xref: /freebsd/sys/kern/vfs_bio.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  */
14 
15 /*
16  * this file contains a new buffer I/O scheme implementing a coherent
17  * VM object and buffer cache scheme.  Pains have been taken to make
18  * sure that the performance degradation associated with schemes such
19  * as this is not realized.
20  *
21  * Author:  John S. Dyson
22  * Significant help during the development and debugging phases
23  * had been provided by David Greenman, also of the FreeBSD core team.
24  *
25  * see man buf(9) for more info.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bio.h>
34 #include <sys/conf.h>
35 #include <sys/buf.h>
36 #include <sys/devicestat.h>
37 #include <sys/eventhandler.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mount.h>
41 #include <sys/mutex.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sysctl.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include "opt_directio.h"
58 #include "opt_swap.h"
59 
60 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61 
62 struct	bio_ops bioops;		/* I/O operation notification */
63 
64 static int ibwrite(struct buf *);
65 
66 struct	buf_ops buf_ops_bio = {
67 	"buf_ops_bio",
68 	ibwrite
69 };
70 
71 /*
72  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
73  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
74  */
75 struct buf *buf;		/* buffer header pool */
76 
77 static struct proc *bufdaemonproc;
78 
79 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
80 		vm_offset_t to);
81 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
82 		vm_offset_t to);
83 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84 			       int pageno, vm_page_t m);
85 static void vfs_clean_pages(struct buf * bp);
86 static void vfs_setdirty(struct buf *bp);
87 static void vfs_vmio_release(struct buf *bp);
88 static void vfs_backgroundwritedone(struct buf *bp);
89 static int vfs_bio_clcheck(struct vnode *vp, int size,
90 		daddr_t lblkno, daddr_t blkno);
91 static int flushbufqueues(int flushdeps);
92 static void buf_daemon(void);
93 void bremfreel(struct buf * bp);
94 
95 int vmiodirenable = TRUE;
96 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
97     "Use the VM system for directory writes");
98 int runningbufspace;
99 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
100     "Amount of presently outstanding async buffer io");
101 static int bufspace;
102 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
103     "KVA memory used for bufs");
104 static int maxbufspace;
105 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
106     "Maximum allowed value of bufspace (including buf_daemon)");
107 static int bufmallocspace;
108 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
109     "Amount of malloced memory for buffers");
110 static int maxbufmallocspace;
111 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
112     "Maximum amount of malloced memory for buffers");
113 static int lobufspace;
114 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
115     "Minimum amount of buffers we want to have");
116 static int hibufspace;
117 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
118     "Maximum allowed value of bufspace (excluding buf_daemon)");
119 static int bufreusecnt;
120 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
121     "Number of times we have reused a buffer");
122 static int buffreekvacnt;
123 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
124     "Number of times we have freed the KVA space from some buffer");
125 static int bufdefragcnt;
126 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
127     "Number of times we have had to repeat buffer allocation to defragment");
128 static int lorunningspace;
129 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
130     "Minimum preferred space used for in-progress I/O");
131 static int hirunningspace;
132 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
133     "Maximum amount of space to use for in-progress I/O");
134 static int dirtybufferflushes;
135 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
136     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
137 static int altbufferflushes;
138 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
139     0, "Number of fsync flushes to limit dirty buffers");
140 static int recursiveflushes;
141 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
142     0, "Number of flushes skipped due to being recursive");
143 static int numdirtybuffers;
144 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
145     "Number of buffers that are dirty (has unwritten changes) at the moment");
146 static int lodirtybuffers;
147 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
148     "How many buffers we want to have free before bufdaemon can sleep");
149 static int hidirtybuffers;
150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
151     "When the number of dirty buffers is considered severe");
152 static int dirtybufthresh;
153 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
154     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
155 static int numfreebuffers;
156 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
157     "Number of free buffers");
158 static int lofreebuffers;
159 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
160    "XXX Unused");
161 static int hifreebuffers;
162 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
163    "XXX Complicatedly unused");
164 static int getnewbufcalls;
165 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
166    "Number of calls to getnewbuf");
167 static int getnewbufrestarts;
168 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
169     "Number of times getnewbuf has had to restart a buffer aquisition");
170 static int dobkgrdwrite = 1;
171 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
172     "Do background writes (honoring the BV_BKGRDWRITE flag)?");
173 
174 /*
175  * Wakeup point for bufdaemon, as well as indicator of whether it is already
176  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
177  * is idling.
178  */
179 static int bd_request;
180 
181 /*
182  * This lock synchronizes access to bd_request.
183  */
184 static struct mtx bdlock;
185 
186 /*
187  * bogus page -- for I/O to/from partially complete buffers
188  * this is a temporary solution to the problem, but it is not
189  * really that bad.  it would be better to split the buffer
190  * for input in the case of buffers partially already in memory,
191  * but the code is intricate enough already.
192  */
193 vm_page_t bogus_page;
194 
195 /*
196  * Synchronization (sleep/wakeup) variable for active buffer space requests.
197  * Set when wait starts, cleared prior to wakeup().
198  * Used in runningbufwakeup() and waitrunningbufspace().
199  */
200 static int runningbufreq;
201 
202 /*
203  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
204  * waitrunningbufspace().
205  */
206 static struct mtx rbreqlock;
207 
208 /*
209  * Synchronization (sleep/wakeup) variable for buffer requests.
210  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
211  * by and/or.
212  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
213  * getnewbuf(), and getblk().
214  */
215 static int needsbuffer;
216 
217 /*
218  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
219  */
220 static struct mtx nblock;
221 
222 /*
223  * Lock that protects against bwait()/bdone()/B_DONE races.
224  */
225 
226 static struct mtx bdonelock;
227 
228 /*
229  * Definitions for the buffer free lists.
230  */
231 #define BUFFER_QUEUES	5	/* number of free buffer queues */
232 
233 #define QUEUE_NONE	0	/* on no queue */
234 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
235 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
236 #define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
237 #define QUEUE_EMPTY	4	/* empty buffer headers */
238 
239 /* Queues for free buffers with various properties */
240 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
241 
242 /* Lock for the bufqueues */
243 static struct mtx bqlock;
244 
245 /*
246  * Single global constant for BUF_WMESG, to avoid getting multiple references.
247  * buf_wmesg is referred from macros.
248  */
249 const char *buf_wmesg = BUF_WMESG;
250 
251 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
252 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
253 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
254 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
255 
256 #ifdef DIRECTIO
257 extern void ffs_rawread_setup(void);
258 #endif /* DIRECTIO */
259 /*
260  *	numdirtywakeup:
261  *
262  *	If someone is blocked due to there being too many dirty buffers,
263  *	and numdirtybuffers is now reasonable, wake them up.
264  */
265 
266 static __inline void
267 numdirtywakeup(int level)
268 {
269 	if (numdirtybuffers <= level) {
270 		mtx_lock(&nblock);
271 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
272 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
273 			wakeup(&needsbuffer);
274 		}
275 		mtx_unlock(&nblock);
276 	}
277 }
278 
279 /*
280  *	bufspacewakeup:
281  *
282  *	Called when buffer space is potentially available for recovery.
283  *	getnewbuf() will block on this flag when it is unable to free
284  *	sufficient buffer space.  Buffer space becomes recoverable when
285  *	bp's get placed back in the queues.
286  */
287 
288 static __inline void
289 bufspacewakeup(void)
290 {
291 	/*
292 	 * If someone is waiting for BUF space, wake them up.  Even
293 	 * though we haven't freed the kva space yet, the waiting
294 	 * process will be able to now.
295 	 */
296 	mtx_lock(&nblock);
297 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
298 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
299 		wakeup(&needsbuffer);
300 	}
301 	mtx_unlock(&nblock);
302 }
303 
304 /*
305  * runningbufwakeup() - in-progress I/O accounting.
306  *
307  */
308 static __inline void
309 runningbufwakeup(struct buf *bp)
310 {
311 	if (bp->b_runningbufspace) {
312 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
313 		bp->b_runningbufspace = 0;
314 		mtx_lock(&rbreqlock);
315 		if (runningbufreq && runningbufspace <= lorunningspace) {
316 			runningbufreq = 0;
317 			wakeup(&runningbufreq);
318 		}
319 		mtx_unlock(&rbreqlock);
320 	}
321 }
322 
323 /*
324  *	bufcountwakeup:
325  *
326  *	Called when a buffer has been added to one of the free queues to
327  *	account for the buffer and to wakeup anyone waiting for free buffers.
328  *	This typically occurs when large amounts of metadata are being handled
329  *	by the buffer cache ( else buffer space runs out first, usually ).
330  */
331 
332 static __inline void
333 bufcountwakeup(void)
334 {
335 	atomic_add_int(&numfreebuffers, 1);
336 	mtx_lock(&nblock);
337 	if (needsbuffer) {
338 		needsbuffer &= ~VFS_BIO_NEED_ANY;
339 		if (numfreebuffers >= hifreebuffers)
340 			needsbuffer &= ~VFS_BIO_NEED_FREE;
341 		wakeup(&needsbuffer);
342 	}
343 	mtx_unlock(&nblock);
344 }
345 
346 /*
347  *	waitrunningbufspace()
348  *
349  *	runningbufspace is a measure of the amount of I/O currently
350  *	running.  This routine is used in async-write situations to
351  *	prevent creating huge backups of pending writes to a device.
352  *	Only asynchronous writes are governed by this function.
353  *
354  *	Reads will adjust runningbufspace, but will not block based on it.
355  *	The read load has a side effect of reducing the allowed write load.
356  *
357  *	This does NOT turn an async write into a sync write.  It waits
358  *	for earlier writes to complete and generally returns before the
359  *	caller's write has reached the device.
360  */
361 static __inline void
362 waitrunningbufspace(void)
363 {
364 	mtx_lock(&rbreqlock);
365 	while (runningbufspace > hirunningspace) {
366 		++runningbufreq;
367 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
368 	}
369 	mtx_unlock(&rbreqlock);
370 }
371 
372 
373 /*
374  *	vfs_buf_test_cache:
375  *
376  *	Called when a buffer is extended.  This function clears the B_CACHE
377  *	bit if the newly extended portion of the buffer does not contain
378  *	valid data.
379  */
380 static __inline
381 void
382 vfs_buf_test_cache(struct buf *bp,
383 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
384 		  vm_page_t m)
385 {
386 	GIANT_REQUIRED;
387 
388 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
389 	if (bp->b_flags & B_CACHE) {
390 		int base = (foff + off) & PAGE_MASK;
391 		if (vm_page_is_valid(m, base, size) == 0)
392 			bp->b_flags &= ~B_CACHE;
393 	}
394 }
395 
396 /* Wake up the buffer deamon if necessary */
397 static __inline
398 void
399 bd_wakeup(int dirtybuflevel)
400 {
401 	mtx_lock(&bdlock);
402 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
403 		bd_request = 1;
404 		wakeup(&bd_request);
405 	}
406 	mtx_unlock(&bdlock);
407 }
408 
409 /*
410  * bd_speedup - speedup the buffer cache flushing code
411  */
412 
413 static __inline
414 void
415 bd_speedup(void)
416 {
417 	bd_wakeup(1);
418 }
419 
420 /*
421  * Calculating buffer cache scaling values and reserve space for buffer
422  * headers.  This is called during low level kernel initialization and
423  * may be called more then once.  We CANNOT write to the memory area
424  * being reserved at this time.
425  */
426 caddr_t
427 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
428 {
429 	/*
430 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
431 	 * PAGE_SIZE is >= 1K)
432 	 */
433 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
434 
435 	/*
436 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
437 	 * For the first 64MB of ram nominally allocate sufficient buffers to
438 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
439 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
440 	 * the buffer cache we limit the eventual kva reservation to
441 	 * maxbcache bytes.
442 	 *
443 	 * factor represents the 1/4 x ram conversion.
444 	 */
445 	if (nbuf == 0) {
446 		int factor = 4 * BKVASIZE / 1024;
447 
448 		nbuf = 50;
449 		if (physmem_est > 4096)
450 			nbuf += min((physmem_est - 4096) / factor,
451 			    65536 / factor);
452 		if (physmem_est > 65536)
453 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
454 
455 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
456 			nbuf = maxbcache / BKVASIZE;
457 	}
458 
459 #if 0
460 	/*
461 	 * Do not allow the buffer_map to be more then 1/2 the size of the
462 	 * kernel_map.
463 	 */
464 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
465 	    (BKVASIZE * 2)) {
466 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
467 		    (BKVASIZE * 2);
468 		printf("Warning: nbufs capped at %d\n", nbuf);
469 	}
470 #endif
471 
472 	/*
473 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
474 	 * We have no less then 16 and no more then 256.
475 	 */
476 	nswbuf = max(min(nbuf/4, 256), 16);
477 #ifdef NSWBUF_MIN
478 	if (nswbuf < NSWBUF_MIN)
479 		nswbuf = NSWBUF_MIN;
480 #endif
481 #ifdef DIRECTIO
482 	ffs_rawread_setup();
483 #endif
484 
485 	/*
486 	 * Reserve space for the buffer cache buffers
487 	 */
488 	swbuf = (void *)v;
489 	v = (caddr_t)(swbuf + nswbuf);
490 	buf = (void *)v;
491 	v = (caddr_t)(buf + nbuf);
492 
493 	return(v);
494 }
495 
496 /* Initialize the buffer subsystem.  Called before use of any buffers. */
497 void
498 bufinit(void)
499 {
500 	struct buf *bp;
501 	int i;
502 
503 	GIANT_REQUIRED;
504 
505 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
506 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
507 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
508 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
509 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
510 
511 	/* next, make a null set of free lists */
512 	for (i = 0; i < BUFFER_QUEUES; i++)
513 		TAILQ_INIT(&bufqueues[i]);
514 
515 	/* finally, initialize each buffer header and stick on empty q */
516 	for (i = 0; i < nbuf; i++) {
517 		bp = &buf[i];
518 		bzero(bp, sizeof *bp);
519 		bp->b_flags = B_INVAL;	/* we're just an empty header */
520 		bp->b_dev = NULL;
521 		bp->b_rcred = NOCRED;
522 		bp->b_wcred = NOCRED;
523 		bp->b_qindex = QUEUE_EMPTY;
524 		bp->b_vflags = 0;
525 		bp->b_xflags = 0;
526 		LIST_INIT(&bp->b_dep);
527 		BUF_LOCKINIT(bp);
528 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
529 	}
530 
531 	/*
532 	 * maxbufspace is the absolute maximum amount of buffer space we are
533 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
534 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
535 	 * used by most other processes.  The differential is required to
536 	 * ensure that buf_daemon is able to run when other processes might
537 	 * be blocked waiting for buffer space.
538 	 *
539 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
540 	 * this may result in KVM fragmentation which is not handled optimally
541 	 * by the system.
542 	 */
543 	maxbufspace = nbuf * BKVASIZE;
544 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
545 	lobufspace = hibufspace - MAXBSIZE;
546 
547 	lorunningspace = 512 * 1024;
548 	hirunningspace = 1024 * 1024;
549 
550 /*
551  * Limit the amount of malloc memory since it is wired permanently into
552  * the kernel space.  Even though this is accounted for in the buffer
553  * allocation, we don't want the malloced region to grow uncontrolled.
554  * The malloc scheme improves memory utilization significantly on average
555  * (small) directories.
556  */
557 	maxbufmallocspace = hibufspace / 20;
558 
559 /*
560  * Reduce the chance of a deadlock occuring by limiting the number
561  * of delayed-write dirty buffers we allow to stack up.
562  */
563 	hidirtybuffers = nbuf / 4 + 20;
564 	dirtybufthresh = hidirtybuffers * 9 / 10;
565 	numdirtybuffers = 0;
566 /*
567  * To support extreme low-memory systems, make sure hidirtybuffers cannot
568  * eat up all available buffer space.  This occurs when our minimum cannot
569  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
570  * BKVASIZE'd (8K) buffers.
571  */
572 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
573 		hidirtybuffers >>= 1;
574 	}
575 	lodirtybuffers = hidirtybuffers / 2;
576 
577 /*
578  * Try to keep the number of free buffers in the specified range,
579  * and give special processes (e.g. like buf_daemon) access to an
580  * emergency reserve.
581  */
582 	lofreebuffers = nbuf / 18 + 5;
583 	hifreebuffers = 2 * lofreebuffers;
584 	numfreebuffers = nbuf;
585 
586 /*
587  * Maximum number of async ops initiated per buf_daemon loop.  This is
588  * somewhat of a hack at the moment, we really need to limit ourselves
589  * based on the number of bytes of I/O in-transit that were initiated
590  * from buf_daemon.
591  */
592 
593 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
594 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
595 }
596 
597 /*
598  * bfreekva() - free the kva allocation for a buffer.
599  *
600  *	Must be called at splbio() or higher as this is the only locking for
601  *	buffer_map.
602  *
603  *	Since this call frees up buffer space, we call bufspacewakeup().
604  */
605 static void
606 bfreekva(struct buf * bp)
607 {
608 	GIANT_REQUIRED;
609 
610 	if (bp->b_kvasize) {
611 		atomic_add_int(&buffreekvacnt, 1);
612 		atomic_subtract_int(&bufspace, bp->b_kvasize);
613 		vm_map_delete(buffer_map,
614 		    (vm_offset_t) bp->b_kvabase,
615 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
616 		);
617 		bp->b_kvasize = 0;
618 		bufspacewakeup();
619 	}
620 }
621 
622 /*
623  *	bremfree:
624  *
625  *	Remove the buffer from the appropriate free list.
626  */
627 void
628 bremfree(struct buf * bp)
629 {
630 	mtx_lock(&bqlock);
631 	bremfreel(bp);
632 	mtx_unlock(&bqlock);
633 }
634 
635 void
636 bremfreel(struct buf * bp)
637 {
638 	int s = splbio();
639 	int old_qindex = bp->b_qindex;
640 
641 	GIANT_REQUIRED;
642 
643 	if (bp->b_qindex != QUEUE_NONE) {
644 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
645 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
646 		bp->b_qindex = QUEUE_NONE;
647 	} else {
648 		if (BUF_REFCNT(bp) <= 1)
649 			panic("bremfree: removing a buffer not on a queue");
650 	}
651 
652 	/*
653 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
654 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
655 	 * the buffer was free and we must decrement numfreebuffers.
656 	 */
657 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
658 		switch(old_qindex) {
659 		case QUEUE_DIRTY:
660 		case QUEUE_CLEAN:
661 		case QUEUE_EMPTY:
662 		case QUEUE_EMPTYKVA:
663 			atomic_subtract_int(&numfreebuffers, 1);
664 			break;
665 		default:
666 			break;
667 		}
668 	}
669 	splx(s);
670 }
671 
672 
673 /*
674  * Get a buffer with the specified data.  Look in the cache first.  We
675  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
676  * is set, the buffer is valid and we do not have to do anything ( see
677  * getblk() ).  This is really just a special case of breadn().
678  */
679 int
680 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
681     struct buf ** bpp)
682 {
683 
684 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
685 }
686 
687 /*
688  * Operates like bread, but also starts asynchronous I/O on
689  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
690  * to initiating I/O . If B_CACHE is set, the buffer is valid
691  * and we do not have to do anything.
692  */
693 int
694 breadn(struct vnode * vp, daddr_t blkno, int size,
695     daddr_t * rablkno, int *rabsize,
696     int cnt, struct ucred * cred, struct buf ** bpp)
697 {
698 	struct buf *bp, *rabp;
699 	int i;
700 	int rv = 0, readwait = 0;
701 
702 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
703 
704 	/* if not found in cache, do some I/O */
705 	if ((bp->b_flags & B_CACHE) == 0) {
706 		if (curthread != PCPU_GET(idlethread))
707 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
708 		bp->b_iocmd = BIO_READ;
709 		bp->b_flags &= ~B_INVAL;
710 		bp->b_ioflags &= ~BIO_ERROR;
711 		if (bp->b_rcred == NOCRED && cred != NOCRED)
712 			bp->b_rcred = crhold(cred);
713 		vfs_busy_pages(bp, 0);
714 		bp->b_iooffset = dbtob(bp->b_blkno);
715 		if (vp->v_type == VCHR)
716 			VOP_SPECSTRATEGY(vp, bp);
717 		else
718 			VOP_STRATEGY(vp, bp);
719 		++readwait;
720 	}
721 
722 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
723 		if (inmem(vp, *rablkno))
724 			continue;
725 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
726 
727 		if ((rabp->b_flags & B_CACHE) == 0) {
728 			if (curthread != PCPU_GET(idlethread))
729 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
730 			rabp->b_flags |= B_ASYNC;
731 			rabp->b_flags &= ~B_INVAL;
732 			rabp->b_ioflags &= ~BIO_ERROR;
733 			rabp->b_iocmd = BIO_READ;
734 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
735 				rabp->b_rcred = crhold(cred);
736 			vfs_busy_pages(rabp, 0);
737 			BUF_KERNPROC(rabp);
738 			rabp->b_iooffset = dbtob(rabp->b_blkno);
739 			if (vp->v_type == VCHR)
740 				VOP_SPECSTRATEGY(vp, rabp);
741 			else
742 				VOP_STRATEGY(vp, rabp);
743 		} else {
744 			brelse(rabp);
745 		}
746 	}
747 
748 	if (readwait) {
749 		rv = bufwait(bp);
750 	}
751 	return (rv);
752 }
753 
754 /*
755  * Write, release buffer on completion.  (Done by iodone
756  * if async).  Do not bother writing anything if the buffer
757  * is invalid.
758  *
759  * Note that we set B_CACHE here, indicating that buffer is
760  * fully valid and thus cacheable.  This is true even of NFS
761  * now so we set it generally.  This could be set either here
762  * or in biodone() since the I/O is synchronous.  We put it
763  * here.
764  */
765 int
766 bwrite(struct buf * bp)
767 {
768 
769 	KASSERT(bp->b_op != NULL && bp->b_op->bop_write != NULL,
770 	    ("Martian buffer %p in bwrite: nobody to write it.", bp));
771 	return (bp->b_op->bop_write(bp));
772 }
773 
774 static int
775 ibwrite(struct buf * bp)
776 {
777 	int oldflags, s;
778 	struct buf *newbp;
779 
780 	if (bp->b_flags & B_INVAL) {
781 		brelse(bp);
782 		return (0);
783 	}
784 
785 	oldflags = bp->b_flags;
786 
787 	if (BUF_REFCNT(bp) == 0)
788 		panic("ibwrite: buffer is not busy???");
789 	s = splbio();
790 	/*
791 	 * If a background write is already in progress, delay
792 	 * writing this block if it is asynchronous. Otherwise
793 	 * wait for the background write to complete.
794 	 */
795 	VI_LOCK(bp->b_vp);
796 	if (bp->b_vflags & BV_BKGRDINPROG) {
797 		if (bp->b_flags & B_ASYNC) {
798 			VI_UNLOCK(bp->b_vp);
799 			splx(s);
800 			bdwrite(bp);
801 			return (0);
802 		}
803 		bp->b_vflags |= BV_BKGRDWAIT;
804 		msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
805 		if (bp->b_vflags & BV_BKGRDINPROG)
806 			panic("ibwrite: still writing");
807 	}
808 	VI_UNLOCK(bp->b_vp);
809 
810 	/* Mark the buffer clean */
811 	bundirty(bp);
812 
813 	/*
814 	 * If this buffer is marked for background writing and we
815 	 * do not have to wait for it, make a copy and write the
816 	 * copy so as to leave this buffer ready for further use.
817 	 *
818 	 * This optimization eats a lot of memory.  If we have a page
819 	 * or buffer shortfall we can't do it.
820 	 */
821 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
822 	    (bp->b_flags & B_ASYNC) &&
823 	    !vm_page_count_severe() &&
824 	    !buf_dirty_count_severe()) {
825 		if (bp->b_iodone != NULL) {
826 			printf("bp->b_iodone = %p\n", bp->b_iodone);
827 			panic("ibwrite: need chained iodone");
828 		}
829 
830 		/* get a new block */
831 		newbp = geteblk(bp->b_bufsize);
832 
833 		/*
834 		 * set it to be identical to the old block.  We have to
835 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
836 		 * to avoid confusing the splay tree and gbincore().
837 		 */
838 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
839 		newbp->b_lblkno = bp->b_lblkno;
840 		newbp->b_xflags |= BX_BKGRDMARKER;
841 		VI_LOCK(bp->b_vp);
842 		bp->b_vflags |= BV_BKGRDINPROG;
843 		bgetvp(bp->b_vp, newbp);
844 		VI_UNLOCK(bp->b_vp);
845 		newbp->b_blkno = bp->b_blkno;
846 		newbp->b_offset = bp->b_offset;
847 		newbp->b_iodone = vfs_backgroundwritedone;
848 		newbp->b_flags |= B_ASYNC;
849 		newbp->b_flags &= ~B_INVAL;
850 
851 		/* move over the dependencies */
852 		if (LIST_FIRST(&bp->b_dep) != NULL)
853 			buf_movedeps(bp, newbp);
854 
855 		/*
856 		 * Initiate write on the copy, release the original to
857 		 * the B_LOCKED queue so that it cannot go away until
858 		 * the background write completes. If not locked it could go
859 		 * away and then be reconstituted while it was being written.
860 		 * If the reconstituted buffer were written, we could end up
861 		 * with two background copies being written at the same time.
862 		 */
863 		bqrelse(bp);
864 		bp = newbp;
865 	}
866 
867 	bp->b_flags &= ~B_DONE;
868 	bp->b_ioflags &= ~BIO_ERROR;
869 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
870 	bp->b_iocmd = BIO_WRITE;
871 
872 	VI_LOCK(bp->b_vp);
873 	bp->b_vp->v_numoutput++;
874 	VI_UNLOCK(bp->b_vp);
875 	vfs_busy_pages(bp, 1);
876 
877 	/*
878 	 * Normal bwrites pipeline writes
879 	 */
880 	bp->b_runningbufspace = bp->b_bufsize;
881 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
882 
883 	if (curthread != PCPU_GET(idlethread))
884 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
885 	splx(s);
886 	if (oldflags & B_ASYNC)
887 		BUF_KERNPROC(bp);
888 	bp->b_iooffset = dbtob(bp->b_blkno);
889 	if (bp->b_vp->v_type == VCHR) {
890 		if (!buf_prewrite(bp->b_vp, bp))
891 			VOP_SPECSTRATEGY(bp->b_vp, bp);
892 	} else {
893 		VOP_STRATEGY(bp->b_vp, bp);
894 	}
895 
896 	if ((oldflags & B_ASYNC) == 0) {
897 		int rtval = bufwait(bp);
898 		brelse(bp);
899 		return (rtval);
900 	} else {
901 		/*
902 		 * don't allow the async write to saturate the I/O
903 		 * system.  We will not deadlock here because
904 		 * we are blocking waiting for I/O that is already in-progress
905 		 * to complete. We do not block here if it is the update
906 		 * or syncer daemon trying to clean up as that can lead
907 		 * to deadlock.
908 		 */
909 		if (curthread->td_proc != bufdaemonproc &&
910 		    curthread->td_proc != updateproc)
911 			waitrunningbufspace();
912 	}
913 
914 	return (0);
915 }
916 
917 /*
918  * Complete a background write started from bwrite.
919  */
920 static void
921 vfs_backgroundwritedone(bp)
922 	struct buf *bp;
923 {
924 	struct buf *origbp;
925 
926 	/*
927 	 * Find the original buffer that we are writing.
928 	 */
929 	VI_LOCK(bp->b_vp);
930 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
931 		panic("backgroundwritedone: lost buffer");
932 
933 	/*
934 	 * Clear the BV_BKGRDINPROG flag in the original buffer
935 	 * and awaken it if it is waiting for the write to complete.
936 	 * If BV_BKGRDINPROG is not set in the original buffer it must
937 	 * have been released and re-instantiated - which is not legal.
938 	 */
939 	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
940 	    ("backgroundwritedone: lost buffer2"));
941 	origbp->b_vflags &= ~BV_BKGRDINPROG;
942 	if (origbp->b_vflags & BV_BKGRDWAIT) {
943 		origbp->b_vflags &= ~BV_BKGRDWAIT;
944 		wakeup(&origbp->b_xflags);
945 	}
946 	VI_UNLOCK(bp->b_vp);
947 	/*
948 	 * Process dependencies then return any unfinished ones.
949 	 */
950 	if (LIST_FIRST(&bp->b_dep) != NULL)
951 		buf_complete(bp);
952 	if (LIST_FIRST(&bp->b_dep) != NULL)
953 		buf_movedeps(bp, origbp);
954 
955 	/*
956 	 * This buffer is marked B_NOCACHE, so when it is released
957 	 * by biodone, it will be tossed. We mark it with BIO_READ
958 	 * to avoid biodone doing a second vwakeup.
959 	 */
960 	bp->b_flags |= B_NOCACHE;
961 	bp->b_iocmd = BIO_READ;
962 	bp->b_flags &= ~(B_CACHE | B_DONE);
963 	bp->b_iodone = 0;
964 	bufdone(bp);
965 }
966 
967 /*
968  * Delayed write. (Buffer is marked dirty).  Do not bother writing
969  * anything if the buffer is marked invalid.
970  *
971  * Note that since the buffer must be completely valid, we can safely
972  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
973  * biodone() in order to prevent getblk from writing the buffer
974  * out synchronously.
975  */
976 void
977 bdwrite(struct buf * bp)
978 {
979 	struct thread *td = curthread;
980 	struct vnode *vp;
981 	struct buf *nbp;
982 
983 	GIANT_REQUIRED;
984 
985 	if (BUF_REFCNT(bp) == 0)
986 		panic("bdwrite: buffer is not busy");
987 
988 	if (bp->b_flags & B_INVAL) {
989 		brelse(bp);
990 		return;
991 	}
992 
993 	/*
994 	 * If we have too many dirty buffers, don't create any more.
995 	 * If we are wildly over our limit, then force a complete
996 	 * cleanup. Otherwise, just keep the situation from getting
997 	 * out of control. Note that we have to avoid a recursive
998 	 * disaster and not try to clean up after our own cleanup!
999 	 */
1000 	vp = bp->b_vp;
1001 	VI_LOCK(vp);
1002 	if (td->td_pflags & TDP_COWINPROGRESS) {
1003 		recursiveflushes++;
1004 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
1005 		VI_UNLOCK(vp);
1006 		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1007 		VI_LOCK(vp);
1008 		altbufferflushes++;
1009 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1010 		/*
1011 		 * Try to find a buffer to flush.
1012 		 */
1013 		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1014 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1015 			    buf_countdeps(nbp, 0) ||
1016 			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1017 				continue;
1018 			if (bp == nbp)
1019 				panic("bdwrite: found ourselves");
1020 			VI_UNLOCK(vp);
1021 			if (nbp->b_flags & B_CLUSTEROK) {
1022 				vfs_bio_awrite(nbp);
1023 			} else {
1024 				bremfree(nbp);
1025 				bawrite(nbp);
1026 			}
1027 			VI_LOCK(vp);
1028 			dirtybufferflushes++;
1029 			break;
1030 		}
1031 	}
1032 	VI_UNLOCK(vp);
1033 
1034 	bdirty(bp);
1035 	/*
1036 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1037 	 * true even of NFS now.
1038 	 */
1039 	bp->b_flags |= B_CACHE;
1040 
1041 	/*
1042 	 * This bmap keeps the system from needing to do the bmap later,
1043 	 * perhaps when the system is attempting to do a sync.  Since it
1044 	 * is likely that the indirect block -- or whatever other datastructure
1045 	 * that the filesystem needs is still in memory now, it is a good
1046 	 * thing to do this.  Note also, that if the pageout daemon is
1047 	 * requesting a sync -- there might not be enough memory to do
1048 	 * the bmap then...  So, this is important to do.
1049 	 */
1050 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1051 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1052 	}
1053 
1054 	/*
1055 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1056 	 */
1057 	vfs_setdirty(bp);
1058 
1059 	/*
1060 	 * We need to do this here to satisfy the vnode_pager and the
1061 	 * pageout daemon, so that it thinks that the pages have been
1062 	 * "cleaned".  Note that since the pages are in a delayed write
1063 	 * buffer -- the VFS layer "will" see that the pages get written
1064 	 * out on the next sync, or perhaps the cluster will be completed.
1065 	 */
1066 	vfs_clean_pages(bp);
1067 	bqrelse(bp);
1068 
1069 	/*
1070 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1071 	 * buffers (midpoint between our recovery point and our stall
1072 	 * point).
1073 	 */
1074 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1075 
1076 	/*
1077 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1078 	 * due to the softdep code.
1079 	 */
1080 }
1081 
1082 /*
1083  *	bdirty:
1084  *
1085  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1086  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1087  *	itself to properly update it in the dirty/clean lists.  We mark it
1088  *	B_DONE to ensure that any asynchronization of the buffer properly
1089  *	clears B_DONE ( else a panic will occur later ).
1090  *
1091  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1092  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1093  *	should only be called if the buffer is known-good.
1094  *
1095  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1096  *	count.
1097  *
1098  *	Must be called at splbio().
1099  *	The buffer must be on QUEUE_NONE.
1100  */
1101 void
1102 bdirty(bp)
1103 	struct buf *bp;
1104 {
1105 	KASSERT(bp->b_qindex == QUEUE_NONE,
1106 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1107 	bp->b_flags &= ~(B_RELBUF);
1108 	bp->b_iocmd = BIO_WRITE;
1109 
1110 	if ((bp->b_flags & B_DELWRI) == 0) {
1111 		bp->b_flags |= B_DONE | B_DELWRI;
1112 		reassignbuf(bp);
1113 		atomic_add_int(&numdirtybuffers, 1);
1114 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1115 	}
1116 }
1117 
1118 /*
1119  *	bundirty:
1120  *
1121  *	Clear B_DELWRI for buffer.
1122  *
1123  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1124  *	count.
1125  *
1126  *	Must be called at splbio().
1127  *	The buffer must be on QUEUE_NONE.
1128  */
1129 
1130 void
1131 bundirty(bp)
1132 	struct buf *bp;
1133 {
1134 	KASSERT(bp->b_qindex == QUEUE_NONE,
1135 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1136 
1137 	if (bp->b_flags & B_DELWRI) {
1138 		bp->b_flags &= ~B_DELWRI;
1139 		reassignbuf(bp);
1140 		atomic_subtract_int(&numdirtybuffers, 1);
1141 		numdirtywakeup(lodirtybuffers);
1142 	}
1143 	/*
1144 	 * Since it is now being written, we can clear its deferred write flag.
1145 	 */
1146 	bp->b_flags &= ~B_DEFERRED;
1147 }
1148 
1149 /*
1150  *	bawrite:
1151  *
1152  *	Asynchronous write.  Start output on a buffer, but do not wait for
1153  *	it to complete.  The buffer is released when the output completes.
1154  *
1155  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1156  *	B_INVAL buffers.  Not us.
1157  */
1158 void
1159 bawrite(struct buf * bp)
1160 {
1161 	bp->b_flags |= B_ASYNC;
1162 	(void) bwrite(bp);
1163 }
1164 
1165 /*
1166  *	bwillwrite:
1167  *
1168  *	Called prior to the locking of any vnodes when we are expecting to
1169  *	write.  We do not want to starve the buffer cache with too many
1170  *	dirty buffers so we block here.  By blocking prior to the locking
1171  *	of any vnodes we attempt to avoid the situation where a locked vnode
1172  *	prevents the various system daemons from flushing related buffers.
1173  */
1174 
1175 void
1176 bwillwrite(void)
1177 {
1178 	if (numdirtybuffers >= hidirtybuffers) {
1179 		int s;
1180 
1181 		mtx_lock(&Giant);
1182 		s = splbio();
1183 		mtx_lock(&nblock);
1184 		while (numdirtybuffers >= hidirtybuffers) {
1185 			bd_wakeup(1);
1186 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1187 			msleep(&needsbuffer, &nblock,
1188 			    (PRIBIO + 4), "flswai", 0);
1189 		}
1190 		splx(s);
1191 		mtx_unlock(&nblock);
1192 		mtx_unlock(&Giant);
1193 	}
1194 }
1195 
1196 /*
1197  * Return true if we have too many dirty buffers.
1198  */
1199 int
1200 buf_dirty_count_severe(void)
1201 {
1202 	return(numdirtybuffers >= hidirtybuffers);
1203 }
1204 
1205 /*
1206  *	brelse:
1207  *
1208  *	Release a busy buffer and, if requested, free its resources.  The
1209  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1210  *	to be accessed later as a cache entity or reused for other purposes.
1211  */
1212 void
1213 brelse(struct buf * bp)
1214 {
1215 	int s;
1216 
1217 	GIANT_REQUIRED;
1218 
1219 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1220 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1221 
1222 	s = splbio();
1223 
1224 	if (bp->b_iocmd == BIO_WRITE &&
1225 	    (bp->b_ioflags & BIO_ERROR) &&
1226 	    !(bp->b_flags & B_INVAL)) {
1227 		/*
1228 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1229 		 * pages from being scrapped.  If B_INVAL is set then
1230 		 * this case is not run and the next case is run to
1231 		 * destroy the buffer.  B_INVAL can occur if the buffer
1232 		 * is outside the range supported by the underlying device.
1233 		 */
1234 		bp->b_ioflags &= ~BIO_ERROR;
1235 		bdirty(bp);
1236 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1237 	    (bp->b_ioflags & BIO_ERROR) ||
1238 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1239 		/*
1240 		 * Either a failed I/O or we were asked to free or not
1241 		 * cache the buffer.
1242 		 */
1243 		bp->b_flags |= B_INVAL;
1244 		if (LIST_FIRST(&bp->b_dep) != NULL)
1245 			buf_deallocate(bp);
1246 		if (bp->b_flags & B_DELWRI) {
1247 			atomic_subtract_int(&numdirtybuffers, 1);
1248 			numdirtywakeup(lodirtybuffers);
1249 		}
1250 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1251 		if ((bp->b_flags & B_VMIO) == 0) {
1252 			if (bp->b_bufsize)
1253 				allocbuf(bp, 0);
1254 			if (bp->b_vp)
1255 				brelvp(bp);
1256 		}
1257 	}
1258 
1259 	/*
1260 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1261 	 * is called with B_DELWRI set, the underlying pages may wind up
1262 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1263 	 * because pages associated with a B_DELWRI bp are marked clean.
1264 	 *
1265 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1266 	 * if B_DELWRI is set.
1267 	 *
1268 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1269 	 * on pages to return pages to the VM page queues.
1270 	 */
1271 	if (bp->b_flags & B_DELWRI)
1272 		bp->b_flags &= ~B_RELBUF;
1273 	else if (vm_page_count_severe()) {
1274 		/*
1275 		 * XXX This lock may not be necessary since BKGRDINPROG
1276 		 * cannot be set while we hold the buf lock, it can only be
1277 		 * cleared if it is already pending.
1278 		 */
1279 		if (bp->b_vp) {
1280 			VI_LOCK(bp->b_vp);
1281 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1282 				bp->b_flags |= B_RELBUF;
1283 			VI_UNLOCK(bp->b_vp);
1284 		} else
1285 			bp->b_flags |= B_RELBUF;
1286 	}
1287 
1288 	/*
1289 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1290 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1291 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1292 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1293 	 *
1294 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1295 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1296 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1297 	 *
1298 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1299 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1300 	 * the commit state and we cannot afford to lose the buffer. If the
1301 	 * buffer has a background write in progress, we need to keep it
1302 	 * around to prevent it from being reconstituted and starting a second
1303 	 * background write.
1304 	 */
1305 	if ((bp->b_flags & B_VMIO)
1306 	    && !(bp->b_vp->v_mount != NULL &&
1307 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1308 		 !vn_isdisk(bp->b_vp, NULL) &&
1309 		 (bp->b_flags & B_DELWRI))
1310 	    ) {
1311 
1312 		int i, j, resid;
1313 		vm_page_t m;
1314 		off_t foff;
1315 		vm_pindex_t poff;
1316 		vm_object_t obj;
1317 
1318 		obj = bp->b_object;
1319 
1320 		/*
1321 		 * Get the base offset and length of the buffer.  Note that
1322 		 * in the VMIO case if the buffer block size is not
1323 		 * page-aligned then b_data pointer may not be page-aligned.
1324 		 * But our b_pages[] array *IS* page aligned.
1325 		 *
1326 		 * block sizes less then DEV_BSIZE (usually 512) are not
1327 		 * supported due to the page granularity bits (m->valid,
1328 		 * m->dirty, etc...).
1329 		 *
1330 		 * See man buf(9) for more information
1331 		 */
1332 		resid = bp->b_bufsize;
1333 		foff = bp->b_offset;
1334 		VM_OBJECT_LOCK(obj);
1335 		for (i = 0; i < bp->b_npages; i++) {
1336 			int had_bogus = 0;
1337 
1338 			m = bp->b_pages[i];
1339 
1340 			/*
1341 			 * If we hit a bogus page, fixup *all* the bogus pages
1342 			 * now.
1343 			 */
1344 			if (m == bogus_page) {
1345 				poff = OFF_TO_IDX(bp->b_offset);
1346 				had_bogus = 1;
1347 
1348 				for (j = i; j < bp->b_npages; j++) {
1349 					vm_page_t mtmp;
1350 					mtmp = bp->b_pages[j];
1351 					if (mtmp == bogus_page) {
1352 						mtmp = vm_page_lookup(obj, poff + j);
1353 						if (!mtmp) {
1354 							panic("brelse: page missing\n");
1355 						}
1356 						bp->b_pages[j] = mtmp;
1357 					}
1358 				}
1359 
1360 				if ((bp->b_flags & B_INVAL) == 0) {
1361 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1362 				}
1363 				m = bp->b_pages[i];
1364 			}
1365 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1366 				int poffset = foff & PAGE_MASK;
1367 				int presid = resid > (PAGE_SIZE - poffset) ?
1368 					(PAGE_SIZE - poffset) : resid;
1369 
1370 				KASSERT(presid >= 0, ("brelse: extra page"));
1371 				vm_page_lock_queues();
1372 				vm_page_set_invalid(m, poffset, presid);
1373 				vm_page_unlock_queues();
1374 				if (had_bogus)
1375 					printf("avoided corruption bug in bogus_page/brelse code\n");
1376 			}
1377 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1378 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1379 		}
1380 		VM_OBJECT_UNLOCK(obj);
1381 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1382 			vfs_vmio_release(bp);
1383 
1384 	} else if (bp->b_flags & B_VMIO) {
1385 
1386 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1387 			vfs_vmio_release(bp);
1388 		}
1389 
1390 	}
1391 
1392 	if (bp->b_qindex != QUEUE_NONE)
1393 		panic("brelse: free buffer onto another queue???");
1394 	if (BUF_REFCNT(bp) > 1) {
1395 		/* do not release to free list */
1396 		BUF_UNLOCK(bp);
1397 		splx(s);
1398 		return;
1399 	}
1400 
1401 	/* enqueue */
1402 	mtx_lock(&bqlock);
1403 
1404 	/* buffers with no memory */
1405 	if (bp->b_bufsize == 0) {
1406 		bp->b_flags |= B_INVAL;
1407 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1408 		if (bp->b_vflags & BV_BKGRDINPROG)
1409 			panic("losing buffer 1");
1410 		if (bp->b_kvasize) {
1411 			bp->b_qindex = QUEUE_EMPTYKVA;
1412 		} else {
1413 			bp->b_qindex = QUEUE_EMPTY;
1414 		}
1415 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1416 		bp->b_dev = NULL;
1417 	/* buffers with junk contents */
1418 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1419 	    (bp->b_ioflags & BIO_ERROR)) {
1420 		bp->b_flags |= B_INVAL;
1421 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1422 		if (bp->b_vflags & BV_BKGRDINPROG)
1423 			panic("losing buffer 2");
1424 		bp->b_qindex = QUEUE_CLEAN;
1425 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1426 		bp->b_dev = NULL;
1427 	/* remaining buffers */
1428 	} else {
1429 		if (bp->b_flags & B_DELWRI)
1430 			bp->b_qindex = QUEUE_DIRTY;
1431 		else
1432 			bp->b_qindex = QUEUE_CLEAN;
1433 		if (bp->b_flags & B_AGE)
1434 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1435 		else
1436 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1437 	}
1438 	mtx_unlock(&bqlock);
1439 
1440 	/*
1441 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1442 	 * placed the buffer on the correct queue.  We must also disassociate
1443 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1444 	 * find it.
1445 	 */
1446 	if (bp->b_flags & B_INVAL) {
1447 		if (bp->b_flags & B_DELWRI)
1448 			bundirty(bp);
1449 		if (bp->b_vp)
1450 			brelvp(bp);
1451 	}
1452 
1453 	/*
1454 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1455 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1456 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1457 	 * if B_INVAL is set ).
1458 	 */
1459 
1460 	if (!(bp->b_flags & B_DELWRI))
1461 		bufcountwakeup();
1462 
1463 	/*
1464 	 * Something we can maybe free or reuse
1465 	 */
1466 	if (bp->b_bufsize || bp->b_kvasize)
1467 		bufspacewakeup();
1468 
1469 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1470 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1471 		panic("brelse: not dirty");
1472 	/* unlock */
1473 	BUF_UNLOCK(bp);
1474 	splx(s);
1475 }
1476 
1477 /*
1478  * Release a buffer back to the appropriate queue but do not try to free
1479  * it.  The buffer is expected to be used again soon.
1480  *
1481  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1482  * biodone() to requeue an async I/O on completion.  It is also used when
1483  * known good buffers need to be requeued but we think we may need the data
1484  * again soon.
1485  *
1486  * XXX we should be able to leave the B_RELBUF hint set on completion.
1487  */
1488 void
1489 bqrelse(struct buf * bp)
1490 {
1491 	int s;
1492 
1493 	s = splbio();
1494 
1495 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1496 
1497 	if (bp->b_qindex != QUEUE_NONE)
1498 		panic("bqrelse: free buffer onto another queue???");
1499 	if (BUF_REFCNT(bp) > 1) {
1500 		/* do not release to free list */
1501 		BUF_UNLOCK(bp);
1502 		splx(s);
1503 		return;
1504 	}
1505 	mtx_lock(&bqlock);
1506 	/* buffers with stale but valid contents */
1507 	if (bp->b_flags & B_DELWRI) {
1508 		bp->b_qindex = QUEUE_DIRTY;
1509 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1510 	} else {
1511 		/*
1512 		 * XXX This lock may not be necessary since BKGRDINPROG
1513 		 * cannot be set while we hold the buf lock, it can only be
1514 		 * cleared if it is already pending.
1515 		 */
1516 		VI_LOCK(bp->b_vp);
1517 		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1518 			VI_UNLOCK(bp->b_vp);
1519 			bp->b_qindex = QUEUE_CLEAN;
1520 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1521 			    b_freelist);
1522 		} else {
1523 			/*
1524 			 * We are too low on memory, we have to try to free
1525 			 * the buffer (most importantly: the wired pages
1526 			 * making up its backing store) *now*.
1527 			 */
1528 			VI_UNLOCK(bp->b_vp);
1529 			mtx_unlock(&bqlock);
1530 			splx(s);
1531 			brelse(bp);
1532 			return;
1533 		}
1534 	}
1535 	mtx_unlock(&bqlock);
1536 
1537 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1538 		bufcountwakeup();
1539 
1540 	/*
1541 	 * Something we can maybe free or reuse.
1542 	 */
1543 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1544 		bufspacewakeup();
1545 
1546 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1547 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1548 		panic("bqrelse: not dirty");
1549 	/* unlock */
1550 	BUF_UNLOCK(bp);
1551 	splx(s);
1552 }
1553 
1554 /* Give pages used by the bp back to the VM system (where possible) */
1555 static void
1556 vfs_vmio_release(bp)
1557 	struct buf *bp;
1558 {
1559 	int i;
1560 	vm_page_t m;
1561 
1562 	GIANT_REQUIRED;
1563 	VM_OBJECT_LOCK(bp->b_object);
1564 	vm_page_lock_queues();
1565 	for (i = 0; i < bp->b_npages; i++) {
1566 		m = bp->b_pages[i];
1567 		bp->b_pages[i] = NULL;
1568 		/*
1569 		 * In order to keep page LRU ordering consistent, put
1570 		 * everything on the inactive queue.
1571 		 */
1572 		vm_page_unwire(m, 0);
1573 		/*
1574 		 * We don't mess with busy pages, it is
1575 		 * the responsibility of the process that
1576 		 * busied the pages to deal with them.
1577 		 */
1578 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1579 			continue;
1580 
1581 		if (m->wire_count == 0) {
1582 			/*
1583 			 * Might as well free the page if we can and it has
1584 			 * no valid data.  We also free the page if the
1585 			 * buffer was used for direct I/O
1586 			 */
1587 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1588 			    m->hold_count == 0) {
1589 				vm_page_busy(m);
1590 				pmap_remove_all(m);
1591 				vm_page_free(m);
1592 			} else if (bp->b_flags & B_DIRECT) {
1593 				vm_page_try_to_free(m);
1594 			} else if (vm_page_count_severe()) {
1595 				vm_page_try_to_cache(m);
1596 			}
1597 		}
1598 	}
1599 	vm_page_unlock_queues();
1600 	VM_OBJECT_UNLOCK(bp->b_object);
1601 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1602 
1603 	if (bp->b_bufsize) {
1604 		bufspacewakeup();
1605 		bp->b_bufsize = 0;
1606 	}
1607 	bp->b_npages = 0;
1608 	bp->b_flags &= ~B_VMIO;
1609 	if (bp->b_vp)
1610 		brelvp(bp);
1611 }
1612 
1613 /*
1614  * Check to see if a block at a particular lbn is available for a clustered
1615  * write.
1616  */
1617 static int
1618 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1619 {
1620 	struct buf *bpa;
1621 	int match;
1622 
1623 	match = 0;
1624 
1625 	/* If the buf isn't in core skip it */
1626 	if ((bpa = gbincore(vp, lblkno)) == NULL)
1627 		return (0);
1628 
1629 	/* If the buf is busy we don't want to wait for it */
1630 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1631 		return (0);
1632 
1633 	/* Only cluster with valid clusterable delayed write buffers */
1634 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1635 	    (B_DELWRI | B_CLUSTEROK))
1636 		goto done;
1637 
1638 	if (bpa->b_bufsize != size)
1639 		goto done;
1640 
1641 	/*
1642 	 * Check to see if it is in the expected place on disk and that the
1643 	 * block has been mapped.
1644 	 */
1645 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1646 		match = 1;
1647 done:
1648 	BUF_UNLOCK(bpa);
1649 	return (match);
1650 }
1651 
1652 /*
1653  *	vfs_bio_awrite:
1654  *
1655  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1656  *	This is much better then the old way of writing only one buffer at
1657  *	a time.  Note that we may not be presented with the buffers in the
1658  *	correct order, so we search for the cluster in both directions.
1659  */
1660 int
1661 vfs_bio_awrite(struct buf * bp)
1662 {
1663 	int i;
1664 	int j;
1665 	daddr_t lblkno = bp->b_lblkno;
1666 	struct vnode *vp = bp->b_vp;
1667 	int s;
1668 	int ncl;
1669 	int nwritten;
1670 	int size;
1671 	int maxcl;
1672 
1673 	s = splbio();
1674 	/*
1675 	 * right now we support clustered writing only to regular files.  If
1676 	 * we find a clusterable block we could be in the middle of a cluster
1677 	 * rather then at the beginning.
1678 	 */
1679 	if ((vp->v_type == VREG) &&
1680 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1681 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1682 
1683 		size = vp->v_mount->mnt_stat.f_iosize;
1684 		maxcl = MAXPHYS / size;
1685 
1686 		VI_LOCK(vp);
1687 		for (i = 1; i < maxcl; i++)
1688 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1689 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1690 				break;
1691 
1692 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1693 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1694 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1695 				break;
1696 
1697 		VI_UNLOCK(vp);
1698 		--j;
1699 		ncl = i + j;
1700 		/*
1701 		 * this is a possible cluster write
1702 		 */
1703 		if (ncl != 1) {
1704 			BUF_UNLOCK(bp);
1705 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1706 			splx(s);
1707 			return nwritten;
1708 		}
1709 	}
1710 
1711 	bremfree(bp);
1712 	bp->b_flags |= B_ASYNC;
1713 
1714 	splx(s);
1715 	/*
1716 	 * default (old) behavior, writing out only one block
1717 	 *
1718 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1719 	 */
1720 	nwritten = bp->b_bufsize;
1721 	(void) bwrite(bp);
1722 
1723 	return nwritten;
1724 }
1725 
1726 /*
1727  *	getnewbuf:
1728  *
1729  *	Find and initialize a new buffer header, freeing up existing buffers
1730  *	in the bufqueues as necessary.  The new buffer is returned locked.
1731  *
1732  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1733  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1734  *
1735  *	We block if:
1736  *		We have insufficient buffer headers
1737  *		We have insufficient buffer space
1738  *		buffer_map is too fragmented ( space reservation fails )
1739  *		If we have to flush dirty buffers ( but we try to avoid this )
1740  *
1741  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1742  *	Instead we ask the buf daemon to do it for us.  We attempt to
1743  *	avoid piecemeal wakeups of the pageout daemon.
1744  */
1745 
1746 static struct buf *
1747 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1748 {
1749 	struct buf *bp;
1750 	struct buf *nbp;
1751 	int defrag = 0;
1752 	int nqindex;
1753 	static int flushingbufs;
1754 
1755 	GIANT_REQUIRED;
1756 
1757 	/*
1758 	 * We can't afford to block since we might be holding a vnode lock,
1759 	 * which may prevent system daemons from running.  We deal with
1760 	 * low-memory situations by proactively returning memory and running
1761 	 * async I/O rather then sync I/O.
1762 	 */
1763 
1764 	atomic_add_int(&getnewbufcalls, 1);
1765 	atomic_subtract_int(&getnewbufrestarts, 1);
1766 restart:
1767 	atomic_add_int(&getnewbufrestarts, 1);
1768 
1769 	/*
1770 	 * Setup for scan.  If we do not have enough free buffers,
1771 	 * we setup a degenerate case that immediately fails.  Note
1772 	 * that if we are specially marked process, we are allowed to
1773 	 * dip into our reserves.
1774 	 *
1775 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1776 	 *
1777 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1778 	 * However, there are a number of cases (defragging, reusing, ...)
1779 	 * where we cannot backup.
1780 	 */
1781 	mtx_lock(&bqlock);
1782 	nqindex = QUEUE_EMPTYKVA;
1783 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1784 
1785 	if (nbp == NULL) {
1786 		/*
1787 		 * If no EMPTYKVA buffers and we are either
1788 		 * defragging or reusing, locate a CLEAN buffer
1789 		 * to free or reuse.  If bufspace useage is low
1790 		 * skip this step so we can allocate a new buffer.
1791 		 */
1792 		if (defrag || bufspace >= lobufspace) {
1793 			nqindex = QUEUE_CLEAN;
1794 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1795 		}
1796 
1797 		/*
1798 		 * If we could not find or were not allowed to reuse a
1799 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1800 		 * buffer.  We can only use an EMPTY buffer if allocating
1801 		 * its KVA would not otherwise run us out of buffer space.
1802 		 */
1803 		if (nbp == NULL && defrag == 0 &&
1804 		    bufspace + maxsize < hibufspace) {
1805 			nqindex = QUEUE_EMPTY;
1806 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1807 		}
1808 	}
1809 
1810 	/*
1811 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1812 	 * depending.
1813 	 */
1814 
1815 	while ((bp = nbp) != NULL) {
1816 		int qindex = nqindex;
1817 
1818 		/*
1819 		 * Calculate next bp ( we can only use it if we do not block
1820 		 * or do other fancy things ).
1821 		 */
1822 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1823 			switch(qindex) {
1824 			case QUEUE_EMPTY:
1825 				nqindex = QUEUE_EMPTYKVA;
1826 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1827 					break;
1828 				/* FALLTHROUGH */
1829 			case QUEUE_EMPTYKVA:
1830 				nqindex = QUEUE_CLEAN;
1831 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1832 					break;
1833 				/* FALLTHROUGH */
1834 			case QUEUE_CLEAN:
1835 				/*
1836 				 * nbp is NULL.
1837 				 */
1838 				break;
1839 			}
1840 		}
1841 		if (bp->b_vp) {
1842 			VI_LOCK(bp->b_vp);
1843 			if (bp->b_vflags & BV_BKGRDINPROG) {
1844 				VI_UNLOCK(bp->b_vp);
1845 				continue;
1846 			}
1847 			VI_UNLOCK(bp->b_vp);
1848 		}
1849 
1850 		/*
1851 		 * Sanity Checks
1852 		 */
1853 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1854 
1855 		/*
1856 		 * Note: we no longer distinguish between VMIO and non-VMIO
1857 		 * buffers.
1858 		 */
1859 
1860 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1861 
1862 		/*
1863 		 * If we are defragging then we need a buffer with
1864 		 * b_kvasize != 0.  XXX this situation should no longer
1865 		 * occur, if defrag is non-zero the buffer's b_kvasize
1866 		 * should also be non-zero at this point.  XXX
1867 		 */
1868 		if (defrag && bp->b_kvasize == 0) {
1869 			printf("Warning: defrag empty buffer %p\n", bp);
1870 			continue;
1871 		}
1872 
1873 		/*
1874 		 * Start freeing the bp.  This is somewhat involved.  nbp
1875 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1876 		 */
1877 
1878 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1879 			panic("getnewbuf: locked buf");
1880 		bremfreel(bp);
1881 		mtx_unlock(&bqlock);
1882 
1883 		if (qindex == QUEUE_CLEAN) {
1884 			if (bp->b_flags & B_VMIO) {
1885 				bp->b_flags &= ~B_ASYNC;
1886 				vfs_vmio_release(bp);
1887 			}
1888 			if (bp->b_vp)
1889 				brelvp(bp);
1890 		}
1891 
1892 		/*
1893 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1894 		 * the scan from this point on.
1895 		 *
1896 		 * Get the rest of the buffer freed up.  b_kva* is still
1897 		 * valid after this operation.
1898 		 */
1899 
1900 		if (bp->b_rcred != NOCRED) {
1901 			crfree(bp->b_rcred);
1902 			bp->b_rcred = NOCRED;
1903 		}
1904 		if (bp->b_wcred != NOCRED) {
1905 			crfree(bp->b_wcred);
1906 			bp->b_wcred = NOCRED;
1907 		}
1908 		if (LIST_FIRST(&bp->b_dep) != NULL)
1909 			buf_deallocate(bp);
1910 		if (bp->b_vflags & BV_BKGRDINPROG)
1911 			panic("losing buffer 3");
1912 
1913 		if (bp->b_bufsize)
1914 			allocbuf(bp, 0);
1915 
1916 		bp->b_flags = 0;
1917 		bp->b_ioflags = 0;
1918 		bp->b_xflags = 0;
1919 		bp->b_vflags = 0;
1920 		bp->b_dev = NULL;
1921 		bp->b_vp = NULL;
1922 		bp->b_blkno = bp->b_lblkno = 0;
1923 		bp->b_offset = NOOFFSET;
1924 		bp->b_iodone = 0;
1925 		bp->b_error = 0;
1926 		bp->b_resid = 0;
1927 		bp->b_bcount = 0;
1928 		bp->b_npages = 0;
1929 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1930 		bp->b_magic = B_MAGIC_BIO;
1931 		bp->b_op = &buf_ops_bio;
1932 		bp->b_object = NULL;
1933 
1934 		LIST_INIT(&bp->b_dep);
1935 
1936 		/*
1937 		 * If we are defragging then free the buffer.
1938 		 */
1939 		if (defrag) {
1940 			bp->b_flags |= B_INVAL;
1941 			bfreekva(bp);
1942 			brelse(bp);
1943 			defrag = 0;
1944 			goto restart;
1945 		}
1946 
1947 		/*
1948 		 * If we are overcomitted then recover the buffer and its
1949 		 * KVM space.  This occurs in rare situations when multiple
1950 		 * processes are blocked in getnewbuf() or allocbuf().
1951 		 */
1952 		if (bufspace >= hibufspace)
1953 			flushingbufs = 1;
1954 		if (flushingbufs && bp->b_kvasize != 0) {
1955 			bp->b_flags |= B_INVAL;
1956 			bfreekva(bp);
1957 			brelse(bp);
1958 			goto restart;
1959 		}
1960 		if (bufspace < lobufspace)
1961 			flushingbufs = 0;
1962 		break;
1963 	}
1964 
1965 	/*
1966 	 * If we exhausted our list, sleep as appropriate.  We may have to
1967 	 * wakeup various daemons and write out some dirty buffers.
1968 	 *
1969 	 * Generally we are sleeping due to insufficient buffer space.
1970 	 */
1971 
1972 	if (bp == NULL) {
1973 		int flags;
1974 		char *waitmsg;
1975 
1976 		mtx_unlock(&bqlock);
1977 		if (defrag) {
1978 			flags = VFS_BIO_NEED_BUFSPACE;
1979 			waitmsg = "nbufkv";
1980 		} else if (bufspace >= hibufspace) {
1981 			waitmsg = "nbufbs";
1982 			flags = VFS_BIO_NEED_BUFSPACE;
1983 		} else {
1984 			waitmsg = "newbuf";
1985 			flags = VFS_BIO_NEED_ANY;
1986 		}
1987 
1988 		bd_speedup();	/* heeeelp */
1989 
1990 		mtx_lock(&nblock);
1991 		needsbuffer |= flags;
1992 		while (needsbuffer & flags) {
1993 			if (msleep(&needsbuffer, &nblock,
1994 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1995 				mtx_unlock(&nblock);
1996 				return (NULL);
1997 			}
1998 		}
1999 		mtx_unlock(&nblock);
2000 	} else {
2001 		/*
2002 		 * We finally have a valid bp.  We aren't quite out of the
2003 		 * woods, we still have to reserve kva space.  In order
2004 		 * to keep fragmentation sane we only allocate kva in
2005 		 * BKVASIZE chunks.
2006 		 */
2007 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2008 
2009 		if (maxsize != bp->b_kvasize) {
2010 			vm_offset_t addr = 0;
2011 
2012 			bfreekva(bp);
2013 
2014 			if (vm_map_findspace(buffer_map,
2015 				vm_map_min(buffer_map), maxsize, &addr)) {
2016 				/*
2017 				 * Uh oh.  Buffer map is to fragmented.  We
2018 				 * must defragment the map.
2019 				 */
2020 				atomic_add_int(&bufdefragcnt, 1);
2021 				defrag = 1;
2022 				bp->b_flags |= B_INVAL;
2023 				brelse(bp);
2024 				goto restart;
2025 			}
2026 			if (addr) {
2027 				vm_map_insert(buffer_map, NULL, 0,
2028 					addr, addr + maxsize,
2029 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2030 
2031 				bp->b_kvabase = (caddr_t) addr;
2032 				bp->b_kvasize = maxsize;
2033 				atomic_add_int(&bufspace, bp->b_kvasize);
2034 				atomic_add_int(&bufreusecnt, 1);
2035 			}
2036 		}
2037 		bp->b_saveaddr = bp->b_kvabase;
2038 		bp->b_data = bp->b_saveaddr;
2039 	}
2040 	return(bp);
2041 }
2042 
2043 /*
2044  *	buf_daemon:
2045  *
2046  *	buffer flushing daemon.  Buffers are normally flushed by the
2047  *	update daemon but if it cannot keep up this process starts to
2048  *	take the load in an attempt to prevent getnewbuf() from blocking.
2049  */
2050 
2051 static struct kproc_desc buf_kp = {
2052 	"bufdaemon",
2053 	buf_daemon,
2054 	&bufdaemonproc
2055 };
2056 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2057 
2058 static void
2059 buf_daemon()
2060 {
2061 	int s;
2062 
2063 	mtx_lock(&Giant);
2064 
2065 	/*
2066 	 * This process needs to be suspended prior to shutdown sync.
2067 	 */
2068 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2069 	    SHUTDOWN_PRI_LAST);
2070 
2071 	/*
2072 	 * This process is allowed to take the buffer cache to the limit
2073 	 */
2074 	s = splbio();
2075 	mtx_lock(&bdlock);
2076 
2077 	for (;;) {
2078 		bd_request = 0;
2079 		mtx_unlock(&bdlock);
2080 
2081 		kthread_suspend_check(bufdaemonproc);
2082 
2083 		/*
2084 		 * Do the flush.  Limit the amount of in-transit I/O we
2085 		 * allow to build up, otherwise we would completely saturate
2086 		 * the I/O system.  Wakeup any waiting processes before we
2087 		 * normally would so they can run in parallel with our drain.
2088 		 */
2089 		while (numdirtybuffers > lodirtybuffers) {
2090 			if (flushbufqueues(0) == 0) {
2091 				/*
2092 				 * Could not find any buffers without rollback
2093 				 * dependencies, so just write the first one
2094 				 * in the hopes of eventually making progress.
2095 				 */
2096 				flushbufqueues(1);
2097 				break;
2098 			}
2099 			waitrunningbufspace();
2100 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2101 		}
2102 
2103 		/*
2104 		 * Only clear bd_request if we have reached our low water
2105 		 * mark.  The buf_daemon normally waits 1 second and
2106 		 * then incrementally flushes any dirty buffers that have
2107 		 * built up, within reason.
2108 		 *
2109 		 * If we were unable to hit our low water mark and couldn't
2110 		 * find any flushable buffers, we sleep half a second.
2111 		 * Otherwise we loop immediately.
2112 		 */
2113 		mtx_lock(&bdlock);
2114 		if (numdirtybuffers <= lodirtybuffers) {
2115 			/*
2116 			 * We reached our low water mark, reset the
2117 			 * request and sleep until we are needed again.
2118 			 * The sleep is just so the suspend code works.
2119 			 */
2120 			bd_request = 0;
2121 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2122 		} else {
2123 			/*
2124 			 * We couldn't find any flushable dirty buffers but
2125 			 * still have too many dirty buffers, we
2126 			 * have to sleep and try again.  (rare)
2127 			 */
2128 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2129 		}
2130 	}
2131 }
2132 
2133 /*
2134  *	flushbufqueues:
2135  *
2136  *	Try to flush a buffer in the dirty queue.  We must be careful to
2137  *	free up B_INVAL buffers instead of write them, which NFS is
2138  *	particularly sensitive to.
2139  */
2140 int flushwithdeps = 0;
2141 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2142     0, "Number of buffers flushed with dependecies that require rollbacks");
2143 static int
2144 flushbufqueues(int flushdeps)
2145 {
2146 	struct thread *td = curthread;
2147 	struct vnode *vp;
2148 	struct mount *mp;
2149 	struct buf *bp;
2150 	int hasdeps;
2151 
2152 	mtx_lock(&bqlock);
2153 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2154 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2155 			continue;
2156 		KASSERT((bp->b_flags & B_DELWRI),
2157 		    ("unexpected clean buffer %p", bp));
2158 		VI_LOCK(bp->b_vp);
2159 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2160 			VI_UNLOCK(bp->b_vp);
2161 			BUF_UNLOCK(bp);
2162 			continue;
2163 		}
2164 		VI_UNLOCK(bp->b_vp);
2165 		if (bp->b_flags & B_INVAL) {
2166 			bremfreel(bp);
2167 			mtx_unlock(&bqlock);
2168 			brelse(bp);
2169 			return (1);
2170 		}
2171 
2172 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2173 			if (flushdeps == 0) {
2174 				BUF_UNLOCK(bp);
2175 				continue;
2176 			}
2177 			hasdeps = 1;
2178 		} else
2179 			hasdeps = 0;
2180 		/*
2181 		 * We must hold the lock on a vnode before writing
2182 		 * one of its buffers. Otherwise we may confuse, or
2183 		 * in the case of a snapshot vnode, deadlock the
2184 		 * system.
2185 		 *
2186 		 * The lock order here is the reverse of the normal
2187 		 * of vnode followed by buf lock.  This is ok because
2188 		 * the NOWAIT will prevent deadlock.
2189 		 */
2190 		vp = bp->b_vp;
2191 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2192 			BUF_UNLOCK(bp);
2193 			continue;
2194 		}
2195 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2196 			mtx_unlock(&bqlock);
2197 			vfs_bio_awrite(bp);
2198 			vn_finished_write(mp);
2199 			VOP_UNLOCK(vp, 0, td);
2200 			flushwithdeps += hasdeps;
2201 			return (1);
2202 		}
2203 		vn_finished_write(mp);
2204 		BUF_UNLOCK(bp);
2205 	}
2206 	mtx_unlock(&bqlock);
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Check to see if a block is currently memory resident.
2212  */
2213 struct buf *
2214 incore(struct vnode * vp, daddr_t blkno)
2215 {
2216 	struct buf *bp;
2217 
2218 	int s = splbio();
2219 	VI_LOCK(vp);
2220 	bp = gbincore(vp, blkno);
2221 	VI_UNLOCK(vp);
2222 	splx(s);
2223 	return (bp);
2224 }
2225 
2226 /*
2227  * Returns true if no I/O is needed to access the
2228  * associated VM object.  This is like incore except
2229  * it also hunts around in the VM system for the data.
2230  */
2231 
2232 int
2233 inmem(struct vnode * vp, daddr_t blkno)
2234 {
2235 	vm_object_t obj;
2236 	vm_offset_t toff, tinc, size;
2237 	vm_page_t m;
2238 	vm_ooffset_t off;
2239 
2240 	GIANT_REQUIRED;
2241 	ASSERT_VOP_LOCKED(vp, "inmem");
2242 
2243 	if (incore(vp, blkno))
2244 		return 1;
2245 	if (vp->v_mount == NULL)
2246 		return 0;
2247 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2248 		return 0;
2249 
2250 	size = PAGE_SIZE;
2251 	if (size > vp->v_mount->mnt_stat.f_iosize)
2252 		size = vp->v_mount->mnt_stat.f_iosize;
2253 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2254 
2255 	VM_OBJECT_LOCK(obj);
2256 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2257 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2258 		if (!m)
2259 			goto notinmem;
2260 		tinc = size;
2261 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2262 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2263 		if (vm_page_is_valid(m,
2264 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2265 			goto notinmem;
2266 	}
2267 	VM_OBJECT_UNLOCK(obj);
2268 	return 1;
2269 
2270 notinmem:
2271 	VM_OBJECT_UNLOCK(obj);
2272 	return (0);
2273 }
2274 
2275 /*
2276  *	vfs_setdirty:
2277  *
2278  *	Sets the dirty range for a buffer based on the status of the dirty
2279  *	bits in the pages comprising the buffer.
2280  *
2281  *	The range is limited to the size of the buffer.
2282  *
2283  *	This routine is primarily used by NFS, but is generalized for the
2284  *	B_VMIO case.
2285  */
2286 static void
2287 vfs_setdirty(struct buf *bp)
2288 {
2289 	int i;
2290 	vm_object_t object;
2291 
2292 	GIANT_REQUIRED;
2293 	/*
2294 	 * Degenerate case - empty buffer
2295 	 */
2296 
2297 	if (bp->b_bufsize == 0)
2298 		return;
2299 
2300 	/*
2301 	 * We qualify the scan for modified pages on whether the
2302 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2303 	 * is not cleared simply by protecting pages off.
2304 	 */
2305 
2306 	if ((bp->b_flags & B_VMIO) == 0)
2307 		return;
2308 
2309 	object = bp->b_pages[0]->object;
2310 	VM_OBJECT_LOCK(object);
2311 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2312 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2313 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2314 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2315 
2316 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2317 		vm_offset_t boffset;
2318 		vm_offset_t eoffset;
2319 
2320 		vm_page_lock_queues();
2321 		/*
2322 		 * test the pages to see if they have been modified directly
2323 		 * by users through the VM system.
2324 		 */
2325 		for (i = 0; i < bp->b_npages; i++)
2326 			vm_page_test_dirty(bp->b_pages[i]);
2327 
2328 		/*
2329 		 * Calculate the encompassing dirty range, boffset and eoffset,
2330 		 * (eoffset - boffset) bytes.
2331 		 */
2332 
2333 		for (i = 0; i < bp->b_npages; i++) {
2334 			if (bp->b_pages[i]->dirty)
2335 				break;
2336 		}
2337 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2338 
2339 		for (i = bp->b_npages - 1; i >= 0; --i) {
2340 			if (bp->b_pages[i]->dirty) {
2341 				break;
2342 			}
2343 		}
2344 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2345 
2346 		vm_page_unlock_queues();
2347 		/*
2348 		 * Fit it to the buffer.
2349 		 */
2350 
2351 		if (eoffset > bp->b_bcount)
2352 			eoffset = bp->b_bcount;
2353 
2354 		/*
2355 		 * If we have a good dirty range, merge with the existing
2356 		 * dirty range.
2357 		 */
2358 
2359 		if (boffset < eoffset) {
2360 			if (bp->b_dirtyoff > boffset)
2361 				bp->b_dirtyoff = boffset;
2362 			if (bp->b_dirtyend < eoffset)
2363 				bp->b_dirtyend = eoffset;
2364 		}
2365 	}
2366 	VM_OBJECT_UNLOCK(object);
2367 }
2368 
2369 /*
2370  *	getblk:
2371  *
2372  *	Get a block given a specified block and offset into a file/device.
2373  *	The buffers B_DONE bit will be cleared on return, making it almost
2374  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2375  *	return.  The caller should clear B_INVAL prior to initiating a
2376  *	READ.
2377  *
2378  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2379  *	an existing buffer.
2380  *
2381  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2382  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2383  *	and then cleared based on the backing VM.  If the previous buffer is
2384  *	non-0-sized but invalid, B_CACHE will be cleared.
2385  *
2386  *	If getblk() must create a new buffer, the new buffer is returned with
2387  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2388  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2389  *	backing VM.
2390  *
2391  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2392  *	B_CACHE bit is clear.
2393  *
2394  *	What this means, basically, is that the caller should use B_CACHE to
2395  *	determine whether the buffer is fully valid or not and should clear
2396  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2397  *	the buffer by loading its data area with something, the caller needs
2398  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2399  *	the caller should set B_CACHE ( as an optimization ), else the caller
2400  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2401  *	a write attempt or if it was a successfull read.  If the caller
2402  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2403  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2404  */
2405 struct buf *
2406 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2407     int flags)
2408 {
2409 	struct buf *bp;
2410 	int s;
2411 	int error;
2412 	ASSERT_VOP_LOCKED(vp, "getblk");
2413 
2414 	if (size > MAXBSIZE)
2415 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2416 
2417 	s = splbio();
2418 loop:
2419 	/*
2420 	 * Block if we are low on buffers.   Certain processes are allowed
2421 	 * to completely exhaust the buffer cache.
2422          *
2423          * If this check ever becomes a bottleneck it may be better to
2424          * move it into the else, when gbincore() fails.  At the moment
2425          * it isn't a problem.
2426 	 *
2427 	 * XXX remove if 0 sections (clean this up after its proven)
2428          */
2429 	if (numfreebuffers == 0) {
2430 		if (curthread == PCPU_GET(idlethread))
2431 			return NULL;
2432 		mtx_lock(&nblock);
2433 		needsbuffer |= VFS_BIO_NEED_ANY;
2434 		mtx_unlock(&nblock);
2435 	}
2436 
2437 	VI_LOCK(vp);
2438 	if ((bp = gbincore(vp, blkno))) {
2439 		int lockflags;
2440 		/*
2441 		 * Buffer is in-core.  If the buffer is not busy, it must
2442 		 * be on a queue.
2443 		 */
2444 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2445 
2446 		if (flags & GB_LOCK_NOWAIT)
2447 			lockflags |= LK_NOWAIT;
2448 
2449 		error = BUF_TIMELOCK(bp, lockflags,
2450 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2451 
2452 		/*
2453 		 * If we slept and got the lock we have to restart in case
2454 		 * the buffer changed identities.
2455 		 */
2456 		if (error == ENOLCK)
2457 			goto loop;
2458 		/* We timed out or were interrupted. */
2459 		else if (error)
2460 			return (NULL);
2461 
2462 		/*
2463 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2464 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2465 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2466 		 * backing VM cache.
2467 		 */
2468 		if (bp->b_flags & B_INVAL)
2469 			bp->b_flags &= ~B_CACHE;
2470 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2471 			bp->b_flags |= B_CACHE;
2472 		bremfree(bp);
2473 
2474 		/*
2475 		 * check for size inconsistancies for non-VMIO case.
2476 		 */
2477 
2478 		if (bp->b_bcount != size) {
2479 			if ((bp->b_flags & B_VMIO) == 0 ||
2480 			    (size > bp->b_kvasize)) {
2481 				if (bp->b_flags & B_DELWRI) {
2482 					bp->b_flags |= B_NOCACHE;
2483 					bwrite(bp);
2484 				} else {
2485 					if ((bp->b_flags & B_VMIO) &&
2486 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2487 						bp->b_flags |= B_RELBUF;
2488 						brelse(bp);
2489 					} else {
2490 						bp->b_flags |= B_NOCACHE;
2491 						bwrite(bp);
2492 					}
2493 				}
2494 				goto loop;
2495 			}
2496 		}
2497 
2498 		/*
2499 		 * If the size is inconsistant in the VMIO case, we can resize
2500 		 * the buffer.  This might lead to B_CACHE getting set or
2501 		 * cleared.  If the size has not changed, B_CACHE remains
2502 		 * unchanged from its previous state.
2503 		 */
2504 
2505 		if (bp->b_bcount != size)
2506 			allocbuf(bp, size);
2507 
2508 		KASSERT(bp->b_offset != NOOFFSET,
2509 		    ("getblk: no buffer offset"));
2510 
2511 		/*
2512 		 * A buffer with B_DELWRI set and B_CACHE clear must
2513 		 * be committed before we can return the buffer in
2514 		 * order to prevent the caller from issuing a read
2515 		 * ( due to B_CACHE not being set ) and overwriting
2516 		 * it.
2517 		 *
2518 		 * Most callers, including NFS and FFS, need this to
2519 		 * operate properly either because they assume they
2520 		 * can issue a read if B_CACHE is not set, or because
2521 		 * ( for example ) an uncached B_DELWRI might loop due
2522 		 * to softupdates re-dirtying the buffer.  In the latter
2523 		 * case, B_CACHE is set after the first write completes,
2524 		 * preventing further loops.
2525 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2526 		 * above while extending the buffer, we cannot allow the
2527 		 * buffer to remain with B_CACHE set after the write
2528 		 * completes or it will represent a corrupt state.  To
2529 		 * deal with this we set B_NOCACHE to scrap the buffer
2530 		 * after the write.
2531 		 *
2532 		 * We might be able to do something fancy, like setting
2533 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2534 		 * so the below call doesn't set B_CACHE, but that gets real
2535 		 * confusing.  This is much easier.
2536 		 */
2537 
2538 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2539 			bp->b_flags |= B_NOCACHE;
2540 			bwrite(bp);
2541 			goto loop;
2542 		}
2543 
2544 		splx(s);
2545 		bp->b_flags &= ~B_DONE;
2546 	} else {
2547 		int bsize, maxsize, vmio;
2548 		off_t offset;
2549 
2550 		/*
2551 		 * Buffer is not in-core, create new buffer.  The buffer
2552 		 * returned by getnewbuf() is locked.  Note that the returned
2553 		 * buffer is also considered valid (not marked B_INVAL).
2554 		 */
2555 		VI_UNLOCK(vp);
2556 		/*
2557 		 * If the user does not want us to create the buffer, bail out
2558 		 * here.
2559 		 */
2560 		if (flags & GB_NOCREAT) {
2561 			splx(s);
2562 			return NULL;
2563 		}
2564 		if (vn_isdisk(vp, NULL))
2565 			bsize = DEV_BSIZE;
2566 		else if (vp->v_mountedhere)
2567 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2568 		else if (vp->v_mount)
2569 			bsize = vp->v_mount->mnt_stat.f_iosize;
2570 		else
2571 			bsize = size;
2572 
2573 		if (vp->v_bsize != bsize) {
2574 #if 0
2575 			printf("WARNING: Wrong block size on vnode: %d should be %d\n", vp->v_bsize, bsize);
2576 #endif
2577 			vp->v_bsize = bsize;
2578 		}
2579 
2580 		offset = blkno * bsize;
2581 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2582 		    (vp->v_vflag & VV_OBJBUF);
2583 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2584 		maxsize = imax(maxsize, bsize);
2585 
2586 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2587 			if (slpflag || slptimeo) {
2588 				splx(s);
2589 				return NULL;
2590 			}
2591 			goto loop;
2592 		}
2593 
2594 		/*
2595 		 * This code is used to make sure that a buffer is not
2596 		 * created while the getnewbuf routine is blocked.
2597 		 * This can be a problem whether the vnode is locked or not.
2598 		 * If the buffer is created out from under us, we have to
2599 		 * throw away the one we just created.  There is now window
2600 		 * race because we are safely running at splbio() from the
2601 		 * point of the duplicate buffer creation through to here,
2602 		 * and we've locked the buffer.
2603 		 *
2604 		 * Note: this must occur before we associate the buffer
2605 		 * with the vp especially considering limitations in
2606 		 * the splay tree implementation when dealing with duplicate
2607 		 * lblkno's.
2608 		 */
2609 		VI_LOCK(vp);
2610 		if (gbincore(vp, blkno)) {
2611 			VI_UNLOCK(vp);
2612 			bp->b_flags |= B_INVAL;
2613 			brelse(bp);
2614 			goto loop;
2615 		}
2616 
2617 		/*
2618 		 * Insert the buffer into the hash, so that it can
2619 		 * be found by incore.
2620 		 */
2621 		bp->b_blkno = bp->b_lblkno = blkno;
2622 		bp->b_offset = offset;
2623 
2624 		bgetvp(vp, bp);
2625 		VI_UNLOCK(vp);
2626 
2627 		/*
2628 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2629 		 * buffer size starts out as 0, B_CACHE will be set by
2630 		 * allocbuf() for the VMIO case prior to it testing the
2631 		 * backing store for validity.
2632 		 */
2633 
2634 		if (vmio) {
2635 			bp->b_flags |= B_VMIO;
2636 #if defined(VFS_BIO_DEBUG)
2637 			if (vn_canvmio(vp) != TRUE)
2638 				printf("getblk: VMIO on vnode type %d\n",
2639 					vp->v_type);
2640 #endif
2641 			VOP_GETVOBJECT(vp, &bp->b_object);
2642 		} else {
2643 			bp->b_flags &= ~B_VMIO;
2644 			bp->b_object = NULL;
2645 		}
2646 
2647 		allocbuf(bp, size);
2648 
2649 		splx(s);
2650 		bp->b_flags &= ~B_DONE;
2651 	}
2652 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2653 	return (bp);
2654 }
2655 
2656 /*
2657  * Get an empty, disassociated buffer of given size.  The buffer is initially
2658  * set to B_INVAL.
2659  */
2660 struct buf *
2661 geteblk(int size)
2662 {
2663 	struct buf *bp;
2664 	int s;
2665 	int maxsize;
2666 
2667 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2668 
2669 	s = splbio();
2670 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2671 		continue;
2672 	splx(s);
2673 	allocbuf(bp, size);
2674 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2675 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2676 	return (bp);
2677 }
2678 
2679 
2680 /*
2681  * This code constitutes the buffer memory from either anonymous system
2682  * memory (in the case of non-VMIO operations) or from an associated
2683  * VM object (in the case of VMIO operations).  This code is able to
2684  * resize a buffer up or down.
2685  *
2686  * Note that this code is tricky, and has many complications to resolve
2687  * deadlock or inconsistant data situations.  Tread lightly!!!
2688  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2689  * the caller.  Calling this code willy nilly can result in the loss of data.
2690  *
2691  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2692  * B_CACHE for the non-VMIO case.
2693  */
2694 
2695 int
2696 allocbuf(struct buf *bp, int size)
2697 {
2698 	int newbsize, mbsize;
2699 	int i;
2700 
2701 	GIANT_REQUIRED;
2702 
2703 	if (BUF_REFCNT(bp) == 0)
2704 		panic("allocbuf: buffer not busy");
2705 
2706 	if (bp->b_kvasize < size)
2707 		panic("allocbuf: buffer too small");
2708 
2709 	if ((bp->b_flags & B_VMIO) == 0) {
2710 		caddr_t origbuf;
2711 		int origbufsize;
2712 		/*
2713 		 * Just get anonymous memory from the kernel.  Don't
2714 		 * mess with B_CACHE.
2715 		 */
2716 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2717 		if (bp->b_flags & B_MALLOC)
2718 			newbsize = mbsize;
2719 		else
2720 			newbsize = round_page(size);
2721 
2722 		if (newbsize < bp->b_bufsize) {
2723 			/*
2724 			 * malloced buffers are not shrunk
2725 			 */
2726 			if (bp->b_flags & B_MALLOC) {
2727 				if (newbsize) {
2728 					bp->b_bcount = size;
2729 				} else {
2730 					free(bp->b_data, M_BIOBUF);
2731 					if (bp->b_bufsize) {
2732 						atomic_subtract_int(
2733 						    &bufmallocspace,
2734 						    bp->b_bufsize);
2735 						bufspacewakeup();
2736 						bp->b_bufsize = 0;
2737 					}
2738 					bp->b_saveaddr = bp->b_kvabase;
2739 					bp->b_data = bp->b_saveaddr;
2740 					bp->b_bcount = 0;
2741 					bp->b_flags &= ~B_MALLOC;
2742 				}
2743 				return 1;
2744 			}
2745 			vm_hold_free_pages(
2746 			    bp,
2747 			    (vm_offset_t) bp->b_data + newbsize,
2748 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2749 		} else if (newbsize > bp->b_bufsize) {
2750 			/*
2751 			 * We only use malloced memory on the first allocation.
2752 			 * and revert to page-allocated memory when the buffer
2753 			 * grows.
2754 			 */
2755 			/*
2756 			 * There is a potential smp race here that could lead
2757 			 * to bufmallocspace slightly passing the max.  It
2758 			 * is probably extremely rare and not worth worrying
2759 			 * over.
2760 			 */
2761 			if ( (bufmallocspace < maxbufmallocspace) &&
2762 				(bp->b_bufsize == 0) &&
2763 				(mbsize <= PAGE_SIZE/2)) {
2764 
2765 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2766 				bp->b_bufsize = mbsize;
2767 				bp->b_bcount = size;
2768 				bp->b_flags |= B_MALLOC;
2769 				atomic_add_int(&bufmallocspace, mbsize);
2770 				return 1;
2771 			}
2772 			origbuf = NULL;
2773 			origbufsize = 0;
2774 			/*
2775 			 * If the buffer is growing on its other-than-first allocation,
2776 			 * then we revert to the page-allocation scheme.
2777 			 */
2778 			if (bp->b_flags & B_MALLOC) {
2779 				origbuf = bp->b_data;
2780 				origbufsize = bp->b_bufsize;
2781 				bp->b_data = bp->b_kvabase;
2782 				if (bp->b_bufsize) {
2783 					atomic_subtract_int(&bufmallocspace,
2784 					    bp->b_bufsize);
2785 					bufspacewakeup();
2786 					bp->b_bufsize = 0;
2787 				}
2788 				bp->b_flags &= ~B_MALLOC;
2789 				newbsize = round_page(newbsize);
2790 			}
2791 			vm_hold_load_pages(
2792 			    bp,
2793 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2794 			    (vm_offset_t) bp->b_data + newbsize);
2795 			if (origbuf) {
2796 				bcopy(origbuf, bp->b_data, origbufsize);
2797 				free(origbuf, M_BIOBUF);
2798 			}
2799 		}
2800 	} else {
2801 		int desiredpages;
2802 
2803 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2804 		desiredpages = (size == 0) ? 0 :
2805 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2806 
2807 		if (bp->b_flags & B_MALLOC)
2808 			panic("allocbuf: VMIO buffer can't be malloced");
2809 		/*
2810 		 * Set B_CACHE initially if buffer is 0 length or will become
2811 		 * 0-length.
2812 		 */
2813 		if (size == 0 || bp->b_bufsize == 0)
2814 			bp->b_flags |= B_CACHE;
2815 
2816 		if (newbsize < bp->b_bufsize) {
2817 			/*
2818 			 * DEV_BSIZE aligned new buffer size is less then the
2819 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2820 			 * if we have to remove any pages.
2821 			 */
2822 			if (desiredpages < bp->b_npages) {
2823 				vm_page_t m;
2824 
2825 				vm_page_lock_queues();
2826 				for (i = desiredpages; i < bp->b_npages; i++) {
2827 					/*
2828 					 * the page is not freed here -- it
2829 					 * is the responsibility of
2830 					 * vnode_pager_setsize
2831 					 */
2832 					m = bp->b_pages[i];
2833 					KASSERT(m != bogus_page,
2834 					    ("allocbuf: bogus page found"));
2835 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2836 						vm_page_lock_queues();
2837 
2838 					bp->b_pages[i] = NULL;
2839 					vm_page_unwire(m, 0);
2840 				}
2841 				vm_page_unlock_queues();
2842 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2843 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2844 				bp->b_npages = desiredpages;
2845 			}
2846 		} else if (size > bp->b_bcount) {
2847 			/*
2848 			 * We are growing the buffer, possibly in a
2849 			 * byte-granular fashion.
2850 			 */
2851 			struct vnode *vp;
2852 			vm_object_t obj;
2853 			vm_offset_t toff;
2854 			vm_offset_t tinc;
2855 
2856 			/*
2857 			 * Step 1, bring in the VM pages from the object,
2858 			 * allocating them if necessary.  We must clear
2859 			 * B_CACHE if these pages are not valid for the
2860 			 * range covered by the buffer.
2861 			 */
2862 
2863 			vp = bp->b_vp;
2864 			obj = bp->b_object;
2865 
2866 			VM_OBJECT_LOCK(obj);
2867 			while (bp->b_npages < desiredpages) {
2868 				vm_page_t m;
2869 				vm_pindex_t pi;
2870 
2871 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2872 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2873 					/*
2874 					 * note: must allocate system pages
2875 					 * since blocking here could intefere
2876 					 * with paging I/O, no matter which
2877 					 * process we are.
2878 					 */
2879 					m = vm_page_alloc(obj, pi,
2880 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2881 					if (m == NULL) {
2882 						atomic_add_int(&vm_pageout_deficit,
2883 						    desiredpages - bp->b_npages);
2884 						VM_OBJECT_UNLOCK(obj);
2885 						VM_WAIT;
2886 						VM_OBJECT_LOCK(obj);
2887 					} else {
2888 						vm_page_lock_queues();
2889 						vm_page_wakeup(m);
2890 						vm_page_unlock_queues();
2891 						bp->b_flags &= ~B_CACHE;
2892 						bp->b_pages[bp->b_npages] = m;
2893 						++bp->b_npages;
2894 					}
2895 					continue;
2896 				}
2897 
2898 				/*
2899 				 * We found a page.  If we have to sleep on it,
2900 				 * retry because it might have gotten freed out
2901 				 * from under us.
2902 				 *
2903 				 * We can only test PG_BUSY here.  Blocking on
2904 				 * m->busy might lead to a deadlock:
2905 				 *
2906 				 *  vm_fault->getpages->cluster_read->allocbuf
2907 				 *
2908 				 */
2909 				vm_page_lock_queues();
2910 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2911 					continue;
2912 
2913 				/*
2914 				 * We have a good page.  Should we wakeup the
2915 				 * page daemon?
2916 				 */
2917 				if ((curproc != pageproc) &&
2918 				    ((m->queue - m->pc) == PQ_CACHE) &&
2919 				    ((cnt.v_free_count + cnt.v_cache_count) <
2920 					(cnt.v_free_min + cnt.v_cache_min))) {
2921 					pagedaemon_wakeup();
2922 				}
2923 				vm_page_wire(m);
2924 				vm_page_unlock_queues();
2925 				bp->b_pages[bp->b_npages] = m;
2926 				++bp->b_npages;
2927 			}
2928 
2929 			/*
2930 			 * Step 2.  We've loaded the pages into the buffer,
2931 			 * we have to figure out if we can still have B_CACHE
2932 			 * set.  Note that B_CACHE is set according to the
2933 			 * byte-granular range ( bcount and size ), new the
2934 			 * aligned range ( newbsize ).
2935 			 *
2936 			 * The VM test is against m->valid, which is DEV_BSIZE
2937 			 * aligned.  Needless to say, the validity of the data
2938 			 * needs to also be DEV_BSIZE aligned.  Note that this
2939 			 * fails with NFS if the server or some other client
2940 			 * extends the file's EOF.  If our buffer is resized,
2941 			 * B_CACHE may remain set! XXX
2942 			 */
2943 
2944 			toff = bp->b_bcount;
2945 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2946 
2947 			while ((bp->b_flags & B_CACHE) && toff < size) {
2948 				vm_pindex_t pi;
2949 
2950 				if (tinc > (size - toff))
2951 					tinc = size - toff;
2952 
2953 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2954 				    PAGE_SHIFT;
2955 
2956 				vfs_buf_test_cache(
2957 				    bp,
2958 				    bp->b_offset,
2959 				    toff,
2960 				    tinc,
2961 				    bp->b_pages[pi]
2962 				);
2963 				toff += tinc;
2964 				tinc = PAGE_SIZE;
2965 			}
2966 			VM_OBJECT_UNLOCK(obj);
2967 
2968 			/*
2969 			 * Step 3, fixup the KVM pmap.  Remember that
2970 			 * bp->b_data is relative to bp->b_offset, but
2971 			 * bp->b_offset may be offset into the first page.
2972 			 */
2973 
2974 			bp->b_data = (caddr_t)
2975 			    trunc_page((vm_offset_t)bp->b_data);
2976 			pmap_qenter(
2977 			    (vm_offset_t)bp->b_data,
2978 			    bp->b_pages,
2979 			    bp->b_npages
2980 			);
2981 
2982 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2983 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2984 		}
2985 	}
2986 	if (newbsize < bp->b_bufsize)
2987 		bufspacewakeup();
2988 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2989 	bp->b_bcount = size;		/* requested buffer size	*/
2990 	return 1;
2991 }
2992 
2993 void
2994 biodone(struct bio *bp)
2995 {
2996 	mtx_lock(&bdonelock);
2997 	bp->bio_flags |= BIO_DONE;
2998 	if (bp->bio_done == NULL)
2999 		wakeup(bp);
3000 	mtx_unlock(&bdonelock);
3001 	if (bp->bio_done != NULL)
3002 		bp->bio_done(bp);
3003 }
3004 
3005 /*
3006  * Wait for a BIO to finish.
3007  *
3008  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3009  * case is not yet clear.
3010  */
3011 int
3012 biowait(struct bio *bp, const char *wchan)
3013 {
3014 
3015 	mtx_lock(&bdonelock);
3016 	while ((bp->bio_flags & BIO_DONE) == 0)
3017 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3018 	mtx_unlock(&bdonelock);
3019 	if (bp->bio_error != 0)
3020 		return (bp->bio_error);
3021 	if (!(bp->bio_flags & BIO_ERROR))
3022 		return (0);
3023 	return (EIO);
3024 }
3025 
3026 void
3027 biofinish(struct bio *bp, struct devstat *stat, int error)
3028 {
3029 
3030 	if (error) {
3031 		bp->bio_error = error;
3032 		bp->bio_flags |= BIO_ERROR;
3033 	}
3034 	if (stat != NULL)
3035 		devstat_end_transaction_bio(stat, bp);
3036 	biodone(bp);
3037 }
3038 
3039 /*
3040  *	bufwait:
3041  *
3042  *	Wait for buffer I/O completion, returning error status.  The buffer
3043  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3044  *	error and cleared.
3045  */
3046 int
3047 bufwait(register struct buf * bp)
3048 {
3049 	int s;
3050 
3051 	s = splbio();
3052 	if (bp->b_iocmd == BIO_READ)
3053 		bwait(bp, PRIBIO, "biord");
3054 	else
3055 		bwait(bp, PRIBIO, "biowr");
3056 	splx(s);
3057 	if (bp->b_flags & B_EINTR) {
3058 		bp->b_flags &= ~B_EINTR;
3059 		return (EINTR);
3060 	}
3061 	if (bp->b_ioflags & BIO_ERROR) {
3062 		return (bp->b_error ? bp->b_error : EIO);
3063 	} else {
3064 		return (0);
3065 	}
3066 }
3067 
3068  /*
3069   * Call back function from struct bio back up to struct buf.
3070   */
3071 static void
3072 bufdonebio(struct bio *bp)
3073 {
3074 
3075 	/* Device drivers may or may not hold giant, hold it here. */
3076 	mtx_lock(&Giant);
3077 	bufdone(bp->bio_caller2);
3078 	mtx_unlock(&Giant);
3079 }
3080 
3081 void
3082 dev_strategy(struct buf *bp)
3083 {
3084 	struct cdevsw *csw;
3085 
3086 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3087 		panic("b_iocmd botch");
3088 	bp->b_io.bio_done = bufdonebio;
3089 	bp->b_io.bio_caller2 = bp;
3090 	csw = devsw(bp->b_io.bio_dev);
3091 	KASSERT(bp->b_io.bio_dev->si_refcount > 0,
3092 	    ("dev_strategy on un-referenced struct cdev *(%s)",
3093 	    devtoname(bp->b_io.bio_dev)));
3094 	cdevsw_ref(csw);
3095 	(*devsw(bp->b_io.bio_dev)->d_strategy)(&bp->b_io);
3096 	cdevsw_rel(csw);
3097 }
3098 
3099 /*
3100  *	bufdone:
3101  *
3102  *	Finish I/O on a buffer, optionally calling a completion function.
3103  *	This is usually called from an interrupt so process blocking is
3104  *	not allowed.
3105  *
3106  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3107  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3108  *	assuming B_INVAL is clear.
3109  *
3110  *	For the VMIO case, we set B_CACHE if the op was a read and no
3111  *	read error occured, or if the op was a write.  B_CACHE is never
3112  *	set if the buffer is invalid or otherwise uncacheable.
3113  *
3114  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3115  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3116  *	in the biodone routine.
3117  */
3118 void
3119 bufdone(struct buf *bp)
3120 {
3121 	int s;
3122 	void    (*biodone)(struct buf *);
3123 
3124 
3125 	s = splbio();
3126 
3127 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3128 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3129 
3130 	bp->b_flags |= B_DONE;
3131 	runningbufwakeup(bp);
3132 
3133 	if (bp->b_iocmd == BIO_DELETE) {
3134 		brelse(bp);
3135 		splx(s);
3136 		return;
3137 	}
3138 
3139 	if (bp->b_iocmd == BIO_WRITE) {
3140 		vwakeup(bp);
3141 	}
3142 
3143 	/* call optional completion function if requested */
3144 	if (bp->b_iodone != NULL) {
3145 		biodone = bp->b_iodone;
3146 		bp->b_iodone = NULL;
3147 		(*biodone) (bp);
3148 		splx(s);
3149 		return;
3150 	}
3151 	if (LIST_FIRST(&bp->b_dep) != NULL)
3152 		buf_complete(bp);
3153 
3154 	if (bp->b_flags & B_VMIO) {
3155 		int i;
3156 		vm_ooffset_t foff;
3157 		vm_page_t m;
3158 		vm_object_t obj;
3159 		int iosize;
3160 		struct vnode *vp = bp->b_vp;
3161 
3162 		obj = bp->b_object;
3163 
3164 #if defined(VFS_BIO_DEBUG)
3165 		mp_fixme("usecount and vflag accessed without locks.");
3166 		if (vp->v_usecount == 0) {
3167 			panic("biodone: zero vnode ref count");
3168 		}
3169 
3170 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3171 			panic("biodone: vnode is not setup for merged cache");
3172 		}
3173 #endif
3174 
3175 		foff = bp->b_offset;
3176 		KASSERT(bp->b_offset != NOOFFSET,
3177 		    ("biodone: no buffer offset"));
3178 
3179 		VM_OBJECT_LOCK(obj);
3180 #if defined(VFS_BIO_DEBUG)
3181 		if (obj->paging_in_progress < bp->b_npages) {
3182 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3183 			    obj->paging_in_progress, bp->b_npages);
3184 		}
3185 #endif
3186 
3187 		/*
3188 		 * Set B_CACHE if the op was a normal read and no error
3189 		 * occured.  B_CACHE is set for writes in the b*write()
3190 		 * routines.
3191 		 */
3192 		iosize = bp->b_bcount - bp->b_resid;
3193 		if (bp->b_iocmd == BIO_READ &&
3194 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3195 		    !(bp->b_ioflags & BIO_ERROR)) {
3196 			bp->b_flags |= B_CACHE;
3197 		}
3198 		vm_page_lock_queues();
3199 		for (i = 0; i < bp->b_npages; i++) {
3200 			int bogusflag = 0;
3201 			int resid;
3202 
3203 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3204 			if (resid > iosize)
3205 				resid = iosize;
3206 
3207 			/*
3208 			 * cleanup bogus pages, restoring the originals
3209 			 */
3210 			m = bp->b_pages[i];
3211 			if (m == bogus_page) {
3212 				bogusflag = 1;
3213 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3214 				if (m == NULL)
3215 					panic("biodone: page disappeared!");
3216 				bp->b_pages[i] = m;
3217 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3218 			}
3219 #if defined(VFS_BIO_DEBUG)
3220 			if (OFF_TO_IDX(foff) != m->pindex) {
3221 				printf(
3222 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3223 				    (intmax_t)foff, (uintmax_t)m->pindex);
3224 			}
3225 #endif
3226 
3227 			/*
3228 			 * In the write case, the valid and clean bits are
3229 			 * already changed correctly ( see bdwrite() ), so we
3230 			 * only need to do this here in the read case.
3231 			 */
3232 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3233 				vfs_page_set_valid(bp, foff, i, m);
3234 			}
3235 
3236 			/*
3237 			 * when debugging new filesystems or buffer I/O methods, this
3238 			 * is the most common error that pops up.  if you see this, you
3239 			 * have not set the page busy flag correctly!!!
3240 			 */
3241 			if (m->busy == 0) {
3242 				printf("biodone: page busy < 0, "
3243 				    "pindex: %d, foff: 0x(%x,%x), "
3244 				    "resid: %d, index: %d\n",
3245 				    (int) m->pindex, (int)(foff >> 32),
3246 						(int) foff & 0xffffffff, resid, i);
3247 				if (!vn_isdisk(vp, NULL))
3248 					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3249 					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3250 					    (intmax_t) bp->b_lblkno,
3251 					    bp->b_flags, bp->b_npages);
3252 				else
3253 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3254 					    (intmax_t) bp->b_lblkno,
3255 					    bp->b_flags, bp->b_npages);
3256 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3257 				    (u_long)m->valid, (u_long)m->dirty,
3258 				    m->wire_count);
3259 				panic("biodone: page busy < 0\n");
3260 			}
3261 			vm_page_io_finish(m);
3262 			vm_object_pip_subtract(obj, 1);
3263 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3264 			iosize -= resid;
3265 		}
3266 		vm_page_unlock_queues();
3267 		vm_object_pip_wakeupn(obj, 0);
3268 		VM_OBJECT_UNLOCK(obj);
3269 	}
3270 
3271 	/*
3272 	 * For asynchronous completions, release the buffer now. The brelse
3273 	 * will do a wakeup there if necessary - so no need to do a wakeup
3274 	 * here in the async case. The sync case always needs to do a wakeup.
3275 	 */
3276 
3277 	if (bp->b_flags & B_ASYNC) {
3278 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3279 			brelse(bp);
3280 		else
3281 			bqrelse(bp);
3282 	} else {
3283 		bdone(bp);
3284 	}
3285 	splx(s);
3286 }
3287 
3288 /*
3289  * This routine is called in lieu of iodone in the case of
3290  * incomplete I/O.  This keeps the busy status for pages
3291  * consistant.
3292  */
3293 void
3294 vfs_unbusy_pages(struct buf * bp)
3295 {
3296 	int i;
3297 
3298 	runningbufwakeup(bp);
3299 	if (bp->b_flags & B_VMIO) {
3300 		vm_object_t obj;
3301 
3302 		obj = bp->b_object;
3303 		VM_OBJECT_LOCK(obj);
3304 		vm_page_lock_queues();
3305 		for (i = 0; i < bp->b_npages; i++) {
3306 			vm_page_t m = bp->b_pages[i];
3307 
3308 			if (m == bogus_page) {
3309 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3310 				if (!m) {
3311 					panic("vfs_unbusy_pages: page missing\n");
3312 				}
3313 				bp->b_pages[i] = m;
3314 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3315 			}
3316 			vm_object_pip_subtract(obj, 1);
3317 			vm_page_io_finish(m);
3318 		}
3319 		vm_page_unlock_queues();
3320 		vm_object_pip_wakeupn(obj, 0);
3321 		VM_OBJECT_UNLOCK(obj);
3322 	}
3323 }
3324 
3325 /*
3326  * vfs_page_set_valid:
3327  *
3328  *	Set the valid bits in a page based on the supplied offset.   The
3329  *	range is restricted to the buffer's size.
3330  *
3331  *	This routine is typically called after a read completes.
3332  */
3333 static void
3334 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3335 {
3336 	vm_ooffset_t soff, eoff;
3337 
3338 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3339 	/*
3340 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3341 	 * page boundry or cross the end of the buffer.  The end of the
3342 	 * buffer, in this case, is our file EOF, not the allocation size
3343 	 * of the buffer.
3344 	 */
3345 	soff = off;
3346 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3347 	if (eoff > bp->b_offset + bp->b_bcount)
3348 		eoff = bp->b_offset + bp->b_bcount;
3349 
3350 	/*
3351 	 * Set valid range.  This is typically the entire buffer and thus the
3352 	 * entire page.
3353 	 */
3354 	if (eoff > soff) {
3355 		vm_page_set_validclean(
3356 		    m,
3357 		   (vm_offset_t) (soff & PAGE_MASK),
3358 		   (vm_offset_t) (eoff - soff)
3359 		);
3360 	}
3361 }
3362 
3363 /*
3364  * This routine is called before a device strategy routine.
3365  * It is used to tell the VM system that paging I/O is in
3366  * progress, and treat the pages associated with the buffer
3367  * almost as being PG_BUSY.  Also the object paging_in_progress
3368  * flag is handled to make sure that the object doesn't become
3369  * inconsistant.
3370  *
3371  * Since I/O has not been initiated yet, certain buffer flags
3372  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3373  * and should be ignored.
3374  */
3375 void
3376 vfs_busy_pages(struct buf * bp, int clear_modify)
3377 {
3378 	int i, bogus;
3379 
3380 	if (bp->b_flags & B_VMIO) {
3381 		vm_object_t obj;
3382 		vm_ooffset_t foff;
3383 
3384 		obj = bp->b_object;
3385 		foff = bp->b_offset;
3386 		KASSERT(bp->b_offset != NOOFFSET,
3387 		    ("vfs_busy_pages: no buffer offset"));
3388 		vfs_setdirty(bp);
3389 		VM_OBJECT_LOCK(obj);
3390 retry:
3391 		vm_page_lock_queues();
3392 		for (i = 0; i < bp->b_npages; i++) {
3393 			vm_page_t m = bp->b_pages[i];
3394 
3395 			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3396 				goto retry;
3397 		}
3398 		bogus = 0;
3399 		for (i = 0; i < bp->b_npages; i++) {
3400 			vm_page_t m = bp->b_pages[i];
3401 
3402 			if ((bp->b_flags & B_CLUSTER) == 0) {
3403 				vm_object_pip_add(obj, 1);
3404 				vm_page_io_start(m);
3405 			}
3406 			/*
3407 			 * When readying a buffer for a read ( i.e
3408 			 * clear_modify == 0 ), it is important to do
3409 			 * bogus_page replacement for valid pages in
3410 			 * partially instantiated buffers.  Partially
3411 			 * instantiated buffers can, in turn, occur when
3412 			 * reconstituting a buffer from its VM backing store
3413 			 * base.  We only have to do this if B_CACHE is
3414 			 * clear ( which causes the I/O to occur in the
3415 			 * first place ).  The replacement prevents the read
3416 			 * I/O from overwriting potentially dirty VM-backed
3417 			 * pages.  XXX bogus page replacement is, uh, bogus.
3418 			 * It may not work properly with small-block devices.
3419 			 * We need to find a better way.
3420 			 */
3421 			pmap_remove_all(m);
3422 			if (clear_modify)
3423 				vfs_page_set_valid(bp, foff, i, m);
3424 			else if (m->valid == VM_PAGE_BITS_ALL &&
3425 				(bp->b_flags & B_CACHE) == 0) {
3426 				bp->b_pages[i] = bogus_page;
3427 				bogus++;
3428 			}
3429 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3430 		}
3431 		vm_page_unlock_queues();
3432 		VM_OBJECT_UNLOCK(obj);
3433 		if (bogus)
3434 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3435 	}
3436 }
3437 
3438 /*
3439  * Tell the VM system that the pages associated with this buffer
3440  * are clean.  This is used for delayed writes where the data is
3441  * going to go to disk eventually without additional VM intevention.
3442  *
3443  * Note that while we only really need to clean through to b_bcount, we
3444  * just go ahead and clean through to b_bufsize.
3445  */
3446 static void
3447 vfs_clean_pages(struct buf * bp)
3448 {
3449 	int i;
3450 
3451 	if (bp->b_flags & B_VMIO) {
3452 		vm_ooffset_t foff;
3453 
3454 		foff = bp->b_offset;
3455 		KASSERT(bp->b_offset != NOOFFSET,
3456 		    ("vfs_clean_pages: no buffer offset"));
3457 		VM_OBJECT_LOCK(bp->b_object);
3458 		vm_page_lock_queues();
3459 		for (i = 0; i < bp->b_npages; i++) {
3460 			vm_page_t m = bp->b_pages[i];
3461 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3462 			vm_ooffset_t eoff = noff;
3463 
3464 			if (eoff > bp->b_offset + bp->b_bufsize)
3465 				eoff = bp->b_offset + bp->b_bufsize;
3466 			vfs_page_set_valid(bp, foff, i, m);
3467 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3468 			foff = noff;
3469 		}
3470 		vm_page_unlock_queues();
3471 		VM_OBJECT_UNLOCK(bp->b_object);
3472 	}
3473 }
3474 
3475 /*
3476  *	vfs_bio_set_validclean:
3477  *
3478  *	Set the range within the buffer to valid and clean.  The range is
3479  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3480  *	itself may be offset from the beginning of the first page.
3481  *
3482  */
3483 
3484 void
3485 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3486 {
3487 	if (bp->b_flags & B_VMIO) {
3488 		int i;
3489 		int n;
3490 
3491 		/*
3492 		 * Fixup base to be relative to beginning of first page.
3493 		 * Set initial n to be the maximum number of bytes in the
3494 		 * first page that can be validated.
3495 		 */
3496 
3497 		base += (bp->b_offset & PAGE_MASK);
3498 		n = PAGE_SIZE - (base & PAGE_MASK);
3499 
3500 		VM_OBJECT_LOCK(bp->b_object);
3501 		vm_page_lock_queues();
3502 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3503 			vm_page_t m = bp->b_pages[i];
3504 
3505 			if (n > size)
3506 				n = size;
3507 
3508 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3509 			base += n;
3510 			size -= n;
3511 			n = PAGE_SIZE;
3512 		}
3513 		vm_page_unlock_queues();
3514 		VM_OBJECT_UNLOCK(bp->b_object);
3515 	}
3516 }
3517 
3518 /*
3519  *	vfs_bio_clrbuf:
3520  *
3521  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3522  *	to clear BIO_ERROR and B_INVAL.
3523  *
3524  *	Note that while we only theoretically need to clear through b_bcount,
3525  *	we go ahead and clear through b_bufsize.
3526  */
3527 
3528 void
3529 vfs_bio_clrbuf(struct buf *bp)
3530 {
3531 	int i, j, mask = 0;
3532 	caddr_t sa, ea;
3533 
3534 	GIANT_REQUIRED;
3535 
3536 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3537 		bp->b_flags &= ~B_INVAL;
3538 		bp->b_ioflags &= ~BIO_ERROR;
3539 		VM_OBJECT_LOCK(bp->b_object);
3540 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3541 		    (bp->b_offset & PAGE_MASK) == 0) {
3542 			if (bp->b_pages[0] == bogus_page)
3543 				goto unlock;
3544 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3545 			VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3546 			if ((bp->b_pages[0]->valid & mask) == mask)
3547 				goto unlock;
3548 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3549 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3550 				bzero(bp->b_data, bp->b_bufsize);
3551 				bp->b_pages[0]->valid |= mask;
3552 				goto unlock;
3553 			}
3554 		}
3555 		ea = sa = bp->b_data;
3556 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3557 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3558 			ea = (caddr_t)(vm_offset_t)ulmin(
3559 			    (u_long)(vm_offset_t)ea,
3560 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3561 			if (bp->b_pages[i] == bogus_page)
3562 				continue;
3563 			j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3564 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3565 			VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3566 			if ((bp->b_pages[i]->valid & mask) == mask)
3567 				continue;
3568 			if ((bp->b_pages[i]->valid & mask) == 0) {
3569 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3570 					bzero(sa, ea - sa);
3571 				}
3572 			} else {
3573 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3574 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3575 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3576 						bzero(sa, DEV_BSIZE);
3577 				}
3578 			}
3579 			bp->b_pages[i]->valid |= mask;
3580 		}
3581 unlock:
3582 		VM_OBJECT_UNLOCK(bp->b_object);
3583 		bp->b_resid = 0;
3584 	} else {
3585 		clrbuf(bp);
3586 	}
3587 }
3588 
3589 /*
3590  * vm_hold_load_pages and vm_hold_free_pages get pages into
3591  * a buffers address space.  The pages are anonymous and are
3592  * not associated with a file object.
3593  */
3594 static void
3595 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3596 {
3597 	vm_offset_t pg;
3598 	vm_page_t p;
3599 	int index;
3600 
3601 	to = round_page(to);
3602 	from = round_page(from);
3603 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3604 
3605 	VM_OBJECT_LOCK(kernel_object);
3606 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3607 tryagain:
3608 		/*
3609 		 * note: must allocate system pages since blocking here
3610 		 * could intefere with paging I/O, no matter which
3611 		 * process we are.
3612 		 */
3613 		p = vm_page_alloc(kernel_object,
3614 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3615 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3616 		if (!p) {
3617 			atomic_add_int(&vm_pageout_deficit,
3618 			    (to - pg) >> PAGE_SHIFT);
3619 			VM_OBJECT_UNLOCK(kernel_object);
3620 			VM_WAIT;
3621 			VM_OBJECT_LOCK(kernel_object);
3622 			goto tryagain;
3623 		}
3624 		p->valid = VM_PAGE_BITS_ALL;
3625 		pmap_qenter(pg, &p, 1);
3626 		bp->b_pages[index] = p;
3627 		vm_page_lock_queues();
3628 		vm_page_wakeup(p);
3629 		vm_page_unlock_queues();
3630 	}
3631 	VM_OBJECT_UNLOCK(kernel_object);
3632 	bp->b_npages = index;
3633 }
3634 
3635 /* Return pages associated with this buf to the vm system */
3636 static void
3637 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3638 {
3639 	vm_offset_t pg;
3640 	vm_page_t p;
3641 	int index, newnpages;
3642 
3643 	GIANT_REQUIRED;
3644 
3645 	from = round_page(from);
3646 	to = round_page(to);
3647 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3648 
3649 	VM_OBJECT_LOCK(kernel_object);
3650 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3651 		p = bp->b_pages[index];
3652 		if (p && (index < bp->b_npages)) {
3653 			if (p->busy) {
3654 				printf(
3655 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3656 				    (intmax_t)bp->b_blkno,
3657 				    (intmax_t)bp->b_lblkno);
3658 			}
3659 			bp->b_pages[index] = NULL;
3660 			pmap_qremove(pg, 1);
3661 			vm_page_lock_queues();
3662 			vm_page_busy(p);
3663 			vm_page_unwire(p, 0);
3664 			vm_page_free(p);
3665 			vm_page_unlock_queues();
3666 		}
3667 	}
3668 	VM_OBJECT_UNLOCK(kernel_object);
3669 	bp->b_npages = newnpages;
3670 }
3671 
3672 /*
3673  * Map an IO request into kernel virtual address space.
3674  *
3675  * All requests are (re)mapped into kernel VA space.
3676  * Notice that we use b_bufsize for the size of the buffer
3677  * to be mapped.  b_bcount might be modified by the driver.
3678  *
3679  * Note that even if the caller determines that the address space should
3680  * be valid, a race or a smaller-file mapped into a larger space may
3681  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3682  * check the return value.
3683  */
3684 int
3685 vmapbuf(struct buf *bp)
3686 {
3687 	caddr_t addr, kva;
3688 	vm_prot_t prot;
3689 	int pidx, i;
3690 	struct vm_page *m;
3691 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3692 
3693 	if (bp->b_bufsize < 0)
3694 		return (-1);
3695 	prot = (bp->b_iocmd == BIO_READ) ? VM_PROT_READ | VM_PROT_WRITE :
3696 	    VM_PROT_READ;
3697 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3698 	     addr < bp->b_data + bp->b_bufsize;
3699 	     addr += PAGE_SIZE, pidx++) {
3700 		/*
3701 		 * Do the vm_fault if needed; do the copy-on-write thing
3702 		 * when reading stuff off device into memory.
3703 		 *
3704 		 * NOTE! Must use pmap_extract() because addr may be in
3705 		 * the userland address space, and kextract is only guarenteed
3706 		 * to work for the kernland address space (see: sparc64 port).
3707 		 */
3708 retry:
3709 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3710 		    prot) < 0) {
3711 			vm_page_lock_queues();
3712 			for (i = 0; i < pidx; ++i) {
3713 				vm_page_unhold(bp->b_pages[i]);
3714 				bp->b_pages[i] = NULL;
3715 			}
3716 			vm_page_unlock_queues();
3717 			return(-1);
3718 		}
3719 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3720 		if (m == NULL)
3721 			goto retry;
3722 		bp->b_pages[pidx] = m;
3723 	}
3724 	if (pidx > btoc(MAXPHYS))
3725 		panic("vmapbuf: mapped more than MAXPHYS");
3726 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3727 
3728 	kva = bp->b_saveaddr;
3729 	bp->b_npages = pidx;
3730 	bp->b_saveaddr = bp->b_data;
3731 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3732 	return(0);
3733 }
3734 
3735 /*
3736  * Free the io map PTEs associated with this IO operation.
3737  * We also invalidate the TLB entries and restore the original b_addr.
3738  */
3739 void
3740 vunmapbuf(struct buf *bp)
3741 {
3742 	int pidx;
3743 	int npages;
3744 
3745 	npages = bp->b_npages;
3746 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3747 		     npages);
3748 	vm_page_lock_queues();
3749 	for (pidx = 0; pidx < npages; pidx++)
3750 		vm_page_unhold(bp->b_pages[pidx]);
3751 	vm_page_unlock_queues();
3752 
3753 	bp->b_data = bp->b_saveaddr;
3754 }
3755 
3756 void
3757 bdone(struct buf *bp)
3758 {
3759 	mtx_lock(&bdonelock);
3760 	bp->b_flags |= B_DONE;
3761 	wakeup(bp);
3762 	mtx_unlock(&bdonelock);
3763 }
3764 
3765 void
3766 bwait(struct buf *bp, u_char pri, const char *wchan)
3767 {
3768 	mtx_lock(&bdonelock);
3769 	while ((bp->b_flags & B_DONE) == 0)
3770 		msleep(bp, &bdonelock, pri, wchan, 0);
3771 	mtx_unlock(&bdonelock);
3772 }
3773 
3774 #include "opt_ddb.h"
3775 #ifdef DDB
3776 #include <ddb/ddb.h>
3777 
3778 /* DDB command to show buffer data */
3779 DB_SHOW_COMMAND(buffer, db_show_buffer)
3780 {
3781 	/* get args */
3782 	struct buf *bp = (struct buf *)addr;
3783 
3784 	if (!have_addr) {
3785 		db_printf("usage: show buffer <addr>\n");
3786 		return;
3787 	}
3788 
3789 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3790 	db_printf(
3791 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3792 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3793 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3794 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3795 	    (intmax_t)bp->b_blkno);
3796 	if (bp->b_npages) {
3797 		int i;
3798 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3799 		for (i = 0; i < bp->b_npages; i++) {
3800 			vm_page_t m;
3801 			m = bp->b_pages[i];
3802 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3803 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3804 			if ((i + 1) < bp->b_npages)
3805 				db_printf(",");
3806 		}
3807 		db_printf("\n");
3808 	}
3809 }
3810 #endif /* DDB */
3811