1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $Id: vfs_bio.c,v 1.214 1999/06/16 23:27:31 mckusick Exp $ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #define VMIO 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/sysproto.h> 34 #include <sys/kernel.h> 35 #include <sys/sysctl.h> 36 #include <sys/proc.h> 37 #include <sys/vnode.h> 38 #include <sys/vmmeter.h> 39 #include <sys/lock.h> 40 #include <miscfs/specfs/specdev.h> 41 #include <vm/vm.h> 42 #include <vm/vm_param.h> 43 #include <vm/vm_prot.h> 44 #include <vm/vm_kern.h> 45 #include <vm/vm_pageout.h> 46 #include <vm/vm_page.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_extern.h> 49 #include <vm/vm_map.h> 50 #include <sys/buf.h> 51 #include <sys/mount.h> 52 #include <sys/malloc.h> 53 #include <sys/resourcevar.h> 54 55 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 56 57 struct bio_ops bioops; /* I/O operation notification */ 58 59 #if 0 /* replaced bu sched_sync */ 60 static void vfs_update __P((void)); 61 static struct proc *updateproc; 62 static struct kproc_desc up_kp = { 63 "update", 64 vfs_update, 65 &updateproc 66 }; 67 SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp) 68 #endif 69 70 struct buf *buf; /* buffer header pool */ 71 struct swqueue bswlist; 72 73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 74 vm_offset_t to); 75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 76 vm_offset_t to); 77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 78 int pageno, vm_page_t m); 79 static void vfs_clean_pages(struct buf * bp); 80 static void vfs_setdirty(struct buf *bp); 81 static void vfs_vmio_release(struct buf *bp); 82 static void flushdirtybuffers(int slpflag, int slptimeo); 83 static int flushbufqueues(void); 84 85 /* 86 * Internal update daemon, process 3 87 * The variable vfs_update_wakeup allows for internal syncs. 88 */ 89 int vfs_update_wakeup; 90 91 /* 92 * bogus page -- for I/O to/from partially complete buffers 93 * this is a temporary solution to the problem, but it is not 94 * really that bad. it would be better to split the buffer 95 * for input in the case of buffers partially already in memory, 96 * but the code is intricate enough already. 97 */ 98 vm_page_t bogus_page; 99 int runningbufspace; 100 static vm_offset_t bogus_offset; 101 102 static int bufspace, maxbufspace, vmiospace, maxvmiobufspace, 103 bufmallocspace, maxbufmallocspace, hibufspace; 104 static int needsbuffer; 105 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 106 static int numfreebuffers, lofreebuffers, hifreebuffers; 107 static int kvafreespace; 108 109 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 110 &numdirtybuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 112 &lodirtybuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 114 &hidirtybuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 116 &numfreebuffers, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 118 &lofreebuffers, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 120 &hifreebuffers, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 122 &runningbufspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW, 124 &maxbufspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 126 &hibufspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 128 &bufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW, 130 &maxvmiobufspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD, 132 &vmiospace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 134 &maxbufmallocspace, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 136 &bufmallocspace, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD, 138 &kvafreespace, 0, ""); 139 140 static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash; 141 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 142 143 extern int vm_swap_size; 144 145 #define BUF_MAXUSE 24 146 147 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 148 #define VFS_BIO_NEED_RESERVED02 0x02 /* unused */ 149 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 150 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 151 #define VFS_BIO_NEED_KVASPACE 0x10 /* wait for buffer_map space, emerg */ 152 153 /* 154 * kvaspacewakeup: 155 * 156 * Called when kva space is potential available for recovery or when 157 * kva space is recovered in the buffer_map. This function wakes up 158 * anyone waiting for buffer_map kva space. Even though the buffer_map 159 * is larger then maxbufspace, this situation will typically occur 160 * when the buffer_map gets fragmented. 161 */ 162 163 static __inline void 164 kvaspacewakeup(void) 165 { 166 /* 167 * If someone is waiting for KVA space, wake them up. Even 168 * though we haven't freed the kva space yet, the waiting 169 * process will be able to now. 170 */ 171 if (needsbuffer & VFS_BIO_NEED_KVASPACE) { 172 needsbuffer &= ~VFS_BIO_NEED_KVASPACE; 173 wakeup(&needsbuffer); 174 } 175 } 176 177 /* 178 * bufspacewakeup: 179 * 180 * Called when buffer space is potentially available for recovery or when 181 * buffer space is recovered. getnewbuf() will block on this flag when 182 * it is unable to free sufficient buffer space. Buffer space becomes 183 * recoverable when bp's get placed back in the queues. 184 */ 185 186 static __inline void 187 bufspacewakeup(void) 188 { 189 /* 190 * If someone is waiting for BUF space, wake them up. Even 191 * though we haven't freed the kva space yet, the waiting 192 * process will be able to now. 193 */ 194 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 195 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 196 wakeup(&needsbuffer); 197 } 198 } 199 200 /* 201 * bufcountwakeup: 202 * 203 * Called when a buffer has been added to one of the free queues to 204 * account for the buffer and to wakeup anyone waiting for free buffers. 205 * This typically occurs when large amounts of metadata are being handled 206 * by the buffer cache ( else buffer space runs out first, usually ). 207 */ 208 209 static __inline void 210 bufcountwakeup(void) 211 { 212 ++numfreebuffers; 213 if (needsbuffer) { 214 needsbuffer &= ~VFS_BIO_NEED_ANY; 215 if (numfreebuffers >= hifreebuffers) 216 needsbuffer &= ~VFS_BIO_NEED_FREE; 217 wakeup(&needsbuffer); 218 } 219 } 220 221 /* 222 * vfs_buf_test_cache: 223 * 224 * Called when a buffer is extended. This function clears the B_CACHE 225 * bit if the newly extended portion of the buffer does not contain 226 * valid data. 227 */ 228 static __inline__ 229 void 230 vfs_buf_test_cache(struct buf *bp, 231 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 232 vm_page_t m) 233 { 234 if (bp->b_flags & B_CACHE) { 235 int base = (foff + off) & PAGE_MASK; 236 if (vm_page_is_valid(m, base, size) == 0) 237 bp->b_flags &= ~B_CACHE; 238 } 239 } 240 241 242 /* 243 * Initialize buffer headers and related structures. 244 */ 245 void 246 bufinit() 247 { 248 struct buf *bp; 249 int i; 250 251 TAILQ_INIT(&bswlist); 252 LIST_INIT(&invalhash); 253 254 /* first, make a null hash table */ 255 for (i = 0; i < BUFHSZ; i++) 256 LIST_INIT(&bufhashtbl[i]); 257 258 /* next, make a null set of free lists */ 259 for (i = 0; i < BUFFER_QUEUES; i++) 260 TAILQ_INIT(&bufqueues[i]); 261 262 /* finally, initialize each buffer header and stick on empty q */ 263 for (i = 0; i < nbuf; i++) { 264 bp = &buf[i]; 265 bzero(bp, sizeof *bp); 266 bp->b_flags = B_INVAL; /* we're just an empty header */ 267 bp->b_dev = NODEV; 268 bp->b_rcred = NOCRED; 269 bp->b_wcred = NOCRED; 270 bp->b_qindex = QUEUE_EMPTY; 271 bp->b_xflags = 0; 272 LIST_INIT(&bp->b_dep); 273 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 274 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 275 } 276 277 /* 278 * maxbufspace is currently calculated to support all filesystem 279 * blocks to be 8K. If you happen to use a 16K filesystem, the size 280 * of the buffer cache is still the same as it would be for 8K 281 * filesystems. This keeps the size of the buffer cache "in check" 282 * for big block filesystems. 283 * 284 * maxbufspace is calculated as around 50% of the KVA available in 285 * the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the 286 * effect of fragmentation. 287 */ 288 maxbufspace = (nbuf + 8) * DFLTBSIZE; 289 if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE) 290 hibufspace = 3 * maxbufspace / 4; 291 /* 292 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed 293 */ 294 maxvmiobufspace = 2 * hibufspace / 3; 295 /* 296 * Limit the amount of malloc memory since it is wired permanently into 297 * the kernel space. Even though this is accounted for in the buffer 298 * allocation, we don't want the malloced region to grow uncontrolled. 299 * The malloc scheme improves memory utilization significantly on average 300 * (small) directories. 301 */ 302 maxbufmallocspace = hibufspace / 20; 303 304 /* 305 * Reduce the chance of a deadlock occuring by limiting the number 306 * of delayed-write dirty buffers we allow to stack up. 307 */ 308 lodirtybuffers = nbuf / 16 + 10; 309 hidirtybuffers = nbuf / 8 + 20; 310 numdirtybuffers = 0; 311 312 /* 313 * Try to keep the number of free buffers in the specified range, 314 * and give the syncer access to an emergency reserve. 315 */ 316 lofreebuffers = nbuf / 18 + 5; 317 hifreebuffers = 2 * lofreebuffers; 318 numfreebuffers = nbuf; 319 320 kvafreespace = 0; 321 322 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 323 bogus_page = vm_page_alloc(kernel_object, 324 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 325 VM_ALLOC_NORMAL); 326 327 } 328 329 /* 330 * Free the kva allocation for a buffer 331 * Must be called only at splbio or higher, 332 * as this is the only locking for buffer_map. 333 */ 334 static void 335 bfreekva(struct buf * bp) 336 { 337 if (bp->b_kvasize) { 338 vm_map_delete(buffer_map, 339 (vm_offset_t) bp->b_kvabase, 340 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 341 ); 342 bp->b_kvasize = 0; 343 kvaspacewakeup(); 344 } 345 } 346 347 /* 348 * bremfree: 349 * 350 * Remove the buffer from the appropriate free list. 351 */ 352 void 353 bremfree(struct buf * bp) 354 { 355 int s = splbio(); 356 int old_qindex = bp->b_qindex; 357 358 if (bp->b_qindex != QUEUE_NONE) { 359 if (bp->b_qindex == QUEUE_EMPTY) { 360 kvafreespace -= bp->b_kvasize; 361 } 362 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 363 bp->b_qindex = QUEUE_NONE; 364 runningbufspace += bp->b_bufsize; 365 } else { 366 #if !defined(MAX_PERF) 367 panic("bremfree: removing a buffer when not on a queue"); 368 #endif 369 } 370 371 /* 372 * Fixup numfreebuffers count. If the buffer is invalid or not 373 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 374 * the buffer was free and we must decrement numfreebuffers. 375 */ 376 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 377 switch(old_qindex) { 378 case QUEUE_EMPTY: 379 case QUEUE_LRU: 380 case QUEUE_AGE: 381 --numfreebuffers; 382 break; 383 default: 384 break; 385 } 386 } 387 splx(s); 388 } 389 390 391 /* 392 * Get a buffer with the specified data. Look in the cache first. We 393 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 394 * is set, the buffer is valid and we do not have to do anything ( see 395 * getblk() ). 396 */ 397 int 398 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 399 struct buf ** bpp) 400 { 401 struct buf *bp; 402 403 bp = getblk(vp, blkno, size, 0, 0); 404 *bpp = bp; 405 406 /* if not found in cache, do some I/O */ 407 if ((bp->b_flags & B_CACHE) == 0) { 408 if (curproc != NULL) 409 curproc->p_stats->p_ru.ru_inblock++; 410 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); 411 bp->b_flags |= B_READ; 412 bp->b_flags &= ~(B_ERROR | B_INVAL); 413 if (bp->b_rcred == NOCRED) { 414 if (cred != NOCRED) 415 crhold(cred); 416 bp->b_rcred = cred; 417 } 418 vfs_busy_pages(bp, 0); 419 VOP_STRATEGY(vp, bp); 420 return (biowait(bp)); 421 } 422 return (0); 423 } 424 425 /* 426 * Operates like bread, but also starts asynchronous I/O on 427 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 428 * to initiating I/O . If B_CACHE is set, the buffer is valid 429 * and we do not have to do anything. 430 */ 431 int 432 breadn(struct vnode * vp, daddr_t blkno, int size, 433 daddr_t * rablkno, int *rabsize, 434 int cnt, struct ucred * cred, struct buf ** bpp) 435 { 436 struct buf *bp, *rabp; 437 int i; 438 int rv = 0, readwait = 0; 439 440 *bpp = bp = getblk(vp, blkno, size, 0, 0); 441 442 /* if not found in cache, do some I/O */ 443 if ((bp->b_flags & B_CACHE) == 0) { 444 if (curproc != NULL) 445 curproc->p_stats->p_ru.ru_inblock++; 446 bp->b_flags |= B_READ; 447 bp->b_flags &= ~(B_ERROR | B_INVAL); 448 if (bp->b_rcred == NOCRED) { 449 if (cred != NOCRED) 450 crhold(cred); 451 bp->b_rcred = cred; 452 } 453 vfs_busy_pages(bp, 0); 454 VOP_STRATEGY(vp, bp); 455 ++readwait; 456 } 457 458 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 459 if (inmem(vp, *rablkno)) 460 continue; 461 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 462 463 if ((rabp->b_flags & B_CACHE) == 0) { 464 if (curproc != NULL) 465 curproc->p_stats->p_ru.ru_inblock++; 466 rabp->b_flags |= B_READ | B_ASYNC; 467 rabp->b_flags &= ~(B_ERROR | B_INVAL); 468 if (rabp->b_rcred == NOCRED) { 469 if (cred != NOCRED) 470 crhold(cred); 471 rabp->b_rcred = cred; 472 } 473 vfs_busy_pages(rabp, 0); 474 VOP_STRATEGY(vp, rabp); 475 } else { 476 brelse(rabp); 477 } 478 } 479 480 if (readwait) { 481 rv = biowait(bp); 482 } 483 return (rv); 484 } 485 486 /* 487 * Write, release buffer on completion. (Done by iodone 488 * if async). Do not bother writing anything if the buffer 489 * is invalid. 490 * 491 * Note that we set B_CACHE here, indicating that buffer is 492 * fully valid and thus cacheable. This is true even of NFS 493 * now so we set it generally. This could be set either here 494 * or in biodone() since the I/O is synchronous. We put it 495 * here. 496 */ 497 int 498 bwrite(struct buf * bp) 499 { 500 int oldflags, s; 501 struct vnode *vp; 502 struct mount *mp; 503 504 if (bp->b_flags & B_INVAL) { 505 brelse(bp); 506 return (0); 507 } 508 509 oldflags = bp->b_flags; 510 511 #if !defined(MAX_PERF) 512 if ((bp->b_flags & B_BUSY) == 0) 513 panic("bwrite: buffer is not busy???"); 514 #endif 515 s = splbio(); 516 bundirty(bp); 517 518 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR); 519 bp->b_flags |= B_WRITEINPROG | B_CACHE; 520 521 bp->b_vp->v_numoutput++; 522 vfs_busy_pages(bp, 1); 523 if (curproc != NULL) 524 curproc->p_stats->p_ru.ru_oublock++; 525 splx(s); 526 VOP_STRATEGY(bp->b_vp, bp); 527 528 /* 529 * Collect statistics on synchronous and asynchronous writes. 530 * Writes to block devices are charged to their associated 531 * filesystem (if any). 532 */ 533 if ((vp = bp->b_vp) != NULL) { 534 if (vp->v_type == VBLK) 535 mp = vp->v_specmountpoint; 536 else 537 mp = vp->v_mount; 538 if (mp != NULL) { 539 if ((oldflags & B_ASYNC) == 0) 540 mp->mnt_stat.f_syncwrites++; 541 else 542 mp->mnt_stat.f_asyncwrites++; 543 } 544 } 545 546 if ((oldflags & B_ASYNC) == 0) { 547 int rtval = biowait(bp); 548 brelse(bp); 549 return (rtval); 550 } 551 552 return (0); 553 } 554 555 /* 556 * Delayed write. (Buffer is marked dirty). Do not bother writing 557 * anything if the buffer is marked invalid. 558 * 559 * Note that since the buffer must be completely valid, we can safely 560 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 561 * biodone() in order to prevent getblk from writing the buffer 562 * out synchronously. 563 */ 564 void 565 bdwrite(struct buf * bp) 566 { 567 struct vnode *vp; 568 569 #if !defined(MAX_PERF) 570 if ((bp->b_flags & B_BUSY) == 0) { 571 panic("bdwrite: buffer is not busy"); 572 } 573 #endif 574 575 if (bp->b_flags & B_INVAL) { 576 brelse(bp); 577 return; 578 } 579 bdirty(bp); 580 581 /* 582 * Set B_CACHE, indicating that the buffer is fully valid. This is 583 * true even of NFS now. 584 */ 585 bp->b_flags |= B_CACHE; 586 587 /* 588 * This bmap keeps the system from needing to do the bmap later, 589 * perhaps when the system is attempting to do a sync. Since it 590 * is likely that the indirect block -- or whatever other datastructure 591 * that the filesystem needs is still in memory now, it is a good 592 * thing to do this. Note also, that if the pageout daemon is 593 * requesting a sync -- there might not be enough memory to do 594 * the bmap then... So, this is important to do. 595 */ 596 if (bp->b_lblkno == bp->b_blkno) { 597 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 598 } 599 600 /* 601 * Set the *dirty* buffer range based upon the VM system dirty pages. 602 */ 603 vfs_setdirty(bp); 604 605 /* 606 * We need to do this here to satisfy the vnode_pager and the 607 * pageout daemon, so that it thinks that the pages have been 608 * "cleaned". Note that since the pages are in a delayed write 609 * buffer -- the VFS layer "will" see that the pages get written 610 * out on the next sync, or perhaps the cluster will be completed. 611 */ 612 vfs_clean_pages(bp); 613 bqrelse(bp); 614 615 /* 616 * XXX The soft dependency code is not prepared to 617 * have I/O done when a bdwrite is requested. For 618 * now we just let the write be delayed if it is 619 * requested by the soft dependency code. 620 */ 621 if ((vp = bp->b_vp) && 622 ((vp->v_type == VBLK && vp->v_specmountpoint && 623 (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) || 624 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP)))) 625 return; 626 627 if (numdirtybuffers >= hidirtybuffers) 628 flushdirtybuffers(0, 0); 629 } 630 631 /* 632 * bdirty: 633 * 634 * Turn buffer into delayed write request. We must clear B_READ and 635 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 636 * itself to properly update it in the dirty/clean lists. We mark it 637 * B_DONE to ensure that any asynchronization of the buffer properly 638 * clears B_DONE ( else a panic will occur later ). 639 * 640 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 641 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 642 * should only be called if the buffer is known-good. 643 * 644 * Since the buffer is not on a queue, we do not update the numfreebuffers 645 * count. 646 * 647 * Must be called at splbio(). 648 * The buffer must be on QUEUE_NONE. 649 */ 650 void 651 bdirty(bp) 652 struct buf *bp; 653 { 654 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 655 bp->b_flags &= ~(B_READ|B_RELBUF); 656 657 if ((bp->b_flags & B_DELWRI) == 0) { 658 bp->b_flags |= B_DONE | B_DELWRI; 659 reassignbuf(bp, bp->b_vp); 660 ++numdirtybuffers; 661 } 662 } 663 664 /* 665 * bundirty: 666 * 667 * Clear B_DELWRI for buffer. 668 * 669 * Since the buffer is not on a queue, we do not update the numfreebuffers 670 * count. 671 * 672 * Must be called at splbio(). 673 * The buffer must be on QUEUE_NONE. 674 */ 675 676 void 677 bundirty(bp) 678 struct buf *bp; 679 { 680 KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 681 682 if (bp->b_flags & B_DELWRI) { 683 bp->b_flags &= ~B_DELWRI; 684 reassignbuf(bp, bp->b_vp); 685 --numdirtybuffers; 686 } 687 } 688 689 /* 690 * bawrite: 691 * 692 * Asynchronous write. Start output on a buffer, but do not wait for 693 * it to complete. The buffer is released when the output completes. 694 * 695 * bwrite() ( or the VOP routine anyway ) is responsible for handling 696 * B_INVAL buffers. Not us. 697 */ 698 void 699 bawrite(struct buf * bp) 700 { 701 bp->b_flags |= B_ASYNC; 702 (void) VOP_BWRITE(bp->b_vp, bp); 703 } 704 705 /* 706 * bowrite: 707 * 708 * Ordered write. Start output on a buffer, and flag it so that the 709 * device will write it in the order it was queued. The buffer is 710 * released when the output completes. bwrite() ( or the VOP routine 711 * anyway ) is responsible for handling B_INVAL buffers. 712 */ 713 int 714 bowrite(struct buf * bp) 715 { 716 bp->b_flags |= B_ORDERED | B_ASYNC; 717 return (VOP_BWRITE(bp->b_vp, bp)); 718 } 719 720 /* 721 * brelse: 722 * 723 * Release a busy buffer and, if requested, free its resources. The 724 * buffer will be stashed in the appropriate bufqueue[] allowing it 725 * to be accessed later as a cache entity or reused for other purposes. 726 */ 727 void 728 brelse(struct buf * bp) 729 { 730 int s; 731 732 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 733 734 #if 0 735 if (bp->b_flags & B_CLUSTER) { 736 relpbuf(bp, NULL); 737 return; 738 } 739 #endif 740 741 s = splbio(); 742 743 if (bp->b_flags & B_LOCKED) 744 bp->b_flags &= ~B_ERROR; 745 746 if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) { 747 /* 748 * Failed write, redirty. Must clear B_ERROR to prevent 749 * pages from being scrapped. Note: B_INVAL is ignored 750 * here but will presumably be dealt with later. 751 */ 752 bp->b_flags &= ~B_ERROR; 753 bdirty(bp); 754 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) || 755 (bp->b_bufsize <= 0)) { 756 /* 757 * Either a failed I/O or we were asked to free or not 758 * cache the buffer. 759 */ 760 bp->b_flags |= B_INVAL; 761 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 762 (*bioops.io_deallocate)(bp); 763 if (bp->b_flags & B_DELWRI) 764 --numdirtybuffers; 765 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF); 766 if ((bp->b_flags & B_VMIO) == 0) { 767 if (bp->b_bufsize) 768 allocbuf(bp, 0); 769 if (bp->b_vp) 770 brelvp(bp); 771 } 772 } 773 774 /* 775 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 776 * is called with B_DELWRI set, the underlying pages may wind up 777 * getting freed causing a previous write (bdwrite()) to get 'lost' 778 * because pages associated with a B_DELWRI bp are marked clean. 779 * 780 * We still allow the B_INVAL case to call vfs_vmio_release(), even 781 * if B_DELWRI is set. 782 */ 783 784 if (bp->b_flags & B_DELWRI) 785 bp->b_flags &= ~B_RELBUF; 786 787 /* 788 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 789 * constituted, not even NFS buffers now. Two flags effect this. If 790 * B_INVAL, the struct buf is invalidated but the VM object is kept 791 * around ( i.e. so it is trivial to reconstitute the buffer later ). 792 * 793 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be 794 * invalidated. B_ERROR cannot be set for a failed write unless the 795 * buffer is also B_INVAL because it hits the re-dirtying code above. 796 * 797 * Normally we can do this whether a buffer is B_DELWRI or not. If 798 * the buffer is an NFS buffer, it is tracking piecemeal writes or 799 * the commit state and we cannot afford to lose the buffer. 800 */ 801 if ((bp->b_flags & B_VMIO) 802 && !(bp->b_vp->v_tag == VT_NFS && 803 bp->b_vp->v_type != VBLK && 804 (bp->b_flags & B_DELWRI)) 805 ) { 806 807 int i, j, resid; 808 vm_page_t m; 809 off_t foff; 810 vm_pindex_t poff; 811 vm_object_t obj; 812 struct vnode *vp; 813 814 vp = bp->b_vp; 815 816 /* 817 * Get the base offset and length of the buffer. Note that 818 * for block sizes that are less then PAGE_SIZE, the b_data 819 * base of the buffer does not represent exactly b_offset and 820 * neither b_offset nor b_size are necessarily page aligned. 821 * Instead, the starting position of b_offset is: 822 * 823 * b_data + (b_offset & PAGE_MASK) 824 * 825 * block sizes less then DEV_BSIZE (usually 512) are not 826 * supported due to the page granularity bits (m->valid, 827 * m->dirty, etc...). 828 * 829 * See man buf(9) for more information 830 */ 831 832 resid = bp->b_bufsize; 833 foff = bp->b_offset; 834 835 for (i = 0; i < bp->b_npages; i++) { 836 m = bp->b_pages[i]; 837 vm_page_flag_clear(m, PG_ZERO); 838 if (m == bogus_page) { 839 840 obj = (vm_object_t) vp->v_object; 841 poff = OFF_TO_IDX(bp->b_offset); 842 843 for (j = i; j < bp->b_npages; j++) { 844 m = bp->b_pages[j]; 845 if (m == bogus_page) { 846 m = vm_page_lookup(obj, poff + j); 847 #if !defined(MAX_PERF) 848 if (!m) { 849 panic("brelse: page missing\n"); 850 } 851 #endif 852 bp->b_pages[j] = m; 853 } 854 } 855 856 if ((bp->b_flags & B_INVAL) == 0) { 857 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 858 } 859 } 860 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 861 int poffset = foff & PAGE_MASK; 862 int presid = resid > (PAGE_SIZE - poffset) ? 863 (PAGE_SIZE - poffset) : resid; 864 865 KASSERT(presid >= 0, ("brelse: extra page")); 866 vm_page_set_invalid(m, poffset, presid); 867 } 868 resid -= PAGE_SIZE - (foff & PAGE_MASK); 869 foff = (foff + PAGE_SIZE) & ~PAGE_MASK; 870 } 871 872 if (bp->b_flags & (B_INVAL | B_RELBUF)) 873 vfs_vmio_release(bp); 874 875 } else if (bp->b_flags & B_VMIO) { 876 877 if (bp->b_flags & (B_INVAL | B_RELBUF)) 878 vfs_vmio_release(bp); 879 880 } 881 882 #if !defined(MAX_PERF) 883 if (bp->b_qindex != QUEUE_NONE) 884 panic("brelse: free buffer onto another queue???"); 885 #endif 886 /* enqueue */ 887 888 /* buffers with no memory */ 889 if (bp->b_bufsize == 0) { 890 bp->b_flags |= B_INVAL; 891 bp->b_qindex = QUEUE_EMPTY; 892 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 893 LIST_REMOVE(bp, b_hash); 894 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 895 bp->b_dev = NODEV; 896 kvafreespace += bp->b_kvasize; 897 if (bp->b_kvasize) 898 kvaspacewakeup(); 899 /* buffers with junk contents */ 900 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { 901 bp->b_flags |= B_INVAL; 902 bp->b_qindex = QUEUE_AGE; 903 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist); 904 LIST_REMOVE(bp, b_hash); 905 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 906 bp->b_dev = NODEV; 907 908 /* buffers that are locked */ 909 } else if (bp->b_flags & B_LOCKED) { 910 bp->b_qindex = QUEUE_LOCKED; 911 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 912 913 /* buffers with stale but valid contents */ 914 } else if (bp->b_flags & B_AGE) { 915 bp->b_qindex = QUEUE_AGE; 916 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist); 917 918 /* buffers with valid and quite potentially reuseable contents */ 919 } else { 920 bp->b_qindex = QUEUE_LRU; 921 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist); 922 } 923 924 /* 925 * If B_INVAL, clear B_DELWRI. 926 */ 927 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) { 928 bp->b_flags &= ~B_DELWRI; 929 --numdirtybuffers; 930 } 931 932 runningbufspace -= bp->b_bufsize; 933 934 /* 935 * Fixup numfreebuffers count. The bp is on an appropriate queue 936 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 937 * We've already handled the B_INVAL case ( B_DELWRI will be clear 938 * if B_INVAL is set ). 939 */ 940 941 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 942 bufcountwakeup(); 943 944 /* 945 * Something we can maybe free. 946 */ 947 948 if (bp->b_bufsize) 949 bufspacewakeup(); 950 951 if (bp->b_flags & B_WANTED) { 952 bp->b_flags &= ~(B_WANTED | B_AGE); 953 wakeup(bp); 954 } 955 956 /* unlock */ 957 bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY | 958 B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 959 splx(s); 960 } 961 962 /* 963 * Release a buffer back to the appropriate queue but do not try to free 964 * it. 965 * 966 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 967 * biodone() to requeue an async I/O on completion. It is also used when 968 * known good buffers need to be requeued but we think we may need the data 969 * again soon. 970 */ 971 void 972 bqrelse(struct buf * bp) 973 { 974 int s; 975 976 s = splbio(); 977 978 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 979 980 #if !defined(MAX_PERF) 981 if (bp->b_qindex != QUEUE_NONE) 982 panic("bqrelse: free buffer onto another queue???"); 983 #endif 984 if (bp->b_flags & B_LOCKED) { 985 bp->b_flags &= ~B_ERROR; 986 bp->b_qindex = QUEUE_LOCKED; 987 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 988 /* buffers with stale but valid contents */ 989 } else { 990 bp->b_qindex = QUEUE_LRU; 991 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist); 992 } 993 994 runningbufspace -= bp->b_bufsize; 995 996 if ((bp->b_flags & B_LOCKED) == 0 && 997 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) 998 ) { 999 bufcountwakeup(); 1000 } 1001 1002 /* 1003 * Something we can maybe wakeup 1004 */ 1005 if (bp->b_bufsize) 1006 bufspacewakeup(); 1007 1008 /* anyone need this block? */ 1009 if (bp->b_flags & B_WANTED) { 1010 bp->b_flags &= ~(B_WANTED | B_AGE); 1011 wakeup(bp); 1012 } 1013 1014 /* unlock */ 1015 bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY | 1016 B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1017 splx(s); 1018 } 1019 1020 static void 1021 vfs_vmio_release(bp) 1022 struct buf *bp; 1023 { 1024 int i, s; 1025 vm_page_t m; 1026 1027 s = splvm(); 1028 for (i = 0; i < bp->b_npages; i++) { 1029 m = bp->b_pages[i]; 1030 bp->b_pages[i] = NULL; 1031 /* 1032 * In order to keep page LRU ordering consistent, put 1033 * everything on the inactive queue. 1034 */ 1035 vm_page_unwire(m, 0); 1036 /* 1037 * We don't mess with busy pages, it is 1038 * the responsibility of the process that 1039 * busied the pages to deal with them. 1040 */ 1041 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1042 continue; 1043 1044 if (m->wire_count == 0) { 1045 vm_page_flag_clear(m, PG_ZERO); 1046 /* 1047 * Might as well free the page if we can and it has 1048 * no valid data. 1049 */ 1050 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1051 vm_page_busy(m); 1052 vm_page_protect(m, VM_PROT_NONE); 1053 vm_page_free(m); 1054 } 1055 } 1056 } 1057 bufspace -= bp->b_bufsize; 1058 vmiospace -= bp->b_bufsize; 1059 runningbufspace -= bp->b_bufsize; 1060 splx(s); 1061 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1062 if (bp->b_bufsize) 1063 bufspacewakeup(); 1064 bp->b_npages = 0; 1065 bp->b_bufsize = 0; 1066 bp->b_flags &= ~B_VMIO; 1067 if (bp->b_vp) 1068 brelvp(bp); 1069 } 1070 1071 /* 1072 * Check to see if a block is currently memory resident. 1073 */ 1074 struct buf * 1075 gbincore(struct vnode * vp, daddr_t blkno) 1076 { 1077 struct buf *bp; 1078 struct bufhashhdr *bh; 1079 1080 bh = BUFHASH(vp, blkno); 1081 bp = bh->lh_first; 1082 1083 /* Search hash chain */ 1084 while (bp != NULL) { 1085 /* hit */ 1086 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1087 (bp->b_flags & B_INVAL) == 0) { 1088 break; 1089 } 1090 bp = bp->b_hash.le_next; 1091 } 1092 return (bp); 1093 } 1094 1095 /* 1096 * this routine implements clustered async writes for 1097 * clearing out B_DELWRI buffers... This is much better 1098 * than the old way of writing only one buffer at a time. 1099 */ 1100 int 1101 vfs_bio_awrite(struct buf * bp) 1102 { 1103 int i; 1104 daddr_t lblkno = bp->b_lblkno; 1105 struct vnode *vp = bp->b_vp; 1106 int s; 1107 int ncl; 1108 struct buf *bpa; 1109 int nwritten; 1110 int size; 1111 int maxcl; 1112 1113 s = splbio(); 1114 /* 1115 * right now we support clustered writing only to regular files, and 1116 * then only if our I/O system is not saturated. 1117 */ 1118 if ((vp->v_type == VREG) && 1119 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1120 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1121 1122 size = vp->v_mount->mnt_stat.f_iosize; 1123 maxcl = MAXPHYS / size; 1124 1125 for (i = 1; i < maxcl; i++) { 1126 if ((bpa = gbincore(vp, lblkno + i)) && 1127 ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1128 (B_DELWRI | B_CLUSTEROK)) && 1129 (bpa->b_bufsize == size)) { 1130 if ((bpa->b_blkno == bpa->b_lblkno) || 1131 (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1132 break; 1133 } else { 1134 break; 1135 } 1136 } 1137 ncl = i; 1138 /* 1139 * this is a possible cluster write 1140 */ 1141 if (ncl != 1) { 1142 nwritten = cluster_wbuild(vp, size, lblkno, ncl); 1143 splx(s); 1144 return nwritten; 1145 } 1146 } 1147 1148 bremfree(bp); 1149 bp->b_flags |= B_BUSY | B_ASYNC; 1150 1151 splx(s); 1152 /* 1153 * default (old) behavior, writing out only one block 1154 * 1155 * XXX returns b_bufsize instead of b_bcount for nwritten? 1156 */ 1157 nwritten = bp->b_bufsize; 1158 (void) VOP_BWRITE(bp->b_vp, bp); 1159 1160 return nwritten; 1161 } 1162 1163 /* 1164 * getnewbuf: 1165 * 1166 * Find and initialize a new buffer header, freeing up existing buffers 1167 * in the bufqueues as necessary. The new buffer is returned locked. 1168 * 1169 * Important: B_INVAL is not set. If the caller wishes to throw the 1170 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1171 * 1172 * We block if: 1173 * We have insufficient buffer headers 1174 * We have insufficient buffer space 1175 * buffer_map is too fragmented ( space reservation fails ) 1176 * 1177 * We do *not* attempt to flush dirty buffers more then one level deep. 1178 * I.e., if P_FLSINPROG is set we do not flush dirty buffers at all. 1179 * 1180 * If P_FLSINPROG is set, we are allowed to dip into our emergency 1181 * reserve. 1182 */ 1183 static struct buf * 1184 getnewbuf(struct vnode *vp, daddr_t blkno, 1185 int slpflag, int slptimeo, int size, int maxsize) 1186 { 1187 struct buf *bp; 1188 struct buf *nbp; 1189 struct buf *dbp; 1190 int outofspace; 1191 int nqindex; 1192 int defrag = 0; 1193 static int newbufcnt = 0; 1194 int lastnewbuf = newbufcnt; 1195 1196 restart: 1197 /* 1198 * Calculate whether we are out of buffer space. This state is 1199 * recalculated on every restart. If we are out of space, we 1200 * have to turn off defragmentation. The outofspace code will 1201 * defragment too, but the looping conditionals will be messed up 1202 * if both outofspace and defrag are on. 1203 */ 1204 1205 dbp = NULL; 1206 outofspace = 0; 1207 if (bufspace >= hibufspace) { 1208 if ((curproc->p_flag & P_FLSINPROG) == 0 || 1209 bufspace >= maxbufspace 1210 ) { 1211 outofspace = 1; 1212 defrag = 0; 1213 } 1214 } 1215 1216 /* 1217 * defrag state is semi-persistant. 1 means we are flagged for 1218 * defragging. -1 means we actually defragged something. 1219 */ 1220 /* nop */ 1221 1222 /* 1223 * Setup for scan. If we do not have enough free buffers, 1224 * we setup a degenerate case that falls through the while. 1225 * 1226 * If we are in the middle of a flush, we can dip into the 1227 * emergency reserve. 1228 * 1229 * If we are out of space, we skip trying to scan QUEUE_EMPTY 1230 * because those buffers are, well, empty. 1231 */ 1232 1233 if ((curproc->p_flag & P_FLSINPROG) == 0 && 1234 numfreebuffers < lofreebuffers) { 1235 nqindex = QUEUE_LRU; 1236 nbp = NULL; 1237 } else { 1238 nqindex = QUEUE_EMPTY; 1239 if (outofspace || 1240 (nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY])) == NULL) { 1241 nqindex = QUEUE_AGE; 1242 nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]); 1243 if (nbp == NULL) { 1244 nqindex = QUEUE_LRU; 1245 nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]); 1246 } 1247 } 1248 } 1249 1250 /* 1251 * Run scan, possibly freeing data and/or kva mappings on the fly 1252 * depending. 1253 */ 1254 1255 while ((bp = nbp) != NULL) { 1256 int qindex = nqindex; 1257 /* 1258 * Calculate next bp ( we can only use it if we do not block 1259 * or do other fancy things ). 1260 */ 1261 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1262 switch(qindex) { 1263 case QUEUE_EMPTY: 1264 nqindex = QUEUE_AGE; 1265 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) 1266 break; 1267 /* fall through */ 1268 case QUEUE_AGE: 1269 nqindex = QUEUE_LRU; 1270 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) 1271 break; 1272 /* fall through */ 1273 case QUEUE_LRU: 1274 /* 1275 * nbp is NULL. 1276 */ 1277 break; 1278 } 1279 } 1280 1281 /* 1282 * Sanity Checks 1283 */ 1284 KASSERT(!(bp->b_flags & B_BUSY), ("getnewbuf: busy buffer %p on free list", bp)); 1285 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1286 1287 /* 1288 * Here we try to move NON VMIO buffers to the end of the 1289 * LRU queue in order to make VMIO buffers more readily 1290 * freeable. We also try to move buffers with a positive 1291 * usecount to the end. 1292 * 1293 * Note that by moving the bp to the end, we setup a following 1294 * loop. Since we continue to decrement b_usecount this 1295 * is ok and, in fact, desireable. 1296 * 1297 * If we are at the end of the list, we move ourself to the 1298 * same place and need to fixup nbp and nqindex to handle 1299 * the following case. 1300 */ 1301 1302 if ((qindex == QUEUE_LRU) && bp->b_usecount > 0) { 1303 if ((bp->b_flags & B_VMIO) == 0 || 1304 (vmiospace < maxvmiobufspace) 1305 ) { 1306 --bp->b_usecount; 1307 TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist); 1308 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist); 1309 if (nbp == NULL) { 1310 nqindex = qindex; 1311 nbp = bp; 1312 } 1313 continue; 1314 } 1315 } 1316 1317 /* 1318 * If we come across a delayed write and numdirtybuffers should 1319 * be flushed, try to write it out. Only if P_FLSINPROG is 1320 * not set. We can't afford to recursively stack more then 1321 * one deep due to the possibility of having deep VFS call 1322 * stacks. 1323 * 1324 * Limit the number of dirty buffers we are willing to try 1325 * to recover since it really isn't our job here. 1326 */ 1327 if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) { 1328 /* 1329 * This is rather complex, but necessary. If we come 1330 * across a B_DELWRI buffer we have to flush it in 1331 * order to use it. We only do this if we absolutely 1332 * need to. We must also protect against too much 1333 * recursion which might run us out of stack due to 1334 * deep VFS call stacks. 1335 * 1336 * In heavy-writing situations, QUEUE_LRU can contain 1337 * a large number of DELWRI buffers at its head. These 1338 * buffers must be moved to the tail if they cannot be 1339 * written async in order to reduce the scanning time 1340 * required to skip past these buffers in later 1341 * getnewbuf() calls. 1342 */ 1343 if ((curproc->p_flag & P_FLSINPROG) || 1344 numdirtybuffers < hidirtybuffers) { 1345 if (qindex == QUEUE_LRU) { 1346 /* 1347 * dbp prevents us from looping forever 1348 * if all bps in QUEUE_LRU are dirty. 1349 */ 1350 if (bp == dbp) { 1351 bp = NULL; 1352 break; 1353 } 1354 if (dbp == NULL) 1355 dbp = TAILQ_LAST(&bufqueues[QUEUE_LRU], bqueues); 1356 TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist); 1357 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist); 1358 } 1359 continue; 1360 } 1361 curproc->p_flag |= P_FLSINPROG; 1362 vfs_bio_awrite(bp); 1363 curproc->p_flag &= ~P_FLSINPROG; 1364 goto restart; 1365 } 1366 1367 if (defrag > 0 && bp->b_kvasize == 0) 1368 continue; 1369 if (outofspace > 0 && bp->b_bufsize == 0) 1370 continue; 1371 1372 /* 1373 * Start freeing the bp. This is somewhat involved. nbp 1374 * remains valid only for QUEUE_EMPTY bp's. 1375 */ 1376 1377 bremfree(bp); 1378 bp->b_flags |= B_BUSY; 1379 1380 if (qindex == QUEUE_LRU || qindex == QUEUE_AGE) { 1381 if (bp->b_flags & B_VMIO) { 1382 bp->b_flags &= ~B_ASYNC; 1383 vfs_vmio_release(bp); 1384 } 1385 if (bp->b_vp) 1386 brelvp(bp); 1387 } 1388 1389 if (bp->b_flags & B_WANTED) { 1390 bp->b_flags &= ~B_WANTED; 1391 wakeup(bp); 1392 } 1393 1394 /* 1395 * NOTE: nbp is now entirely invalid. We can only restart 1396 * the scan from this point on. 1397 * 1398 * Get the rest of the buffer freed up. b_kva* is still 1399 * valid after this operation. 1400 */ 1401 1402 if (bp->b_rcred != NOCRED) { 1403 crfree(bp->b_rcred); 1404 bp->b_rcred = NOCRED; 1405 } 1406 if (bp->b_wcred != NOCRED) { 1407 crfree(bp->b_wcred); 1408 bp->b_wcred = NOCRED; 1409 } 1410 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1411 (*bioops.io_deallocate)(bp); 1412 1413 LIST_REMOVE(bp, b_hash); 1414 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1415 1416 if (bp->b_bufsize) 1417 allocbuf(bp, 0); 1418 1419 bp->b_flags = B_BUSY; 1420 bp->b_dev = NODEV; 1421 bp->b_vp = NULL; 1422 bp->b_blkno = bp->b_lblkno = 0; 1423 bp->b_offset = NOOFFSET; 1424 bp->b_iodone = 0; 1425 bp->b_error = 0; 1426 bp->b_resid = 0; 1427 bp->b_bcount = 0; 1428 bp->b_npages = 0; 1429 bp->b_dirtyoff = bp->b_dirtyend = 0; 1430 bp->b_usecount = 5; 1431 1432 LIST_INIT(&bp->b_dep); 1433 1434 /* 1435 * Ok, now that we have a free buffer, if we are defragging 1436 * we have to recover the kvaspace. 1437 */ 1438 1439 if (defrag > 0) { 1440 defrag = -1; 1441 bp->b_flags |= B_INVAL; 1442 bfreekva(bp); 1443 brelse(bp); 1444 goto restart; 1445 } 1446 1447 if (outofspace > 0) { 1448 outofspace = -1; 1449 bp->b_flags |= B_INVAL; 1450 bfreekva(bp); 1451 brelse(bp); 1452 goto restart; 1453 } 1454 1455 /* 1456 * We are done 1457 */ 1458 break; 1459 } 1460 1461 /* 1462 * If we exhausted our list, sleep as appropriate. 1463 */ 1464 1465 if (bp == NULL) { 1466 int flags; 1467 1468 dosleep: 1469 if (defrag > 0) 1470 flags = VFS_BIO_NEED_KVASPACE; 1471 else if (outofspace > 0) 1472 flags = VFS_BIO_NEED_BUFSPACE; 1473 else 1474 flags = VFS_BIO_NEED_ANY; 1475 1476 (void) speedup_syncer(); 1477 needsbuffer |= flags; 1478 while (needsbuffer & flags) { 1479 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1480 "newbuf", slptimeo)) 1481 return (NULL); 1482 } 1483 } else { 1484 /* 1485 * We finally have a valid bp. We aren't quite out of the 1486 * woods, we still have to reserve kva space. 1487 */ 1488 vm_offset_t addr = 0; 1489 1490 maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK; 1491 1492 if (maxsize != bp->b_kvasize) { 1493 bfreekva(bp); 1494 1495 if (vm_map_findspace(buffer_map, 1496 vm_map_min(buffer_map), maxsize, &addr) 1497 ) { 1498 /* 1499 * Uh oh. Buffer map is to fragmented. Try 1500 * to defragment. 1501 */ 1502 if (defrag <= 0) { 1503 defrag = 1; 1504 bp->b_flags |= B_INVAL; 1505 brelse(bp); 1506 goto restart; 1507 } 1508 /* 1509 * Uh oh. We couldn't seem to defragment 1510 */ 1511 bp = NULL; 1512 goto dosleep; 1513 } 1514 } 1515 if (addr) { 1516 vm_map_insert(buffer_map, NULL, 0, 1517 addr, addr + maxsize, 1518 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1519 1520 bp->b_kvabase = (caddr_t) addr; 1521 bp->b_kvasize = maxsize; 1522 } 1523 bp->b_data = bp->b_kvabase; 1524 } 1525 1526 /* 1527 * If we have slept at some point in this process and another 1528 * process has managed to allocate a new buffer while we slept, 1529 * we have to return NULL so that our caller can recheck to 1530 * ensure that the other process did not create an identically 1531 * identified buffer to the one we were requesting. We make this 1532 * check by incrementing the static int newbufcnt each time we 1533 * successfully allocate a new buffer. By saving the value of 1534 * newbufcnt in our local lastnewbuf, we can compare newbufcnt 1535 * with lastnewbuf to see if any other process managed to 1536 * allocate a buffer while we were doing so ourselves. 1537 * 1538 * Note that bp, if valid, is locked. 1539 */ 1540 if (lastnewbuf == newbufcnt) { 1541 /* 1542 * No buffers allocated, so we can return one if we were 1543 * successful, or continue trying if we were not successful. 1544 */ 1545 if (bp != NULL) { 1546 newbufcnt += 1; 1547 return (bp); 1548 } 1549 goto restart; 1550 } 1551 /* 1552 * Another process allocated a buffer since we were called, so 1553 * we have to free the one we allocated and return NULL to let 1554 * our caller recheck to see if a new buffer is still needed. 1555 */ 1556 if (bp != NULL) { 1557 bp->b_flags |= B_INVAL; 1558 brelse(bp); 1559 } 1560 return (NULL); 1561 } 1562 1563 /* 1564 * waitfreebuffers: 1565 * 1566 * Wait for sufficient free buffers. This routine is not called if 1567 * curproc is the update process so we do not have to do anything 1568 * fancy. 1569 */ 1570 1571 static void 1572 waitfreebuffers(int slpflag, int slptimeo) 1573 { 1574 while (numfreebuffers < hifreebuffers) { 1575 flushdirtybuffers(slpflag, slptimeo); 1576 if (numfreebuffers >= hifreebuffers) 1577 break; 1578 needsbuffer |= VFS_BIO_NEED_FREE; 1579 if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo)) 1580 break; 1581 } 1582 } 1583 1584 /* 1585 * flushdirtybuffers: 1586 * 1587 * This routine is called when we get too many dirty buffers. 1588 * 1589 * We have to protect ourselves from recursion, but we also do not want 1590 * other process's flushdirtybuffers() to interfere with the syncer if 1591 * it decides to flushdirtybuffers(). 1592 * 1593 * In order to maximize operations, we allow any process to flush 1594 * dirty buffers and use P_FLSINPROG to prevent recursion. 1595 */ 1596 1597 static void 1598 flushdirtybuffers(int slpflag, int slptimeo) 1599 { 1600 int s; 1601 1602 s = splbio(); 1603 1604 if (curproc->p_flag & P_FLSINPROG) { 1605 splx(s); 1606 return; 1607 } 1608 curproc->p_flag |= P_FLSINPROG; 1609 1610 while (numdirtybuffers > lodirtybuffers) { 1611 if (flushbufqueues() == 0) 1612 break; 1613 } 1614 1615 curproc->p_flag &= ~P_FLSINPROG; 1616 1617 splx(s); 1618 } 1619 1620 static int 1621 flushbufqueues(void) 1622 { 1623 struct buf *bp; 1624 int qindex; 1625 int r = 0; 1626 1627 qindex = QUEUE_AGE; 1628 bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]); 1629 1630 for (;;) { 1631 if (bp == NULL) { 1632 if (qindex == QUEUE_LRU) 1633 break; 1634 qindex = QUEUE_LRU; 1635 if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU])) == NULL) 1636 break; 1637 } 1638 1639 /* 1640 * Try to free up B_INVAL delayed-write buffers rather then 1641 * writing them out. Note also that NFS is somewhat sensitive 1642 * to B_INVAL buffers so it is doubly important that we do 1643 * this. 1644 */ 1645 if ((bp->b_flags & B_DELWRI) != 0) { 1646 if (bp->b_flags & B_INVAL) { 1647 bremfree(bp); 1648 bp->b_flags |= B_BUSY; 1649 brelse(bp); 1650 } else { 1651 vfs_bio_awrite(bp); 1652 } 1653 ++r; 1654 break; 1655 } 1656 bp = TAILQ_NEXT(bp, b_freelist); 1657 } 1658 return(r); 1659 } 1660 1661 /* 1662 * Check to see if a block is currently memory resident. 1663 */ 1664 struct buf * 1665 incore(struct vnode * vp, daddr_t blkno) 1666 { 1667 struct buf *bp; 1668 1669 int s = splbio(); 1670 bp = gbincore(vp, blkno); 1671 splx(s); 1672 return (bp); 1673 } 1674 1675 /* 1676 * Returns true if no I/O is needed to access the 1677 * associated VM object. This is like incore except 1678 * it also hunts around in the VM system for the data. 1679 */ 1680 1681 int 1682 inmem(struct vnode * vp, daddr_t blkno) 1683 { 1684 vm_object_t obj; 1685 vm_offset_t toff, tinc, size; 1686 vm_page_t m; 1687 vm_ooffset_t off; 1688 1689 if (incore(vp, blkno)) 1690 return 1; 1691 if (vp->v_mount == NULL) 1692 return 0; 1693 if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0) 1694 return 0; 1695 1696 obj = vp->v_object; 1697 size = PAGE_SIZE; 1698 if (size > vp->v_mount->mnt_stat.f_iosize) 1699 size = vp->v_mount->mnt_stat.f_iosize; 1700 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 1701 1702 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 1703 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 1704 if (!m) 1705 return 0; 1706 tinc = size; 1707 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 1708 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 1709 if (vm_page_is_valid(m, 1710 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 1711 return 0; 1712 } 1713 return 1; 1714 } 1715 1716 /* 1717 * vfs_setdirty: 1718 * 1719 * Sets the dirty range for a buffer based on the status of the dirty 1720 * bits in the pages comprising the buffer. 1721 * 1722 * The range is limited to the size of the buffer. 1723 * 1724 * This routine is primarily used by NFS, but is generalized for the 1725 * B_VMIO case. 1726 */ 1727 static void 1728 vfs_setdirty(struct buf *bp) 1729 { 1730 int i; 1731 vm_object_t object; 1732 1733 /* 1734 * Degenerate case - empty buffer 1735 */ 1736 1737 if (bp->b_bufsize == 0) 1738 return; 1739 1740 /* 1741 * We qualify the scan for modified pages on whether the 1742 * object has been flushed yet. The OBJ_WRITEABLE flag 1743 * is not cleared simply by protecting pages off. 1744 */ 1745 1746 if ((bp->b_flags & B_VMIO) == 0) 1747 return; 1748 1749 object = bp->b_pages[0]->object; 1750 1751 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 1752 printf("Warning: object %p writeable but not mightbedirty\n", object); 1753 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 1754 printf("Warning: object %p mightbedirty but not writeable\n", object); 1755 1756 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 1757 vm_offset_t boffset; 1758 vm_offset_t eoffset; 1759 1760 /* 1761 * test the pages to see if they have been modified directly 1762 * by users through the VM system. 1763 */ 1764 for (i = 0; i < bp->b_npages; i++) { 1765 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 1766 vm_page_test_dirty(bp->b_pages[i]); 1767 } 1768 1769 /* 1770 * Calculate the encompassing dirty range, boffset and eoffset, 1771 * (eoffset - boffset) bytes. 1772 */ 1773 1774 for (i = 0; i < bp->b_npages; i++) { 1775 if (bp->b_pages[i]->dirty) 1776 break; 1777 } 1778 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 1779 1780 for (i = bp->b_npages - 1; i >= 0; --i) { 1781 if (bp->b_pages[i]->dirty) { 1782 break; 1783 } 1784 } 1785 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 1786 1787 /* 1788 * Fit it to the buffer. 1789 */ 1790 1791 if (eoffset > bp->b_bcount) 1792 eoffset = bp->b_bcount; 1793 1794 /* 1795 * If we have a good dirty range, merge with the existing 1796 * dirty range. 1797 */ 1798 1799 if (boffset < eoffset) { 1800 if (bp->b_dirtyoff > boffset) 1801 bp->b_dirtyoff = boffset; 1802 if (bp->b_dirtyend < eoffset) 1803 bp->b_dirtyend = eoffset; 1804 } 1805 } 1806 } 1807 1808 /* 1809 * getblk: 1810 * 1811 * Get a block given a specified block and offset into a file/device. 1812 * The buffers B_DONE bit will be cleared on return, making it almost 1813 * ready for an I/O initiation. B_INVAL may or may not be set on 1814 * return. The caller should clear B_INVAL prior to initiating a 1815 * READ. 1816 * 1817 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 1818 * an existing buffer. 1819 * 1820 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 1821 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 1822 * and then cleared based on the backing VM. If the previous buffer is 1823 * non-0-sized but invalid, B_CACHE will be cleared. 1824 * 1825 * If getblk() must create a new buffer, the new buffer is returned with 1826 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 1827 * case it is returned with B_INVAL clear and B_CACHE set based on the 1828 * backing VM. 1829 * 1830 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos 1831 * B_CACHE bit is clear. 1832 * 1833 * What this means, basically, is that the caller should use B_CACHE to 1834 * determine whether the buffer is fully valid or not and should clear 1835 * B_INVAL prior to issuing a read. If the caller intends to validate 1836 * the buffer by loading its data area with something, the caller needs 1837 * to clear B_INVAL. If the caller does this without issuing an I/O, 1838 * the caller should set B_CACHE ( as an optimization ), else the caller 1839 * should issue the I/O and biodone() will set B_CACHE if the I/O was 1840 * a write attempt or if it was a successfull read. If the caller 1841 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 1842 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 1843 */ 1844 struct buf * 1845 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 1846 { 1847 struct buf *bp; 1848 int s; 1849 struct bufhashhdr *bh; 1850 1851 #if !defined(MAX_PERF) 1852 if (size > MAXBSIZE) 1853 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 1854 #endif 1855 1856 s = splbio(); 1857 loop: 1858 /* 1859 * Block if we are low on buffers. The syncer is allowed more 1860 * buffers in order to avoid a deadlock. 1861 */ 1862 if (curproc == updateproc && numfreebuffers == 0) { 1863 needsbuffer |= VFS_BIO_NEED_ANY; 1864 tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf", 1865 slptimeo); 1866 } else if (curproc != updateproc && numfreebuffers < lofreebuffers) { 1867 waitfreebuffers(slpflag, slptimeo); 1868 } 1869 1870 if ((bp = gbincore(vp, blkno))) { 1871 /* 1872 * Buffer is in-core 1873 */ 1874 1875 if (bp->b_flags & B_BUSY) { 1876 bp->b_flags |= B_WANTED; 1877 if (bp->b_usecount < BUF_MAXUSE) 1878 ++bp->b_usecount; 1879 1880 if (!tsleep(bp, 1881 (PRIBIO + 4) | slpflag, "getblk", slptimeo)) { 1882 goto loop; 1883 } 1884 1885 splx(s); 1886 return (struct buf *) NULL; 1887 } 1888 1889 /* 1890 * Busy the buffer. B_CACHE is cleared if the buffer is 1891 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 1892 * and for a VMIO buffer B_CACHE is adjusted according to the 1893 * backing VM cache. 1894 */ 1895 bp->b_flags |= B_BUSY; 1896 if (bp->b_flags & B_INVAL) 1897 bp->b_flags &= ~B_CACHE; 1898 else if ((bp->b_flags & (B_VMIO|B_INVAL)) == 0) 1899 bp->b_flags |= B_CACHE; 1900 bremfree(bp); 1901 1902 /* 1903 * check for size inconsistancies for non-VMIO case. 1904 */ 1905 1906 if (bp->b_bcount != size) { 1907 if ((bp->b_flags & B_VMIO) == 0 || 1908 (size > bp->b_kvasize) 1909 ) { 1910 if (bp->b_flags & B_DELWRI) { 1911 bp->b_flags |= B_NOCACHE; 1912 VOP_BWRITE(bp->b_vp, bp); 1913 } else { 1914 if ((bp->b_flags & B_VMIO) && 1915 (LIST_FIRST(&bp->b_dep) == NULL)) { 1916 bp->b_flags |= B_RELBUF; 1917 brelse(bp); 1918 } else { 1919 bp->b_flags |= B_NOCACHE; 1920 VOP_BWRITE(bp->b_vp, bp); 1921 } 1922 } 1923 goto loop; 1924 } 1925 } 1926 1927 /* 1928 * If the size is inconsistant in the VMIO case, we can resize 1929 * the buffer. This might lead to B_CACHE getting set or 1930 * cleared. If the size has not changed, B_CACHE remains 1931 * unchanged from its previous state. 1932 */ 1933 1934 if (bp->b_bcount != size) 1935 allocbuf(bp, size); 1936 1937 KASSERT(bp->b_offset != NOOFFSET, 1938 ("getblk: no buffer offset")); 1939 1940 /* 1941 * A buffer with B_DELWRI set and B_CACHE clear must 1942 * be committed before we can return the buffer in 1943 * order to prevent the caller from issuing a read 1944 * ( due to B_CACHE not being set ) and overwriting 1945 * it. 1946 * 1947 * Most callers, including NFS and FFS, need this to 1948 * operate properly either because they assume they 1949 * can issue a read if B_CACHE is not set, or because 1950 * ( for example ) an uncached B_DELWRI might loop due 1951 * to softupdates re-dirtying the buffer. In the latter 1952 * case, B_CACHE is set after the first write completes, 1953 * preventing further loops. 1954 */ 1955 1956 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 1957 VOP_BWRITE(bp->b_vp, bp); 1958 goto loop; 1959 } 1960 1961 if (bp->b_usecount < BUF_MAXUSE) 1962 ++bp->b_usecount; 1963 splx(s); 1964 bp->b_flags &= ~B_DONE; 1965 } else { 1966 /* 1967 * Buffer is not in-core, create new buffer. The buffer 1968 * returned by getnewbuf() is marked B_BUSY. Note that the 1969 * returned buffer is also considered valid ( not marked 1970 * B_INVAL ). 1971 */ 1972 int bsize, maxsize, vmio; 1973 off_t offset; 1974 1975 if (vp->v_type == VBLK) 1976 bsize = DEV_BSIZE; 1977 else if (vp->v_mountedhere) 1978 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 1979 else if (vp->v_mount) 1980 bsize = vp->v_mount->mnt_stat.f_iosize; 1981 else 1982 bsize = size; 1983 1984 offset = (off_t)blkno * bsize; 1985 vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF); 1986 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 1987 maxsize = imax(maxsize, bsize); 1988 1989 if ((bp = getnewbuf(vp, blkno, 1990 slpflag, slptimeo, size, maxsize)) == NULL) { 1991 if (slpflag || slptimeo) { 1992 splx(s); 1993 return NULL; 1994 } 1995 goto loop; 1996 } 1997 1998 /* 1999 * This code is used to make sure that a buffer is not 2000 * created while the getnewbuf routine is blocked. 2001 * This can be a problem whether the vnode is locked or not. 2002 * If the buffer is created out from under us, we have to 2003 * throw away the one we just created. There is now window 2004 * race because we are safely running at splbio() from the 2005 * point of the duplicate buffer creation through to here. 2006 */ 2007 if (gbincore(vp, blkno)) { 2008 bp->b_flags |= B_INVAL; 2009 brelse(bp); 2010 goto loop; 2011 } 2012 2013 /* 2014 * Insert the buffer into the hash, so that it can 2015 * be found by incore. 2016 */ 2017 bp->b_blkno = bp->b_lblkno = blkno; 2018 bp->b_offset = offset; 2019 2020 bgetvp(vp, bp); 2021 LIST_REMOVE(bp, b_hash); 2022 bh = BUFHASH(vp, blkno); 2023 LIST_INSERT_HEAD(bh, bp, b_hash); 2024 2025 /* 2026 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2027 * buffer size starts out as 0, B_CACHE will be set by 2028 * allocbuf() for the VMIO case prior to it testing the 2029 * backing store for validity. 2030 */ 2031 2032 if (vmio) { 2033 bp->b_flags |= B_VMIO; 2034 #if defined(VFS_BIO_DEBUG) 2035 if (vp->v_type != VREG && vp->v_type != VBLK) 2036 printf("getblk: vmioing file type %d???\n", vp->v_type); 2037 #endif 2038 } else { 2039 bp->b_flags &= ~B_VMIO; 2040 } 2041 2042 allocbuf(bp, size); 2043 2044 splx(s); 2045 bp->b_flags &= ~B_DONE; 2046 } 2047 return (bp); 2048 } 2049 2050 /* 2051 * Get an empty, disassociated buffer of given size. The buffer is initially 2052 * set to B_INVAL. 2053 */ 2054 struct buf * 2055 geteblk(int size) 2056 { 2057 struct buf *bp; 2058 int s; 2059 2060 s = splbio(); 2061 while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0); 2062 splx(s); 2063 allocbuf(bp, size); 2064 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2065 return (bp); 2066 } 2067 2068 2069 /* 2070 * This code constitutes the buffer memory from either anonymous system 2071 * memory (in the case of non-VMIO operations) or from an associated 2072 * VM object (in the case of VMIO operations). This code is able to 2073 * resize a buffer up or down. 2074 * 2075 * Note that this code is tricky, and has many complications to resolve 2076 * deadlock or inconsistant data situations. Tread lightly!!! 2077 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2078 * the caller. Calling this code willy nilly can result in the loss of data. 2079 * 2080 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2081 * B_CACHE for the non-VMIO case. 2082 */ 2083 2084 int 2085 allocbuf(struct buf *bp, int size) 2086 { 2087 int newbsize, mbsize; 2088 int i; 2089 2090 #if !defined(MAX_PERF) 2091 if (!(bp->b_flags & B_BUSY)) 2092 panic("allocbuf: buffer not busy"); 2093 2094 if (bp->b_kvasize < size) 2095 panic("allocbuf: buffer too small"); 2096 #endif 2097 2098 if ((bp->b_flags & B_VMIO) == 0) { 2099 caddr_t origbuf; 2100 int origbufsize; 2101 /* 2102 * Just get anonymous memory from the kernel. Don't 2103 * mess with B_CACHE. 2104 */ 2105 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2106 #if !defined(NO_B_MALLOC) 2107 if (bp->b_flags & B_MALLOC) 2108 newbsize = mbsize; 2109 else 2110 #endif 2111 newbsize = round_page(size); 2112 2113 if (newbsize < bp->b_bufsize) { 2114 #if !defined(NO_B_MALLOC) 2115 /* 2116 * malloced buffers are not shrunk 2117 */ 2118 if (bp->b_flags & B_MALLOC) { 2119 if (newbsize) { 2120 bp->b_bcount = size; 2121 } else { 2122 free(bp->b_data, M_BIOBUF); 2123 bufspace -= bp->b_bufsize; 2124 bufmallocspace -= bp->b_bufsize; 2125 runningbufspace -= bp->b_bufsize; 2126 if (bp->b_bufsize) 2127 bufspacewakeup(); 2128 bp->b_data = bp->b_kvabase; 2129 bp->b_bufsize = 0; 2130 bp->b_bcount = 0; 2131 bp->b_flags &= ~B_MALLOC; 2132 } 2133 return 1; 2134 } 2135 #endif 2136 vm_hold_free_pages( 2137 bp, 2138 (vm_offset_t) bp->b_data + newbsize, 2139 (vm_offset_t) bp->b_data + bp->b_bufsize); 2140 } else if (newbsize > bp->b_bufsize) { 2141 #if !defined(NO_B_MALLOC) 2142 /* 2143 * We only use malloced memory on the first allocation. 2144 * and revert to page-allocated memory when the buffer grows. 2145 */ 2146 if ( (bufmallocspace < maxbufmallocspace) && 2147 (bp->b_bufsize == 0) && 2148 (mbsize <= PAGE_SIZE/2)) { 2149 2150 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2151 bp->b_bufsize = mbsize; 2152 bp->b_bcount = size; 2153 bp->b_flags |= B_MALLOC; 2154 bufspace += mbsize; 2155 bufmallocspace += mbsize; 2156 runningbufspace += bp->b_bufsize; 2157 return 1; 2158 } 2159 #endif 2160 origbuf = NULL; 2161 origbufsize = 0; 2162 #if !defined(NO_B_MALLOC) 2163 /* 2164 * If the buffer is growing on its other-than-first allocation, 2165 * then we revert to the page-allocation scheme. 2166 */ 2167 if (bp->b_flags & B_MALLOC) { 2168 origbuf = bp->b_data; 2169 origbufsize = bp->b_bufsize; 2170 bp->b_data = bp->b_kvabase; 2171 bufspace -= bp->b_bufsize; 2172 bufmallocspace -= bp->b_bufsize; 2173 runningbufspace -= bp->b_bufsize; 2174 if (bp->b_bufsize) 2175 bufspacewakeup(); 2176 bp->b_bufsize = 0; 2177 bp->b_flags &= ~B_MALLOC; 2178 newbsize = round_page(newbsize); 2179 } 2180 #endif 2181 vm_hold_load_pages( 2182 bp, 2183 (vm_offset_t) bp->b_data + bp->b_bufsize, 2184 (vm_offset_t) bp->b_data + newbsize); 2185 #if !defined(NO_B_MALLOC) 2186 if (origbuf) { 2187 bcopy(origbuf, bp->b_data, origbufsize); 2188 free(origbuf, M_BIOBUF); 2189 } 2190 #endif 2191 } 2192 } else { 2193 vm_page_t m; 2194 int desiredpages; 2195 2196 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2197 desiredpages = (size == 0) ? 0 : 2198 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2199 2200 #if !defined(NO_B_MALLOC) 2201 if (bp->b_flags & B_MALLOC) 2202 panic("allocbuf: VMIO buffer can't be malloced"); 2203 #endif 2204 /* 2205 * Set B_CACHE initially if buffer is 0 length or will become 2206 * 0-length. 2207 */ 2208 if (size == 0 || bp->b_bufsize == 0) 2209 bp->b_flags |= B_CACHE; 2210 2211 if (newbsize < bp->b_bufsize) { 2212 /* 2213 * DEV_BSIZE aligned new buffer size is less then the 2214 * DEV_BSIZE aligned existing buffer size. Figure out 2215 * if we have to remove any pages. 2216 */ 2217 if (desiredpages < bp->b_npages) { 2218 for (i = desiredpages; i < bp->b_npages; i++) { 2219 /* 2220 * the page is not freed here -- it 2221 * is the responsibility of 2222 * vnode_pager_setsize 2223 */ 2224 m = bp->b_pages[i]; 2225 KASSERT(m != bogus_page, 2226 ("allocbuf: bogus page found")); 2227 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2228 ; 2229 2230 bp->b_pages[i] = NULL; 2231 vm_page_unwire(m, 0); 2232 } 2233 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2234 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2235 bp->b_npages = desiredpages; 2236 } 2237 } else if (size > bp->b_bcount) { 2238 /* 2239 * We are growing the buffer, possibly in a 2240 * byte-granular fashion. 2241 */ 2242 struct vnode *vp; 2243 vm_object_t obj; 2244 vm_offset_t toff; 2245 vm_offset_t tinc; 2246 2247 /* 2248 * Step 1, bring in the VM pages from the object, 2249 * allocating them if necessary. We must clear 2250 * B_CACHE if these pages are not valid for the 2251 * range covered by the buffer. 2252 */ 2253 2254 vp = bp->b_vp; 2255 obj = vp->v_object; 2256 2257 while (bp->b_npages < desiredpages) { 2258 vm_page_t m; 2259 vm_pindex_t pi; 2260 2261 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2262 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2263 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL); 2264 if (m == NULL) { 2265 VM_WAIT; 2266 vm_pageout_deficit += desiredpages - bp->b_npages; 2267 } else { 2268 vm_page_wire(m); 2269 vm_page_wakeup(m); 2270 bp->b_flags &= ~B_CACHE; 2271 bp->b_pages[bp->b_npages] = m; 2272 ++bp->b_npages; 2273 } 2274 continue; 2275 } 2276 2277 /* 2278 * We found a page. If we have to sleep on it, 2279 * retry because it might have gotten freed out 2280 * from under us. 2281 * 2282 * We can only test PG_BUSY here. Blocking on 2283 * m->busy might lead to a deadlock: 2284 * 2285 * vm_fault->getpages->cluster_read->allocbuf 2286 * 2287 */ 2288 2289 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2290 continue; 2291 2292 /* 2293 * We have a good page. Should we wakeup the 2294 * page daemon? 2295 */ 2296 if ((curproc != pageproc) && 2297 ((m->queue - m->pc) == PQ_CACHE) && 2298 ((cnt.v_free_count + cnt.v_cache_count) < 2299 (cnt.v_free_min + cnt.v_cache_min)) 2300 ) { 2301 pagedaemon_wakeup(); 2302 } 2303 vm_page_flag_clear(m, PG_ZERO); 2304 vm_page_wire(m); 2305 bp->b_pages[bp->b_npages] = m; 2306 ++bp->b_npages; 2307 } 2308 2309 /* 2310 * Step 2. We've loaded the pages into the buffer, 2311 * we have to figure out if we can still have B_CACHE 2312 * set. Note that B_CACHE is set according to the 2313 * byte-granular range ( bcount and size ), new the 2314 * aligned range ( newbsize ). 2315 * 2316 * The VM test is against m->valid, which is DEV_BSIZE 2317 * aligned. Needless to say, the validity of the data 2318 * needs to also be DEV_BSIZE aligned. Note that this 2319 * fails with NFS if the server or some other client 2320 * extends the file's EOF. If our buffer is resized, 2321 * B_CACHE may remain set! XXX 2322 */ 2323 2324 toff = bp->b_bcount; 2325 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2326 2327 while ((bp->b_flags & B_CACHE) && toff < size) { 2328 vm_pindex_t pi; 2329 2330 if (tinc > (size - toff)) 2331 tinc = size - toff; 2332 2333 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2334 PAGE_SHIFT; 2335 2336 vfs_buf_test_cache( 2337 bp, 2338 bp->b_offset, 2339 toff, 2340 tinc, 2341 bp->b_pages[pi] 2342 ); 2343 toff += tinc; 2344 tinc = PAGE_SIZE; 2345 } 2346 2347 /* 2348 * Step 3, fixup the KVM pmap. Remember that 2349 * bp->b_data is relative to bp->b_offset, but 2350 * bp->b_offset may be offset into the first page. 2351 */ 2352 2353 bp->b_data = (caddr_t) 2354 trunc_page((vm_offset_t)bp->b_data); 2355 pmap_qenter( 2356 (vm_offset_t)bp->b_data, 2357 bp->b_pages, 2358 bp->b_npages 2359 ); 2360 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2361 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2362 } 2363 } 2364 if (bp->b_flags & B_VMIO) 2365 vmiospace += (newbsize - bp->b_bufsize); 2366 bufspace += (newbsize - bp->b_bufsize); 2367 runningbufspace += (newbsize - bp->b_bufsize); 2368 if (newbsize < bp->b_bufsize) 2369 bufspacewakeup(); 2370 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2371 bp->b_bcount = size; /* requested buffer size */ 2372 return 1; 2373 } 2374 2375 /* 2376 * biowait: 2377 * 2378 * Wait for buffer I/O completion, returning error status. The buffer 2379 * is left B_BUSY|B_DONE on return. B_EINTR is converted into a EINTR 2380 * error and cleared. 2381 */ 2382 int 2383 biowait(register struct buf * bp) 2384 { 2385 int s; 2386 2387 s = splbio(); 2388 while ((bp->b_flags & B_DONE) == 0) 2389 #if defined(NO_SCHEDULE_MODS) 2390 tsleep(bp, PRIBIO, "biowait", 0); 2391 #else 2392 if (bp->b_flags & B_READ) 2393 tsleep(bp, PRIBIO, "biord", 0); 2394 else 2395 tsleep(bp, PRIBIO, "biowr", 0); 2396 #endif 2397 splx(s); 2398 if (bp->b_flags & B_EINTR) { 2399 bp->b_flags &= ~B_EINTR; 2400 return (EINTR); 2401 } 2402 if (bp->b_flags & B_ERROR) { 2403 return (bp->b_error ? bp->b_error : EIO); 2404 } else { 2405 return (0); 2406 } 2407 } 2408 2409 /* 2410 * biodone: 2411 * 2412 * Finish I/O on a buffer, optionally calling a completion function. 2413 * This is usually called from an interrupt so process blocking is 2414 * not allowed. 2415 * 2416 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2417 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2418 * assuming B_INVAL is clear. 2419 * 2420 * For the VMIO case, we set B_CACHE if the op was a read and no 2421 * read error occured, or if the op was a write. B_CACHE is never 2422 * set if the buffer is invalid or otherwise uncacheable. 2423 * 2424 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2425 * initiator to leave B_INVAL set to brelse the buffer out of existance 2426 * in the biodone routine. 2427 */ 2428 void 2429 biodone(register struct buf * bp) 2430 { 2431 int s; 2432 2433 s = splbio(); 2434 2435 KASSERT((bp->b_flags & B_BUSY), ("biodone: bp %p not busy", bp)); 2436 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2437 2438 bp->b_flags |= B_DONE; 2439 2440 if (bp->b_flags & B_FREEBUF) { 2441 brelse(bp); 2442 splx(s); 2443 return; 2444 } 2445 2446 if ((bp->b_flags & B_READ) == 0) { 2447 vwakeup(bp); 2448 } 2449 2450 /* call optional completion function if requested */ 2451 if (bp->b_flags & B_CALL) { 2452 bp->b_flags &= ~B_CALL; 2453 (*bp->b_iodone) (bp); 2454 splx(s); 2455 return; 2456 } 2457 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 2458 (*bioops.io_complete)(bp); 2459 2460 if (bp->b_flags & B_VMIO) { 2461 int i, resid; 2462 vm_ooffset_t foff; 2463 vm_page_t m; 2464 vm_object_t obj; 2465 int iosize; 2466 struct vnode *vp = bp->b_vp; 2467 2468 obj = vp->v_object; 2469 2470 #if defined(VFS_BIO_DEBUG) 2471 if (vp->v_usecount == 0) { 2472 panic("biodone: zero vnode ref count"); 2473 } 2474 2475 if (vp->v_object == NULL) { 2476 panic("biodone: missing VM object"); 2477 } 2478 2479 if ((vp->v_flag & VOBJBUF) == 0) { 2480 panic("biodone: vnode is not setup for merged cache"); 2481 } 2482 #endif 2483 2484 foff = bp->b_offset; 2485 KASSERT(bp->b_offset != NOOFFSET, 2486 ("biodone: no buffer offset")); 2487 2488 #if !defined(MAX_PERF) 2489 if (!obj) { 2490 panic("biodone: no object"); 2491 } 2492 #endif 2493 #if defined(VFS_BIO_DEBUG) 2494 if (obj->paging_in_progress < bp->b_npages) { 2495 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2496 obj->paging_in_progress, bp->b_npages); 2497 } 2498 #endif 2499 2500 /* 2501 * Set B_CACHE if the op was a normal read and no error 2502 * occured. B_CACHE is set for writes in the b*write() 2503 * routines. 2504 */ 2505 iosize = bp->b_bcount; 2506 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) { 2507 bp->b_flags |= B_CACHE; 2508 } 2509 2510 for (i = 0; i < bp->b_npages; i++) { 2511 int bogusflag = 0; 2512 m = bp->b_pages[i]; 2513 if (m == bogus_page) { 2514 bogusflag = 1; 2515 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2516 if (!m) { 2517 #if defined(VFS_BIO_DEBUG) 2518 printf("biodone: page disappeared\n"); 2519 #endif 2520 vm_object_pip_subtract(obj, 1); 2521 bp->b_flags &= ~B_CACHE; 2522 continue; 2523 } 2524 bp->b_pages[i] = m; 2525 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2526 } 2527 #if defined(VFS_BIO_DEBUG) 2528 if (OFF_TO_IDX(foff) != m->pindex) { 2529 printf( 2530 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2531 (unsigned long)foff, m->pindex); 2532 } 2533 #endif 2534 resid = IDX_TO_OFF(m->pindex + 1) - foff; 2535 if (resid > iosize) 2536 resid = iosize; 2537 2538 /* 2539 * In the write case, the valid and clean bits are 2540 * already changed correctly ( see bdwrite() ), so we 2541 * only need to do this here in the read case. 2542 */ 2543 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) { 2544 vfs_page_set_valid(bp, foff, i, m); 2545 } 2546 vm_page_flag_clear(m, PG_ZERO); 2547 2548 /* 2549 * when debugging new filesystems or buffer I/O methods, this 2550 * is the most common error that pops up. if you see this, you 2551 * have not set the page busy flag correctly!!! 2552 */ 2553 if (m->busy == 0) { 2554 #if !defined(MAX_PERF) 2555 printf("biodone: page busy < 0, " 2556 "pindex: %d, foff: 0x(%x,%x), " 2557 "resid: %d, index: %d\n", 2558 (int) m->pindex, (int)(foff >> 32), 2559 (int) foff & 0xffffffff, resid, i); 2560 #endif 2561 if (vp->v_type != VBLK) 2562 #if !defined(MAX_PERF) 2563 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2564 bp->b_vp->v_mount->mnt_stat.f_iosize, 2565 (int) bp->b_lblkno, 2566 bp->b_flags, bp->b_npages); 2567 else 2568 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2569 (int) bp->b_lblkno, 2570 bp->b_flags, bp->b_npages); 2571 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2572 m->valid, m->dirty, m->wire_count); 2573 #endif 2574 panic("biodone: page busy < 0\n"); 2575 } 2576 vm_page_io_finish(m); 2577 vm_object_pip_subtract(obj, 1); 2578 foff += resid; 2579 iosize -= resid; 2580 } 2581 if (obj) 2582 vm_object_pip_wakeupn(obj, 0); 2583 } 2584 /* 2585 * For asynchronous completions, release the buffer now. The brelse 2586 * checks for B_WANTED and will do the wakeup there if necessary - so 2587 * no need to do a wakeup here in the async case. 2588 */ 2589 2590 if (bp->b_flags & B_ASYNC) { 2591 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 2592 brelse(bp); 2593 else 2594 bqrelse(bp); 2595 } else { 2596 bp->b_flags &= ~B_WANTED; 2597 wakeup(bp); 2598 } 2599 splx(s); 2600 } 2601 2602 #if 0 /* not with kirks code */ 2603 static int vfs_update_interval = 30; 2604 2605 static void 2606 vfs_update() 2607 { 2608 while (1) { 2609 tsleep(&vfs_update_wakeup, PUSER, "update", 2610 hz * vfs_update_interval); 2611 vfs_update_wakeup = 0; 2612 sync(curproc, NULL); 2613 } 2614 } 2615 2616 static int 2617 sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS 2618 { 2619 int error = sysctl_handle_int(oidp, 2620 oidp->oid_arg1, oidp->oid_arg2, req); 2621 if (!error) 2622 wakeup(&vfs_update_wakeup); 2623 return error; 2624 } 2625 2626 SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW, 2627 &vfs_update_interval, 0, sysctl_kern_updateinterval, "I", ""); 2628 2629 #endif 2630 2631 2632 /* 2633 * This routine is called in lieu of iodone in the case of 2634 * incomplete I/O. This keeps the busy status for pages 2635 * consistant. 2636 */ 2637 void 2638 vfs_unbusy_pages(struct buf * bp) 2639 { 2640 int i; 2641 2642 if (bp->b_flags & B_VMIO) { 2643 struct vnode *vp = bp->b_vp; 2644 vm_object_t obj = vp->v_object; 2645 2646 for (i = 0; i < bp->b_npages; i++) { 2647 vm_page_t m = bp->b_pages[i]; 2648 2649 if (m == bogus_page) { 2650 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2651 #if !defined(MAX_PERF) 2652 if (!m) { 2653 panic("vfs_unbusy_pages: page missing\n"); 2654 } 2655 #endif 2656 bp->b_pages[i] = m; 2657 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2658 } 2659 vm_object_pip_subtract(obj, 1); 2660 vm_page_flag_clear(m, PG_ZERO); 2661 vm_page_io_finish(m); 2662 } 2663 vm_object_pip_wakeupn(obj, 0); 2664 } 2665 } 2666 2667 /* 2668 * vfs_page_set_valid: 2669 * 2670 * Set the valid bits in a page based on the supplied offset. The 2671 * range is restricted to the buffer's size. 2672 * 2673 * This routine is typically called after a read completes. 2674 */ 2675 static void 2676 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 2677 { 2678 vm_ooffset_t soff, eoff; 2679 2680 /* 2681 * Start and end offsets in buffer. eoff - soff may not cross a 2682 * page boundry or cross the end of the buffer. The end of the 2683 * buffer, in this case, is our file EOF, not the allocation size 2684 * of the buffer. 2685 */ 2686 soff = off; 2687 eoff = (off + PAGE_SIZE) & ~PAGE_MASK; 2688 if (eoff > bp->b_offset + bp->b_bcount) 2689 eoff = bp->b_offset + bp->b_bcount; 2690 2691 /* 2692 * Set valid range. This is typically the entire buffer and thus the 2693 * entire page. 2694 */ 2695 if (eoff > soff) { 2696 vm_page_set_validclean( 2697 m, 2698 (vm_offset_t) (soff & PAGE_MASK), 2699 (vm_offset_t) (eoff - soff) 2700 ); 2701 } 2702 } 2703 2704 /* 2705 * This routine is called before a device strategy routine. 2706 * It is used to tell the VM system that paging I/O is in 2707 * progress, and treat the pages associated with the buffer 2708 * almost as being PG_BUSY. Also the object paging_in_progress 2709 * flag is handled to make sure that the object doesn't become 2710 * inconsistant. 2711 * 2712 * Since I/O has not been initiated yet, certain buffer flags 2713 * such as B_ERROR or B_INVAL may be in an inconsistant state 2714 * and should be ignored. 2715 */ 2716 void 2717 vfs_busy_pages(struct buf * bp, int clear_modify) 2718 { 2719 int i, bogus; 2720 2721 if (bp->b_flags & B_VMIO) { 2722 struct vnode *vp = bp->b_vp; 2723 vm_object_t obj = vp->v_object; 2724 vm_ooffset_t foff; 2725 2726 foff = bp->b_offset; 2727 KASSERT(bp->b_offset != NOOFFSET, 2728 ("vfs_busy_pages: no buffer offset")); 2729 vfs_setdirty(bp); 2730 2731 retry: 2732 for (i = 0; i < bp->b_npages; i++) { 2733 vm_page_t m = bp->b_pages[i]; 2734 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 2735 goto retry; 2736 } 2737 2738 bogus = 0; 2739 for (i = 0; i < bp->b_npages; i++) { 2740 vm_page_t m = bp->b_pages[i]; 2741 2742 vm_page_flag_clear(m, PG_ZERO); 2743 if ((bp->b_flags & B_CLUSTER) == 0) { 2744 vm_object_pip_add(obj, 1); 2745 vm_page_io_start(m); 2746 } 2747 2748 /* 2749 * When readying a buffer for a read ( i.e 2750 * clear_modify == 0 ), it is important to do 2751 * bogus_page replacement for valid pages in 2752 * partially instantiated buffers. Partially 2753 * instantiated buffers can, in turn, occur when 2754 * reconstituting a buffer from its VM backing store 2755 * base. We only have to do this if B_CACHE is 2756 * clear ( which causes the I/O to occur in the 2757 * first place ). The replacement prevents the read 2758 * I/O from overwriting potentially dirty VM-backed 2759 * pages. XXX bogus page replacement is, uh, bogus. 2760 * It may not work properly with small-block devices. 2761 * We need to find a better way. 2762 */ 2763 2764 vm_page_protect(m, VM_PROT_NONE); 2765 if (clear_modify) 2766 vfs_page_set_valid(bp, foff, i, m); 2767 else if (m->valid == VM_PAGE_BITS_ALL && 2768 (bp->b_flags & B_CACHE) == 0) { 2769 bp->b_pages[i] = bogus_page; 2770 bogus++; 2771 } 2772 foff = (foff + PAGE_SIZE) & ~PAGE_MASK; 2773 } 2774 if (bogus) 2775 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2776 } 2777 } 2778 2779 /* 2780 * Tell the VM system that the pages associated with this buffer 2781 * are clean. This is used for delayed writes where the data is 2782 * going to go to disk eventually without additional VM intevention. 2783 * 2784 * Note that while we only really need to clean through to b_bcount, we 2785 * just go ahead and clean through to b_bufsize. 2786 */ 2787 static void 2788 vfs_clean_pages(struct buf * bp) 2789 { 2790 int i; 2791 2792 if (bp->b_flags & B_VMIO) { 2793 vm_ooffset_t foff; 2794 2795 foff = bp->b_offset; 2796 KASSERT(bp->b_offset != NOOFFSET, 2797 ("vfs_clean_pages: no buffer offset")); 2798 for (i = 0; i < bp->b_npages; i++) { 2799 vm_page_t m = bp->b_pages[i]; 2800 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK; 2801 vm_ooffset_t eoff = noff; 2802 2803 if (eoff > bp->b_offset + bp->b_bufsize) 2804 eoff = bp->b_offset + bp->b_bufsize; 2805 vfs_page_set_valid(bp, foff, i, m); 2806 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 2807 foff = noff; 2808 } 2809 } 2810 } 2811 2812 /* 2813 * vfs_bio_set_validclean: 2814 * 2815 * Set the range within the buffer to valid and clean. The range is 2816 * relative to the beginning of the buffer, b_offset. Note that b_offset 2817 * itself may be offset from the beginning of the first page. 2818 */ 2819 2820 void 2821 vfs_bio_set_validclean(struct buf *bp, int base, int size) 2822 { 2823 if (bp->b_flags & B_VMIO) { 2824 int i; 2825 int n; 2826 2827 /* 2828 * Fixup base to be relative to beginning of first page. 2829 * Set initial n to be the maximum number of bytes in the 2830 * first page that can be validated. 2831 */ 2832 2833 base += (bp->b_offset & PAGE_MASK); 2834 n = PAGE_SIZE - (base & PAGE_MASK); 2835 2836 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 2837 vm_page_t m = bp->b_pages[i]; 2838 2839 if (n > size) 2840 n = size; 2841 2842 vm_page_set_validclean(m, base & PAGE_MASK, n); 2843 base += n; 2844 size -= n; 2845 n = PAGE_SIZE; 2846 } 2847 } 2848 } 2849 2850 /* 2851 * vfs_bio_clrbuf: 2852 * 2853 * clear a buffer. This routine essentially fakes an I/O, so we need 2854 * to clear B_ERROR and B_INVAL. 2855 * 2856 * Note that while we only theoretically need to clear through b_bcount, 2857 * we go ahead and clear through b_bufsize. 2858 */ 2859 2860 void 2861 vfs_bio_clrbuf(struct buf *bp) { 2862 int i, mask = 0; 2863 caddr_t sa, ea; 2864 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 2865 bp->b_flags &= ~(B_INVAL|B_ERROR); 2866 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 2867 (bp->b_offset & PAGE_MASK) == 0) { 2868 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 2869 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 2870 ((bp->b_pages[0]->valid & mask) != mask)) { 2871 bzero(bp->b_data, bp->b_bufsize); 2872 } 2873 bp->b_pages[0]->valid |= mask; 2874 bp->b_resid = 0; 2875 return; 2876 } 2877 ea = sa = bp->b_data; 2878 for(i=0;i<bp->b_npages;i++,sa=ea) { 2879 int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE; 2880 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 2881 ea = (caddr_t)ulmin((u_long)ea, 2882 (u_long)bp->b_data + bp->b_bufsize); 2883 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 2884 if ((bp->b_pages[i]->valid & mask) == mask) 2885 continue; 2886 if ((bp->b_pages[i]->valid & mask) == 0) { 2887 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 2888 bzero(sa, ea - sa); 2889 } 2890 } else { 2891 for (; sa < ea; sa += DEV_BSIZE, j++) { 2892 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 2893 (bp->b_pages[i]->valid & (1<<j)) == 0) 2894 bzero(sa, DEV_BSIZE); 2895 } 2896 } 2897 bp->b_pages[i]->valid |= mask; 2898 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2899 } 2900 bp->b_resid = 0; 2901 } else { 2902 clrbuf(bp); 2903 } 2904 } 2905 2906 /* 2907 * vm_hold_load_pages and vm_hold_unload pages get pages into 2908 * a buffers address space. The pages are anonymous and are 2909 * not associated with a file object. 2910 */ 2911 void 2912 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 2913 { 2914 vm_offset_t pg; 2915 vm_page_t p; 2916 int index; 2917 2918 to = round_page(to); 2919 from = round_page(from); 2920 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 2921 2922 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 2923 2924 tryagain: 2925 2926 p = vm_page_alloc(kernel_object, 2927 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 2928 VM_ALLOC_NORMAL); 2929 if (!p) { 2930 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 2931 VM_WAIT; 2932 goto tryagain; 2933 } 2934 vm_page_wire(p); 2935 p->valid = VM_PAGE_BITS_ALL; 2936 vm_page_flag_clear(p, PG_ZERO); 2937 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 2938 bp->b_pages[index] = p; 2939 vm_page_wakeup(p); 2940 } 2941 bp->b_npages = index; 2942 } 2943 2944 void 2945 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 2946 { 2947 vm_offset_t pg; 2948 vm_page_t p; 2949 int index, newnpages; 2950 2951 from = round_page(from); 2952 to = round_page(to); 2953 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 2954 2955 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 2956 p = bp->b_pages[index]; 2957 if (p && (index < bp->b_npages)) { 2958 #if !defined(MAX_PERF) 2959 if (p->busy) { 2960 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 2961 bp->b_blkno, bp->b_lblkno); 2962 } 2963 #endif 2964 bp->b_pages[index] = NULL; 2965 pmap_kremove(pg); 2966 vm_page_busy(p); 2967 vm_page_unwire(p, 0); 2968 vm_page_free(p); 2969 } 2970 } 2971 bp->b_npages = newnpages; 2972 } 2973 2974 2975 #include "opt_ddb.h" 2976 #ifdef DDB 2977 #include <ddb/ddb.h> 2978 2979 DB_SHOW_COMMAND(buffer, db_show_buffer) 2980 { 2981 /* get args */ 2982 struct buf *bp = (struct buf *)addr; 2983 2984 if (!have_addr) { 2985 db_printf("usage: show buffer <addr>\n"); 2986 return; 2987 } 2988 2989 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 2990 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 2991 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 2992 "b_blkno = %d, b_pblkno = %d\n", 2993 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 2994 major(bp->b_dev), minor(bp->b_dev), 2995 bp->b_data, bp->b_blkno, bp->b_pblkno); 2996 if (bp->b_npages) { 2997 int i; 2998 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 2999 for (i = 0; i < bp->b_npages; i++) { 3000 vm_page_t m; 3001 m = bp->b_pages[i]; 3002 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3003 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3004 if ((i + 1) < bp->b_npages) 3005 db_printf(","); 3006 } 3007 db_printf("\n"); 3008 } 3009 } 3010 #endif /* DDB */ 3011