type == VCHR)
732 				VOP_SPECSTRATEGY(vp, rabp);
733 			else
734 				VOP_STRATEGY(vp, rabp);
735 		} else {
736 			brelse(rabp);
737 		}
738 	}
739 
740 	if (readwait) {
741 		rv = bufwait(bp);
742 	}
743 	return (rv);
744 }
745 
746 /*
747  * Write, release buffer on completion.  (Done by iodone
748  * if async).  Do not bother writing anything if the buffer
749  * is invalid.
750  *
751  * Note that we set B_CACHE here, indicating that buffer is
752  * fully valid and thus cacheable.  This is true even of NFS
753  * now so we set it generally.  This could be set either here
754  * or in biodone() since the I/O is synchronous.  We put it
755  * here.
756  */
757 
758 int
759 bwrite(struct buf * bp)
760 {
761 	int oldflags, s;
762 	struct buf *newbp;
763 
764 	if (bp->b_flags & B_INVAL) {
765 		brelse(bp);
766 		return (0);
767 	}
768 
769 	oldflags = bp->b_flags;
770 
771 	if (BUF_REFCNT(bp) == 0)
772 		panic("bwrite: buffer is not busy???");
773 	s = splbio();
774 	/*
775 	 * If a background write is already in progress, delay
776 	 * writing this block if it is asynchronous. Otherwise
777 	 * wait for the background write to complete.
778 	 */
779 	VI_LOCK(bp->b_vp);
780 	if (bp->b_vflags & BV_BKGRDINPROG) {
781 		if (bp->b_flags & B_ASYNC) {
782 			VI_UNLOCK(bp->b_vp);
783 			splx(s);
784 			bdwrite(bp);
785 			return (0);
786 		}
787 		bp->b_vflags |= BV_BKGRDWAIT;
788 		msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
789 		if (bp->b_vflags & BV_BKGRDINPROG)
790 			panic("bwrite: still writing");
791 	}
792 	VI_UNLOCK(bp->b_vp);
793 
794 	/* Mark the buffer clean */
795 	bundirty(bp);
796 
797 	/*
798 	 * If this buffer is marked for background writing and we
799 	 * do not have to wait for it, make a copy and write the
800 	 * copy so as to leave this buffer ready for further use.
801 	 *
802 	 * This optimization eats a lot of memory.  If we have a page
803 	 * or buffer shortfall we can't do it.
804 	 */
805 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
806 	    (bp->b_flags & B_ASYNC) &&
807 	    !vm_page_count_severe() &&
808 	    !buf_dirty_count_severe()) {
809 		if (bp->b_iodone != NULL) {
810 			printf("bp->b_iodone = %p\n", bp->b_iodone);
811 			panic("bwrite: need chained iodone");
812 		}
813 
814 		/* get a new block */
815 		newbp = geteblk(bp->b_bufsize);
816 
817 		/*
818 		 * set it to be identical to the old block.  We have to
819 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
820 		 * to avoid confusing the splay tree and gbincore().
821 		 */
822 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
823 		newbp->b_lblkno = bp->b_lblkno;
824 		newbp->b_xflags |= BX_BKGRDMARKER;
825 		VI_LOCK(bp->b_vp);
826 		bp->b_vflags |= BV_BKGRDINPROG;
827 		bgetvp(bp->b_vp, newbp);
828 		VI_UNLOCK(bp->b_vp);
829 		newbp->b_blkno = bp->b_blkno;
830 		newbp->b_offset = bp->b_offset;
831 		newbp->b_iodone = vfs_backgroundwritedone;
832 		newbp->b_flags |= B_ASYNC;
833 		newbp->b_flags &= ~B_INVAL;
834 
835 		/* move over the dependencies */
836 		if (LIST_FIRST(&bp->b_dep) != NULL)
837 			buf_movedeps(bp, newbp);
838 
839 		/*
840 		 * Initiate write on the copy, release the original to
841 		 * the B_LOCKED queue so that it cannot go away until
842 		 * the background write completes. If not locked it could go
843 		 * away and then be reconstituted while it was being written.
844 		 * If the reconstituted buffer were written, we could end up
845 		 * with two background copies being written at the same time.
846 		 */
847 		bqrelse(bp);
848 		bp = newbp;
849 	}
850 
851 	bp->b_flags &= ~B_DONE;
852 	bp->b_ioflags &= ~BIO_ERROR;
853 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
854 	bp->b_iocmd = BIO_WRITE;
855 
856 	VI_LOCK(bp->b_vp);
857 	bp->b_vp->v_numoutput++;
858 	VI_UNLOCK(bp->b_vp);
859 	vfs_busy_pages(bp, 1);
860 
861 	/*
862 	 * Normal bwrites pipeline writes
863 	 */
864 	bp->b_runningbufspace = bp->b_bufsize;
865 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
866 
867 	if (curthread != PCPU_GET(idlethread))
868 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
869 	splx(s);
870 	if (oldflags & B_ASYNC)
871 		BUF_KERNPROC(bp);
872 	if (bp->b_vp->v_type == VCHR)
873 		VOP_SPECSTRATEGY(bp->b_vp, bp);
874 	else
875 		VOP_STRATEGY(bp->b_vp, bp);
876 
877 	if ((oldflags & B_ASYNC) == 0) {
878 		int rtval = bufwait(bp);
879 		brelse(bp);
880 		return (rtval);
881 	} else {
882 		/*
883 		 * don't allow the async write to saturate the I/O
884 		 * system.  We will not deadlock here because
885 		 * we are blocking waiting for I/O that is already in-progress
886 		 * to complete.
887 		 */
888 		waitrunningbufspace();
889 	}
890 
891 	return (0);
892 }
893 
894 /*
895  * Complete a background write started from bwrite.
896  */
897 static void
898 vfs_backgroundwritedone(bp)
899 	struct buf *bp;
900 {
901 	struct buf *origbp;
902 
903 	/*
904 	 * Find the original buffer that we are writing.
905 	 */
906 	VI_LOCK(bp->b_vp);
907 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
908 		panic("backgroundwritedone: lost buffer");
909 
910 	/*
911 	 * Clear the BV_BKGRDINPROG flag in the original buffer
912 	 * and awaken it if it is waiting for the write to complete.
913 	 * If BV_BKGRDINPROG is not set in the original buffer it must
914 	 * have been released and re-instantiated - which is not legal.
915 	 */
916 	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
917 	    ("backgroundwritedone: lost buffer2"));
918 	origbp->b_vflags &= ~BV_BKGRDINPROG;
919 	if (origbp->b_vflags & BV_BKGRDWAIT) {
920 		origbp->b_vflags &= ~BV_BKGRDWAIT;
921 		wakeup(&origbp->b_xflags);
922 	}
923 	VI_UNLOCK(bp->b_vp);
924 	/*
925 	 * Process dependencies then return any unfinished ones.
926 	 */
927 	if (LIST_FIRST(&bp->b_dep) != NULL)
928 		buf_complete(bp);
929 	if (LIST_FIRST(&bp->b_dep) != NULL)
930 		buf_movedeps(bp, origbp);
931 
932 	/*
933 	 * This buffer is marked B_NOCACHE, so when it is released
934 	 * by biodone, it will be tossed. We mark it with BIO_READ
935 	 * to avoid biodone doing a second vwakeup.
936 	 */
937 	bp->b_flags |= B_NOCACHE;
938 	bp->b_iocmd = BIO_READ;
939 	bp->b_flags &= ~(B_CACHE | B_DONE);
940 	bp->b_iodone = 0;
941 	bufdone(bp);
942 }
943 
944 /*
945  * Delayed write. (Buffer is marked dirty).  Do not bother writing
946  * anything if the buffer is marked invalid.
947  *
948  * Note that since the buffer must be completely valid, we can safely
949  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
950  * biodone() in order to prevent getblk from writing the buffer
951  * out synchronously.
952  */
953 void
954 bdwrite(struct buf * bp)
955 {
956 	struct thread *td = curthread;
957 	struct vnode *vp;
958 	struct buf *nbp;
959 
960 	GIANT_REQUIRED;
961 
962 	if (BUF_REFCNT(bp) == 0)
963 		panic("bdwrite: buffer is not busy");
964 
965 	if (bp->b_flags & B_INVAL) {
966 		brelse(bp);
967 		return;
968 	}
969 
970 	/*
971 	 * If we have too many dirty buffers, don't create any more.
972 	 * If we are wildly over our limit, then force a complete
973 	 * cleanup. Otherwise, just keep the situation from getting
974 	 * out of control. Note that we have to avoid a recursive
975 	 * disaster and not try to clean up after our own cleanup!
976 	 */
977 	vp = bp->b_vp;
978 	VI_LOCK(vp);
979 	if (td->td_proc->p_flag & P_COWINPROGRESS) {
980 		recursiveflushes++;
981 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
982 		VI_UNLOCK(vp);
983 		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
984 		VI_LOCK(vp);
985 		altbufferflushes++;
986 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
987 		/*
988 		 * Try to find a buffer to flush.
989 		 */
990 		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
991 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
992 			    buf_countdeps(nbp, 0) ||
993 			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
994 				continue;
995 			if (bp == nbp)
996 				panic("bdwrite: found ourselves");
997 			VI_UNLOCK(vp);
998 			if (nbp->b_flags & B_CLUSTEROK) {
999 				vfs_bio_awrite(nbp);
1000 			} else {
1001 				bremfree(nbp);
1002 				bawrite(nbp);
1003 			}
1004 			VI_LOCK(vp);
1005 			dirtybufferflushes++;
1006 			break;
1007 		}
1008 	}
1009 	VI_UNLOCK(vp);
1010 
1011 	bdirty(bp);
1012 	/*
1013 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1014 	 * true even of NFS now.
1015 	 */
1016 	bp->b_flags |= B_CACHE;
1017 
1018 	/*
1019 	 * This bmap keeps the system from needing to do the bmap later,
1020 	 * perhaps when the system is attempting to do a sync.  Since it
1021 	 * is likely that the indirect block -- or whatever other datastructure
1022 	 * that the filesystem needs is still in memory now, it is a good
1023 	 * thing to do this.  Note also, that if the pageout daemon is
1024 	 * requesting a sync -- there might not be enough memory to do
1025 	 * the bmap then...  So, this is important to do.
1026 	 */
1027 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1028 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1029 	}
1030 
1031 	/*
1032 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1033 	 */
1034 	vfs_setdirty(bp);
1035 
1036 	/*
1037 	 * We need to do this here to satisfy the vnode_pager and the
1038 	 * pageout daemon, so that it thinks that the pages have been
1039 	 * "cleaned".  Note that since the pages are in a delayed write
1040 	 * buffer -- the VFS layer "will" see that the pages get written
1041 	 * out on the next sync, or perhaps the cluster will be completed.
1042 	 */
1043 	vfs_clean_pages(bp);
1044 	bqrelse(bp);
1045 
1046 	/*
1047 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1048 	 * buffers (midpoint between our recovery point and our stall
1049 	 * point).
1050 	 */
1051 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1052 
1053 	/*
1054 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1055 	 * due to the softdep code.
1056 	 */
1057 }
1058 
1059 /*
1060  *	bdirty:
1061  *
1062  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1063  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1064  *	itself to properly update it in the dirty/clean lists.  We mark it
1065  *	B_DONE to ensure that any asynchronization of the buffer properly
1066  *	clears B_DONE ( else a panic will occur later ).
1067  *
1068  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1069  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1070  *	should only be called if the buffer is known-good.
1071  *
1072  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1073  *	count.
1074  *
1075  *	Must be called at splbio().
1076  *	The buffer must be on QUEUE_NONE.
1077  */
1078 void
1079 bdirty(bp)
1080 	struct buf *bp;
1081 {
1082 	KASSERT(bp->b_qindex == QUEUE_NONE,
1083 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1084 	bp->b_flags &= ~(B_RELBUF);
1085 	bp->b_iocmd = BIO_WRITE;
1086 
1087 	if ((bp->b_flags & B_DELWRI) == 0) {
1088 		bp->b_flags |= B_DONE | B_DELWRI;
1089 		reassignbuf(bp, bp->b_vp);
1090 		atomic_add_int(&numdirtybuffers, 1);
1091 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1092 	}
1093 }
1094 
1095 /*
1096  *	bundirty:
1097  *
1098  *	Clear B_DELWRI for buffer.
1099  *
1100  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1101  *	count.
1102  *
1103  *	Must be called at splbio().
1104  *	The buffer must be on QUEUE_NONE.
1105  */
1106 
1107 void
1108 bundirty(bp)
1109 	struct buf *bp;
1110 {
1111 	KASSERT(bp->b_qindex == QUEUE_NONE,
1112 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1113 
1114 	if (bp->b_flags & B_DELWRI) {
1115 		bp->b_flags &= ~B_DELWRI;
1116 		reassignbuf(bp, bp->b_vp);
1117 		atomic_subtract_int(&numdirtybuffers, 1);
1118 		numdirtywakeup(lodirtybuffers);
1119 	}
1120 	/*
1121 	 * Since it is now being written, we can clear its deferred write flag.
1122 	 */
1123 	bp->b_flags &= ~B_DEFERRED;
1124 }
1125 
1126 /*
1127  *	bawrite:
1128  *
1129  *	Asynchronous write.  Start output on a buffer, but do not wait for
1130  *	it to complete.  The buffer is released when the output completes.
1131  *
1132  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1133  *	B_INVAL buffers.  Not us.
1134  */
1135 void
1136 bawrite(struct buf * bp)
1137 {
1138 	bp->b_flags |= B_ASYNC;
1139 	(void) BUF_WRITE(bp);
1140 }
1141 
1142 /*
1143  *	bwillwrite:
1144  *
1145  *	Called prior to the locking of any vnodes when we are expecting to
1146  *	write.  We do not want to starve the buffer cache with too many
1147  *	dirty buffers so we block here.  By blocking prior to the locking
1148  *	of any vnodes we attempt to avoid the situation where a locked vnode
1149  *	prevents the various system daemons from flushing related buffers.
1150  */
1151 
1152 void
1153 bwillwrite(void)
1154 {
1155 	if (numdirtybuffers >= hidirtybuffers) {
1156 		int s;
1157 
1158 		mtx_lock(&Giant);
1159 		s = splbio();
1160 		mtx_lock(&nblock);
1161 		while (numdirtybuffers >= hidirtybuffers) {
1162 			bd_wakeup(1);
1163 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1164 			msleep(&needsbuffer, &nblock,
1165 			    (PRIBIO + 4), "flswai", 0);
1166 		}
1167 		splx(s);
1168 		mtx_unlock(&nblock);
1169 		mtx_unlock(&Giant);
1170 	}
1171 }
1172 
1173 /*
1174  * Return true if we have too many dirty buffers.
1175  */
1176 int
1177 buf_dirty_count_severe(void)
1178 {
1179 	return(numdirtybuffers >= hidirtybuffers);
1180 }
1181 
1182 /*
1183  *	brelse:
1184  *
1185  *	Release a busy buffer and, if requested, free its resources.  The
1186  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1187  *	to be accessed later as a cache entity or reused for other purposes.
1188  */
1189 void
1190 brelse(struct buf * bp)
1191 {
1192 	int s;
1193 
1194 	GIANT_REQUIRED;
1195 
1196 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1197 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1198 
1199 	s = splbio();
1200 
1201 	if (bp->b_iocmd == BIO_WRITE &&
1202 	    (bp->b_ioflags & BIO_ERROR) &&
1203 	    !(bp->b_flags & B_INVAL)) {
1204 		/*
1205 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1206 		 * pages from being scrapped.  If B_INVAL is set then
1207 		 * this case is not run and the next case is run to
1208 		 * destroy the buffer.  B_INVAL can occur if the buffer
1209 		 * is outside the range supported by the underlying device.
1210 		 */
1211 		bp->b_ioflags &= ~BIO_ERROR;
1212 		bdirty(bp);
1213 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1214 	    (bp->b_ioflags & BIO_ERROR) ||
1215 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1216 		/*
1217 		 * Either a failed I/O or we were asked to free or not
1218 		 * cache the buffer.
1219 		 */
1220 		bp->b_flags |= B_INVAL;
1221 		if (LIST_FIRST(&bp->b_dep) != NULL)
1222 			buf_deallocate(bp);
1223 		if (bp->b_flags & B_DELWRI) {
1224 			atomic_subtract_int(&numdirtybuffers, 1);
1225 			numdirtywakeup(lodirtybuffers);
1226 		}
1227 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1228 		if ((bp->b_flags & B_VMIO) == 0) {
1229 			if (bp->b_bufsize)
1230 				allocbuf(bp, 0);
1231 			if (bp->b_vp)
1232 				brelvp(bp);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1238 	 * is called with B_DELWRI set, the underlying pages may wind up
1239 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1240 	 * because pages associated with a B_DELWRI bp are marked clean.
1241 	 *
1242 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1243 	 * if B_DELWRI is set.
1244 	 *
1245 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1246 	 * on pages to return pages to the VM page queues.
1247 	 */
1248 	if (bp->b_flags & B_DELWRI)
1249 		bp->b_flags &= ~B_RELBUF;
1250 	else if (vm_page_count_severe()) {
1251 		/*
1252 		 * XXX This lock may not be necessary since BKGRDINPROG
1253 		 * cannot be set while we hold the buf lock, it can only be
1254 		 * cleared if it is already pending.
1255 		 */
1256 		if (bp->b_vp) {
1257 			VI_LOCK(bp->b_vp);
1258 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1259 				bp->b_flags |= B_RELBUF;
1260 			VI_UNLOCK(bp->b_vp);
1261 		} else
1262 			bp->b_flags |= B_RELBUF;
1263 	}
1264 
1265 	/*
1266 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1267 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1268 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1269 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1270 	 *
1271 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1272 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1273 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1274 	 *
1275 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1276 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1277 	 * the commit state and we cannot afford to lose the buffer. If the
1278 	 * buffer has a background write in progress, we need to keep it
1279 	 * around to prevent it from being reconstituted and starting a second
1280 	 * background write.
1281 	 */
1282 	if ((bp->b_flags & B_VMIO)
1283 	    && !(bp->b_vp->v_mount != NULL &&
1284 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1285 		 !vn_isdisk(bp->b_vp, NULL) &&
1286 		 (bp->b_flags & B_DELWRI))
1287 	    ) {
1288 
1289 		int i, j, resid;
1290 		vm_page_t m;
1291 		off_t foff;
1292 		vm_pindex_t poff;
1293 		vm_object_t obj;
1294 		struct vnode *vp;
1295 
1296 		vp = bp->b_vp;
1297 		obj = bp->b_object;
1298 
1299 		/*
1300 		 * Get the base offset and length of the buffer.  Note that
1301 		 * in the VMIO case if the buffer block size is not
1302 		 * page-aligned then b_data pointer may not be page-aligned.
1303 		 * But our b_pages[] array *IS* page aligned.
1304 		 *
1305 		 * block sizes less then DEV_BSIZE (usually 512) are not
1306 		 * supported due to the page granularity bits (m->valid,
1307 		 * m->dirty, etc...).
1308 		 *
1309 		 * See man buf(9) for more information
1310 		 */
1311 		resid = bp->b_bufsize;
1312 		foff = bp->b_offset;
1313 		if (obj != NULL)
1314 			VM_OBJECT_LOCK(obj);
1315 		for (i = 0; i < bp->b_npages; i++) {
1316 			int had_bogus = 0;
1317 
1318 			m = bp->b_pages[i];
1319 			vm_page_lock_queues();
1320 			vm_page_flag_clear(m, PG_ZERO);
1321 			vm_page_unlock_queues();
1322 
1323 			/*
1324 			 * If we hit a bogus page, fixup *all* the bogus pages
1325 			 * now.
1326 			 */
1327 			if (m == bogus_page) {
1328 				poff = OFF_TO_IDX(bp->b_offset);
1329 				had_bogus = 1;
1330 
1331 				for (j = i; j < bp->b_npages; j++) {
1332 					vm_page_t mtmp;
1333 					mtmp = bp->b_pages[j];
1334 					if (mtmp == bogus_page) {
1335 						mtmp = vm_page_lookup(obj, poff + j);
1336 						if (!mtmp) {
1337 							panic("brelse: page missing\n");
1338 						}
1339 						bp->b_pages[j] = mtmp;
1340 					}
1341 				}
1342 
1343 				if ((bp->b_flags & B_INVAL) == 0) {
1344 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1345 				}
1346 				m = bp->b_pages[i];
1347 			}
1348 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1349 				int poffset = foff & PAGE_MASK;
1350 				int presid = resid > (PAGE_SIZE - poffset) ?
1351 					(PAGE_SIZE - poffset) : resid;
1352 
1353 				KASSERT(presid >= 0, ("brelse: extra page"));
1354 				vm_page_lock_queues();
1355 				vm_page_set_invalid(m, poffset, presid);
1356 				vm_page_unlock_queues();
1357 				if (had_bogus)
1358 					printf("avoided corruption bug in bogus_page/brelse code\n");
1359 			}
1360 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1361 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1362 		}
1363 		if (obj != NULL)
1364 			VM_OBJECT_UNLOCK(obj);
1365 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1366 			vfs_vmio_release(bp);
1367 
1368 	} else if (bp->b_flags & B_VMIO) {
1369 
1370 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1371 			vfs_vmio_release(bp);
1372 		}
1373 
1374 	}
1375 
1376 	if (bp->b_qindex != QUEUE_NONE)
1377 		panic("brelse: free buffer onto another queue???");
1378 	if (BUF_REFCNT(bp) > 1) {
1379 		/* do not release to free list */
1380 		BUF_UNLOCK(bp);
1381 		splx(s);
1382 		return;
1383 	}
1384 
1385 	/* enqueue */
1386 	mtx_lock(&bqlock);
1387 
1388 	/* buffers with no memory */
1389 	if (bp->b_bufsize == 0) {
1390 		bp->b_flags |= B_INVAL;
1391 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1392 		if (bp->b_vflags & BV_BKGRDINPROG)
1393 			panic("losing buffer 1");
1394 		if (bp->b_kvasize) {
1395 			bp->b_qindex = QUEUE_EMPTYKVA;
1396 		} else {
1397 			bp->b_qindex = QUEUE_EMPTY;
1398 		}
1399 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1400 		bp->b_dev = NODEV;
1401 	/* buffers with junk contents */
1402 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1403 	    (bp->b_ioflags & BIO_ERROR)) {
1404 		bp->b_flags |= B_INVAL;
1405 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1406 		if (bp->b_vflags & BV_BKGRDINPROG)
1407 			panic("losing buffer 2");
1408 		bp->b_qindex = QUEUE_CLEAN;
1409 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1410 		bp->b_dev = NODEV;
1411 	/* remaining buffers */
1412 	} else {
1413 		if (bp->b_flags & B_DELWRI)
1414 			bp->b_qindex = QUEUE_DIRTY;
1415 		else
1416 			bp->b_qindex = QUEUE_CLEAN;
1417 		if (bp->b_flags & B_AGE)
1418 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1419 		else
1420 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1421 	}
1422 	mtx_unlock(&bqlock);
1423 
1424 	/*
1425 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1426 	 * placed the buffer on the correct queue.  We must also disassociate
1427 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1428 	 * find it.
1429 	 */
1430 	if (bp->b_flags & B_INVAL) {
1431 		if (bp->b_flags & B_DELWRI)
1432 			bundirty(bp);
1433 		if (bp->b_vp)
1434 			brelvp(bp);
1435 	}
1436 
1437 	/*
1438 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1439 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1440 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1441 	 * if B_INVAL is set ).
1442 	 */
1443 
1444 	if (!(bp->b_flags & B_DELWRI))
1445 		bufcountwakeup();
1446 
1447 	/*
1448 	 * Something we can maybe free or reuse
1449 	 */
1450 	if (bp->b_bufsize || bp->b_kvasize)
1451 		bufspacewakeup();
1452 
1453 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1454 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1455 		panic("brelse: not dirty");
1456 	/* unlock */
1457 	BUF_UNLOCK(bp);
1458 	splx(s);
1459 }
1460 
1461 /*
1462  * Release a buffer back to the appropriate queue but do not try to free
1463  * it.  The buffer is expected to be used again soon.
1464  *
1465  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1466  * biodone() to requeue an async I/O on completion.  It is also used when
1467  * known good buffers need to be requeued but we think we may need the data
1468  * again soon.
1469  *
1470  * XXX we should be able to leave the B_RELBUF hint set on completion.
1471  */
1472 void
1473 bqrelse(struct buf * bp)
1474 {
1475 	int s;
1476 
1477 	s = splbio();
1478 
1479 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1480 
1481 	if (bp->b_qindex != QUEUE_NONE)
1482 		panic("bqrelse: free buffer onto another queue???");
1483 	if (BUF_REFCNT(bp) > 1) {
1484 		/* do not release to free list */
1485 		BUF_UNLOCK(bp);
1486 		splx(s);
1487 		return;
1488 	}
1489 	mtx_lock(&bqlock);
1490 	/* buffers with stale but valid contents */
1491 	if (bp->b_flags & B_DELWRI) {
1492 		bp->b_qindex = QUEUE_DIRTY;
1493 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1494 	} else {
1495 		/*
1496 		 * XXX This lock may not be necessary since BKGRDINPROG
1497 		 * cannot be set while we hold the buf lock, it can only be
1498 		 * cleared if it is already pending.
1499 		 */
1500 		VI_LOCK(bp->b_vp);
1501 		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1502 			VI_UNLOCK(bp->b_vp);
1503 			bp->b_qindex = QUEUE_CLEAN;
1504 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1505 			    b_freelist);
1506 		} else {
1507 			/*
1508 			 * We are too low on memory, we have to try to free
1509 			 * the buffer (most importantly: the wired pages
1510 			 * making up its backing store) *now*.
1511 			 */
1512 			VI_UNLOCK(bp->b_vp);
1513 			mtx_unlock(&bqlock);
1514 			splx(s);
1515 			brelse(bp);
1516 			return;
1517 		}
1518 	}
1519 	mtx_unlock(&bqlock);
1520 
1521 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1522 		bufcountwakeup();
1523 
1524 	/*
1525 	 * Something we can maybe free or reuse.
1526 	 */
1527 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1528 		bufspacewakeup();
1529 
1530 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1531 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1532 		panic("bqrelse: not dirty");
1533 	/* unlock */
1534 	BUF_UNLOCK(bp);
1535 	splx(s);
1536 }
1537 
1538 /* Give pages used by the bp back to the VM system (where possible) */
1539 static void
1540 vfs_vmio_release(bp)
1541 	struct buf *bp;
1542 {
1543 	int i;
1544 	vm_page_t m;
1545 
1546 	GIANT_REQUIRED;
1547 	if (bp->b_object != NULL)
1548 		VM_OBJECT_LOCK(bp->b_object);
1549 	vm_page_lock_queues();
1550 	for (i = 0; i < bp->b_npages; i++) {
1551 		m = bp->b_pages[i];
1552 		bp->b_pages[i] = NULL;
1553 		/*
1554 		 * In order to keep page LRU ordering consistent, put
1555 		 * everything on the inactive queue.
1556 		 */
1557 		vm_page_unwire(m, 0);
1558 		/*
1559 		 * We don't mess with busy pages, it is
1560 		 * the responsibility of the process that
1561 		 * busied the pages to deal with them.
1562 		 */
1563 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1564 			continue;
1565 
1566 		if (m->wire_count == 0) {
1567 			vm_page_flag_clear(m, PG_ZERO);
1568 			/*
1569 			 * Might as well free the page if we can and it has
1570 			 * no valid data.  We also free the page if the
1571 			 * buffer was used for direct I/O
1572 			 */
1573 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1574 			    m->hold_count == 0) {
1575 				vm_page_busy(m);
1576 				pmap_remove_all(m);
1577 				vm_page_free(m);
1578 			} else if (bp->b_flags & B_DIRECT) {
1579 				vm_page_try_to_free(m);
1580 			} else if (vm_page_count_severe()) {
1581 				vm_page_try_to_cache(m);
1582 			}
1583 		}
1584 	}
1585 	vm_page_unlock_queues();
1586 	if (bp->b_object != NULL)
1587 		VM_OBJECT_UNLOCK(bp->b_object);
1588 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1589 
1590 	if (bp->b_bufsize) {
1591 		bufspacewakeup();
1592 		bp->b_bufsize = 0;
1593 	}
1594 	bp->b_npages = 0;
1595 	bp->b_flags &= ~B_VMIO;
1596 	if (bp->b_vp)
1597 		brelvp(bp);
1598 }
1599 
1600 /*
1601  * Check to see if a block at a particular lbn is available for a clustered
1602  * write.
1603  */
1604 static int
1605 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1606 {
1607 	struct buf *bpa;
1608 	int match;
1609 
1610 	match = 0;
1611 
1612 	/* If the buf isn't in core skip it */
1613 	if ((bpa = gbincore(vp, lblkno)) == NULL)
1614 		return (0);
1615 
1616 	/* If the buf is busy we don't want to wait for it */
1617 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1618 		return (0);
1619 
1620 	/* Only cluster with valid clusterable delayed write buffers */
1621 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1622 	    (B_DELWRI | B_CLUSTEROK))
1623 		goto done;
1624 
1625 	if (bpa->b_bufsize != size)
1626 		goto done;
1627 
1628 	/*
1629 	 * Check to see if it is in the expected place on disk and that the
1630 	 * block has been mapped.
1631 	 */
1632 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1633 		match = 1;
1634 done:
1635 	BUF_UNLOCK(bpa);
1636 	return (match);
1637 }
1638 
1639 /*
1640  *	vfs_bio_awrite:
1641  *
1642  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1643  *	This is much better then the old way of writing only one buffer at
1644  *	a time.  Note that we may not be presented with the buffers in the
1645  *	correct order, so we search for the cluster in both directions.
1646  */
1647 int
1648 vfs_bio_awrite(struct buf * bp)
1649 {
1650 	int i;
1651 	int j;
1652 	daddr_t lblkno = bp->b_lblkno;
1653 	struct vnode *vp = bp->b_vp;
1654 	int s;
1655 	int ncl;
1656 	int nwritten;
1657 	int size;
1658 	int maxcl;
1659 
1660 	s = splbio();
1661 	/*
1662 	 * right now we support clustered writing only to regular files.  If
1663 	 * we find a clusterable block we could be in the middle of a cluster
1664 	 * rather then at the beginning.
1665 	 */
1666 	if ((vp->v_type == VREG) &&
1667 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1668 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1669 
1670 		size = vp->v_mount->mnt_stat.f_iosize;
1671 		maxcl = MAXPHYS / size;
1672 
1673 		VI_LOCK(vp);
1674 		for (i = 1; i < maxcl; i++)
1675 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1676 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1677 				break;
1678 
1679 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1680 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1681 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1682 				break;
1683 
1684 		VI_UNLOCK(vp);
1685 		--j;
1686 		ncl = i + j;
1687 		/*
1688 		 * this is a possible cluster write
1689 		 */
1690 		if (ncl != 1) {
1691 			BUF_UNLOCK(bp);
1692 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1693 			splx(s);
1694 			return nwritten;
1695 		}
1696 	}
1697 
1698 	bremfree(bp);
1699 	bp->b_flags |= B_ASYNC;
1700 
1701 	splx(s);
1702 	/*
1703 	 * default (old) behavior, writing out only one block
1704 	 *
1705 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1706 	 */
1707 	nwritten = bp->b_bufsize;
1708 	(void) BUF_WRITE(bp);
1709 
1710 	return nwritten;
1711 }
1712 
1713 /*
1714  *	getnewbuf:
1715  *
1716  *	Find and initialize a new buffer header, freeing up existing buffers
1717  *	in the bufqueues as necessary.  The new buffer is returned locked.
1718  *
1719  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1720  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1721  *
1722  *	We block if:
1723  *		We have insufficient buffer headers
1724  *		We have insufficient buffer space
1725  *		buffer_map is too fragmented ( space reservation fails )
1726  *		If we have to flush dirty buffers ( but we try to avoid this )
1727  *
1728  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1729  *	Instead we ask the buf daemon to do it for us.  We attempt to
1730  *	avoid piecemeal wakeups of the pageout daemon.
1731  */
1732 
1733 static struct buf *
1734 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1735 {
1736 	struct buf *bp;
1737 	struct buf *nbp;
1738 	int defrag = 0;
1739 	int nqindex;
1740 	static int flushingbufs;
1741 
1742 	GIANT_REQUIRED;
1743 
1744 	/*
1745 	 * We can't afford to block since we might be holding a vnode lock,
1746 	 * which may prevent system daemons from running.  We deal with
1747 	 * low-memory situations by proactively returning memory and running
1748 	 * async I/O rather then sync I/O.
1749 	 */
1750 
1751 	atomic_add_int(&getnewbufcalls, 1);
1752 	atomic_subtract_int(&getnewbufrestarts, 1);
1753 restart:
1754 	atomic_add_int(&getnewbufrestarts, 1);
1755 
1756 	/*
1757 	 * Setup for scan.  If we do not have enough free buffers,
1758 	 * we setup a degenerate case that immediately fails.  Note
1759 	 * that if we are specially marked process, we are allowed to
1760 	 * dip into our reserves.
1761 	 *
1762 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1763 	 *
1764 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1765 	 * However, there are a number of cases (defragging, reusing, ...)
1766 	 * where we cannot backup.
1767 	 */
1768 	mtx_lock(&bqlock);
1769 	nqindex = QUEUE_EMPTYKVA;
1770 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1771 
1772 	if (nbp == NULL) {
1773 		/*
1774 		 * If no EMPTYKVA buffers and we are either
1775 		 * defragging or reusing, locate a CLEAN buffer
1776 		 * to free or reuse.  If bufspace useage is low
1777 		 * skip this step so we can allocate a new buffer.
1778 		 */
1779 		if (defrag || bufspace >= lobufspace) {
1780 			nqindex = QUEUE_CLEAN;
1781 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1782 		}
1783 
1784 		/*
1785 		 * If we could not find or were not allowed to reuse a
1786 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1787 		 * buffer.  We can only use an EMPTY buffer if allocating
1788 		 * its KVA would not otherwise run us out of buffer space.
1789 		 */
1790 		if (nbp == NULL && defrag == 0 &&
1791 		    bufspace + maxsize < hibufspace) {
1792 			nqindex = QUEUE_EMPTY;
1793 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1794 		}
1795 	}
1796 
1797 	/*
1798 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1799 	 * depending.
1800 	 */
1801 
1802 	while ((bp = nbp) != NULL) {
1803 		int qindex = nqindex;
1804 
1805 		/*
1806 		 * Calculate next bp ( we can only use it if we do not block
1807 		 * or do other fancy things ).
1808 		 */
1809 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1810 			switch(qindex) {
1811 			case QUEUE_EMPTY:
1812 				nqindex = QUEUE_EMPTYKVA;
1813 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1814 					break;
1815 				/* FALLTHROUGH */
1816 			case QUEUE_EMPTYKVA:
1817 				nqindex = QUEUE_CLEAN;
1818 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1819 					break;
1820 				/* FALLTHROUGH */
1821 			case QUEUE_CLEAN:
1822 				/*
1823 				 * nbp is NULL.
1824 				 */
1825 				break;
1826 			}
1827 		}
1828 		if (bp->b_vp) {
1829 			VI_LOCK(bp->b_vp);
1830 			if (bp->b_vflags & BV_BKGRDINPROG) {
1831 				VI_UNLOCK(bp->b_vp);
1832 				continue;
1833 			}
1834 			VI_UNLOCK(bp->b_vp);
1835 		}
1836 
1837 		/*
1838 		 * Sanity Checks
1839 		 */
1840 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1841 
1842 		/*
1843 		 * Note: we no longer distinguish between VMIO and non-VMIO
1844 		 * buffers.
1845 		 */
1846 
1847 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1848 
1849 		/*
1850 		 * If we are defragging then we need a buffer with
1851 		 * b_kvasize != 0.  XXX this situation should no longer
1852 		 * occur, if defrag is non-zero the buffer's b_kvasize
1853 		 * should also be non-zero at this point.  XXX
1854 		 */
1855 		if (defrag && bp->b_kvasize == 0) {
1856 			printf("Warning: defrag empty buffer %p\n", bp);
1857 			continue;
1858 		}
1859 
1860 		/*
1861 		 * Start freeing the bp.  This is somewhat involved.  nbp
1862 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1863 		 */
1864 
1865 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1866 			panic("getnewbuf: locked buf");
1867 		bremfreel(bp);
1868 		mtx_unlock(&bqlock);
1869 
1870 		if (qindex == QUEUE_CLEAN) {
1871 			if (bp->b_flags & B_VMIO) {
1872 				bp->b_flags &= ~B_ASYNC;
1873 				vfs_vmio_release(bp);
1874 			}
1875 			if (bp->b_vp)
1876 				brelvp(bp);
1877 		}
1878 
1879 		/*
1880 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1881 		 * the scan from this point on.
1882 		 *
1883 		 * Get the rest of the buffer freed up.  b_kva* is still
1884 		 * valid after this operation.
1885 		 */
1886 
1887 		if (bp->b_rcred != NOCRED) {
1888 			crfree(bp->b_rcred);
1889 			bp->b_rcred = NOCRED;
1890 		}
1891 		if (bp->b_wcred != NOCRED) {
1892 			crfree(bp->b_wcred);
1893 			bp->b_wcred = NOCRED;
1894 		}
1895 		if (LIST_FIRST(&bp->b_dep) != NULL)
1896 			buf_deallocate(bp);
1897 		if (bp->b_vflags & BV_BKGRDINPROG)
1898 			panic("losing buffer 3");
1899 
1900 		if (bp->b_bufsize)
1901 			allocbuf(bp, 0);
1902 
1903 		bp->b_flags = 0;
1904 		bp->b_ioflags = 0;
1905 		bp->b_xflags = 0;
1906 		bp->b_vflags = 0;
1907 		bp->b_dev = NODEV;
1908 		bp->b_vp = NULL;
1909 		bp->b_blkno = bp->b_lblkno = 0;
1910 		bp->b_offset = NOOFFSET;
1911 		bp->b_iodone = 0;
1912 		bp->b_error = 0;
1913 		bp->b_resid = 0;
1914 		bp->b_bcount = 0;
1915 		bp->b_npages = 0;
1916 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1917 		bp->b_magic = B_MAGIC_BIO;
1918 		bp->b_op = &buf_ops_bio;
1919 		bp->b_object = NULL;
1920 
1921 		LIST_INIT(&bp->b_dep);
1922 
1923 		/*
1924 		 * If we are defragging then free the buffer.
1925 		 */
1926 		if (defrag) {
1927 			bp->b_flags |= B_INVAL;
1928 			bfreekva(bp);
1929 			brelse(bp);
1930 			defrag = 0;
1931 			goto restart;
1932 		}
1933 
1934 		/*
1935 		 * If we are overcomitted then recover the buffer and its
1936 		 * KVM space.  This occurs in rare situations when multiple
1937 		 * processes are blocked in getnewbuf() or allocbuf().
1938 		 */
1939 		if (bufspace >= hibufspace)
1940 			flushingbufs = 1;
1941 		if (flushingbufs && bp->b_kvasize != 0) {
1942 			bp->b_flags |= B_INVAL;
1943 			bfreekva(bp);
1944 			brelse(bp);
1945 			goto restart;
1946 		}
1947 		if (bufspace < lobufspace)
1948 			flushingbufs = 0;
1949 		break;
1950 	}
1951 
1952 	/*
1953 	 * If we exhausted our list, sleep as appropriate.  We may have to
1954 	 * wakeup various daemons and write out some dirty buffers.
1955 	 *
1956 	 * Generally we are sleeping due to insufficient buffer space.
1957 	 */
1958 
1959 	if (bp == NULL) {
1960 		int flags;
1961 		char *waitmsg;
1962 
1963 		mtx_unlock(&bqlock);
1964 		if (defrag) {
1965 			flags = VFS_BIO_NEED_BUFSPACE;
1966 			waitmsg = "nbufkv";
1967 		} else if (bufspace >= hibufspace) {
1968 			waitmsg = "nbufbs";
1969 			flags = VFS_BIO_NEED_BUFSPACE;
1970 		} else {
1971 			waitmsg = "newbuf";
1972 			flags = VFS_BIO_NEED_ANY;
1973 		}
1974 
1975 		bd_speedup();	/* heeeelp */
1976 
1977 		mtx_lock(&nblock);
1978 		needsbuffer |= flags;
1979 		while (needsbuffer & flags) {
1980 			if (msleep(&needsbuffer, &nblock,
1981 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1982 				mtx_unlock(&nblock);
1983 				return (NULL);
1984 			}
1985 		}
1986 		mtx_unlock(&nblock);
1987 	} else {
1988 		/*
1989 		 * We finally have a valid bp.  We aren't quite out of the
1990 		 * woods, we still have to reserve kva space.  In order
1991 		 * to keep fragmentation sane we only allocate kva in
1992 		 * BKVASIZE chunks.
1993 		 */
1994 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1995 
1996 		if (maxsize != bp->b_kvasize) {
1997 			vm_offset_t addr = 0;
1998 
1999 			bfreekva(bp);
2000 
2001 			if (vm_map_findspace(buffer_map,
2002 				vm_map_min(buffer_map), maxsize, &addr)) {
2003 				/*
2004 				 * Uh oh.  Buffer map is to fragmented.  We
2005 				 * must defragment the map.
2006 				 */
2007 				atomic_add_int(&bufdefragcnt, 1);
2008 				defrag = 1;
2009 				bp->b_flags |= B_INVAL;
2010 				brelse(bp);
2011 				goto restart;
2012 			}
2013 			if (addr) {
2014 				vm_map_insert(buffer_map, NULL, 0,
2015 					addr, addr + maxsize,
2016 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2017 
2018 				bp->b_kvabase = (caddr_t) addr;
2019 				bp->b_kvasize = maxsize;
2020 				atomic_add_int(&bufspace, bp->b_kvasize);
2021 				atomic_add_int(&bufreusecnt, 1);
2022 			}
2023 		}
2024 		bp->b_saveaddr = bp->b_kvabase;
2025 		bp->b_data = bp->b_saveaddr;
2026 	}
2027 	return(bp);
2028 }
2029 
2030 /*
2031  *	buf_daemon:
2032  *
2033  *	buffer flushing daemon.  Buffers are normally flushed by the
2034  *	update daemon but if it cannot keep up this process starts to
2035  *	take the load in an attempt to prevent getnewbuf() from blocking.
2036  */
2037 
2038 static struct proc *bufdaemonproc;
2039 
2040 static struct kproc_desc buf_kp = {
2041 	"bufdaemon",
2042 	buf_daemon,
2043 	&bufdaemonproc
2044 };
2045 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2046 
2047 static void
2048 buf_daemon()
2049 {
2050 	int s;
2051 
2052 	mtx_lock(&Giant);
2053 
2054 	/*
2055 	 * This process needs to be suspended prior to shutdown sync.
2056 	 */
2057 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2058 	    SHUTDOWN_PRI_LAST);
2059 
2060 	/*
2061 	 * This process is allowed to take the buffer cache to the limit
2062 	 */
2063 	s = splbio();
2064 	mtx_lock(&bdlock);
2065 
2066 	for (;;) {
2067 		bd_request = 0;
2068 		mtx_unlock(&bdlock);
2069 
2070 		kthread_suspend_check(bufdaemonproc);
2071 
2072 		/*
2073 		 * Do the flush.  Limit the amount of in-transit I/O we
2074 		 * allow to build up, otherwise we would completely saturate
2075 		 * the I/O system.  Wakeup any waiting processes before we
2076 		 * normally would so they can run in parallel with our drain.
2077 		 */
2078 		while (numdirtybuffers > lodirtybuffers) {
2079 			if (flushbufqueues(0) == 0) {
2080 				/*
2081 				 * Could not find any buffers without rollback
2082 				 * dependencies, so just write the first one
2083 				 * in the hopes of eventually making progress.
2084 				 */
2085 				flushbufqueues(1);
2086 				break;
2087 			}
2088 			waitrunningbufspace();
2089 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2090 		}
2091 
2092 		/*
2093 		 * Only clear bd_request if we have reached our low water
2094 		 * mark.  The buf_daemon normally waits 1 second and
2095 		 * then incrementally flushes any dirty buffers that have
2096 		 * built up, within reason.
2097 		 *
2098 		 * If we were unable to hit our low water mark and couldn't
2099 		 * find any flushable buffers, we sleep half a second.
2100 		 * Otherwise we loop immediately.
2101 		 */
2102 		mtx_lock(&bdlock);
2103 		if (numdirtybuffers <= lodirtybuffers) {
2104 			/*
2105 			 * We reached our low water mark, reset the
2106 			 * request and sleep until we are needed again.
2107 			 * The sleep is just so the suspend code works.
2108 			 */
2109 			bd_request = 0;
2110 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2111 		} else {
2112 			/*
2113 			 * We couldn't find any flushable dirty buffers but
2114 			 * still have too many dirty buffers, we
2115 			 * have to sleep and try again.  (rare)
2116 			 */
2117 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2118 		}
2119 	}
2120 }
2121 
2122 /*
2123  *	flushbufqueues:
2124  *
2125  *	Try to flush a buffer in the dirty queue.  We must be careful to
2126  *	free up B_INVAL buffers instead of write them, which NFS is
2127  *	particularly sensitive to.
2128  */
2129 int flushwithdeps = 0;
2130 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2131     0, "Number of buffers flushed with dependecies that require rollbacks");
2132 static int
2133 flushbufqueues(int flushdeps)
2134 {
2135 	struct thread *td = curthread;
2136 	struct vnode *vp;
2137 	struct buf *bp;
2138 	int hasdeps;
2139 
2140 	mtx_lock(&bqlock);
2141 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2142 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2143 			continue;
2144 		KASSERT((bp->b_flags & B_DELWRI),
2145 		    ("unexpected clean buffer %p", bp));
2146 		VI_LOCK(bp->b_vp);
2147 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2148 			VI_UNLOCK(bp->b_vp);
2149 			BUF_UNLOCK(bp);
2150 			continue;
2151 		}
2152 		VI_UNLOCK(bp->b_vp);
2153 		if (bp->b_flags & B_INVAL) {
2154 			bremfreel(bp);
2155 			mtx_unlock(&bqlock);
2156 			brelse(bp);
2157 			return (1);
2158 		}
2159 
2160 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2161 			if (flushdeps == 0) {
2162 				BUF_UNLOCK(bp);
2163 				continue;
2164 			}
2165 			hasdeps = 1;
2166 		} else
2167 			hasdeps = 0;
2168 		/*
2169 		 * We must hold the lock on a vnode before writing
2170 		 * one of its buffers. Otherwise we may confuse, or
2171 		 * in the case of a snapshot vnode, deadlock the
2172 		 * system.
2173 		 *
2174 		 * The lock order here is the reverse of the normal
2175 		 * of vnode followed by buf lock.  This is ok because
2176 		 * the NOWAIT will prevent deadlock.
2177 		 */
2178 		if ((vp = bp->b_vp) == NULL ||
2179 		    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2180 			mtx_unlock(&bqlock);
2181 			vfs_bio_awrite(bp);
2182 			if (vp != NULL)
2183 				VOP_UNLOCK(vp, 0, td);
2184 			flushwithdeps += hasdeps;
2185 			return (1);
2186 		}
2187 		BUF_UNLOCK(bp);
2188 	}
2189 	mtx_unlock(&bqlock);
2190 	return (0);
2191 }
2192 
2193 /*
2194  * Check to see if a block is currently memory resident.
2195  */
2196 struct buf *
2197 incore(struct vnode * vp, daddr_t blkno)
2198 {
2199 	struct buf *bp;
2200 
2201 	int s = splbio();
2202 	VI_LOCK(vp);
2203 	bp = gbincore(vp, blkno);
2204 	VI_UNLOCK(vp);
2205 	splx(s);
2206 	return (bp);
2207 }
2208 
2209 /*
2210  * Returns true if no I/O is needed to access the
2211  * associated VM object.  This is like incore except
2212  * it also hunts around in the VM system for the data.
2213  */
2214 
2215 int
2216 inmem(struct vnode * vp, daddr_t blkno)
2217 {
2218 	vm_object_t obj;
2219 	vm_offset_t toff, tinc, size;
2220 	vm_page_t m;
2221 	vm_ooffset_t off;
2222 
2223 	GIANT_REQUIRED;
2224 	ASSERT_VOP_LOCKED(vp, "inmem");
2225 
2226 	if (incore(vp, blkno))
2227 		return 1;
2228 	if (vp->v_mount == NULL)
2229 		return 0;
2230 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2231 		return 0;
2232 
2233 	size = PAGE_SIZE;
2234 	if (size > vp->v_mount->mnt_stat.f_iosize)
2235 		size = vp->v_mount->mnt_stat.f_iosize;
2236 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2237 
2238 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2239 		VM_OBJECT_LOCK(obj);
2240 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2241 		VM_OBJECT_UNLOCK(obj);
2242 		if (!m)
2243 			goto notinmem;
2244 		tinc = size;
2245 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2246 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2247 		if (vm_page_is_valid(m,
2248 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2249 			goto notinmem;
2250 	}
2251 	return 1;
2252 
2253 notinmem:
2254 	return (0);
2255 }
2256 
2257 /*
2258  *	vfs_setdirty:
2259  *
2260  *	Sets the dirty range for a buffer based on the status of the dirty
2261  *	bits in the pages comprising the buffer.
2262  *
2263  *	The range is limited to the size of the buffer.
2264  *
2265  *	This routine is primarily used by NFS, but is generalized for the
2266  *	B_VMIO case.
2267  */
2268 static void
2269 vfs_setdirty(struct buf *bp)
2270 {
2271 	int i;
2272 	vm_object_t object;
2273 
2274 	GIANT_REQUIRED;
2275 	/*
2276 	 * Degenerate case - empty buffer
2277 	 */
2278 
2279 	if (bp->b_bufsize == 0)
2280 		return;
2281 
2282 	/*
2283 	 * We qualify the scan for modified pages on whether the
2284 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2285 	 * is not cleared simply by protecting pages off.
2286 	 */
2287 
2288 	if ((bp->b_flags & B_VMIO) == 0)
2289 		return;
2290 
2291 	object = bp->b_pages[0]->object;
2292 	VM_OBJECT_LOCK(object);
2293 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2294 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2295 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2296 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2297 
2298 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2299 		vm_offset_t boffset;
2300 		vm_offset_t eoffset;
2301 
2302 		vm_page_lock_queues();
2303 		/*
2304 		 * test the pages to see if they have been modified directly
2305 		 * by users through the VM system.
2306 		 */
2307 		for (i = 0; i < bp->b_npages; i++) {
2308 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2309 			vm_page_test_dirty(bp->b_pages[i]);
2310 		}
2311 
2312 		/*
2313 		 * Calculate the encompassing dirty range, boffset and eoffset,
2314 		 * (eoffset - boffset) bytes.
2315 		 */
2316 
2317 		for (i = 0; i < bp->b_npages; i++) {
2318 			if (bp->b_pages[i]->dirty)
2319 				break;
2320 		}
2321 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2322 
2323 		for (i = bp->b_npages - 1; i >= 0; --i) {
2324 			if (bp->b_pages[i]->dirty) {
2325 				break;
2326 			}
2327 		}
2328 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2329 
2330 		vm_page_unlock_queues();
2331 		/*
2332 		 * Fit it to the buffer.
2333 		 */
2334 
2335 		if (eoffset > bp->b_bcount)
2336 			eoffset = bp->b_bcount;
2337 
2338 		/*
2339 		 * If we have a good dirty range, merge with the existing
2340 		 * dirty range.
2341 		 */
2342 
2343 		if (boffset < eoffset) {
2344 			if (bp->b_dirtyoff > boffset)
2345 				bp->b_dirtyoff = boffset;
2346 			if (bp->b_dirtyend < eoffset)
2347 				bp->b_dirtyend = eoffset;
2348 		}
2349 	}
2350 	VM_OBJECT_UNLOCK(object);
2351 }
2352 
2353 /*
2354  *	getblk:
2355  *
2356  *	Get a block given a specified block and offset into a file/device.
2357  *	The buffers B_DONE bit will be cleared on return, making it almost
2358  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2359  *	return.  The caller should clear B_INVAL prior to initiating a
2360  *	READ.
2361  *
2362  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2363  *	an existing buffer.
2364  *
2365  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2366  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2367  *	and then cleared based on the backing VM.  If the previous buffer is
2368  *	non-0-sized but invalid, B_CACHE will be cleared.
2369  *
2370  *	If getblk() must create a new buffer, the new buffer is returned with
2371  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2372  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2373  *	backing VM.
2374  *
2375  *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2376  *	B_CACHE bit is clear.
2377  *
2378  *	What this means, basically, is that the caller should use B_CACHE to
2379  *	determine whether the buffer is fully valid or not and should clear
2380  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2381  *	the buffer by loading its data area with something, the caller needs
2382  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2383  *	the caller should set B_CACHE ( as an optimization ), else the caller
2384  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2385  *	a write attempt or if it was a successfull read.  If the caller
2386  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2387  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2388  */
2389 struct buf *
2390 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2391     int flags)
2392 {
2393 	struct buf *bp;
2394 	int s;
2395 	int error;
2396 	ASSERT_VOP_LOCKED(vp, "getblk");
2397 
2398 	if (size > MAXBSIZE)
2399 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2400 
2401 	s = splbio();
2402 loop:
2403 	/*
2404 	 * Block if we are low on buffers.   Certain processes are allowed
2405 	 * to completely exhaust the buffer cache.
2406          *
2407          * If this check ever becomes a bottleneck it may be better to
2408          * move it into the else, when gbincore() fails.  At the moment
2409          * it isn't a problem.
2410 	 *
2411 	 * XXX remove if 0 sections (clean this up after its proven)
2412          */
2413 	if (numfreebuffers == 0) {
2414 		if (curthread == PCPU_GET(idlethread))
2415 			return NULL;
2416 		mtx_lock(&nblock);
2417 		needsbuffer |= VFS_BIO_NEED_ANY;
2418 		mtx_unlock(&nblock);
2419 	}
2420 
2421 	VI_LOCK(vp);
2422 	if ((bp = gbincore(vp, blkno))) {
2423 		int lockflags;
2424 		/*
2425 		 * Buffer is in-core.  If the buffer is not busy, it must
2426 		 * be on a queue.
2427 		 */
2428 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2429 
2430 		if (flags & GB_LOCK_NOWAIT)
2431 			lockflags |= LK_NOWAIT;
2432 
2433 		error = BUF_TIMELOCK(bp, lockflags,
2434 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2435 
2436 		/*
2437 		 * If we slept and got the lock we have to restart in case
2438 		 * the buffer changed identities.
2439 		 */
2440 		if (error == ENOLCK)
2441 			goto loop;
2442 		/* We timed out or were interrupted. */
2443 		else if (error)
2444 			return (NULL);
2445 
2446 		/*
2447 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2448 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2449 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2450 		 * backing VM cache.
2451 		 */
2452 		if (bp->b_flags & B_INVAL)
2453 			bp->b_flags &= ~B_CACHE;
2454 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2455 			bp->b_flags |= B_CACHE;
2456 		bremfree(bp);
2457 
2458 		/*
2459 		 * check for size inconsistancies for non-VMIO case.
2460 		 */
2461 
2462 		if (bp->b_bcount != size) {
2463 			if ((bp->b_flags & B_VMIO) == 0 ||
2464 			    (size > bp->b_kvasize)) {
2465 				if (bp->b_flags & B_DELWRI) {
2466 					bp->b_flags |= B_NOCACHE;
2467 					BUF_WRITE(bp);
2468 				} else {
2469 					if ((bp->b_flags & B_VMIO) &&
2470 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2471 						bp->b_flags |= B_RELBUF;
2472 						brelse(bp);
2473 					} else {
2474 						bp->b_flags |= B_NOCACHE;
2475 						BUF_WRITE(bp);
2476 					}
2477 				}
2478 				goto loop;
2479 			}
2480 		}
2481 
2482 		/*
2483 		 * If the size is inconsistant in the VMIO case, we can resize
2484 		 * the buffer.  This might lead to B_CACHE getting set or
2485 		 * cleared.  If the size has not changed, B_CACHE remains
2486 		 * unchanged from its previous state.
2487 		 */
2488 
2489 		if (bp->b_bcount != size)
2490 			allocbuf(bp, size);
2491 
2492 		KASSERT(bp->b_offset != NOOFFSET,
2493 		    ("getblk: no buffer offset"));
2494 
2495 		/*
2496 		 * A buffer with B_DELWRI set and B_CACHE clear must
2497 		 * be committed before we can return the buffer in
2498 		 * order to prevent the caller from issuing a read
2499 		 * ( due to B_CACHE not being set ) and overwriting
2500 		 * it.
2501 		 *
2502 		 * Most callers, including NFS and FFS, need this to
2503 		 * operate properly either because they assume they
2504 		 * can issue a read if B_CACHE is not set, or because
2505 		 * ( for example ) an uncached B_DELWRI might loop due
2506 		 * to softupdates re-dirtying the buffer.  In the latter
2507 		 * case, B_CACHE is set after the first write completes,
2508 		 * preventing further loops.
2509 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2510 		 * above while extending the buffer, we cannot allow the
2511 		 * buffer to remain with B_CACHE set after the write
2512 		 * completes or it will represent a corrupt state.  To
2513 		 * deal with this we set B_NOCACHE to scrap the buffer
2514 		 * after the write.
2515 		 *
2516 		 * We might be able to do something fancy, like setting
2517 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2518 		 * so the below call doesn't set B_CACHE, but that gets real
2519 		 * confusing.  This is much easier.
2520 		 */
2521 
2522 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2523 			bp->b_flags |= B_NOCACHE;
2524 			BUF_WRITE(bp);
2525 			goto loop;
2526 		}
2527 
2528 		splx(s);
2529 		bp->b_flags &= ~B_DONE;
2530 	} else {
2531 		int bsize, maxsize, vmio;
2532 		off_t offset;
2533 
2534 		/*
2535 		 * Buffer is not in-core, create new buffer.  The buffer
2536 		 * returned by getnewbuf() is locked.  Note that the returned
2537 		 * buffer is also considered valid (not marked B_INVAL).
2538 		 */
2539 		VI_UNLOCK(vp);
2540 		/*
2541 		 * If the user does not want us to create the buffer, bail out
2542 		 * here.
2543 		 */
2544 		if (flags & GB_NOCREAT) {
2545 			splx(s);
2546 			return NULL;
2547 		}
2548 		if (vn_isdisk(vp, NULL))
2549 			bsize = DEV_BSIZE;
2550 		else if (vp->v_mountedhere)
2551 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2552 		else if (vp->v_mount)
2553 			bsize = vp->v_mount->mnt_stat.f_iosize;
2554 		else
2555 			bsize = size;
2556 
2557 		offset = blkno * bsize;
2558 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2559 		    (vp->v_vflag & VV_OBJBUF);
2560 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2561 		maxsize = imax(maxsize, bsize);
2562 
2563 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2564 			if (slpflag || slptimeo) {
2565 				splx(s);
2566 				return NULL;
2567 			}
2568 			goto loop;
2569 		}
2570 
2571 		/*
2572 		 * This code is used to make sure that a buffer is not
2573 		 * created while the getnewbuf routine is blocked.
2574 		 * This can be a problem whether the vnode is locked or not.
2575 		 * If the buffer is created out from under us, we have to
2576 		 * throw away the one we just created.  There is now window
2577 		 * race because we are safely running at splbio() from the
2578 		 * point of the duplicate buffer creation through to here,
2579 		 * and we've locked the buffer.
2580 		 *
2581 		 * Note: this must occur before we associate the buffer
2582 		 * with the vp especially considering limitations in
2583 		 * the splay tree implementation when dealing with duplicate
2584 		 * lblkno's.
2585 		 */
2586 		VI_LOCK(vp);
2587 		if (gbincore(vp, blkno)) {
2588 			VI_UNLOCK(vp);
2589 			bp->b_flags |= B_INVAL;
2590 			brelse(bp);
2591 			goto loop;
2592 		}
2593 
2594 		/*
2595 		 * Insert the buffer into the hash, so that it can
2596 		 * be found by incore.
2597 		 */
2598 		bp->b_blkno = bp->b_lblkno = blkno;
2599 		bp->b_offset = offset;
2600 
2601 		bgetvp(vp, bp);
2602 		VI_UNLOCK(vp);
2603 
2604 		/*
2605 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2606 		 * buffer size starts out as 0, B_CACHE will be set by
2607 		 * allocbuf() for the VMIO case prior to it testing the
2608 		 * backing store for validity.
2609 		 */
2610 
2611 		if (vmio) {
2612 			bp->b_flags |= B_VMIO;
2613 #if defined(VFS_BIO_DEBUG)
2614 			if (vp->v_type != VREG)
2615 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2616 #endif
2617 			VOP_GETVOBJECT(vp, &bp->b_object);
2618 		} else {
2619 			bp->b_flags &= ~B_VMIO;
2620 			bp->b_object = NULL;
2621 		}
2622 
2623 		allocbuf(bp, size);
2624 
2625 		splx(s);
2626 		bp->b_flags &= ~B_DONE;
2627 	}
2628 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2629 	return (bp);
2630 }
2631 
2632 /*
2633  * Get an empty, disassociated buffer of given size.  The buffer is initially
2634  * set to B_INVAL.
2635  */
2636 struct buf *
2637 geteblk(int size)
2638 {
2639 	struct buf *bp;
2640 	int s;
2641 	int maxsize;
2642 
2643 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2644 
2645 	s = splbio();
2646 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2647 		continue;
2648 	splx(s);
2649 	allocbuf(bp, size);
2650 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2651 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2652 	return (bp);
2653 }
2654 
2655 
2656 /*
2657  * This code constitutes the buffer memory from either anonymous system
2658  * memory (in the case of non-VMIO operations) or from an associated
2659  * VM object (in the case of VMIO operations).  This code is able to
2660  * resize a buffer up or down.
2661  *
2662  * Note that this code is tricky, and has many complications to resolve
2663  * deadlock or inconsistant data situations.  Tread lightly!!!
2664  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2665  * the caller.  Calling this code willy nilly can result in the loss of data.
2666  *
2667  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2668  * B_CACHE for the non-VMIO case.
2669  */
2670 
2671 int
2672 allocbuf(struct buf *bp, int size)
2673 {
2674 	int newbsize, mbsize;
2675 	int i;
2676 
2677 	GIANT_REQUIRED;
2678 
2679 	if (BUF_REFCNT(bp) == 0)
2680 		panic("allocbuf: buffer not busy");
2681 
2682 	if (bp->b_kvasize < size)
2683 		panic("allocbuf: buffer too small");
2684 
2685 	if ((bp->b_flags & B_VMIO) == 0) {
2686 		caddr_t origbuf;
2687 		int origbufsize;
2688 		/*
2689 		 * Just get anonymous memory from the kernel.  Don't
2690 		 * mess with B_CACHE.
2691 		 */
2692 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2693 		if (bp->b_flags & B_MALLOC)
2694 			newbsize = mbsize;
2695 		else
2696 			newbsize = round_page(size);
2697 
2698 		if (newbsize < bp->b_bufsize) {
2699 			/*
2700 			 * malloced buffers are not shrunk
2701 			 */
2702 			if (bp->b_flags & B_MALLOC) {
2703 				if (newbsize) {
2704 					bp->b_bcount = size;
2705 				} else {
2706 					free(bp->b_data, M_BIOBUF);
2707 					if (bp->b_bufsize) {
2708 						atomic_subtract_int(
2709 						    &bufmallocspace,
2710 						    bp->b_bufsize);
2711 						bufspacewakeup();
2712 						bp->b_bufsize = 0;
2713 					}
2714 					bp->b_saveaddr = bp->b_kvabase;
2715 					bp->b_data = bp->b_saveaddr;
2716 					bp->b_bcount = 0;
2717 					bp->b_flags &= ~B_MALLOC;
2718 				}
2719 				return 1;
2720 			}
2721 			vm_hold_free_pages(
2722 			    bp,
2723 			    (vm_offset_t) bp->b_data + newbsize,
2724 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2725 		} else if (newbsize > bp->b_bufsize) {
2726 			/*
2727 			 * We only use malloced memory on the first allocation.
2728 			 * and revert to page-allocated memory when the buffer
2729 			 * grows.
2730 			 */
2731 			/*
2732 			 * There is a potential smp race here that could lead
2733 			 * to bufmallocspace slightly passing the max.  It
2734 			 * is probably extremely rare and not worth worrying
2735 			 * over.
2736 			 */
2737 			if ( (bufmallocspace < maxbufmallocspace) &&
2738 				(bp->b_bufsize == 0) &&
2739 				(mbsize <= PAGE_SIZE/2)) {
2740 
2741 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2742 				bp->b_bufsize = mbsize;
2743 				bp->b_bcount = size;
2744 				bp->b_flags |= B_MALLOC;
2745 				atomic_add_int(&bufmallocspace, mbsize);
2746 				return 1;
2747 			}
2748 			origbuf = NULL;
2749 			origbufsize = 0;
2750 			/*
2751 			 * If the buffer is growing on its other-than-first allocation,
2752 			 * then we revert to the page-allocation scheme.
2753 			 */
2754 			if (bp->b_flags & B_MALLOC) {
2755 				origbuf = bp->b_data;
2756 				origbufsize = bp->b_bufsize;
2757 				bp->b_data = bp->b_kvabase;
2758 				if (bp->b_bufsize) {
2759 					atomic_subtract_int(&bufmallocspace,
2760 					    bp->b_bufsize);
2761 					bufspacewakeup();
2762 					bp->b_bufsize = 0;
2763 				}
2764 				bp->b_flags &= ~B_MALLOC;
2765 				newbsize = round_page(newbsize);
2766 			}
2767 			vm_hold_load_pages(
2768 			    bp,
2769 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2770 			    (vm_offset_t) bp->b_data + newbsize);
2771 			if (origbuf) {
2772 				bcopy(origbuf, bp->b_data, origbufsize);
2773 				free(origbuf, M_BIOBUF);
2774 			}
2775 		}
2776 	} else {
2777 		int desiredpages;
2778 
2779 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2780 		desiredpages = (size == 0) ? 0 :
2781 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2782 
2783 		if (bp->b_flags & B_MALLOC)
2784 			panic("allocbuf: VMIO buffer can't be malloced");
2785 		/*
2786 		 * Set B_CACHE initially if buffer is 0 length or will become
2787 		 * 0-length.
2788 		 */
2789 		if (size == 0 || bp->b_bufsize == 0)
2790 			bp->b_flags |= B_CACHE;
2791 
2792 		if (newbsize < bp->b_bufsize) {
2793 			/*
2794 			 * DEV_BSIZE aligned new buffer size is less then the
2795 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2796 			 * if we have to remove any pages.
2797 			 */
2798 			if (desiredpages < bp->b_npages) {
2799 				vm_page_t m;
2800 
2801 				vm_page_lock_queues();
2802 				for (i = desiredpages; i < bp->b_npages; i++) {
2803 					/*
2804 					 * the page is not freed here -- it
2805 					 * is the responsibility of
2806 					 * vnode_pager_setsize
2807 					 */
2808 					m = bp->b_pages[i];
2809 					KASSERT(m != bogus_page,
2810 					    ("allocbuf: bogus page found"));
2811 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2812 						vm_page_lock_queues();
2813 
2814 					bp->b_pages[i] = NULL;
2815 					vm_page_unwire(m, 0);
2816 				}
2817 				vm_page_unlock_queues();
2818 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2819 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2820 				bp->b_npages = desiredpages;
2821 			}
2822 		} else if (size > bp->b_bcount) {
2823 			/*
2824 			 * We are growing the buffer, possibly in a
2825 			 * byte-granular fashion.
2826 			 */
2827 			struct vnode *vp;
2828 			vm_object_t obj;
2829 			vm_offset_t toff;
2830 			vm_offset_t tinc;
2831 
2832 			/*
2833 			 * Step 1, bring in the VM pages from the object,
2834 			 * allocating them if necessary.  We must clear
2835 			 * B_CACHE if these pages are not valid for the
2836 			 * range covered by the buffer.
2837 			 */
2838 
2839 			vp = bp->b_vp;
2840 			obj = bp->b_object;
2841 
2842 			VM_OBJECT_LOCK(obj);
2843 			while (bp->b_npages < desiredpages) {
2844 				vm_page_t m;
2845 				vm_pindex_t pi;
2846 
2847 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2848 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2849 					/*
2850 					 * note: must allocate system pages
2851 					 * since blocking here could intefere
2852 					 * with paging I/O, no matter which
2853 					 * process we are.
2854 					 */
2855 					m = vm_page_alloc(obj, pi,
2856 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2857 					if (m == NULL) {
2858 						atomic_add_int(&vm_pageout_deficit,
2859 						    desiredpages - bp->b_npages);
2860 						VM_OBJECT_UNLOCK(obj);
2861 						VM_WAIT;
2862 						VM_OBJECT_LOCK(obj);
2863 					} else {
2864 						vm_page_lock_queues();
2865 						vm_page_wakeup(m);
2866 						vm_page_unlock_queues();
2867 						bp->b_flags &= ~B_CACHE;
2868 						bp->b_pages[bp->b_npages] = m;
2869 						++bp->b_npages;
2870 					}
2871 					continue;
2872 				}
2873 
2874 				/*
2875 				 * We found a page.  If we have to sleep on it,
2876 				 * retry because it might have gotten freed out
2877 				 * from under us.
2878 				 *
2879 				 * We can only test PG_BUSY here.  Blocking on
2880 				 * m->busy might lead to a deadlock:
2881 				 *
2882 				 *  vm_fault->getpages->cluster_read->allocbuf
2883 				 *
2884 				 */
2885 				vm_page_lock_queues();
2886 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2887 					continue;
2888 
2889 				/*
2890 				 * We have a good page.  Should we wakeup the
2891 				 * page daemon?
2892 				 */
2893 				if ((curproc != pageproc) &&
2894 				    ((m->queue - m->pc) == PQ_CACHE) &&
2895 				    ((cnt.v_free_count + cnt.v_cache_count) <
2896 					(cnt.v_free_min + cnt.v_cache_min))) {
2897 					pagedaemon_wakeup();
2898 				}
2899 				vm_page_flag_clear(m, PG_ZERO);
2900 				vm_page_wire(m);
2901 				vm_page_unlock_queues();
2902 				bp->b_pages[bp->b_npages] = m;
2903 				++bp->b_npages;
2904 			}
2905 			VM_OBJECT_UNLOCK(obj);
2906 
2907 			/*
2908 			 * Step 2.  We've loaded the pages into the buffer,
2909 			 * we have to figure out if we can still have B_CACHE
2910 			 * set.  Note that B_CACHE is set according to the
2911 			 * byte-granular range ( bcount and size ), new the
2912 			 * aligned range ( newbsize ).
2913 			 *
2914 			 * The VM test is against m->valid, which is DEV_BSIZE
2915 			 * aligned.  Needless to say, the validity of the data
2916 			 * needs to also be DEV_BSIZE aligned.  Note that this
2917 			 * fails with NFS if the server or some other client
2918 			 * extends the file's EOF.  If our buffer is resized,
2919 			 * B_CACHE may remain set! XXX
2920 			 */
2921 
2922 			toff = bp->b_bcount;
2923 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2924 
2925 			while ((bp->b_flags & B_CACHE) && toff < size) {
2926 				vm_pindex_t pi;
2927 
2928 				if (tinc > (size - toff))
2929 					tinc = size - toff;
2930 
2931 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2932 				    PAGE_SHIFT;
2933 
2934 				vfs_buf_test_cache(
2935 				    bp,
2936 				    bp->b_offset,
2937 				    toff,
2938 				    tinc,
2939 				    bp->b_pages[pi]
2940 				);
2941 				toff += tinc;
2942 				tinc = PAGE_SIZE;
2943 			}
2944 
2945 			/*
2946 			 * Step 3, fixup the KVM pmap.  Remember that
2947 			 * bp->b_data is relative to bp->b_offset, but
2948 			 * bp->b_offset may be offset into the first page.
2949 			 */
2950 
2951 			bp->b_data = (caddr_t)
2952 			    trunc_page((vm_offset_t)bp->b_data);
2953 			pmap_qenter(
2954 			    (vm_offset_t)bp->b_data,
2955 			    bp->b_pages,
2956 			    bp->b_npages
2957 			);
2958 
2959 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2960 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2961 		}
2962 	}
2963 	if (newbsize < bp->b_bufsize)
2964 		bufspacewakeup();
2965 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2966 	bp->b_bcount = size;		/* requested buffer size	*/
2967 	return 1;
2968 }
2969 
2970 void
2971 biodone(struct bio *bp)
2972 {
2973 	mtx_lock(&bdonelock);
2974 	bp->bio_flags |= BIO_DONE;
2975 	if (bp->bio_done == NULL)
2976 		wakeup(bp);
2977 	mtx_unlock(&bdonelock);
2978 	if (bp->bio_done != NULL)
2979 		bp->bio_done(bp);
2980 }
2981 
2982 /*
2983  * Wait for a BIO to finish.
2984  *
2985  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2986  * case is not yet clear.
2987  */
2988 int
2989 biowait(struct bio *bp, const char *wchan)
2990 {
2991 
2992 	mtx_lock(&bdonelock);
2993 	while ((bp->bio_flags & BIO_DONE) == 0)
2994 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2995 	mtx_unlock(&bdonelock);
2996 	if (bp->bio_error != 0)
2997 		return (bp->bio_error);
2998 	if (!(bp->bio_flags & BIO_ERROR))
2999 		return (0);
3000 	return (EIO);
3001 }
3002 
3003 void
3004 biofinish(struct bio *bp, struct devstat *stat, int error)
3005 {
3006 
3007 	if (error) {
3008 		bp->bio_error = error;
3009 		bp->bio_flags |= BIO_ERROR;
3010 	}
3011 	if (stat != NULL)
3012 		devstat_end_transaction_bio(stat, bp);
3013 	biodone(bp);
3014 }
3015 
3016 /*
3017  *	bufwait:
3018  *
3019  *	Wait for buffer I/O completion, returning error status.  The buffer
3020  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3021  *	error and cleared.
3022  */
3023 int
3024 bufwait(register struct buf * bp)
3025 {
3026 	int s;
3027 
3028 	s = splbio();
3029 	if (bp->b_iocmd == BIO_READ)
3030 		bwait(bp, PRIBIO, "biord");
3031 	else
3032 		bwait(bp, PRIBIO, "biowr");
3033 	splx(s);
3034 	if (bp->b_flags & B_EINTR) {
3035 		bp->b_flags &= ~B_EINTR;
3036 		return (EINTR);
3037 	}
3038 	if (bp->b_ioflags & BIO_ERROR) {
3039 		return (bp->b_error ? bp->b_error : EIO);
3040 	} else {
3041 		return (0);
3042 	}
3043 }
3044 
3045  /*
3046   * Call back function from struct bio back up to struct buf.
3047   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3048   */
3049 void
3050 bufdonebio(struct bio *bp)
3051 {
3052 
3053 	/* Device drivers may or may not hold giant, hold it here. */
3054 	mtx_lock(&Giant);
3055 	bufdone(bp->bio_caller2);
3056 	mtx_unlock(&Giant);
3057 }
3058 
3059 /*
3060  *	bufdone:
3061  *
3062  *	Finish I/O on a buffer, optionally calling a completion function.
3063  *	This is usually called from an interrupt so process blocking is
3064  *	not allowed.
3065  *
3066  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3067  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3068  *	assuming B_INVAL is clear.
3069  *
3070  *	For the VMIO case, we set B_CACHE if the op was a read and no
3071  *	read error occured, or if the op was a write.  B_CACHE is never
3072  *	set if the buffer is invalid or otherwise uncacheable.
3073  *
3074  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3075  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3076  *	in the biodone routine.
3077  */
3078 void
3079 bufdone(struct buf *bp)
3080 {
3081 	int s;
3082 	void    (*biodone)(struct buf *);
3083 
3084 	GIANT_REQUIRED;
3085 
3086 	s = splbio();
3087 
3088 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3089 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3090 
3091 	bp->b_flags |= B_DONE;
3092 	runningbufwakeup(bp);
3093 
3094 	if (bp->b_iocmd == BIO_DELETE) {
3095 		brelse(bp);
3096 		splx(s);
3097 		return;
3098 	}
3099 
3100 	if (bp->b_iocmd == BIO_WRITE) {
3101 		vwakeup(bp);
3102 	}
3103 
3104 	/* call optional completion function if requested */
3105 	if (bp->b_iodone != NULL) {
3106 		biodone = bp->b_iodone;
3107 		bp->b_iodone = NULL;
3108 		(*biodone) (bp);
3109 		splx(s);
3110 		return;
3111 	}
3112 	if (LIST_FIRST(&bp->b_dep) != NULL)
3113 		buf_complete(bp);
3114 
3115 	if (bp->b_flags & B_VMIO) {
3116 		int i;
3117 		vm_ooffset_t foff;
3118 		vm_page_t m;
3119 		vm_object_t obj;
3120 		int iosize;
3121 		struct vnode *vp = bp->b_vp;
3122 
3123 		obj = bp->b_object;
3124 
3125 #if defined(VFS_BIO_DEBUG)
3126 		mp_fixme("usecount and vflag accessed without locks.");
3127 		if (vp->v_usecount == 0) {
3128 			panic("biodone: zero vnode ref count");
3129 		}
3130 
3131 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3132 			panic("biodone: vnode is not setup for merged cache");
3133 		}
3134 #endif
3135 
3136 		foff = bp->b_offset;
3137 		KASSERT(bp->b_offset != NOOFFSET,
3138 		    ("biodone: no buffer offset"));
3139 
3140 		if (obj != NULL)
3141 			VM_OBJECT_LOCK(obj);
3142 #if defined(VFS_BIO_DEBUG)
3143 		if (obj->paging_in_progress < bp->b_npages) {
3144 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3145 			    obj->paging_in_progress, bp->b_npages);
3146 		}
3147 #endif
3148 
3149 		/*
3150 		 * Set B_CACHE if the op was a normal read and no error
3151 		 * occured.  B_CACHE is set for writes in the b*write()
3152 		 * routines.
3153 		 */
3154 		iosize = bp->b_bcount - bp->b_resid;
3155 		if (bp->b_iocmd == BIO_READ &&
3156 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3157 		    !(bp->b_ioflags & BIO_ERROR)) {
3158 			bp->b_flags |= B_CACHE;
3159 		}
3160 		vm_page_lock_queues();
3161 		for (i = 0; i < bp->b_npages; i++) {
3162 			int bogusflag = 0;
3163 			int resid;
3164 
3165 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3166 			if (resid > iosize)
3167 				resid = iosize;
3168 
3169 			/*
3170 			 * cleanup bogus pages, restoring the originals
3171 			 */
3172 			m = bp->b_pages[i];
3173 			if (m == bogus_page) {
3174 				bogusflag = 1;
3175 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3176 				if (m == NULL)
3177 					panic("biodone: page disappeared!");
3178 				bp->b_pages[i] = m;
3179 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3180 			}
3181 #if defined(VFS_BIO_DEBUG)
3182 			if (OFF_TO_IDX(foff) != m->pindex) {
3183 				printf(
3184 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3185 				    (intmax_t)foff, (uintmax_t)m->pindex);
3186 			}
3187 #endif
3188 
3189 			/*
3190 			 * In the write case, the valid and clean bits are
3191 			 * already changed correctly ( see bdwrite() ), so we
3192 			 * only need to do this here in the read case.
3193 			 */
3194 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3195 				vfs_page_set_valid(bp, foff, i, m);
3196 			}
3197 			vm_page_flag_clear(m, PG_ZERO);
3198 
3199 			/*
3200 			 * when debugging new filesystems or buffer I/O methods, this
3201 			 * is the most common error that pops up.  if you see this, you
3202 			 * have not set the page busy flag correctly!!!
3203 			 */
3204 			if (m->busy == 0) {
3205 				printf("biodone: page busy < 0, "
3206 				    "pindex: %d, foff: 0x(%x,%x), "
3207 				    "resid: %d, index: %d\n",
3208 				    (int) m->pindex, (int)(foff >> 32),
3209 						(int) foff & 0xffffffff, resid, i);
3210 				if (!vn_isdisk(vp, NULL))
3211 					printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n",
3212 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3213 					    (intmax_t) bp->b_lblkno,
3214 					    bp->b_flags, bp->b_npages);
3215 				else
3216 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3217 					    (intmax_t) bp->b_lblkno,
3218 					    bp->b_flags, bp->b_npages);
3219 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3220 				    (u_long)m->valid, (u_long)m->dirty,
3221 				    m->wire_count);
3222 				panic("biodone: page busy < 0\n");
3223 			}
3224 			vm_page_io_finish(m);
3225 			vm_object_pip_subtract(obj, 1);
3226 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3227 			iosize -= resid;
3228 		}
3229 		vm_page_unlock_queues();
3230 		if (obj != NULL) {
3231 			vm_object_pip_wakeupn(obj, 0);
3232 			VM_OBJECT_UNLOCK(obj);
3233 		}
3234 	}
3235 
3236 	/*
3237 	 * For asynchronous completions, release the buffer now. The brelse
3238 	 * will do a wakeup there if necessary - so no need to do a wakeup
3239 	 * here in the async case. The sync case always needs to do a wakeup.
3240 	 */
3241 
3242 	if (bp->b_flags & B_ASYNC) {
3243 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3244 			brelse(bp);
3245 		else
3246 			bqrelse(bp);
3247 	} else {
3248 		bdone(bp);
3249 	}
3250 	splx(s);
3251 }
3252 
3253 /*
3254  * This routine is called in lieu of iodone in the case of
3255  * incomplete I/O.  This keeps the busy status for pages
3256  * consistant.
3257  */
3258 void
3259 vfs_unbusy_pages(struct buf * bp)
3260 {
3261 	int i;
3262 
3263 	GIANT_REQUIRED;
3264 
3265 	runningbufwakeup(bp);
3266 	if (bp->b_flags & B_VMIO) {
3267 		vm_object_t obj;
3268 
3269 		obj = bp->b_object;
3270 		VM_OBJECT_LOCK(obj);
3271 		vm_page_lock_queues();
3272 		for (i = 0; i < bp->b_npages; i++) {
3273 			vm_page_t m = bp->b_pages[i];
3274 
3275 			if (m == bogus_page) {
3276 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3277 				if (!m) {
3278 					panic("vfs_unbusy_pages: page missing\n");
3279 				}
3280 				bp->b_pages[i] = m;
3281 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3282 			}
3283 			vm_object_pip_subtract(obj, 1);
3284 			vm_page_flag_clear(m, PG_ZERO);
3285 			vm_page_io_finish(m);
3286 		}
3287 		vm_page_unlock_queues();
3288 		vm_object_pip_wakeupn(obj, 0);
3289 		VM_OBJECT_UNLOCK(obj);
3290 	}
3291 }
3292 
3293 /*
3294  * vfs_page_set_valid:
3295  *
3296  *	Set the valid bits in a page based on the supplied offset.   The
3297  *	range is restricted to the buffer's size.
3298  *
3299  *	This routine is typically called after a read completes.
3300  */
3301 static void
3302 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3303 {
3304 	vm_ooffset_t soff, eoff;
3305 
3306 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3307 	/*
3308 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3309 	 * page boundry or cross the end of the buffer.  The end of the
3310 	 * buffer, in this case, is our file EOF, not the allocation size
3311 	 * of the buffer.
3312 	 */
3313 	soff = off;
3314 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3315 	if (eoff > bp->b_offset + bp->b_bcount)
3316 		eoff = bp->b_offset + bp->b_bcount;
3317 
3318 	/*
3319 	 * Set valid range.  This is typically the entire buffer and thus the
3320 	 * entire page.
3321 	 */
3322 	if (eoff > soff) {
3323 		vm_page_set_validclean(
3324 		    m,
3325 		   (vm_offset_t) (soff & PAGE_MASK),
3326 		   (vm_offset_t) (eoff - soff)
3327 		);
3328 	}
3329 }
3330 
3331 /*
3332  * This routine is called before a device strategy routine.
3333  * It is used to tell the VM system that paging I/O is in
3334  * progress, and treat the pages associated with the buffer
3335  * almost as being PG_BUSY.  Also the object paging_in_progress
3336  * flag is handled to make sure that the object doesn't become
3337  * inconsistant.
3338  *
3339  * Since I/O has not been initiated yet, certain buffer flags
3340  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3341  * and should be ignored.
3342  */
3343 void
3344 vfs_busy_pages(struct buf * bp, int clear_modify)
3345 {
3346 	int i, bogus;
3347 
3348 	if (bp->b_flags & B_VMIO) {
3349 		vm_object_t obj;
3350 		vm_ooffset_t foff;
3351 
3352 		obj = bp->b_object;
3353 		foff = bp->b_offset;
3354 		KASSERT(bp->b_offset != NOOFFSET,
3355 		    ("vfs_busy_pages: no buffer offset"));
3356 		vfs_setdirty(bp);
3357 		if (obj != NULL)
3358 			VM_OBJECT_LOCK(obj);
3359 retry:
3360 		vm_page_lock_queues();
3361 		for (i = 0; i < bp->b_npages; i++) {
3362 			vm_page_t m = bp->b_pages[i];
3363 
3364 			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3365 				goto retry;
3366 		}
3367 		bogus = 0;
3368 		for (i = 0; i < bp->b_npages; i++) {
3369 			vm_page_t m = bp->b_pages[i];
3370 
3371 			vm_page_flag_clear(m, PG_ZERO);
3372 			if ((bp->b_flags & B_CLUSTER) == 0) {
3373 				vm_object_pip_add(obj, 1);
3374 				vm_page_io_start(m);
3375 			}
3376 			/*
3377 			 * When readying a buffer for a read ( i.e
3378 			 * clear_modify == 0 ), it is important to do
3379 			 * bogus_page replacement for valid pages in
3380 			 * partially instantiated buffers.  Partially
3381 			 * instantiated buffers can, in turn, occur when
3382 			 * reconstituting a buffer from its VM backing store
3383 			 * base.  We only have to do this if B_CACHE is
3384 			 * clear ( which causes the I/O to occur in the
3385 			 * first place ).  The replacement prevents the read
3386 			 * I/O from overwriting potentially dirty VM-backed
3387 			 * pages.  XXX bogus page replacement is, uh, bogus.
3388 			 * It may not work properly with small-block devices.
3389 			 * We need to find a better way.
3390 			 */
3391 			pmap_remove_all(m);
3392 			if (clear_modify)
3393 				vfs_page_set_valid(bp, foff, i, m);
3394 			else if (m->valid == VM_PAGE_BITS_ALL &&
3395 				(bp->b_flags & B_CACHE) == 0) {
3396 				bp->b_pages[i] = bogus_page;
3397 				bogus++;
3398 			}
3399 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3400 		}
3401 		vm_page_unlock_queues();
3402 		if (obj != NULL)
3403 			VM_OBJECT_UNLOCK(obj);
3404 		if (bogus)
3405 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3406 	}
3407 }
3408 
3409 /*
3410  * Tell the VM system that the pages associated with this buffer
3411  * are clean.  This is used for delayed writes where the data is
3412  * going to go to disk eventually without additional VM intevention.
3413  *
3414  * Note that while we only really need to clean through to b_bcount, we
3415  * just go ahead and clean through to b_bufsize.
3416  */
3417 static void
3418 vfs_clean_pages(struct buf * bp)
3419 {
3420 	int i;
3421 
3422 	GIANT_REQUIRED;
3423 
3424 	if (bp->b_flags & B_VMIO) {
3425 		vm_ooffset_t foff;
3426 
3427 		foff = bp->b_offset;
3428 		KASSERT(bp->b_offset != NOOFFSET,
3429 		    ("vfs_clean_pages: no buffer offset"));
3430 		vm_page_lock_queues();
3431 		for (i = 0; i < bp->b_npages; i++) {
3432 			vm_page_t m = bp->b_pages[i];
3433 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3434 			vm_ooffset_t eoff = noff;
3435 
3436 			if (eoff > bp->b_offset + bp->b_bufsize)
3437 				eoff = bp->b_offset + bp->b_bufsize;
3438 			vfs_page_set_valid(bp, foff, i, m);
3439 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3440 			foff = noff;
3441 		}
3442 		vm_page_unlock_queues();
3443 	}
3444 }
3445 
3446 /*
3447  *	vfs_bio_set_validclean:
3448  *
3449  *	Set the range within the buffer to valid and clean.  The range is
3450  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3451  *	itself may be offset from the beginning of the first page.
3452  *
3453  */
3454 
3455 void
3456 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3457 {
3458 	if (bp->b_flags & B_VMIO) {
3459 		int i;
3460 		int n;
3461 
3462 		/*
3463 		 * Fixup base to be relative to beginning of first page.
3464 		 * Set initial n to be the maximum number of bytes in the
3465 		 * first page that can be validated.
3466 		 */
3467 
3468 		base += (bp->b_offset & PAGE_MASK);
3469 		n = PAGE_SIZE - (base & PAGE_MASK);
3470 
3471 		vm_page_lock_queues();
3472 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3473 			vm_page_t m = bp->b_pages[i];
3474 
3475 			if (n > size)
3476 				n = size;
3477 
3478 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3479 			base += n;
3480 			size -= n;
3481 			n = PAGE_SIZE;
3482 		}
3483 		vm_page_unlock_queues();
3484 	}
3485 }
3486 
3487 /*
3488  *	vfs_bio_clrbuf:
3489  *
3490  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3491  *	to clear BIO_ERROR and B_INVAL.
3492  *
3493  *	Note that while we only theoretically need to clear through b_bcount,
3494  *	we go ahead and clear through b_bufsize.
3495  */
3496 
3497 void
3498 vfs_bio_clrbuf(struct buf *bp)
3499 {
3500 	int i, mask = 0;
3501 	caddr_t sa, ea;
3502 
3503 	GIANT_REQUIRED;
3504 
3505 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3506 		bp->b_flags &= ~B_INVAL;
3507 		bp->b_ioflags &= ~BIO_ERROR;
3508 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3509 		    (bp->b_offset & PAGE_MASK) == 0) {
3510 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3511 			if ((bp->b_pages[0]->valid & mask) == mask) {
3512 				bp->b_resid = 0;
3513 				return;
3514 			}
3515 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3516 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3517 				bzero(bp->b_data, bp->b_bufsize);
3518 				bp->b_pages[0]->valid |= mask;
3519 				bp->b_resid = 0;
3520 				return;
3521 			}
3522 		}
3523 		ea = sa = bp->b_data;
3524 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3525 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3526 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3527 			ea = (caddr_t)(vm_offset_t)ulmin(
3528 			    (u_long)(vm_offset_t)ea,
3529 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3530 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3531 			if ((bp->b_pages[i]->valid & mask) == mask)
3532 				continue;
3533 			if ((bp->b_pages[i]->valid & mask) == 0) {
3534 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3535 					bzero(sa, ea - sa);
3536 				}
3537 			} else {
3538 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3539 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3540 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3541 						bzero(sa, DEV_BSIZE);
3542 				}
3543 			}
3544 			bp->b_pages[i]->valid |= mask;
3545 			vm_page_lock_queues();
3546 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3547 			vm_page_unlock_queues();
3548 		}
3549 		bp->b_resid = 0;
3550 	} else {
3551 		clrbuf(bp);
3552 	}
3553 }
3554 
3555 /*
3556  * vm_hold_load_pages and vm_hold_free_pages get pages into
3557  * a buffers address space.  The pages are anonymous and are
3558  * not associated with a file object.
3559  */
3560 static void
3561 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3562 {
3563 	vm_offset_t pg;
3564 	vm_page_t p;
3565 	int index;
3566 
3567 	GIANT_REQUIRED;
3568 
3569 	to = round_page(to);
3570 	from = round_page(from);
3571 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3572 
3573 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3574 tryagain:
3575 		/*
3576 		 * note: must allocate system pages since blocking here
3577 		 * could intefere with paging I/O, no matter which
3578 		 * process we are.
3579 		 */
3580 		VM_OBJECT_LOCK(kernel_object);
3581 		p = vm_page_alloc(kernel_object,
3582 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3583 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3584 		VM_OBJECT_UNLOCK(kernel_object);
3585 		if (!p) {
3586 			atomic_add_int(&vm_pageout_deficit,
3587 			    (to - pg) >> PAGE_SHIFT);
3588 			VM_WAIT;
3589 			goto tryagain;
3590 		}
3591 		vm_page_lock_queues();
3592 		p->valid = VM_PAGE_BITS_ALL;
3593 		vm_page_unlock_queues();
3594 		pmap_qenter(pg, &p, 1);
3595 		bp->b_pages[index] = p;
3596 		vm_page_lock_queues();
3597 		vm_page_wakeup(p);
3598 		vm_page_unlock_queues();
3599 	}
3600 	bp->b_npages = index;
3601 }
3602 
3603 /* Return pages associated with this buf to the vm system */
3604 static void
3605 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3606 {
3607 	vm_offset_t pg;
3608 	vm_page_t p;
3609 	int index, newnpages;
3610 
3611 	GIANT_REQUIRED;
3612 
3613 	from = round_page(from);
3614 	to = round_page(to);
3615 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3616 
3617 	if (bp->b_object != NULL)
3618 		VM_OBJECT_LOCK(bp->b_object);
3619 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3620 		p = bp->b_pages[index];
3621 		if (p && (index < bp->b_npages)) {
3622 			if (p->busy) {
3623 				printf(
3624 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3625 				    (intmax_t)bp->b_blkno,
3626 				    (intmax_t)bp->b_lblkno);
3627 			}
3628 			bp->b_pages[index] = NULL;
3629 			pmap_qremove(pg, 1);
3630 			vm_page_lock_queues();
3631 			vm_page_busy(p);
3632 			vm_page_unwire(p, 0);
3633 			vm_page_free(p);
3634 			vm_page_unlock_queues();
3635 		}
3636 	}
3637 	if (bp->b_object != NULL)
3638 		VM_OBJECT_UNLOCK(bp->b_object);
3639 	bp->b_npages = newnpages;
3640 }
3641 
3642 /*
3643  * Map an IO request into kernel virtual address space.
3644  *
3645  * All requests are (re)mapped into kernel VA space.
3646  * Notice that we use b_bufsize for the size of the buffer
3647  * to be mapped.  b_bcount might be modified by the driver.
3648  *
3649  * Note that even if the caller determines that the address space should
3650  * be valid, a race or a smaller-file mapped into a larger space may
3651  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3652  * check the return value.
3653  */
3654 int
3655 vmapbuf(struct buf *bp)
3656 {
3657 	caddr_t addr, kva;
3658 	vm_prot_t prot;
3659 	int pidx, i;
3660 	struct vm_page *m;
3661 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3662 
3663 	GIANT_REQUIRED;
3664 
3665 	if ((bp->b_flags & B_PHYS) == 0)
3666 		panic("vmapbuf");
3667 	if (bp->b_bufsize < 0)
3668 		return (-1);
3669 	prot = (bp->b_iocmd == BIO_READ) ? VM_PROT_READ | VM_PROT_WRITE :
3670 	    VM_PROT_READ;
3671 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3672 	     addr < bp->b_data + bp->b_bufsize;
3673 	     addr += PAGE_SIZE, pidx++) {
3674 		/*
3675 		 * Do the vm_fault if needed; do the copy-on-write thing
3676 		 * when reading stuff off device into memory.
3677 		 *
3678 		 * NOTE! Must use pmap_extract() because addr may be in
3679 		 * the userland address space, and kextract is only guarenteed
3680 		 * to work for the kernland address space (see: sparc64 port).
3681 		 */
3682 retry:
3683 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3684 		    prot) < 0) {
3685 			vm_page_lock_queues();
3686 			for (i = 0; i < pidx; ++i) {
3687 				vm_page_unhold(bp->b_pages[i]);
3688 				bp->b_pages[i] = NULL;
3689 			}
3690 			vm_page_unlock_queues();
3691 			return(-1);
3692 		}
3693 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3694 		if (m == NULL)
3695 			goto retry;
3696 		bp->b_pages[pidx] = m;
3697 	}
3698 	if (pidx > btoc(MAXPHYS))
3699 		panic("vmapbuf: mapped more than MAXPHYS");
3700 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3701 
3702 	kva = bp->b_saveaddr;
3703 	bp->b_npages = pidx;
3704 	bp->b_saveaddr = bp->b_data;
3705 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3706 	return(0);
3707 }
3708 
3709 /*
3710  * Free the io map PTEs associated with this IO operation.
3711  * We also invalidate the TLB entries and restore the original b_addr.
3712  */
3713 void
3714 vunmapbuf(struct buf *bp)
3715 {
3716 	int pidx;
3717 	int npages;
3718 
3719 	GIANT_REQUIRED;
3720 
3721 	if ((bp->b_flags & B_PHYS) == 0)
3722 		panic("vunmapbuf");
3723 
3724 	npages = bp->b_npages;
3725 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3726 		     npages);
3727 	vm_page_lock_queues();
3728 	for (pidx = 0; pidx < npages; pidx++)
3729 		vm_page_unhold(bp->b_pages[pidx]);
3730 	vm_page_unlock_queues();
3731 
3732 	bp->b_data = bp->b_saveaddr;
3733 }
3734 
3735 void
3736 bdone(struct buf *bp)
3737 {
3738 	mtx_lock(&bdonelock);
3739 	bp->b_flags |= B_DONE;
3740 	wakeup(bp);
3741 	mtx_unlock(&bdonelock);
3742 }
3743 
3744 void
3745 bwait(struct buf *bp, u_char pri, const char *wchan)
3746 {
3747 	mtx_lock(&bdonelock);
3748 	while ((bp->b_flags & B_DONE) == 0)
3749 		msleep(bp, &bdonelock, pri, wchan, 0);
3750 	mtx_unlock(&bdonelock);
3751 }
3752 
3753 #include "opt_ddb.h"
3754 #ifdef DDB
3755 #include <ddb/ddb.h>
3756 
3757 /* DDB command to show buffer data */
3758 DB_SHOW_COMMAND(buffer, db_show_buffer)
3759 {
3760 	/* get args */
3761 	struct buf *bp = (struct buf *)addr;
3762 
3763 	if (!have_addr) {
3764 		db_printf("usage: show buffer <addr>\n");
3765 		return;
3766 	}
3767 
3768 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3769 	db_printf(
3770 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3771 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3772 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3773 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3774 	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3775 	if (bp->b_npages) {
3776 		int i;
3777 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3778 		for (i = 0; i < bp->b_npages; i++) {
3779 			vm_page_t m;
3780 			m = bp->b_pages[i];
3781 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3782 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3783 			if ((i + 1) < bp->b_npages)
3784 				db_printf(",");
3785 		}
3786 		db_printf("\n");
3787 	}
3788 }
3789 #endif /* DDB */
3790