1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bio.h> 33 #include <sys/buf.h> 34 #include <sys/devicestat.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/mutex.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <vm/vm.h> 48 #include <vm/vm_param.h> 49 #include <vm/vm_kern.h> 50 #include <vm/vm_pageout.h> 51 #include <vm/vm_page.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_map.h> 55 #include "opt_directio.h" 56 #include "opt_swap.h" 57 58 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 59 60 struct bio_ops bioops; /* I/O operation notification */ 61 62 struct buf_ops buf_ops_bio = { 63 "buf_ops_bio", 64 bwrite 65 }; 66 67 /* 68 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 69 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 70 */ 71 struct buf *buf; /* buffer header pool */ 72 73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 74 vm_offset_t to); 75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 76 vm_offset_t to); 77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 78 int pageno, vm_page_t m); 79 static void vfs_clean_pages(struct buf * bp); 80 static void vfs_setdirty(struct buf *bp); 81 static void vfs_vmio_release(struct buf *bp); 82 static void vfs_backgroundwritedone(struct buf *bp); 83 static int vfs_bio_clcheck(struct vnode *vp, int size, 84 daddr_t lblkno, daddr_t blkno); 85 static int flushbufqueues(int flushdeps); 86 static void buf_daemon(void); 87 void bremfreel(struct buf * bp); 88 89 int vmiodirenable = TRUE; 90 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 91 "Use the VM system for directory writes"); 92 int runningbufspace; 93 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 94 "Amount of presently outstanding async buffer io"); 95 static int bufspace; 96 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 97 "KVA memory used for bufs"); 98 static int maxbufspace; 99 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 100 "Maximum allowed value of bufspace (including buf_daemon)"); 101 static int bufmallocspace; 102 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 103 "Amount of malloced memory for buffers"); 104 static int maxbufmallocspace; 105 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 106 "Maximum amount of malloced memory for buffers"); 107 static int lobufspace; 108 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 109 "Minimum amount of buffers we want to have"); 110 static int hibufspace; 111 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 112 "Maximum allowed value of bufspace (excluding buf_daemon)"); 113 static int bufreusecnt; 114 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 115 "Number of times we have reused a buffer"); 116 static int buffreekvacnt; 117 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 118 "Number of times we have freed the KVA space from some buffer"); 119 static int bufdefragcnt; 120 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 121 "Number of times we have had to repeat buffer allocation to defragment"); 122 static int lorunningspace; 123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 124 "Minimum preferred space used for in-progress I/O"); 125 static int hirunningspace; 126 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 127 "Maximum amount of space to use for in-progress I/O"); 128 static int dirtybufferflushes; 129 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 130 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 131 static int altbufferflushes; 132 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes, 133 0, "Number of fsync flushes to limit dirty buffers"); 134 static int recursiveflushes; 135 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes, 136 0, "Number of flushes skipped due to being recursive"); 137 static int numdirtybuffers; 138 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 139 "Number of buffers that are dirty (has unwritten changes) at the moment"); 140 static int lodirtybuffers; 141 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 142 "How many buffers we want to have free before bufdaemon can sleep"); 143 static int hidirtybuffers; 144 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 145 "When the number of dirty buffers is considered severe"); 146 static int dirtybufthresh; 147 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh, 148 0, "Number of bdwrite to bawrite conversions to clear dirty buffers"); 149 static int numfreebuffers; 150 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 151 "Number of free buffers"); 152 static int lofreebuffers; 153 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 154 "XXX Unused"); 155 static int hifreebuffers; 156 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 157 "XXX Complicatedly unused"); 158 static int getnewbufcalls; 159 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 160 "Number of calls to getnewbuf"); 161 static int getnewbufrestarts; 162 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 163 "Number of times getnewbuf has had to restart a buffer aquisition"); 164 static int dobkgrdwrite = 1; 165 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 166 "Do background writes (honoring the BX_BKGRDWRITE flag)?"); 167 168 /* 169 * Wakeup point for bufdaemon, as well as indicator of whether it is already 170 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 171 * is idling. 172 */ 173 static int bd_request; 174 175 /* 176 * This lock synchronizes access to bd_request. 177 */ 178 static struct mtx bdlock; 179 180 /* 181 * bogus page -- for I/O to/from partially complete buffers 182 * this is a temporary solution to the problem, but it is not 183 * really that bad. it would be better to split the buffer 184 * for input in the case of buffers partially already in memory, 185 * but the code is intricate enough already. 186 */ 187 vm_page_t bogus_page; 188 189 /* 190 * Synchronization (sleep/wakeup) variable for active buffer space requests. 191 * Set when wait starts, cleared prior to wakeup(). 192 * Used in runningbufwakeup() and waitrunningbufspace(). 193 */ 194 static int runningbufreq; 195 196 /* 197 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 198 * waitrunningbufspace(). 199 */ 200 static struct mtx rbreqlock; 201 202 /* 203 * Synchronization (sleep/wakeup) variable for buffer requests. 204 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 205 * by and/or. 206 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(), 207 * getnewbuf(), and getblk(). 208 */ 209 static int needsbuffer; 210 211 /* 212 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it. 213 */ 214 static struct mtx nblock; 215 216 /* 217 * Lock that protects against bwait()/bdone()/B_DONE races. 218 */ 219 220 static struct mtx bdonelock; 221 222 /* 223 * Definitions for the buffer free lists. 224 */ 225 #define BUFFER_QUEUES 6 /* number of free buffer queues */ 226 227 #define QUEUE_NONE 0 /* on no queue */ 228 #define QUEUE_LOCKED 1 /* locked buffers */ 229 #define QUEUE_CLEAN 2 /* non-B_DELWRI buffers */ 230 #define QUEUE_DIRTY 3 /* B_DELWRI buffers */ 231 #define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */ 232 #define QUEUE_EMPTY 5 /* empty buffer headers */ 233 234 /* Queues for free buffers with various properties */ 235 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 236 237 /* Lock for the bufqueues */ 238 static struct mtx bqlock; 239 240 /* 241 * Single global constant for BUF_WMESG, to avoid getting multiple references. 242 * buf_wmesg is referred from macros. 243 */ 244 const char *buf_wmesg = BUF_WMESG; 245 246 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 247 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 248 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 249 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 250 251 #ifdef DIRECTIO 252 extern void ffs_rawread_setup(void); 253 #endif /* DIRECTIO */ 254 /* 255 * numdirtywakeup: 256 * 257 * If someone is blocked due to there being too many dirty buffers, 258 * and numdirtybuffers is now reasonable, wake them up. 259 */ 260 261 static __inline void 262 numdirtywakeup(int level) 263 { 264 if (numdirtybuffers <= level) { 265 mtx_lock(&nblock); 266 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 267 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 268 wakeup(&needsbuffer); 269 } 270 mtx_unlock(&nblock); 271 } 272 } 273 274 /* 275 * bufspacewakeup: 276 * 277 * Called when buffer space is potentially available for recovery. 278 * getnewbuf() will block on this flag when it is unable to free 279 * sufficient buffer space. Buffer space becomes recoverable when 280 * bp's get placed back in the queues. 281 */ 282 283 static __inline void 284 bufspacewakeup(void) 285 { 286 /* 287 * If someone is waiting for BUF space, wake them up. Even 288 * though we haven't freed the kva space yet, the waiting 289 * process will be able to now. 290 */ 291 mtx_lock(&nblock); 292 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 293 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 294 wakeup(&needsbuffer); 295 } 296 mtx_unlock(&nblock); 297 } 298 299 /* 300 * runningbufwakeup() - in-progress I/O accounting. 301 * 302 */ 303 static __inline void 304 runningbufwakeup(struct buf *bp) 305 { 306 if (bp->b_runningbufspace) { 307 atomic_subtract_int(&runningbufspace, bp->b_runningbufspace); 308 bp->b_runningbufspace = 0; 309 mtx_lock(&rbreqlock); 310 if (runningbufreq && runningbufspace <= lorunningspace) { 311 runningbufreq = 0; 312 wakeup(&runningbufreq); 313 } 314 mtx_unlock(&rbreqlock); 315 } 316 } 317 318 /* 319 * bufcountwakeup: 320 * 321 * Called when a buffer has been added to one of the free queues to 322 * account for the buffer and to wakeup anyone waiting for free buffers. 323 * This typically occurs when large amounts of metadata are being handled 324 * by the buffer cache ( else buffer space runs out first, usually ). 325 */ 326 327 static __inline void 328 bufcountwakeup(void) 329 { 330 atomic_add_int(&numfreebuffers, 1); 331 mtx_lock(&nblock); 332 if (needsbuffer) { 333 needsbuffer &= ~VFS_BIO_NEED_ANY; 334 if (numfreebuffers >= hifreebuffers) 335 needsbuffer &= ~VFS_BIO_NEED_FREE; 336 wakeup(&needsbuffer); 337 } 338 mtx_unlock(&nblock); 339 } 340 341 /* 342 * waitrunningbufspace() 343 * 344 * runningbufspace is a measure of the amount of I/O currently 345 * running. This routine is used in async-write situations to 346 * prevent creating huge backups of pending writes to a device. 347 * Only asynchronous writes are governed by this function. 348 * 349 * Reads will adjust runningbufspace, but will not block based on it. 350 * The read load has a side effect of reducing the allowed write load. 351 * 352 * This does NOT turn an async write into a sync write. It waits 353 * for earlier writes to complete and generally returns before the 354 * caller's write has reached the device. 355 */ 356 static __inline void 357 waitrunningbufspace(void) 358 { 359 mtx_lock(&rbreqlock); 360 while (runningbufspace > hirunningspace) { 361 ++runningbufreq; 362 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 363 } 364 mtx_unlock(&rbreqlock); 365 } 366 367 368 /* 369 * vfs_buf_test_cache: 370 * 371 * Called when a buffer is extended. This function clears the B_CACHE 372 * bit if the newly extended portion of the buffer does not contain 373 * valid data. 374 */ 375 static __inline__ 376 void 377 vfs_buf_test_cache(struct buf *bp, 378 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 379 vm_page_t m) 380 { 381 GIANT_REQUIRED; 382 383 if (bp->b_flags & B_CACHE) { 384 int base = (foff + off) & PAGE_MASK; 385 if (vm_page_is_valid(m, base, size) == 0) 386 bp->b_flags &= ~B_CACHE; 387 } 388 } 389 390 /* Wake up the buffer deamon if necessary */ 391 static __inline__ 392 void 393 bd_wakeup(int dirtybuflevel) 394 { 395 mtx_lock(&bdlock); 396 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 397 bd_request = 1; 398 wakeup(&bd_request); 399 } 400 mtx_unlock(&bdlock); 401 } 402 403 /* 404 * bd_speedup - speedup the buffer cache flushing code 405 */ 406 407 static __inline__ 408 void 409 bd_speedup(void) 410 { 411 bd_wakeup(1); 412 } 413 414 /* 415 * Calculating buffer cache scaling values and reserve space for buffer 416 * headers. This is called during low level kernel initialization and 417 * may be called more then once. We CANNOT write to the memory area 418 * being reserved at this time. 419 */ 420 caddr_t 421 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 422 { 423 /* 424 * physmem_est is in pages. Convert it to kilobytes (assumes 425 * PAGE_SIZE is >= 1K) 426 */ 427 physmem_est = physmem_est * (PAGE_SIZE / 1024); 428 429 /* 430 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 431 * For the first 64MB of ram nominally allocate sufficient buffers to 432 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 433 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing 434 * the buffer cache we limit the eventual kva reservation to 435 * maxbcache bytes. 436 * 437 * factor represents the 1/4 x ram conversion. 438 */ 439 if (nbuf == 0) { 440 int factor = 4 * BKVASIZE / 1024; 441 442 nbuf = 50; 443 if (physmem_est > 4096) 444 nbuf += min((physmem_est - 4096) / factor, 445 65536 / factor); 446 if (physmem_est > 65536) 447 nbuf += (physmem_est - 65536) * 2 / (factor * 5); 448 449 if (maxbcache && nbuf > maxbcache / BKVASIZE) 450 nbuf = maxbcache / BKVASIZE; 451 } 452 453 #if 0 454 /* 455 * Do not allow the buffer_map to be more then 1/2 the size of the 456 * kernel_map. 457 */ 458 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 459 (BKVASIZE * 2)) { 460 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 461 (BKVASIZE * 2); 462 printf("Warning: nbufs capped at %d\n", nbuf); 463 } 464 #endif 465 466 /* 467 * swbufs are used as temporary holders for I/O, such as paging I/O. 468 * We have no less then 16 and no more then 256. 469 */ 470 nswbuf = max(min(nbuf/4, 256), 16); 471 #ifdef NSWBUF_MIN 472 if (nswbuf < NSWBUF_MIN) 473 nswbuf = NSWBUF_MIN; 474 #endif 475 #ifdef DIRECTIO 476 ffs_rawread_setup(); 477 #endif 478 479 /* 480 * Reserve space for the buffer cache buffers 481 */ 482 swbuf = (void *)v; 483 v = (caddr_t)(swbuf + nswbuf); 484 buf = (void *)v; 485 v = (caddr_t)(buf + nbuf); 486 487 return(v); 488 } 489 490 /* Initialize the buffer subsystem. Called before use of any buffers. */ 491 void 492 bufinit(void) 493 { 494 struct buf *bp; 495 vm_offset_t bogus_offset; 496 int i; 497 498 GIANT_REQUIRED; 499 500 mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF); 501 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 502 mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF); 503 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 504 mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF); 505 506 /* next, make a null set of free lists */ 507 for (i = 0; i < BUFFER_QUEUES; i++) 508 TAILQ_INIT(&bufqueues[i]); 509 510 /* finally, initialize each buffer header and stick on empty q */ 511 for (i = 0; i < nbuf; i++) { 512 bp = &buf[i]; 513 bzero(bp, sizeof *bp); 514 bp->b_flags = B_INVAL; /* we're just an empty header */ 515 bp->b_dev = NODEV; 516 bp->b_rcred = NOCRED; 517 bp->b_wcred = NOCRED; 518 bp->b_qindex = QUEUE_EMPTY; 519 bp->b_vflags = 0; 520 bp->b_xflags = 0; 521 LIST_INIT(&bp->b_dep); 522 BUF_LOCKINIT(bp); 523 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 524 } 525 526 /* 527 * maxbufspace is the absolute maximum amount of buffer space we are 528 * allowed to reserve in KVM and in real terms. The absolute maximum 529 * is nominally used by buf_daemon. hibufspace is the nominal maximum 530 * used by most other processes. The differential is required to 531 * ensure that buf_daemon is able to run when other processes might 532 * be blocked waiting for buffer space. 533 * 534 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 535 * this may result in KVM fragmentation which is not handled optimally 536 * by the system. 537 */ 538 maxbufspace = nbuf * BKVASIZE; 539 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 540 lobufspace = hibufspace - MAXBSIZE; 541 542 lorunningspace = 512 * 1024; 543 hirunningspace = 1024 * 1024; 544 545 /* 546 * Limit the amount of malloc memory since it is wired permanently into 547 * the kernel space. Even though this is accounted for in the buffer 548 * allocation, we don't want the malloced region to grow uncontrolled. 549 * The malloc scheme improves memory utilization significantly on average 550 * (small) directories. 551 */ 552 maxbufmallocspace = hibufspace / 20; 553 554 /* 555 * Reduce the chance of a deadlock occuring by limiting the number 556 * of delayed-write dirty buffers we allow to stack up. 557 */ 558 hidirtybuffers = nbuf / 4 + 20; 559 dirtybufthresh = hidirtybuffers * 9 / 10; 560 numdirtybuffers = 0; 561 /* 562 * To support extreme low-memory systems, make sure hidirtybuffers cannot 563 * eat up all available buffer space. This occurs when our minimum cannot 564 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 565 * BKVASIZE'd (8K) buffers. 566 */ 567 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 568 hidirtybuffers >>= 1; 569 } 570 lodirtybuffers = hidirtybuffers / 2; 571 572 /* 573 * Try to keep the number of free buffers in the specified range, 574 * and give special processes (e.g. like buf_daemon) access to an 575 * emergency reserve. 576 */ 577 lofreebuffers = nbuf / 18 + 5; 578 hifreebuffers = 2 * lofreebuffers; 579 numfreebuffers = nbuf; 580 581 /* 582 * Maximum number of async ops initiated per buf_daemon loop. This is 583 * somewhat of a hack at the moment, we really need to limit ourselves 584 * based on the number of bytes of I/O in-transit that were initiated 585 * from buf_daemon. 586 */ 587 588 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 589 vm_object_lock(kernel_object); 590 bogus_page = vm_page_alloc(kernel_object, 591 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 592 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 593 vm_object_unlock(kernel_object); 594 } 595 596 /* 597 * bfreekva() - free the kva allocation for a buffer. 598 * 599 * Must be called at splbio() or higher as this is the only locking for 600 * buffer_map. 601 * 602 * Since this call frees up buffer space, we call bufspacewakeup(). 603 */ 604 static void 605 bfreekva(struct buf * bp) 606 { 607 GIANT_REQUIRED; 608 609 if (bp->b_kvasize) { 610 atomic_add_int(&buffreekvacnt, 1); 611 atomic_subtract_int(&bufspace, bp->b_kvasize); 612 vm_map_delete(buffer_map, 613 (vm_offset_t) bp->b_kvabase, 614 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 615 ); 616 bp->b_kvasize = 0; 617 bufspacewakeup(); 618 } 619 } 620 621 /* 622 * bremfree: 623 * 624 * Remove the buffer from the appropriate free list. 625 */ 626 void 627 bremfree(struct buf * bp) 628 { 629 mtx_lock(&bqlock); 630 bremfreel(bp); 631 mtx_unlock(&bqlock); 632 } 633 634 void 635 bremfreel(struct buf * bp) 636 { 637 int s = splbio(); 638 int old_qindex = bp->b_qindex; 639 640 GIANT_REQUIRED; 641 642 if (bp->b_qindex != QUEUE_NONE) { 643 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 644 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 645 bp->b_qindex = QUEUE_NONE; 646 } else { 647 if (BUF_REFCNT(bp) <= 1) 648 panic("bremfree: removing a buffer not on a queue"); 649 } 650 651 /* 652 * Fixup numfreebuffers count. If the buffer is invalid or not 653 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 654 * the buffer was free and we must decrement numfreebuffers. 655 */ 656 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 657 switch(old_qindex) { 658 case QUEUE_DIRTY: 659 case QUEUE_CLEAN: 660 case QUEUE_EMPTY: 661 case QUEUE_EMPTYKVA: 662 atomic_subtract_int(&numfreebuffers, 1); 663 break; 664 default: 665 break; 666 } 667 } 668 splx(s); 669 } 670 671 672 /* 673 * Get a buffer with the specified data. Look in the cache first. We 674 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 675 * is set, the buffer is valid and we do not have to do anything ( see 676 * getblk() ). This is really just a special case of breadn(). 677 */ 678 int 679 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 680 struct buf ** bpp) 681 { 682 683 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 684 } 685 686 /* 687 * Operates like bread, but also starts asynchronous I/O on 688 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 689 * to initiating I/O . If B_CACHE is set, the buffer is valid 690 * and we do not have to do anything. 691 */ 692 int 693 breadn(struct vnode * vp, daddr_t blkno, int size, 694 daddr_t * rablkno, int *rabsize, 695 int cnt, struct ucred * cred, struct buf ** bpp) 696 { 697 struct buf *bp, *rabp; 698 int i; 699 int rv = 0, readwait = 0; 700 701 *bpp = bp = getblk(vp, blkno, size, 0, 0, 0); 702 703 /* if not found in cache, do some I/O */ 704 if ((bp->b_flags & B_CACHE) == 0) { 705 if (curthread != PCPU_GET(idlethread)) 706 curthread->td_proc->p_stats->p_ru.ru_inblock++; 707 bp->b_iocmd = BIO_READ; 708 bp->b_flags &= ~B_INVAL; 709 bp->b_ioflags &= ~BIO_ERROR; 710 if (bp->b_rcred == NOCRED && cred != NOCRED) 711 bp->b_rcred = crhold(cred); 712 vfs_busy_pages(bp, 0); 713 if (vp->v_type == VCHR) 714 VOP_SPECSTRATEGY(vp, bp); 715 else 716 VOP_STRATEGY(vp, bp); 717 ++readwait; 718 } 719 720 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 721 if (inmem(vp, *rablkno)) 722 continue; 723 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 724 725 if ((rabp->b_flags & B_CACHE) == 0) { 726 if (curthread != PCPU_GET(idlethread)) 727 curthread->td_proc->p_stats->p_ru.ru_inblock++; 728 rabp->b_flags |= B_ASYNC; 729 rabp->b_flags &= ~B_INVAL; 730 rabp->b_ioflags &= ~BIO_ERROR; 731 rabp->b_iocmd = BIO_READ; 732 if (rabp->b_rcred == NOCRED && cred != NOCRED) 733 rabp->b_rcred = crhold(cred); 734 vfs_busy_pages(rabp, 0); 735 BUF_KERNPROC(rabp); 736 if (vp->v_type == VCHR) 737 VOP_SPECSTRATEGY(vp, rabp); 738 else 739 VOP_STRATEGY(vp, rabp); 740 } else { 741 brelse(rabp); 742 } 743 } 744 745 if (readwait) { 746 rv = bufwait(bp); 747 } 748 return (rv); 749 } 750 751 /* 752 * Write, release buffer on completion. (Done by iodone 753 * if async). Do not bother writing anything if the buffer 754 * is invalid. 755 * 756 * Note that we set B_CACHE here, indicating that buffer is 757 * fully valid and thus cacheable. This is true even of NFS 758 * now so we set it generally. This could be set either here 759 * or in biodone() since the I/O is synchronous. We put it 760 * here. 761 */ 762 763 int 764 bwrite(struct buf * bp) 765 { 766 int oldflags, s; 767 struct buf *newbp; 768 769 if (bp->b_flags & B_INVAL) { 770 brelse(bp); 771 return (0); 772 } 773 774 oldflags = bp->b_flags; 775 776 if (BUF_REFCNT(bp) == 0) 777 panic("bwrite: buffer is not busy???"); 778 s = splbio(); 779 /* 780 * If a background write is already in progress, delay 781 * writing this block if it is asynchronous. Otherwise 782 * wait for the background write to complete. 783 */ 784 if (bp->b_xflags & BX_BKGRDINPROG) { 785 if (bp->b_flags & B_ASYNC) { 786 splx(s); 787 bdwrite(bp); 788 return (0); 789 } 790 bp->b_xflags |= BX_BKGRDWAIT; 791 tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0); 792 if (bp->b_xflags & BX_BKGRDINPROG) 793 panic("bwrite: still writing"); 794 } 795 796 /* Mark the buffer clean */ 797 bundirty(bp); 798 799 /* 800 * If this buffer is marked for background writing and we 801 * do not have to wait for it, make a copy and write the 802 * copy so as to leave this buffer ready for further use. 803 * 804 * This optimization eats a lot of memory. If we have a page 805 * or buffer shortfall we can't do it. 806 */ 807 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 808 (bp->b_flags & B_ASYNC) && 809 !vm_page_count_severe() && 810 !buf_dirty_count_severe()) { 811 if (bp->b_iodone != NULL) { 812 printf("bp->b_iodone = %p\n", bp->b_iodone); 813 panic("bwrite: need chained iodone"); 814 } 815 816 /* get a new block */ 817 newbp = geteblk(bp->b_bufsize); 818 819 /* 820 * set it to be identical to the old block. We have to 821 * set b_lblkno and BKGRDMARKER before calling bgetvp() 822 * to avoid confusing the splay tree and gbincore(). 823 */ 824 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 825 newbp->b_lblkno = bp->b_lblkno; 826 newbp->b_xflags |= BX_BKGRDMARKER; 827 /* XXX The BX_ flags need to be protected as well */ 828 VI_LOCK(bp->b_vp); 829 bgetvp(bp->b_vp, newbp); 830 VI_UNLOCK(bp->b_vp); 831 newbp->b_blkno = bp->b_blkno; 832 newbp->b_offset = bp->b_offset; 833 newbp->b_iodone = vfs_backgroundwritedone; 834 newbp->b_flags |= B_ASYNC; 835 newbp->b_flags &= ~B_INVAL; 836 837 /* move over the dependencies */ 838 if (LIST_FIRST(&bp->b_dep) != NULL) 839 buf_movedeps(bp, newbp); 840 841 /* 842 * Initiate write on the copy, release the original to 843 * the B_LOCKED queue so that it cannot go away until 844 * the background write completes. If not locked it could go 845 * away and then be reconstituted while it was being written. 846 * If the reconstituted buffer were written, we could end up 847 * with two background copies being written at the same time. 848 */ 849 bp->b_xflags |= BX_BKGRDINPROG; 850 bp->b_flags |= B_LOCKED; 851 bqrelse(bp); 852 bp = newbp; 853 } 854 855 bp->b_flags &= ~B_DONE; 856 bp->b_ioflags &= ~BIO_ERROR; 857 bp->b_flags |= B_WRITEINPROG | B_CACHE; 858 bp->b_iocmd = BIO_WRITE; 859 860 VI_LOCK(bp->b_vp); 861 bp->b_vp->v_numoutput++; 862 VI_UNLOCK(bp->b_vp); 863 vfs_busy_pages(bp, 1); 864 865 /* 866 * Normal bwrites pipeline writes 867 */ 868 bp->b_runningbufspace = bp->b_bufsize; 869 atomic_add_int(&runningbufspace, bp->b_runningbufspace); 870 871 if (curthread != PCPU_GET(idlethread)) 872 curthread->td_proc->p_stats->p_ru.ru_oublock++; 873 splx(s); 874 if (oldflags & B_ASYNC) 875 BUF_KERNPROC(bp); 876 if (bp->b_vp->v_type == VCHR) 877 VOP_SPECSTRATEGY(bp->b_vp, bp); 878 else 879 VOP_STRATEGY(bp->b_vp, bp); 880 881 if ((oldflags & B_ASYNC) == 0) { 882 int rtval = bufwait(bp); 883 brelse(bp); 884 return (rtval); 885 } else if ((oldflags & B_NOWDRAIN) == 0) { 886 /* 887 * don't allow the async write to saturate the I/O 888 * system. Deadlocks can occur only if a device strategy 889 * routine (like in MD) turns around and issues another 890 * high-level write, in which case B_NOWDRAIN is expected 891 * to be set. Otherwise we will not deadlock here because 892 * we are blocking waiting for I/O that is already in-progress 893 * to complete. 894 */ 895 waitrunningbufspace(); 896 } 897 898 return (0); 899 } 900 901 /* 902 * Complete a background write started from bwrite. 903 */ 904 static void 905 vfs_backgroundwritedone(bp) 906 struct buf *bp; 907 { 908 struct buf *origbp; 909 910 /* 911 * Find the original buffer that we are writing. 912 */ 913 VI_LOCK(bp->b_vp); 914 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 915 panic("backgroundwritedone: lost buffer"); 916 VI_UNLOCK(bp->b_vp); 917 /* 918 * Process dependencies then return any unfinished ones. 919 */ 920 if (LIST_FIRST(&bp->b_dep) != NULL) 921 buf_complete(bp); 922 if (LIST_FIRST(&bp->b_dep) != NULL) 923 buf_movedeps(bp, origbp); 924 925 /* XXX Find out if origbp can disappear or get inconsistent */ 926 /* 927 * Clear the BX_BKGRDINPROG flag in the original buffer 928 * and awaken it if it is waiting for the write to complete. 929 * If BX_BKGRDINPROG is not set in the original buffer it must 930 * have been released and re-instantiated - which is not legal. 931 */ 932 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), 933 ("backgroundwritedone: lost buffer2")); 934 origbp->b_xflags &= ~BX_BKGRDINPROG; 935 if (origbp->b_xflags & BX_BKGRDWAIT) { 936 origbp->b_xflags &= ~BX_BKGRDWAIT; 937 wakeup(&origbp->b_xflags); 938 } 939 /* 940 * Clear the B_LOCKED flag and remove it from the locked 941 * queue if it currently resides there. 942 */ 943 origbp->b_flags &= ~B_LOCKED; 944 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 945 bremfree(origbp); 946 bqrelse(origbp); 947 } 948 /* 949 * This buffer is marked B_NOCACHE, so when it is released 950 * by biodone, it will be tossed. We mark it with BIO_READ 951 * to avoid biodone doing a second vwakeup. 952 */ 953 bp->b_flags |= B_NOCACHE; 954 bp->b_iocmd = BIO_READ; 955 bp->b_flags &= ~(B_CACHE | B_DONE); 956 bp->b_iodone = 0; 957 bufdone(bp); 958 } 959 960 /* 961 * Delayed write. (Buffer is marked dirty). Do not bother writing 962 * anything if the buffer is marked invalid. 963 * 964 * Note that since the buffer must be completely valid, we can safely 965 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 966 * biodone() in order to prevent getblk from writing the buffer 967 * out synchronously. 968 */ 969 void 970 bdwrite(struct buf * bp) 971 { 972 struct thread *td = curthread; 973 struct vnode *vp; 974 struct buf *nbp; 975 976 GIANT_REQUIRED; 977 978 if (BUF_REFCNT(bp) == 0) 979 panic("bdwrite: buffer is not busy"); 980 981 if (bp->b_flags & B_INVAL) { 982 brelse(bp); 983 return; 984 } 985 986 /* 987 * If we have too many dirty buffers, don't create any more. 988 * If we are wildly over our limit, then force a complete 989 * cleanup. Otherwise, just keep the situation from getting 990 * out of control. Note that we have to avoid a recursive 991 * disaster and not try to clean up after our own cleanup! 992 */ 993 vp = bp->b_vp; 994 VI_LOCK(vp); 995 if (td->td_proc->p_flag & P_COWINPROGRESS) { 996 recursiveflushes++; 997 } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) { 998 VI_UNLOCK(vp); 999 (void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td); 1000 VI_LOCK(vp); 1001 altbufferflushes++; 1002 } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) { 1003 /* 1004 * Try to find a buffer to flush. 1005 */ 1006 TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) { 1007 if ((nbp->b_xflags & BX_BKGRDINPROG) || 1008 buf_countdeps(nbp, 0) || 1009 BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 1010 continue; 1011 if (bp == nbp) 1012 panic("bdwrite: found ourselves"); 1013 VI_UNLOCK(vp); 1014 if (nbp->b_flags & B_CLUSTEROK) { 1015 vfs_bio_awrite(nbp); 1016 } else { 1017 bremfree(nbp); 1018 bawrite(nbp); 1019 } 1020 VI_LOCK(vp); 1021 dirtybufferflushes++; 1022 break; 1023 } 1024 } 1025 VI_UNLOCK(vp); 1026 1027 bdirty(bp); 1028 /* 1029 * Set B_CACHE, indicating that the buffer is fully valid. This is 1030 * true even of NFS now. 1031 */ 1032 bp->b_flags |= B_CACHE; 1033 1034 /* 1035 * This bmap keeps the system from needing to do the bmap later, 1036 * perhaps when the system is attempting to do a sync. Since it 1037 * is likely that the indirect block -- or whatever other datastructure 1038 * that the filesystem needs is still in memory now, it is a good 1039 * thing to do this. Note also, that if the pageout daemon is 1040 * requesting a sync -- there might not be enough memory to do 1041 * the bmap then... So, this is important to do. 1042 */ 1043 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 1044 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 1045 } 1046 1047 /* 1048 * Set the *dirty* buffer range based upon the VM system dirty pages. 1049 */ 1050 vfs_setdirty(bp); 1051 1052 /* 1053 * We need to do this here to satisfy the vnode_pager and the 1054 * pageout daemon, so that it thinks that the pages have been 1055 * "cleaned". Note that since the pages are in a delayed write 1056 * buffer -- the VFS layer "will" see that the pages get written 1057 * out on the next sync, or perhaps the cluster will be completed. 1058 */ 1059 vfs_clean_pages(bp); 1060 bqrelse(bp); 1061 1062 /* 1063 * Wakeup the buffer flushing daemon if we have a lot of dirty 1064 * buffers (midpoint between our recovery point and our stall 1065 * point). 1066 */ 1067 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1068 1069 /* 1070 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1071 * due to the softdep code. 1072 */ 1073 } 1074 1075 /* 1076 * bdirty: 1077 * 1078 * Turn buffer into delayed write request. We must clear BIO_READ and 1079 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 1080 * itself to properly update it in the dirty/clean lists. We mark it 1081 * B_DONE to ensure that any asynchronization of the buffer properly 1082 * clears B_DONE ( else a panic will occur later ). 1083 * 1084 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 1085 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 1086 * should only be called if the buffer is known-good. 1087 * 1088 * Since the buffer is not on a queue, we do not update the numfreebuffers 1089 * count. 1090 * 1091 * Must be called at splbio(). 1092 * The buffer must be on QUEUE_NONE. 1093 */ 1094 void 1095 bdirty(bp) 1096 struct buf *bp; 1097 { 1098 KASSERT(bp->b_qindex == QUEUE_NONE, 1099 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1100 bp->b_flags &= ~(B_RELBUF); 1101 bp->b_iocmd = BIO_WRITE; 1102 1103 if ((bp->b_flags & B_DELWRI) == 0) { 1104 bp->b_flags |= B_DONE | B_DELWRI; 1105 reassignbuf(bp, bp->b_vp); 1106 atomic_add_int(&numdirtybuffers, 1); 1107 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1108 } 1109 } 1110 1111 /* 1112 * bundirty: 1113 * 1114 * Clear B_DELWRI for buffer. 1115 * 1116 * Since the buffer is not on a queue, we do not update the numfreebuffers 1117 * count. 1118 * 1119 * Must be called at splbio(). 1120 * The buffer must be on QUEUE_NONE. 1121 */ 1122 1123 void 1124 bundirty(bp) 1125 struct buf *bp; 1126 { 1127 KASSERT(bp->b_qindex == QUEUE_NONE, 1128 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1129 1130 if (bp->b_flags & B_DELWRI) { 1131 bp->b_flags &= ~B_DELWRI; 1132 reassignbuf(bp, bp->b_vp); 1133 atomic_subtract_int(&numdirtybuffers, 1); 1134 numdirtywakeup(lodirtybuffers); 1135 } 1136 /* 1137 * Since it is now being written, we can clear its deferred write flag. 1138 */ 1139 bp->b_flags &= ~B_DEFERRED; 1140 } 1141 1142 /* 1143 * bawrite: 1144 * 1145 * Asynchronous write. Start output on a buffer, but do not wait for 1146 * it to complete. The buffer is released when the output completes. 1147 * 1148 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1149 * B_INVAL buffers. Not us. 1150 */ 1151 void 1152 bawrite(struct buf * bp) 1153 { 1154 bp->b_flags |= B_ASYNC; 1155 (void) BUF_WRITE(bp); 1156 } 1157 1158 /* 1159 * bwillwrite: 1160 * 1161 * Called prior to the locking of any vnodes when we are expecting to 1162 * write. We do not want to starve the buffer cache with too many 1163 * dirty buffers so we block here. By blocking prior to the locking 1164 * of any vnodes we attempt to avoid the situation where a locked vnode 1165 * prevents the various system daemons from flushing related buffers. 1166 */ 1167 1168 void 1169 bwillwrite(void) 1170 { 1171 if (numdirtybuffers >= hidirtybuffers) { 1172 int s; 1173 1174 mtx_lock(&Giant); 1175 s = splbio(); 1176 mtx_lock(&nblock); 1177 while (numdirtybuffers >= hidirtybuffers) { 1178 bd_wakeup(1); 1179 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1180 msleep(&needsbuffer, &nblock, 1181 (PRIBIO + 4), "flswai", 0); 1182 } 1183 splx(s); 1184 mtx_unlock(&nblock); 1185 mtx_unlock(&Giant); 1186 } 1187 } 1188 1189 /* 1190 * Return true if we have too many dirty buffers. 1191 */ 1192 int 1193 buf_dirty_count_severe(void) 1194 { 1195 return(numdirtybuffers >= hidirtybuffers); 1196 } 1197 1198 /* 1199 * brelse: 1200 * 1201 * Release a busy buffer and, if requested, free its resources. The 1202 * buffer will be stashed in the appropriate bufqueue[] allowing it 1203 * to be accessed later as a cache entity or reused for other purposes. 1204 */ 1205 void 1206 brelse(struct buf * bp) 1207 { 1208 int s; 1209 1210 GIANT_REQUIRED; 1211 1212 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1213 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1214 1215 s = splbio(); 1216 1217 if (bp->b_flags & B_LOCKED) 1218 bp->b_ioflags &= ~BIO_ERROR; 1219 1220 if (bp->b_iocmd == BIO_WRITE && 1221 (bp->b_ioflags & BIO_ERROR) && 1222 !(bp->b_flags & B_INVAL)) { 1223 /* 1224 * Failed write, redirty. Must clear BIO_ERROR to prevent 1225 * pages from being scrapped. If B_INVAL is set then 1226 * this case is not run and the next case is run to 1227 * destroy the buffer. B_INVAL can occur if the buffer 1228 * is outside the range supported by the underlying device. 1229 */ 1230 bp->b_ioflags &= ~BIO_ERROR; 1231 bdirty(bp); 1232 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1233 (bp->b_ioflags & BIO_ERROR) || 1234 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1235 /* 1236 * Either a failed I/O or we were asked to free or not 1237 * cache the buffer. 1238 */ 1239 bp->b_flags |= B_INVAL; 1240 if (LIST_FIRST(&bp->b_dep) != NULL) 1241 buf_deallocate(bp); 1242 if (bp->b_flags & B_DELWRI) { 1243 atomic_subtract_int(&numdirtybuffers, 1); 1244 numdirtywakeup(lodirtybuffers); 1245 } 1246 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1247 if ((bp->b_flags & B_VMIO) == 0) { 1248 if (bp->b_bufsize) 1249 allocbuf(bp, 0); 1250 if (bp->b_vp) 1251 brelvp(bp); 1252 } 1253 } 1254 1255 /* 1256 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1257 * is called with B_DELWRI set, the underlying pages may wind up 1258 * getting freed causing a previous write (bdwrite()) to get 'lost' 1259 * because pages associated with a B_DELWRI bp are marked clean. 1260 * 1261 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1262 * if B_DELWRI is set. 1263 * 1264 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1265 * on pages to return pages to the VM page queues. 1266 */ 1267 if (bp->b_flags & B_DELWRI) 1268 bp->b_flags &= ~B_RELBUF; 1269 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1270 bp->b_flags |= B_RELBUF; 1271 1272 /* 1273 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1274 * constituted, not even NFS buffers now. Two flags effect this. If 1275 * B_INVAL, the struct buf is invalidated but the VM object is kept 1276 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1277 * 1278 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1279 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1280 * buffer is also B_INVAL because it hits the re-dirtying code above. 1281 * 1282 * Normally we can do this whether a buffer is B_DELWRI or not. If 1283 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1284 * the commit state and we cannot afford to lose the buffer. If the 1285 * buffer has a background write in progress, we need to keep it 1286 * around to prevent it from being reconstituted and starting a second 1287 * background write. 1288 */ 1289 if ((bp->b_flags & B_VMIO) 1290 && !(bp->b_vp->v_mount != NULL && 1291 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1292 !vn_isdisk(bp->b_vp, NULL) && 1293 (bp->b_flags & B_DELWRI)) 1294 ) { 1295 1296 int i, j, resid; 1297 vm_page_t m; 1298 off_t foff; 1299 vm_pindex_t poff; 1300 vm_object_t obj; 1301 struct vnode *vp; 1302 1303 vp = bp->b_vp; 1304 obj = bp->b_object; 1305 1306 /* 1307 * Get the base offset and length of the buffer. Note that 1308 * in the VMIO case if the buffer block size is not 1309 * page-aligned then b_data pointer may not be page-aligned. 1310 * But our b_pages[] array *IS* page aligned. 1311 * 1312 * block sizes less then DEV_BSIZE (usually 512) are not 1313 * supported due to the page granularity bits (m->valid, 1314 * m->dirty, etc...). 1315 * 1316 * See man buf(9) for more information 1317 */ 1318 resid = bp->b_bufsize; 1319 foff = bp->b_offset; 1320 1321 for (i = 0; i < bp->b_npages; i++) { 1322 int had_bogus = 0; 1323 1324 m = bp->b_pages[i]; 1325 vm_page_lock_queues(); 1326 vm_page_flag_clear(m, PG_ZERO); 1327 vm_page_unlock_queues(); 1328 1329 /* 1330 * If we hit a bogus page, fixup *all* the bogus pages 1331 * now. 1332 */ 1333 if (m == bogus_page) { 1334 poff = OFF_TO_IDX(bp->b_offset); 1335 had_bogus = 1; 1336 1337 for (j = i; j < bp->b_npages; j++) { 1338 vm_page_t mtmp; 1339 mtmp = bp->b_pages[j]; 1340 if (mtmp == bogus_page) { 1341 mtmp = vm_page_lookup(obj, poff + j); 1342 if (!mtmp) { 1343 panic("brelse: page missing\n"); 1344 } 1345 bp->b_pages[j] = mtmp; 1346 } 1347 } 1348 1349 if ((bp->b_flags & B_INVAL) == 0) { 1350 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1351 } 1352 m = bp->b_pages[i]; 1353 } 1354 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1355 int poffset = foff & PAGE_MASK; 1356 int presid = resid > (PAGE_SIZE - poffset) ? 1357 (PAGE_SIZE - poffset) : resid; 1358 1359 KASSERT(presid >= 0, ("brelse: extra page")); 1360 vm_page_set_invalid(m, poffset, presid); 1361 if (had_bogus) 1362 printf("avoided corruption bug in bogus_page/brelse code\n"); 1363 } 1364 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1365 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1366 } 1367 1368 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1369 vfs_vmio_release(bp); 1370 1371 } else if (bp->b_flags & B_VMIO) { 1372 1373 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1374 vfs_vmio_release(bp); 1375 } 1376 1377 } 1378 1379 if (bp->b_qindex != QUEUE_NONE) 1380 panic("brelse: free buffer onto another queue???"); 1381 if (BUF_REFCNT(bp) > 1) { 1382 /* do not release to free list */ 1383 BUF_UNLOCK(bp); 1384 splx(s); 1385 return; 1386 } 1387 1388 /* enqueue */ 1389 mtx_lock(&bqlock); 1390 1391 /* buffers with no memory */ 1392 if (bp->b_bufsize == 0) { 1393 bp->b_flags |= B_INVAL; 1394 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1395 if (bp->b_xflags & BX_BKGRDINPROG) 1396 panic("losing buffer 1"); 1397 if (bp->b_kvasize) { 1398 bp->b_qindex = QUEUE_EMPTYKVA; 1399 } else { 1400 bp->b_qindex = QUEUE_EMPTY; 1401 } 1402 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1403 bp->b_dev = NODEV; 1404 /* buffers with junk contents */ 1405 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1406 (bp->b_ioflags & BIO_ERROR)) { 1407 bp->b_flags |= B_INVAL; 1408 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1409 if (bp->b_xflags & BX_BKGRDINPROG) 1410 panic("losing buffer 2"); 1411 bp->b_qindex = QUEUE_CLEAN; 1412 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1413 bp->b_dev = NODEV; 1414 1415 /* buffers that are locked */ 1416 } else if (bp->b_flags & B_LOCKED) { 1417 bp->b_qindex = QUEUE_LOCKED; 1418 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1419 1420 /* remaining buffers */ 1421 } else { 1422 if (bp->b_flags & B_DELWRI) 1423 bp->b_qindex = QUEUE_DIRTY; 1424 else 1425 bp->b_qindex = QUEUE_CLEAN; 1426 if (bp->b_flags & B_AGE) 1427 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1428 else 1429 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1430 } 1431 mtx_unlock(&bqlock); 1432 1433 /* 1434 * If B_INVAL and B_DELWRI is set, clear B_DELWRI. We have already 1435 * placed the buffer on the correct queue. We must also disassociate 1436 * the device and vnode for a B_INVAL buffer so gbincore() doesn't 1437 * find it. 1438 */ 1439 if (bp->b_flags & B_INVAL) { 1440 if (bp->b_flags & B_DELWRI) 1441 bundirty(bp); 1442 if (bp->b_vp) 1443 brelvp(bp); 1444 } 1445 1446 /* 1447 * Fixup numfreebuffers count. The bp is on an appropriate queue 1448 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1449 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1450 * if B_INVAL is set ). 1451 */ 1452 1453 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1454 bufcountwakeup(); 1455 1456 /* 1457 * Something we can maybe free or reuse 1458 */ 1459 if (bp->b_bufsize || bp->b_kvasize) 1460 bufspacewakeup(); 1461 1462 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1463 B_DIRECT | B_NOWDRAIN); 1464 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1465 panic("brelse: not dirty"); 1466 /* unlock */ 1467 BUF_UNLOCK(bp); 1468 splx(s); 1469 } 1470 1471 /* 1472 * Release a buffer back to the appropriate queue but do not try to free 1473 * it. The buffer is expected to be used again soon. 1474 * 1475 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1476 * biodone() to requeue an async I/O on completion. It is also used when 1477 * known good buffers need to be requeued but we think we may need the data 1478 * again soon. 1479 * 1480 * XXX we should be able to leave the B_RELBUF hint set on completion. 1481 */ 1482 void 1483 bqrelse(struct buf * bp) 1484 { 1485 int s; 1486 1487 s = splbio(); 1488 1489 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1490 1491 if (bp->b_qindex != QUEUE_NONE) 1492 panic("bqrelse: free buffer onto another queue???"); 1493 if (BUF_REFCNT(bp) > 1) { 1494 /* do not release to free list */ 1495 BUF_UNLOCK(bp); 1496 splx(s); 1497 return; 1498 } 1499 mtx_lock(&bqlock); 1500 if (bp->b_flags & B_LOCKED) { 1501 bp->b_ioflags &= ~BIO_ERROR; 1502 bp->b_qindex = QUEUE_LOCKED; 1503 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1504 /* buffers with stale but valid contents */ 1505 } else if (bp->b_flags & B_DELWRI) { 1506 bp->b_qindex = QUEUE_DIRTY; 1507 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1508 } else if (vm_page_count_severe()) { 1509 /* 1510 * We are too low on memory, we have to try to free the 1511 * buffer (most importantly: the wired pages making up its 1512 * backing store) *now*. 1513 */ 1514 mtx_unlock(&bqlock); 1515 splx(s); 1516 brelse(bp); 1517 return; 1518 } else { 1519 bp->b_qindex = QUEUE_CLEAN; 1520 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1521 } 1522 mtx_unlock(&bqlock); 1523 1524 if ((bp->b_flags & B_LOCKED) == 0 && 1525 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1526 bufcountwakeup(); 1527 } 1528 1529 /* 1530 * Something we can maybe free or reuse. 1531 */ 1532 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1533 bufspacewakeup(); 1534 1535 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1536 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1537 panic("bqrelse: not dirty"); 1538 /* unlock */ 1539 BUF_UNLOCK(bp); 1540 splx(s); 1541 } 1542 1543 /* Give pages used by the bp back to the VM system (where possible) */ 1544 static void 1545 vfs_vmio_release(bp) 1546 struct buf *bp; 1547 { 1548 int i; 1549 vm_page_t m; 1550 1551 GIANT_REQUIRED; 1552 vm_page_lock_queues(); 1553 for (i = 0; i < bp->b_npages; i++) { 1554 m = bp->b_pages[i]; 1555 bp->b_pages[i] = NULL; 1556 /* 1557 * In order to keep page LRU ordering consistent, put 1558 * everything on the inactive queue. 1559 */ 1560 vm_page_unwire(m, 0); 1561 /* 1562 * We don't mess with busy pages, it is 1563 * the responsibility of the process that 1564 * busied the pages to deal with them. 1565 */ 1566 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1567 continue; 1568 1569 if (m->wire_count == 0) { 1570 vm_page_flag_clear(m, PG_ZERO); 1571 /* 1572 * Might as well free the page if we can and it has 1573 * no valid data. We also free the page if the 1574 * buffer was used for direct I/O 1575 */ 1576 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1577 m->hold_count == 0) { 1578 vm_page_busy(m); 1579 pmap_remove_all(m); 1580 vm_page_free(m); 1581 } else if (bp->b_flags & B_DIRECT) { 1582 vm_page_try_to_free(m); 1583 } else if (vm_page_count_severe()) { 1584 vm_page_try_to_cache(m); 1585 } 1586 } 1587 } 1588 vm_page_unlock_queues(); 1589 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1590 1591 if (bp->b_bufsize) { 1592 bufspacewakeup(); 1593 bp->b_bufsize = 0; 1594 } 1595 bp->b_npages = 0; 1596 bp->b_flags &= ~B_VMIO; 1597 if (bp->b_vp) 1598 brelvp(bp); 1599 } 1600 1601 /* 1602 * Check to see if a block at a particular lbn is available for a clustered 1603 * write. 1604 */ 1605 static int 1606 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 1607 { 1608 struct buf *bpa; 1609 int match; 1610 1611 match = 0; 1612 1613 /* If the buf isn't in core skip it */ 1614 if ((bpa = gbincore(vp, lblkno)) == NULL) 1615 return (0); 1616 1617 /* If the buf is busy we don't want to wait for it */ 1618 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1619 return (0); 1620 1621 /* Only cluster with valid clusterable delayed write buffers */ 1622 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 1623 (B_DELWRI | B_CLUSTEROK)) 1624 goto done; 1625 1626 if (bpa->b_bufsize != size) 1627 goto done; 1628 1629 /* 1630 * Check to see if it is in the expected place on disk and that the 1631 * block has been mapped. 1632 */ 1633 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 1634 match = 1; 1635 done: 1636 BUF_UNLOCK(bpa); 1637 return (match); 1638 } 1639 1640 /* 1641 * vfs_bio_awrite: 1642 * 1643 * Implement clustered async writes for clearing out B_DELWRI buffers. 1644 * This is much better then the old way of writing only one buffer at 1645 * a time. Note that we may not be presented with the buffers in the 1646 * correct order, so we search for the cluster in both directions. 1647 */ 1648 int 1649 vfs_bio_awrite(struct buf * bp) 1650 { 1651 int i; 1652 int j; 1653 daddr_t lblkno = bp->b_lblkno; 1654 struct vnode *vp = bp->b_vp; 1655 int s; 1656 int ncl; 1657 int nwritten; 1658 int size; 1659 int maxcl; 1660 1661 s = splbio(); 1662 /* 1663 * right now we support clustered writing only to regular files. If 1664 * we find a clusterable block we could be in the middle of a cluster 1665 * rather then at the beginning. 1666 */ 1667 if ((vp->v_type == VREG) && 1668 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1669 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1670 1671 size = vp->v_mount->mnt_stat.f_iosize; 1672 maxcl = MAXPHYS / size; 1673 1674 VI_LOCK(vp); 1675 for (i = 1; i < maxcl; i++) 1676 if (vfs_bio_clcheck(vp, size, lblkno + i, 1677 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 1678 break; 1679 1680 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 1681 if (vfs_bio_clcheck(vp, size, lblkno - j, 1682 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 1683 break; 1684 1685 VI_UNLOCK(vp); 1686 --j; 1687 ncl = i + j; 1688 /* 1689 * this is a possible cluster write 1690 */ 1691 if (ncl != 1) { 1692 BUF_UNLOCK(bp); 1693 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1694 splx(s); 1695 return nwritten; 1696 } 1697 } 1698 1699 bremfree(bp); 1700 bp->b_flags |= B_ASYNC; 1701 1702 splx(s); 1703 /* 1704 * default (old) behavior, writing out only one block 1705 * 1706 * XXX returns b_bufsize instead of b_bcount for nwritten? 1707 */ 1708 nwritten = bp->b_bufsize; 1709 (void) BUF_WRITE(bp); 1710 1711 return nwritten; 1712 } 1713 1714 /* 1715 * getnewbuf: 1716 * 1717 * Find and initialize a new buffer header, freeing up existing buffers 1718 * in the bufqueues as necessary. The new buffer is returned locked. 1719 * 1720 * Important: B_INVAL is not set. If the caller wishes to throw the 1721 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1722 * 1723 * We block if: 1724 * We have insufficient buffer headers 1725 * We have insufficient buffer space 1726 * buffer_map is too fragmented ( space reservation fails ) 1727 * If we have to flush dirty buffers ( but we try to avoid this ) 1728 * 1729 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1730 * Instead we ask the buf daemon to do it for us. We attempt to 1731 * avoid piecemeal wakeups of the pageout daemon. 1732 */ 1733 1734 static struct buf * 1735 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1736 { 1737 struct buf *bp; 1738 struct buf *nbp; 1739 int defrag = 0; 1740 int nqindex; 1741 static int flushingbufs; 1742 1743 GIANT_REQUIRED; 1744 1745 /* 1746 * We can't afford to block since we might be holding a vnode lock, 1747 * which may prevent system daemons from running. We deal with 1748 * low-memory situations by proactively returning memory and running 1749 * async I/O rather then sync I/O. 1750 */ 1751 1752 atomic_add_int(&getnewbufcalls, 1); 1753 atomic_subtract_int(&getnewbufrestarts, 1); 1754 restart: 1755 atomic_add_int(&getnewbufrestarts, 1); 1756 1757 /* 1758 * Setup for scan. If we do not have enough free buffers, 1759 * we setup a degenerate case that immediately fails. Note 1760 * that if we are specially marked process, we are allowed to 1761 * dip into our reserves. 1762 * 1763 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1764 * 1765 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1766 * However, there are a number of cases (defragging, reusing, ...) 1767 * where we cannot backup. 1768 */ 1769 mtx_lock(&bqlock); 1770 nqindex = QUEUE_EMPTYKVA; 1771 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1772 1773 if (nbp == NULL) { 1774 /* 1775 * If no EMPTYKVA buffers and we are either 1776 * defragging or reusing, locate a CLEAN buffer 1777 * to free or reuse. If bufspace useage is low 1778 * skip this step so we can allocate a new buffer. 1779 */ 1780 if (defrag || bufspace >= lobufspace) { 1781 nqindex = QUEUE_CLEAN; 1782 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1783 } 1784 1785 /* 1786 * If we could not find or were not allowed to reuse a 1787 * CLEAN buffer, check to see if it is ok to use an EMPTY 1788 * buffer. We can only use an EMPTY buffer if allocating 1789 * its KVA would not otherwise run us out of buffer space. 1790 */ 1791 if (nbp == NULL && defrag == 0 && 1792 bufspace + maxsize < hibufspace) { 1793 nqindex = QUEUE_EMPTY; 1794 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1795 } 1796 } 1797 1798 /* 1799 * Run scan, possibly freeing data and/or kva mappings on the fly 1800 * depending. 1801 */ 1802 1803 while ((bp = nbp) != NULL) { 1804 int qindex = nqindex; 1805 1806 /* 1807 * Calculate next bp ( we can only use it if we do not block 1808 * or do other fancy things ). 1809 */ 1810 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1811 switch(qindex) { 1812 case QUEUE_EMPTY: 1813 nqindex = QUEUE_EMPTYKVA; 1814 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1815 break; 1816 /* FALLTHROUGH */ 1817 case QUEUE_EMPTYKVA: 1818 nqindex = QUEUE_CLEAN; 1819 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1820 break; 1821 /* FALLTHROUGH */ 1822 case QUEUE_CLEAN: 1823 /* 1824 * nbp is NULL. 1825 */ 1826 break; 1827 } 1828 } 1829 1830 /* 1831 * Sanity Checks 1832 */ 1833 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1834 1835 /* 1836 * Note: we no longer distinguish between VMIO and non-VMIO 1837 * buffers. 1838 */ 1839 1840 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1841 1842 /* 1843 * If we are defragging then we need a buffer with 1844 * b_kvasize != 0. XXX this situation should no longer 1845 * occur, if defrag is non-zero the buffer's b_kvasize 1846 * should also be non-zero at this point. XXX 1847 */ 1848 if (defrag && bp->b_kvasize == 0) { 1849 printf("Warning: defrag empty buffer %p\n", bp); 1850 continue; 1851 } 1852 1853 /* 1854 * Start freeing the bp. This is somewhat involved. nbp 1855 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1856 */ 1857 1858 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1859 panic("getnewbuf: locked buf"); 1860 bremfreel(bp); 1861 mtx_unlock(&bqlock); 1862 1863 if (qindex == QUEUE_CLEAN) { 1864 if (bp->b_flags & B_VMIO) { 1865 bp->b_flags &= ~B_ASYNC; 1866 vfs_vmio_release(bp); 1867 } 1868 if (bp->b_vp) 1869 brelvp(bp); 1870 } 1871 1872 /* 1873 * NOTE: nbp is now entirely invalid. We can only restart 1874 * the scan from this point on. 1875 * 1876 * Get the rest of the buffer freed up. b_kva* is still 1877 * valid after this operation. 1878 */ 1879 1880 if (bp->b_rcred != NOCRED) { 1881 crfree(bp->b_rcred); 1882 bp->b_rcred = NOCRED; 1883 } 1884 if (bp->b_wcred != NOCRED) { 1885 crfree(bp->b_wcred); 1886 bp->b_wcred = NOCRED; 1887 } 1888 if (LIST_FIRST(&bp->b_dep) != NULL) 1889 buf_deallocate(bp); 1890 if (bp->b_xflags & BX_BKGRDINPROG) 1891 panic("losing buffer 3"); 1892 1893 if (bp->b_bufsize) 1894 allocbuf(bp, 0); 1895 1896 bp->b_flags = 0; 1897 bp->b_ioflags = 0; 1898 bp->b_xflags = 0; 1899 bp->b_vflags = 0; 1900 bp->b_dev = NODEV; 1901 bp->b_vp = NULL; 1902 bp->b_blkno = bp->b_lblkno = 0; 1903 bp->b_offset = NOOFFSET; 1904 bp->b_iodone = 0; 1905 bp->b_error = 0; 1906 bp->b_resid = 0; 1907 bp->b_bcount = 0; 1908 bp->b_npages = 0; 1909 bp->b_dirtyoff = bp->b_dirtyend = 0; 1910 bp->b_magic = B_MAGIC_BIO; 1911 bp->b_op = &buf_ops_bio; 1912 bp->b_object = NULL; 1913 1914 LIST_INIT(&bp->b_dep); 1915 1916 /* 1917 * If we are defragging then free the buffer. 1918 */ 1919 if (defrag) { 1920 bp->b_flags |= B_INVAL; 1921 bfreekva(bp); 1922 brelse(bp); 1923 defrag = 0; 1924 goto restart; 1925 } 1926 1927 /* 1928 * If we are overcomitted then recover the buffer and its 1929 * KVM space. This occurs in rare situations when multiple 1930 * processes are blocked in getnewbuf() or allocbuf(). 1931 */ 1932 if (bufspace >= hibufspace) 1933 flushingbufs = 1; 1934 if (flushingbufs && bp->b_kvasize != 0) { 1935 bp->b_flags |= B_INVAL; 1936 bfreekva(bp); 1937 brelse(bp); 1938 goto restart; 1939 } 1940 if (bufspace < lobufspace) 1941 flushingbufs = 0; 1942 break; 1943 } 1944 1945 /* 1946 * If we exhausted our list, sleep as appropriate. We may have to 1947 * wakeup various daemons and write out some dirty buffers. 1948 * 1949 * Generally we are sleeping due to insufficient buffer space. 1950 */ 1951 1952 if (bp == NULL) { 1953 int flags; 1954 char *waitmsg; 1955 1956 mtx_unlock(&bqlock); 1957 if (defrag) { 1958 flags = VFS_BIO_NEED_BUFSPACE; 1959 waitmsg = "nbufkv"; 1960 } else if (bufspace >= hibufspace) { 1961 waitmsg = "nbufbs"; 1962 flags = VFS_BIO_NEED_BUFSPACE; 1963 } else { 1964 waitmsg = "newbuf"; 1965 flags = VFS_BIO_NEED_ANY; 1966 } 1967 1968 bd_speedup(); /* heeeelp */ 1969 1970 mtx_lock(&nblock); 1971 needsbuffer |= flags; 1972 while (needsbuffer & flags) { 1973 if (msleep(&needsbuffer, &nblock, 1974 (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) { 1975 mtx_unlock(&nblock); 1976 return (NULL); 1977 } 1978 } 1979 mtx_unlock(&nblock); 1980 } else { 1981 /* 1982 * We finally have a valid bp. We aren't quite out of the 1983 * woods, we still have to reserve kva space. In order 1984 * to keep fragmentation sane we only allocate kva in 1985 * BKVASIZE chunks. 1986 */ 1987 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1988 1989 if (maxsize != bp->b_kvasize) { 1990 vm_offset_t addr = 0; 1991 1992 bfreekva(bp); 1993 1994 if (vm_map_findspace(buffer_map, 1995 vm_map_min(buffer_map), maxsize, &addr)) { 1996 /* 1997 * Uh oh. Buffer map is to fragmented. We 1998 * must defragment the map. 1999 */ 2000 atomic_add_int(&bufdefragcnt, 1); 2001 defrag = 1; 2002 bp->b_flags |= B_INVAL; 2003 brelse(bp); 2004 goto restart; 2005 } 2006 if (addr) { 2007 vm_map_insert(buffer_map, NULL, 0, 2008 addr, addr + maxsize, 2009 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 2010 2011 bp->b_kvabase = (caddr_t) addr; 2012 bp->b_kvasize = maxsize; 2013 atomic_add_int(&bufspace, bp->b_kvasize); 2014 atomic_add_int(&bufreusecnt, 1); 2015 } 2016 } 2017 bp->b_data = bp->b_kvabase; 2018 } 2019 return(bp); 2020 } 2021 2022 /* 2023 * buf_daemon: 2024 * 2025 * buffer flushing daemon. Buffers are normally flushed by the 2026 * update daemon but if it cannot keep up this process starts to 2027 * take the load in an attempt to prevent getnewbuf() from blocking. 2028 */ 2029 2030 static struct proc *bufdaemonproc; 2031 2032 static struct kproc_desc buf_kp = { 2033 "bufdaemon", 2034 buf_daemon, 2035 &bufdaemonproc 2036 }; 2037 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 2038 2039 static void 2040 buf_daemon() 2041 { 2042 int s; 2043 2044 mtx_lock(&Giant); 2045 2046 /* 2047 * This process needs to be suspended prior to shutdown sync. 2048 */ 2049 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 2050 SHUTDOWN_PRI_LAST); 2051 2052 /* 2053 * This process is allowed to take the buffer cache to the limit 2054 */ 2055 s = splbio(); 2056 mtx_lock(&bdlock); 2057 2058 for (;;) { 2059 bd_request = 0; 2060 mtx_unlock(&bdlock); 2061 2062 kthread_suspend_check(bufdaemonproc); 2063 2064 /* 2065 * Do the flush. Limit the amount of in-transit I/O we 2066 * allow to build up, otherwise we would completely saturate 2067 * the I/O system. Wakeup any waiting processes before we 2068 * normally would so they can run in parallel with our drain. 2069 */ 2070 while (numdirtybuffers > lodirtybuffers) { 2071 if (flushbufqueues(0) == 0) { 2072 /* 2073 * Could not find any buffers without rollback 2074 * dependencies, so just write the first one 2075 * in the hopes of eventually making progress. 2076 */ 2077 flushbufqueues(1); 2078 break; 2079 } 2080 waitrunningbufspace(); 2081 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 2082 } 2083 2084 /* 2085 * Only clear bd_request if we have reached our low water 2086 * mark. The buf_daemon normally waits 1 second and 2087 * then incrementally flushes any dirty buffers that have 2088 * built up, within reason. 2089 * 2090 * If we were unable to hit our low water mark and couldn't 2091 * find any flushable buffers, we sleep half a second. 2092 * Otherwise we loop immediately. 2093 */ 2094 mtx_lock(&bdlock); 2095 if (numdirtybuffers <= lodirtybuffers) { 2096 /* 2097 * We reached our low water mark, reset the 2098 * request and sleep until we are needed again. 2099 * The sleep is just so the suspend code works. 2100 */ 2101 bd_request = 0; 2102 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 2103 } else { 2104 /* 2105 * We couldn't find any flushable dirty buffers but 2106 * still have too many dirty buffers, we 2107 * have to sleep and try again. (rare) 2108 */ 2109 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 2110 } 2111 } 2112 } 2113 2114 /* 2115 * flushbufqueues: 2116 * 2117 * Try to flush a buffer in the dirty queue. We must be careful to 2118 * free up B_INVAL buffers instead of write them, which NFS is 2119 * particularly sensitive to. 2120 */ 2121 int flushwithdeps = 0; 2122 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 2123 0, "Number of buffers flushed with dependecies that require rollbacks"); 2124 static int 2125 flushbufqueues(int flushdeps) 2126 { 2127 struct thread *td = curthread; 2128 struct vnode *vp; 2129 struct buf *bp; 2130 int hasdeps; 2131 2132 mtx_lock(&bqlock); 2133 TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) { 2134 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2135 continue; 2136 KASSERT((bp->b_flags & B_DELWRI), 2137 ("unexpected clean buffer %p", bp)); 2138 if ((bp->b_xflags & BX_BKGRDINPROG) != 0) { 2139 BUF_UNLOCK(bp); 2140 continue; 2141 } 2142 if (bp->b_flags & B_INVAL) { 2143 bremfreel(bp); 2144 mtx_unlock(&bqlock); 2145 brelse(bp); 2146 return (1); 2147 } 2148 2149 if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) { 2150 if (flushdeps == 0) { 2151 BUF_UNLOCK(bp); 2152 continue; 2153 } 2154 hasdeps = 1; 2155 } else 2156 hasdeps = 0; 2157 /* 2158 * We must hold the lock on a vnode before writing 2159 * one of its buffers. Otherwise we may confuse, or 2160 * in the case of a snapshot vnode, deadlock the 2161 * system. 2162 * 2163 * The lock order here is the reverse of the normal 2164 * of vnode followed by buf lock. This is ok because 2165 * the NOWAIT will prevent deadlock. 2166 */ 2167 if ((vp = bp->b_vp) == NULL || 2168 vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) { 2169 mtx_unlock(&bqlock); 2170 vfs_bio_awrite(bp); 2171 if (vp != NULL) 2172 VOP_UNLOCK(vp, 0, td); 2173 flushwithdeps += hasdeps; 2174 return (1); 2175 } 2176 BUF_UNLOCK(bp); 2177 } 2178 mtx_unlock(&bqlock); 2179 return (0); 2180 } 2181 2182 /* 2183 * Check to see if a block is currently memory resident. 2184 */ 2185 struct buf * 2186 incore(struct vnode * vp, daddr_t blkno) 2187 { 2188 struct buf *bp; 2189 2190 int s = splbio(); 2191 VI_LOCK(vp); 2192 bp = gbincore(vp, blkno); 2193 VI_UNLOCK(vp); 2194 splx(s); 2195 return (bp); 2196 } 2197 2198 /* 2199 * Returns true if no I/O is needed to access the 2200 * associated VM object. This is like incore except 2201 * it also hunts around in the VM system for the data. 2202 */ 2203 2204 int 2205 inmem(struct vnode * vp, daddr_t blkno) 2206 { 2207 vm_object_t obj; 2208 vm_offset_t toff, tinc, size; 2209 vm_page_t m; 2210 vm_ooffset_t off; 2211 2212 GIANT_REQUIRED; 2213 ASSERT_VOP_LOCKED(vp, "inmem"); 2214 2215 if (incore(vp, blkno)) 2216 return 1; 2217 if (vp->v_mount == NULL) 2218 return 0; 2219 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0) 2220 return 0; 2221 2222 size = PAGE_SIZE; 2223 if (size > vp->v_mount->mnt_stat.f_iosize) 2224 size = vp->v_mount->mnt_stat.f_iosize; 2225 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2226 2227 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2228 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2229 if (!m) 2230 goto notinmem; 2231 tinc = size; 2232 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2233 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2234 if (vm_page_is_valid(m, 2235 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2236 goto notinmem; 2237 } 2238 return 1; 2239 2240 notinmem: 2241 return (0); 2242 } 2243 2244 /* 2245 * vfs_setdirty: 2246 * 2247 * Sets the dirty range for a buffer based on the status of the dirty 2248 * bits in the pages comprising the buffer. 2249 * 2250 * The range is limited to the size of the buffer. 2251 * 2252 * This routine is primarily used by NFS, but is generalized for the 2253 * B_VMIO case. 2254 */ 2255 static void 2256 vfs_setdirty(struct buf *bp) 2257 { 2258 int i; 2259 vm_object_t object; 2260 2261 GIANT_REQUIRED; 2262 /* 2263 * Degenerate case - empty buffer 2264 */ 2265 2266 if (bp->b_bufsize == 0) 2267 return; 2268 2269 /* 2270 * We qualify the scan for modified pages on whether the 2271 * object has been flushed yet. The OBJ_WRITEABLE flag 2272 * is not cleared simply by protecting pages off. 2273 */ 2274 2275 if ((bp->b_flags & B_VMIO) == 0) 2276 return; 2277 2278 object = bp->b_pages[0]->object; 2279 2280 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2281 printf("Warning: object %p writeable but not mightbedirty\n", object); 2282 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2283 printf("Warning: object %p mightbedirty but not writeable\n", object); 2284 2285 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2286 vm_offset_t boffset; 2287 vm_offset_t eoffset; 2288 2289 vm_page_lock_queues(); 2290 /* 2291 * test the pages to see if they have been modified directly 2292 * by users through the VM system. 2293 */ 2294 for (i = 0; i < bp->b_npages; i++) { 2295 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2296 vm_page_test_dirty(bp->b_pages[i]); 2297 } 2298 2299 /* 2300 * Calculate the encompassing dirty range, boffset and eoffset, 2301 * (eoffset - boffset) bytes. 2302 */ 2303 2304 for (i = 0; i < bp->b_npages; i++) { 2305 if (bp->b_pages[i]->dirty) 2306 break; 2307 } 2308 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2309 2310 for (i = bp->b_npages - 1; i >= 0; --i) { 2311 if (bp->b_pages[i]->dirty) { 2312 break; 2313 } 2314 } 2315 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2316 2317 vm_page_unlock_queues(); 2318 /* 2319 * Fit it to the buffer. 2320 */ 2321 2322 if (eoffset > bp->b_bcount) 2323 eoffset = bp->b_bcount; 2324 2325 /* 2326 * If we have a good dirty range, merge with the existing 2327 * dirty range. 2328 */ 2329 2330 if (boffset < eoffset) { 2331 if (bp->b_dirtyoff > boffset) 2332 bp->b_dirtyoff = boffset; 2333 if (bp->b_dirtyend < eoffset) 2334 bp->b_dirtyend = eoffset; 2335 } 2336 } 2337 } 2338 2339 /* 2340 * getblk: 2341 * 2342 * Get a block given a specified block and offset into a file/device. 2343 * The buffers B_DONE bit will be cleared on return, making it almost 2344 * ready for an I/O initiation. B_INVAL may or may not be set on 2345 * return. The caller should clear B_INVAL prior to initiating a 2346 * READ. 2347 * 2348 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2349 * an existing buffer. 2350 * 2351 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2352 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2353 * and then cleared based on the backing VM. If the previous buffer is 2354 * non-0-sized but invalid, B_CACHE will be cleared. 2355 * 2356 * If getblk() must create a new buffer, the new buffer is returned with 2357 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2358 * case it is returned with B_INVAL clear and B_CACHE set based on the 2359 * backing VM. 2360 * 2361 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2362 * B_CACHE bit is clear. 2363 * 2364 * What this means, basically, is that the caller should use B_CACHE to 2365 * determine whether the buffer is fully valid or not and should clear 2366 * B_INVAL prior to issuing a read. If the caller intends to validate 2367 * the buffer by loading its data area with something, the caller needs 2368 * to clear B_INVAL. If the caller does this without issuing an I/O, 2369 * the caller should set B_CACHE ( as an optimization ), else the caller 2370 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2371 * a write attempt or if it was a successfull read. If the caller 2372 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2373 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2374 */ 2375 struct buf * 2376 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo, 2377 int flags) 2378 { 2379 struct buf *bp; 2380 int s; 2381 int error; 2382 ASSERT_VOP_LOCKED(vp, "getblk"); 2383 2384 if (size > MAXBSIZE) 2385 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2386 2387 s = splbio(); 2388 loop: 2389 /* 2390 * Block if we are low on buffers. Certain processes are allowed 2391 * to completely exhaust the buffer cache. 2392 * 2393 * If this check ever becomes a bottleneck it may be better to 2394 * move it into the else, when gbincore() fails. At the moment 2395 * it isn't a problem. 2396 * 2397 * XXX remove if 0 sections (clean this up after its proven) 2398 */ 2399 if (numfreebuffers == 0) { 2400 if (curthread == PCPU_GET(idlethread)) 2401 return NULL; 2402 mtx_lock(&nblock); 2403 needsbuffer |= VFS_BIO_NEED_ANY; 2404 mtx_unlock(&nblock); 2405 } 2406 2407 VI_LOCK(vp); 2408 if ((bp = gbincore(vp, blkno))) { 2409 int lockflags; 2410 /* 2411 * Buffer is in-core. If the buffer is not busy, it must 2412 * be on a queue. 2413 */ 2414 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK; 2415 2416 if (flags & GB_LOCK_NOWAIT) 2417 lockflags |= LK_NOWAIT; 2418 2419 error = BUF_TIMELOCK(bp, lockflags, 2420 VI_MTX(vp), "getblk", slpflag, slptimeo); 2421 2422 /* 2423 * If we slept and got the lock we have to restart in case 2424 * the buffer changed identities. 2425 */ 2426 if (error == ENOLCK) 2427 goto loop; 2428 /* We timed out or were interrupted. */ 2429 else if (error) 2430 return (NULL); 2431 2432 /* 2433 * The buffer is locked. B_CACHE is cleared if the buffer is 2434 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 2435 * and for a VMIO buffer B_CACHE is adjusted according to the 2436 * backing VM cache. 2437 */ 2438 if (bp->b_flags & B_INVAL) 2439 bp->b_flags &= ~B_CACHE; 2440 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2441 bp->b_flags |= B_CACHE; 2442 bremfree(bp); 2443 2444 /* 2445 * check for size inconsistancies for non-VMIO case. 2446 */ 2447 2448 if (bp->b_bcount != size) { 2449 if ((bp->b_flags & B_VMIO) == 0 || 2450 (size > bp->b_kvasize)) { 2451 if (bp->b_flags & B_DELWRI) { 2452 bp->b_flags |= B_NOCACHE; 2453 BUF_WRITE(bp); 2454 } else { 2455 if ((bp->b_flags & B_VMIO) && 2456 (LIST_FIRST(&bp->b_dep) == NULL)) { 2457 bp->b_flags |= B_RELBUF; 2458 brelse(bp); 2459 } else { 2460 bp->b_flags |= B_NOCACHE; 2461 BUF_WRITE(bp); 2462 } 2463 } 2464 goto loop; 2465 } 2466 } 2467 2468 /* 2469 * If the size is inconsistant in the VMIO case, we can resize 2470 * the buffer. This might lead to B_CACHE getting set or 2471 * cleared. If the size has not changed, B_CACHE remains 2472 * unchanged from its previous state. 2473 */ 2474 2475 if (bp->b_bcount != size) 2476 allocbuf(bp, size); 2477 2478 KASSERT(bp->b_offset != NOOFFSET, 2479 ("getblk: no buffer offset")); 2480 2481 /* 2482 * A buffer with B_DELWRI set and B_CACHE clear must 2483 * be committed before we can return the buffer in 2484 * order to prevent the caller from issuing a read 2485 * ( due to B_CACHE not being set ) and overwriting 2486 * it. 2487 * 2488 * Most callers, including NFS and FFS, need this to 2489 * operate properly either because they assume they 2490 * can issue a read if B_CACHE is not set, or because 2491 * ( for example ) an uncached B_DELWRI might loop due 2492 * to softupdates re-dirtying the buffer. In the latter 2493 * case, B_CACHE is set after the first write completes, 2494 * preventing further loops. 2495 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2496 * above while extending the buffer, we cannot allow the 2497 * buffer to remain with B_CACHE set after the write 2498 * completes or it will represent a corrupt state. To 2499 * deal with this we set B_NOCACHE to scrap the buffer 2500 * after the write. 2501 * 2502 * We might be able to do something fancy, like setting 2503 * B_CACHE in bwrite() except if B_DELWRI is already set, 2504 * so the below call doesn't set B_CACHE, but that gets real 2505 * confusing. This is much easier. 2506 */ 2507 2508 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2509 bp->b_flags |= B_NOCACHE; 2510 BUF_WRITE(bp); 2511 goto loop; 2512 } 2513 2514 splx(s); 2515 bp->b_flags &= ~B_DONE; 2516 } else { 2517 int bsize, maxsize, vmio; 2518 off_t offset; 2519 2520 /* 2521 * Buffer is not in-core, create new buffer. The buffer 2522 * returned by getnewbuf() is locked. Note that the returned 2523 * buffer is also considered valid (not marked B_INVAL). 2524 */ 2525 VI_UNLOCK(vp); 2526 if (vn_isdisk(vp, NULL)) 2527 bsize = DEV_BSIZE; 2528 else if (vp->v_mountedhere) 2529 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2530 else if (vp->v_mount) 2531 bsize = vp->v_mount->mnt_stat.f_iosize; 2532 else 2533 bsize = size; 2534 2535 offset = blkno * bsize; 2536 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && 2537 (vp->v_vflag & VV_OBJBUF); 2538 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2539 maxsize = imax(maxsize, bsize); 2540 2541 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2542 if (slpflag || slptimeo) { 2543 splx(s); 2544 return NULL; 2545 } 2546 goto loop; 2547 } 2548 2549 /* 2550 * This code is used to make sure that a buffer is not 2551 * created while the getnewbuf routine is blocked. 2552 * This can be a problem whether the vnode is locked or not. 2553 * If the buffer is created out from under us, we have to 2554 * throw away the one we just created. There is now window 2555 * race because we are safely running at splbio() from the 2556 * point of the duplicate buffer creation through to here, 2557 * and we've locked the buffer. 2558 * 2559 * Note: this must occur before we associate the buffer 2560 * with the vp especially considering limitations in 2561 * the splay tree implementation when dealing with duplicate 2562 * lblkno's. 2563 */ 2564 VI_LOCK(vp); 2565 if (gbincore(vp, blkno)) { 2566 VI_UNLOCK(vp); 2567 bp->b_flags |= B_INVAL; 2568 brelse(bp); 2569 goto loop; 2570 } 2571 2572 /* 2573 * Insert the buffer into the hash, so that it can 2574 * be found by incore. 2575 */ 2576 bp->b_blkno = bp->b_lblkno = blkno; 2577 bp->b_offset = offset; 2578 2579 bgetvp(vp, bp); 2580 VI_UNLOCK(vp); 2581 2582 /* 2583 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2584 * buffer size starts out as 0, B_CACHE will be set by 2585 * allocbuf() for the VMIO case prior to it testing the 2586 * backing store for validity. 2587 */ 2588 2589 if (vmio) { 2590 bp->b_flags |= B_VMIO; 2591 #if defined(VFS_BIO_DEBUG) 2592 if (vp->v_type != VREG) 2593 printf("getblk: vmioing file type %d???\n", vp->v_type); 2594 #endif 2595 VOP_GETVOBJECT(vp, &bp->b_object); 2596 } else { 2597 bp->b_flags &= ~B_VMIO; 2598 bp->b_object = NULL; 2599 } 2600 2601 allocbuf(bp, size); 2602 2603 splx(s); 2604 bp->b_flags &= ~B_DONE; 2605 } 2606 KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp)); 2607 return (bp); 2608 } 2609 2610 /* 2611 * Get an empty, disassociated buffer of given size. The buffer is initially 2612 * set to B_INVAL. 2613 */ 2614 struct buf * 2615 geteblk(int size) 2616 { 2617 struct buf *bp; 2618 int s; 2619 int maxsize; 2620 2621 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2622 2623 s = splbio(); 2624 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2625 continue; 2626 splx(s); 2627 allocbuf(bp, size); 2628 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2629 KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp)); 2630 return (bp); 2631 } 2632 2633 2634 /* 2635 * This code constitutes the buffer memory from either anonymous system 2636 * memory (in the case of non-VMIO operations) or from an associated 2637 * VM object (in the case of VMIO operations). This code is able to 2638 * resize a buffer up or down. 2639 * 2640 * Note that this code is tricky, and has many complications to resolve 2641 * deadlock or inconsistant data situations. Tread lightly!!! 2642 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2643 * the caller. Calling this code willy nilly can result in the loss of data. 2644 * 2645 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2646 * B_CACHE for the non-VMIO case. 2647 */ 2648 2649 int 2650 allocbuf(struct buf *bp, int size) 2651 { 2652 int newbsize, mbsize; 2653 int i; 2654 2655 GIANT_REQUIRED; 2656 2657 if (BUF_REFCNT(bp) == 0) 2658 panic("allocbuf: buffer not busy"); 2659 2660 if (bp->b_kvasize < size) 2661 panic("allocbuf: buffer too small"); 2662 2663 if ((bp->b_flags & B_VMIO) == 0) { 2664 caddr_t origbuf; 2665 int origbufsize; 2666 /* 2667 * Just get anonymous memory from the kernel. Don't 2668 * mess with B_CACHE. 2669 */ 2670 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2671 if (bp->b_flags & B_MALLOC) 2672 newbsize = mbsize; 2673 else 2674 newbsize = round_page(size); 2675 2676 if (newbsize < bp->b_bufsize) { 2677 /* 2678 * malloced buffers are not shrunk 2679 */ 2680 if (bp->b_flags & B_MALLOC) { 2681 if (newbsize) { 2682 bp->b_bcount = size; 2683 } else { 2684 free(bp->b_data, M_BIOBUF); 2685 if (bp->b_bufsize) { 2686 atomic_subtract_int( 2687 &bufmallocspace, 2688 bp->b_bufsize); 2689 bufspacewakeup(); 2690 bp->b_bufsize = 0; 2691 } 2692 bp->b_data = bp->b_kvabase; 2693 bp->b_bcount = 0; 2694 bp->b_flags &= ~B_MALLOC; 2695 } 2696 return 1; 2697 } 2698 vm_hold_free_pages( 2699 bp, 2700 (vm_offset_t) bp->b_data + newbsize, 2701 (vm_offset_t) bp->b_data + bp->b_bufsize); 2702 } else if (newbsize > bp->b_bufsize) { 2703 /* 2704 * We only use malloced memory on the first allocation. 2705 * and revert to page-allocated memory when the buffer 2706 * grows. 2707 */ 2708 /* 2709 * There is a potential smp race here that could lead 2710 * to bufmallocspace slightly passing the max. It 2711 * is probably extremely rare and not worth worrying 2712 * over. 2713 */ 2714 if ( (bufmallocspace < maxbufmallocspace) && 2715 (bp->b_bufsize == 0) && 2716 (mbsize <= PAGE_SIZE/2)) { 2717 2718 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2719 bp->b_bufsize = mbsize; 2720 bp->b_bcount = size; 2721 bp->b_flags |= B_MALLOC; 2722 atomic_add_int(&bufmallocspace, mbsize); 2723 return 1; 2724 } 2725 origbuf = NULL; 2726 origbufsize = 0; 2727 /* 2728 * If the buffer is growing on its other-than-first allocation, 2729 * then we revert to the page-allocation scheme. 2730 */ 2731 if (bp->b_flags & B_MALLOC) { 2732 origbuf = bp->b_data; 2733 origbufsize = bp->b_bufsize; 2734 bp->b_data = bp->b_kvabase; 2735 if (bp->b_bufsize) { 2736 atomic_subtract_int(&bufmallocspace, 2737 bp->b_bufsize); 2738 bufspacewakeup(); 2739 bp->b_bufsize = 0; 2740 } 2741 bp->b_flags &= ~B_MALLOC; 2742 newbsize = round_page(newbsize); 2743 } 2744 vm_hold_load_pages( 2745 bp, 2746 (vm_offset_t) bp->b_data + bp->b_bufsize, 2747 (vm_offset_t) bp->b_data + newbsize); 2748 if (origbuf) { 2749 bcopy(origbuf, bp->b_data, origbufsize); 2750 free(origbuf, M_BIOBUF); 2751 } 2752 } 2753 } else { 2754 int desiredpages; 2755 2756 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2757 desiredpages = (size == 0) ? 0 : 2758 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2759 2760 if (bp->b_flags & B_MALLOC) 2761 panic("allocbuf: VMIO buffer can't be malloced"); 2762 /* 2763 * Set B_CACHE initially if buffer is 0 length or will become 2764 * 0-length. 2765 */ 2766 if (size == 0 || bp->b_bufsize == 0) 2767 bp->b_flags |= B_CACHE; 2768 2769 if (newbsize < bp->b_bufsize) { 2770 /* 2771 * DEV_BSIZE aligned new buffer size is less then the 2772 * DEV_BSIZE aligned existing buffer size. Figure out 2773 * if we have to remove any pages. 2774 */ 2775 if (desiredpages < bp->b_npages) { 2776 vm_page_t m; 2777 2778 vm_page_lock_queues(); 2779 for (i = desiredpages; i < bp->b_npages; i++) { 2780 /* 2781 * the page is not freed here -- it 2782 * is the responsibility of 2783 * vnode_pager_setsize 2784 */ 2785 m = bp->b_pages[i]; 2786 KASSERT(m != bogus_page, 2787 ("allocbuf: bogus page found")); 2788 while (vm_page_sleep_if_busy(m, TRUE, "biodep")) 2789 vm_page_lock_queues(); 2790 2791 bp->b_pages[i] = NULL; 2792 vm_page_unwire(m, 0); 2793 } 2794 vm_page_unlock_queues(); 2795 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2796 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2797 bp->b_npages = desiredpages; 2798 } 2799 } else if (size > bp->b_bcount) { 2800 /* 2801 * We are growing the buffer, possibly in a 2802 * byte-granular fashion. 2803 */ 2804 struct vnode *vp; 2805 vm_object_t obj; 2806 vm_offset_t toff; 2807 vm_offset_t tinc; 2808 2809 /* 2810 * Step 1, bring in the VM pages from the object, 2811 * allocating them if necessary. We must clear 2812 * B_CACHE if these pages are not valid for the 2813 * range covered by the buffer. 2814 */ 2815 2816 vp = bp->b_vp; 2817 obj = bp->b_object; 2818 2819 while (bp->b_npages < desiredpages) { 2820 vm_page_t m; 2821 vm_pindex_t pi; 2822 2823 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2824 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2825 /* 2826 * note: must allocate system pages 2827 * since blocking here could intefere 2828 * with paging I/O, no matter which 2829 * process we are. 2830 */ 2831 m = vm_page_alloc(obj, pi, 2832 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 2833 if (m == NULL) { 2834 atomic_add_int(&vm_pageout_deficit, 2835 desiredpages - bp->b_npages); 2836 VM_WAIT; 2837 } else { 2838 vm_page_lock_queues(); 2839 vm_page_wakeup(m); 2840 vm_page_unlock_queues(); 2841 bp->b_flags &= ~B_CACHE; 2842 bp->b_pages[bp->b_npages] = m; 2843 ++bp->b_npages; 2844 } 2845 continue; 2846 } 2847 2848 /* 2849 * We found a page. If we have to sleep on it, 2850 * retry because it might have gotten freed out 2851 * from under us. 2852 * 2853 * We can only test PG_BUSY here. Blocking on 2854 * m->busy might lead to a deadlock: 2855 * 2856 * vm_fault->getpages->cluster_read->allocbuf 2857 * 2858 */ 2859 vm_page_lock_queues(); 2860 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk")) 2861 continue; 2862 2863 /* 2864 * We have a good page. Should we wakeup the 2865 * page daemon? 2866 */ 2867 if ((curproc != pageproc) && 2868 ((m->queue - m->pc) == PQ_CACHE) && 2869 ((cnt.v_free_count + cnt.v_cache_count) < 2870 (cnt.v_free_min + cnt.v_cache_min))) { 2871 pagedaemon_wakeup(); 2872 } 2873 vm_page_flag_clear(m, PG_ZERO); 2874 vm_page_wire(m); 2875 vm_page_unlock_queues(); 2876 bp->b_pages[bp->b_npages] = m; 2877 ++bp->b_npages; 2878 } 2879 2880 /* 2881 * Step 2. We've loaded the pages into the buffer, 2882 * we have to figure out if we can still have B_CACHE 2883 * set. Note that B_CACHE is set according to the 2884 * byte-granular range ( bcount and size ), new the 2885 * aligned range ( newbsize ). 2886 * 2887 * The VM test is against m->valid, which is DEV_BSIZE 2888 * aligned. Needless to say, the validity of the data 2889 * needs to also be DEV_BSIZE aligned. Note that this 2890 * fails with NFS if the server or some other client 2891 * extends the file's EOF. If our buffer is resized, 2892 * B_CACHE may remain set! XXX 2893 */ 2894 2895 toff = bp->b_bcount; 2896 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2897 2898 while ((bp->b_flags & B_CACHE) && toff < size) { 2899 vm_pindex_t pi; 2900 2901 if (tinc > (size - toff)) 2902 tinc = size - toff; 2903 2904 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2905 PAGE_SHIFT; 2906 2907 vfs_buf_test_cache( 2908 bp, 2909 bp->b_offset, 2910 toff, 2911 tinc, 2912 bp->b_pages[pi] 2913 ); 2914 toff += tinc; 2915 tinc = PAGE_SIZE; 2916 } 2917 2918 /* 2919 * Step 3, fixup the KVM pmap. Remember that 2920 * bp->b_data is relative to bp->b_offset, but 2921 * bp->b_offset may be offset into the first page. 2922 */ 2923 2924 bp->b_data = (caddr_t) 2925 trunc_page((vm_offset_t)bp->b_data); 2926 pmap_qenter( 2927 (vm_offset_t)bp->b_data, 2928 bp->b_pages, 2929 bp->b_npages 2930 ); 2931 2932 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2933 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2934 } 2935 } 2936 if (newbsize < bp->b_bufsize) 2937 bufspacewakeup(); 2938 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2939 bp->b_bcount = size; /* requested buffer size */ 2940 return 1; 2941 } 2942 2943 void 2944 biodone(struct bio *bp) 2945 { 2946 mtx_lock(&bdonelock); 2947 bp->bio_flags |= BIO_DONE; 2948 if (bp->bio_done == NULL) 2949 wakeup(bp); 2950 mtx_unlock(&bdonelock); 2951 if (bp->bio_done != NULL) 2952 bp->bio_done(bp); 2953 } 2954 2955 /* 2956 * Wait for a BIO to finish. 2957 * 2958 * XXX: resort to a timeout for now. The optimal locking (if any) for this 2959 * case is not yet clear. 2960 */ 2961 int 2962 biowait(struct bio *bp, const char *wchan) 2963 { 2964 2965 mtx_lock(&bdonelock); 2966 while ((bp->bio_flags & BIO_DONE) == 0) 2967 msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10); 2968 mtx_unlock(&bdonelock); 2969 if (bp->bio_error != 0) 2970 return (bp->bio_error); 2971 if (!(bp->bio_flags & BIO_ERROR)) 2972 return (0); 2973 return (EIO); 2974 } 2975 2976 void 2977 biofinish(struct bio *bp, struct devstat *stat, int error) 2978 { 2979 2980 if (error) { 2981 bp->bio_error = error; 2982 bp->bio_flags |= BIO_ERROR; 2983 } 2984 if (stat != NULL) 2985 devstat_end_transaction_bio(stat, bp); 2986 biodone(bp); 2987 } 2988 2989 void 2990 bioq_init(struct bio_queue_head *head) 2991 { 2992 TAILQ_INIT(&head->queue); 2993 head->last_pblkno = 0; 2994 head->insert_point = NULL; 2995 head->switch_point = NULL; 2996 } 2997 2998 void 2999 bioq_remove(struct bio_queue_head *head, struct bio *bp) 3000 { 3001 if (bp == head->switch_point) 3002 head->switch_point = TAILQ_NEXT(bp, bio_queue); 3003 if (bp == head->insert_point) { 3004 head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue); 3005 if (head->insert_point == NULL) 3006 head->last_pblkno = 0; 3007 } else if (bp == TAILQ_FIRST(&head->queue)) 3008 head->last_pblkno = bp->bio_pblkno; 3009 TAILQ_REMOVE(&head->queue, bp, bio_queue); 3010 if (TAILQ_FIRST(&head->queue) == head->switch_point) 3011 head->switch_point = NULL; 3012 } 3013 3014 /* 3015 * bufwait: 3016 * 3017 * Wait for buffer I/O completion, returning error status. The buffer 3018 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 3019 * error and cleared. 3020 */ 3021 int 3022 bufwait(register struct buf * bp) 3023 { 3024 int s; 3025 3026 s = splbio(); 3027 if (bp->b_iocmd == BIO_READ) 3028 bwait(bp, PRIBIO, "biord"); 3029 else 3030 bwait(bp, PRIBIO, "biowr"); 3031 splx(s); 3032 if (bp->b_flags & B_EINTR) { 3033 bp->b_flags &= ~B_EINTR; 3034 return (EINTR); 3035 } 3036 if (bp->b_ioflags & BIO_ERROR) { 3037 return (bp->b_error ? bp->b_error : EIO); 3038 } else { 3039 return (0); 3040 } 3041 } 3042 3043 /* 3044 * Call back function from struct bio back up to struct buf. 3045 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 3046 */ 3047 void 3048 bufdonebio(struct bio *bp) 3049 { 3050 bufdone(bp->bio_caller2); 3051 } 3052 3053 /* 3054 * bufdone: 3055 * 3056 * Finish I/O on a buffer, optionally calling a completion function. 3057 * This is usually called from an interrupt so process blocking is 3058 * not allowed. 3059 * 3060 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3061 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3062 * assuming B_INVAL is clear. 3063 * 3064 * For the VMIO case, we set B_CACHE if the op was a read and no 3065 * read error occured, or if the op was a write. B_CACHE is never 3066 * set if the buffer is invalid or otherwise uncacheable. 3067 * 3068 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3069 * initiator to leave B_INVAL set to brelse the buffer out of existance 3070 * in the biodone routine. 3071 */ 3072 void 3073 bufdone(struct buf *bp) 3074 { 3075 int s; 3076 void (*biodone)(struct buf *); 3077 3078 GIANT_REQUIRED; 3079 3080 s = splbio(); 3081 3082 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 3083 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 3084 3085 bp->b_flags |= B_DONE; 3086 runningbufwakeup(bp); 3087 3088 if (bp->b_iocmd == BIO_DELETE) { 3089 brelse(bp); 3090 splx(s); 3091 return; 3092 } 3093 3094 if (bp->b_iocmd == BIO_WRITE) { 3095 vwakeup(bp); 3096 } 3097 3098 /* call optional completion function if requested */ 3099 if (bp->b_iodone != NULL) { 3100 biodone = bp->b_iodone; 3101 bp->b_iodone = NULL; 3102 (*biodone) (bp); 3103 splx(s); 3104 return; 3105 } 3106 if (LIST_FIRST(&bp->b_dep) != NULL) 3107 buf_complete(bp); 3108 3109 if (bp->b_flags & B_VMIO) { 3110 int i; 3111 vm_ooffset_t foff; 3112 vm_page_t m; 3113 vm_object_t obj; 3114 int iosize; 3115 struct vnode *vp = bp->b_vp; 3116 3117 obj = bp->b_object; 3118 3119 #if defined(VFS_BIO_DEBUG) 3120 mp_fixme("usecount and vflag accessed without locks."); 3121 if (vp->v_usecount == 0) { 3122 panic("biodone: zero vnode ref count"); 3123 } 3124 3125 if ((vp->v_vflag & VV_OBJBUF) == 0) { 3126 panic("biodone: vnode is not setup for merged cache"); 3127 } 3128 #endif 3129 3130 foff = bp->b_offset; 3131 KASSERT(bp->b_offset != NOOFFSET, 3132 ("biodone: no buffer offset")); 3133 3134 #if defined(VFS_BIO_DEBUG) 3135 if (obj->paging_in_progress < bp->b_npages) { 3136 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 3137 obj->paging_in_progress, bp->b_npages); 3138 } 3139 #endif 3140 3141 /* 3142 * Set B_CACHE if the op was a normal read and no error 3143 * occured. B_CACHE is set for writes in the b*write() 3144 * routines. 3145 */ 3146 iosize = bp->b_bcount - bp->b_resid; 3147 if (bp->b_iocmd == BIO_READ && 3148 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 3149 !(bp->b_ioflags & BIO_ERROR)) { 3150 bp->b_flags |= B_CACHE; 3151 } 3152 vm_page_lock_queues(); 3153 for (i = 0; i < bp->b_npages; i++) { 3154 int bogusflag = 0; 3155 int resid; 3156 3157 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3158 if (resid > iosize) 3159 resid = iosize; 3160 3161 /* 3162 * cleanup bogus pages, restoring the originals 3163 */ 3164 m = bp->b_pages[i]; 3165 if (m == bogus_page) { 3166 bogusflag = 1; 3167 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3168 if (m == NULL) 3169 panic("biodone: page disappeared!"); 3170 bp->b_pages[i] = m; 3171 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3172 } 3173 #if defined(VFS_BIO_DEBUG) 3174 if (OFF_TO_IDX(foff) != m->pindex) { 3175 printf( 3176 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n", 3177 (intmax_t)foff, (uintmax_t)m->pindex); 3178 } 3179 #endif 3180 3181 /* 3182 * In the write case, the valid and clean bits are 3183 * already changed correctly ( see bdwrite() ), so we 3184 * only need to do this here in the read case. 3185 */ 3186 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 3187 vfs_page_set_valid(bp, foff, i, m); 3188 } 3189 vm_page_flag_clear(m, PG_ZERO); 3190 3191 /* 3192 * when debugging new filesystems or buffer I/O methods, this 3193 * is the most common error that pops up. if you see this, you 3194 * have not set the page busy flag correctly!!! 3195 */ 3196 if (m->busy == 0) { 3197 printf("biodone: page busy < 0, " 3198 "pindex: %d, foff: 0x(%x,%x), " 3199 "resid: %d, index: %d\n", 3200 (int) m->pindex, (int)(foff >> 32), 3201 (int) foff & 0xffffffff, resid, i); 3202 if (!vn_isdisk(vp, NULL)) 3203 printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n", 3204 bp->b_vp->v_mount->mnt_stat.f_iosize, 3205 (intmax_t) bp->b_lblkno, 3206 bp->b_flags, bp->b_npages); 3207 else 3208 printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n", 3209 (intmax_t) bp->b_lblkno, 3210 bp->b_flags, bp->b_npages); 3211 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3212 m->valid, m->dirty, m->wire_count); 3213 panic("biodone: page busy < 0\n"); 3214 } 3215 vm_page_io_finish(m); 3216 vm_object_pip_subtract(obj, 1); 3217 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3218 iosize -= resid; 3219 } 3220 vm_page_unlock_queues(); 3221 if (obj) 3222 vm_object_pip_wakeupn(obj, 0); 3223 } 3224 3225 /* 3226 * For asynchronous completions, release the buffer now. The brelse 3227 * will do a wakeup there if necessary - so no need to do a wakeup 3228 * here in the async case. The sync case always needs to do a wakeup. 3229 */ 3230 3231 if (bp->b_flags & B_ASYNC) { 3232 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 3233 brelse(bp); 3234 else 3235 bqrelse(bp); 3236 } else { 3237 bdone(bp); 3238 } 3239 splx(s); 3240 } 3241 3242 /* 3243 * This routine is called in lieu of iodone in the case of 3244 * incomplete I/O. This keeps the busy status for pages 3245 * consistant. 3246 */ 3247 void 3248 vfs_unbusy_pages(struct buf * bp) 3249 { 3250 int i; 3251 3252 GIANT_REQUIRED; 3253 3254 runningbufwakeup(bp); 3255 if (bp->b_flags & B_VMIO) { 3256 vm_object_t obj; 3257 3258 obj = bp->b_object; 3259 vm_page_lock_queues(); 3260 for (i = 0; i < bp->b_npages; i++) { 3261 vm_page_t m = bp->b_pages[i]; 3262 3263 if (m == bogus_page) { 3264 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3265 if (!m) { 3266 panic("vfs_unbusy_pages: page missing\n"); 3267 } 3268 bp->b_pages[i] = m; 3269 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3270 } 3271 vm_object_pip_subtract(obj, 1); 3272 vm_page_flag_clear(m, PG_ZERO); 3273 vm_page_io_finish(m); 3274 } 3275 vm_page_unlock_queues(); 3276 vm_object_pip_wakeupn(obj, 0); 3277 } 3278 } 3279 3280 /* 3281 * vfs_page_set_valid: 3282 * 3283 * Set the valid bits in a page based on the supplied offset. The 3284 * range is restricted to the buffer's size. 3285 * 3286 * This routine is typically called after a read completes. 3287 */ 3288 static void 3289 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3290 { 3291 vm_ooffset_t soff, eoff; 3292 3293 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 3294 /* 3295 * Start and end offsets in buffer. eoff - soff may not cross a 3296 * page boundry or cross the end of the buffer. The end of the 3297 * buffer, in this case, is our file EOF, not the allocation size 3298 * of the buffer. 3299 */ 3300 soff = off; 3301 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3302 if (eoff > bp->b_offset + bp->b_bcount) 3303 eoff = bp->b_offset + bp->b_bcount; 3304 3305 /* 3306 * Set valid range. This is typically the entire buffer and thus the 3307 * entire page. 3308 */ 3309 if (eoff > soff) { 3310 vm_page_set_validclean( 3311 m, 3312 (vm_offset_t) (soff & PAGE_MASK), 3313 (vm_offset_t) (eoff - soff) 3314 ); 3315 } 3316 } 3317 3318 /* 3319 * This routine is called before a device strategy routine. 3320 * It is used to tell the VM system that paging I/O is in 3321 * progress, and treat the pages associated with the buffer 3322 * almost as being PG_BUSY. Also the object paging_in_progress 3323 * flag is handled to make sure that the object doesn't become 3324 * inconsistant. 3325 * 3326 * Since I/O has not been initiated yet, certain buffer flags 3327 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 3328 * and should be ignored. 3329 */ 3330 void 3331 vfs_busy_pages(struct buf * bp, int clear_modify) 3332 { 3333 int i, bogus; 3334 3335 if (bp->b_flags & B_VMIO) { 3336 vm_object_t obj; 3337 vm_ooffset_t foff; 3338 3339 obj = bp->b_object; 3340 foff = bp->b_offset; 3341 KASSERT(bp->b_offset != NOOFFSET, 3342 ("vfs_busy_pages: no buffer offset")); 3343 vfs_setdirty(bp); 3344 retry: 3345 vm_page_lock_queues(); 3346 for (i = 0; i < bp->b_npages; i++) { 3347 vm_page_t m = bp->b_pages[i]; 3348 3349 if (vm_page_sleep_if_busy(m, FALSE, "vbpage")) 3350 goto retry; 3351 } 3352 bogus = 0; 3353 for (i = 0; i < bp->b_npages; i++) { 3354 vm_page_t m = bp->b_pages[i]; 3355 3356 vm_page_flag_clear(m, PG_ZERO); 3357 if ((bp->b_flags & B_CLUSTER) == 0) { 3358 vm_object_pip_add(obj, 1); 3359 vm_page_io_start(m); 3360 } 3361 /* 3362 * When readying a buffer for a read ( i.e 3363 * clear_modify == 0 ), it is important to do 3364 * bogus_page replacement for valid pages in 3365 * partially instantiated buffers. Partially 3366 * instantiated buffers can, in turn, occur when 3367 * reconstituting a buffer from its VM backing store 3368 * base. We only have to do this if B_CACHE is 3369 * clear ( which causes the I/O to occur in the 3370 * first place ). The replacement prevents the read 3371 * I/O from overwriting potentially dirty VM-backed 3372 * pages. XXX bogus page replacement is, uh, bogus. 3373 * It may not work properly with small-block devices. 3374 * We need to find a better way. 3375 */ 3376 pmap_remove_all(m); 3377 if (clear_modify) 3378 vfs_page_set_valid(bp, foff, i, m); 3379 else if (m->valid == VM_PAGE_BITS_ALL && 3380 (bp->b_flags & B_CACHE) == 0) { 3381 bp->b_pages[i] = bogus_page; 3382 bogus++; 3383 } 3384 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3385 } 3386 vm_page_unlock_queues(); 3387 if (bogus) 3388 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3389 } 3390 } 3391 3392 /* 3393 * Tell the VM system that the pages associated with this buffer 3394 * are clean. This is used for delayed writes where the data is 3395 * going to go to disk eventually without additional VM intevention. 3396 * 3397 * Note that while we only really need to clean through to b_bcount, we 3398 * just go ahead and clean through to b_bufsize. 3399 */ 3400 static void 3401 vfs_clean_pages(struct buf * bp) 3402 { 3403 int i; 3404 3405 GIANT_REQUIRED; 3406 3407 if (bp->b_flags & B_VMIO) { 3408 vm_ooffset_t foff; 3409 3410 foff = bp->b_offset; 3411 KASSERT(bp->b_offset != NOOFFSET, 3412 ("vfs_clean_pages: no buffer offset")); 3413 vm_page_lock_queues(); 3414 for (i = 0; i < bp->b_npages; i++) { 3415 vm_page_t m = bp->b_pages[i]; 3416 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3417 vm_ooffset_t eoff = noff; 3418 3419 if (eoff > bp->b_offset + bp->b_bufsize) 3420 eoff = bp->b_offset + bp->b_bufsize; 3421 vfs_page_set_valid(bp, foff, i, m); 3422 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3423 foff = noff; 3424 } 3425 vm_page_unlock_queues(); 3426 } 3427 } 3428 3429 /* 3430 * vfs_bio_set_validclean: 3431 * 3432 * Set the range within the buffer to valid and clean. The range is 3433 * relative to the beginning of the buffer, b_offset. Note that b_offset 3434 * itself may be offset from the beginning of the first page. 3435 * 3436 */ 3437 3438 void 3439 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3440 { 3441 if (bp->b_flags & B_VMIO) { 3442 int i; 3443 int n; 3444 3445 /* 3446 * Fixup base to be relative to beginning of first page. 3447 * Set initial n to be the maximum number of bytes in the 3448 * first page that can be validated. 3449 */ 3450 3451 base += (bp->b_offset & PAGE_MASK); 3452 n = PAGE_SIZE - (base & PAGE_MASK); 3453 3454 vm_page_lock_queues(); 3455 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3456 vm_page_t m = bp->b_pages[i]; 3457 3458 if (n > size) 3459 n = size; 3460 3461 vm_page_set_validclean(m, base & PAGE_MASK, n); 3462 base += n; 3463 size -= n; 3464 n = PAGE_SIZE; 3465 } 3466 vm_page_unlock_queues(); 3467 } 3468 } 3469 3470 /* 3471 * vfs_bio_clrbuf: 3472 * 3473 * clear a buffer. This routine essentially fakes an I/O, so we need 3474 * to clear BIO_ERROR and B_INVAL. 3475 * 3476 * Note that while we only theoretically need to clear through b_bcount, 3477 * we go ahead and clear through b_bufsize. 3478 */ 3479 3480 void 3481 vfs_bio_clrbuf(struct buf *bp) 3482 { 3483 int i, mask = 0; 3484 caddr_t sa, ea; 3485 3486 GIANT_REQUIRED; 3487 3488 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3489 bp->b_flags &= ~B_INVAL; 3490 bp->b_ioflags &= ~BIO_ERROR; 3491 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3492 (bp->b_offset & PAGE_MASK) == 0) { 3493 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3494 if ((bp->b_pages[0]->valid & mask) == mask) { 3495 bp->b_resid = 0; 3496 return; 3497 } 3498 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3499 ((bp->b_pages[0]->valid & mask) == 0)) { 3500 bzero(bp->b_data, bp->b_bufsize); 3501 bp->b_pages[0]->valid |= mask; 3502 bp->b_resid = 0; 3503 return; 3504 } 3505 } 3506 ea = sa = bp->b_data; 3507 for(i=0;i<bp->b_npages;i++,sa=ea) { 3508 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3509 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3510 ea = (caddr_t)(vm_offset_t)ulmin( 3511 (u_long)(vm_offset_t)ea, 3512 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3513 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3514 if ((bp->b_pages[i]->valid & mask) == mask) 3515 continue; 3516 if ((bp->b_pages[i]->valid & mask) == 0) { 3517 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3518 bzero(sa, ea - sa); 3519 } 3520 } else { 3521 for (; sa < ea; sa += DEV_BSIZE, j++) { 3522 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3523 (bp->b_pages[i]->valid & (1<<j)) == 0) 3524 bzero(sa, DEV_BSIZE); 3525 } 3526 } 3527 bp->b_pages[i]->valid |= mask; 3528 vm_page_lock_queues(); 3529 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3530 vm_page_unlock_queues(); 3531 } 3532 bp->b_resid = 0; 3533 } else { 3534 clrbuf(bp); 3535 } 3536 } 3537 3538 /* 3539 * vm_hold_load_pages and vm_hold_free_pages get pages into 3540 * a buffers address space. The pages are anonymous and are 3541 * not associated with a file object. 3542 */ 3543 static void 3544 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3545 { 3546 vm_offset_t pg; 3547 vm_page_t p; 3548 int index; 3549 3550 GIANT_REQUIRED; 3551 3552 to = round_page(to); 3553 from = round_page(from); 3554 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3555 3556 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3557 tryagain: 3558 /* 3559 * note: must allocate system pages since blocking here 3560 * could intefere with paging I/O, no matter which 3561 * process we are. 3562 */ 3563 vm_object_lock(kernel_object); 3564 p = vm_page_alloc(kernel_object, 3565 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3566 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 3567 vm_object_unlock(kernel_object); 3568 if (!p) { 3569 atomic_add_int(&vm_pageout_deficit, 3570 (to - pg) >> PAGE_SHIFT); 3571 VM_WAIT; 3572 goto tryagain; 3573 } 3574 vm_page_lock_queues(); 3575 p->valid = VM_PAGE_BITS_ALL; 3576 vm_page_unlock_queues(); 3577 pmap_qenter(pg, &p, 1); 3578 bp->b_pages[index] = p; 3579 vm_page_lock_queues(); 3580 vm_page_wakeup(p); 3581 vm_page_unlock_queues(); 3582 } 3583 bp->b_npages = index; 3584 } 3585 3586 /* Return pages associated with this buf to the vm system */ 3587 static void 3588 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3589 { 3590 vm_offset_t pg; 3591 vm_page_t p; 3592 int index, newnpages; 3593 3594 GIANT_REQUIRED; 3595 3596 from = round_page(from); 3597 to = round_page(to); 3598 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3599 3600 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3601 p = bp->b_pages[index]; 3602 if (p && (index < bp->b_npages)) { 3603 if (p->busy) { 3604 printf( 3605 "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 3606 (intmax_t)bp->b_blkno, 3607 (intmax_t)bp->b_lblkno); 3608 } 3609 bp->b_pages[index] = NULL; 3610 pmap_qremove(pg, 1); 3611 vm_page_lock_queues(); 3612 vm_page_busy(p); 3613 vm_page_unwire(p, 0); 3614 vm_page_free(p); 3615 vm_page_unlock_queues(); 3616 } 3617 } 3618 bp->b_npages = newnpages; 3619 } 3620 3621 /* 3622 * Map an IO request into kernel virtual address space. 3623 * 3624 * All requests are (re)mapped into kernel VA space. 3625 * Notice that we use b_bufsize for the size of the buffer 3626 * to be mapped. b_bcount might be modified by the driver. 3627 * 3628 * Note that even if the caller determines that the address space should 3629 * be valid, a race or a smaller-file mapped into a larger space may 3630 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 3631 * check the return value. 3632 */ 3633 int 3634 vmapbuf(struct buf *bp) 3635 { 3636 caddr_t addr, kva; 3637 vm_paddr_t pa; 3638 int pidx, i; 3639 struct vm_page *m; 3640 struct pmap *pmap = &curproc->p_vmspace->vm_pmap; 3641 3642 GIANT_REQUIRED; 3643 3644 if ((bp->b_flags & B_PHYS) == 0) 3645 panic("vmapbuf"); 3646 3647 for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0; 3648 addr < bp->b_data + bp->b_bufsize; 3649 addr += PAGE_SIZE, pidx++) { 3650 /* 3651 * Do the vm_fault if needed; do the copy-on-write thing 3652 * when reading stuff off device into memory. 3653 * 3654 * NOTE! Must use pmap_extract() because addr may be in 3655 * the userland address space, and kextract is only guarenteed 3656 * to work for the kernland address space (see: sparc64 port). 3657 */ 3658 retry: 3659 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3660 (bp->b_iocmd == BIO_READ) ? 3661 (VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ); 3662 if (i < 0) { 3663 printf("vmapbuf: warning, bad user address during I/O\n"); 3664 vm_page_lock_queues(); 3665 for (i = 0; i < pidx; ++i) { 3666 vm_page_unhold(bp->b_pages[i]); 3667 bp->b_pages[i] = NULL; 3668 } 3669 vm_page_unlock_queues(); 3670 return(-1); 3671 } 3672 pa = trunc_page(pmap_extract(pmap, (vm_offset_t) addr)); 3673 if (pa == 0) { 3674 printf("vmapbuf: warning, race against user address during I/O"); 3675 goto retry; 3676 } 3677 m = PHYS_TO_VM_PAGE(pa); 3678 vm_page_lock_queues(); 3679 vm_page_hold(m); 3680 vm_page_unlock_queues(); 3681 bp->b_pages[pidx] = m; 3682 } 3683 if (pidx > btoc(MAXPHYS)) 3684 panic("vmapbuf: mapped more than MAXPHYS"); 3685 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 3686 3687 kva = bp->b_saveaddr; 3688 bp->b_npages = pidx; 3689 bp->b_saveaddr = bp->b_data; 3690 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3691 return(0); 3692 } 3693 3694 /* 3695 * Free the io map PTEs associated with this IO operation. 3696 * We also invalidate the TLB entries and restore the original b_addr. 3697 */ 3698 void 3699 vunmapbuf(struct buf *bp) 3700 { 3701 int pidx; 3702 int npages; 3703 3704 GIANT_REQUIRED; 3705 3706 if ((bp->b_flags & B_PHYS) == 0) 3707 panic("vunmapbuf"); 3708 3709 npages = bp->b_npages; 3710 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3711 npages); 3712 vm_page_lock_queues(); 3713 for (pidx = 0; pidx < npages; pidx++) 3714 vm_page_unhold(bp->b_pages[pidx]); 3715 vm_page_unlock_queues(); 3716 3717 bp->b_data = bp->b_saveaddr; 3718 } 3719 3720 void 3721 bdone(struct buf *bp) 3722 { 3723 mtx_lock(&bdonelock); 3724 bp->b_flags |= B_DONE; 3725 wakeup(bp); 3726 mtx_unlock(&bdonelock); 3727 } 3728 3729 void 3730 bwait(struct buf *bp, u_char pri, const char *wchan) 3731 { 3732 mtx_lock(&bdonelock); 3733 while ((bp->b_flags & B_DONE) == 0) 3734 msleep(bp, &bdonelock, pri, wchan, 0); 3735 mtx_unlock(&bdonelock); 3736 } 3737 3738 #include "opt_ddb.h" 3739 #ifdef DDB 3740 #include <ddb/ddb.h> 3741 3742 /* DDB command to show buffer data */ 3743 DB_SHOW_COMMAND(buffer, db_show_buffer) 3744 { 3745 /* get args */ 3746 struct buf *bp = (struct buf *)addr; 3747 3748 if (!have_addr) { 3749 db_printf("usage: show buffer <addr>\n"); 3750 return; 3751 } 3752 3753 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3754 db_printf( 3755 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 3756 "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n", 3757 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3758 major(bp->b_dev), minor(bp->b_dev), bp->b_data, 3759 (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno); 3760 if (bp->b_npages) { 3761 int i; 3762 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3763 for (i = 0; i < bp->b_npages; i++) { 3764 vm_page_t m; 3765 m = bp->b_pages[i]; 3766 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3767 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3768 if ((i + 1) < bp->b_npages) 3769 db_printf(","); 3770 } 3771 db_printf("\n"); 3772 } 3773 } 3774 #endif /* DDB */ 3775