1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/stdint.h> 33 #include <sys/bio.h> 34 #include <sys/buf.h> 35 #include <sys/devicestat.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mount.h> 40 #include <sys/mutex.h> 41 #include <sys/kernel.h> 42 #include <sys/kthread.h> 43 #include <sys/proc.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 58 59 struct bio_ops bioops; /* I/O operation notification */ 60 61 struct buf_ops buf_ops_bio = { 62 "buf_ops_bio", 63 bwrite 64 }; 65 66 /* 67 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 68 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 69 */ 70 struct buf *buf; /* buffer header pool */ 71 struct mtx buftimelock; /* Interlock on setting prio and timo */ 72 73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 74 vm_offset_t to); 75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 76 vm_offset_t to); 77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 78 int pageno, vm_page_t m); 79 static void vfs_clean_pages(struct buf * bp); 80 static void vfs_setdirty(struct buf *bp); 81 static void vfs_vmio_release(struct buf *bp); 82 static void vfs_backgroundwritedone(struct buf *bp); 83 static int flushbufqueues(void); 84 static void buf_daemon(void); 85 86 int vmiodirenable = TRUE; 87 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 88 "Use the VM system for directory writes"); 89 int runningbufspace; 90 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 91 "Amount of presently outstanding async buffer io"); 92 static int bufspace; 93 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 94 "KVA memory used for bufs"); 95 static int maxbufspace; 96 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 97 "Maximum allowed value of bufspace (including buf_daemon)"); 98 static int bufmallocspace; 99 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 100 "Amount of malloced memory for buffers"); 101 static int maxbufmallocspace; 102 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 103 "Maximum amount of malloced memory for buffers"); 104 static int lobufspace; 105 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 106 "Minimum amount of buffers we want to have"); 107 static int hibufspace; 108 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 109 "Maximum allowed value of bufspace (excluding buf_daemon)"); 110 static int bufreusecnt; 111 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 112 "Number of times we have reused a buffer"); 113 static int buffreekvacnt; 114 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 115 "Number of times we have freed the KVA space from some buffer"); 116 static int bufdefragcnt; 117 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 118 "Number of times we have had to repeat buffer allocation to defragment"); 119 static int lorunningspace; 120 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 121 "Minimum preferred space used for in-progress I/O"); 122 static int hirunningspace; 123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 124 "Maximum amount of space to use for in-progress I/O"); 125 static int numdirtybuffers; 126 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 127 "Number of buffers that are dirty (has unwritten changes) at the moment"); 128 static int lodirtybuffers; 129 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 130 "How many buffers we want to have free before bufdaemon can sleep"); 131 static int hidirtybuffers; 132 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 133 "When the number of dirty buffers is considered severe"); 134 static int numfreebuffers; 135 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 136 "Number of free buffers"); 137 static int lofreebuffers; 138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 139 "XXX Unused"); 140 static int hifreebuffers; 141 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 142 "XXX Complicatedly unused"); 143 static int getnewbufcalls; 144 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 145 "Number of calls to getnewbuf"); 146 static int getnewbufrestarts; 147 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 148 "Number of times getnewbuf has had to restart a buffer aquisition"); 149 static int dobkgrdwrite = 1; 150 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 151 "Do background writes (honoring the BX_BKGRDWRITE flag)?"); 152 153 /* 154 * Wakeup point for bufdaemon, as well as indicator of whether it is already 155 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 156 * is idling. 157 */ 158 static int bd_request; 159 160 /* 161 * bogus page -- for I/O to/from partially complete buffers 162 * this is a temporary solution to the problem, but it is not 163 * really that bad. it would be better to split the buffer 164 * for input in the case of buffers partially already in memory, 165 * but the code is intricate enough already. 166 */ 167 vm_page_t bogus_page; 168 169 /* 170 * Synchronization (sleep/wakeup) variable for active buffer space requests. 171 * Set when wait starts, cleared prior to wakeup(). 172 * Used in runningbufwakeup() and waitrunningbufspace(). 173 */ 174 static int runningbufreq; 175 176 /* 177 * Synchronization (sleep/wakeup) variable for buffer requests. 178 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 179 * by and/or. 180 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(), 181 * getnewbuf(), and getblk(). 182 */ 183 static int needsbuffer; 184 185 #ifdef USE_BUFHASH 186 /* 187 * Mask for index into the buffer hash table, which needs to be power of 2 in 188 * size. Set in kern_vfs_bio_buffer_alloc. 189 */ 190 static int bufhashmask; 191 192 /* 193 * Hash table for all buffers, with a linked list hanging from each table 194 * entry. Set in kern_vfs_bio_buffer_alloc, initialized in buf_init. 195 */ 196 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl; 197 198 /* 199 * Somewhere to store buffers when they are not in another list, to always 200 * have them in a list (and thus being able to use the same set of operations 201 * on them.) 202 */ 203 static struct bufhashhdr invalhash; 204 205 #endif 206 207 /* 208 * Definitions for the buffer free lists. 209 */ 210 #define BUFFER_QUEUES 6 /* number of free buffer queues */ 211 212 #define QUEUE_NONE 0 /* on no queue */ 213 #define QUEUE_LOCKED 1 /* locked buffers */ 214 #define QUEUE_CLEAN 2 /* non-B_DELWRI buffers */ 215 #define QUEUE_DIRTY 3 /* B_DELWRI buffers */ 216 #define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */ 217 #define QUEUE_EMPTY 5 /* empty buffer headers */ 218 219 /* Queues for free buffers with various properties */ 220 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 221 /* 222 * Single global constant for BUF_WMESG, to avoid getting multiple references. 223 * buf_wmesg is referred from macros. 224 */ 225 const char *buf_wmesg = BUF_WMESG; 226 227 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 228 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 229 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 230 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 231 232 #ifdef USE_BUFHASH 233 /* 234 * Buffer hash table code. Note that the logical block scans linearly, which 235 * gives us some L1 cache locality. 236 */ 237 238 static __inline 239 struct bufhashhdr * 240 bufhash(struct vnode *vnp, daddr_t bn) 241 { 242 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 243 } 244 245 #endif 246 247 /* 248 * numdirtywakeup: 249 * 250 * If someone is blocked due to there being too many dirty buffers, 251 * and numdirtybuffers is now reasonable, wake them up. 252 */ 253 254 static __inline void 255 numdirtywakeup(int level) 256 { 257 if (numdirtybuffers <= level) { 258 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 259 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 260 wakeup(&needsbuffer); 261 } 262 } 263 } 264 265 /* 266 * bufspacewakeup: 267 * 268 * Called when buffer space is potentially available for recovery. 269 * getnewbuf() will block on this flag when it is unable to free 270 * sufficient buffer space. Buffer space becomes recoverable when 271 * bp's get placed back in the queues. 272 */ 273 274 static __inline void 275 bufspacewakeup(void) 276 { 277 /* 278 * If someone is waiting for BUF space, wake them up. Even 279 * though we haven't freed the kva space yet, the waiting 280 * process will be able to now. 281 */ 282 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 283 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 284 wakeup(&needsbuffer); 285 } 286 } 287 288 /* 289 * runningbufwakeup() - in-progress I/O accounting. 290 * 291 */ 292 static __inline void 293 runningbufwakeup(struct buf *bp) 294 { 295 if (bp->b_runningbufspace) { 296 runningbufspace -= bp->b_runningbufspace; 297 bp->b_runningbufspace = 0; 298 if (runningbufreq && runningbufspace <= lorunningspace) { 299 runningbufreq = 0; 300 wakeup(&runningbufreq); 301 } 302 } 303 } 304 305 /* 306 * bufcountwakeup: 307 * 308 * Called when a buffer has been added to one of the free queues to 309 * account for the buffer and to wakeup anyone waiting for free buffers. 310 * This typically occurs when large amounts of metadata are being handled 311 * by the buffer cache ( else buffer space runs out first, usually ). 312 */ 313 314 static __inline void 315 bufcountwakeup(void) 316 { 317 ++numfreebuffers; 318 if (needsbuffer) { 319 needsbuffer &= ~VFS_BIO_NEED_ANY; 320 if (numfreebuffers >= hifreebuffers) 321 needsbuffer &= ~VFS_BIO_NEED_FREE; 322 wakeup(&needsbuffer); 323 } 324 } 325 326 /* 327 * waitrunningbufspace() 328 * 329 * runningbufspace is a measure of the amount of I/O currently 330 * running. This routine is used in async-write situations to 331 * prevent creating huge backups of pending writes to a device. 332 * Only asynchronous writes are governed by this function. 333 * 334 * Reads will adjust runningbufspace, but will not block based on it. 335 * The read load has a side effect of reducing the allowed write load. 336 * 337 * This does NOT turn an async write into a sync write. It waits 338 * for earlier writes to complete and generally returns before the 339 * caller's write has reached the device. 340 */ 341 static __inline void 342 waitrunningbufspace(void) 343 { 344 /* 345 * XXX race against wakeup interrupt, currently 346 * protected by Giant. FIXME! 347 */ 348 while (runningbufspace > hirunningspace) { 349 ++runningbufreq; 350 tsleep(&runningbufreq, PVM, "wdrain", 0); 351 } 352 } 353 354 355 /* 356 * vfs_buf_test_cache: 357 * 358 * Called when a buffer is extended. This function clears the B_CACHE 359 * bit if the newly extended portion of the buffer does not contain 360 * valid data. 361 */ 362 static __inline__ 363 void 364 vfs_buf_test_cache(struct buf *bp, 365 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 366 vm_page_t m) 367 { 368 GIANT_REQUIRED; 369 370 if (bp->b_flags & B_CACHE) { 371 int base = (foff + off) & PAGE_MASK; 372 if (vm_page_is_valid(m, base, size) == 0) 373 bp->b_flags &= ~B_CACHE; 374 } 375 } 376 377 /* Wake up the buffer deamon if necessary */ 378 static __inline__ 379 void 380 bd_wakeup(int dirtybuflevel) 381 { 382 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 383 bd_request = 1; 384 wakeup(&bd_request); 385 } 386 } 387 388 /* 389 * bd_speedup - speedup the buffer cache flushing code 390 */ 391 392 static __inline__ 393 void 394 bd_speedup(void) 395 { 396 bd_wakeup(1); 397 } 398 399 /* 400 * Calculating buffer cache scaling values and reserve space for buffer 401 * headers. This is called during low level kernel initialization and 402 * may be called more then once. We CANNOT write to the memory area 403 * being reserved at this time. 404 */ 405 caddr_t 406 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 407 { 408 /* 409 * physmem_est is in pages. Convert it to kilobytes (assumes 410 * PAGE_SIZE is >= 1K) 411 */ 412 physmem_est = physmem_est * (PAGE_SIZE / 1024); 413 414 /* 415 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 416 * For the first 64MB of ram nominally allocate sufficient buffers to 417 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 418 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing 419 * the buffer cache we limit the eventual kva reservation to 420 * maxbcache bytes. 421 * 422 * factor represents the 1/4 x ram conversion. 423 */ 424 if (nbuf == 0) { 425 int factor = 4 * BKVASIZE / 1024; 426 427 nbuf = 50; 428 if (physmem_est > 4096) 429 nbuf += min((physmem_est - 4096) / factor, 430 65536 / factor); 431 if (physmem_est > 65536) 432 nbuf += (physmem_est - 65536) * 2 / (factor * 5); 433 434 if (maxbcache && nbuf > maxbcache / BKVASIZE) 435 nbuf = maxbcache / BKVASIZE; 436 } 437 438 #if 0 439 /* 440 * Do not allow the buffer_map to be more then 1/2 the size of the 441 * kernel_map. 442 */ 443 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 444 (BKVASIZE * 2)) { 445 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 446 (BKVASIZE * 2); 447 printf("Warning: nbufs capped at %d\n", nbuf); 448 } 449 #endif 450 451 /* 452 * swbufs are used as temporary holders for I/O, such as paging I/O. 453 * We have no less then 16 and no more then 256. 454 */ 455 nswbuf = max(min(nbuf/4, 256), 16); 456 457 /* 458 * Reserve space for the buffer cache buffers 459 */ 460 swbuf = (void *)v; 461 v = (caddr_t)(swbuf + nswbuf); 462 buf = (void *)v; 463 v = (caddr_t)(buf + nbuf); 464 465 #ifdef USE_BUFHASH 466 /* 467 * Calculate the hash table size and reserve space 468 */ 469 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 470 ; 471 bufhashtbl = (void *)v; 472 v = (caddr_t)(bufhashtbl + bufhashmask); 473 --bufhashmask; 474 #endif 475 return(v); 476 } 477 478 /* Initialize the buffer subsystem. Called before use of any buffers. */ 479 void 480 bufinit(void) 481 { 482 struct buf *bp; 483 vm_offset_t bogus_offset; 484 int i; 485 486 GIANT_REQUIRED; 487 488 #ifdef USE_BUFHASH 489 LIST_INIT(&invalhash); 490 #endif 491 mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF); 492 493 #ifdef USE_BUFHASH 494 for (i = 0; i <= bufhashmask; i++) 495 LIST_INIT(&bufhashtbl[i]); 496 #endif 497 498 /* next, make a null set of free lists */ 499 for (i = 0; i < BUFFER_QUEUES; i++) 500 TAILQ_INIT(&bufqueues[i]); 501 502 /* finally, initialize each buffer header and stick on empty q */ 503 for (i = 0; i < nbuf; i++) { 504 bp = &buf[i]; 505 bzero(bp, sizeof *bp); 506 bp->b_flags = B_INVAL; /* we're just an empty header */ 507 bp->b_dev = NODEV; 508 bp->b_rcred = NOCRED; 509 bp->b_wcred = NOCRED; 510 bp->b_qindex = QUEUE_EMPTY; 511 bp->b_xflags = 0; 512 LIST_INIT(&bp->b_dep); 513 BUF_LOCKINIT(bp); 514 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 515 #ifdef USE_BUFHASH 516 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 517 #endif 518 } 519 520 /* 521 * maxbufspace is the absolute maximum amount of buffer space we are 522 * allowed to reserve in KVM and in real terms. The absolute maximum 523 * is nominally used by buf_daemon. hibufspace is the nominal maximum 524 * used by most other processes. The differential is required to 525 * ensure that buf_daemon is able to run when other processes might 526 * be blocked waiting for buffer space. 527 * 528 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 529 * this may result in KVM fragmentation which is not handled optimally 530 * by the system. 531 */ 532 maxbufspace = nbuf * BKVASIZE; 533 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 534 lobufspace = hibufspace - MAXBSIZE; 535 536 lorunningspace = 512 * 1024; 537 hirunningspace = 1024 * 1024; 538 539 /* 540 * Limit the amount of malloc memory since it is wired permanently into 541 * the kernel space. Even though this is accounted for in the buffer 542 * allocation, we don't want the malloced region to grow uncontrolled. 543 * The malloc scheme improves memory utilization significantly on average 544 * (small) directories. 545 */ 546 maxbufmallocspace = hibufspace / 20; 547 548 /* 549 * Reduce the chance of a deadlock occuring by limiting the number 550 * of delayed-write dirty buffers we allow to stack up. 551 */ 552 hidirtybuffers = nbuf / 4 + 20; 553 numdirtybuffers = 0; 554 /* 555 * To support extreme low-memory systems, make sure hidirtybuffers cannot 556 * eat up all available buffer space. This occurs when our minimum cannot 557 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 558 * BKVASIZE'd (8K) buffers. 559 */ 560 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 561 hidirtybuffers >>= 1; 562 } 563 lodirtybuffers = hidirtybuffers / 2; 564 565 /* 566 * Try to keep the number of free buffers in the specified range, 567 * and give special processes (e.g. like buf_daemon) access to an 568 * emergency reserve. 569 */ 570 lofreebuffers = nbuf / 18 + 5; 571 hifreebuffers = 2 * lofreebuffers; 572 numfreebuffers = nbuf; 573 574 /* 575 * Maximum number of async ops initiated per buf_daemon loop. This is 576 * somewhat of a hack at the moment, we really need to limit ourselves 577 * based on the number of bytes of I/O in-transit that were initiated 578 * from buf_daemon. 579 */ 580 581 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 582 vm_object_lock(kernel_object); 583 bogus_page = vm_page_alloc(kernel_object, 584 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 585 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 586 vm_object_unlock(kernel_object); 587 } 588 589 /* 590 * bfreekva() - free the kva allocation for a buffer. 591 * 592 * Must be called at splbio() or higher as this is the only locking for 593 * buffer_map. 594 * 595 * Since this call frees up buffer space, we call bufspacewakeup(). 596 */ 597 static void 598 bfreekva(struct buf * bp) 599 { 600 GIANT_REQUIRED; 601 602 if (bp->b_kvasize) { 603 ++buffreekvacnt; 604 bufspace -= bp->b_kvasize; 605 vm_map_delete(buffer_map, 606 (vm_offset_t) bp->b_kvabase, 607 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 608 ); 609 bp->b_kvasize = 0; 610 bufspacewakeup(); 611 } 612 } 613 614 /* 615 * bremfree: 616 * 617 * Remove the buffer from the appropriate free list. 618 */ 619 void 620 bremfree(struct buf * bp) 621 { 622 int s = splbio(); 623 int old_qindex = bp->b_qindex; 624 625 GIANT_REQUIRED; 626 627 if (bp->b_qindex != QUEUE_NONE) { 628 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 629 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 630 bp->b_qindex = QUEUE_NONE; 631 } else { 632 if (BUF_REFCNT(bp) <= 1) 633 panic("bremfree: removing a buffer not on a queue"); 634 } 635 636 /* 637 * Fixup numfreebuffers count. If the buffer is invalid or not 638 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 639 * the buffer was free and we must decrement numfreebuffers. 640 */ 641 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 642 switch(old_qindex) { 643 case QUEUE_DIRTY: 644 case QUEUE_CLEAN: 645 case QUEUE_EMPTY: 646 case QUEUE_EMPTYKVA: 647 --numfreebuffers; 648 break; 649 default: 650 break; 651 } 652 } 653 splx(s); 654 } 655 656 657 /* 658 * Get a buffer with the specified data. Look in the cache first. We 659 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 660 * is set, the buffer is valid and we do not have to do anything ( see 661 * getblk() ). This is really just a special case of breadn(). 662 */ 663 int 664 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 665 struct buf ** bpp) 666 { 667 668 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 669 } 670 671 /* 672 * Operates like bread, but also starts asynchronous I/O on 673 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 674 * to initiating I/O . If B_CACHE is set, the buffer is valid 675 * and we do not have to do anything. 676 */ 677 int 678 breadn(struct vnode * vp, daddr_t blkno, int size, 679 daddr_t * rablkno, int *rabsize, 680 int cnt, struct ucred * cred, struct buf ** bpp) 681 { 682 struct buf *bp, *rabp; 683 int i; 684 int rv = 0, readwait = 0; 685 686 *bpp = bp = getblk(vp, blkno, size, 0, 0); 687 688 /* if not found in cache, do some I/O */ 689 if ((bp->b_flags & B_CACHE) == 0) { 690 if (curthread != PCPU_GET(idlethread)) 691 curthread->td_proc->p_stats->p_ru.ru_inblock++; 692 bp->b_iocmd = BIO_READ; 693 bp->b_flags &= ~B_INVAL; 694 bp->b_ioflags &= ~BIO_ERROR; 695 if (bp->b_rcred == NOCRED && cred != NOCRED) 696 bp->b_rcred = crhold(cred); 697 vfs_busy_pages(bp, 0); 698 if (vp->v_type == VCHR) 699 VOP_SPECSTRATEGY(vp, bp); 700 else 701 VOP_STRATEGY(vp, bp); 702 ++readwait; 703 } 704 705 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 706 if (inmem(vp, *rablkno)) 707 continue; 708 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 709 710 if ((rabp->b_flags & B_CACHE) == 0) { 711 if (curthread != PCPU_GET(idlethread)) 712 curthread->td_proc->p_stats->p_ru.ru_inblock++; 713 rabp->b_flags |= B_ASYNC; 714 rabp->b_flags &= ~B_INVAL; 715 rabp->b_ioflags &= ~BIO_ERROR; 716 rabp->b_iocmd = BIO_READ; 717 if (rabp->b_rcred == NOCRED && cred != NOCRED) 718 rabp->b_rcred = crhold(cred); 719 vfs_busy_pages(rabp, 0); 720 BUF_KERNPROC(rabp); 721 if (vp->v_type == VCHR) 722 VOP_SPECSTRATEGY(vp, rabp); 723 else 724 VOP_STRATEGY(vp, rabp); 725 } else { 726 brelse(rabp); 727 } 728 } 729 730 if (readwait) { 731 rv = bufwait(bp); 732 } 733 return (rv); 734 } 735 736 /* 737 * Write, release buffer on completion. (Done by iodone 738 * if async). Do not bother writing anything if the buffer 739 * is invalid. 740 * 741 * Note that we set B_CACHE here, indicating that buffer is 742 * fully valid and thus cacheable. This is true even of NFS 743 * now so we set it generally. This could be set either here 744 * or in biodone() since the I/O is synchronous. We put it 745 * here. 746 */ 747 748 int 749 bwrite(struct buf * bp) 750 { 751 int oldflags, s; 752 struct buf *newbp; 753 754 if (bp->b_flags & B_INVAL) { 755 brelse(bp); 756 return (0); 757 } 758 759 oldflags = bp->b_flags; 760 761 if (BUF_REFCNT(bp) == 0) 762 panic("bwrite: buffer is not busy???"); 763 s = splbio(); 764 /* 765 * If a background write is already in progress, delay 766 * writing this block if it is asynchronous. Otherwise 767 * wait for the background write to complete. 768 */ 769 if (bp->b_xflags & BX_BKGRDINPROG) { 770 if (bp->b_flags & B_ASYNC) { 771 splx(s); 772 bdwrite(bp); 773 return (0); 774 } 775 bp->b_xflags |= BX_BKGRDWAIT; 776 tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0); 777 if (bp->b_xflags & BX_BKGRDINPROG) 778 panic("bwrite: still writing"); 779 } 780 781 /* Mark the buffer clean */ 782 bundirty(bp); 783 784 /* 785 * If this buffer is marked for background writing and we 786 * do not have to wait for it, make a copy and write the 787 * copy so as to leave this buffer ready for further use. 788 * 789 * This optimization eats a lot of memory. If we have a page 790 * or buffer shortfall we can't do it. 791 */ 792 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 793 (bp->b_flags & B_ASYNC) && 794 !vm_page_count_severe() && 795 !buf_dirty_count_severe()) { 796 if (bp->b_iodone != NULL) { 797 printf("bp->b_iodone = %p\n", bp->b_iodone); 798 panic("bwrite: need chained iodone"); 799 } 800 801 /* get a new block */ 802 newbp = geteblk(bp->b_bufsize); 803 804 /* 805 * set it to be identical to the old block. We have to 806 * set b_lblkno and BKGRDMARKER before calling bgetvp() 807 * to avoid confusing the splay tree and gbincore(). 808 */ 809 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 810 newbp->b_lblkno = bp->b_lblkno; 811 newbp->b_xflags |= BX_BKGRDMARKER; 812 bgetvp(bp->b_vp, newbp); 813 newbp->b_blkno = bp->b_blkno; 814 newbp->b_offset = bp->b_offset; 815 newbp->b_iodone = vfs_backgroundwritedone; 816 newbp->b_flags |= B_ASYNC; 817 newbp->b_flags &= ~B_INVAL; 818 819 /* move over the dependencies */ 820 if (LIST_FIRST(&bp->b_dep) != NULL) 821 buf_movedeps(bp, newbp); 822 823 /* 824 * Initiate write on the copy, release the original to 825 * the B_LOCKED queue so that it cannot go away until 826 * the background write completes. If not locked it could go 827 * away and then be reconstituted while it was being written. 828 * If the reconstituted buffer were written, we could end up 829 * with two background copies being written at the same time. 830 */ 831 bp->b_xflags |= BX_BKGRDINPROG; 832 bp->b_flags |= B_LOCKED; 833 bqrelse(bp); 834 bp = newbp; 835 } 836 837 bp->b_flags &= ~B_DONE; 838 bp->b_ioflags &= ~BIO_ERROR; 839 bp->b_flags |= B_WRITEINPROG | B_CACHE; 840 bp->b_iocmd = BIO_WRITE; 841 842 VI_LOCK(bp->b_vp); 843 bp->b_vp->v_numoutput++; 844 VI_UNLOCK(bp->b_vp); 845 vfs_busy_pages(bp, 1); 846 847 /* 848 * Normal bwrites pipeline writes 849 */ 850 bp->b_runningbufspace = bp->b_bufsize; 851 runningbufspace += bp->b_runningbufspace; 852 853 if (curthread != PCPU_GET(idlethread)) 854 curthread->td_proc->p_stats->p_ru.ru_oublock++; 855 splx(s); 856 if (oldflags & B_ASYNC) 857 BUF_KERNPROC(bp); 858 if (bp->b_vp->v_type == VCHR) 859 VOP_SPECSTRATEGY(bp->b_vp, bp); 860 else 861 VOP_STRATEGY(bp->b_vp, bp); 862 863 if ((oldflags & B_ASYNC) == 0) { 864 int rtval = bufwait(bp); 865 brelse(bp); 866 return (rtval); 867 } else if ((oldflags & B_NOWDRAIN) == 0) { 868 /* 869 * don't allow the async write to saturate the I/O 870 * system. Deadlocks can occur only if a device strategy 871 * routine (like in MD) turns around and issues another 872 * high-level write, in which case B_NOWDRAIN is expected 873 * to be set. Otherwise we will not deadlock here because 874 * we are blocking waiting for I/O that is already in-progress 875 * to complete. 876 */ 877 waitrunningbufspace(); 878 } 879 880 return (0); 881 } 882 883 /* 884 * Complete a background write started from bwrite. 885 */ 886 static void 887 vfs_backgroundwritedone(bp) 888 struct buf *bp; 889 { 890 struct buf *origbp; 891 892 /* 893 * Find the original buffer that we are writing. 894 */ 895 VI_LOCK(bp->b_vp); 896 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 897 panic("backgroundwritedone: lost buffer"); 898 VI_UNLOCK(bp->b_vp); 899 /* 900 * Process dependencies then return any unfinished ones. 901 */ 902 if (LIST_FIRST(&bp->b_dep) != NULL) 903 buf_complete(bp); 904 if (LIST_FIRST(&bp->b_dep) != NULL) 905 buf_movedeps(bp, origbp); 906 /* 907 * Clear the BX_BKGRDINPROG flag in the original buffer 908 * and awaken it if it is waiting for the write to complete. 909 * If BX_BKGRDINPROG is not set in the original buffer it must 910 * have been released and re-instantiated - which is not legal. 911 */ 912 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), 913 ("backgroundwritedone: lost buffer2")); 914 origbp->b_xflags &= ~BX_BKGRDINPROG; 915 if (origbp->b_xflags & BX_BKGRDWAIT) { 916 origbp->b_xflags &= ~BX_BKGRDWAIT; 917 wakeup(&origbp->b_xflags); 918 } 919 /* 920 * Clear the B_LOCKED flag and remove it from the locked 921 * queue if it currently resides there. 922 */ 923 origbp->b_flags &= ~B_LOCKED; 924 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 925 bremfree(origbp); 926 bqrelse(origbp); 927 } 928 /* 929 * This buffer is marked B_NOCACHE, so when it is released 930 * by biodone, it will be tossed. We mark it with BIO_READ 931 * to avoid biodone doing a second vwakeup. 932 */ 933 bp->b_flags |= B_NOCACHE; 934 bp->b_iocmd = BIO_READ; 935 bp->b_flags &= ~(B_CACHE | B_DONE); 936 bp->b_iodone = 0; 937 bufdone(bp); 938 } 939 940 /* 941 * Delayed write. (Buffer is marked dirty). Do not bother writing 942 * anything if the buffer is marked invalid. 943 * 944 * Note that since the buffer must be completely valid, we can safely 945 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 946 * biodone() in order to prevent getblk from writing the buffer 947 * out synchronously. 948 */ 949 void 950 bdwrite(struct buf * bp) 951 { 952 GIANT_REQUIRED; 953 954 if (BUF_REFCNT(bp) == 0) 955 panic("bdwrite: buffer is not busy"); 956 957 if (bp->b_flags & B_INVAL) { 958 brelse(bp); 959 return; 960 } 961 bdirty(bp); 962 963 /* 964 * Set B_CACHE, indicating that the buffer is fully valid. This is 965 * true even of NFS now. 966 */ 967 bp->b_flags |= B_CACHE; 968 969 /* 970 * This bmap keeps the system from needing to do the bmap later, 971 * perhaps when the system is attempting to do a sync. Since it 972 * is likely that the indirect block -- or whatever other datastructure 973 * that the filesystem needs is still in memory now, it is a good 974 * thing to do this. Note also, that if the pageout daemon is 975 * requesting a sync -- there might not be enough memory to do 976 * the bmap then... So, this is important to do. 977 */ 978 if (bp->b_vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 979 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 980 } 981 982 /* 983 * Set the *dirty* buffer range based upon the VM system dirty pages. 984 */ 985 vfs_setdirty(bp); 986 987 /* 988 * We need to do this here to satisfy the vnode_pager and the 989 * pageout daemon, so that it thinks that the pages have been 990 * "cleaned". Note that since the pages are in a delayed write 991 * buffer -- the VFS layer "will" see that the pages get written 992 * out on the next sync, or perhaps the cluster will be completed. 993 */ 994 vfs_clean_pages(bp); 995 bqrelse(bp); 996 997 /* 998 * Wakeup the buffer flushing daemon if we have a lot of dirty 999 * buffers (midpoint between our recovery point and our stall 1000 * point). 1001 */ 1002 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1003 1004 /* 1005 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1006 * due to the softdep code. 1007 */ 1008 } 1009 1010 /* 1011 * bdirty: 1012 * 1013 * Turn buffer into delayed write request. We must clear BIO_READ and 1014 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 1015 * itself to properly update it in the dirty/clean lists. We mark it 1016 * B_DONE to ensure that any asynchronization of the buffer properly 1017 * clears B_DONE ( else a panic will occur later ). 1018 * 1019 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 1020 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 1021 * should only be called if the buffer is known-good. 1022 * 1023 * Since the buffer is not on a queue, we do not update the numfreebuffers 1024 * count. 1025 * 1026 * Must be called at splbio(). 1027 * The buffer must be on QUEUE_NONE. 1028 */ 1029 void 1030 bdirty(bp) 1031 struct buf *bp; 1032 { 1033 KASSERT(bp->b_qindex == QUEUE_NONE, 1034 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1035 bp->b_flags &= ~(B_RELBUF); 1036 bp->b_iocmd = BIO_WRITE; 1037 1038 if ((bp->b_flags & B_DELWRI) == 0) { 1039 bp->b_flags |= B_DONE | B_DELWRI; 1040 reassignbuf(bp, bp->b_vp); 1041 ++numdirtybuffers; 1042 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 1043 } 1044 } 1045 1046 /* 1047 * bundirty: 1048 * 1049 * Clear B_DELWRI for buffer. 1050 * 1051 * Since the buffer is not on a queue, we do not update the numfreebuffers 1052 * count. 1053 * 1054 * Must be called at splbio(). 1055 * The buffer must be on QUEUE_NONE. 1056 */ 1057 1058 void 1059 bundirty(bp) 1060 struct buf *bp; 1061 { 1062 KASSERT(bp->b_qindex == QUEUE_NONE, 1063 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1064 1065 if (bp->b_flags & B_DELWRI) { 1066 bp->b_flags &= ~B_DELWRI; 1067 reassignbuf(bp, bp->b_vp); 1068 --numdirtybuffers; 1069 numdirtywakeup(lodirtybuffers); 1070 } 1071 /* 1072 * Since it is now being written, we can clear its deferred write flag. 1073 */ 1074 bp->b_flags &= ~B_DEFERRED; 1075 } 1076 1077 /* 1078 * bawrite: 1079 * 1080 * Asynchronous write. Start output on a buffer, but do not wait for 1081 * it to complete. The buffer is released when the output completes. 1082 * 1083 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1084 * B_INVAL buffers. Not us. 1085 */ 1086 void 1087 bawrite(struct buf * bp) 1088 { 1089 bp->b_flags |= B_ASYNC; 1090 (void) BUF_WRITE(bp); 1091 } 1092 1093 /* 1094 * bwillwrite: 1095 * 1096 * Called prior to the locking of any vnodes when we are expecting to 1097 * write. We do not want to starve the buffer cache with too many 1098 * dirty buffers so we block here. By blocking prior to the locking 1099 * of any vnodes we attempt to avoid the situation where a locked vnode 1100 * prevents the various system daemons from flushing related buffers. 1101 */ 1102 1103 void 1104 bwillwrite(void) 1105 { 1106 if (numdirtybuffers >= hidirtybuffers) { 1107 int s; 1108 1109 mtx_lock(&Giant); 1110 s = splbio(); 1111 while (numdirtybuffers >= hidirtybuffers) { 1112 bd_wakeup(1); 1113 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1114 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); 1115 } 1116 splx(s); 1117 mtx_unlock(&Giant); 1118 } 1119 } 1120 1121 /* 1122 * Return true if we have too many dirty buffers. 1123 */ 1124 int 1125 buf_dirty_count_severe(void) 1126 { 1127 return(numdirtybuffers >= hidirtybuffers); 1128 } 1129 1130 /* 1131 * brelse: 1132 * 1133 * Release a busy buffer and, if requested, free its resources. The 1134 * buffer will be stashed in the appropriate bufqueue[] allowing it 1135 * to be accessed later as a cache entity or reused for other purposes. 1136 */ 1137 void 1138 brelse(struct buf * bp) 1139 { 1140 int s; 1141 1142 GIANT_REQUIRED; 1143 1144 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1145 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1146 1147 s = splbio(); 1148 1149 if (bp->b_flags & B_LOCKED) 1150 bp->b_ioflags &= ~BIO_ERROR; 1151 1152 if (bp->b_iocmd == BIO_WRITE && 1153 (bp->b_ioflags & BIO_ERROR) && 1154 !(bp->b_flags & B_INVAL)) { 1155 /* 1156 * Failed write, redirty. Must clear BIO_ERROR to prevent 1157 * pages from being scrapped. If B_INVAL is set then 1158 * this case is not run and the next case is run to 1159 * destroy the buffer. B_INVAL can occur if the buffer 1160 * is outside the range supported by the underlying device. 1161 */ 1162 bp->b_ioflags &= ~BIO_ERROR; 1163 bdirty(bp); 1164 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1165 (bp->b_ioflags & BIO_ERROR) || 1166 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1167 /* 1168 * Either a failed I/O or we were asked to free or not 1169 * cache the buffer. 1170 */ 1171 bp->b_flags |= B_INVAL; 1172 if (LIST_FIRST(&bp->b_dep) != NULL) 1173 buf_deallocate(bp); 1174 if (bp->b_flags & B_DELWRI) { 1175 --numdirtybuffers; 1176 numdirtywakeup(lodirtybuffers); 1177 } 1178 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1179 if ((bp->b_flags & B_VMIO) == 0) { 1180 if (bp->b_bufsize) 1181 allocbuf(bp, 0); 1182 if (bp->b_vp) 1183 brelvp(bp); 1184 } 1185 } 1186 1187 /* 1188 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1189 * is called with B_DELWRI set, the underlying pages may wind up 1190 * getting freed causing a previous write (bdwrite()) to get 'lost' 1191 * because pages associated with a B_DELWRI bp are marked clean. 1192 * 1193 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1194 * if B_DELWRI is set. 1195 * 1196 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1197 * on pages to return pages to the VM page queues. 1198 */ 1199 if (bp->b_flags & B_DELWRI) 1200 bp->b_flags &= ~B_RELBUF; 1201 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1202 bp->b_flags |= B_RELBUF; 1203 1204 /* 1205 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1206 * constituted, not even NFS buffers now. Two flags effect this. If 1207 * B_INVAL, the struct buf is invalidated but the VM object is kept 1208 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1209 * 1210 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1211 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1212 * buffer is also B_INVAL because it hits the re-dirtying code above. 1213 * 1214 * Normally we can do this whether a buffer is B_DELWRI or not. If 1215 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1216 * the commit state and we cannot afford to lose the buffer. If the 1217 * buffer has a background write in progress, we need to keep it 1218 * around to prevent it from being reconstituted and starting a second 1219 * background write. 1220 */ 1221 if ((bp->b_flags & B_VMIO) 1222 && !(bp->b_vp->v_mount != NULL && 1223 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1224 !vn_isdisk(bp->b_vp, NULL) && 1225 (bp->b_flags & B_DELWRI)) 1226 ) { 1227 1228 int i, j, resid; 1229 vm_page_t m; 1230 off_t foff; 1231 vm_pindex_t poff; 1232 vm_object_t obj; 1233 struct vnode *vp; 1234 1235 vp = bp->b_vp; 1236 obj = bp->b_object; 1237 1238 /* 1239 * Get the base offset and length of the buffer. Note that 1240 * in the VMIO case if the buffer block size is not 1241 * page-aligned then b_data pointer may not be page-aligned. 1242 * But our b_pages[] array *IS* page aligned. 1243 * 1244 * block sizes less then DEV_BSIZE (usually 512) are not 1245 * supported due to the page granularity bits (m->valid, 1246 * m->dirty, etc...). 1247 * 1248 * See man buf(9) for more information 1249 */ 1250 resid = bp->b_bufsize; 1251 foff = bp->b_offset; 1252 1253 for (i = 0; i < bp->b_npages; i++) { 1254 int had_bogus = 0; 1255 1256 m = bp->b_pages[i]; 1257 vm_page_lock_queues(); 1258 vm_page_flag_clear(m, PG_ZERO); 1259 vm_page_unlock_queues(); 1260 1261 /* 1262 * If we hit a bogus page, fixup *all* the bogus pages 1263 * now. 1264 */ 1265 if (m == bogus_page) { 1266 poff = OFF_TO_IDX(bp->b_offset); 1267 had_bogus = 1; 1268 1269 for (j = i; j < bp->b_npages; j++) { 1270 vm_page_t mtmp; 1271 mtmp = bp->b_pages[j]; 1272 if (mtmp == bogus_page) { 1273 mtmp = vm_page_lookup(obj, poff + j); 1274 if (!mtmp) { 1275 panic("brelse: page missing\n"); 1276 } 1277 bp->b_pages[j] = mtmp; 1278 } 1279 } 1280 1281 if ((bp->b_flags & B_INVAL) == 0) { 1282 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1283 } 1284 m = bp->b_pages[i]; 1285 } 1286 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1287 int poffset = foff & PAGE_MASK; 1288 int presid = resid > (PAGE_SIZE - poffset) ? 1289 (PAGE_SIZE - poffset) : resid; 1290 1291 KASSERT(presid >= 0, ("brelse: extra page")); 1292 vm_page_set_invalid(m, poffset, presid); 1293 if (had_bogus) 1294 printf("avoided corruption bug in bogus_page/brelse code\n"); 1295 } 1296 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1297 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1298 } 1299 1300 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1301 vfs_vmio_release(bp); 1302 1303 } else if (bp->b_flags & B_VMIO) { 1304 1305 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1306 vfs_vmio_release(bp); 1307 } 1308 1309 } 1310 1311 if (bp->b_qindex != QUEUE_NONE) 1312 panic("brelse: free buffer onto another queue???"); 1313 if (BUF_REFCNT(bp) > 1) { 1314 /* do not release to free list */ 1315 BUF_UNLOCK(bp); 1316 splx(s); 1317 return; 1318 } 1319 1320 /* enqueue */ 1321 1322 /* buffers with no memory */ 1323 if (bp->b_bufsize == 0) { 1324 bp->b_flags |= B_INVAL; 1325 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1326 if (bp->b_xflags & BX_BKGRDINPROG) 1327 panic("losing buffer 1"); 1328 if (bp->b_kvasize) { 1329 bp->b_qindex = QUEUE_EMPTYKVA; 1330 } else { 1331 bp->b_qindex = QUEUE_EMPTY; 1332 } 1333 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1334 #ifdef USE_BUFHASH 1335 LIST_REMOVE(bp, b_hash); 1336 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1337 #endif 1338 bp->b_dev = NODEV; 1339 /* buffers with junk contents */ 1340 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1341 (bp->b_ioflags & BIO_ERROR)) { 1342 bp->b_flags |= B_INVAL; 1343 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1344 if (bp->b_xflags & BX_BKGRDINPROG) 1345 panic("losing buffer 2"); 1346 bp->b_qindex = QUEUE_CLEAN; 1347 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1348 #ifdef USE_BUFHASH 1349 LIST_REMOVE(bp, b_hash); 1350 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1351 #endif 1352 bp->b_dev = NODEV; 1353 1354 /* buffers that are locked */ 1355 } else if (bp->b_flags & B_LOCKED) { 1356 bp->b_qindex = QUEUE_LOCKED; 1357 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1358 1359 /* remaining buffers */ 1360 } else { 1361 if (bp->b_flags & B_DELWRI) 1362 bp->b_qindex = QUEUE_DIRTY; 1363 else 1364 bp->b_qindex = QUEUE_CLEAN; 1365 if (bp->b_flags & B_AGE) 1366 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1367 else 1368 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1369 } 1370 1371 /* 1372 * If B_INVAL and B_DELWRI is set, clear B_DELWRI. We have already 1373 * placed the buffer on the correct queue. We must also disassociate 1374 * the device and vnode for a B_INVAL buffer so gbincore() doesn't 1375 * find it. 1376 */ 1377 if (bp->b_flags & B_INVAL) { 1378 if (bp->b_flags & B_DELWRI) 1379 bundirty(bp); 1380 if (bp->b_vp) 1381 brelvp(bp); 1382 } 1383 1384 /* 1385 * Fixup numfreebuffers count. The bp is on an appropriate queue 1386 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1387 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1388 * if B_INVAL is set ). 1389 */ 1390 1391 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1392 bufcountwakeup(); 1393 1394 /* 1395 * Something we can maybe free or reuse 1396 */ 1397 if (bp->b_bufsize || bp->b_kvasize) 1398 bufspacewakeup(); 1399 1400 /* unlock */ 1401 BUF_UNLOCK(bp); 1402 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1403 B_DIRECT | B_NOWDRAIN); 1404 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1405 panic("brelse: not dirty"); 1406 splx(s); 1407 } 1408 1409 /* 1410 * Release a buffer back to the appropriate queue but do not try to free 1411 * it. The buffer is expected to be used again soon. 1412 * 1413 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1414 * biodone() to requeue an async I/O on completion. It is also used when 1415 * known good buffers need to be requeued but we think we may need the data 1416 * again soon. 1417 * 1418 * XXX we should be able to leave the B_RELBUF hint set on completion. 1419 */ 1420 void 1421 bqrelse(struct buf * bp) 1422 { 1423 int s; 1424 1425 s = splbio(); 1426 1427 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1428 1429 if (bp->b_qindex != QUEUE_NONE) 1430 panic("bqrelse: free buffer onto another queue???"); 1431 if (BUF_REFCNT(bp) > 1) { 1432 /* do not release to free list */ 1433 BUF_UNLOCK(bp); 1434 splx(s); 1435 return; 1436 } 1437 if (bp->b_flags & B_LOCKED) { 1438 bp->b_ioflags &= ~BIO_ERROR; 1439 bp->b_qindex = QUEUE_LOCKED; 1440 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1441 /* buffers with stale but valid contents */ 1442 } else if (bp->b_flags & B_DELWRI) { 1443 bp->b_qindex = QUEUE_DIRTY; 1444 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1445 } else if (vm_page_count_severe()) { 1446 /* 1447 * We are too low on memory, we have to try to free the 1448 * buffer (most importantly: the wired pages making up its 1449 * backing store) *now*. 1450 */ 1451 splx(s); 1452 brelse(bp); 1453 return; 1454 } else { 1455 bp->b_qindex = QUEUE_CLEAN; 1456 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1457 } 1458 1459 if ((bp->b_flags & B_LOCKED) == 0 && 1460 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1461 bufcountwakeup(); 1462 } 1463 1464 /* 1465 * Something we can maybe free or reuse. 1466 */ 1467 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1468 bufspacewakeup(); 1469 1470 /* unlock */ 1471 BUF_UNLOCK(bp); 1472 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1473 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1474 panic("bqrelse: not dirty"); 1475 splx(s); 1476 } 1477 1478 /* Give pages used by the bp back to the VM system (where possible) */ 1479 static void 1480 vfs_vmio_release(bp) 1481 struct buf *bp; 1482 { 1483 int i; 1484 vm_page_t m; 1485 1486 GIANT_REQUIRED; 1487 vm_page_lock_queues(); 1488 for (i = 0; i < bp->b_npages; i++) { 1489 m = bp->b_pages[i]; 1490 bp->b_pages[i] = NULL; 1491 /* 1492 * In order to keep page LRU ordering consistent, put 1493 * everything on the inactive queue. 1494 */ 1495 vm_page_unwire(m, 0); 1496 /* 1497 * We don't mess with busy pages, it is 1498 * the responsibility of the process that 1499 * busied the pages to deal with them. 1500 */ 1501 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1502 continue; 1503 1504 if (m->wire_count == 0) { 1505 vm_page_flag_clear(m, PG_ZERO); 1506 /* 1507 * Might as well free the page if we can and it has 1508 * no valid data. We also free the page if the 1509 * buffer was used for direct I/O 1510 */ 1511 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1512 m->hold_count == 0) { 1513 vm_page_busy(m); 1514 pmap_remove_all(m); 1515 vm_page_free(m); 1516 } else if (bp->b_flags & B_DIRECT) { 1517 vm_page_try_to_free(m); 1518 } else if (vm_page_count_severe()) { 1519 vm_page_try_to_cache(m); 1520 } 1521 } 1522 } 1523 vm_page_unlock_queues(); 1524 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1525 1526 if (bp->b_bufsize) { 1527 bufspacewakeup(); 1528 bp->b_bufsize = 0; 1529 } 1530 bp->b_npages = 0; 1531 bp->b_flags &= ~B_VMIO; 1532 if (bp->b_vp) 1533 brelvp(bp); 1534 } 1535 1536 #ifdef USE_BUFHASH 1537 /* 1538 * XXX MOVED TO VFS_SUBR.C 1539 * 1540 * Check to see if a block is currently memory resident. 1541 */ 1542 struct buf * 1543 gbincore(struct vnode * vp, daddr_t blkno) 1544 { 1545 struct buf *bp; 1546 struct bufhashhdr *bh; 1547 1548 bh = bufhash(vp, blkno); 1549 1550 /* Search hash chain */ 1551 LIST_FOREACH(bp, bh, b_hash) { 1552 /* hit */ 1553 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1554 (bp->b_flags & B_INVAL) == 0) { 1555 break; 1556 } 1557 } 1558 return (bp); 1559 } 1560 #endif 1561 1562 /* 1563 * vfs_bio_awrite: 1564 * 1565 * Implement clustered async writes for clearing out B_DELWRI buffers. 1566 * This is much better then the old way of writing only one buffer at 1567 * a time. Note that we may not be presented with the buffers in the 1568 * correct order, so we search for the cluster in both directions. 1569 */ 1570 int 1571 vfs_bio_awrite(struct buf * bp) 1572 { 1573 int i; 1574 int j; 1575 daddr_t lblkno = bp->b_lblkno; 1576 struct vnode *vp = bp->b_vp; 1577 int s; 1578 int ncl; 1579 struct buf *bpa; 1580 int nwritten; 1581 int size; 1582 int maxcl; 1583 1584 s = splbio(); 1585 /* 1586 * right now we support clustered writing only to regular files. If 1587 * we find a clusterable block we could be in the middle of a cluster 1588 * rather then at the beginning. 1589 */ 1590 if ((vp->v_type == VREG) && 1591 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1592 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1593 1594 size = vp->v_mount->mnt_stat.f_iosize; 1595 maxcl = MAXPHYS / size; 1596 1597 VI_LOCK(vp); 1598 for (i = 1; i < maxcl; i++) { 1599 if ((bpa = gbincore(vp, lblkno + i)) && 1600 BUF_REFCNT(bpa) == 0 && 1601 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1602 (B_DELWRI | B_CLUSTEROK)) && 1603 (bpa->b_bufsize == size)) { 1604 if ((bpa->b_blkno == bpa->b_lblkno) || 1605 (bpa->b_blkno != 1606 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1607 break; 1608 } else { 1609 break; 1610 } 1611 } 1612 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1613 if ((bpa = gbincore(vp, lblkno - j)) && 1614 BUF_REFCNT(bpa) == 0 && 1615 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1616 (B_DELWRI | B_CLUSTEROK)) && 1617 (bpa->b_bufsize == size)) { 1618 if ((bpa->b_blkno == bpa->b_lblkno) || 1619 (bpa->b_blkno != 1620 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1621 break; 1622 } else { 1623 break; 1624 } 1625 } 1626 VI_UNLOCK(vp); 1627 --j; 1628 ncl = i + j; 1629 /* 1630 * this is a possible cluster write 1631 */ 1632 if (ncl != 1) { 1633 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1634 splx(s); 1635 return nwritten; 1636 } 1637 } 1638 1639 BUF_LOCK(bp, LK_EXCLUSIVE); 1640 bremfree(bp); 1641 bp->b_flags |= B_ASYNC; 1642 1643 splx(s); 1644 /* 1645 * default (old) behavior, writing out only one block 1646 * 1647 * XXX returns b_bufsize instead of b_bcount for nwritten? 1648 */ 1649 nwritten = bp->b_bufsize; 1650 (void) BUF_WRITE(bp); 1651 1652 return nwritten; 1653 } 1654 1655 /* 1656 * getnewbuf: 1657 * 1658 * Find and initialize a new buffer header, freeing up existing buffers 1659 * in the bufqueues as necessary. The new buffer is returned locked. 1660 * 1661 * Important: B_INVAL is not set. If the caller wishes to throw the 1662 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1663 * 1664 * We block if: 1665 * We have insufficient buffer headers 1666 * We have insufficient buffer space 1667 * buffer_map is too fragmented ( space reservation fails ) 1668 * If we have to flush dirty buffers ( but we try to avoid this ) 1669 * 1670 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1671 * Instead we ask the buf daemon to do it for us. We attempt to 1672 * avoid piecemeal wakeups of the pageout daemon. 1673 */ 1674 1675 static struct buf * 1676 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1677 { 1678 struct buf *bp; 1679 struct buf *nbp; 1680 int defrag = 0; 1681 int nqindex; 1682 static int flushingbufs; 1683 1684 GIANT_REQUIRED; 1685 1686 /* 1687 * We can't afford to block since we might be holding a vnode lock, 1688 * which may prevent system daemons from running. We deal with 1689 * low-memory situations by proactively returning memory and running 1690 * async I/O rather then sync I/O. 1691 */ 1692 1693 ++getnewbufcalls; 1694 --getnewbufrestarts; 1695 restart: 1696 ++getnewbufrestarts; 1697 1698 /* 1699 * Setup for scan. If we do not have enough free buffers, 1700 * we setup a degenerate case that immediately fails. Note 1701 * that if we are specially marked process, we are allowed to 1702 * dip into our reserves. 1703 * 1704 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1705 * 1706 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1707 * However, there are a number of cases (defragging, reusing, ...) 1708 * where we cannot backup. 1709 */ 1710 nqindex = QUEUE_EMPTYKVA; 1711 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1712 1713 if (nbp == NULL) { 1714 /* 1715 * If no EMPTYKVA buffers and we are either 1716 * defragging or reusing, locate a CLEAN buffer 1717 * to free or reuse. If bufspace useage is low 1718 * skip this step so we can allocate a new buffer. 1719 */ 1720 if (defrag || bufspace >= lobufspace) { 1721 nqindex = QUEUE_CLEAN; 1722 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1723 } 1724 1725 /* 1726 * If we could not find or were not allowed to reuse a 1727 * CLEAN buffer, check to see if it is ok to use an EMPTY 1728 * buffer. We can only use an EMPTY buffer if allocating 1729 * its KVA would not otherwise run us out of buffer space. 1730 */ 1731 if (nbp == NULL && defrag == 0 && 1732 bufspace + maxsize < hibufspace) { 1733 nqindex = QUEUE_EMPTY; 1734 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1735 } 1736 } 1737 1738 /* 1739 * Run scan, possibly freeing data and/or kva mappings on the fly 1740 * depending. 1741 */ 1742 1743 while ((bp = nbp) != NULL) { 1744 int qindex = nqindex; 1745 1746 /* 1747 * Calculate next bp ( we can only use it if we do not block 1748 * or do other fancy things ). 1749 */ 1750 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1751 switch(qindex) { 1752 case QUEUE_EMPTY: 1753 nqindex = QUEUE_EMPTYKVA; 1754 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1755 break; 1756 /* FALLTHROUGH */ 1757 case QUEUE_EMPTYKVA: 1758 nqindex = QUEUE_CLEAN; 1759 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1760 break; 1761 /* FALLTHROUGH */ 1762 case QUEUE_CLEAN: 1763 /* 1764 * nbp is NULL. 1765 */ 1766 break; 1767 } 1768 } 1769 1770 /* 1771 * Sanity Checks 1772 */ 1773 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1774 1775 /* 1776 * Note: we no longer distinguish between VMIO and non-VMIO 1777 * buffers. 1778 */ 1779 1780 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1781 1782 /* 1783 * If we are defragging then we need a buffer with 1784 * b_kvasize != 0. XXX this situation should no longer 1785 * occur, if defrag is non-zero the buffer's b_kvasize 1786 * should also be non-zero at this point. XXX 1787 */ 1788 if (defrag && bp->b_kvasize == 0) { 1789 printf("Warning: defrag empty buffer %p\n", bp); 1790 continue; 1791 } 1792 1793 /* 1794 * Start freeing the bp. This is somewhat involved. nbp 1795 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1796 */ 1797 1798 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1799 panic("getnewbuf: locked buf"); 1800 bremfree(bp); 1801 1802 if (qindex == QUEUE_CLEAN) { 1803 if (bp->b_flags & B_VMIO) { 1804 bp->b_flags &= ~B_ASYNC; 1805 vfs_vmio_release(bp); 1806 } 1807 if (bp->b_vp) 1808 brelvp(bp); 1809 } 1810 1811 /* 1812 * NOTE: nbp is now entirely invalid. We can only restart 1813 * the scan from this point on. 1814 * 1815 * Get the rest of the buffer freed up. b_kva* is still 1816 * valid after this operation. 1817 */ 1818 1819 if (bp->b_rcred != NOCRED) { 1820 crfree(bp->b_rcred); 1821 bp->b_rcred = NOCRED; 1822 } 1823 if (bp->b_wcred != NOCRED) { 1824 crfree(bp->b_wcred); 1825 bp->b_wcred = NOCRED; 1826 } 1827 if (LIST_FIRST(&bp->b_dep) != NULL) 1828 buf_deallocate(bp); 1829 if (bp->b_xflags & BX_BKGRDINPROG) 1830 panic("losing buffer 3"); 1831 #ifdef USE_BUFHASH 1832 LIST_REMOVE(bp, b_hash); 1833 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1834 #endif 1835 1836 if (bp->b_bufsize) 1837 allocbuf(bp, 0); 1838 1839 bp->b_flags = 0; 1840 bp->b_ioflags = 0; 1841 bp->b_xflags = 0; 1842 bp->b_dev = NODEV; 1843 bp->b_vp = NULL; 1844 bp->b_blkno = bp->b_lblkno = 0; 1845 bp->b_offset = NOOFFSET; 1846 bp->b_iodone = 0; 1847 bp->b_error = 0; 1848 bp->b_resid = 0; 1849 bp->b_bcount = 0; 1850 bp->b_npages = 0; 1851 bp->b_dirtyoff = bp->b_dirtyend = 0; 1852 bp->b_magic = B_MAGIC_BIO; 1853 bp->b_op = &buf_ops_bio; 1854 bp->b_object = NULL; 1855 1856 LIST_INIT(&bp->b_dep); 1857 1858 /* 1859 * If we are defragging then free the buffer. 1860 */ 1861 if (defrag) { 1862 bp->b_flags |= B_INVAL; 1863 bfreekva(bp); 1864 brelse(bp); 1865 defrag = 0; 1866 goto restart; 1867 } 1868 1869 /* 1870 * If we are overcomitted then recover the buffer and its 1871 * KVM space. This occurs in rare situations when multiple 1872 * processes are blocked in getnewbuf() or allocbuf(). 1873 */ 1874 if (bufspace >= hibufspace) 1875 flushingbufs = 1; 1876 if (flushingbufs && bp->b_kvasize != 0) { 1877 bp->b_flags |= B_INVAL; 1878 bfreekva(bp); 1879 brelse(bp); 1880 goto restart; 1881 } 1882 if (bufspace < lobufspace) 1883 flushingbufs = 0; 1884 break; 1885 } 1886 1887 /* 1888 * If we exhausted our list, sleep as appropriate. We may have to 1889 * wakeup various daemons and write out some dirty buffers. 1890 * 1891 * Generally we are sleeping due to insufficient buffer space. 1892 */ 1893 1894 if (bp == NULL) { 1895 int flags; 1896 char *waitmsg; 1897 1898 if (defrag) { 1899 flags = VFS_BIO_NEED_BUFSPACE; 1900 waitmsg = "nbufkv"; 1901 } else if (bufspace >= hibufspace) { 1902 waitmsg = "nbufbs"; 1903 flags = VFS_BIO_NEED_BUFSPACE; 1904 } else { 1905 waitmsg = "newbuf"; 1906 flags = VFS_BIO_NEED_ANY; 1907 } 1908 1909 bd_speedup(); /* heeeelp */ 1910 1911 needsbuffer |= flags; 1912 while (needsbuffer & flags) { 1913 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1914 waitmsg, slptimeo)) 1915 return (NULL); 1916 } 1917 } else { 1918 /* 1919 * We finally have a valid bp. We aren't quite out of the 1920 * woods, we still have to reserve kva space. In order 1921 * to keep fragmentation sane we only allocate kva in 1922 * BKVASIZE chunks. 1923 */ 1924 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1925 1926 if (maxsize != bp->b_kvasize) { 1927 vm_offset_t addr = 0; 1928 1929 bfreekva(bp); 1930 1931 if (vm_map_findspace(buffer_map, 1932 vm_map_min(buffer_map), maxsize, &addr)) { 1933 /* 1934 * Uh oh. Buffer map is to fragmented. We 1935 * must defragment the map. 1936 */ 1937 ++bufdefragcnt; 1938 defrag = 1; 1939 bp->b_flags |= B_INVAL; 1940 brelse(bp); 1941 goto restart; 1942 } 1943 if (addr) { 1944 vm_map_insert(buffer_map, NULL, 0, 1945 addr, addr + maxsize, 1946 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1947 1948 bp->b_kvabase = (caddr_t) addr; 1949 bp->b_kvasize = maxsize; 1950 bufspace += bp->b_kvasize; 1951 ++bufreusecnt; 1952 } 1953 } 1954 bp->b_data = bp->b_kvabase; 1955 } 1956 return(bp); 1957 } 1958 1959 /* 1960 * buf_daemon: 1961 * 1962 * buffer flushing daemon. Buffers are normally flushed by the 1963 * update daemon but if it cannot keep up this process starts to 1964 * take the load in an attempt to prevent getnewbuf() from blocking. 1965 */ 1966 1967 static struct proc *bufdaemonproc; 1968 1969 static struct kproc_desc buf_kp = { 1970 "bufdaemon", 1971 buf_daemon, 1972 &bufdaemonproc 1973 }; 1974 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1975 1976 static void 1977 buf_daemon() 1978 { 1979 int s; 1980 1981 mtx_lock(&Giant); 1982 1983 /* 1984 * This process needs to be suspended prior to shutdown sync. 1985 */ 1986 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 1987 SHUTDOWN_PRI_LAST); 1988 1989 /* 1990 * This process is allowed to take the buffer cache to the limit 1991 */ 1992 s = splbio(); 1993 1994 for (;;) { 1995 kthread_suspend_check(bufdaemonproc); 1996 1997 bd_request = 0; 1998 1999 /* 2000 * Do the flush. Limit the amount of in-transit I/O we 2001 * allow to build up, otherwise we would completely saturate 2002 * the I/O system. Wakeup any waiting processes before we 2003 * normally would so they can run in parallel with our drain. 2004 */ 2005 while (numdirtybuffers > lodirtybuffers) { 2006 if (flushbufqueues() == 0) 2007 break; 2008 waitrunningbufspace(); 2009 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 2010 } 2011 2012 /* 2013 * Only clear bd_request if we have reached our low water 2014 * mark. The buf_daemon normally waits 1 second and 2015 * then incrementally flushes any dirty buffers that have 2016 * built up, within reason. 2017 * 2018 * If we were unable to hit our low water mark and couldn't 2019 * find any flushable buffers, we sleep half a second. 2020 * Otherwise we loop immediately. 2021 */ 2022 if (numdirtybuffers <= lodirtybuffers) { 2023 /* 2024 * We reached our low water mark, reset the 2025 * request and sleep until we are needed again. 2026 * The sleep is just so the suspend code works. 2027 */ 2028 bd_request = 0; 2029 tsleep(&bd_request, PVM, "psleep", hz); 2030 } else { 2031 /* 2032 * We couldn't find any flushable dirty buffers but 2033 * still have too many dirty buffers, we 2034 * have to sleep and try again. (rare) 2035 */ 2036 tsleep(&bd_request, PVM, "qsleep", hz / 10); 2037 } 2038 } 2039 } 2040 2041 /* 2042 * flushbufqueues: 2043 * 2044 * Try to flush a buffer in the dirty queue. We must be careful to 2045 * free up B_INVAL buffers instead of write them, which NFS is 2046 * particularly sensitive to. 2047 */ 2048 int flushwithdeps = 0; 2049 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 2050 0, "Number of buffers flushed with dependecies that require rollbacks"); 2051 static int 2052 flushbufqueues(void) 2053 { 2054 struct thread *td = curthread; 2055 struct vnode *vp; 2056 struct buf *bp; 2057 2058 TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) { 2059 KASSERT((bp->b_flags & B_DELWRI), 2060 ("unexpected clean buffer %p", bp)); 2061 if ((bp->b_xflags & BX_BKGRDINPROG) != 0) 2062 continue; 2063 if (bp->b_flags & B_INVAL) { 2064 if (BUF_LOCK(bp, LK_EXCLUSIVE) != 0) 2065 panic("flushbufqueues: locked buf"); 2066 bremfree(bp); 2067 brelse(bp); 2068 return (1); 2069 } 2070 if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) 2071 continue; 2072 /* 2073 * We must hold the lock on a vnode before writing 2074 * one of its buffers. Otherwise we may confuse, or 2075 * in the case of a snapshot vnode, deadlock the 2076 * system. 2077 */ 2078 if ((vp = bp->b_vp) == NULL || 2079 vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) { 2080 vfs_bio_awrite(bp); 2081 if (vp != NULL) 2082 VOP_UNLOCK(vp, 0, td); 2083 return (1); 2084 } 2085 } 2086 /* 2087 * Could not find any buffers without rollback dependencies, 2088 * so just write the first one in the hopes of eventually 2089 * making progress. 2090 */ 2091 TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) { 2092 KASSERT((bp->b_flags & B_DELWRI), 2093 ("unexpected clean buffer %p", bp)); 2094 if ((bp->b_xflags & BX_BKGRDINPROG) != 0) 2095 continue; 2096 if (bp->b_flags & B_INVAL) { 2097 if (BUF_LOCK(bp, LK_EXCLUSIVE) != 0) 2098 panic("flushbufqueues: locked buf"); 2099 bremfree(bp); 2100 brelse(bp); 2101 return (1); 2102 } 2103 /* 2104 * We must hold the lock on a vnode before writing 2105 * one of its buffers. Otherwise we may confuse, or 2106 * in the case of a snapshot vnode, deadlock the 2107 * system. 2108 */ 2109 if ((vp = bp->b_vp) == NULL || 2110 vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) { 2111 vfs_bio_awrite(bp); 2112 if (vp != NULL) 2113 VOP_UNLOCK(vp, 0, td); 2114 flushwithdeps += 1; 2115 return (0); 2116 } 2117 } 2118 return (0); 2119 } 2120 2121 /* 2122 * Check to see if a block is currently memory resident. 2123 */ 2124 struct buf * 2125 incore(struct vnode * vp, daddr_t blkno) 2126 { 2127 struct buf *bp; 2128 2129 int s = splbio(); 2130 VI_LOCK(vp); 2131 bp = gbincore(vp, blkno); 2132 VI_UNLOCK(vp); 2133 splx(s); 2134 return (bp); 2135 } 2136 2137 /* 2138 * Returns true if no I/O is needed to access the 2139 * associated VM object. This is like incore except 2140 * it also hunts around in the VM system for the data. 2141 */ 2142 2143 int 2144 inmem(struct vnode * vp, daddr_t blkno) 2145 { 2146 vm_object_t obj; 2147 vm_offset_t toff, tinc, size; 2148 vm_page_t m; 2149 vm_ooffset_t off; 2150 2151 GIANT_REQUIRED; 2152 ASSERT_VOP_LOCKED(vp, "inmem"); 2153 2154 if (incore(vp, blkno)) 2155 return 1; 2156 if (vp->v_mount == NULL) 2157 return 0; 2158 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0) 2159 return 0; 2160 2161 size = PAGE_SIZE; 2162 if (size > vp->v_mount->mnt_stat.f_iosize) 2163 size = vp->v_mount->mnt_stat.f_iosize; 2164 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2165 2166 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2167 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2168 if (!m) 2169 goto notinmem; 2170 tinc = size; 2171 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2172 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2173 if (vm_page_is_valid(m, 2174 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2175 goto notinmem; 2176 } 2177 return 1; 2178 2179 notinmem: 2180 return (0); 2181 } 2182 2183 /* 2184 * vfs_setdirty: 2185 * 2186 * Sets the dirty range for a buffer based on the status of the dirty 2187 * bits in the pages comprising the buffer. 2188 * 2189 * The range is limited to the size of the buffer. 2190 * 2191 * This routine is primarily used by NFS, but is generalized for the 2192 * B_VMIO case. 2193 */ 2194 static void 2195 vfs_setdirty(struct buf *bp) 2196 { 2197 int i; 2198 vm_object_t object; 2199 2200 GIANT_REQUIRED; 2201 /* 2202 * Degenerate case - empty buffer 2203 */ 2204 2205 if (bp->b_bufsize == 0) 2206 return; 2207 2208 /* 2209 * We qualify the scan for modified pages on whether the 2210 * object has been flushed yet. The OBJ_WRITEABLE flag 2211 * is not cleared simply by protecting pages off. 2212 */ 2213 2214 if ((bp->b_flags & B_VMIO) == 0) 2215 return; 2216 2217 object = bp->b_pages[0]->object; 2218 2219 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2220 printf("Warning: object %p writeable but not mightbedirty\n", object); 2221 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2222 printf("Warning: object %p mightbedirty but not writeable\n", object); 2223 2224 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2225 vm_offset_t boffset; 2226 vm_offset_t eoffset; 2227 2228 vm_page_lock_queues(); 2229 /* 2230 * test the pages to see if they have been modified directly 2231 * by users through the VM system. 2232 */ 2233 for (i = 0; i < bp->b_npages; i++) { 2234 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2235 vm_page_test_dirty(bp->b_pages[i]); 2236 } 2237 2238 /* 2239 * Calculate the encompassing dirty range, boffset and eoffset, 2240 * (eoffset - boffset) bytes. 2241 */ 2242 2243 for (i = 0; i < bp->b_npages; i++) { 2244 if (bp->b_pages[i]->dirty) 2245 break; 2246 } 2247 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2248 2249 for (i = bp->b_npages - 1; i >= 0; --i) { 2250 if (bp->b_pages[i]->dirty) { 2251 break; 2252 } 2253 } 2254 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2255 2256 vm_page_unlock_queues(); 2257 /* 2258 * Fit it to the buffer. 2259 */ 2260 2261 if (eoffset > bp->b_bcount) 2262 eoffset = bp->b_bcount; 2263 2264 /* 2265 * If we have a good dirty range, merge with the existing 2266 * dirty range. 2267 */ 2268 2269 if (boffset < eoffset) { 2270 if (bp->b_dirtyoff > boffset) 2271 bp->b_dirtyoff = boffset; 2272 if (bp->b_dirtyend < eoffset) 2273 bp->b_dirtyend = eoffset; 2274 } 2275 } 2276 } 2277 2278 /* 2279 * getblk: 2280 * 2281 * Get a block given a specified block and offset into a file/device. 2282 * The buffers B_DONE bit will be cleared on return, making it almost 2283 * ready for an I/O initiation. B_INVAL may or may not be set on 2284 * return. The caller should clear B_INVAL prior to initiating a 2285 * READ. 2286 * 2287 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2288 * an existing buffer. 2289 * 2290 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2291 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2292 * and then cleared based on the backing VM. If the previous buffer is 2293 * non-0-sized but invalid, B_CACHE will be cleared. 2294 * 2295 * If getblk() must create a new buffer, the new buffer is returned with 2296 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2297 * case it is returned with B_INVAL clear and B_CACHE set based on the 2298 * backing VM. 2299 * 2300 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2301 * B_CACHE bit is clear. 2302 * 2303 * What this means, basically, is that the caller should use B_CACHE to 2304 * determine whether the buffer is fully valid or not and should clear 2305 * B_INVAL prior to issuing a read. If the caller intends to validate 2306 * the buffer by loading its data area with something, the caller needs 2307 * to clear B_INVAL. If the caller does this without issuing an I/O, 2308 * the caller should set B_CACHE ( as an optimization ), else the caller 2309 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2310 * a write attempt or if it was a successfull read. If the caller 2311 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2312 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2313 */ 2314 struct buf * 2315 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2316 { 2317 struct buf *bp; 2318 int s; 2319 #ifdef USE_BUFHASH 2320 struct bufhashhdr *bh; 2321 #endif 2322 ASSERT_VOP_LOCKED(vp, "getblk"); 2323 2324 if (size > MAXBSIZE) 2325 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2326 2327 s = splbio(); 2328 loop: 2329 /* 2330 * Block if we are low on buffers. Certain processes are allowed 2331 * to completely exhaust the buffer cache. 2332 * 2333 * If this check ever becomes a bottleneck it may be better to 2334 * move it into the else, when gbincore() fails. At the moment 2335 * it isn't a problem. 2336 * 2337 * XXX remove if 0 sections (clean this up after its proven) 2338 */ 2339 if (numfreebuffers == 0) { 2340 if (curthread == PCPU_GET(idlethread)) 2341 return NULL; 2342 needsbuffer |= VFS_BIO_NEED_ANY; 2343 } 2344 2345 VI_LOCK(vp); 2346 if ((bp = gbincore(vp, blkno))) { 2347 VI_UNLOCK(vp); 2348 /* 2349 * Buffer is in-core. If the buffer is not busy, it must 2350 * be on a queue. 2351 */ 2352 2353 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2354 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2355 "getblk", slpflag, slptimeo) == ENOLCK) 2356 goto loop; 2357 splx(s); 2358 return (struct buf *) NULL; 2359 } 2360 2361 /* 2362 * The buffer is locked. B_CACHE is cleared if the buffer is 2363 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 2364 * and for a VMIO buffer B_CACHE is adjusted according to the 2365 * backing VM cache. 2366 */ 2367 if (bp->b_flags & B_INVAL) 2368 bp->b_flags &= ~B_CACHE; 2369 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2370 bp->b_flags |= B_CACHE; 2371 bremfree(bp); 2372 2373 /* 2374 * check for size inconsistancies for non-VMIO case. 2375 */ 2376 2377 if (bp->b_bcount != size) { 2378 if ((bp->b_flags & B_VMIO) == 0 || 2379 (size > bp->b_kvasize)) { 2380 if (bp->b_flags & B_DELWRI) { 2381 bp->b_flags |= B_NOCACHE; 2382 BUF_WRITE(bp); 2383 } else { 2384 if ((bp->b_flags & B_VMIO) && 2385 (LIST_FIRST(&bp->b_dep) == NULL)) { 2386 bp->b_flags |= B_RELBUF; 2387 brelse(bp); 2388 } else { 2389 bp->b_flags |= B_NOCACHE; 2390 BUF_WRITE(bp); 2391 } 2392 } 2393 goto loop; 2394 } 2395 } 2396 2397 /* 2398 * If the size is inconsistant in the VMIO case, we can resize 2399 * the buffer. This might lead to B_CACHE getting set or 2400 * cleared. If the size has not changed, B_CACHE remains 2401 * unchanged from its previous state. 2402 */ 2403 2404 if (bp->b_bcount != size) 2405 allocbuf(bp, size); 2406 2407 KASSERT(bp->b_offset != NOOFFSET, 2408 ("getblk: no buffer offset")); 2409 2410 /* 2411 * A buffer with B_DELWRI set and B_CACHE clear must 2412 * be committed before we can return the buffer in 2413 * order to prevent the caller from issuing a read 2414 * ( due to B_CACHE not being set ) and overwriting 2415 * it. 2416 * 2417 * Most callers, including NFS and FFS, need this to 2418 * operate properly either because they assume they 2419 * can issue a read if B_CACHE is not set, or because 2420 * ( for example ) an uncached B_DELWRI might loop due 2421 * to softupdates re-dirtying the buffer. In the latter 2422 * case, B_CACHE is set after the first write completes, 2423 * preventing further loops. 2424 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2425 * above while extending the buffer, we cannot allow the 2426 * buffer to remain with B_CACHE set after the write 2427 * completes or it will represent a corrupt state. To 2428 * deal with this we set B_NOCACHE to scrap the buffer 2429 * after the write. 2430 * 2431 * We might be able to do something fancy, like setting 2432 * B_CACHE in bwrite() except if B_DELWRI is already set, 2433 * so the below call doesn't set B_CACHE, but that gets real 2434 * confusing. This is much easier. 2435 */ 2436 2437 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2438 bp->b_flags |= B_NOCACHE; 2439 BUF_WRITE(bp); 2440 goto loop; 2441 } 2442 2443 splx(s); 2444 bp->b_flags &= ~B_DONE; 2445 } else { 2446 int bsize, maxsize, vmio; 2447 off_t offset; 2448 2449 /* 2450 * Buffer is not in-core, create new buffer. The buffer 2451 * returned by getnewbuf() is locked. Note that the returned 2452 * buffer is also considered valid (not marked B_INVAL). 2453 */ 2454 VI_UNLOCK(vp); 2455 if (vn_isdisk(vp, NULL)) 2456 bsize = DEV_BSIZE; 2457 else if (vp->v_mountedhere) 2458 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2459 else if (vp->v_mount) 2460 bsize = vp->v_mount->mnt_stat.f_iosize; 2461 else 2462 bsize = size; 2463 2464 offset = blkno * bsize; 2465 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && 2466 (vp->v_vflag & VV_OBJBUF); 2467 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2468 maxsize = imax(maxsize, bsize); 2469 2470 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2471 if (slpflag || slptimeo) { 2472 splx(s); 2473 return NULL; 2474 } 2475 goto loop; 2476 } 2477 2478 /* 2479 * This code is used to make sure that a buffer is not 2480 * created while the getnewbuf routine is blocked. 2481 * This can be a problem whether the vnode is locked or not. 2482 * If the buffer is created out from under us, we have to 2483 * throw away the one we just created. There is now window 2484 * race because we are safely running at splbio() from the 2485 * point of the duplicate buffer creation through to here, 2486 * and we've locked the buffer. 2487 * 2488 * Note: this must occur before we associate the buffer 2489 * with the vp especially considering limitations in 2490 * the splay tree implementation when dealing with duplicate 2491 * lblkno's. 2492 */ 2493 VI_LOCK(vp); 2494 if (gbincore(vp, blkno)) { 2495 VI_UNLOCK(vp); 2496 bp->b_flags |= B_INVAL; 2497 brelse(bp); 2498 goto loop; 2499 } 2500 VI_UNLOCK(vp); 2501 2502 /* 2503 * Insert the buffer into the hash, so that it can 2504 * be found by incore. 2505 */ 2506 bp->b_blkno = bp->b_lblkno = blkno; 2507 bp->b_offset = offset; 2508 2509 bgetvp(vp, bp); 2510 #ifdef USE_BUFHASH 2511 LIST_REMOVE(bp, b_hash); 2512 bh = bufhash(vp, blkno); 2513 LIST_INSERT_HEAD(bh, bp, b_hash); 2514 #endif 2515 2516 /* 2517 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2518 * buffer size starts out as 0, B_CACHE will be set by 2519 * allocbuf() for the VMIO case prior to it testing the 2520 * backing store for validity. 2521 */ 2522 2523 if (vmio) { 2524 bp->b_flags |= B_VMIO; 2525 #if defined(VFS_BIO_DEBUG) 2526 if (vp->v_type != VREG) 2527 printf("getblk: vmioing file type %d???\n", vp->v_type); 2528 #endif 2529 VOP_GETVOBJECT(vp, &bp->b_object); 2530 } else { 2531 bp->b_flags &= ~B_VMIO; 2532 bp->b_object = NULL; 2533 } 2534 2535 allocbuf(bp, size); 2536 2537 splx(s); 2538 bp->b_flags &= ~B_DONE; 2539 } 2540 KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp)); 2541 return (bp); 2542 } 2543 2544 /* 2545 * Get an empty, disassociated buffer of given size. The buffer is initially 2546 * set to B_INVAL. 2547 */ 2548 struct buf * 2549 geteblk(int size) 2550 { 2551 struct buf *bp; 2552 int s; 2553 int maxsize; 2554 2555 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2556 2557 s = splbio(); 2558 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2559 continue; 2560 splx(s); 2561 allocbuf(bp, size); 2562 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2563 KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp)); 2564 return (bp); 2565 } 2566 2567 2568 /* 2569 * This code constitutes the buffer memory from either anonymous system 2570 * memory (in the case of non-VMIO operations) or from an associated 2571 * VM object (in the case of VMIO operations). This code is able to 2572 * resize a buffer up or down. 2573 * 2574 * Note that this code is tricky, and has many complications to resolve 2575 * deadlock or inconsistant data situations. Tread lightly!!! 2576 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2577 * the caller. Calling this code willy nilly can result in the loss of data. 2578 * 2579 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2580 * B_CACHE for the non-VMIO case. 2581 */ 2582 2583 int 2584 allocbuf(struct buf *bp, int size) 2585 { 2586 int newbsize, mbsize; 2587 int i; 2588 2589 GIANT_REQUIRED; 2590 2591 if (BUF_REFCNT(bp) == 0) 2592 panic("allocbuf: buffer not busy"); 2593 2594 if (bp->b_kvasize < size) 2595 panic("allocbuf: buffer too small"); 2596 2597 if ((bp->b_flags & B_VMIO) == 0) { 2598 caddr_t origbuf; 2599 int origbufsize; 2600 /* 2601 * Just get anonymous memory from the kernel. Don't 2602 * mess with B_CACHE. 2603 */ 2604 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2605 if (bp->b_flags & B_MALLOC) 2606 newbsize = mbsize; 2607 else 2608 newbsize = round_page(size); 2609 2610 if (newbsize < bp->b_bufsize) { 2611 /* 2612 * malloced buffers are not shrunk 2613 */ 2614 if (bp->b_flags & B_MALLOC) { 2615 if (newbsize) { 2616 bp->b_bcount = size; 2617 } else { 2618 free(bp->b_data, M_BIOBUF); 2619 if (bp->b_bufsize) { 2620 bufmallocspace -= bp->b_bufsize; 2621 bufspacewakeup(); 2622 bp->b_bufsize = 0; 2623 } 2624 bp->b_data = bp->b_kvabase; 2625 bp->b_bcount = 0; 2626 bp->b_flags &= ~B_MALLOC; 2627 } 2628 return 1; 2629 } 2630 vm_hold_free_pages( 2631 bp, 2632 (vm_offset_t) bp->b_data + newbsize, 2633 (vm_offset_t) bp->b_data + bp->b_bufsize); 2634 } else if (newbsize > bp->b_bufsize) { 2635 /* 2636 * We only use malloced memory on the first allocation. 2637 * and revert to page-allocated memory when the buffer 2638 * grows. 2639 */ 2640 if ( (bufmallocspace < maxbufmallocspace) && 2641 (bp->b_bufsize == 0) && 2642 (mbsize <= PAGE_SIZE/2)) { 2643 2644 bp->b_data = malloc(mbsize, M_BIOBUF, 0); 2645 bp->b_bufsize = mbsize; 2646 bp->b_bcount = size; 2647 bp->b_flags |= B_MALLOC; 2648 bufmallocspace += mbsize; 2649 return 1; 2650 } 2651 origbuf = NULL; 2652 origbufsize = 0; 2653 /* 2654 * If the buffer is growing on its other-than-first allocation, 2655 * then we revert to the page-allocation scheme. 2656 */ 2657 if (bp->b_flags & B_MALLOC) { 2658 origbuf = bp->b_data; 2659 origbufsize = bp->b_bufsize; 2660 bp->b_data = bp->b_kvabase; 2661 if (bp->b_bufsize) { 2662 bufmallocspace -= bp->b_bufsize; 2663 bufspacewakeup(); 2664 bp->b_bufsize = 0; 2665 } 2666 bp->b_flags &= ~B_MALLOC; 2667 newbsize = round_page(newbsize); 2668 } 2669 vm_hold_load_pages( 2670 bp, 2671 (vm_offset_t) bp->b_data + bp->b_bufsize, 2672 (vm_offset_t) bp->b_data + newbsize); 2673 if (origbuf) { 2674 bcopy(origbuf, bp->b_data, origbufsize); 2675 free(origbuf, M_BIOBUF); 2676 } 2677 } 2678 } else { 2679 int desiredpages; 2680 2681 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2682 desiredpages = (size == 0) ? 0 : 2683 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2684 2685 if (bp->b_flags & B_MALLOC) 2686 panic("allocbuf: VMIO buffer can't be malloced"); 2687 /* 2688 * Set B_CACHE initially if buffer is 0 length or will become 2689 * 0-length. 2690 */ 2691 if (size == 0 || bp->b_bufsize == 0) 2692 bp->b_flags |= B_CACHE; 2693 2694 if (newbsize < bp->b_bufsize) { 2695 /* 2696 * DEV_BSIZE aligned new buffer size is less then the 2697 * DEV_BSIZE aligned existing buffer size. Figure out 2698 * if we have to remove any pages. 2699 */ 2700 if (desiredpages < bp->b_npages) { 2701 vm_page_t m; 2702 2703 vm_page_lock_queues(); 2704 for (i = desiredpages; i < bp->b_npages; i++) { 2705 /* 2706 * the page is not freed here -- it 2707 * is the responsibility of 2708 * vnode_pager_setsize 2709 */ 2710 m = bp->b_pages[i]; 2711 KASSERT(m != bogus_page, 2712 ("allocbuf: bogus page found")); 2713 while (vm_page_sleep_if_busy(m, TRUE, "biodep")) 2714 vm_page_lock_queues(); 2715 2716 bp->b_pages[i] = NULL; 2717 vm_page_unwire(m, 0); 2718 } 2719 vm_page_unlock_queues(); 2720 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2721 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2722 bp->b_npages = desiredpages; 2723 } 2724 } else if (size > bp->b_bcount) { 2725 /* 2726 * We are growing the buffer, possibly in a 2727 * byte-granular fashion. 2728 */ 2729 struct vnode *vp; 2730 vm_object_t obj; 2731 vm_offset_t toff; 2732 vm_offset_t tinc; 2733 2734 /* 2735 * Step 1, bring in the VM pages from the object, 2736 * allocating them if necessary. We must clear 2737 * B_CACHE if these pages are not valid for the 2738 * range covered by the buffer. 2739 */ 2740 2741 vp = bp->b_vp; 2742 obj = bp->b_object; 2743 2744 while (bp->b_npages < desiredpages) { 2745 vm_page_t m; 2746 vm_pindex_t pi; 2747 2748 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2749 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2750 /* 2751 * note: must allocate system pages 2752 * since blocking here could intefere 2753 * with paging I/O, no matter which 2754 * process we are. 2755 */ 2756 m = vm_page_alloc(obj, pi, 2757 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 2758 if (m == NULL) { 2759 atomic_add_int(&vm_pageout_deficit, 2760 desiredpages - bp->b_npages); 2761 VM_WAIT; 2762 } else { 2763 vm_page_lock_queues(); 2764 vm_page_wakeup(m); 2765 vm_page_unlock_queues(); 2766 bp->b_flags &= ~B_CACHE; 2767 bp->b_pages[bp->b_npages] = m; 2768 ++bp->b_npages; 2769 } 2770 continue; 2771 } 2772 2773 /* 2774 * We found a page. If we have to sleep on it, 2775 * retry because it might have gotten freed out 2776 * from under us. 2777 * 2778 * We can only test PG_BUSY here. Blocking on 2779 * m->busy might lead to a deadlock: 2780 * 2781 * vm_fault->getpages->cluster_read->allocbuf 2782 * 2783 */ 2784 vm_page_lock_queues(); 2785 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk")) 2786 continue; 2787 2788 /* 2789 * We have a good page. Should we wakeup the 2790 * page daemon? 2791 */ 2792 if ((curproc != pageproc) && 2793 ((m->queue - m->pc) == PQ_CACHE) && 2794 ((cnt.v_free_count + cnt.v_cache_count) < 2795 (cnt.v_free_min + cnt.v_cache_min))) { 2796 pagedaemon_wakeup(); 2797 } 2798 vm_page_flag_clear(m, PG_ZERO); 2799 vm_page_wire(m); 2800 vm_page_unlock_queues(); 2801 bp->b_pages[bp->b_npages] = m; 2802 ++bp->b_npages; 2803 } 2804 2805 /* 2806 * Step 2. We've loaded the pages into the buffer, 2807 * we have to figure out if we can still have B_CACHE 2808 * set. Note that B_CACHE is set according to the 2809 * byte-granular range ( bcount and size ), new the 2810 * aligned range ( newbsize ). 2811 * 2812 * The VM test is against m->valid, which is DEV_BSIZE 2813 * aligned. Needless to say, the validity of the data 2814 * needs to also be DEV_BSIZE aligned. Note that this 2815 * fails with NFS if the server or some other client 2816 * extends the file's EOF. If our buffer is resized, 2817 * B_CACHE may remain set! XXX 2818 */ 2819 2820 toff = bp->b_bcount; 2821 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2822 2823 while ((bp->b_flags & B_CACHE) && toff < size) { 2824 vm_pindex_t pi; 2825 2826 if (tinc > (size - toff)) 2827 tinc = size - toff; 2828 2829 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2830 PAGE_SHIFT; 2831 2832 vfs_buf_test_cache( 2833 bp, 2834 bp->b_offset, 2835 toff, 2836 tinc, 2837 bp->b_pages[pi] 2838 ); 2839 toff += tinc; 2840 tinc = PAGE_SIZE; 2841 } 2842 2843 /* 2844 * Step 3, fixup the KVM pmap. Remember that 2845 * bp->b_data is relative to bp->b_offset, but 2846 * bp->b_offset may be offset into the first page. 2847 */ 2848 2849 bp->b_data = (caddr_t) 2850 trunc_page((vm_offset_t)bp->b_data); 2851 pmap_qenter( 2852 (vm_offset_t)bp->b_data, 2853 bp->b_pages, 2854 bp->b_npages 2855 ); 2856 2857 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2858 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2859 } 2860 } 2861 if (newbsize < bp->b_bufsize) 2862 bufspacewakeup(); 2863 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2864 bp->b_bcount = size; /* requested buffer size */ 2865 return 1; 2866 } 2867 2868 void 2869 biodone(struct bio *bp) 2870 { 2871 bp->bio_flags |= BIO_DONE; 2872 if (bp->bio_done != NULL) 2873 bp->bio_done(bp); 2874 else 2875 wakeup(bp); 2876 } 2877 2878 /* 2879 * Wait for a BIO to finish. 2880 * 2881 * XXX: resort to a timeout for now. The optimal locking (if any) for this 2882 * case is not yet clear. 2883 */ 2884 int 2885 biowait(struct bio *bp, const char *wchan) 2886 { 2887 2888 while ((bp->bio_flags & BIO_DONE) == 0) 2889 msleep(bp, NULL, PRIBIO, wchan, hz / 10); 2890 if (bp->bio_error != 0) 2891 return (bp->bio_error); 2892 if (!(bp->bio_flags & BIO_ERROR)) 2893 return (0); 2894 return (EIO); 2895 } 2896 2897 void 2898 biofinish(struct bio *bp, struct devstat *stat, int error) 2899 { 2900 2901 if (error) { 2902 bp->bio_error = error; 2903 bp->bio_flags |= BIO_ERROR; 2904 } 2905 if (stat != NULL) 2906 devstat_end_transaction_bio(stat, bp); 2907 biodone(bp); 2908 } 2909 2910 void 2911 bioq_init(struct bio_queue_head *head) 2912 { 2913 TAILQ_INIT(&head->queue); 2914 head->last_pblkno = 0; 2915 head->insert_point = NULL; 2916 head->switch_point = NULL; 2917 } 2918 2919 void 2920 bioq_remove(struct bio_queue_head *head, struct bio *bp) 2921 { 2922 if (bp == head->switch_point) 2923 head->switch_point = TAILQ_NEXT(bp, bio_queue); 2924 if (bp == head->insert_point) { 2925 head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue); 2926 if (head->insert_point == NULL) 2927 head->last_pblkno = 0; 2928 } else if (bp == TAILQ_FIRST(&head->queue)) 2929 head->last_pblkno = bp->bio_pblkno; 2930 TAILQ_REMOVE(&head->queue, bp, bio_queue); 2931 if (TAILQ_FIRST(&head->queue) == head->switch_point) 2932 head->switch_point = NULL; 2933 } 2934 2935 /* 2936 * bufwait: 2937 * 2938 * Wait for buffer I/O completion, returning error status. The buffer 2939 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 2940 * error and cleared. 2941 */ 2942 int 2943 bufwait(register struct buf * bp) 2944 { 2945 int s; 2946 2947 s = splbio(); 2948 while ((bp->b_flags & B_DONE) == 0) { 2949 if (bp->b_iocmd == BIO_READ) 2950 tsleep(bp, PRIBIO, "biord", 0); 2951 else 2952 tsleep(bp, PRIBIO, "biowr", 0); 2953 } 2954 splx(s); 2955 if (bp->b_flags & B_EINTR) { 2956 bp->b_flags &= ~B_EINTR; 2957 return (EINTR); 2958 } 2959 if (bp->b_ioflags & BIO_ERROR) { 2960 return (bp->b_error ? bp->b_error : EIO); 2961 } else { 2962 return (0); 2963 } 2964 } 2965 2966 /* 2967 * Call back function from struct bio back up to struct buf. 2968 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 2969 */ 2970 void 2971 bufdonebio(struct bio *bp) 2972 { 2973 bufdone(bp->bio_caller2); 2974 } 2975 2976 /* 2977 * bufdone: 2978 * 2979 * Finish I/O on a buffer, optionally calling a completion function. 2980 * This is usually called from an interrupt so process blocking is 2981 * not allowed. 2982 * 2983 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2984 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2985 * assuming B_INVAL is clear. 2986 * 2987 * For the VMIO case, we set B_CACHE if the op was a read and no 2988 * read error occured, or if the op was a write. B_CACHE is never 2989 * set if the buffer is invalid or otherwise uncacheable. 2990 * 2991 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2992 * initiator to leave B_INVAL set to brelse the buffer out of existance 2993 * in the biodone routine. 2994 */ 2995 void 2996 bufdone(struct buf *bp) 2997 { 2998 int s; 2999 void (*biodone)(struct buf *); 3000 3001 GIANT_REQUIRED; 3002 3003 s = splbio(); 3004 3005 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 3006 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 3007 3008 bp->b_flags |= B_DONE; 3009 runningbufwakeup(bp); 3010 3011 if (bp->b_iocmd == BIO_DELETE) { 3012 brelse(bp); 3013 splx(s); 3014 return; 3015 } 3016 3017 if (bp->b_iocmd == BIO_WRITE) { 3018 vwakeup(bp); 3019 } 3020 3021 /* call optional completion function if requested */ 3022 if (bp->b_iodone != NULL) { 3023 biodone = bp->b_iodone; 3024 bp->b_iodone = NULL; 3025 (*biodone) (bp); 3026 splx(s); 3027 return; 3028 } 3029 if (LIST_FIRST(&bp->b_dep) != NULL) 3030 buf_complete(bp); 3031 3032 if (bp->b_flags & B_VMIO) { 3033 int i; 3034 vm_ooffset_t foff; 3035 vm_page_t m; 3036 vm_object_t obj; 3037 int iosize; 3038 struct vnode *vp = bp->b_vp; 3039 3040 obj = bp->b_object; 3041 3042 #if defined(VFS_BIO_DEBUG) 3043 mp_fixme("usecount and vflag accessed without locks."); 3044 if (vp->v_usecount == 0) { 3045 panic("biodone: zero vnode ref count"); 3046 } 3047 3048 if ((vp->v_vflag & VV_OBJBUF) == 0) { 3049 panic("biodone: vnode is not setup for merged cache"); 3050 } 3051 #endif 3052 3053 foff = bp->b_offset; 3054 KASSERT(bp->b_offset != NOOFFSET, 3055 ("biodone: no buffer offset")); 3056 3057 #if defined(VFS_BIO_DEBUG) 3058 if (obj->paging_in_progress < bp->b_npages) { 3059 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 3060 obj->paging_in_progress, bp->b_npages); 3061 } 3062 #endif 3063 3064 /* 3065 * Set B_CACHE if the op was a normal read and no error 3066 * occured. B_CACHE is set for writes in the b*write() 3067 * routines. 3068 */ 3069 iosize = bp->b_bcount - bp->b_resid; 3070 if (bp->b_iocmd == BIO_READ && 3071 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 3072 !(bp->b_ioflags & BIO_ERROR)) { 3073 bp->b_flags |= B_CACHE; 3074 } 3075 vm_page_lock_queues(); 3076 for (i = 0; i < bp->b_npages; i++) { 3077 int bogusflag = 0; 3078 int resid; 3079 3080 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3081 if (resid > iosize) 3082 resid = iosize; 3083 3084 /* 3085 * cleanup bogus pages, restoring the originals 3086 */ 3087 m = bp->b_pages[i]; 3088 if (m == bogus_page) { 3089 bogusflag = 1; 3090 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3091 if (m == NULL) 3092 panic("biodone: page disappeared!"); 3093 bp->b_pages[i] = m; 3094 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3095 } 3096 #if defined(VFS_BIO_DEBUG) 3097 if (OFF_TO_IDX(foff) != m->pindex) { 3098 printf( 3099 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n", 3100 (intmax_t)foff, (uintmax_t)m->pindex); 3101 } 3102 #endif 3103 3104 /* 3105 * In the write case, the valid and clean bits are 3106 * already changed correctly ( see bdwrite() ), so we 3107 * only need to do this here in the read case. 3108 */ 3109 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 3110 vfs_page_set_valid(bp, foff, i, m); 3111 } 3112 vm_page_flag_clear(m, PG_ZERO); 3113 3114 /* 3115 * when debugging new filesystems or buffer I/O methods, this 3116 * is the most common error that pops up. if you see this, you 3117 * have not set the page busy flag correctly!!! 3118 */ 3119 if (m->busy == 0) { 3120 printf("biodone: page busy < 0, " 3121 "pindex: %d, foff: 0x(%x,%x), " 3122 "resid: %d, index: %d\n", 3123 (int) m->pindex, (int)(foff >> 32), 3124 (int) foff & 0xffffffff, resid, i); 3125 if (!vn_isdisk(vp, NULL)) 3126 printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n", 3127 bp->b_vp->v_mount->mnt_stat.f_iosize, 3128 (intmax_t) bp->b_lblkno, 3129 bp->b_flags, bp->b_npages); 3130 else 3131 printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n", 3132 (intmax_t) bp->b_lblkno, 3133 bp->b_flags, bp->b_npages); 3134 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3135 m->valid, m->dirty, m->wire_count); 3136 panic("biodone: page busy < 0\n"); 3137 } 3138 vm_page_io_finish(m); 3139 vm_object_pip_subtract(obj, 1); 3140 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3141 iosize -= resid; 3142 } 3143 vm_page_unlock_queues(); 3144 if (obj) 3145 vm_object_pip_wakeupn(obj, 0); 3146 } 3147 3148 /* 3149 * For asynchronous completions, release the buffer now. The brelse 3150 * will do a wakeup there if necessary - so no need to do a wakeup 3151 * here in the async case. The sync case always needs to do a wakeup. 3152 */ 3153 3154 if (bp->b_flags & B_ASYNC) { 3155 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 3156 brelse(bp); 3157 else 3158 bqrelse(bp); 3159 } else { 3160 wakeup(bp); 3161 } 3162 splx(s); 3163 } 3164 3165 /* 3166 * This routine is called in lieu of iodone in the case of 3167 * incomplete I/O. This keeps the busy status for pages 3168 * consistant. 3169 */ 3170 void 3171 vfs_unbusy_pages(struct buf * bp) 3172 { 3173 int i; 3174 3175 GIANT_REQUIRED; 3176 3177 runningbufwakeup(bp); 3178 if (bp->b_flags & B_VMIO) { 3179 vm_object_t obj; 3180 3181 obj = bp->b_object; 3182 vm_page_lock_queues(); 3183 for (i = 0; i < bp->b_npages; i++) { 3184 vm_page_t m = bp->b_pages[i]; 3185 3186 if (m == bogus_page) { 3187 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3188 if (!m) { 3189 panic("vfs_unbusy_pages: page missing\n"); 3190 } 3191 bp->b_pages[i] = m; 3192 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3193 } 3194 vm_object_pip_subtract(obj, 1); 3195 vm_page_flag_clear(m, PG_ZERO); 3196 vm_page_io_finish(m); 3197 } 3198 vm_page_unlock_queues(); 3199 vm_object_pip_wakeupn(obj, 0); 3200 } 3201 } 3202 3203 /* 3204 * vfs_page_set_valid: 3205 * 3206 * Set the valid bits in a page based on the supplied offset. The 3207 * range is restricted to the buffer's size. 3208 * 3209 * This routine is typically called after a read completes. 3210 */ 3211 static void 3212 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3213 { 3214 vm_ooffset_t soff, eoff; 3215 3216 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 3217 /* 3218 * Start and end offsets in buffer. eoff - soff may not cross a 3219 * page boundry or cross the end of the buffer. The end of the 3220 * buffer, in this case, is our file EOF, not the allocation size 3221 * of the buffer. 3222 */ 3223 soff = off; 3224 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3225 if (eoff > bp->b_offset + bp->b_bcount) 3226 eoff = bp->b_offset + bp->b_bcount; 3227 3228 /* 3229 * Set valid range. This is typically the entire buffer and thus the 3230 * entire page. 3231 */ 3232 if (eoff > soff) { 3233 vm_page_set_validclean( 3234 m, 3235 (vm_offset_t) (soff & PAGE_MASK), 3236 (vm_offset_t) (eoff - soff) 3237 ); 3238 } 3239 } 3240 3241 /* 3242 * This routine is called before a device strategy routine. 3243 * It is used to tell the VM system that paging I/O is in 3244 * progress, and treat the pages associated with the buffer 3245 * almost as being PG_BUSY. Also the object paging_in_progress 3246 * flag is handled to make sure that the object doesn't become 3247 * inconsistant. 3248 * 3249 * Since I/O has not been initiated yet, certain buffer flags 3250 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 3251 * and should be ignored. 3252 */ 3253 void 3254 vfs_busy_pages(struct buf * bp, int clear_modify) 3255 { 3256 int i, bogus; 3257 3258 if (bp->b_flags & B_VMIO) { 3259 vm_object_t obj; 3260 vm_ooffset_t foff; 3261 3262 obj = bp->b_object; 3263 foff = bp->b_offset; 3264 KASSERT(bp->b_offset != NOOFFSET, 3265 ("vfs_busy_pages: no buffer offset")); 3266 vfs_setdirty(bp); 3267 retry: 3268 vm_page_lock_queues(); 3269 for (i = 0; i < bp->b_npages; i++) { 3270 vm_page_t m = bp->b_pages[i]; 3271 3272 if (vm_page_sleep_if_busy(m, FALSE, "vbpage")) 3273 goto retry; 3274 } 3275 bogus = 0; 3276 for (i = 0; i < bp->b_npages; i++) { 3277 vm_page_t m = bp->b_pages[i]; 3278 3279 vm_page_flag_clear(m, PG_ZERO); 3280 if ((bp->b_flags & B_CLUSTER) == 0) { 3281 vm_object_pip_add(obj, 1); 3282 vm_page_io_start(m); 3283 } 3284 /* 3285 * When readying a buffer for a read ( i.e 3286 * clear_modify == 0 ), it is important to do 3287 * bogus_page replacement for valid pages in 3288 * partially instantiated buffers. Partially 3289 * instantiated buffers can, in turn, occur when 3290 * reconstituting a buffer from its VM backing store 3291 * base. We only have to do this if B_CACHE is 3292 * clear ( which causes the I/O to occur in the 3293 * first place ). The replacement prevents the read 3294 * I/O from overwriting potentially dirty VM-backed 3295 * pages. XXX bogus page replacement is, uh, bogus. 3296 * It may not work properly with small-block devices. 3297 * We need to find a better way. 3298 */ 3299 pmap_remove_all(m); 3300 if (clear_modify) 3301 vfs_page_set_valid(bp, foff, i, m); 3302 else if (m->valid == VM_PAGE_BITS_ALL && 3303 (bp->b_flags & B_CACHE) == 0) { 3304 bp->b_pages[i] = bogus_page; 3305 bogus++; 3306 } 3307 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3308 } 3309 vm_page_unlock_queues(); 3310 if (bogus) 3311 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3312 } 3313 } 3314 3315 /* 3316 * Tell the VM system that the pages associated with this buffer 3317 * are clean. This is used for delayed writes where the data is 3318 * going to go to disk eventually without additional VM intevention. 3319 * 3320 * Note that while we only really need to clean through to b_bcount, we 3321 * just go ahead and clean through to b_bufsize. 3322 */ 3323 static void 3324 vfs_clean_pages(struct buf * bp) 3325 { 3326 int i; 3327 3328 GIANT_REQUIRED; 3329 3330 if (bp->b_flags & B_VMIO) { 3331 vm_ooffset_t foff; 3332 3333 foff = bp->b_offset; 3334 KASSERT(bp->b_offset != NOOFFSET, 3335 ("vfs_clean_pages: no buffer offset")); 3336 vm_page_lock_queues(); 3337 for (i = 0; i < bp->b_npages; i++) { 3338 vm_page_t m = bp->b_pages[i]; 3339 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3340 vm_ooffset_t eoff = noff; 3341 3342 if (eoff > bp->b_offset + bp->b_bufsize) 3343 eoff = bp->b_offset + bp->b_bufsize; 3344 vfs_page_set_valid(bp, foff, i, m); 3345 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3346 foff = noff; 3347 } 3348 vm_page_unlock_queues(); 3349 } 3350 } 3351 3352 /* 3353 * vfs_bio_set_validclean: 3354 * 3355 * Set the range within the buffer to valid and clean. The range is 3356 * relative to the beginning of the buffer, b_offset. Note that b_offset 3357 * itself may be offset from the beginning of the first page. 3358 * 3359 */ 3360 3361 void 3362 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3363 { 3364 if (bp->b_flags & B_VMIO) { 3365 int i; 3366 int n; 3367 3368 /* 3369 * Fixup base to be relative to beginning of first page. 3370 * Set initial n to be the maximum number of bytes in the 3371 * first page that can be validated. 3372 */ 3373 3374 base += (bp->b_offset & PAGE_MASK); 3375 n = PAGE_SIZE - (base & PAGE_MASK); 3376 3377 vm_page_lock_queues(); 3378 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3379 vm_page_t m = bp->b_pages[i]; 3380 3381 if (n > size) 3382 n = size; 3383 3384 vm_page_set_validclean(m, base & PAGE_MASK, n); 3385 base += n; 3386 size -= n; 3387 n = PAGE_SIZE; 3388 } 3389 vm_page_unlock_queues(); 3390 } 3391 } 3392 3393 /* 3394 * vfs_bio_clrbuf: 3395 * 3396 * clear a buffer. This routine essentially fakes an I/O, so we need 3397 * to clear BIO_ERROR and B_INVAL. 3398 * 3399 * Note that while we only theoretically need to clear through b_bcount, 3400 * we go ahead and clear through b_bufsize. 3401 */ 3402 3403 void 3404 vfs_bio_clrbuf(struct buf *bp) 3405 { 3406 int i, mask = 0; 3407 caddr_t sa, ea; 3408 3409 GIANT_REQUIRED; 3410 3411 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3412 bp->b_flags &= ~B_INVAL; 3413 bp->b_ioflags &= ~BIO_ERROR; 3414 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3415 (bp->b_offset & PAGE_MASK) == 0) { 3416 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3417 if ((bp->b_pages[0]->valid & mask) == mask) { 3418 bp->b_resid = 0; 3419 return; 3420 } 3421 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3422 ((bp->b_pages[0]->valid & mask) == 0)) { 3423 bzero(bp->b_data, bp->b_bufsize); 3424 bp->b_pages[0]->valid |= mask; 3425 bp->b_resid = 0; 3426 return; 3427 } 3428 } 3429 ea = sa = bp->b_data; 3430 for(i=0;i<bp->b_npages;i++,sa=ea) { 3431 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3432 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3433 ea = (caddr_t)(vm_offset_t)ulmin( 3434 (u_long)(vm_offset_t)ea, 3435 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3436 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3437 if ((bp->b_pages[i]->valid & mask) == mask) 3438 continue; 3439 if ((bp->b_pages[i]->valid & mask) == 0) { 3440 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3441 bzero(sa, ea - sa); 3442 } 3443 } else { 3444 for (; sa < ea; sa += DEV_BSIZE, j++) { 3445 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3446 (bp->b_pages[i]->valid & (1<<j)) == 0) 3447 bzero(sa, DEV_BSIZE); 3448 } 3449 } 3450 bp->b_pages[i]->valid |= mask; 3451 vm_page_lock_queues(); 3452 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3453 vm_page_unlock_queues(); 3454 } 3455 bp->b_resid = 0; 3456 } else { 3457 clrbuf(bp); 3458 } 3459 } 3460 3461 /* 3462 * vm_hold_load_pages and vm_hold_free_pages get pages into 3463 * a buffers address space. The pages are anonymous and are 3464 * not associated with a file object. 3465 */ 3466 static void 3467 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3468 { 3469 vm_offset_t pg; 3470 vm_page_t p; 3471 int index; 3472 3473 GIANT_REQUIRED; 3474 3475 to = round_page(to); 3476 from = round_page(from); 3477 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3478 3479 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3480 tryagain: 3481 /* 3482 * note: must allocate system pages since blocking here 3483 * could intefere with paging I/O, no matter which 3484 * process we are. 3485 */ 3486 vm_object_lock(kernel_object); 3487 p = vm_page_alloc(kernel_object, 3488 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3489 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); 3490 vm_object_unlock(kernel_object); 3491 if (!p) { 3492 atomic_add_int(&vm_pageout_deficit, 3493 (to - pg) >> PAGE_SHIFT); 3494 VM_WAIT; 3495 goto tryagain; 3496 } 3497 vm_page_lock_queues(); 3498 p->valid = VM_PAGE_BITS_ALL; 3499 vm_page_unlock_queues(); 3500 pmap_qenter(pg, &p, 1); 3501 bp->b_pages[index] = p; 3502 vm_page_lock_queues(); 3503 vm_page_wakeup(p); 3504 vm_page_unlock_queues(); 3505 } 3506 bp->b_npages = index; 3507 } 3508 3509 /* Return pages associated with this buf to the vm system */ 3510 static void 3511 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3512 { 3513 vm_offset_t pg; 3514 vm_page_t p; 3515 int index, newnpages; 3516 3517 GIANT_REQUIRED; 3518 3519 from = round_page(from); 3520 to = round_page(to); 3521 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3522 3523 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3524 p = bp->b_pages[index]; 3525 if (p && (index < bp->b_npages)) { 3526 if (p->busy) { 3527 printf( 3528 "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 3529 (intmax_t)bp->b_blkno, 3530 (intmax_t)bp->b_lblkno); 3531 } 3532 bp->b_pages[index] = NULL; 3533 pmap_qremove(pg, 1); 3534 vm_page_lock_queues(); 3535 vm_page_busy(p); 3536 vm_page_unwire(p, 0); 3537 vm_page_free(p); 3538 vm_page_unlock_queues(); 3539 } 3540 } 3541 bp->b_npages = newnpages; 3542 } 3543 3544 /* 3545 * Map an IO request into kernel virtual address space. 3546 * 3547 * All requests are (re)mapped into kernel VA space. 3548 * Notice that we use b_bufsize for the size of the buffer 3549 * to be mapped. b_bcount might be modified by the driver. 3550 * 3551 * Note that even if the caller determines that the address space should 3552 * be valid, a race or a smaller-file mapped into a larger space may 3553 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 3554 * check the return value. 3555 */ 3556 int 3557 vmapbuf(struct buf *bp) 3558 { 3559 caddr_t addr, kva; 3560 vm_offset_t pa; 3561 int pidx, i; 3562 struct vm_page *m; 3563 struct pmap *pmap = &curproc->p_vmspace->vm_pmap; 3564 3565 GIANT_REQUIRED; 3566 3567 if ((bp->b_flags & B_PHYS) == 0) 3568 panic("vmapbuf"); 3569 3570 for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0; 3571 addr < bp->b_data + bp->b_bufsize; 3572 addr += PAGE_SIZE, pidx++) { 3573 /* 3574 * Do the vm_fault if needed; do the copy-on-write thing 3575 * when reading stuff off device into memory. 3576 * 3577 * NOTE! Must use pmap_extract() because addr may be in 3578 * the userland address space, and kextract is only guarenteed 3579 * to work for the kernland address space (see: sparc64 port). 3580 */ 3581 retry: 3582 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3583 (bp->b_iocmd == BIO_READ) ? 3584 (VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ); 3585 if (i < 0) { 3586 printf("vmapbuf: warning, bad user address during I/O\n"); 3587 vm_page_lock_queues(); 3588 for (i = 0; i < pidx; ++i) { 3589 vm_page_unhold(bp->b_pages[i]); 3590 bp->b_pages[i] = NULL; 3591 } 3592 vm_page_unlock_queues(); 3593 return(-1); 3594 } 3595 pa = trunc_page(pmap_extract(pmap, (vm_offset_t) addr)); 3596 if (pa == 0) { 3597 printf("vmapbuf: warning, race against user address during I/O"); 3598 goto retry; 3599 } 3600 m = PHYS_TO_VM_PAGE(pa); 3601 vm_page_lock_queues(); 3602 vm_page_hold(m); 3603 vm_page_unlock_queues(); 3604 bp->b_pages[pidx] = m; 3605 } 3606 if (pidx > btoc(MAXPHYS)) 3607 panic("vmapbuf: mapped more than MAXPHYS"); 3608 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 3609 3610 kva = bp->b_saveaddr; 3611 bp->b_npages = pidx; 3612 bp->b_saveaddr = bp->b_data; 3613 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3614 return(0); 3615 } 3616 3617 /* 3618 * Free the io map PTEs associated with this IO operation. 3619 * We also invalidate the TLB entries and restore the original b_addr. 3620 */ 3621 void 3622 vunmapbuf(struct buf *bp) 3623 { 3624 int pidx; 3625 int npages; 3626 3627 GIANT_REQUIRED; 3628 3629 if ((bp->b_flags & B_PHYS) == 0) 3630 panic("vunmapbuf"); 3631 3632 npages = bp->b_npages; 3633 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3634 npages); 3635 vm_page_lock_queues(); 3636 for (pidx = 0; pidx < npages; pidx++) 3637 vm_page_unhold(bp->b_pages[pidx]); 3638 vm_page_unlock_queues(); 3639 3640 bp->b_data = bp->b_saveaddr; 3641 } 3642 3643 #include "opt_ddb.h" 3644 #ifdef DDB 3645 #include <ddb/ddb.h> 3646 3647 /* DDB command to show buffer data */ 3648 DB_SHOW_COMMAND(buffer, db_show_buffer) 3649 { 3650 /* get args */ 3651 struct buf *bp = (struct buf *)addr; 3652 3653 if (!have_addr) { 3654 db_printf("usage: show buffer <addr>\n"); 3655 return; 3656 } 3657 3658 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3659 db_printf( 3660 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 3661 "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n", 3662 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3663 major(bp->b_dev), minor(bp->b_dev), bp->b_data, 3664 (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno); 3665 if (bp->b_npages) { 3666 int i; 3667 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3668 for (i = 0; i < bp->b_npages; i++) { 3669 vm_page_t m; 3670 m = bp->b_pages[i]; 3671 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3672 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3673 if ((i + 1) < bp->b_npages) 3674 db_printf(","); 3675 } 3676 db_printf("\n"); 3677 } 3678 } 3679 #endif /* DDB */ 3680