xref: /freebsd/sys/kern/vfs_bio.c (revision 6829dae12bb055451fa467da4589c43bd03b1e64)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/bitset.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/buf.h>
57 #include <sys/devicestat.h>
58 #include <sys/eventhandler.h>
59 #include <sys/fail.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/proc.h>
68 #include <sys/racct.h>
69 #include <sys/resourcevar.h>
70 #include <sys/rwlock.h>
71 #include <sys/smp.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
74 #include <sys/vmem.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/watchdog.h>
78 #include <geom/geom.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_map.h>
88 #include <vm/swap_pager.h>
89 
90 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
91 
92 struct	bio_ops bioops;		/* I/O operation notification */
93 
94 struct	buf_ops buf_ops_bio = {
95 	.bop_name	=	"buf_ops_bio",
96 	.bop_write	=	bufwrite,
97 	.bop_strategy	=	bufstrategy,
98 	.bop_sync	=	bufsync,
99 	.bop_bdflush	=	bufbdflush,
100 };
101 
102 struct bufqueue {
103 	struct mtx_padalign	bq_lock;
104 	TAILQ_HEAD(, buf)	bq_queue;
105 	uint8_t			bq_index;
106 	uint16_t		bq_subqueue;
107 	int			bq_len;
108 } __aligned(CACHE_LINE_SIZE);
109 
110 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
111 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
112 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
113 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
114 
115 struct bufdomain {
116 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
117 	struct bufqueue bd_dirtyq;
118 	struct bufqueue	*bd_cleanq;
119 	struct mtx_padalign bd_run_lock;
120 	/* Constants */
121 	long		bd_maxbufspace;
122 	long		bd_hibufspace;
123 	long 		bd_lobufspace;
124 	long 		bd_bufspacethresh;
125 	int		bd_hifreebuffers;
126 	int		bd_lofreebuffers;
127 	int		bd_hidirtybuffers;
128 	int		bd_lodirtybuffers;
129 	int		bd_dirtybufthresh;
130 	int		bd_lim;
131 	/* atomics */
132 	int		bd_wanted;
133 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
134 	int __aligned(CACHE_LINE_SIZE)	bd_running;
135 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
136 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
137 } __aligned(CACHE_LINE_SIZE);
138 
139 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
140 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
141 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
142 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
143 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
144 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
145 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
146 #define	BD_DOMAIN(bd)		(bd - bdomain)
147 
148 static struct buf *buf;		/* buffer header pool */
149 extern struct buf *swbuf;	/* Swap buffer header pool. */
150 caddr_t unmapped_buf;
151 
152 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
153 struct proc *bufdaemonproc;
154 
155 static int inmem(struct vnode *vp, daddr_t blkno);
156 static void vm_hold_free_pages(struct buf *bp, int newbsize);
157 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
158 		vm_offset_t to);
159 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
160 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
161 		vm_page_t m);
162 static void vfs_clean_pages_dirty_buf(struct buf *bp);
163 static void vfs_setdirty_locked_object(struct buf *bp);
164 static void vfs_vmio_invalidate(struct buf *bp);
165 static void vfs_vmio_truncate(struct buf *bp, int npages);
166 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
167 static int vfs_bio_clcheck(struct vnode *vp, int size,
168 		daddr_t lblkno, daddr_t blkno);
169 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
170 		void (*)(struct buf *));
171 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
172 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
173 static void buf_daemon(void);
174 static __inline void bd_wakeup(void);
175 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
176 static void bufkva_reclaim(vmem_t *, int);
177 static void bufkva_free(struct buf *);
178 static int buf_import(void *, void **, int, int, int);
179 static void buf_release(void *, void **, int);
180 static void maxbcachebuf_adjust(void);
181 static inline struct bufdomain *bufdomain(struct buf *);
182 static void bq_remove(struct bufqueue *bq, struct buf *bp);
183 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
184 static int buf_recycle(struct bufdomain *, bool kva);
185 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
186 	    const char *lockname);
187 static void bd_init(struct bufdomain *bd);
188 static int bd_flushall(struct bufdomain *bd);
189 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
190 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
191 
192 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
193 int vmiodirenable = TRUE;
194 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
195     "Use the VM system for directory writes");
196 long runningbufspace;
197 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
198     "Amount of presently outstanding async buffer io");
199 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
200     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
201 static counter_u64_t bufkvaspace;
202 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
203     "Kernel virtual memory used for buffers");
204 static long maxbufspace;
205 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
206     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
207     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
208     "Maximum allowed value of bufspace (including metadata)");
209 static long bufmallocspace;
210 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
211     "Amount of malloced memory for buffers");
212 static long maxbufmallocspace;
213 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
214     0, "Maximum amount of malloced memory for buffers");
215 static long lobufspace;
216 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
217     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
218     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
219     "Minimum amount of buffers we want to have");
220 long hibufspace;
221 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
222     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
223     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
224     "Maximum allowed value of bufspace (excluding metadata)");
225 long bufspacethresh;
226 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
227     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
228     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
229     "Bufspace consumed before waking the daemon to free some");
230 static counter_u64_t buffreekvacnt;
231 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
232     "Number of times we have freed the KVA space from some buffer");
233 static counter_u64_t bufdefragcnt;
234 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
235     "Number of times we have had to repeat buffer allocation to defragment");
236 static long lorunningspace;
237 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
238     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
239     "Minimum preferred space used for in-progress I/O");
240 static long hirunningspace;
241 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
242     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
243     "Maximum amount of space to use for in-progress I/O");
244 int dirtybufferflushes;
245 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
246     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
247 int bdwriteskip;
248 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
249     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
250 int altbufferflushes;
251 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
252     0, "Number of fsync flushes to limit dirty buffers");
253 static int recursiveflushes;
254 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
255     0, "Number of flushes skipped due to being recursive");
256 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
257 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
258     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
259     "Number of buffers that are dirty (has unwritten changes) at the moment");
260 static int lodirtybuffers;
261 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
262     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
263     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
264     "How many buffers we want to have free before bufdaemon can sleep");
265 static int hidirtybuffers;
266 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
267     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
268     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
269     "When the number of dirty buffers is considered severe");
270 int dirtybufthresh;
271 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
272     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
273     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
274     "Number of bdwrite to bawrite conversions to clear dirty buffers");
275 static int numfreebuffers;
276 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
277     "Number of free buffers");
278 static int lofreebuffers;
279 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
280     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
281     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
282    "Target number of free buffers");
283 static int hifreebuffers;
284 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
285     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
286     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
287    "Threshold for clean buffer recycling");
288 static counter_u64_t getnewbufcalls;
289 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
290    &getnewbufcalls, "Number of calls to getnewbuf");
291 static counter_u64_t getnewbufrestarts;
292 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
293     &getnewbufrestarts,
294     "Number of times getnewbuf has had to restart a buffer acquisition");
295 static counter_u64_t mappingrestarts;
296 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
297     &mappingrestarts,
298     "Number of times getblk has had to restart a buffer mapping for "
299     "unmapped buffer");
300 static counter_u64_t numbufallocfails;
301 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
302     &numbufallocfails, "Number of times buffer allocations failed");
303 static int flushbufqtarget = 100;
304 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
305     "Amount of work to do in flushbufqueues when helping bufdaemon");
306 static counter_u64_t notbufdflushes;
307 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
308     "Number of dirty buffer flushes done by the bufdaemon helpers");
309 static long barrierwrites;
310 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
311     "Number of barrier writes");
312 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
313     &unmapped_buf_allowed, 0,
314     "Permit the use of the unmapped i/o");
315 int maxbcachebuf = MAXBCACHEBUF;
316 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
317     "Maximum size of a buffer cache block");
318 
319 /*
320  * This lock synchronizes access to bd_request.
321  */
322 static struct mtx_padalign __exclusive_cache_line bdlock;
323 
324 /*
325  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
326  * waitrunningbufspace().
327  */
328 static struct mtx_padalign __exclusive_cache_line rbreqlock;
329 
330 /*
331  * Lock that protects bdirtywait.
332  */
333 static struct mtx_padalign __exclusive_cache_line bdirtylock;
334 
335 /*
336  * Wakeup point for bufdaemon, as well as indicator of whether it is already
337  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
338  * is idling.
339  */
340 static int bd_request;
341 
342 /*
343  * Request for the buf daemon to write more buffers than is indicated by
344  * lodirtybuf.  This may be necessary to push out excess dependencies or
345  * defragment the address space where a simple count of the number of dirty
346  * buffers is insufficient to characterize the demand for flushing them.
347  */
348 static int bd_speedupreq;
349 
350 /*
351  * Synchronization (sleep/wakeup) variable for active buffer space requests.
352  * Set when wait starts, cleared prior to wakeup().
353  * Used in runningbufwakeup() and waitrunningbufspace().
354  */
355 static int runningbufreq;
356 
357 /*
358  * Synchronization for bwillwrite() waiters.
359  */
360 static int bdirtywait;
361 
362 /*
363  * Definitions for the buffer free lists.
364  */
365 #define QUEUE_NONE	0	/* on no queue */
366 #define QUEUE_EMPTY	1	/* empty buffer headers */
367 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
368 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
369 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
370 
371 /* Maximum number of buffer domains. */
372 #define	BUF_DOMAINS	8
373 
374 struct bufdomainset bdlodirty;		/* Domains > lodirty */
375 struct bufdomainset bdhidirty;		/* Domains > hidirty */
376 
377 /* Configured number of clean queues. */
378 static int __read_mostly buf_domains;
379 
380 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
381 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
382 struct bufqueue __exclusive_cache_line bqempty;
383 
384 /*
385  * per-cpu empty buffer cache.
386  */
387 uma_zone_t buf_zone;
388 
389 /*
390  * Single global constant for BUF_WMESG, to avoid getting multiple references.
391  * buf_wmesg is referred from macros.
392  */
393 const char *buf_wmesg = BUF_WMESG;
394 
395 static int
396 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
397 {
398 	long value;
399 	int error;
400 
401 	value = *(long *)arg1;
402 	error = sysctl_handle_long(oidp, &value, 0, req);
403 	if (error != 0 || req->newptr == NULL)
404 		return (error);
405 	mtx_lock(&rbreqlock);
406 	if (arg1 == &hirunningspace) {
407 		if (value < lorunningspace)
408 			error = EINVAL;
409 		else
410 			hirunningspace = value;
411 	} else {
412 		KASSERT(arg1 == &lorunningspace,
413 		    ("%s: unknown arg1", __func__));
414 		if (value > hirunningspace)
415 			error = EINVAL;
416 		else
417 			lorunningspace = value;
418 	}
419 	mtx_unlock(&rbreqlock);
420 	return (error);
421 }
422 
423 static int
424 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
425 {
426 	int error;
427 	int value;
428 	int i;
429 
430 	value = *(int *)arg1;
431 	error = sysctl_handle_int(oidp, &value, 0, req);
432 	if (error != 0 || req->newptr == NULL)
433 		return (error);
434 	*(int *)arg1 = value;
435 	for (i = 0; i < buf_domains; i++)
436 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
437 		    value / buf_domains;
438 
439 	return (error);
440 }
441 
442 static int
443 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
444 {
445 	long value;
446 	int error;
447 	int i;
448 
449 	value = *(long *)arg1;
450 	error = sysctl_handle_long(oidp, &value, 0, req);
451 	if (error != 0 || req->newptr == NULL)
452 		return (error);
453 	*(long *)arg1 = value;
454 	for (i = 0; i < buf_domains; i++)
455 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
456 		    value / buf_domains;
457 
458 	return (error);
459 }
460 
461 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
462     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
463 static int
464 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
465 {
466 	long lvalue;
467 	int ivalue;
468 	int i;
469 
470 	lvalue = 0;
471 	for (i = 0; i < buf_domains; i++)
472 		lvalue += bdomain[i].bd_bufspace;
473 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
474 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
475 	if (lvalue > INT_MAX)
476 		/* On overflow, still write out a long to trigger ENOMEM. */
477 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
478 	ivalue = lvalue;
479 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
480 }
481 #else
482 static int
483 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
484 {
485 	long lvalue;
486 	int i;
487 
488 	lvalue = 0;
489 	for (i = 0; i < buf_domains; i++)
490 		lvalue += bdomain[i].bd_bufspace;
491 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
492 }
493 #endif
494 
495 static int
496 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
497 {
498 	int value;
499 	int i;
500 
501 	value = 0;
502 	for (i = 0; i < buf_domains; i++)
503 		value += bdomain[i].bd_numdirtybuffers;
504 	return (sysctl_handle_int(oidp, &value, 0, req));
505 }
506 
507 /*
508  *	bdirtywakeup:
509  *
510  *	Wakeup any bwillwrite() waiters.
511  */
512 static void
513 bdirtywakeup(void)
514 {
515 	mtx_lock(&bdirtylock);
516 	if (bdirtywait) {
517 		bdirtywait = 0;
518 		wakeup(&bdirtywait);
519 	}
520 	mtx_unlock(&bdirtylock);
521 }
522 
523 /*
524  *	bd_clear:
525  *
526  *	Clear a domain from the appropriate bitsets when dirtybuffers
527  *	is decremented.
528  */
529 static void
530 bd_clear(struct bufdomain *bd)
531 {
532 
533 	mtx_lock(&bdirtylock);
534 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
535 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
536 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
537 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
538 	mtx_unlock(&bdirtylock);
539 }
540 
541 /*
542  *	bd_set:
543  *
544  *	Set a domain in the appropriate bitsets when dirtybuffers
545  *	is incremented.
546  */
547 static void
548 bd_set(struct bufdomain *bd)
549 {
550 
551 	mtx_lock(&bdirtylock);
552 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
553 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
554 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
555 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
556 	mtx_unlock(&bdirtylock);
557 }
558 
559 /*
560  *	bdirtysub:
561  *
562  *	Decrement the numdirtybuffers count by one and wakeup any
563  *	threads blocked in bwillwrite().
564  */
565 static void
566 bdirtysub(struct buf *bp)
567 {
568 	struct bufdomain *bd;
569 	int num;
570 
571 	bd = bufdomain(bp);
572 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
573 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
574 		bdirtywakeup();
575 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
576 		bd_clear(bd);
577 }
578 
579 /*
580  *	bdirtyadd:
581  *
582  *	Increment the numdirtybuffers count by one and wakeup the buf
583  *	daemon if needed.
584  */
585 static void
586 bdirtyadd(struct buf *bp)
587 {
588 	struct bufdomain *bd;
589 	int num;
590 
591 	/*
592 	 * Only do the wakeup once as we cross the boundary.  The
593 	 * buf daemon will keep running until the condition clears.
594 	 */
595 	bd = bufdomain(bp);
596 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
597 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
598 		bd_wakeup();
599 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
600 		bd_set(bd);
601 }
602 
603 /*
604  *	bufspace_daemon_wakeup:
605  *
606  *	Wakeup the daemons responsible for freeing clean bufs.
607  */
608 static void
609 bufspace_daemon_wakeup(struct bufdomain *bd)
610 {
611 
612 	/*
613 	 * avoid the lock if the daemon is running.
614 	 */
615 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
616 		BD_RUN_LOCK(bd);
617 		atomic_store_int(&bd->bd_running, 1);
618 		wakeup(&bd->bd_running);
619 		BD_RUN_UNLOCK(bd);
620 	}
621 }
622 
623 /*
624  *	bufspace_daemon_wait:
625  *
626  *	Sleep until the domain falls below a limit or one second passes.
627  */
628 static void
629 bufspace_daemon_wait(struct bufdomain *bd)
630 {
631 	/*
632 	 * Re-check our limits and sleep.  bd_running must be
633 	 * cleared prior to checking the limits to avoid missed
634 	 * wakeups.  The waker will adjust one of bufspace or
635 	 * freebuffers prior to checking bd_running.
636 	 */
637 	BD_RUN_LOCK(bd);
638 	atomic_store_int(&bd->bd_running, 0);
639 	if (bd->bd_bufspace < bd->bd_bufspacethresh &&
640 	    bd->bd_freebuffers > bd->bd_lofreebuffers) {
641 		msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
642 		    "-", hz);
643 	} else {
644 		/* Avoid spurious wakeups while running. */
645 		atomic_store_int(&bd->bd_running, 1);
646 		BD_RUN_UNLOCK(bd);
647 	}
648 }
649 
650 /*
651  *	bufspace_adjust:
652  *
653  *	Adjust the reported bufspace for a KVA managed buffer, possibly
654  * 	waking any waiters.
655  */
656 static void
657 bufspace_adjust(struct buf *bp, int bufsize)
658 {
659 	struct bufdomain *bd;
660 	long space;
661 	int diff;
662 
663 	KASSERT((bp->b_flags & B_MALLOC) == 0,
664 	    ("bufspace_adjust: malloc buf %p", bp));
665 	bd = bufdomain(bp);
666 	diff = bufsize - bp->b_bufsize;
667 	if (diff < 0) {
668 		atomic_subtract_long(&bd->bd_bufspace, -diff);
669 	} else if (diff > 0) {
670 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
671 		/* Wake up the daemon on the transition. */
672 		if (space < bd->bd_bufspacethresh &&
673 		    space + diff >= bd->bd_bufspacethresh)
674 			bufspace_daemon_wakeup(bd);
675 	}
676 	bp->b_bufsize = bufsize;
677 }
678 
679 /*
680  *	bufspace_reserve:
681  *
682  *	Reserve bufspace before calling allocbuf().  metadata has a
683  *	different space limit than data.
684  */
685 static int
686 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
687 {
688 	long limit, new;
689 	long space;
690 
691 	if (metadata)
692 		limit = bd->bd_maxbufspace;
693 	else
694 		limit = bd->bd_hibufspace;
695 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
696 	new = space + size;
697 	if (new > limit) {
698 		atomic_subtract_long(&bd->bd_bufspace, size);
699 		return (ENOSPC);
700 	}
701 
702 	/* Wake up the daemon on the transition. */
703 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
704 		bufspace_daemon_wakeup(bd);
705 
706 	return (0);
707 }
708 
709 /*
710  *	bufspace_release:
711  *
712  *	Release reserved bufspace after bufspace_adjust() has consumed it.
713  */
714 static void
715 bufspace_release(struct bufdomain *bd, int size)
716 {
717 
718 	atomic_subtract_long(&bd->bd_bufspace, size);
719 }
720 
721 /*
722  *	bufspace_wait:
723  *
724  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
725  *	supplied.  bd_wanted must be set prior to polling for space.  The
726  *	operation must be re-tried on return.
727  */
728 static void
729 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
730     int slpflag, int slptimeo)
731 {
732 	struct thread *td;
733 	int error, fl, norunbuf;
734 
735 	if ((gbflags & GB_NOWAIT_BD) != 0)
736 		return;
737 
738 	td = curthread;
739 	BD_LOCK(bd);
740 	while (bd->bd_wanted) {
741 		if (vp != NULL && vp->v_type != VCHR &&
742 		    (td->td_pflags & TDP_BUFNEED) == 0) {
743 			BD_UNLOCK(bd);
744 			/*
745 			 * getblk() is called with a vnode locked, and
746 			 * some majority of the dirty buffers may as
747 			 * well belong to the vnode.  Flushing the
748 			 * buffers there would make a progress that
749 			 * cannot be achieved by the buf_daemon, that
750 			 * cannot lock the vnode.
751 			 */
752 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
753 			    (td->td_pflags & TDP_NORUNNINGBUF);
754 
755 			/*
756 			 * Play bufdaemon.  The getnewbuf() function
757 			 * may be called while the thread owns lock
758 			 * for another dirty buffer for the same
759 			 * vnode, which makes it impossible to use
760 			 * VOP_FSYNC() there, due to the buffer lock
761 			 * recursion.
762 			 */
763 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
764 			fl = buf_flush(vp, bd, flushbufqtarget);
765 			td->td_pflags &= norunbuf;
766 			BD_LOCK(bd);
767 			if (fl != 0)
768 				continue;
769 			if (bd->bd_wanted == 0)
770 				break;
771 		}
772 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
773 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
774 		if (error != 0)
775 			break;
776 	}
777 	BD_UNLOCK(bd);
778 }
779 
780 
781 /*
782  *	bufspace_daemon:
783  *
784  *	buffer space management daemon.  Tries to maintain some marginal
785  *	amount of free buffer space so that requesting processes neither
786  *	block nor work to reclaim buffers.
787  */
788 static void
789 bufspace_daemon(void *arg)
790 {
791 	struct bufdomain *bd;
792 
793 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
794 	    SHUTDOWN_PRI_LAST + 100);
795 
796 	bd = arg;
797 	for (;;) {
798 		kthread_suspend_check();
799 
800 		/*
801 		 * Free buffers from the clean queue until we meet our
802 		 * targets.
803 		 *
804 		 * Theory of operation:  The buffer cache is most efficient
805 		 * when some free buffer headers and space are always
806 		 * available to getnewbuf().  This daemon attempts to prevent
807 		 * the excessive blocking and synchronization associated
808 		 * with shortfall.  It goes through three phases according
809 		 * demand:
810 		 *
811 		 * 1)	The daemon wakes up voluntarily once per-second
812 		 *	during idle periods when the counters are below
813 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
814 		 *
815 		 * 2)	The daemon wakes up as we cross the thresholds
816 		 *	ahead of any potential blocking.  This may bounce
817 		 *	slightly according to the rate of consumption and
818 		 *	release.
819 		 *
820 		 * 3)	The daemon and consumers are starved for working
821 		 *	clean buffers.  This is the 'bufspace' sleep below
822 		 *	which will inefficiently trade bufs with bqrelse
823 		 *	until we return to condition 2.
824 		 */
825 		while (bd->bd_bufspace > bd->bd_lobufspace ||
826 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
827 			if (buf_recycle(bd, false) != 0) {
828 				if (bd_flushall(bd))
829 					continue;
830 				/*
831 				 * Speedup dirty if we've run out of clean
832 				 * buffers.  This is possible in particular
833 				 * because softdep may held many bufs locked
834 				 * pending writes to other bufs which are
835 				 * marked for delayed write, exhausting
836 				 * clean space until they are written.
837 				 */
838 				bd_speedup();
839 				BD_LOCK(bd);
840 				if (bd->bd_wanted) {
841 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
842 					    PRIBIO|PDROP, "bufspace", hz/10);
843 				} else
844 					BD_UNLOCK(bd);
845 			}
846 			maybe_yield();
847 		}
848 		bufspace_daemon_wait(bd);
849 	}
850 }
851 
852 /*
853  *	bufmallocadjust:
854  *
855  *	Adjust the reported bufspace for a malloc managed buffer, possibly
856  *	waking any waiters.
857  */
858 static void
859 bufmallocadjust(struct buf *bp, int bufsize)
860 {
861 	int diff;
862 
863 	KASSERT((bp->b_flags & B_MALLOC) != 0,
864 	    ("bufmallocadjust: non-malloc buf %p", bp));
865 	diff = bufsize - bp->b_bufsize;
866 	if (diff < 0)
867 		atomic_subtract_long(&bufmallocspace, -diff);
868 	else
869 		atomic_add_long(&bufmallocspace, diff);
870 	bp->b_bufsize = bufsize;
871 }
872 
873 /*
874  *	runningwakeup:
875  *
876  *	Wake up processes that are waiting on asynchronous writes to fall
877  *	below lorunningspace.
878  */
879 static void
880 runningwakeup(void)
881 {
882 
883 	mtx_lock(&rbreqlock);
884 	if (runningbufreq) {
885 		runningbufreq = 0;
886 		wakeup(&runningbufreq);
887 	}
888 	mtx_unlock(&rbreqlock);
889 }
890 
891 /*
892  *	runningbufwakeup:
893  *
894  *	Decrement the outstanding write count according.
895  */
896 void
897 runningbufwakeup(struct buf *bp)
898 {
899 	long space, bspace;
900 
901 	bspace = bp->b_runningbufspace;
902 	if (bspace == 0)
903 		return;
904 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
905 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
906 	    space, bspace));
907 	bp->b_runningbufspace = 0;
908 	/*
909 	 * Only acquire the lock and wakeup on the transition from exceeding
910 	 * the threshold to falling below it.
911 	 */
912 	if (space < lorunningspace)
913 		return;
914 	if (space - bspace > lorunningspace)
915 		return;
916 	runningwakeup();
917 }
918 
919 /*
920  *	waitrunningbufspace()
921  *
922  *	runningbufspace is a measure of the amount of I/O currently
923  *	running.  This routine is used in async-write situations to
924  *	prevent creating huge backups of pending writes to a device.
925  *	Only asynchronous writes are governed by this function.
926  *
927  *	This does NOT turn an async write into a sync write.  It waits
928  *	for earlier writes to complete and generally returns before the
929  *	caller's write has reached the device.
930  */
931 void
932 waitrunningbufspace(void)
933 {
934 
935 	mtx_lock(&rbreqlock);
936 	while (runningbufspace > hirunningspace) {
937 		runningbufreq = 1;
938 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
939 	}
940 	mtx_unlock(&rbreqlock);
941 }
942 
943 
944 /*
945  *	vfs_buf_test_cache:
946  *
947  *	Called when a buffer is extended.  This function clears the B_CACHE
948  *	bit if the newly extended portion of the buffer does not contain
949  *	valid data.
950  */
951 static __inline void
952 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
953     vm_offset_t size, vm_page_t m)
954 {
955 
956 	VM_OBJECT_ASSERT_LOCKED(m->object);
957 	if (bp->b_flags & B_CACHE) {
958 		int base = (foff + off) & PAGE_MASK;
959 		if (vm_page_is_valid(m, base, size) == 0)
960 			bp->b_flags &= ~B_CACHE;
961 	}
962 }
963 
964 /* Wake up the buffer daemon if necessary */
965 static void
966 bd_wakeup(void)
967 {
968 
969 	mtx_lock(&bdlock);
970 	if (bd_request == 0) {
971 		bd_request = 1;
972 		wakeup(&bd_request);
973 	}
974 	mtx_unlock(&bdlock);
975 }
976 
977 /*
978  * Adjust the maxbcachbuf tunable.
979  */
980 static void
981 maxbcachebuf_adjust(void)
982 {
983 	int i;
984 
985 	/*
986 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
987 	 */
988 	i = 2;
989 	while (i * 2 <= maxbcachebuf)
990 		i *= 2;
991 	maxbcachebuf = i;
992 	if (maxbcachebuf < MAXBSIZE)
993 		maxbcachebuf = MAXBSIZE;
994 	if (maxbcachebuf > MAXPHYS)
995 		maxbcachebuf = MAXPHYS;
996 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
997 		printf("maxbcachebuf=%d\n", maxbcachebuf);
998 }
999 
1000 /*
1001  * bd_speedup - speedup the buffer cache flushing code
1002  */
1003 void
1004 bd_speedup(void)
1005 {
1006 	int needwake;
1007 
1008 	mtx_lock(&bdlock);
1009 	needwake = 0;
1010 	if (bd_speedupreq == 0 || bd_request == 0)
1011 		needwake = 1;
1012 	bd_speedupreq = 1;
1013 	bd_request = 1;
1014 	if (needwake)
1015 		wakeup(&bd_request);
1016 	mtx_unlock(&bdlock);
1017 }
1018 
1019 #ifdef __i386__
1020 #define	TRANSIENT_DENOM	5
1021 #else
1022 #define	TRANSIENT_DENOM 10
1023 #endif
1024 
1025 /*
1026  * Calculating buffer cache scaling values and reserve space for buffer
1027  * headers.  This is called during low level kernel initialization and
1028  * may be called more then once.  We CANNOT write to the memory area
1029  * being reserved at this time.
1030  */
1031 caddr_t
1032 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1033 {
1034 	int tuned_nbuf;
1035 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1036 
1037 	/*
1038 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1039 	 * PAGE_SIZE is >= 1K)
1040 	 */
1041 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1042 
1043 	maxbcachebuf_adjust();
1044 	/*
1045 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1046 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1047 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1048 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1049 	 * the buffer cache we limit the eventual kva reservation to
1050 	 * maxbcache bytes.
1051 	 *
1052 	 * factor represents the 1/4 x ram conversion.
1053 	 */
1054 	if (nbuf == 0) {
1055 		int factor = 4 * BKVASIZE / 1024;
1056 
1057 		nbuf = 50;
1058 		if (physmem_est > 4096)
1059 			nbuf += min((physmem_est - 4096) / factor,
1060 			    65536 / factor);
1061 		if (physmem_est > 65536)
1062 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1063 			    32 * 1024 * 1024 / (factor * 5));
1064 
1065 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1066 			nbuf = maxbcache / BKVASIZE;
1067 		tuned_nbuf = 1;
1068 	} else
1069 		tuned_nbuf = 0;
1070 
1071 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1072 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1073 	if (nbuf > maxbuf) {
1074 		if (!tuned_nbuf)
1075 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1076 			    maxbuf);
1077 		nbuf = maxbuf;
1078 	}
1079 
1080 	/*
1081 	 * Ideal allocation size for the transient bio submap is 10%
1082 	 * of the maximal space buffer map.  This roughly corresponds
1083 	 * to the amount of the buffer mapped for typical UFS load.
1084 	 *
1085 	 * Clip the buffer map to reserve space for the transient
1086 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1087 	 * maximum buffer map extent on the platform.
1088 	 *
1089 	 * The fall-back to the maxbuf in case of maxbcache unset,
1090 	 * allows to not trim the buffer KVA for the architectures
1091 	 * with ample KVA space.
1092 	 */
1093 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1094 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1095 		buf_sz = (long)nbuf * BKVASIZE;
1096 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1097 		    (TRANSIENT_DENOM - 1)) {
1098 			/*
1099 			 * There is more KVA than memory.  Do not
1100 			 * adjust buffer map size, and assign the rest
1101 			 * of maxbuf to transient map.
1102 			 */
1103 			biotmap_sz = maxbuf_sz - buf_sz;
1104 		} else {
1105 			/*
1106 			 * Buffer map spans all KVA we could afford on
1107 			 * this platform.  Give 10% (20% on i386) of
1108 			 * the buffer map to the transient bio map.
1109 			 */
1110 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1111 			buf_sz -= biotmap_sz;
1112 		}
1113 		if (biotmap_sz / INT_MAX > MAXPHYS)
1114 			bio_transient_maxcnt = INT_MAX;
1115 		else
1116 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
1117 		/*
1118 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1119 		 * using the transient mapping.
1120 		 */
1121 		if (bio_transient_maxcnt > 1024)
1122 			bio_transient_maxcnt = 1024;
1123 		if (tuned_nbuf)
1124 			nbuf = buf_sz / BKVASIZE;
1125 	}
1126 
1127 	if (nswbuf == 0) {
1128 		nswbuf = min(nbuf / 4, 256);
1129 		if (nswbuf < NSWBUF_MIN)
1130 			nswbuf = NSWBUF_MIN;
1131 	}
1132 
1133 	/*
1134 	 * Reserve space for the buffer cache buffers
1135 	 */
1136 	buf = (void *)v;
1137 	v = (caddr_t)(buf + nbuf);
1138 
1139 	return(v);
1140 }
1141 
1142 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1143 void
1144 bufinit(void)
1145 {
1146 	struct buf *bp;
1147 	int i;
1148 
1149 	KASSERT(maxbcachebuf >= MAXBSIZE,
1150 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1151 	    MAXBSIZE));
1152 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1153 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1154 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1155 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1156 
1157 	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
1158 
1159 	/* finally, initialize each buffer header and stick on empty q */
1160 	for (i = 0; i < nbuf; i++) {
1161 		bp = &buf[i];
1162 		bzero(bp, sizeof *bp);
1163 		bp->b_flags = B_INVAL;
1164 		bp->b_rcred = NOCRED;
1165 		bp->b_wcred = NOCRED;
1166 		bp->b_qindex = QUEUE_NONE;
1167 		bp->b_domain = -1;
1168 		bp->b_subqueue = mp_maxid + 1;
1169 		bp->b_xflags = 0;
1170 		bp->b_data = bp->b_kvabase = unmapped_buf;
1171 		LIST_INIT(&bp->b_dep);
1172 		BUF_LOCKINIT(bp);
1173 		bq_insert(&bqempty, bp, false);
1174 	}
1175 
1176 	/*
1177 	 * maxbufspace is the absolute maximum amount of buffer space we are
1178 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1179 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1180 	 * used by most other requests.  The differential is required to
1181 	 * ensure that metadata deadlocks don't occur.
1182 	 *
1183 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1184 	 * this may result in KVM fragmentation which is not handled optimally
1185 	 * by the system. XXX This is less true with vmem.  We could use
1186 	 * PAGE_SIZE.
1187 	 */
1188 	maxbufspace = (long)nbuf * BKVASIZE;
1189 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1190 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1191 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1192 
1193 	/*
1194 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1195 	 * arbitrarily and may need further tuning. It corresponds to
1196 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1197 	 * which fits with many RAID controllers' tagged queuing limits.
1198 	 * The lower 1 MiB limit is the historical upper limit for
1199 	 * hirunningspace.
1200 	 */
1201 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1202 	    16 * 1024 * 1024), 1024 * 1024);
1203 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1204 
1205 	/*
1206 	 * Limit the amount of malloc memory since it is wired permanently into
1207 	 * the kernel space.  Even though this is accounted for in the buffer
1208 	 * allocation, we don't want the malloced region to grow uncontrolled.
1209 	 * The malloc scheme improves memory utilization significantly on
1210 	 * average (small) directories.
1211 	 */
1212 	maxbufmallocspace = hibufspace / 20;
1213 
1214 	/*
1215 	 * Reduce the chance of a deadlock occurring by limiting the number
1216 	 * of delayed-write dirty buffers we allow to stack up.
1217 	 */
1218 	hidirtybuffers = nbuf / 4 + 20;
1219 	dirtybufthresh = hidirtybuffers * 9 / 10;
1220 	/*
1221 	 * To support extreme low-memory systems, make sure hidirtybuffers
1222 	 * cannot eat up all available buffer space.  This occurs when our
1223 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1224 	 * buffer space assuming BKVASIZE'd buffers.
1225 	 */
1226 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1227 		hidirtybuffers >>= 1;
1228 	}
1229 	lodirtybuffers = hidirtybuffers / 2;
1230 
1231 	/*
1232 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1233 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1234 	 * are counted as free but will be unavailable to threads executing
1235 	 * on other cpus.
1236 	 *
1237 	 * hifreebuffers is the free target for the bufspace daemon.  This
1238 	 * should be set appropriately to limit work per-iteration.
1239 	 */
1240 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1241 	hifreebuffers = (3 * lofreebuffers) / 2;
1242 	numfreebuffers = nbuf;
1243 
1244 	/* Setup the kva and free list allocators. */
1245 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1246 	buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
1247 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1248 
1249 	/*
1250 	 * Size the clean queue according to the amount of buffer space.
1251 	 * One queue per-256mb up to the max.  More queues gives better
1252 	 * concurrency but less accurate LRU.
1253 	 */
1254 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1255 	for (i = 0 ; i < buf_domains; i++) {
1256 		struct bufdomain *bd;
1257 
1258 		bd = &bdomain[i];
1259 		bd_init(bd);
1260 		bd->bd_freebuffers = nbuf / buf_domains;
1261 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1262 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1263 		bd->bd_bufspace = 0;
1264 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1265 		bd->bd_hibufspace = hibufspace / buf_domains;
1266 		bd->bd_lobufspace = lobufspace / buf_domains;
1267 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1268 		bd->bd_numdirtybuffers = 0;
1269 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1270 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1271 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1272 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1273 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1274 	}
1275 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1276 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1277 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1278 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1279 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1280 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1281 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1282 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1283 }
1284 
1285 #ifdef INVARIANTS
1286 static inline void
1287 vfs_buf_check_mapped(struct buf *bp)
1288 {
1289 
1290 	KASSERT(bp->b_kvabase != unmapped_buf,
1291 	    ("mapped buf: b_kvabase was not updated %p", bp));
1292 	KASSERT(bp->b_data != unmapped_buf,
1293 	    ("mapped buf: b_data was not updated %p", bp));
1294 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1295 	    MAXPHYS, ("b_data + b_offset unmapped %p", bp));
1296 }
1297 
1298 static inline void
1299 vfs_buf_check_unmapped(struct buf *bp)
1300 {
1301 
1302 	KASSERT(bp->b_data == unmapped_buf,
1303 	    ("unmapped buf: corrupted b_data %p", bp));
1304 }
1305 
1306 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1307 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1308 #else
1309 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1310 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1311 #endif
1312 
1313 static int
1314 isbufbusy(struct buf *bp)
1315 {
1316 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1317 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1318 		return (1);
1319 	return (0);
1320 }
1321 
1322 /*
1323  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1324  */
1325 void
1326 bufshutdown(int show_busybufs)
1327 {
1328 	static int first_buf_printf = 1;
1329 	struct buf *bp;
1330 	int iter, nbusy, pbusy;
1331 #ifndef PREEMPTION
1332 	int subiter;
1333 #endif
1334 
1335 	/*
1336 	 * Sync filesystems for shutdown
1337 	 */
1338 	wdog_kern_pat(WD_LASTVAL);
1339 	sys_sync(curthread, NULL);
1340 
1341 	/*
1342 	 * With soft updates, some buffers that are
1343 	 * written will be remarked as dirty until other
1344 	 * buffers are written.
1345 	 */
1346 	for (iter = pbusy = 0; iter < 20; iter++) {
1347 		nbusy = 0;
1348 		for (bp = &buf[nbuf]; --bp >= buf; )
1349 			if (isbufbusy(bp))
1350 				nbusy++;
1351 		if (nbusy == 0) {
1352 			if (first_buf_printf)
1353 				printf("All buffers synced.");
1354 			break;
1355 		}
1356 		if (first_buf_printf) {
1357 			printf("Syncing disks, buffers remaining... ");
1358 			first_buf_printf = 0;
1359 		}
1360 		printf("%d ", nbusy);
1361 		if (nbusy < pbusy)
1362 			iter = 0;
1363 		pbusy = nbusy;
1364 
1365 		wdog_kern_pat(WD_LASTVAL);
1366 		sys_sync(curthread, NULL);
1367 
1368 #ifdef PREEMPTION
1369 		/*
1370 		 * Spin for a while to allow interrupt threads to run.
1371 		 */
1372 		DELAY(50000 * iter);
1373 #else
1374 		/*
1375 		 * Context switch several times to allow interrupt
1376 		 * threads to run.
1377 		 */
1378 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1379 			thread_lock(curthread);
1380 			mi_switch(SW_VOL, NULL);
1381 			thread_unlock(curthread);
1382 			DELAY(1000);
1383 		}
1384 #endif
1385 	}
1386 	printf("\n");
1387 	/*
1388 	 * Count only busy local buffers to prevent forcing
1389 	 * a fsck if we're just a client of a wedged NFS server
1390 	 */
1391 	nbusy = 0;
1392 	for (bp = &buf[nbuf]; --bp >= buf; ) {
1393 		if (isbufbusy(bp)) {
1394 #if 0
1395 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1396 			if (bp->b_dev == NULL) {
1397 				TAILQ_REMOVE(&mountlist,
1398 				    bp->b_vp->v_mount, mnt_list);
1399 				continue;
1400 			}
1401 #endif
1402 			nbusy++;
1403 			if (show_busybufs > 0) {
1404 				printf(
1405 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1406 				    nbusy, bp, bp->b_vp, bp->b_flags,
1407 				    (intmax_t)bp->b_blkno,
1408 				    (intmax_t)bp->b_lblkno);
1409 				BUF_LOCKPRINTINFO(bp);
1410 				if (show_busybufs > 1)
1411 					vn_printf(bp->b_vp,
1412 					    "vnode content: ");
1413 			}
1414 		}
1415 	}
1416 	if (nbusy) {
1417 		/*
1418 		 * Failed to sync all blocks. Indicate this and don't
1419 		 * unmount filesystems (thus forcing an fsck on reboot).
1420 		 */
1421 		printf("Giving up on %d buffers\n", nbusy);
1422 		DELAY(5000000);	/* 5 seconds */
1423 	} else {
1424 		if (!first_buf_printf)
1425 			printf("Final sync complete\n");
1426 		/*
1427 		 * Unmount filesystems
1428 		 */
1429 		if (panicstr == NULL)
1430 			vfs_unmountall();
1431 	}
1432 	swapoff_all();
1433 	DELAY(100000);		/* wait for console output to finish */
1434 }
1435 
1436 static void
1437 bpmap_qenter(struct buf *bp)
1438 {
1439 
1440 	BUF_CHECK_MAPPED(bp);
1441 
1442 	/*
1443 	 * bp->b_data is relative to bp->b_offset, but
1444 	 * bp->b_offset may be offset into the first page.
1445 	 */
1446 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1447 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1448 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1449 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1450 }
1451 
1452 static inline struct bufdomain *
1453 bufdomain(struct buf *bp)
1454 {
1455 
1456 	return (&bdomain[bp->b_domain]);
1457 }
1458 
1459 static struct bufqueue *
1460 bufqueue(struct buf *bp)
1461 {
1462 
1463 	switch (bp->b_qindex) {
1464 	case QUEUE_NONE:
1465 		/* FALLTHROUGH */
1466 	case QUEUE_SENTINEL:
1467 		return (NULL);
1468 	case QUEUE_EMPTY:
1469 		return (&bqempty);
1470 	case QUEUE_DIRTY:
1471 		return (&bufdomain(bp)->bd_dirtyq);
1472 	case QUEUE_CLEAN:
1473 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1474 	default:
1475 		break;
1476 	}
1477 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1478 }
1479 
1480 /*
1481  * Return the locked bufqueue that bp is a member of.
1482  */
1483 static struct bufqueue *
1484 bufqueue_acquire(struct buf *bp)
1485 {
1486 	struct bufqueue *bq, *nbq;
1487 
1488 	/*
1489 	 * bp can be pushed from a per-cpu queue to the
1490 	 * cleanq while we're waiting on the lock.  Retry
1491 	 * if the queues don't match.
1492 	 */
1493 	bq = bufqueue(bp);
1494 	BQ_LOCK(bq);
1495 	for (;;) {
1496 		nbq = bufqueue(bp);
1497 		if (bq == nbq)
1498 			break;
1499 		BQ_UNLOCK(bq);
1500 		BQ_LOCK(nbq);
1501 		bq = nbq;
1502 	}
1503 	return (bq);
1504 }
1505 
1506 /*
1507  *	binsfree:
1508  *
1509  *	Insert the buffer into the appropriate free list.  Requires a
1510  *	locked buffer on entry and buffer is unlocked before return.
1511  */
1512 static void
1513 binsfree(struct buf *bp, int qindex)
1514 {
1515 	struct bufdomain *bd;
1516 	struct bufqueue *bq;
1517 
1518 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1519 	    ("binsfree: Invalid qindex %d", qindex));
1520 	BUF_ASSERT_XLOCKED(bp);
1521 
1522 	/*
1523 	 * Handle delayed bremfree() processing.
1524 	 */
1525 	if (bp->b_flags & B_REMFREE) {
1526 		if (bp->b_qindex == qindex) {
1527 			bp->b_flags |= B_REUSE;
1528 			bp->b_flags &= ~B_REMFREE;
1529 			BUF_UNLOCK(bp);
1530 			return;
1531 		}
1532 		bq = bufqueue_acquire(bp);
1533 		bq_remove(bq, bp);
1534 		BQ_UNLOCK(bq);
1535 	}
1536 	bd = bufdomain(bp);
1537 	if (qindex == QUEUE_CLEAN) {
1538 		if (bd->bd_lim != 0)
1539 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1540 		else
1541 			bq = bd->bd_cleanq;
1542 	} else
1543 		bq = &bd->bd_dirtyq;
1544 	bq_insert(bq, bp, true);
1545 }
1546 
1547 /*
1548  * buf_free:
1549  *
1550  *	Free a buffer to the buf zone once it no longer has valid contents.
1551  */
1552 static void
1553 buf_free(struct buf *bp)
1554 {
1555 
1556 	if (bp->b_flags & B_REMFREE)
1557 		bremfreef(bp);
1558 	if (bp->b_vflags & BV_BKGRDINPROG)
1559 		panic("losing buffer 1");
1560 	if (bp->b_rcred != NOCRED) {
1561 		crfree(bp->b_rcred);
1562 		bp->b_rcred = NOCRED;
1563 	}
1564 	if (bp->b_wcred != NOCRED) {
1565 		crfree(bp->b_wcred);
1566 		bp->b_wcred = NOCRED;
1567 	}
1568 	if (!LIST_EMPTY(&bp->b_dep))
1569 		buf_deallocate(bp);
1570 	bufkva_free(bp);
1571 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1572 	BUF_UNLOCK(bp);
1573 	uma_zfree(buf_zone, bp);
1574 }
1575 
1576 /*
1577  * buf_import:
1578  *
1579  *	Import bufs into the uma cache from the buf list.  The system still
1580  *	expects a static array of bufs and much of the synchronization
1581  *	around bufs assumes type stable storage.  As a result, UMA is used
1582  *	only as a per-cpu cache of bufs still maintained on a global list.
1583  */
1584 static int
1585 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1586 {
1587 	struct buf *bp;
1588 	int i;
1589 
1590 	BQ_LOCK(&bqempty);
1591 	for (i = 0; i < cnt; i++) {
1592 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1593 		if (bp == NULL)
1594 			break;
1595 		bq_remove(&bqempty, bp);
1596 		store[i] = bp;
1597 	}
1598 	BQ_UNLOCK(&bqempty);
1599 
1600 	return (i);
1601 }
1602 
1603 /*
1604  * buf_release:
1605  *
1606  *	Release bufs from the uma cache back to the buffer queues.
1607  */
1608 static void
1609 buf_release(void *arg, void **store, int cnt)
1610 {
1611 	struct bufqueue *bq;
1612 	struct buf *bp;
1613         int i;
1614 
1615 	bq = &bqempty;
1616 	BQ_LOCK(bq);
1617         for (i = 0; i < cnt; i++) {
1618 		bp = store[i];
1619 		/* Inline bq_insert() to batch locking. */
1620 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1621 		bp->b_flags &= ~(B_AGE | B_REUSE);
1622 		bq->bq_len++;
1623 		bp->b_qindex = bq->bq_index;
1624 	}
1625 	BQ_UNLOCK(bq);
1626 }
1627 
1628 /*
1629  * buf_alloc:
1630  *
1631  *	Allocate an empty buffer header.
1632  */
1633 static struct buf *
1634 buf_alloc(struct bufdomain *bd)
1635 {
1636 	struct buf *bp;
1637 	int freebufs;
1638 
1639 	/*
1640 	 * We can only run out of bufs in the buf zone if the average buf
1641 	 * is less than BKVASIZE.  In this case the actual wait/block will
1642 	 * come from buf_reycle() failing to flush one of these small bufs.
1643 	 */
1644 	bp = NULL;
1645 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1646 	if (freebufs > 0)
1647 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1648 	if (bp == NULL) {
1649 		atomic_add_int(&bd->bd_freebuffers, 1);
1650 		bufspace_daemon_wakeup(bd);
1651 		counter_u64_add(numbufallocfails, 1);
1652 		return (NULL);
1653 	}
1654 	/*
1655 	 * Wake-up the bufspace daemon on transition below threshold.
1656 	 */
1657 	if (freebufs == bd->bd_lofreebuffers)
1658 		bufspace_daemon_wakeup(bd);
1659 
1660 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1661 		panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
1662 
1663 	KASSERT(bp->b_vp == NULL,
1664 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1665 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1666 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1667 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1668 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1669 	KASSERT(bp->b_npages == 0,
1670 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1671 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1672 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1673 
1674 	bp->b_domain = BD_DOMAIN(bd);
1675 	bp->b_flags = 0;
1676 	bp->b_ioflags = 0;
1677 	bp->b_xflags = 0;
1678 	bp->b_vflags = 0;
1679 	bp->b_vp = NULL;
1680 	bp->b_blkno = bp->b_lblkno = 0;
1681 	bp->b_offset = NOOFFSET;
1682 	bp->b_iodone = 0;
1683 	bp->b_error = 0;
1684 	bp->b_resid = 0;
1685 	bp->b_bcount = 0;
1686 	bp->b_npages = 0;
1687 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1688 	bp->b_bufobj = NULL;
1689 	bp->b_data = bp->b_kvabase = unmapped_buf;
1690 	bp->b_fsprivate1 = NULL;
1691 	bp->b_fsprivate2 = NULL;
1692 	bp->b_fsprivate3 = NULL;
1693 	LIST_INIT(&bp->b_dep);
1694 
1695 	return (bp);
1696 }
1697 
1698 /*
1699  *	buf_recycle:
1700  *
1701  *	Free a buffer from the given bufqueue.  kva controls whether the
1702  *	freed buf must own some kva resources.  This is used for
1703  *	defragmenting.
1704  */
1705 static int
1706 buf_recycle(struct bufdomain *bd, bool kva)
1707 {
1708 	struct bufqueue *bq;
1709 	struct buf *bp, *nbp;
1710 
1711 	if (kva)
1712 		counter_u64_add(bufdefragcnt, 1);
1713 	nbp = NULL;
1714 	bq = bd->bd_cleanq;
1715 	BQ_LOCK(bq);
1716 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1717 	    ("buf_recycle: Locks don't match"));
1718 	nbp = TAILQ_FIRST(&bq->bq_queue);
1719 
1720 	/*
1721 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1722 	 * depending.
1723 	 */
1724 	while ((bp = nbp) != NULL) {
1725 		/*
1726 		 * Calculate next bp (we can only use it if we do not
1727 		 * release the bqlock).
1728 		 */
1729 		nbp = TAILQ_NEXT(bp, b_freelist);
1730 
1731 		/*
1732 		 * If we are defragging then we need a buffer with
1733 		 * some kva to reclaim.
1734 		 */
1735 		if (kva && bp->b_kvasize == 0)
1736 			continue;
1737 
1738 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1739 			continue;
1740 
1741 		/*
1742 		 * Implement a second chance algorithm for frequently
1743 		 * accessed buffers.
1744 		 */
1745 		if ((bp->b_flags & B_REUSE) != 0) {
1746 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1747 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1748 			bp->b_flags &= ~B_REUSE;
1749 			BUF_UNLOCK(bp);
1750 			continue;
1751 		}
1752 
1753 		/*
1754 		 * Skip buffers with background writes in progress.
1755 		 */
1756 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1757 			BUF_UNLOCK(bp);
1758 			continue;
1759 		}
1760 
1761 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1762 		    ("buf_recycle: inconsistent queue %d bp %p",
1763 		    bp->b_qindex, bp));
1764 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1765 		    ("getnewbuf: queue domain %d doesn't match request %d",
1766 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1767 		/*
1768 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1769 		 * the scan from this point on.
1770 		 */
1771 		bq_remove(bq, bp);
1772 		BQ_UNLOCK(bq);
1773 
1774 		/*
1775 		 * Requeue the background write buffer with error and
1776 		 * restart the scan.
1777 		 */
1778 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1779 			bqrelse(bp);
1780 			BQ_LOCK(bq);
1781 			nbp = TAILQ_FIRST(&bq->bq_queue);
1782 			continue;
1783 		}
1784 		bp->b_flags |= B_INVAL;
1785 		brelse(bp);
1786 		return (0);
1787 	}
1788 	bd->bd_wanted = 1;
1789 	BQ_UNLOCK(bq);
1790 
1791 	return (ENOBUFS);
1792 }
1793 
1794 /*
1795  *	bremfree:
1796  *
1797  *	Mark the buffer for removal from the appropriate free list.
1798  *
1799  */
1800 void
1801 bremfree(struct buf *bp)
1802 {
1803 
1804 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1805 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1806 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1807 	KASSERT(bp->b_qindex != QUEUE_NONE,
1808 	    ("bremfree: buffer %p not on a queue.", bp));
1809 	BUF_ASSERT_XLOCKED(bp);
1810 
1811 	bp->b_flags |= B_REMFREE;
1812 }
1813 
1814 /*
1815  *	bremfreef:
1816  *
1817  *	Force an immediate removal from a free list.  Used only in nfs when
1818  *	it abuses the b_freelist pointer.
1819  */
1820 void
1821 bremfreef(struct buf *bp)
1822 {
1823 	struct bufqueue *bq;
1824 
1825 	bq = bufqueue_acquire(bp);
1826 	bq_remove(bq, bp);
1827 	BQ_UNLOCK(bq);
1828 }
1829 
1830 static void
1831 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1832 {
1833 
1834 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1835 	TAILQ_INIT(&bq->bq_queue);
1836 	bq->bq_len = 0;
1837 	bq->bq_index = qindex;
1838 	bq->bq_subqueue = subqueue;
1839 }
1840 
1841 static void
1842 bd_init(struct bufdomain *bd)
1843 {
1844 	int i;
1845 
1846 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1847 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1848 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1849 	for (i = 0; i <= mp_maxid; i++)
1850 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1851 		    "bufq clean subqueue lock");
1852 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1853 }
1854 
1855 /*
1856  *	bq_remove:
1857  *
1858  *	Removes a buffer from the free list, must be called with the
1859  *	correct qlock held.
1860  */
1861 static void
1862 bq_remove(struct bufqueue *bq, struct buf *bp)
1863 {
1864 
1865 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1866 	    bp, bp->b_vp, bp->b_flags);
1867 	KASSERT(bp->b_qindex != QUEUE_NONE,
1868 	    ("bq_remove: buffer %p not on a queue.", bp));
1869 	KASSERT(bufqueue(bp) == bq,
1870 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1871 
1872 	BQ_ASSERT_LOCKED(bq);
1873 	if (bp->b_qindex != QUEUE_EMPTY) {
1874 		BUF_ASSERT_XLOCKED(bp);
1875 	}
1876 	KASSERT(bq->bq_len >= 1,
1877 	    ("queue %d underflow", bp->b_qindex));
1878 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1879 	bq->bq_len--;
1880 	bp->b_qindex = QUEUE_NONE;
1881 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1882 }
1883 
1884 static void
1885 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1886 {
1887 	struct buf *bp;
1888 
1889 	BQ_ASSERT_LOCKED(bq);
1890 	if (bq != bd->bd_cleanq) {
1891 		BD_LOCK(bd);
1892 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1893 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1894 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1895 			    b_freelist);
1896 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1897 		}
1898 		bd->bd_cleanq->bq_len += bq->bq_len;
1899 		bq->bq_len = 0;
1900 	}
1901 	if (bd->bd_wanted) {
1902 		bd->bd_wanted = 0;
1903 		wakeup(&bd->bd_wanted);
1904 	}
1905 	if (bq != bd->bd_cleanq)
1906 		BD_UNLOCK(bd);
1907 }
1908 
1909 static int
1910 bd_flushall(struct bufdomain *bd)
1911 {
1912 	struct bufqueue *bq;
1913 	int flushed;
1914 	int i;
1915 
1916 	if (bd->bd_lim == 0)
1917 		return (0);
1918 	flushed = 0;
1919 	for (i = 0; i <= mp_maxid; i++) {
1920 		bq = &bd->bd_subq[i];
1921 		if (bq->bq_len == 0)
1922 			continue;
1923 		BQ_LOCK(bq);
1924 		bd_flush(bd, bq);
1925 		BQ_UNLOCK(bq);
1926 		flushed++;
1927 	}
1928 
1929 	return (flushed);
1930 }
1931 
1932 static void
1933 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1934 {
1935 	struct bufdomain *bd;
1936 
1937 	if (bp->b_qindex != QUEUE_NONE)
1938 		panic("bq_insert: free buffer %p onto another queue?", bp);
1939 
1940 	bd = bufdomain(bp);
1941 	if (bp->b_flags & B_AGE) {
1942 		/* Place this buf directly on the real queue. */
1943 		if (bq->bq_index == QUEUE_CLEAN)
1944 			bq = bd->bd_cleanq;
1945 		BQ_LOCK(bq);
1946 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
1947 	} else {
1948 		BQ_LOCK(bq);
1949 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1950 	}
1951 	bp->b_flags &= ~(B_AGE | B_REUSE);
1952 	bq->bq_len++;
1953 	bp->b_qindex = bq->bq_index;
1954 	bp->b_subqueue = bq->bq_subqueue;
1955 
1956 	/*
1957 	 * Unlock before we notify so that we don't wakeup a waiter that
1958 	 * fails a trylock on the buf and sleeps again.
1959 	 */
1960 	if (unlock)
1961 		BUF_UNLOCK(bp);
1962 
1963 	if (bp->b_qindex == QUEUE_CLEAN) {
1964 		/*
1965 		 * Flush the per-cpu queue and notify any waiters.
1966 		 */
1967 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
1968 		    bq->bq_len >= bd->bd_lim))
1969 			bd_flush(bd, bq);
1970 	}
1971 	BQ_UNLOCK(bq);
1972 }
1973 
1974 /*
1975  *	bufkva_free:
1976  *
1977  *	Free the kva allocation for a buffer.
1978  *
1979  */
1980 static void
1981 bufkva_free(struct buf *bp)
1982 {
1983 
1984 #ifdef INVARIANTS
1985 	if (bp->b_kvasize == 0) {
1986 		KASSERT(bp->b_kvabase == unmapped_buf &&
1987 		    bp->b_data == unmapped_buf,
1988 		    ("Leaked KVA space on %p", bp));
1989 	} else if (buf_mapped(bp))
1990 		BUF_CHECK_MAPPED(bp);
1991 	else
1992 		BUF_CHECK_UNMAPPED(bp);
1993 #endif
1994 	if (bp->b_kvasize == 0)
1995 		return;
1996 
1997 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
1998 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
1999 	counter_u64_add(buffreekvacnt, 1);
2000 	bp->b_data = bp->b_kvabase = unmapped_buf;
2001 	bp->b_kvasize = 0;
2002 }
2003 
2004 /*
2005  *	bufkva_alloc:
2006  *
2007  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2008  */
2009 static int
2010 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2011 {
2012 	vm_offset_t addr;
2013 	int error;
2014 
2015 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2016 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2017 
2018 	bufkva_free(bp);
2019 
2020 	addr = 0;
2021 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2022 	if (error != 0) {
2023 		/*
2024 		 * Buffer map is too fragmented.  Request the caller
2025 		 * to defragment the map.
2026 		 */
2027 		return (error);
2028 	}
2029 	bp->b_kvabase = (caddr_t)addr;
2030 	bp->b_kvasize = maxsize;
2031 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2032 	if ((gbflags & GB_UNMAPPED) != 0) {
2033 		bp->b_data = unmapped_buf;
2034 		BUF_CHECK_UNMAPPED(bp);
2035 	} else {
2036 		bp->b_data = bp->b_kvabase;
2037 		BUF_CHECK_MAPPED(bp);
2038 	}
2039 	return (0);
2040 }
2041 
2042 /*
2043  *	bufkva_reclaim:
2044  *
2045  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2046  *	callback that fires to avoid returning failure.
2047  */
2048 static void
2049 bufkva_reclaim(vmem_t *vmem, int flags)
2050 {
2051 	bool done;
2052 	int q;
2053 	int i;
2054 
2055 	done = false;
2056 	for (i = 0; i < 5; i++) {
2057 		for (q = 0; q < buf_domains; q++)
2058 			if (buf_recycle(&bdomain[q], true) != 0)
2059 				done = true;
2060 		if (done)
2061 			break;
2062 	}
2063 	return;
2064 }
2065 
2066 /*
2067  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2068  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2069  * the buffer is valid and we do not have to do anything.
2070  */
2071 static void
2072 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2073     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2074 {
2075 	struct buf *rabp;
2076 	int i;
2077 
2078 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2079 		if (inmem(vp, *rablkno))
2080 			continue;
2081 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2082 		if ((rabp->b_flags & B_CACHE) != 0) {
2083 			brelse(rabp);
2084 			continue;
2085 		}
2086 		if (!TD_IS_IDLETHREAD(curthread)) {
2087 #ifdef RACCT
2088 			if (racct_enable) {
2089 				PROC_LOCK(curproc);
2090 				racct_add_buf(curproc, rabp, 0);
2091 				PROC_UNLOCK(curproc);
2092 			}
2093 #endif /* RACCT */
2094 			curthread->td_ru.ru_inblock++;
2095 		}
2096 		rabp->b_flags |= B_ASYNC;
2097 		rabp->b_flags &= ~B_INVAL;
2098 		if ((flags & GB_CKHASH) != 0) {
2099 			rabp->b_flags |= B_CKHASH;
2100 			rabp->b_ckhashcalc = ckhashfunc;
2101 		}
2102 		rabp->b_ioflags &= ~BIO_ERROR;
2103 		rabp->b_iocmd = BIO_READ;
2104 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2105 			rabp->b_rcred = crhold(cred);
2106 		vfs_busy_pages(rabp, 0);
2107 		BUF_KERNPROC(rabp);
2108 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2109 		bstrategy(rabp);
2110 	}
2111 }
2112 
2113 /*
2114  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2115  *
2116  * Get a buffer with the specified data.  Look in the cache first.  We
2117  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2118  * is set, the buffer is valid and we do not have to do anything, see
2119  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2120  *
2121  * Always return a NULL buffer pointer (in bpp) when returning an error.
2122  */
2123 int
2124 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
2125     int *rabsize, int cnt, struct ucred *cred, int flags,
2126     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2127 {
2128 	struct buf *bp;
2129 	struct thread *td;
2130 	int error, readwait, rv;
2131 
2132 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2133 	td = curthread;
2134 	/*
2135 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2136 	 * are specified.
2137 	 */
2138 	error = getblkx(vp, blkno, size, 0, 0, flags, &bp);
2139 	if (error != 0) {
2140 		*bpp = NULL;
2141 		return (error);
2142 	}
2143 	flags &= ~GB_NOSPARSE;
2144 	*bpp = bp;
2145 
2146 	/*
2147 	 * If not found in cache, do some I/O
2148 	 */
2149 	readwait = 0;
2150 	if ((bp->b_flags & B_CACHE) == 0) {
2151 		if (!TD_IS_IDLETHREAD(td)) {
2152 #ifdef RACCT
2153 			if (racct_enable) {
2154 				PROC_LOCK(td->td_proc);
2155 				racct_add_buf(td->td_proc, bp, 0);
2156 				PROC_UNLOCK(td->td_proc);
2157 			}
2158 #endif /* RACCT */
2159 			td->td_ru.ru_inblock++;
2160 		}
2161 		bp->b_iocmd = BIO_READ;
2162 		bp->b_flags &= ~B_INVAL;
2163 		if ((flags & GB_CKHASH) != 0) {
2164 			bp->b_flags |= B_CKHASH;
2165 			bp->b_ckhashcalc = ckhashfunc;
2166 		}
2167 		bp->b_ioflags &= ~BIO_ERROR;
2168 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2169 			bp->b_rcred = crhold(cred);
2170 		vfs_busy_pages(bp, 0);
2171 		bp->b_iooffset = dbtob(bp->b_blkno);
2172 		bstrategy(bp);
2173 		++readwait;
2174 	}
2175 
2176 	/*
2177 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2178 	 */
2179 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2180 
2181 	rv = 0;
2182 	if (readwait) {
2183 		rv = bufwait(bp);
2184 		if (rv != 0) {
2185 			brelse(bp);
2186 			*bpp = NULL;
2187 		}
2188 	}
2189 	return (rv);
2190 }
2191 
2192 /*
2193  * Write, release buffer on completion.  (Done by iodone
2194  * if async).  Do not bother writing anything if the buffer
2195  * is invalid.
2196  *
2197  * Note that we set B_CACHE here, indicating that buffer is
2198  * fully valid and thus cacheable.  This is true even of NFS
2199  * now so we set it generally.  This could be set either here
2200  * or in biodone() since the I/O is synchronous.  We put it
2201  * here.
2202  */
2203 int
2204 bufwrite(struct buf *bp)
2205 {
2206 	int oldflags;
2207 	struct vnode *vp;
2208 	long space;
2209 	int vp_md;
2210 
2211 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2212 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2213 		bp->b_flags |= B_INVAL | B_RELBUF;
2214 		bp->b_flags &= ~B_CACHE;
2215 		brelse(bp);
2216 		return (ENXIO);
2217 	}
2218 	if (bp->b_flags & B_INVAL) {
2219 		brelse(bp);
2220 		return (0);
2221 	}
2222 
2223 	if (bp->b_flags & B_BARRIER)
2224 		atomic_add_long(&barrierwrites, 1);
2225 
2226 	oldflags = bp->b_flags;
2227 
2228 	BUF_ASSERT_HELD(bp);
2229 
2230 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2231 	    ("FFS background buffer should not get here %p", bp));
2232 
2233 	vp = bp->b_vp;
2234 	if (vp)
2235 		vp_md = vp->v_vflag & VV_MD;
2236 	else
2237 		vp_md = 0;
2238 
2239 	/*
2240 	 * Mark the buffer clean.  Increment the bufobj write count
2241 	 * before bundirty() call, to prevent other thread from seeing
2242 	 * empty dirty list and zero counter for writes in progress,
2243 	 * falsely indicating that the bufobj is clean.
2244 	 */
2245 	bufobj_wref(bp->b_bufobj);
2246 	bundirty(bp);
2247 
2248 	bp->b_flags &= ~B_DONE;
2249 	bp->b_ioflags &= ~BIO_ERROR;
2250 	bp->b_flags |= B_CACHE;
2251 	bp->b_iocmd = BIO_WRITE;
2252 
2253 	vfs_busy_pages(bp, 1);
2254 
2255 	/*
2256 	 * Normal bwrites pipeline writes
2257 	 */
2258 	bp->b_runningbufspace = bp->b_bufsize;
2259 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2260 
2261 	if (!TD_IS_IDLETHREAD(curthread)) {
2262 #ifdef RACCT
2263 		if (racct_enable) {
2264 			PROC_LOCK(curproc);
2265 			racct_add_buf(curproc, bp, 1);
2266 			PROC_UNLOCK(curproc);
2267 		}
2268 #endif /* RACCT */
2269 		curthread->td_ru.ru_oublock++;
2270 	}
2271 	if (oldflags & B_ASYNC)
2272 		BUF_KERNPROC(bp);
2273 	bp->b_iooffset = dbtob(bp->b_blkno);
2274 	buf_track(bp, __func__);
2275 	bstrategy(bp);
2276 
2277 	if ((oldflags & B_ASYNC) == 0) {
2278 		int rtval = bufwait(bp);
2279 		brelse(bp);
2280 		return (rtval);
2281 	} else if (space > hirunningspace) {
2282 		/*
2283 		 * don't allow the async write to saturate the I/O
2284 		 * system.  We will not deadlock here because
2285 		 * we are blocking waiting for I/O that is already in-progress
2286 		 * to complete. We do not block here if it is the update
2287 		 * or syncer daemon trying to clean up as that can lead
2288 		 * to deadlock.
2289 		 */
2290 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2291 			waitrunningbufspace();
2292 	}
2293 
2294 	return (0);
2295 }
2296 
2297 void
2298 bufbdflush(struct bufobj *bo, struct buf *bp)
2299 {
2300 	struct buf *nbp;
2301 
2302 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
2303 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2304 		altbufferflushes++;
2305 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
2306 		BO_LOCK(bo);
2307 		/*
2308 		 * Try to find a buffer to flush.
2309 		 */
2310 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2311 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2312 			    BUF_LOCK(nbp,
2313 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2314 				continue;
2315 			if (bp == nbp)
2316 				panic("bdwrite: found ourselves");
2317 			BO_UNLOCK(bo);
2318 			/* Don't countdeps with the bo lock held. */
2319 			if (buf_countdeps(nbp, 0)) {
2320 				BO_LOCK(bo);
2321 				BUF_UNLOCK(nbp);
2322 				continue;
2323 			}
2324 			if (nbp->b_flags & B_CLUSTEROK) {
2325 				vfs_bio_awrite(nbp);
2326 			} else {
2327 				bremfree(nbp);
2328 				bawrite(nbp);
2329 			}
2330 			dirtybufferflushes++;
2331 			break;
2332 		}
2333 		if (nbp == NULL)
2334 			BO_UNLOCK(bo);
2335 	}
2336 }
2337 
2338 /*
2339  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2340  * anything if the buffer is marked invalid.
2341  *
2342  * Note that since the buffer must be completely valid, we can safely
2343  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2344  * biodone() in order to prevent getblk from writing the buffer
2345  * out synchronously.
2346  */
2347 void
2348 bdwrite(struct buf *bp)
2349 {
2350 	struct thread *td = curthread;
2351 	struct vnode *vp;
2352 	struct bufobj *bo;
2353 
2354 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2355 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2356 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2357 	    ("Barrier request in delayed write %p", bp));
2358 	BUF_ASSERT_HELD(bp);
2359 
2360 	if (bp->b_flags & B_INVAL) {
2361 		brelse(bp);
2362 		return;
2363 	}
2364 
2365 	/*
2366 	 * If we have too many dirty buffers, don't create any more.
2367 	 * If we are wildly over our limit, then force a complete
2368 	 * cleanup. Otherwise, just keep the situation from getting
2369 	 * out of control. Note that we have to avoid a recursive
2370 	 * disaster and not try to clean up after our own cleanup!
2371 	 */
2372 	vp = bp->b_vp;
2373 	bo = bp->b_bufobj;
2374 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2375 		td->td_pflags |= TDP_INBDFLUSH;
2376 		BO_BDFLUSH(bo, bp);
2377 		td->td_pflags &= ~TDP_INBDFLUSH;
2378 	} else
2379 		recursiveflushes++;
2380 
2381 	bdirty(bp);
2382 	/*
2383 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2384 	 * true even of NFS now.
2385 	 */
2386 	bp->b_flags |= B_CACHE;
2387 
2388 	/*
2389 	 * This bmap keeps the system from needing to do the bmap later,
2390 	 * perhaps when the system is attempting to do a sync.  Since it
2391 	 * is likely that the indirect block -- or whatever other datastructure
2392 	 * that the filesystem needs is still in memory now, it is a good
2393 	 * thing to do this.  Note also, that if the pageout daemon is
2394 	 * requesting a sync -- there might not be enough memory to do
2395 	 * the bmap then...  So, this is important to do.
2396 	 */
2397 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2398 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2399 	}
2400 
2401 	buf_track(bp, __func__);
2402 
2403 	/*
2404 	 * Set the *dirty* buffer range based upon the VM system dirty
2405 	 * pages.
2406 	 *
2407 	 * Mark the buffer pages as clean.  We need to do this here to
2408 	 * satisfy the vnode_pager and the pageout daemon, so that it
2409 	 * thinks that the pages have been "cleaned".  Note that since
2410 	 * the pages are in a delayed write buffer -- the VFS layer
2411 	 * "will" see that the pages get written out on the next sync,
2412 	 * or perhaps the cluster will be completed.
2413 	 */
2414 	vfs_clean_pages_dirty_buf(bp);
2415 	bqrelse(bp);
2416 
2417 	/*
2418 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2419 	 * due to the softdep code.
2420 	 */
2421 }
2422 
2423 /*
2424  *	bdirty:
2425  *
2426  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2427  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2428  *	itself to properly update it in the dirty/clean lists.  We mark it
2429  *	B_DONE to ensure that any asynchronization of the buffer properly
2430  *	clears B_DONE ( else a panic will occur later ).
2431  *
2432  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2433  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2434  *	should only be called if the buffer is known-good.
2435  *
2436  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2437  *	count.
2438  *
2439  *	The buffer must be on QUEUE_NONE.
2440  */
2441 void
2442 bdirty(struct buf *bp)
2443 {
2444 
2445 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2446 	    bp, bp->b_vp, bp->b_flags);
2447 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2448 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2449 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2450 	BUF_ASSERT_HELD(bp);
2451 	bp->b_flags &= ~(B_RELBUF);
2452 	bp->b_iocmd = BIO_WRITE;
2453 
2454 	if ((bp->b_flags & B_DELWRI) == 0) {
2455 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2456 		reassignbuf(bp);
2457 		bdirtyadd(bp);
2458 	}
2459 }
2460 
2461 /*
2462  *	bundirty:
2463  *
2464  *	Clear B_DELWRI for buffer.
2465  *
2466  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2467  *	count.
2468  *
2469  *	The buffer must be on QUEUE_NONE.
2470  */
2471 
2472 void
2473 bundirty(struct buf *bp)
2474 {
2475 
2476 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2477 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2478 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2479 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2480 	BUF_ASSERT_HELD(bp);
2481 
2482 	if (bp->b_flags & B_DELWRI) {
2483 		bp->b_flags &= ~B_DELWRI;
2484 		reassignbuf(bp);
2485 		bdirtysub(bp);
2486 	}
2487 	/*
2488 	 * Since it is now being written, we can clear its deferred write flag.
2489 	 */
2490 	bp->b_flags &= ~B_DEFERRED;
2491 }
2492 
2493 /*
2494  *	bawrite:
2495  *
2496  *	Asynchronous write.  Start output on a buffer, but do not wait for
2497  *	it to complete.  The buffer is released when the output completes.
2498  *
2499  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2500  *	B_INVAL buffers.  Not us.
2501  */
2502 void
2503 bawrite(struct buf *bp)
2504 {
2505 
2506 	bp->b_flags |= B_ASYNC;
2507 	(void) bwrite(bp);
2508 }
2509 
2510 /*
2511  *	babarrierwrite:
2512  *
2513  *	Asynchronous barrier write.  Start output on a buffer, but do not
2514  *	wait for it to complete.  Place a write barrier after this write so
2515  *	that this buffer and all buffers written before it are committed to
2516  *	the disk before any buffers written after this write are committed
2517  *	to the disk.  The buffer is released when the output completes.
2518  */
2519 void
2520 babarrierwrite(struct buf *bp)
2521 {
2522 
2523 	bp->b_flags |= B_ASYNC | B_BARRIER;
2524 	(void) bwrite(bp);
2525 }
2526 
2527 /*
2528  *	bbarrierwrite:
2529  *
2530  *	Synchronous barrier write.  Start output on a buffer and wait for
2531  *	it to complete.  Place a write barrier after this write so that
2532  *	this buffer and all buffers written before it are committed to
2533  *	the disk before any buffers written after this write are committed
2534  *	to the disk.  The buffer is released when the output completes.
2535  */
2536 int
2537 bbarrierwrite(struct buf *bp)
2538 {
2539 
2540 	bp->b_flags |= B_BARRIER;
2541 	return (bwrite(bp));
2542 }
2543 
2544 /*
2545  *	bwillwrite:
2546  *
2547  *	Called prior to the locking of any vnodes when we are expecting to
2548  *	write.  We do not want to starve the buffer cache with too many
2549  *	dirty buffers so we block here.  By blocking prior to the locking
2550  *	of any vnodes we attempt to avoid the situation where a locked vnode
2551  *	prevents the various system daemons from flushing related buffers.
2552  */
2553 void
2554 bwillwrite(void)
2555 {
2556 
2557 	if (buf_dirty_count_severe()) {
2558 		mtx_lock(&bdirtylock);
2559 		while (buf_dirty_count_severe()) {
2560 			bdirtywait = 1;
2561 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2562 			    "flswai", 0);
2563 		}
2564 		mtx_unlock(&bdirtylock);
2565 	}
2566 }
2567 
2568 /*
2569  * Return true if we have too many dirty buffers.
2570  */
2571 int
2572 buf_dirty_count_severe(void)
2573 {
2574 
2575 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2576 }
2577 
2578 /*
2579  *	brelse:
2580  *
2581  *	Release a busy buffer and, if requested, free its resources.  The
2582  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2583  *	to be accessed later as a cache entity or reused for other purposes.
2584  */
2585 void
2586 brelse(struct buf *bp)
2587 {
2588 	struct mount *v_mnt;
2589 	int qindex;
2590 
2591 	/*
2592 	 * Many functions erroneously call brelse with a NULL bp under rare
2593 	 * error conditions. Simply return when called with a NULL bp.
2594 	 */
2595 	if (bp == NULL)
2596 		return;
2597 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2598 	    bp, bp->b_vp, bp->b_flags);
2599 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2600 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2601 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2602 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2603 
2604 	if (BUF_LOCKRECURSED(bp)) {
2605 		/*
2606 		 * Do not process, in particular, do not handle the
2607 		 * B_INVAL/B_RELBUF and do not release to free list.
2608 		 */
2609 		BUF_UNLOCK(bp);
2610 		return;
2611 	}
2612 
2613 	if (bp->b_flags & B_MANAGED) {
2614 		bqrelse(bp);
2615 		return;
2616 	}
2617 
2618 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2619 		BO_LOCK(bp->b_bufobj);
2620 		bp->b_vflags &= ~BV_BKGRDERR;
2621 		BO_UNLOCK(bp->b_bufobj);
2622 		bdirty(bp);
2623 	}
2624 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2625 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2626 	    !(bp->b_flags & B_INVAL)) {
2627 		/*
2628 		 * Failed write, redirty.  All errors except ENXIO (which
2629 		 * means the device is gone) are treated as being
2630 		 * transient.
2631 		 *
2632 		 * XXX Treating EIO as transient is not correct; the
2633 		 * contract with the local storage device drivers is that
2634 		 * they will only return EIO once the I/O is no longer
2635 		 * retriable.  Network I/O also respects this through the
2636 		 * guarantees of TCP and/or the internal retries of NFS.
2637 		 * ENOMEM might be transient, but we also have no way of
2638 		 * knowing when its ok to retry/reschedule.  In general,
2639 		 * this entire case should be made obsolete through better
2640 		 * error handling/recovery and resource scheduling.
2641 		 *
2642 		 * Do this also for buffers that failed with ENXIO, but have
2643 		 * non-empty dependencies - the soft updates code might need
2644 		 * to access the buffer to untangle them.
2645 		 *
2646 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2647 		 */
2648 		bp->b_ioflags &= ~BIO_ERROR;
2649 		bdirty(bp);
2650 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2651 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2652 		/*
2653 		 * Either a failed read I/O, or we were asked to free or not
2654 		 * cache the buffer, or we failed to write to a device that's
2655 		 * no longer present.
2656 		 */
2657 		bp->b_flags |= B_INVAL;
2658 		if (!LIST_EMPTY(&bp->b_dep))
2659 			buf_deallocate(bp);
2660 		if (bp->b_flags & B_DELWRI)
2661 			bdirtysub(bp);
2662 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2663 		if ((bp->b_flags & B_VMIO) == 0) {
2664 			allocbuf(bp, 0);
2665 			if (bp->b_vp)
2666 				brelvp(bp);
2667 		}
2668 	}
2669 
2670 	/*
2671 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2672 	 * is called with B_DELWRI set, the underlying pages may wind up
2673 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2674 	 * because pages associated with a B_DELWRI bp are marked clean.
2675 	 *
2676 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2677 	 * if B_DELWRI is set.
2678 	 */
2679 	if (bp->b_flags & B_DELWRI)
2680 		bp->b_flags &= ~B_RELBUF;
2681 
2682 	/*
2683 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2684 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2685 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2686 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2687 	 *
2688 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2689 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2690 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2691 	 *
2692 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2693 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2694 	 * the commit state and we cannot afford to lose the buffer. If the
2695 	 * buffer has a background write in progress, we need to keep it
2696 	 * around to prevent it from being reconstituted and starting a second
2697 	 * background write.
2698 	 */
2699 
2700 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2701 
2702 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2703 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2704 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2705 	    vn_isdisk(bp->b_vp, NULL) || (bp->b_flags & B_DELWRI) == 0)) {
2706 		vfs_vmio_invalidate(bp);
2707 		allocbuf(bp, 0);
2708 	}
2709 
2710 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2711 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2712 		allocbuf(bp, 0);
2713 		bp->b_flags &= ~B_NOREUSE;
2714 		if (bp->b_vp != NULL)
2715 			brelvp(bp);
2716 	}
2717 
2718 	/*
2719 	 * If the buffer has junk contents signal it and eventually
2720 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2721 	 * doesn't find it.
2722 	 */
2723 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2724 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2725 		bp->b_flags |= B_INVAL;
2726 	if (bp->b_flags & B_INVAL) {
2727 		if (bp->b_flags & B_DELWRI)
2728 			bundirty(bp);
2729 		if (bp->b_vp)
2730 			brelvp(bp);
2731 	}
2732 
2733 	buf_track(bp, __func__);
2734 
2735 	/* buffers with no memory */
2736 	if (bp->b_bufsize == 0) {
2737 		buf_free(bp);
2738 		return;
2739 	}
2740 	/* buffers with junk contents */
2741 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2742 	    (bp->b_ioflags & BIO_ERROR)) {
2743 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2744 		if (bp->b_vflags & BV_BKGRDINPROG)
2745 			panic("losing buffer 2");
2746 		qindex = QUEUE_CLEAN;
2747 		bp->b_flags |= B_AGE;
2748 	/* remaining buffers */
2749 	} else if (bp->b_flags & B_DELWRI)
2750 		qindex = QUEUE_DIRTY;
2751 	else
2752 		qindex = QUEUE_CLEAN;
2753 
2754 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2755 		panic("brelse: not dirty");
2756 
2757 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2758 	/* binsfree unlocks bp. */
2759 	binsfree(bp, qindex);
2760 }
2761 
2762 /*
2763  * Release a buffer back to the appropriate queue but do not try to free
2764  * it.  The buffer is expected to be used again soon.
2765  *
2766  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2767  * biodone() to requeue an async I/O on completion.  It is also used when
2768  * known good buffers need to be requeued but we think we may need the data
2769  * again soon.
2770  *
2771  * XXX we should be able to leave the B_RELBUF hint set on completion.
2772  */
2773 void
2774 bqrelse(struct buf *bp)
2775 {
2776 	int qindex;
2777 
2778 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2779 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2780 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2781 
2782 	qindex = QUEUE_NONE;
2783 	if (BUF_LOCKRECURSED(bp)) {
2784 		/* do not release to free list */
2785 		BUF_UNLOCK(bp);
2786 		return;
2787 	}
2788 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2789 
2790 	if (bp->b_flags & B_MANAGED) {
2791 		if (bp->b_flags & B_REMFREE)
2792 			bremfreef(bp);
2793 		goto out;
2794 	}
2795 
2796 	/* buffers with stale but valid contents */
2797 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2798 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2799 		BO_LOCK(bp->b_bufobj);
2800 		bp->b_vflags &= ~BV_BKGRDERR;
2801 		BO_UNLOCK(bp->b_bufobj);
2802 		qindex = QUEUE_DIRTY;
2803 	} else {
2804 		if ((bp->b_flags & B_DELWRI) == 0 &&
2805 		    (bp->b_xflags & BX_VNDIRTY))
2806 			panic("bqrelse: not dirty");
2807 		if ((bp->b_flags & B_NOREUSE) != 0) {
2808 			brelse(bp);
2809 			return;
2810 		}
2811 		qindex = QUEUE_CLEAN;
2812 	}
2813 	buf_track(bp, __func__);
2814 	/* binsfree unlocks bp. */
2815 	binsfree(bp, qindex);
2816 	return;
2817 
2818 out:
2819 	buf_track(bp, __func__);
2820 	/* unlock */
2821 	BUF_UNLOCK(bp);
2822 }
2823 
2824 /*
2825  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2826  * restore bogus pages.
2827  */
2828 static void
2829 vfs_vmio_iodone(struct buf *bp)
2830 {
2831 	vm_ooffset_t foff;
2832 	vm_page_t m;
2833 	vm_object_t obj;
2834 	struct vnode *vp __unused;
2835 	int i, iosize, resid;
2836 	bool bogus;
2837 
2838 	obj = bp->b_bufobj->bo_object;
2839 	KASSERT(obj->paging_in_progress >= bp->b_npages,
2840 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2841 	    obj->paging_in_progress, bp->b_npages));
2842 
2843 	vp = bp->b_vp;
2844 	KASSERT(vp->v_holdcnt > 0,
2845 	    ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
2846 	KASSERT(vp->v_object != NULL,
2847 	    ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
2848 
2849 	foff = bp->b_offset;
2850 	KASSERT(bp->b_offset != NOOFFSET,
2851 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2852 
2853 	bogus = false;
2854 	iosize = bp->b_bcount - bp->b_resid;
2855 	VM_OBJECT_WLOCK(obj);
2856 	for (i = 0; i < bp->b_npages; i++) {
2857 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2858 		if (resid > iosize)
2859 			resid = iosize;
2860 
2861 		/*
2862 		 * cleanup bogus pages, restoring the originals
2863 		 */
2864 		m = bp->b_pages[i];
2865 		if (m == bogus_page) {
2866 			bogus = true;
2867 			m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2868 			if (m == NULL)
2869 				panic("biodone: page disappeared!");
2870 			bp->b_pages[i] = m;
2871 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2872 			/*
2873 			 * In the write case, the valid and clean bits are
2874 			 * already changed correctly ( see bdwrite() ), so we
2875 			 * only need to do this here in the read case.
2876 			 */
2877 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2878 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2879 			    "has unexpected dirty bits", m));
2880 			vfs_page_set_valid(bp, foff, m);
2881 		}
2882 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2883 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2884 		    (intmax_t)foff, (uintmax_t)m->pindex));
2885 
2886 		vm_page_sunbusy(m);
2887 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2888 		iosize -= resid;
2889 	}
2890 	vm_object_pip_wakeupn(obj, bp->b_npages);
2891 	VM_OBJECT_WUNLOCK(obj);
2892 	if (bogus && buf_mapped(bp)) {
2893 		BUF_CHECK_MAPPED(bp);
2894 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2895 		    bp->b_pages, bp->b_npages);
2896 	}
2897 }
2898 
2899 /*
2900  * Unwire a page held by a buf and either free it or update the page queues to
2901  * reflect its recent use.
2902  */
2903 static void
2904 vfs_vmio_unwire(struct buf *bp, vm_page_t m)
2905 {
2906 	bool freed;
2907 
2908 	vm_page_lock(m);
2909 	if (vm_page_unwire_noq(m)) {
2910 		if ((bp->b_flags & B_DIRECT) != 0)
2911 			freed = vm_page_try_to_free(m);
2912 		else
2913 			freed = false;
2914 		if (!freed) {
2915 			/*
2916 			 * Use a racy check of the valid bits to determine
2917 			 * whether we can accelerate reclamation of the page.
2918 			 * The valid bits will be stable unless the page is
2919 			 * being mapped or is referenced by multiple buffers,
2920 			 * and in those cases we expect races to be rare.  At
2921 			 * worst we will either accelerate reclamation of a
2922 			 * valid page and violate LRU, or unnecessarily defer
2923 			 * reclamation of an invalid page.
2924 			 *
2925 			 * The B_NOREUSE flag marks data that is not expected to
2926 			 * be reused, so accelerate reclamation in that case
2927 			 * too.  Otherwise, maintain LRU.
2928 			 */
2929 			if (m->valid == 0 || (bp->b_flags & B_NOREUSE) != 0)
2930 				vm_page_deactivate_noreuse(m);
2931 			else if (vm_page_active(m))
2932 				vm_page_reference(m);
2933 			else
2934 				vm_page_deactivate(m);
2935 		}
2936 	}
2937 	vm_page_unlock(m);
2938 }
2939 
2940 /*
2941  * Perform page invalidation when a buffer is released.  The fully invalid
2942  * pages will be reclaimed later in vfs_vmio_truncate().
2943  */
2944 static void
2945 vfs_vmio_invalidate(struct buf *bp)
2946 {
2947 	vm_object_t obj;
2948 	vm_page_t m;
2949 	int i, resid, poffset, presid;
2950 
2951 	if (buf_mapped(bp)) {
2952 		BUF_CHECK_MAPPED(bp);
2953 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2954 	} else
2955 		BUF_CHECK_UNMAPPED(bp);
2956 	/*
2957 	 * Get the base offset and length of the buffer.  Note that
2958 	 * in the VMIO case if the buffer block size is not
2959 	 * page-aligned then b_data pointer may not be page-aligned.
2960 	 * But our b_pages[] array *IS* page aligned.
2961 	 *
2962 	 * block sizes less then DEV_BSIZE (usually 512) are not
2963 	 * supported due to the page granularity bits (m->valid,
2964 	 * m->dirty, etc...).
2965 	 *
2966 	 * See man buf(9) for more information
2967 	 */
2968 	obj = bp->b_bufobj->bo_object;
2969 	resid = bp->b_bufsize;
2970 	poffset = bp->b_offset & PAGE_MASK;
2971 	VM_OBJECT_WLOCK(obj);
2972 	for (i = 0; i < bp->b_npages; i++) {
2973 		m = bp->b_pages[i];
2974 		if (m == bogus_page)
2975 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
2976 		bp->b_pages[i] = NULL;
2977 
2978 		presid = resid > (PAGE_SIZE - poffset) ?
2979 		    (PAGE_SIZE - poffset) : resid;
2980 		KASSERT(presid >= 0, ("brelse: extra page"));
2981 		while (vm_page_xbusied(m)) {
2982 			vm_page_lock(m);
2983 			VM_OBJECT_WUNLOCK(obj);
2984 			vm_page_busy_sleep(m, "mbncsh", true);
2985 			VM_OBJECT_WLOCK(obj);
2986 		}
2987 		if (pmap_page_wired_mappings(m) == 0)
2988 			vm_page_set_invalid(m, poffset, presid);
2989 		vfs_vmio_unwire(bp, m);
2990 		resid -= presid;
2991 		poffset = 0;
2992 	}
2993 	VM_OBJECT_WUNLOCK(obj);
2994 	bp->b_npages = 0;
2995 }
2996 
2997 /*
2998  * Page-granular truncation of an existing VMIO buffer.
2999  */
3000 static void
3001 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3002 {
3003 	vm_object_t obj;
3004 	vm_page_t m;
3005 	int i;
3006 
3007 	if (bp->b_npages == desiredpages)
3008 		return;
3009 
3010 	if (buf_mapped(bp)) {
3011 		BUF_CHECK_MAPPED(bp);
3012 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3013 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3014 	} else
3015 		BUF_CHECK_UNMAPPED(bp);
3016 
3017 	/*
3018 	 * The object lock is needed only if we will attempt to free pages.
3019 	 */
3020 	obj = (bp->b_flags & B_DIRECT) != 0 ? bp->b_bufobj->bo_object : NULL;
3021 	if (obj != NULL)
3022 		VM_OBJECT_WLOCK(obj);
3023 	for (i = desiredpages; i < bp->b_npages; i++) {
3024 		m = bp->b_pages[i];
3025 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3026 		bp->b_pages[i] = NULL;
3027 		vfs_vmio_unwire(bp, m);
3028 	}
3029 	if (obj != NULL)
3030 		VM_OBJECT_WUNLOCK(obj);
3031 	bp->b_npages = desiredpages;
3032 }
3033 
3034 /*
3035  * Byte granular extension of VMIO buffers.
3036  */
3037 static void
3038 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3039 {
3040 	/*
3041 	 * We are growing the buffer, possibly in a
3042 	 * byte-granular fashion.
3043 	 */
3044 	vm_object_t obj;
3045 	vm_offset_t toff;
3046 	vm_offset_t tinc;
3047 	vm_page_t m;
3048 
3049 	/*
3050 	 * Step 1, bring in the VM pages from the object, allocating
3051 	 * them if necessary.  We must clear B_CACHE if these pages
3052 	 * are not valid for the range covered by the buffer.
3053 	 */
3054 	obj = bp->b_bufobj->bo_object;
3055 	VM_OBJECT_WLOCK(obj);
3056 	if (bp->b_npages < desiredpages) {
3057 		/*
3058 		 * We must allocate system pages since blocking
3059 		 * here could interfere with paging I/O, no
3060 		 * matter which process we are.
3061 		 *
3062 		 * Only exclusive busy can be tested here.
3063 		 * Blocking on shared busy might lead to
3064 		 * deadlocks once allocbuf() is called after
3065 		 * pages are vfs_busy_pages().
3066 		 */
3067 		(void)vm_page_grab_pages(obj,
3068 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3069 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3070 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3071 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3072 		bp->b_npages = desiredpages;
3073 	}
3074 
3075 	/*
3076 	 * Step 2.  We've loaded the pages into the buffer,
3077 	 * we have to figure out if we can still have B_CACHE
3078 	 * set.  Note that B_CACHE is set according to the
3079 	 * byte-granular range ( bcount and size ), not the
3080 	 * aligned range ( newbsize ).
3081 	 *
3082 	 * The VM test is against m->valid, which is DEV_BSIZE
3083 	 * aligned.  Needless to say, the validity of the data
3084 	 * needs to also be DEV_BSIZE aligned.  Note that this
3085 	 * fails with NFS if the server or some other client
3086 	 * extends the file's EOF.  If our buffer is resized,
3087 	 * B_CACHE may remain set! XXX
3088 	 */
3089 	toff = bp->b_bcount;
3090 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3091 	while ((bp->b_flags & B_CACHE) && toff < size) {
3092 		vm_pindex_t pi;
3093 
3094 		if (tinc > (size - toff))
3095 			tinc = size - toff;
3096 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3097 		m = bp->b_pages[pi];
3098 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3099 		toff += tinc;
3100 		tinc = PAGE_SIZE;
3101 	}
3102 	VM_OBJECT_WUNLOCK(obj);
3103 
3104 	/*
3105 	 * Step 3, fixup the KVA pmap.
3106 	 */
3107 	if (buf_mapped(bp))
3108 		bpmap_qenter(bp);
3109 	else
3110 		BUF_CHECK_UNMAPPED(bp);
3111 }
3112 
3113 /*
3114  * Check to see if a block at a particular lbn is available for a clustered
3115  * write.
3116  */
3117 static int
3118 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3119 {
3120 	struct buf *bpa;
3121 	int match;
3122 
3123 	match = 0;
3124 
3125 	/* If the buf isn't in core skip it */
3126 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3127 		return (0);
3128 
3129 	/* If the buf is busy we don't want to wait for it */
3130 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3131 		return (0);
3132 
3133 	/* Only cluster with valid clusterable delayed write buffers */
3134 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3135 	    (B_DELWRI | B_CLUSTEROK))
3136 		goto done;
3137 
3138 	if (bpa->b_bufsize != size)
3139 		goto done;
3140 
3141 	/*
3142 	 * Check to see if it is in the expected place on disk and that the
3143 	 * block has been mapped.
3144 	 */
3145 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3146 		match = 1;
3147 done:
3148 	BUF_UNLOCK(bpa);
3149 	return (match);
3150 }
3151 
3152 /*
3153  *	vfs_bio_awrite:
3154  *
3155  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3156  *	This is much better then the old way of writing only one buffer at
3157  *	a time.  Note that we may not be presented with the buffers in the
3158  *	correct order, so we search for the cluster in both directions.
3159  */
3160 int
3161 vfs_bio_awrite(struct buf *bp)
3162 {
3163 	struct bufobj *bo;
3164 	int i;
3165 	int j;
3166 	daddr_t lblkno = bp->b_lblkno;
3167 	struct vnode *vp = bp->b_vp;
3168 	int ncl;
3169 	int nwritten;
3170 	int size;
3171 	int maxcl;
3172 	int gbflags;
3173 
3174 	bo = &vp->v_bufobj;
3175 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3176 	/*
3177 	 * right now we support clustered writing only to regular files.  If
3178 	 * we find a clusterable block we could be in the middle of a cluster
3179 	 * rather then at the beginning.
3180 	 */
3181 	if ((vp->v_type == VREG) &&
3182 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3183 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3184 
3185 		size = vp->v_mount->mnt_stat.f_iosize;
3186 		maxcl = MAXPHYS / size;
3187 
3188 		BO_RLOCK(bo);
3189 		for (i = 1; i < maxcl; i++)
3190 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3191 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3192 				break;
3193 
3194 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3195 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3196 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3197 				break;
3198 		BO_RUNLOCK(bo);
3199 		--j;
3200 		ncl = i + j;
3201 		/*
3202 		 * this is a possible cluster write
3203 		 */
3204 		if (ncl != 1) {
3205 			BUF_UNLOCK(bp);
3206 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3207 			    gbflags);
3208 			return (nwritten);
3209 		}
3210 	}
3211 	bremfree(bp);
3212 	bp->b_flags |= B_ASYNC;
3213 	/*
3214 	 * default (old) behavior, writing out only one block
3215 	 *
3216 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3217 	 */
3218 	nwritten = bp->b_bufsize;
3219 	(void) bwrite(bp);
3220 
3221 	return (nwritten);
3222 }
3223 
3224 /*
3225  *	getnewbuf_kva:
3226  *
3227  *	Allocate KVA for an empty buf header according to gbflags.
3228  */
3229 static int
3230 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3231 {
3232 
3233 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3234 		/*
3235 		 * In order to keep fragmentation sane we only allocate kva
3236 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3237 		 */
3238 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3239 
3240 		if (maxsize != bp->b_kvasize &&
3241 		    bufkva_alloc(bp, maxsize, gbflags))
3242 			return (ENOSPC);
3243 	}
3244 	return (0);
3245 }
3246 
3247 /*
3248  *	getnewbuf:
3249  *
3250  *	Find and initialize a new buffer header, freeing up existing buffers
3251  *	in the bufqueues as necessary.  The new buffer is returned locked.
3252  *
3253  *	We block if:
3254  *		We have insufficient buffer headers
3255  *		We have insufficient buffer space
3256  *		buffer_arena is too fragmented ( space reservation fails )
3257  *		If we have to flush dirty buffers ( but we try to avoid this )
3258  *
3259  *	The caller is responsible for releasing the reserved bufspace after
3260  *	allocbuf() is called.
3261  */
3262 static struct buf *
3263 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3264 {
3265 	struct bufdomain *bd;
3266 	struct buf *bp;
3267 	bool metadata, reserved;
3268 
3269 	bp = NULL;
3270 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3271 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3272 	if (!unmapped_buf_allowed)
3273 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3274 
3275 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3276 	    vp->v_type == VCHR)
3277 		metadata = true;
3278 	else
3279 		metadata = false;
3280 	if (vp == NULL)
3281 		bd = &bdomain[0];
3282 	else
3283 		bd = &bdomain[vp->v_bufobj.bo_domain];
3284 
3285 	counter_u64_add(getnewbufcalls, 1);
3286 	reserved = false;
3287 	do {
3288 		if (reserved == false &&
3289 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3290 			counter_u64_add(getnewbufrestarts, 1);
3291 			continue;
3292 		}
3293 		reserved = true;
3294 		if ((bp = buf_alloc(bd)) == NULL) {
3295 			counter_u64_add(getnewbufrestarts, 1);
3296 			continue;
3297 		}
3298 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3299 			return (bp);
3300 		break;
3301 	} while (buf_recycle(bd, false) == 0);
3302 
3303 	if (reserved)
3304 		bufspace_release(bd, maxsize);
3305 	if (bp != NULL) {
3306 		bp->b_flags |= B_INVAL;
3307 		brelse(bp);
3308 	}
3309 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3310 
3311 	return (NULL);
3312 }
3313 
3314 /*
3315  *	buf_daemon:
3316  *
3317  *	buffer flushing daemon.  Buffers are normally flushed by the
3318  *	update daemon but if it cannot keep up this process starts to
3319  *	take the load in an attempt to prevent getnewbuf() from blocking.
3320  */
3321 static struct kproc_desc buf_kp = {
3322 	"bufdaemon",
3323 	buf_daemon,
3324 	&bufdaemonproc
3325 };
3326 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3327 
3328 static int
3329 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3330 {
3331 	int flushed;
3332 
3333 	flushed = flushbufqueues(vp, bd, target, 0);
3334 	if (flushed == 0) {
3335 		/*
3336 		 * Could not find any buffers without rollback
3337 		 * dependencies, so just write the first one
3338 		 * in the hopes of eventually making progress.
3339 		 */
3340 		if (vp != NULL && target > 2)
3341 			target /= 2;
3342 		flushbufqueues(vp, bd, target, 1);
3343 	}
3344 	return (flushed);
3345 }
3346 
3347 static void
3348 buf_daemon()
3349 {
3350 	struct bufdomain *bd;
3351 	int speedupreq;
3352 	int lodirty;
3353 	int i;
3354 
3355 	/*
3356 	 * This process needs to be suspended prior to shutdown sync.
3357 	 */
3358 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
3359 	    SHUTDOWN_PRI_LAST + 100);
3360 
3361 	/*
3362 	 * Start the buf clean daemons as children threads.
3363 	 */
3364 	for (i = 0 ; i < buf_domains; i++) {
3365 		int error;
3366 
3367 		error = kthread_add((void (*)(void *))bufspace_daemon,
3368 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3369 		if (error)
3370 			panic("error %d spawning bufspace daemon", error);
3371 	}
3372 
3373 	/*
3374 	 * This process is allowed to take the buffer cache to the limit
3375 	 */
3376 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3377 	mtx_lock(&bdlock);
3378 	for (;;) {
3379 		bd_request = 0;
3380 		mtx_unlock(&bdlock);
3381 
3382 		kthread_suspend_check();
3383 
3384 		/*
3385 		 * Save speedupreq for this pass and reset to capture new
3386 		 * requests.
3387 		 */
3388 		speedupreq = bd_speedupreq;
3389 		bd_speedupreq = 0;
3390 
3391 		/*
3392 		 * Flush each domain sequentially according to its level and
3393 		 * the speedup request.
3394 		 */
3395 		for (i = 0; i < buf_domains; i++) {
3396 			bd = &bdomain[i];
3397 			if (speedupreq)
3398 				lodirty = bd->bd_numdirtybuffers / 2;
3399 			else
3400 				lodirty = bd->bd_lodirtybuffers;
3401 			while (bd->bd_numdirtybuffers > lodirty) {
3402 				if (buf_flush(NULL, bd,
3403 				    bd->bd_numdirtybuffers - lodirty) == 0)
3404 					break;
3405 				kern_yield(PRI_USER);
3406 			}
3407 		}
3408 
3409 		/*
3410 		 * Only clear bd_request if we have reached our low water
3411 		 * mark.  The buf_daemon normally waits 1 second and
3412 		 * then incrementally flushes any dirty buffers that have
3413 		 * built up, within reason.
3414 		 *
3415 		 * If we were unable to hit our low water mark and couldn't
3416 		 * find any flushable buffers, we sleep for a short period
3417 		 * to avoid endless loops on unlockable buffers.
3418 		 */
3419 		mtx_lock(&bdlock);
3420 		if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3421 			/*
3422 			 * We reached our low water mark, reset the
3423 			 * request and sleep until we are needed again.
3424 			 * The sleep is just so the suspend code works.
3425 			 */
3426 			bd_request = 0;
3427 			/*
3428 			 * Do an extra wakeup in case dirty threshold
3429 			 * changed via sysctl and the explicit transition
3430 			 * out of shortfall was missed.
3431 			 */
3432 			bdirtywakeup();
3433 			if (runningbufspace <= lorunningspace)
3434 				runningwakeup();
3435 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3436 		} else {
3437 			/*
3438 			 * We couldn't find any flushable dirty buffers but
3439 			 * still have too many dirty buffers, we
3440 			 * have to sleep and try again.  (rare)
3441 			 */
3442 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3443 		}
3444 	}
3445 }
3446 
3447 /*
3448  *	flushbufqueues:
3449  *
3450  *	Try to flush a buffer in the dirty queue.  We must be careful to
3451  *	free up B_INVAL buffers instead of write them, which NFS is
3452  *	particularly sensitive to.
3453  */
3454 static int flushwithdeps = 0;
3455 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
3456     0, "Number of buffers flushed with dependecies that require rollbacks");
3457 
3458 static int
3459 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3460     int flushdeps)
3461 {
3462 	struct bufqueue *bq;
3463 	struct buf *sentinel;
3464 	struct vnode *vp;
3465 	struct mount *mp;
3466 	struct buf *bp;
3467 	int hasdeps;
3468 	int flushed;
3469 	int error;
3470 	bool unlock;
3471 
3472 	flushed = 0;
3473 	bq = &bd->bd_dirtyq;
3474 	bp = NULL;
3475 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3476 	sentinel->b_qindex = QUEUE_SENTINEL;
3477 	BQ_LOCK(bq);
3478 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3479 	BQ_UNLOCK(bq);
3480 	while (flushed != target) {
3481 		maybe_yield();
3482 		BQ_LOCK(bq);
3483 		bp = TAILQ_NEXT(sentinel, b_freelist);
3484 		if (bp != NULL) {
3485 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3486 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3487 			    b_freelist);
3488 		} else {
3489 			BQ_UNLOCK(bq);
3490 			break;
3491 		}
3492 		/*
3493 		 * Skip sentinels inserted by other invocations of the
3494 		 * flushbufqueues(), taking care to not reorder them.
3495 		 *
3496 		 * Only flush the buffers that belong to the
3497 		 * vnode locked by the curthread.
3498 		 */
3499 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3500 		    bp->b_vp != lvp)) {
3501 			BQ_UNLOCK(bq);
3502 			continue;
3503 		}
3504 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3505 		BQ_UNLOCK(bq);
3506 		if (error != 0)
3507 			continue;
3508 
3509 		/*
3510 		 * BKGRDINPROG can only be set with the buf and bufobj
3511 		 * locks both held.  We tolerate a race to clear it here.
3512 		 */
3513 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3514 		    (bp->b_flags & B_DELWRI) == 0) {
3515 			BUF_UNLOCK(bp);
3516 			continue;
3517 		}
3518 		if (bp->b_flags & B_INVAL) {
3519 			bremfreef(bp);
3520 			brelse(bp);
3521 			flushed++;
3522 			continue;
3523 		}
3524 
3525 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3526 			if (flushdeps == 0) {
3527 				BUF_UNLOCK(bp);
3528 				continue;
3529 			}
3530 			hasdeps = 1;
3531 		} else
3532 			hasdeps = 0;
3533 		/*
3534 		 * We must hold the lock on a vnode before writing
3535 		 * one of its buffers. Otherwise we may confuse, or
3536 		 * in the case of a snapshot vnode, deadlock the
3537 		 * system.
3538 		 *
3539 		 * The lock order here is the reverse of the normal
3540 		 * of vnode followed by buf lock.  This is ok because
3541 		 * the NOWAIT will prevent deadlock.
3542 		 */
3543 		vp = bp->b_vp;
3544 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3545 			BUF_UNLOCK(bp);
3546 			continue;
3547 		}
3548 		if (lvp == NULL) {
3549 			unlock = true;
3550 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3551 		} else {
3552 			ASSERT_VOP_LOCKED(vp, "getbuf");
3553 			unlock = false;
3554 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3555 			    vn_lock(vp, LK_TRYUPGRADE);
3556 		}
3557 		if (error == 0) {
3558 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3559 			    bp, bp->b_vp, bp->b_flags);
3560 			if (curproc == bufdaemonproc) {
3561 				vfs_bio_awrite(bp);
3562 			} else {
3563 				bremfree(bp);
3564 				bwrite(bp);
3565 				counter_u64_add(notbufdflushes, 1);
3566 			}
3567 			vn_finished_write(mp);
3568 			if (unlock)
3569 				VOP_UNLOCK(vp, 0);
3570 			flushwithdeps += hasdeps;
3571 			flushed++;
3572 
3573 			/*
3574 			 * Sleeping on runningbufspace while holding
3575 			 * vnode lock leads to deadlock.
3576 			 */
3577 			if (curproc == bufdaemonproc &&
3578 			    runningbufspace > hirunningspace)
3579 				waitrunningbufspace();
3580 			continue;
3581 		}
3582 		vn_finished_write(mp);
3583 		BUF_UNLOCK(bp);
3584 	}
3585 	BQ_LOCK(bq);
3586 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3587 	BQ_UNLOCK(bq);
3588 	free(sentinel, M_TEMP);
3589 	return (flushed);
3590 }
3591 
3592 /*
3593  * Check to see if a block is currently memory resident.
3594  */
3595 struct buf *
3596 incore(struct bufobj *bo, daddr_t blkno)
3597 {
3598 	struct buf *bp;
3599 
3600 	BO_RLOCK(bo);
3601 	bp = gbincore(bo, blkno);
3602 	BO_RUNLOCK(bo);
3603 	return (bp);
3604 }
3605 
3606 /*
3607  * Returns true if no I/O is needed to access the
3608  * associated VM object.  This is like incore except
3609  * it also hunts around in the VM system for the data.
3610  */
3611 
3612 static int
3613 inmem(struct vnode * vp, daddr_t blkno)
3614 {
3615 	vm_object_t obj;
3616 	vm_offset_t toff, tinc, size;
3617 	vm_page_t m;
3618 	vm_ooffset_t off;
3619 
3620 	ASSERT_VOP_LOCKED(vp, "inmem");
3621 
3622 	if (incore(&vp->v_bufobj, blkno))
3623 		return 1;
3624 	if (vp->v_mount == NULL)
3625 		return 0;
3626 	obj = vp->v_object;
3627 	if (obj == NULL)
3628 		return (0);
3629 
3630 	size = PAGE_SIZE;
3631 	if (size > vp->v_mount->mnt_stat.f_iosize)
3632 		size = vp->v_mount->mnt_stat.f_iosize;
3633 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3634 
3635 	VM_OBJECT_RLOCK(obj);
3636 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3637 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
3638 		if (!m)
3639 			goto notinmem;
3640 		tinc = size;
3641 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3642 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3643 		if (vm_page_is_valid(m,
3644 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
3645 			goto notinmem;
3646 	}
3647 	VM_OBJECT_RUNLOCK(obj);
3648 	return 1;
3649 
3650 notinmem:
3651 	VM_OBJECT_RUNLOCK(obj);
3652 	return (0);
3653 }
3654 
3655 /*
3656  * Set the dirty range for a buffer based on the status of the dirty
3657  * bits in the pages comprising the buffer.  The range is limited
3658  * to the size of the buffer.
3659  *
3660  * Tell the VM system that the pages associated with this buffer
3661  * are clean.  This is used for delayed writes where the data is
3662  * going to go to disk eventually without additional VM intevention.
3663  *
3664  * Note that while we only really need to clean through to b_bcount, we
3665  * just go ahead and clean through to b_bufsize.
3666  */
3667 static void
3668 vfs_clean_pages_dirty_buf(struct buf *bp)
3669 {
3670 	vm_ooffset_t foff, noff, eoff;
3671 	vm_page_t m;
3672 	int i;
3673 
3674 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3675 		return;
3676 
3677 	foff = bp->b_offset;
3678 	KASSERT(bp->b_offset != NOOFFSET,
3679 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3680 
3681 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3682 	vfs_drain_busy_pages(bp);
3683 	vfs_setdirty_locked_object(bp);
3684 	for (i = 0; i < bp->b_npages; i++) {
3685 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3686 		eoff = noff;
3687 		if (eoff > bp->b_offset + bp->b_bufsize)
3688 			eoff = bp->b_offset + bp->b_bufsize;
3689 		m = bp->b_pages[i];
3690 		vfs_page_set_validclean(bp, foff, m);
3691 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3692 		foff = noff;
3693 	}
3694 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3695 }
3696 
3697 static void
3698 vfs_setdirty_locked_object(struct buf *bp)
3699 {
3700 	vm_object_t object;
3701 	int i;
3702 
3703 	object = bp->b_bufobj->bo_object;
3704 	VM_OBJECT_ASSERT_WLOCKED(object);
3705 
3706 	/*
3707 	 * We qualify the scan for modified pages on whether the
3708 	 * object has been flushed yet.
3709 	 */
3710 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
3711 		vm_offset_t boffset;
3712 		vm_offset_t eoffset;
3713 
3714 		/*
3715 		 * test the pages to see if they have been modified directly
3716 		 * by users through the VM system.
3717 		 */
3718 		for (i = 0; i < bp->b_npages; i++)
3719 			vm_page_test_dirty(bp->b_pages[i]);
3720 
3721 		/*
3722 		 * Calculate the encompassing dirty range, boffset and eoffset,
3723 		 * (eoffset - boffset) bytes.
3724 		 */
3725 
3726 		for (i = 0; i < bp->b_npages; i++) {
3727 			if (bp->b_pages[i]->dirty)
3728 				break;
3729 		}
3730 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3731 
3732 		for (i = bp->b_npages - 1; i >= 0; --i) {
3733 			if (bp->b_pages[i]->dirty) {
3734 				break;
3735 			}
3736 		}
3737 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3738 
3739 		/*
3740 		 * Fit it to the buffer.
3741 		 */
3742 
3743 		if (eoffset > bp->b_bcount)
3744 			eoffset = bp->b_bcount;
3745 
3746 		/*
3747 		 * If we have a good dirty range, merge with the existing
3748 		 * dirty range.
3749 		 */
3750 
3751 		if (boffset < eoffset) {
3752 			if (bp->b_dirtyoff > boffset)
3753 				bp->b_dirtyoff = boffset;
3754 			if (bp->b_dirtyend < eoffset)
3755 				bp->b_dirtyend = eoffset;
3756 		}
3757 	}
3758 }
3759 
3760 /*
3761  * Allocate the KVA mapping for an existing buffer.
3762  * If an unmapped buffer is provided but a mapped buffer is requested, take
3763  * also care to properly setup mappings between pages and KVA.
3764  */
3765 static void
3766 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3767 {
3768 	int bsize, maxsize, need_mapping, need_kva;
3769 	off_t offset;
3770 
3771 	need_mapping = bp->b_data == unmapped_buf &&
3772 	    (gbflags & GB_UNMAPPED) == 0;
3773 	need_kva = bp->b_kvabase == unmapped_buf &&
3774 	    bp->b_data == unmapped_buf &&
3775 	    (gbflags & GB_KVAALLOC) != 0;
3776 	if (!need_mapping && !need_kva)
3777 		return;
3778 
3779 	BUF_CHECK_UNMAPPED(bp);
3780 
3781 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3782 		/*
3783 		 * Buffer is not mapped, but the KVA was already
3784 		 * reserved at the time of the instantiation.  Use the
3785 		 * allocated space.
3786 		 */
3787 		goto has_addr;
3788 	}
3789 
3790 	/*
3791 	 * Calculate the amount of the address space we would reserve
3792 	 * if the buffer was mapped.
3793 	 */
3794 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3795 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3796 	offset = blkno * bsize;
3797 	maxsize = size + (offset & PAGE_MASK);
3798 	maxsize = imax(maxsize, bsize);
3799 
3800 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3801 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3802 			/*
3803 			 * XXXKIB: defragmentation cannot
3804 			 * succeed, not sure what else to do.
3805 			 */
3806 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3807 		}
3808 		counter_u64_add(mappingrestarts, 1);
3809 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3810 	}
3811 has_addr:
3812 	if (need_mapping) {
3813 		/* b_offset is handled by bpmap_qenter. */
3814 		bp->b_data = bp->b_kvabase;
3815 		BUF_CHECK_MAPPED(bp);
3816 		bpmap_qenter(bp);
3817 	}
3818 }
3819 
3820 struct buf *
3821 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3822     int flags)
3823 {
3824 	struct buf *bp;
3825 	int error;
3826 
3827 	error = getblkx(vp, blkno, size, slpflag, slptimeo, flags, &bp);
3828 	if (error != 0)
3829 		return (NULL);
3830 	return (bp);
3831 }
3832 
3833 /*
3834  *	getblkx:
3835  *
3836  *	Get a block given a specified block and offset into a file/device.
3837  *	The buffers B_DONE bit will be cleared on return, making it almost
3838  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3839  *	return.  The caller should clear B_INVAL prior to initiating a
3840  *	READ.
3841  *
3842  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3843  *	an existing buffer.
3844  *
3845  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3846  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3847  *	and then cleared based on the backing VM.  If the previous buffer is
3848  *	non-0-sized but invalid, B_CACHE will be cleared.
3849  *
3850  *	If getblk() must create a new buffer, the new buffer is returned with
3851  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3852  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3853  *	backing VM.
3854  *
3855  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3856  *	B_CACHE bit is clear.
3857  *
3858  *	What this means, basically, is that the caller should use B_CACHE to
3859  *	determine whether the buffer is fully valid or not and should clear
3860  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3861  *	the buffer by loading its data area with something, the caller needs
3862  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3863  *	the caller should set B_CACHE ( as an optimization ), else the caller
3864  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3865  *	a write attempt or if it was a successful read.  If the caller
3866  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3867  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3868  */
3869 int
3870 getblkx(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3871     int flags, struct buf **bpp)
3872 {
3873 	struct buf *bp;
3874 	struct bufobj *bo;
3875 	daddr_t d_blkno;
3876 	int bsize, error, maxsize, vmio;
3877 	off_t offset;
3878 
3879 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3880 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3881 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3882 	ASSERT_VOP_LOCKED(vp, "getblk");
3883 	if (size > maxbcachebuf)
3884 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3885 		    maxbcachebuf);
3886 	if (!unmapped_buf_allowed)
3887 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3888 
3889 	bo = &vp->v_bufobj;
3890 	d_blkno = blkno;
3891 loop:
3892 	BO_RLOCK(bo);
3893 	bp = gbincore(bo, blkno);
3894 	if (bp != NULL) {
3895 		int lockflags;
3896 		/*
3897 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3898 		 * it must be on a queue.
3899 		 */
3900 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3901 
3902 		if ((flags & GB_LOCK_NOWAIT) != 0)
3903 			lockflags |= LK_NOWAIT;
3904 
3905 		error = BUF_TIMELOCK(bp, lockflags,
3906 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3907 
3908 		/*
3909 		 * If we slept and got the lock we have to restart in case
3910 		 * the buffer changed identities.
3911 		 */
3912 		if (error == ENOLCK)
3913 			goto loop;
3914 		/* We timed out or were interrupted. */
3915 		else if (error != 0)
3916 			return (error);
3917 		/* If recursed, assume caller knows the rules. */
3918 		else if (BUF_LOCKRECURSED(bp))
3919 			goto end;
3920 
3921 		/*
3922 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3923 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3924 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3925 		 * backing VM cache.
3926 		 */
3927 		if (bp->b_flags & B_INVAL)
3928 			bp->b_flags &= ~B_CACHE;
3929 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3930 			bp->b_flags |= B_CACHE;
3931 		if (bp->b_flags & B_MANAGED)
3932 			MPASS(bp->b_qindex == QUEUE_NONE);
3933 		else
3934 			bremfree(bp);
3935 
3936 		/*
3937 		 * check for size inconsistencies for non-VMIO case.
3938 		 */
3939 		if (bp->b_bcount != size) {
3940 			if ((bp->b_flags & B_VMIO) == 0 ||
3941 			    (size > bp->b_kvasize)) {
3942 				if (bp->b_flags & B_DELWRI) {
3943 					bp->b_flags |= B_NOCACHE;
3944 					bwrite(bp);
3945 				} else {
3946 					if (LIST_EMPTY(&bp->b_dep)) {
3947 						bp->b_flags |= B_RELBUF;
3948 						brelse(bp);
3949 					} else {
3950 						bp->b_flags |= B_NOCACHE;
3951 						bwrite(bp);
3952 					}
3953 				}
3954 				goto loop;
3955 			}
3956 		}
3957 
3958 		/*
3959 		 * Handle the case of unmapped buffer which should
3960 		 * become mapped, or the buffer for which KVA
3961 		 * reservation is requested.
3962 		 */
3963 		bp_unmapped_get_kva(bp, blkno, size, flags);
3964 
3965 		/*
3966 		 * If the size is inconsistent in the VMIO case, we can resize
3967 		 * the buffer.  This might lead to B_CACHE getting set or
3968 		 * cleared.  If the size has not changed, B_CACHE remains
3969 		 * unchanged from its previous state.
3970 		 */
3971 		allocbuf(bp, size);
3972 
3973 		KASSERT(bp->b_offset != NOOFFSET,
3974 		    ("getblk: no buffer offset"));
3975 
3976 		/*
3977 		 * A buffer with B_DELWRI set and B_CACHE clear must
3978 		 * be committed before we can return the buffer in
3979 		 * order to prevent the caller from issuing a read
3980 		 * ( due to B_CACHE not being set ) and overwriting
3981 		 * it.
3982 		 *
3983 		 * Most callers, including NFS and FFS, need this to
3984 		 * operate properly either because they assume they
3985 		 * can issue a read if B_CACHE is not set, or because
3986 		 * ( for example ) an uncached B_DELWRI might loop due
3987 		 * to softupdates re-dirtying the buffer.  In the latter
3988 		 * case, B_CACHE is set after the first write completes,
3989 		 * preventing further loops.
3990 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3991 		 * above while extending the buffer, we cannot allow the
3992 		 * buffer to remain with B_CACHE set after the write
3993 		 * completes or it will represent a corrupt state.  To
3994 		 * deal with this we set B_NOCACHE to scrap the buffer
3995 		 * after the write.
3996 		 *
3997 		 * We might be able to do something fancy, like setting
3998 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3999 		 * so the below call doesn't set B_CACHE, but that gets real
4000 		 * confusing.  This is much easier.
4001 		 */
4002 
4003 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4004 			bp->b_flags |= B_NOCACHE;
4005 			bwrite(bp);
4006 			goto loop;
4007 		}
4008 		bp->b_flags &= ~B_DONE;
4009 	} else {
4010 		/*
4011 		 * Buffer is not in-core, create new buffer.  The buffer
4012 		 * returned by getnewbuf() is locked.  Note that the returned
4013 		 * buffer is also considered valid (not marked B_INVAL).
4014 		 */
4015 		BO_RUNLOCK(bo);
4016 		/*
4017 		 * If the user does not want us to create the buffer, bail out
4018 		 * here.
4019 		 */
4020 		if (flags & GB_NOCREAT)
4021 			return (EEXIST);
4022 		if (bdomain[bo->bo_domain].bd_freebuffers == 0 &&
4023 		    TD_IS_IDLETHREAD(curthread))
4024 			return (EBUSY);
4025 
4026 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
4027 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4028 		offset = blkno * bsize;
4029 		vmio = vp->v_object != NULL;
4030 		if (vmio) {
4031 			maxsize = size + (offset & PAGE_MASK);
4032 		} else {
4033 			maxsize = size;
4034 			/* Do not allow non-VMIO notmapped buffers. */
4035 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4036 		}
4037 		maxsize = imax(maxsize, bsize);
4038 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4039 		    !vn_isdisk(vp, NULL)) {
4040 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4041 			KASSERT(error != EOPNOTSUPP,
4042 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4043 			    vp));
4044 			if (error != 0)
4045 				return (error);
4046 			if (d_blkno == -1)
4047 				return (EJUSTRETURN);
4048 		}
4049 
4050 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4051 		if (bp == NULL) {
4052 			if (slpflag || slptimeo)
4053 				return (ETIMEDOUT);
4054 			/*
4055 			 * XXX This is here until the sleep path is diagnosed
4056 			 * enough to work under very low memory conditions.
4057 			 *
4058 			 * There's an issue on low memory, 4BSD+non-preempt
4059 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4060 			 * exhaustion occurs without sleeping for buffer
4061 			 * reclaimation.  This just sticks in a loop and
4062 			 * constantly attempts to allocate a buffer, which
4063 			 * hits exhaustion and tries to wakeup bufdaemon.
4064 			 * This never happens because we never yield.
4065 			 *
4066 			 * The real solution is to identify and fix these cases
4067 			 * so we aren't effectively busy-waiting in a loop
4068 			 * until the reclaimation path has cycles to run.
4069 			 */
4070 			kern_yield(PRI_USER);
4071 			goto loop;
4072 		}
4073 
4074 		/*
4075 		 * This code is used to make sure that a buffer is not
4076 		 * created while the getnewbuf routine is blocked.
4077 		 * This can be a problem whether the vnode is locked or not.
4078 		 * If the buffer is created out from under us, we have to
4079 		 * throw away the one we just created.
4080 		 *
4081 		 * Note: this must occur before we associate the buffer
4082 		 * with the vp especially considering limitations in
4083 		 * the splay tree implementation when dealing with duplicate
4084 		 * lblkno's.
4085 		 */
4086 		BO_LOCK(bo);
4087 		if (gbincore(bo, blkno)) {
4088 			BO_UNLOCK(bo);
4089 			bp->b_flags |= B_INVAL;
4090 			bufspace_release(bufdomain(bp), maxsize);
4091 			brelse(bp);
4092 			goto loop;
4093 		}
4094 
4095 		/*
4096 		 * Insert the buffer into the hash, so that it can
4097 		 * be found by incore.
4098 		 */
4099 		bp->b_lblkno = blkno;
4100 		bp->b_blkno = d_blkno;
4101 		bp->b_offset = offset;
4102 		bgetvp(vp, bp);
4103 		BO_UNLOCK(bo);
4104 
4105 		/*
4106 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4107 		 * buffer size starts out as 0, B_CACHE will be set by
4108 		 * allocbuf() for the VMIO case prior to it testing the
4109 		 * backing store for validity.
4110 		 */
4111 
4112 		if (vmio) {
4113 			bp->b_flags |= B_VMIO;
4114 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4115 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4116 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4117 		} else {
4118 			bp->b_flags &= ~B_VMIO;
4119 			KASSERT(bp->b_bufobj->bo_object == NULL,
4120 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4121 			    bp, bp->b_bufobj->bo_object));
4122 			BUF_CHECK_MAPPED(bp);
4123 		}
4124 
4125 		allocbuf(bp, size);
4126 		bufspace_release(bufdomain(bp), maxsize);
4127 		bp->b_flags &= ~B_DONE;
4128 	}
4129 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4130 	BUF_ASSERT_HELD(bp);
4131 end:
4132 	buf_track(bp, __func__);
4133 	KASSERT(bp->b_bufobj == bo,
4134 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4135 	*bpp = bp;
4136 	return (0);
4137 }
4138 
4139 /*
4140  * Get an empty, disassociated buffer of given size.  The buffer is initially
4141  * set to B_INVAL.
4142  */
4143 struct buf *
4144 geteblk(int size, int flags)
4145 {
4146 	struct buf *bp;
4147 	int maxsize;
4148 
4149 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4150 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4151 		if ((flags & GB_NOWAIT_BD) &&
4152 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4153 			return (NULL);
4154 	}
4155 	allocbuf(bp, size);
4156 	bufspace_release(bufdomain(bp), maxsize);
4157 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4158 	BUF_ASSERT_HELD(bp);
4159 	return (bp);
4160 }
4161 
4162 /*
4163  * Truncate the backing store for a non-vmio buffer.
4164  */
4165 static void
4166 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4167 {
4168 
4169 	if (bp->b_flags & B_MALLOC) {
4170 		/*
4171 		 * malloced buffers are not shrunk
4172 		 */
4173 		if (newbsize == 0) {
4174 			bufmallocadjust(bp, 0);
4175 			free(bp->b_data, M_BIOBUF);
4176 			bp->b_data = bp->b_kvabase;
4177 			bp->b_flags &= ~B_MALLOC;
4178 		}
4179 		return;
4180 	}
4181 	vm_hold_free_pages(bp, newbsize);
4182 	bufspace_adjust(bp, newbsize);
4183 }
4184 
4185 /*
4186  * Extend the backing for a non-VMIO buffer.
4187  */
4188 static void
4189 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4190 {
4191 	caddr_t origbuf;
4192 	int origbufsize;
4193 
4194 	/*
4195 	 * We only use malloced memory on the first allocation.
4196 	 * and revert to page-allocated memory when the buffer
4197 	 * grows.
4198 	 *
4199 	 * There is a potential smp race here that could lead
4200 	 * to bufmallocspace slightly passing the max.  It
4201 	 * is probably extremely rare and not worth worrying
4202 	 * over.
4203 	 */
4204 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4205 	    bufmallocspace < maxbufmallocspace) {
4206 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4207 		bp->b_flags |= B_MALLOC;
4208 		bufmallocadjust(bp, newbsize);
4209 		return;
4210 	}
4211 
4212 	/*
4213 	 * If the buffer is growing on its other-than-first
4214 	 * allocation then we revert to the page-allocation
4215 	 * scheme.
4216 	 */
4217 	origbuf = NULL;
4218 	origbufsize = 0;
4219 	if (bp->b_flags & B_MALLOC) {
4220 		origbuf = bp->b_data;
4221 		origbufsize = bp->b_bufsize;
4222 		bp->b_data = bp->b_kvabase;
4223 		bufmallocadjust(bp, 0);
4224 		bp->b_flags &= ~B_MALLOC;
4225 		newbsize = round_page(newbsize);
4226 	}
4227 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4228 	    (vm_offset_t) bp->b_data + newbsize);
4229 	if (origbuf != NULL) {
4230 		bcopy(origbuf, bp->b_data, origbufsize);
4231 		free(origbuf, M_BIOBUF);
4232 	}
4233 	bufspace_adjust(bp, newbsize);
4234 }
4235 
4236 /*
4237  * This code constitutes the buffer memory from either anonymous system
4238  * memory (in the case of non-VMIO operations) or from an associated
4239  * VM object (in the case of VMIO operations).  This code is able to
4240  * resize a buffer up or down.
4241  *
4242  * Note that this code is tricky, and has many complications to resolve
4243  * deadlock or inconsistent data situations.  Tread lightly!!!
4244  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4245  * the caller.  Calling this code willy nilly can result in the loss of data.
4246  *
4247  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4248  * B_CACHE for the non-VMIO case.
4249  */
4250 int
4251 allocbuf(struct buf *bp, int size)
4252 {
4253 	int newbsize;
4254 
4255 	BUF_ASSERT_HELD(bp);
4256 
4257 	if (bp->b_bcount == size)
4258 		return (1);
4259 
4260 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4261 		panic("allocbuf: buffer too small");
4262 
4263 	newbsize = roundup2(size, DEV_BSIZE);
4264 	if ((bp->b_flags & B_VMIO) == 0) {
4265 		if ((bp->b_flags & B_MALLOC) == 0)
4266 			newbsize = round_page(newbsize);
4267 		/*
4268 		 * Just get anonymous memory from the kernel.  Don't
4269 		 * mess with B_CACHE.
4270 		 */
4271 		if (newbsize < bp->b_bufsize)
4272 			vfs_nonvmio_truncate(bp, newbsize);
4273 		else if (newbsize > bp->b_bufsize)
4274 			vfs_nonvmio_extend(bp, newbsize);
4275 	} else {
4276 		int desiredpages;
4277 
4278 		desiredpages = (size == 0) ? 0 :
4279 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4280 
4281 		if (bp->b_flags & B_MALLOC)
4282 			panic("allocbuf: VMIO buffer can't be malloced");
4283 		/*
4284 		 * Set B_CACHE initially if buffer is 0 length or will become
4285 		 * 0-length.
4286 		 */
4287 		if (size == 0 || bp->b_bufsize == 0)
4288 			bp->b_flags |= B_CACHE;
4289 
4290 		if (newbsize < bp->b_bufsize)
4291 			vfs_vmio_truncate(bp, desiredpages);
4292 		/* XXX This looks as if it should be newbsize > b_bufsize */
4293 		else if (size > bp->b_bcount)
4294 			vfs_vmio_extend(bp, desiredpages, size);
4295 		bufspace_adjust(bp, newbsize);
4296 	}
4297 	bp->b_bcount = size;		/* requested buffer size. */
4298 	return (1);
4299 }
4300 
4301 extern int inflight_transient_maps;
4302 
4303 static struct bio_queue nondump_bios;
4304 
4305 void
4306 biodone(struct bio *bp)
4307 {
4308 	struct mtx *mtxp;
4309 	void (*done)(struct bio *);
4310 	vm_offset_t start, end;
4311 
4312 	biotrack(bp, __func__);
4313 
4314 	/*
4315 	 * Avoid completing I/O when dumping after a panic since that may
4316 	 * result in a deadlock in the filesystem or pager code.  Note that
4317 	 * this doesn't affect dumps that were started manually since we aim
4318 	 * to keep the system usable after it has been resumed.
4319 	 */
4320 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4321 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4322 		return;
4323 	}
4324 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4325 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4326 		bp->bio_flags |= BIO_UNMAPPED;
4327 		start = trunc_page((vm_offset_t)bp->bio_data);
4328 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4329 		bp->bio_data = unmapped_buf;
4330 		pmap_qremove(start, atop(end - start));
4331 		vmem_free(transient_arena, start, end - start);
4332 		atomic_add_int(&inflight_transient_maps, -1);
4333 	}
4334 	done = bp->bio_done;
4335 	if (done == NULL) {
4336 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4337 		mtx_lock(mtxp);
4338 		bp->bio_flags |= BIO_DONE;
4339 		wakeup(bp);
4340 		mtx_unlock(mtxp);
4341 	} else
4342 		done(bp);
4343 }
4344 
4345 /*
4346  * Wait for a BIO to finish.
4347  */
4348 int
4349 biowait(struct bio *bp, const char *wchan)
4350 {
4351 	struct mtx *mtxp;
4352 
4353 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4354 	mtx_lock(mtxp);
4355 	while ((bp->bio_flags & BIO_DONE) == 0)
4356 		msleep(bp, mtxp, PRIBIO, wchan, 0);
4357 	mtx_unlock(mtxp);
4358 	if (bp->bio_error != 0)
4359 		return (bp->bio_error);
4360 	if (!(bp->bio_flags & BIO_ERROR))
4361 		return (0);
4362 	return (EIO);
4363 }
4364 
4365 void
4366 biofinish(struct bio *bp, struct devstat *stat, int error)
4367 {
4368 
4369 	if (error) {
4370 		bp->bio_error = error;
4371 		bp->bio_flags |= BIO_ERROR;
4372 	}
4373 	if (stat != NULL)
4374 		devstat_end_transaction_bio(stat, bp);
4375 	biodone(bp);
4376 }
4377 
4378 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4379 void
4380 biotrack_buf(struct bio *bp, const char *location)
4381 {
4382 
4383 	buf_track(bp->bio_track_bp, location);
4384 }
4385 #endif
4386 
4387 /*
4388  *	bufwait:
4389  *
4390  *	Wait for buffer I/O completion, returning error status.  The buffer
4391  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4392  *	error and cleared.
4393  */
4394 int
4395 bufwait(struct buf *bp)
4396 {
4397 	if (bp->b_iocmd == BIO_READ)
4398 		bwait(bp, PRIBIO, "biord");
4399 	else
4400 		bwait(bp, PRIBIO, "biowr");
4401 	if (bp->b_flags & B_EINTR) {
4402 		bp->b_flags &= ~B_EINTR;
4403 		return (EINTR);
4404 	}
4405 	if (bp->b_ioflags & BIO_ERROR) {
4406 		return (bp->b_error ? bp->b_error : EIO);
4407 	} else {
4408 		return (0);
4409 	}
4410 }
4411 
4412 /*
4413  *	bufdone:
4414  *
4415  *	Finish I/O on a buffer, optionally calling a completion function.
4416  *	This is usually called from an interrupt so process blocking is
4417  *	not allowed.
4418  *
4419  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4420  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4421  *	assuming B_INVAL is clear.
4422  *
4423  *	For the VMIO case, we set B_CACHE if the op was a read and no
4424  *	read error occurred, or if the op was a write.  B_CACHE is never
4425  *	set if the buffer is invalid or otherwise uncacheable.
4426  *
4427  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
4428  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4429  *	in the biodone routine.
4430  */
4431 void
4432 bufdone(struct buf *bp)
4433 {
4434 	struct bufobj *dropobj;
4435 	void    (*biodone)(struct buf *);
4436 
4437 	buf_track(bp, __func__);
4438 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4439 	dropobj = NULL;
4440 
4441 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4442 	BUF_ASSERT_HELD(bp);
4443 
4444 	runningbufwakeup(bp);
4445 	if (bp->b_iocmd == BIO_WRITE)
4446 		dropobj = bp->b_bufobj;
4447 	/* call optional completion function if requested */
4448 	if (bp->b_iodone != NULL) {
4449 		biodone = bp->b_iodone;
4450 		bp->b_iodone = NULL;
4451 		(*biodone) (bp);
4452 		if (dropobj)
4453 			bufobj_wdrop(dropobj);
4454 		return;
4455 	}
4456 	if (bp->b_flags & B_VMIO) {
4457 		/*
4458 		 * Set B_CACHE if the op was a normal read and no error
4459 		 * occurred.  B_CACHE is set for writes in the b*write()
4460 		 * routines.
4461 		 */
4462 		if (bp->b_iocmd == BIO_READ &&
4463 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4464 		    !(bp->b_ioflags & BIO_ERROR))
4465 			bp->b_flags |= B_CACHE;
4466 		vfs_vmio_iodone(bp);
4467 	}
4468 	if (!LIST_EMPTY(&bp->b_dep))
4469 		buf_complete(bp);
4470 	if ((bp->b_flags & B_CKHASH) != 0) {
4471 		KASSERT(bp->b_iocmd == BIO_READ,
4472 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4473 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4474 		(*bp->b_ckhashcalc)(bp);
4475 	}
4476 	/*
4477 	 * For asynchronous completions, release the buffer now. The brelse
4478 	 * will do a wakeup there if necessary - so no need to do a wakeup
4479 	 * here in the async case. The sync case always needs to do a wakeup.
4480 	 */
4481 	if (bp->b_flags & B_ASYNC) {
4482 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4483 		    (bp->b_ioflags & BIO_ERROR))
4484 			brelse(bp);
4485 		else
4486 			bqrelse(bp);
4487 	} else
4488 		bdone(bp);
4489 	if (dropobj)
4490 		bufobj_wdrop(dropobj);
4491 }
4492 
4493 /*
4494  * This routine is called in lieu of iodone in the case of
4495  * incomplete I/O.  This keeps the busy status for pages
4496  * consistent.
4497  */
4498 void
4499 vfs_unbusy_pages(struct buf *bp)
4500 {
4501 	int i;
4502 	vm_object_t obj;
4503 	vm_page_t m;
4504 
4505 	runningbufwakeup(bp);
4506 	if (!(bp->b_flags & B_VMIO))
4507 		return;
4508 
4509 	obj = bp->b_bufobj->bo_object;
4510 	VM_OBJECT_WLOCK(obj);
4511 	for (i = 0; i < bp->b_npages; i++) {
4512 		m = bp->b_pages[i];
4513 		if (m == bogus_page) {
4514 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4515 			if (!m)
4516 				panic("vfs_unbusy_pages: page missing\n");
4517 			bp->b_pages[i] = m;
4518 			if (buf_mapped(bp)) {
4519 				BUF_CHECK_MAPPED(bp);
4520 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4521 				    bp->b_pages, bp->b_npages);
4522 			} else
4523 				BUF_CHECK_UNMAPPED(bp);
4524 		}
4525 		vm_page_sunbusy(m);
4526 	}
4527 	vm_object_pip_wakeupn(obj, bp->b_npages);
4528 	VM_OBJECT_WUNLOCK(obj);
4529 }
4530 
4531 /*
4532  * vfs_page_set_valid:
4533  *
4534  *	Set the valid bits in a page based on the supplied offset.   The
4535  *	range is restricted to the buffer's size.
4536  *
4537  *	This routine is typically called after a read completes.
4538  */
4539 static void
4540 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4541 {
4542 	vm_ooffset_t eoff;
4543 
4544 	/*
4545 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4546 	 * page boundary and eoff is not greater than the end of the buffer.
4547 	 * The end of the buffer, in this case, is our file EOF, not the
4548 	 * allocation size of the buffer.
4549 	 */
4550 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4551 	if (eoff > bp->b_offset + bp->b_bcount)
4552 		eoff = bp->b_offset + bp->b_bcount;
4553 
4554 	/*
4555 	 * Set valid range.  This is typically the entire buffer and thus the
4556 	 * entire page.
4557 	 */
4558 	if (eoff > off)
4559 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4560 }
4561 
4562 /*
4563  * vfs_page_set_validclean:
4564  *
4565  *	Set the valid bits and clear the dirty bits in a page based on the
4566  *	supplied offset.   The range is restricted to the buffer's size.
4567  */
4568 static void
4569 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4570 {
4571 	vm_ooffset_t soff, eoff;
4572 
4573 	/*
4574 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4575 	 * page boundary or cross the end of the buffer.  The end of the
4576 	 * buffer, in this case, is our file EOF, not the allocation size
4577 	 * of the buffer.
4578 	 */
4579 	soff = off;
4580 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4581 	if (eoff > bp->b_offset + bp->b_bcount)
4582 		eoff = bp->b_offset + bp->b_bcount;
4583 
4584 	/*
4585 	 * Set valid range.  This is typically the entire buffer and thus the
4586 	 * entire page.
4587 	 */
4588 	if (eoff > soff) {
4589 		vm_page_set_validclean(
4590 		    m,
4591 		   (vm_offset_t) (soff & PAGE_MASK),
4592 		   (vm_offset_t) (eoff - soff)
4593 		);
4594 	}
4595 }
4596 
4597 /*
4598  * Ensure that all buffer pages are not exclusive busied.  If any page is
4599  * exclusive busy, drain it.
4600  */
4601 void
4602 vfs_drain_busy_pages(struct buf *bp)
4603 {
4604 	vm_page_t m;
4605 	int i, last_busied;
4606 
4607 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4608 	last_busied = 0;
4609 	for (i = 0; i < bp->b_npages; i++) {
4610 		m = bp->b_pages[i];
4611 		if (vm_page_xbusied(m)) {
4612 			for (; last_busied < i; last_busied++)
4613 				vm_page_sbusy(bp->b_pages[last_busied]);
4614 			while (vm_page_xbusied(m)) {
4615 				vm_page_lock(m);
4616 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4617 				vm_page_busy_sleep(m, "vbpage", true);
4618 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4619 			}
4620 		}
4621 	}
4622 	for (i = 0; i < last_busied; i++)
4623 		vm_page_sunbusy(bp->b_pages[i]);
4624 }
4625 
4626 /*
4627  * This routine is called before a device strategy routine.
4628  * It is used to tell the VM system that paging I/O is in
4629  * progress, and treat the pages associated with the buffer
4630  * almost as being exclusive busy.  Also the object paging_in_progress
4631  * flag is handled to make sure that the object doesn't become
4632  * inconsistent.
4633  *
4634  * Since I/O has not been initiated yet, certain buffer flags
4635  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4636  * and should be ignored.
4637  */
4638 void
4639 vfs_busy_pages(struct buf *bp, int clear_modify)
4640 {
4641 	vm_object_t obj;
4642 	vm_ooffset_t foff;
4643 	vm_page_t m;
4644 	int i;
4645 	bool bogus;
4646 
4647 	if (!(bp->b_flags & B_VMIO))
4648 		return;
4649 
4650 	obj = bp->b_bufobj->bo_object;
4651 	foff = bp->b_offset;
4652 	KASSERT(bp->b_offset != NOOFFSET,
4653 	    ("vfs_busy_pages: no buffer offset"));
4654 	VM_OBJECT_WLOCK(obj);
4655 	vfs_drain_busy_pages(bp);
4656 	if (bp->b_bufsize != 0)
4657 		vfs_setdirty_locked_object(bp);
4658 	bogus = false;
4659 	for (i = 0; i < bp->b_npages; i++) {
4660 		m = bp->b_pages[i];
4661 
4662 		if ((bp->b_flags & B_CLUSTER) == 0) {
4663 			vm_object_pip_add(obj, 1);
4664 			vm_page_sbusy(m);
4665 		}
4666 		/*
4667 		 * When readying a buffer for a read ( i.e
4668 		 * clear_modify == 0 ), it is important to do
4669 		 * bogus_page replacement for valid pages in
4670 		 * partially instantiated buffers.  Partially
4671 		 * instantiated buffers can, in turn, occur when
4672 		 * reconstituting a buffer from its VM backing store
4673 		 * base.  We only have to do this if B_CACHE is
4674 		 * clear ( which causes the I/O to occur in the
4675 		 * first place ).  The replacement prevents the read
4676 		 * I/O from overwriting potentially dirty VM-backed
4677 		 * pages.  XXX bogus page replacement is, uh, bogus.
4678 		 * It may not work properly with small-block devices.
4679 		 * We need to find a better way.
4680 		 */
4681 		if (clear_modify) {
4682 			pmap_remove_write(m);
4683 			vfs_page_set_validclean(bp, foff, m);
4684 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4685 		    (bp->b_flags & B_CACHE) == 0) {
4686 			bp->b_pages[i] = bogus_page;
4687 			bogus = true;
4688 		}
4689 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4690 	}
4691 	VM_OBJECT_WUNLOCK(obj);
4692 	if (bogus && buf_mapped(bp)) {
4693 		BUF_CHECK_MAPPED(bp);
4694 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4695 		    bp->b_pages, bp->b_npages);
4696 	}
4697 }
4698 
4699 /*
4700  *	vfs_bio_set_valid:
4701  *
4702  *	Set the range within the buffer to valid.  The range is
4703  *	relative to the beginning of the buffer, b_offset.  Note that
4704  *	b_offset itself may be offset from the beginning of the first
4705  *	page.
4706  */
4707 void
4708 vfs_bio_set_valid(struct buf *bp, int base, int size)
4709 {
4710 	int i, n;
4711 	vm_page_t m;
4712 
4713 	if (!(bp->b_flags & B_VMIO))
4714 		return;
4715 
4716 	/*
4717 	 * Fixup base to be relative to beginning of first page.
4718 	 * Set initial n to be the maximum number of bytes in the
4719 	 * first page that can be validated.
4720 	 */
4721 	base += (bp->b_offset & PAGE_MASK);
4722 	n = PAGE_SIZE - (base & PAGE_MASK);
4723 
4724 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4725 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4726 		m = bp->b_pages[i];
4727 		if (n > size)
4728 			n = size;
4729 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4730 		base += n;
4731 		size -= n;
4732 		n = PAGE_SIZE;
4733 	}
4734 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4735 }
4736 
4737 /*
4738  *	vfs_bio_clrbuf:
4739  *
4740  *	If the specified buffer is a non-VMIO buffer, clear the entire
4741  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4742  *	validate only the previously invalid portions of the buffer.
4743  *	This routine essentially fakes an I/O, so we need to clear
4744  *	BIO_ERROR and B_INVAL.
4745  *
4746  *	Note that while we only theoretically need to clear through b_bcount,
4747  *	we go ahead and clear through b_bufsize.
4748  */
4749 void
4750 vfs_bio_clrbuf(struct buf *bp)
4751 {
4752 	int i, j, mask, sa, ea, slide;
4753 
4754 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4755 		clrbuf(bp);
4756 		return;
4757 	}
4758 	bp->b_flags &= ~B_INVAL;
4759 	bp->b_ioflags &= ~BIO_ERROR;
4760 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4761 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4762 	    (bp->b_offset & PAGE_MASK) == 0) {
4763 		if (bp->b_pages[0] == bogus_page)
4764 			goto unlock;
4765 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4766 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4767 		if ((bp->b_pages[0]->valid & mask) == mask)
4768 			goto unlock;
4769 		if ((bp->b_pages[0]->valid & mask) == 0) {
4770 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4771 			bp->b_pages[0]->valid |= mask;
4772 			goto unlock;
4773 		}
4774 	}
4775 	sa = bp->b_offset & PAGE_MASK;
4776 	slide = 0;
4777 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4778 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4779 		ea = slide & PAGE_MASK;
4780 		if (ea == 0)
4781 			ea = PAGE_SIZE;
4782 		if (bp->b_pages[i] == bogus_page)
4783 			continue;
4784 		j = sa / DEV_BSIZE;
4785 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4786 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4787 		if ((bp->b_pages[i]->valid & mask) == mask)
4788 			continue;
4789 		if ((bp->b_pages[i]->valid & mask) == 0)
4790 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4791 		else {
4792 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4793 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4794 					pmap_zero_page_area(bp->b_pages[i],
4795 					    sa, DEV_BSIZE);
4796 				}
4797 			}
4798 		}
4799 		bp->b_pages[i]->valid |= mask;
4800 	}
4801 unlock:
4802 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4803 	bp->b_resid = 0;
4804 }
4805 
4806 void
4807 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4808 {
4809 	vm_page_t m;
4810 	int i, n;
4811 
4812 	if (buf_mapped(bp)) {
4813 		BUF_CHECK_MAPPED(bp);
4814 		bzero(bp->b_data + base, size);
4815 	} else {
4816 		BUF_CHECK_UNMAPPED(bp);
4817 		n = PAGE_SIZE - (base & PAGE_MASK);
4818 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4819 			m = bp->b_pages[i];
4820 			if (n > size)
4821 				n = size;
4822 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4823 			base += n;
4824 			size -= n;
4825 			n = PAGE_SIZE;
4826 		}
4827 	}
4828 }
4829 
4830 /*
4831  * Update buffer flags based on I/O request parameters, optionally releasing the
4832  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4833  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4834  * I/O).  Otherwise the buffer is released to the cache.
4835  */
4836 static void
4837 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4838 {
4839 
4840 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4841 	    ("buf %p non-VMIO noreuse", bp));
4842 
4843 	if ((ioflag & IO_DIRECT) != 0)
4844 		bp->b_flags |= B_DIRECT;
4845 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4846 		bp->b_flags |= B_RELBUF;
4847 		if ((ioflag & IO_NOREUSE) != 0)
4848 			bp->b_flags |= B_NOREUSE;
4849 		if (release)
4850 			brelse(bp);
4851 	} else if (release)
4852 		bqrelse(bp);
4853 }
4854 
4855 void
4856 vfs_bio_brelse(struct buf *bp, int ioflag)
4857 {
4858 
4859 	b_io_dismiss(bp, ioflag, true);
4860 }
4861 
4862 void
4863 vfs_bio_set_flags(struct buf *bp, int ioflag)
4864 {
4865 
4866 	b_io_dismiss(bp, ioflag, false);
4867 }
4868 
4869 /*
4870  * vm_hold_load_pages and vm_hold_free_pages get pages into
4871  * a buffers address space.  The pages are anonymous and are
4872  * not associated with a file object.
4873  */
4874 static void
4875 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4876 {
4877 	vm_offset_t pg;
4878 	vm_page_t p;
4879 	int index;
4880 
4881 	BUF_CHECK_MAPPED(bp);
4882 
4883 	to = round_page(to);
4884 	from = round_page(from);
4885 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4886 
4887 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4888 		/*
4889 		 * note: must allocate system pages since blocking here
4890 		 * could interfere with paging I/O, no matter which
4891 		 * process we are.
4892 		 */
4893 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4894 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
4895 		    VM_ALLOC_WAITOK);
4896 		pmap_qenter(pg, &p, 1);
4897 		bp->b_pages[index] = p;
4898 	}
4899 	bp->b_npages = index;
4900 }
4901 
4902 /* Return pages associated with this buf to the vm system */
4903 static void
4904 vm_hold_free_pages(struct buf *bp, int newbsize)
4905 {
4906 	vm_offset_t from;
4907 	vm_page_t p;
4908 	int index, newnpages;
4909 
4910 	BUF_CHECK_MAPPED(bp);
4911 
4912 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4913 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4914 	if (bp->b_npages > newnpages)
4915 		pmap_qremove(from, bp->b_npages - newnpages);
4916 	for (index = newnpages; index < bp->b_npages; index++) {
4917 		p = bp->b_pages[index];
4918 		bp->b_pages[index] = NULL;
4919 		p->wire_count--;
4920 		vm_page_free(p);
4921 	}
4922 	vm_wire_sub(bp->b_npages - newnpages);
4923 	bp->b_npages = newnpages;
4924 }
4925 
4926 /*
4927  * Map an IO request into kernel virtual address space.
4928  *
4929  * All requests are (re)mapped into kernel VA space.
4930  * Notice that we use b_bufsize for the size of the buffer
4931  * to be mapped.  b_bcount might be modified by the driver.
4932  *
4933  * Note that even if the caller determines that the address space should
4934  * be valid, a race or a smaller-file mapped into a larger space may
4935  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4936  * check the return value.
4937  *
4938  * This function only works with pager buffers.
4939  */
4940 int
4941 vmapbuf(struct buf *bp, int mapbuf)
4942 {
4943 	vm_prot_t prot;
4944 	int pidx;
4945 
4946 	if (bp->b_bufsize < 0)
4947 		return (-1);
4948 	prot = VM_PROT_READ;
4949 	if (bp->b_iocmd == BIO_READ)
4950 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4951 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4952 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4953 	    btoc(MAXPHYS))) < 0)
4954 		return (-1);
4955 	bp->b_npages = pidx;
4956 	bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4957 	if (mapbuf || !unmapped_buf_allowed) {
4958 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4959 		bp->b_data = bp->b_kvabase + bp->b_offset;
4960 	} else
4961 		bp->b_data = unmapped_buf;
4962 	return(0);
4963 }
4964 
4965 /*
4966  * Free the io map PTEs associated with this IO operation.
4967  * We also invalidate the TLB entries and restore the original b_addr.
4968  *
4969  * This function only works with pager buffers.
4970  */
4971 void
4972 vunmapbuf(struct buf *bp)
4973 {
4974 	int npages;
4975 
4976 	npages = bp->b_npages;
4977 	if (buf_mapped(bp))
4978 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4979 	vm_page_unhold_pages(bp->b_pages, npages);
4980 
4981 	bp->b_data = unmapped_buf;
4982 }
4983 
4984 void
4985 bdone(struct buf *bp)
4986 {
4987 	struct mtx *mtxp;
4988 
4989 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4990 	mtx_lock(mtxp);
4991 	bp->b_flags |= B_DONE;
4992 	wakeup(bp);
4993 	mtx_unlock(mtxp);
4994 }
4995 
4996 void
4997 bwait(struct buf *bp, u_char pri, const char *wchan)
4998 {
4999 	struct mtx *mtxp;
5000 
5001 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5002 	mtx_lock(mtxp);
5003 	while ((bp->b_flags & B_DONE) == 0)
5004 		msleep(bp, mtxp, pri, wchan, 0);
5005 	mtx_unlock(mtxp);
5006 }
5007 
5008 int
5009 bufsync(struct bufobj *bo, int waitfor)
5010 {
5011 
5012 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5013 }
5014 
5015 void
5016 bufstrategy(struct bufobj *bo, struct buf *bp)
5017 {
5018 	int i __unused;
5019 	struct vnode *vp;
5020 
5021 	vp = bp->b_vp;
5022 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5023 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5024 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5025 	i = VOP_STRATEGY(vp, bp);
5026 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5027 }
5028 
5029 /*
5030  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5031  */
5032 void
5033 bufobj_init(struct bufobj *bo, void *private)
5034 {
5035 	static volatile int bufobj_cleanq;
5036 
5037         bo->bo_domain =
5038             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5039         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5040         bo->bo_private = private;
5041         TAILQ_INIT(&bo->bo_clean.bv_hd);
5042         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5043 }
5044 
5045 void
5046 bufobj_wrefl(struct bufobj *bo)
5047 {
5048 
5049 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5050 	ASSERT_BO_WLOCKED(bo);
5051 	bo->bo_numoutput++;
5052 }
5053 
5054 void
5055 bufobj_wref(struct bufobj *bo)
5056 {
5057 
5058 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5059 	BO_LOCK(bo);
5060 	bo->bo_numoutput++;
5061 	BO_UNLOCK(bo);
5062 }
5063 
5064 void
5065 bufobj_wdrop(struct bufobj *bo)
5066 {
5067 
5068 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5069 	BO_LOCK(bo);
5070 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5071 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5072 		bo->bo_flag &= ~BO_WWAIT;
5073 		wakeup(&bo->bo_numoutput);
5074 	}
5075 	BO_UNLOCK(bo);
5076 }
5077 
5078 int
5079 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5080 {
5081 	int error;
5082 
5083 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5084 	ASSERT_BO_WLOCKED(bo);
5085 	error = 0;
5086 	while (bo->bo_numoutput) {
5087 		bo->bo_flag |= BO_WWAIT;
5088 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5089 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5090 		if (error)
5091 			break;
5092 	}
5093 	return (error);
5094 }
5095 
5096 /*
5097  * Set bio_data or bio_ma for struct bio from the struct buf.
5098  */
5099 void
5100 bdata2bio(struct buf *bp, struct bio *bip)
5101 {
5102 
5103 	if (!buf_mapped(bp)) {
5104 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5105 		bip->bio_ma = bp->b_pages;
5106 		bip->bio_ma_n = bp->b_npages;
5107 		bip->bio_data = unmapped_buf;
5108 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5109 		bip->bio_flags |= BIO_UNMAPPED;
5110 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5111 		    PAGE_SIZE == bp->b_npages,
5112 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5113 		    (long long)bip->bio_length, bip->bio_ma_n));
5114 	} else {
5115 		bip->bio_data = bp->b_data;
5116 		bip->bio_ma = NULL;
5117 	}
5118 }
5119 
5120 /*
5121  * The MIPS pmap code currently doesn't handle aliased pages.
5122  * The VIPT caches may not handle page aliasing themselves, leading
5123  * to data corruption.
5124  *
5125  * As such, this code makes a system extremely unhappy if said
5126  * system doesn't support unaliasing the above situation in hardware.
5127  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5128  * this feature at build time, so it has to be handled in software.
5129  *
5130  * Once the MIPS pmap/cache code grows to support this function on
5131  * earlier chips, it should be flipped back off.
5132  */
5133 #ifdef	__mips__
5134 static int buf_pager_relbuf = 1;
5135 #else
5136 static int buf_pager_relbuf = 0;
5137 #endif
5138 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5139     &buf_pager_relbuf, 0,
5140     "Make buffer pager release buffers after reading");
5141 
5142 /*
5143  * The buffer pager.  It uses buffer reads to validate pages.
5144  *
5145  * In contrast to the generic local pager from vm/vnode_pager.c, this
5146  * pager correctly and easily handles volumes where the underlying
5147  * device block size is greater than the machine page size.  The
5148  * buffer cache transparently extends the requested page run to be
5149  * aligned at the block boundary, and does the necessary bogus page
5150  * replacements in the addends to avoid obliterating already valid
5151  * pages.
5152  *
5153  * The only non-trivial issue is that the exclusive busy state for
5154  * pages, which is assumed by the vm_pager_getpages() interface, is
5155  * incompatible with the VMIO buffer cache's desire to share-busy the
5156  * pages.  This function performs a trivial downgrade of the pages'
5157  * state before reading buffers, and a less trivial upgrade from the
5158  * shared-busy to excl-busy state after the read.
5159  */
5160 int
5161 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5162     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5163     vbg_get_blksize_t get_blksize)
5164 {
5165 	vm_page_t m;
5166 	vm_object_t object;
5167 	struct buf *bp;
5168 	struct mount *mp;
5169 	daddr_t lbn, lbnp;
5170 	vm_ooffset_t la, lb, poff, poffe;
5171 	long bsize;
5172 	int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5173 	bool redo, lpart;
5174 
5175 	object = vp->v_object;
5176 	mp = vp->v_mount;
5177 	error = 0;
5178 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5179 	if (la >= object->un_pager.vnp.vnp_size)
5180 		return (VM_PAGER_BAD);
5181 
5182 	/*
5183 	 * Change the meaning of la from where the last requested page starts
5184 	 * to where it ends, because that's the end of the requested region
5185 	 * and the start of the potential read-ahead region.
5186 	 */
5187 	la += PAGE_SIZE;
5188 	lpart = la > object->un_pager.vnp.vnp_size;
5189 	bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
5190 
5191 	/*
5192 	 * Calculate read-ahead, behind and total pages.
5193 	 */
5194 	pgsin = count;
5195 	lb = IDX_TO_OFF(ma[0]->pindex);
5196 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5197 	pgsin += pgsin_b;
5198 	if (rbehind != NULL)
5199 		*rbehind = pgsin_b;
5200 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5201 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5202 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5203 		    PAGE_SIZE) - la);
5204 	pgsin += pgsin_a;
5205 	if (rahead != NULL)
5206 		*rahead = pgsin_a;
5207 	VM_CNT_INC(v_vnodein);
5208 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5209 
5210 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5211 	    != 0) ? GB_UNMAPPED : 0;
5212 	VM_OBJECT_WLOCK(object);
5213 again:
5214 	for (i = 0; i < count; i++)
5215 		vm_page_busy_downgrade(ma[i]);
5216 	VM_OBJECT_WUNLOCK(object);
5217 
5218 	lbnp = -1;
5219 	for (i = 0; i < count; i++) {
5220 		m = ma[i];
5221 
5222 		/*
5223 		 * Pages are shared busy and the object lock is not
5224 		 * owned, which together allow for the pages'
5225 		 * invalidation.  The racy test for validity avoids
5226 		 * useless creation of the buffer for the most typical
5227 		 * case when invalidation is not used in redo or for
5228 		 * parallel read.  The shared->excl upgrade loop at
5229 		 * the end of the function catches the race in a
5230 		 * reliable way (protected by the object lock).
5231 		 */
5232 		if (m->valid == VM_PAGE_BITS_ALL)
5233 			continue;
5234 
5235 		poff = IDX_TO_OFF(m->pindex);
5236 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5237 		for (; poff < poffe; poff += bsize) {
5238 			lbn = get_lblkno(vp, poff);
5239 			if (lbn == lbnp)
5240 				goto next_page;
5241 			lbnp = lbn;
5242 
5243 			bsize = get_blksize(vp, lbn);
5244 			error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
5245 			    br_flags, &bp);
5246 			if (error != 0)
5247 				goto end_pages;
5248 			if (LIST_EMPTY(&bp->b_dep)) {
5249 				/*
5250 				 * Invalidation clears m->valid, but
5251 				 * may leave B_CACHE flag if the
5252 				 * buffer existed at the invalidation
5253 				 * time.  In this case, recycle the
5254 				 * buffer to do real read on next
5255 				 * bread() after redo.
5256 				 *
5257 				 * Otherwise B_RELBUF is not strictly
5258 				 * necessary, enable to reduce buf
5259 				 * cache pressure.
5260 				 */
5261 				if (buf_pager_relbuf ||
5262 				    m->valid != VM_PAGE_BITS_ALL)
5263 					bp->b_flags |= B_RELBUF;
5264 
5265 				bp->b_flags &= ~B_NOCACHE;
5266 				brelse(bp);
5267 			} else {
5268 				bqrelse(bp);
5269 			}
5270 		}
5271 		KASSERT(1 /* racy, enable for debugging */ ||
5272 		    m->valid == VM_PAGE_BITS_ALL || i == count - 1,
5273 		    ("buf %d %p invalid", i, m));
5274 		if (i == count - 1 && lpart) {
5275 			VM_OBJECT_WLOCK(object);
5276 			if (m->valid != 0 &&
5277 			    m->valid != VM_PAGE_BITS_ALL)
5278 				vm_page_zero_invalid(m, TRUE);
5279 			VM_OBJECT_WUNLOCK(object);
5280 		}
5281 next_page:;
5282 	}
5283 end_pages:
5284 
5285 	VM_OBJECT_WLOCK(object);
5286 	redo = false;
5287 	for (i = 0; i < count; i++) {
5288 		vm_page_sunbusy(ma[i]);
5289 		ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL);
5290 
5291 		/*
5292 		 * Since the pages were only sbusy while neither the
5293 		 * buffer nor the object lock was held by us, or
5294 		 * reallocated while vm_page_grab() slept for busy
5295 		 * relinguish, they could have been invalidated.
5296 		 * Recheck the valid bits and re-read as needed.
5297 		 *
5298 		 * Note that the last page is made fully valid in the
5299 		 * read loop, and partial validity for the page at
5300 		 * index count - 1 could mean that the page was
5301 		 * invalidated or removed, so we must restart for
5302 		 * safety as well.
5303 		 */
5304 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
5305 			redo = true;
5306 	}
5307 	if (redo && error == 0)
5308 		goto again;
5309 	VM_OBJECT_WUNLOCK(object);
5310 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5311 }
5312 
5313 #include "opt_ddb.h"
5314 #ifdef DDB
5315 #include <ddb/ddb.h>
5316 
5317 /* DDB command to show buffer data */
5318 DB_SHOW_COMMAND(buffer, db_show_buffer)
5319 {
5320 	/* get args */
5321 	struct buf *bp = (struct buf *)addr;
5322 #ifdef FULL_BUF_TRACKING
5323 	uint32_t i, j;
5324 #endif
5325 
5326 	if (!have_addr) {
5327 		db_printf("usage: show buffer <addr>\n");
5328 		return;
5329 	}
5330 
5331 	db_printf("buf at %p\n", bp);
5332 	db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5333 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5334 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5335 	db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5336 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5337 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5338 	db_printf(
5339 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5340 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
5341 	    "b_dep = %p\n",
5342 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5343 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5344 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
5345 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5346 	    bp->b_kvabase, bp->b_kvasize);
5347 	if (bp->b_npages) {
5348 		int i;
5349 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5350 		for (i = 0; i < bp->b_npages; i++) {
5351 			vm_page_t m;
5352 			m = bp->b_pages[i];
5353 			if (m != NULL)
5354 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5355 				    (u_long)m->pindex,
5356 				    (u_long)VM_PAGE_TO_PHYS(m));
5357 			else
5358 				db_printf("( ??? )");
5359 			if ((i + 1) < bp->b_npages)
5360 				db_printf(",");
5361 		}
5362 		db_printf("\n");
5363 	}
5364 	BUF_LOCKPRINTINFO(bp);
5365 #if defined(FULL_BUF_TRACKING)
5366 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5367 
5368 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5369 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5370 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5371 			continue;
5372 		db_printf(" %2u: %s\n", j,
5373 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5374 	}
5375 #elif defined(BUF_TRACKING)
5376 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5377 #endif
5378 	db_printf(" ");
5379 }
5380 
5381 DB_SHOW_COMMAND(bufqueues, bufqueues)
5382 {
5383 	struct bufdomain *bd;
5384 	struct buf *bp;
5385 	long total;
5386 	int i, j, cnt;
5387 
5388 	db_printf("bqempty: %d\n", bqempty.bq_len);
5389 
5390 	for (i = 0; i < buf_domains; i++) {
5391 		bd = &bdomain[i];
5392 		db_printf("Buf domain %d\n", i);
5393 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5394 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5395 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5396 		db_printf("\n");
5397 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5398 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5399 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5400 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5401 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5402 		db_printf("\n");
5403 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5404 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5405 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5406 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5407 		db_printf("\n");
5408 		total = 0;
5409 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5410 			total += bp->b_bufsize;
5411 		db_printf("\tcleanq count\t%d (%ld)\n",
5412 		    bd->bd_cleanq->bq_len, total);
5413 		total = 0;
5414 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5415 			total += bp->b_bufsize;
5416 		db_printf("\tdirtyq count\t%d (%ld)\n",
5417 		    bd->bd_dirtyq.bq_len, total);
5418 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5419 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5420 		db_printf("\tCPU ");
5421 		for (j = 0; j <= mp_maxid; j++)
5422 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5423 		db_printf("\n");
5424 		cnt = 0;
5425 		total = 0;
5426 		for (j = 0; j < nbuf; j++)
5427 			if (buf[j].b_domain == i && BUF_ISLOCKED(&buf[j])) {
5428 				cnt++;
5429 				total += buf[j].b_bufsize;
5430 			}
5431 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5432 		cnt = 0;
5433 		total = 0;
5434 		for (j = 0; j < nbuf; j++)
5435 			if (buf[j].b_domain == i) {
5436 				cnt++;
5437 				total += buf[j].b_bufsize;
5438 			}
5439 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5440 	}
5441 }
5442 
5443 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5444 {
5445 	struct buf *bp;
5446 	int i;
5447 
5448 	for (i = 0; i < nbuf; i++) {
5449 		bp = &buf[i];
5450 		if (BUF_ISLOCKED(bp)) {
5451 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5452 			db_printf("\n");
5453 			if (db_pager_quit)
5454 				break;
5455 		}
5456 	}
5457 }
5458 
5459 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5460 {
5461 	struct vnode *vp;
5462 	struct buf *bp;
5463 
5464 	if (!have_addr) {
5465 		db_printf("usage: show vnodebufs <addr>\n");
5466 		return;
5467 	}
5468 	vp = (struct vnode *)addr;
5469 	db_printf("Clean buffers:\n");
5470 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5471 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5472 		db_printf("\n");
5473 	}
5474 	db_printf("Dirty buffers:\n");
5475 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5476 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5477 		db_printf("\n");
5478 	}
5479 }
5480 
5481 DB_COMMAND(countfreebufs, db_coundfreebufs)
5482 {
5483 	struct buf *bp;
5484 	int i, used = 0, nfree = 0;
5485 
5486 	if (have_addr) {
5487 		db_printf("usage: countfreebufs\n");
5488 		return;
5489 	}
5490 
5491 	for (i = 0; i < nbuf; i++) {
5492 		bp = &buf[i];
5493 		if (bp->b_qindex == QUEUE_EMPTY)
5494 			nfree++;
5495 		else
5496 			used++;
5497 	}
5498 
5499 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5500 	    nfree + used);
5501 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5502 }
5503 #endif /* DDB */
5504