xref: /freebsd/sys/kern/vfs_bio.c (revision 6780ab54325a71e7e70112b11657973edde8655e)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD$
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/stdint.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/mutex.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/proc.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58 
59 struct	bio_ops bioops;		/* I/O operation notification */
60 
61 struct	buf_ops buf_ops_bio = {
62 	"buf_ops_bio",
63 	bwrite
64 };
65 
66 /*
67  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
68  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
69  */
70 struct buf *buf;		/* buffer header pool */
71 struct mtx buftimelock;		/* Interlock on setting prio and timo */
72 
73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74 		vm_offset_t to);
75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76 		vm_offset_t to);
77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
78 			       int pageno, vm_page_t m);
79 static void vfs_clean_pages(struct buf * bp);
80 static void vfs_setdirty(struct buf *bp);
81 static void vfs_vmio_release(struct buf *bp);
82 static void vfs_backgroundwritedone(struct buf *bp);
83 static int flushbufqueues(void);
84 static void buf_daemon(void);
85 
86 int vmiodirenable = TRUE;
87 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
88     "Use the VM system for directory writes");
89 int runningbufspace;
90 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
91     "Amount of presently outstanding async buffer io");
92 static int bufspace;
93 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
94     "KVA memory used for bufs");
95 static int maxbufspace;
96 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
97     "Maximum allowed value of bufspace (including buf_daemon)");
98 static int bufmallocspace;
99 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
100     "Amount of malloced memory for buffers");
101 static int maxbufmallocspace;
102 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
103     "Maximum amount of malloced memory for buffers");
104 static int lobufspace;
105 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
106     "Minimum amount of buffers we want to have");
107 static int hibufspace;
108 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
109     "Maximum allowed value of bufspace (excluding buf_daemon)");
110 static int bufreusecnt;
111 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
112     "Number of times we have reused a buffer");
113 static int buffreekvacnt;
114 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
115     "Number of times we have freed the KVA space from some buffer");
116 static int bufdefragcnt;
117 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
118     "Number of times we have had to repeat buffer allocation to defragment");
119 static int lorunningspace;
120 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
121     "Minimum preferred space used for in-progress I/O");
122 static int hirunningspace;
123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
124     "Maximum amount of space to use for in-progress I/O");
125 static int numdirtybuffers;
126 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
127     "Number of buffers that are dirty (has unwritten changes) at the moment");
128 static int lodirtybuffers;
129 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
130     "How many buffers we want to have free before bufdaemon can sleep");
131 static int hidirtybuffers;
132 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
133     "When the number of dirty buffers is considered severe");
134 static int numfreebuffers;
135 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
136     "Number of free buffers");
137 static int lofreebuffers;
138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139    "XXX Unused");
140 static int hifreebuffers;
141 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
142    "XXX Complicatedly unused");
143 static int getnewbufcalls;
144 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
145    "Number of calls to getnewbuf");
146 static int getnewbufrestarts;
147 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
148     "Number of times getnewbuf has had to restart a buffer aquisition");
149 static int dobkgrdwrite = 1;
150 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
151     "Do background writes (honoring the BX_BKGRDWRITE flag)?");
152 
153 /*
154  * Wakeup point for bufdaemon, as well as indicator of whether it is already
155  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
156  * is idling.
157  */
158 static int bd_request;
159 
160 /*
161  * bogus page -- for I/O to/from partially complete buffers
162  * this is a temporary solution to the problem, but it is not
163  * really that bad.  it would be better to split the buffer
164  * for input in the case of buffers partially already in memory,
165  * but the code is intricate enough already.
166  */
167 vm_page_t bogus_page;
168 
169 /*
170  * Synchronization (sleep/wakeup) variable for active buffer space requests.
171  * Set when wait starts, cleared prior to wakeup().
172  * Used in runningbufwakeup() and waitrunningbufspace().
173  */
174 static int runningbufreq;
175 
176 /*
177  * Synchronization (sleep/wakeup) variable for buffer requests.
178  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
179  * by and/or.
180  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
181  * getnewbuf(), and getblk().
182  */
183 static int needsbuffer;
184 
185 #ifdef USE_BUFHASH
186 /*
187  * Mask for index into the buffer hash table, which needs to be power of 2 in
188  * size.  Set in kern_vfs_bio_buffer_alloc.
189  */
190 static int bufhashmask;
191 
192 /*
193  * Hash table for all buffers, with a linked list hanging from each table
194  * entry.  Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
195  */
196 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
197 
198 /*
199  * Somewhere to store buffers when they are not in another list, to always
200  * have them in a list (and thus being able to use the same set of operations
201  * on them.)
202  */
203 static struct bufhashhdr invalhash;
204 
205 #endif
206 
207 /*
208  * Definitions for the buffer free lists.
209  */
210 #define BUFFER_QUEUES	6	/* number of free buffer queues */
211 
212 #define QUEUE_NONE	0	/* on no queue */
213 #define QUEUE_LOCKED	1	/* locked buffers */
214 #define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
215 #define QUEUE_DIRTY	3	/* B_DELWRI buffers */
216 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
217 #define QUEUE_EMPTY	5	/* empty buffer headers */
218 
219 /* Queues for free buffers with various properties */
220 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
221 /*
222  * Single global constant for BUF_WMESG, to avoid getting multiple references.
223  * buf_wmesg is referred from macros.
224  */
225 const char *buf_wmesg = BUF_WMESG;
226 
227 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
228 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
229 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
230 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
231 
232 #ifdef USE_BUFHASH
233 /*
234  * Buffer hash table code.  Note that the logical block scans linearly, which
235  * gives us some L1 cache locality.
236  */
237 
238 static __inline
239 struct bufhashhdr *
240 bufhash(struct vnode *vnp, daddr_t bn)
241 {
242 	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
243 }
244 
245 #endif
246 
247 /*
248  *	numdirtywakeup:
249  *
250  *	If someone is blocked due to there being too many dirty buffers,
251  *	and numdirtybuffers is now reasonable, wake them up.
252  */
253 
254 static __inline void
255 numdirtywakeup(int level)
256 {
257 	if (numdirtybuffers <= level) {
258 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
259 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
260 			wakeup(&needsbuffer);
261 		}
262 	}
263 }
264 
265 /*
266  *	bufspacewakeup:
267  *
268  *	Called when buffer space is potentially available for recovery.
269  *	getnewbuf() will block on this flag when it is unable to free
270  *	sufficient buffer space.  Buffer space becomes recoverable when
271  *	bp's get placed back in the queues.
272  */
273 
274 static __inline void
275 bufspacewakeup(void)
276 {
277 	/*
278 	 * If someone is waiting for BUF space, wake them up.  Even
279 	 * though we haven't freed the kva space yet, the waiting
280 	 * process will be able to now.
281 	 */
282 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
283 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
284 		wakeup(&needsbuffer);
285 	}
286 }
287 
288 /*
289  * runningbufwakeup() - in-progress I/O accounting.
290  *
291  */
292 static __inline void
293 runningbufwakeup(struct buf *bp)
294 {
295 	if (bp->b_runningbufspace) {
296 		runningbufspace -= bp->b_runningbufspace;
297 		bp->b_runningbufspace = 0;
298 		if (runningbufreq && runningbufspace <= lorunningspace) {
299 			runningbufreq = 0;
300 			wakeup(&runningbufreq);
301 		}
302 	}
303 }
304 
305 /*
306  *	bufcountwakeup:
307  *
308  *	Called when a buffer has been added to one of the free queues to
309  *	account for the buffer and to wakeup anyone waiting for free buffers.
310  *	This typically occurs when large amounts of metadata are being handled
311  *	by the buffer cache ( else buffer space runs out first, usually ).
312  */
313 
314 static __inline void
315 bufcountwakeup(void)
316 {
317 	++numfreebuffers;
318 	if (needsbuffer) {
319 		needsbuffer &= ~VFS_BIO_NEED_ANY;
320 		if (numfreebuffers >= hifreebuffers)
321 			needsbuffer &= ~VFS_BIO_NEED_FREE;
322 		wakeup(&needsbuffer);
323 	}
324 }
325 
326 /*
327  *	waitrunningbufspace()
328  *
329  *	runningbufspace is a measure of the amount of I/O currently
330  *	running.  This routine is used in async-write situations to
331  *	prevent creating huge backups of pending writes to a device.
332  *	Only asynchronous writes are governed by this function.
333  *
334  *	Reads will adjust runningbufspace, but will not block based on it.
335  *	The read load has a side effect of reducing the allowed write load.
336  *
337  *	This does NOT turn an async write into a sync write.  It waits
338  *	for earlier writes to complete and generally returns before the
339  *	caller's write has reached the device.
340  */
341 static __inline void
342 waitrunningbufspace(void)
343 {
344 	/*
345 	 * XXX race against wakeup interrupt, currently
346 	 * protected by Giant.  FIXME!
347 	 */
348 	while (runningbufspace > hirunningspace) {
349 		++runningbufreq;
350 		tsleep(&runningbufreq, PVM, "wdrain", 0);
351 	}
352 }
353 
354 
355 /*
356  *	vfs_buf_test_cache:
357  *
358  *	Called when a buffer is extended.  This function clears the B_CACHE
359  *	bit if the newly extended portion of the buffer does not contain
360  *	valid data.
361  */
362 static __inline__
363 void
364 vfs_buf_test_cache(struct buf *bp,
365 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
366 		  vm_page_t m)
367 {
368 	GIANT_REQUIRED;
369 
370 	if (bp->b_flags & B_CACHE) {
371 		int base = (foff + off) & PAGE_MASK;
372 		if (vm_page_is_valid(m, base, size) == 0)
373 			bp->b_flags &= ~B_CACHE;
374 	}
375 }
376 
377 /* Wake up the buffer deamon if necessary */
378 static __inline__
379 void
380 bd_wakeup(int dirtybuflevel)
381 {
382 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
383 		bd_request = 1;
384 		wakeup(&bd_request);
385 	}
386 }
387 
388 /*
389  * bd_speedup - speedup the buffer cache flushing code
390  */
391 
392 static __inline__
393 void
394 bd_speedup(void)
395 {
396 	bd_wakeup(1);
397 }
398 
399 /*
400  * Calculating buffer cache scaling values and reserve space for buffer
401  * headers.  This is called during low level kernel initialization and
402  * may be called more then once.  We CANNOT write to the memory area
403  * being reserved at this time.
404  */
405 caddr_t
406 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
407 {
408 	/*
409 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
410 	 * PAGE_SIZE is >= 1K)
411 	 */
412 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
413 
414 	/*
415 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
416 	 * For the first 64MB of ram nominally allocate sufficient buffers to
417 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
418 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
419 	 * the buffer cache we limit the eventual kva reservation to
420 	 * maxbcache bytes.
421 	 *
422 	 * factor represents the 1/4 x ram conversion.
423 	 */
424 	if (nbuf == 0) {
425 		int factor = 4 * BKVASIZE / 1024;
426 
427 		nbuf = 50;
428 		if (physmem_est > 4096)
429 			nbuf += min((physmem_est - 4096) / factor,
430 			    65536 / factor);
431 		if (physmem_est > 65536)
432 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
433 
434 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
435 			nbuf = maxbcache / BKVASIZE;
436 	}
437 
438 #if 0
439 	/*
440 	 * Do not allow the buffer_map to be more then 1/2 the size of the
441 	 * kernel_map.
442 	 */
443 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
444 	    (BKVASIZE * 2)) {
445 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
446 		    (BKVASIZE * 2);
447 		printf("Warning: nbufs capped at %d\n", nbuf);
448 	}
449 #endif
450 
451 	/*
452 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
453 	 * We have no less then 16 and no more then 256.
454 	 */
455 	nswbuf = max(min(nbuf/4, 256), 16);
456 
457 	/*
458 	 * Reserve space for the buffer cache buffers
459 	 */
460 	swbuf = (void *)v;
461 	v = (caddr_t)(swbuf + nswbuf);
462 	buf = (void *)v;
463 	v = (caddr_t)(buf + nbuf);
464 
465 #ifdef USE_BUFHASH
466 	/*
467 	 * Calculate the hash table size and reserve space
468 	 */
469 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
470 		;
471 	bufhashtbl = (void *)v;
472 	v = (caddr_t)(bufhashtbl + bufhashmask);
473 	--bufhashmask;
474 #endif
475 	return(v);
476 }
477 
478 /* Initialize the buffer subsystem.  Called before use of any buffers. */
479 void
480 bufinit(void)
481 {
482 	struct buf *bp;
483 	vm_offset_t bogus_offset;
484 	int i;
485 
486 	GIANT_REQUIRED;
487 
488 #ifdef USE_BUFHASH
489 	LIST_INIT(&invalhash);
490 #endif
491 	mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF);
492 
493 #ifdef USE_BUFHASH
494 	for (i = 0; i <= bufhashmask; i++)
495 		LIST_INIT(&bufhashtbl[i]);
496 #endif
497 
498 	/* next, make a null set of free lists */
499 	for (i = 0; i < BUFFER_QUEUES; i++)
500 		TAILQ_INIT(&bufqueues[i]);
501 
502 	/* finally, initialize each buffer header and stick on empty q */
503 	for (i = 0; i < nbuf; i++) {
504 		bp = &buf[i];
505 		bzero(bp, sizeof *bp);
506 		bp->b_flags = B_INVAL;	/* we're just an empty header */
507 		bp->b_dev = NODEV;
508 		bp->b_rcred = NOCRED;
509 		bp->b_wcred = NOCRED;
510 		bp->b_qindex = QUEUE_EMPTY;
511 		bp->b_xflags = 0;
512 		LIST_INIT(&bp->b_dep);
513 		BUF_LOCKINIT(bp);
514 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
515 #ifdef USE_BUFHASH
516 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
517 #endif
518 	}
519 
520 	/*
521 	 * maxbufspace is the absolute maximum amount of buffer space we are
522 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
523 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
524 	 * used by most other processes.  The differential is required to
525 	 * ensure that buf_daemon is able to run when other processes might
526 	 * be blocked waiting for buffer space.
527 	 *
528 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
529 	 * this may result in KVM fragmentation which is not handled optimally
530 	 * by the system.
531 	 */
532 	maxbufspace = nbuf * BKVASIZE;
533 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
534 	lobufspace = hibufspace - MAXBSIZE;
535 
536 	lorunningspace = 512 * 1024;
537 	hirunningspace = 1024 * 1024;
538 
539 /*
540  * Limit the amount of malloc memory since it is wired permanently into
541  * the kernel space.  Even though this is accounted for in the buffer
542  * allocation, we don't want the malloced region to grow uncontrolled.
543  * The malloc scheme improves memory utilization significantly on average
544  * (small) directories.
545  */
546 	maxbufmallocspace = hibufspace / 20;
547 
548 /*
549  * Reduce the chance of a deadlock occuring by limiting the number
550  * of delayed-write dirty buffers we allow to stack up.
551  */
552 	hidirtybuffers = nbuf / 4 + 20;
553 	numdirtybuffers = 0;
554 /*
555  * To support extreme low-memory systems, make sure hidirtybuffers cannot
556  * eat up all available buffer space.  This occurs when our minimum cannot
557  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
558  * BKVASIZE'd (8K) buffers.
559  */
560 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
561 		hidirtybuffers >>= 1;
562 	}
563 	lodirtybuffers = hidirtybuffers / 2;
564 
565 /*
566  * Try to keep the number of free buffers in the specified range,
567  * and give special processes (e.g. like buf_daemon) access to an
568  * emergency reserve.
569  */
570 	lofreebuffers = nbuf / 18 + 5;
571 	hifreebuffers = 2 * lofreebuffers;
572 	numfreebuffers = nbuf;
573 
574 /*
575  * Maximum number of async ops initiated per buf_daemon loop.  This is
576  * somewhat of a hack at the moment, we really need to limit ourselves
577  * based on the number of bytes of I/O in-transit that were initiated
578  * from buf_daemon.
579  */
580 
581 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
582 	vm_object_lock(kernel_object);
583 	bogus_page = vm_page_alloc(kernel_object,
584 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
585 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
586 	vm_object_unlock(kernel_object);
587 }
588 
589 /*
590  * bfreekva() - free the kva allocation for a buffer.
591  *
592  *	Must be called at splbio() or higher as this is the only locking for
593  *	buffer_map.
594  *
595  *	Since this call frees up buffer space, we call bufspacewakeup().
596  */
597 static void
598 bfreekva(struct buf * bp)
599 {
600 	GIANT_REQUIRED;
601 
602 	if (bp->b_kvasize) {
603 		++buffreekvacnt;
604 		bufspace -= bp->b_kvasize;
605 		vm_map_delete(buffer_map,
606 		    (vm_offset_t) bp->b_kvabase,
607 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
608 		);
609 		bp->b_kvasize = 0;
610 		bufspacewakeup();
611 	}
612 }
613 
614 /*
615  *	bremfree:
616  *
617  *	Remove the buffer from the appropriate free list.
618  */
619 void
620 bremfree(struct buf * bp)
621 {
622 	int s = splbio();
623 	int old_qindex = bp->b_qindex;
624 
625 	GIANT_REQUIRED;
626 
627 	if (bp->b_qindex != QUEUE_NONE) {
628 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
629 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
630 		bp->b_qindex = QUEUE_NONE;
631 	} else {
632 		if (BUF_REFCNT(bp) <= 1)
633 			panic("bremfree: removing a buffer not on a queue");
634 	}
635 
636 	/*
637 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
638 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
639 	 * the buffer was free and we must decrement numfreebuffers.
640 	 */
641 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
642 		switch(old_qindex) {
643 		case QUEUE_DIRTY:
644 		case QUEUE_CLEAN:
645 		case QUEUE_EMPTY:
646 		case QUEUE_EMPTYKVA:
647 			--numfreebuffers;
648 			break;
649 		default:
650 			break;
651 		}
652 	}
653 	splx(s);
654 }
655 
656 
657 /*
658  * Get a buffer with the specified data.  Look in the cache first.  We
659  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
660  * is set, the buffer is valid and we do not have to do anything ( see
661  * getblk() ).  This is really just a special case of breadn().
662  */
663 int
664 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
665     struct buf ** bpp)
666 {
667 
668 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
669 }
670 
671 /*
672  * Operates like bread, but also starts asynchronous I/O on
673  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
674  * to initiating I/O . If B_CACHE is set, the buffer is valid
675  * and we do not have to do anything.
676  */
677 int
678 breadn(struct vnode * vp, daddr_t blkno, int size,
679     daddr_t * rablkno, int *rabsize,
680     int cnt, struct ucred * cred, struct buf ** bpp)
681 {
682 	struct buf *bp, *rabp;
683 	int i;
684 	int rv = 0, readwait = 0;
685 
686 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
687 
688 	/* if not found in cache, do some I/O */
689 	if ((bp->b_flags & B_CACHE) == 0) {
690 		if (curthread != PCPU_GET(idlethread))
691 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
692 		bp->b_iocmd = BIO_READ;
693 		bp->b_flags &= ~B_INVAL;
694 		bp->b_ioflags &= ~BIO_ERROR;
695 		if (bp->b_rcred == NOCRED && cred != NOCRED)
696 			bp->b_rcred = crhold(cred);
697 		vfs_busy_pages(bp, 0);
698 		if (vp->v_type == VCHR)
699 			VOP_SPECSTRATEGY(vp, bp);
700 		else
701 			VOP_STRATEGY(vp, bp);
702 		++readwait;
703 	}
704 
705 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
706 		if (inmem(vp, *rablkno))
707 			continue;
708 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
709 
710 		if ((rabp->b_flags & B_CACHE) == 0) {
711 			if (curthread != PCPU_GET(idlethread))
712 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
713 			rabp->b_flags |= B_ASYNC;
714 			rabp->b_flags &= ~B_INVAL;
715 			rabp->b_ioflags &= ~BIO_ERROR;
716 			rabp->b_iocmd = BIO_READ;
717 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
718 				rabp->b_rcred = crhold(cred);
719 			vfs_busy_pages(rabp, 0);
720 			BUF_KERNPROC(rabp);
721 			if (vp->v_type == VCHR)
722 				VOP_SPECSTRATEGY(vp, rabp);
723 			else
724 				VOP_STRATEGY(vp, rabp);
725 		} else {
726 			brelse(rabp);
727 		}
728 	}
729 
730 	if (readwait) {
731 		rv = bufwait(bp);
732 	}
733 	return (rv);
734 }
735 
736 /*
737  * Write, release buffer on completion.  (Done by iodone
738  * if async).  Do not bother writing anything if the buffer
739  * is invalid.
740  *
741  * Note that we set B_CACHE here, indicating that buffer is
742  * fully valid and thus cacheable.  This is true even of NFS
743  * now so we set it generally.  This could be set either here
744  * or in biodone() since the I/O is synchronous.  We put it
745  * here.
746  */
747 
748 int
749 bwrite(struct buf * bp)
750 {
751 	int oldflags, s;
752 	struct buf *newbp;
753 
754 	if (bp->b_flags & B_INVAL) {
755 		brelse(bp);
756 		return (0);
757 	}
758 
759 	oldflags = bp->b_flags;
760 
761 	if (BUF_REFCNT(bp) == 0)
762 		panic("bwrite: buffer is not busy???");
763 	s = splbio();
764 	/*
765 	 * If a background write is already in progress, delay
766 	 * writing this block if it is asynchronous. Otherwise
767 	 * wait for the background write to complete.
768 	 */
769 	if (bp->b_xflags & BX_BKGRDINPROG) {
770 		if (bp->b_flags & B_ASYNC) {
771 			splx(s);
772 			bdwrite(bp);
773 			return (0);
774 		}
775 		bp->b_xflags |= BX_BKGRDWAIT;
776 		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
777 		if (bp->b_xflags & BX_BKGRDINPROG)
778 			panic("bwrite: still writing");
779 	}
780 
781 	/* Mark the buffer clean */
782 	bundirty(bp);
783 
784 	/*
785 	 * If this buffer is marked for background writing and we
786 	 * do not have to wait for it, make a copy and write the
787 	 * copy so as to leave this buffer ready for further use.
788 	 *
789 	 * This optimization eats a lot of memory.  If we have a page
790 	 * or buffer shortfall we can't do it.
791 	 */
792 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
793 	    (bp->b_flags & B_ASYNC) &&
794 	    !vm_page_count_severe() &&
795 	    !buf_dirty_count_severe()) {
796 		if (bp->b_iodone != NULL) {
797 			printf("bp->b_iodone = %p\n", bp->b_iodone);
798 			panic("bwrite: need chained iodone");
799 		}
800 
801 		/* get a new block */
802 		newbp = geteblk(bp->b_bufsize);
803 
804 		/*
805 		 * set it to be identical to the old block.  We have to
806 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
807 		 * to avoid confusing the splay tree and gbincore().
808 		 */
809 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
810 		newbp->b_lblkno = bp->b_lblkno;
811 		newbp->b_xflags |= BX_BKGRDMARKER;
812 		bgetvp(bp->b_vp, newbp);
813 		newbp->b_blkno = bp->b_blkno;
814 		newbp->b_offset = bp->b_offset;
815 		newbp->b_iodone = vfs_backgroundwritedone;
816 		newbp->b_flags |= B_ASYNC;
817 		newbp->b_flags &= ~B_INVAL;
818 
819 		/* move over the dependencies */
820 		if (LIST_FIRST(&bp->b_dep) != NULL)
821 			buf_movedeps(bp, newbp);
822 
823 		/*
824 		 * Initiate write on the copy, release the original to
825 		 * the B_LOCKED queue so that it cannot go away until
826 		 * the background write completes. If not locked it could go
827 		 * away and then be reconstituted while it was being written.
828 		 * If the reconstituted buffer were written, we could end up
829 		 * with two background copies being written at the same time.
830 		 */
831 		bp->b_xflags |= BX_BKGRDINPROG;
832 		bp->b_flags |= B_LOCKED;
833 		bqrelse(bp);
834 		bp = newbp;
835 	}
836 
837 	bp->b_flags &= ~B_DONE;
838 	bp->b_ioflags &= ~BIO_ERROR;
839 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
840 	bp->b_iocmd = BIO_WRITE;
841 
842 	VI_LOCK(bp->b_vp);
843 	bp->b_vp->v_numoutput++;
844 	VI_UNLOCK(bp->b_vp);
845 	vfs_busy_pages(bp, 1);
846 
847 	/*
848 	 * Normal bwrites pipeline writes
849 	 */
850 	bp->b_runningbufspace = bp->b_bufsize;
851 	runningbufspace += bp->b_runningbufspace;
852 
853 	if (curthread != PCPU_GET(idlethread))
854 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
855 	splx(s);
856 	if (oldflags & B_ASYNC)
857 		BUF_KERNPROC(bp);
858 	if (bp->b_vp->v_type == VCHR)
859 		VOP_SPECSTRATEGY(bp->b_vp, bp);
860 	else
861 		VOP_STRATEGY(bp->b_vp, bp);
862 
863 	if ((oldflags & B_ASYNC) == 0) {
864 		int rtval = bufwait(bp);
865 		brelse(bp);
866 		return (rtval);
867 	} else if ((oldflags & B_NOWDRAIN) == 0) {
868 		/*
869 		 * don't allow the async write to saturate the I/O
870 		 * system.  Deadlocks can occur only if a device strategy
871 		 * routine (like in MD) turns around and issues another
872 		 * high-level write, in which case B_NOWDRAIN is expected
873 		 * to be set.  Otherwise we will not deadlock here because
874 		 * we are blocking waiting for I/O that is already in-progress
875 		 * to complete.
876 		 */
877 		waitrunningbufspace();
878 	}
879 
880 	return (0);
881 }
882 
883 /*
884  * Complete a background write started from bwrite.
885  */
886 static void
887 vfs_backgroundwritedone(bp)
888 	struct buf *bp;
889 {
890 	struct buf *origbp;
891 
892 	/*
893 	 * Find the original buffer that we are writing.
894 	 */
895 	VI_LOCK(bp->b_vp);
896 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
897 		panic("backgroundwritedone: lost buffer");
898 	VI_UNLOCK(bp->b_vp);
899 	/*
900 	 * Process dependencies then return any unfinished ones.
901 	 */
902 	if (LIST_FIRST(&bp->b_dep) != NULL)
903 		buf_complete(bp);
904 	if (LIST_FIRST(&bp->b_dep) != NULL)
905 		buf_movedeps(bp, origbp);
906 	/*
907 	 * Clear the BX_BKGRDINPROG flag in the original buffer
908 	 * and awaken it if it is waiting for the write to complete.
909 	 * If BX_BKGRDINPROG is not set in the original buffer it must
910 	 * have been released and re-instantiated - which is not legal.
911 	 */
912 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
913 	    ("backgroundwritedone: lost buffer2"));
914 	origbp->b_xflags &= ~BX_BKGRDINPROG;
915 	if (origbp->b_xflags & BX_BKGRDWAIT) {
916 		origbp->b_xflags &= ~BX_BKGRDWAIT;
917 		wakeup(&origbp->b_xflags);
918 	}
919 	/*
920 	 * Clear the B_LOCKED flag and remove it from the locked
921 	 * queue if it currently resides there.
922 	 */
923 	origbp->b_flags &= ~B_LOCKED;
924 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
925 		bremfree(origbp);
926 		bqrelse(origbp);
927 	}
928 	/*
929 	 * This buffer is marked B_NOCACHE, so when it is released
930 	 * by biodone, it will be tossed. We mark it with BIO_READ
931 	 * to avoid biodone doing a second vwakeup.
932 	 */
933 	bp->b_flags |= B_NOCACHE;
934 	bp->b_iocmd = BIO_READ;
935 	bp->b_flags &= ~(B_CACHE | B_DONE);
936 	bp->b_iodone = 0;
937 	bufdone(bp);
938 }
939 
940 /*
941  * Delayed write. (Buffer is marked dirty).  Do not bother writing
942  * anything if the buffer is marked invalid.
943  *
944  * Note that since the buffer must be completely valid, we can safely
945  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
946  * biodone() in order to prevent getblk from writing the buffer
947  * out synchronously.
948  */
949 void
950 bdwrite(struct buf * bp)
951 {
952 	GIANT_REQUIRED;
953 
954 	if (BUF_REFCNT(bp) == 0)
955 		panic("bdwrite: buffer is not busy");
956 
957 	if (bp->b_flags & B_INVAL) {
958 		brelse(bp);
959 		return;
960 	}
961 	bdirty(bp);
962 
963 	/*
964 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
965 	 * true even of NFS now.
966 	 */
967 	bp->b_flags |= B_CACHE;
968 
969 	/*
970 	 * This bmap keeps the system from needing to do the bmap later,
971 	 * perhaps when the system is attempting to do a sync.  Since it
972 	 * is likely that the indirect block -- or whatever other datastructure
973 	 * that the filesystem needs is still in memory now, it is a good
974 	 * thing to do this.  Note also, that if the pageout daemon is
975 	 * requesting a sync -- there might not be enough memory to do
976 	 * the bmap then...  So, this is important to do.
977 	 */
978 	if (bp->b_vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
979 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
980 	}
981 
982 	/*
983 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
984 	 */
985 	vfs_setdirty(bp);
986 
987 	/*
988 	 * We need to do this here to satisfy the vnode_pager and the
989 	 * pageout daemon, so that it thinks that the pages have been
990 	 * "cleaned".  Note that since the pages are in a delayed write
991 	 * buffer -- the VFS layer "will" see that the pages get written
992 	 * out on the next sync, or perhaps the cluster will be completed.
993 	 */
994 	vfs_clean_pages(bp);
995 	bqrelse(bp);
996 
997 	/*
998 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
999 	 * buffers (midpoint between our recovery point and our stall
1000 	 * point).
1001 	 */
1002 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1003 
1004 	/*
1005 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1006 	 * due to the softdep code.
1007 	 */
1008 }
1009 
1010 /*
1011  *	bdirty:
1012  *
1013  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1014  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1015  *	itself to properly update it in the dirty/clean lists.  We mark it
1016  *	B_DONE to ensure that any asynchronization of the buffer properly
1017  *	clears B_DONE ( else a panic will occur later ).
1018  *
1019  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1020  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1021  *	should only be called if the buffer is known-good.
1022  *
1023  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1024  *	count.
1025  *
1026  *	Must be called at splbio().
1027  *	The buffer must be on QUEUE_NONE.
1028  */
1029 void
1030 bdirty(bp)
1031 	struct buf *bp;
1032 {
1033 	KASSERT(bp->b_qindex == QUEUE_NONE,
1034 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1035 	bp->b_flags &= ~(B_RELBUF);
1036 	bp->b_iocmd = BIO_WRITE;
1037 
1038 	if ((bp->b_flags & B_DELWRI) == 0) {
1039 		bp->b_flags |= B_DONE | B_DELWRI;
1040 		reassignbuf(bp, bp->b_vp);
1041 		++numdirtybuffers;
1042 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1043 	}
1044 }
1045 
1046 /*
1047  *	bundirty:
1048  *
1049  *	Clear B_DELWRI for buffer.
1050  *
1051  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1052  *	count.
1053  *
1054  *	Must be called at splbio().
1055  *	The buffer must be on QUEUE_NONE.
1056  */
1057 
1058 void
1059 bundirty(bp)
1060 	struct buf *bp;
1061 {
1062 	KASSERT(bp->b_qindex == QUEUE_NONE,
1063 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1064 
1065 	if (bp->b_flags & B_DELWRI) {
1066 		bp->b_flags &= ~B_DELWRI;
1067 		reassignbuf(bp, bp->b_vp);
1068 		--numdirtybuffers;
1069 		numdirtywakeup(lodirtybuffers);
1070 	}
1071 	/*
1072 	 * Since it is now being written, we can clear its deferred write flag.
1073 	 */
1074 	bp->b_flags &= ~B_DEFERRED;
1075 }
1076 
1077 /*
1078  *	bawrite:
1079  *
1080  *	Asynchronous write.  Start output on a buffer, but do not wait for
1081  *	it to complete.  The buffer is released when the output completes.
1082  *
1083  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1084  *	B_INVAL buffers.  Not us.
1085  */
1086 void
1087 bawrite(struct buf * bp)
1088 {
1089 	bp->b_flags |= B_ASYNC;
1090 	(void) BUF_WRITE(bp);
1091 }
1092 
1093 /*
1094  *	bwillwrite:
1095  *
1096  *	Called prior to the locking of any vnodes when we are expecting to
1097  *	write.  We do not want to starve the buffer cache with too many
1098  *	dirty buffers so we block here.  By blocking prior to the locking
1099  *	of any vnodes we attempt to avoid the situation where a locked vnode
1100  *	prevents the various system daemons from flushing related buffers.
1101  */
1102 
1103 void
1104 bwillwrite(void)
1105 {
1106 	if (numdirtybuffers >= hidirtybuffers) {
1107 		int s;
1108 
1109 		mtx_lock(&Giant);
1110 		s = splbio();
1111 		while (numdirtybuffers >= hidirtybuffers) {
1112 			bd_wakeup(1);
1113 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1114 			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1115 		}
1116 		splx(s);
1117 		mtx_unlock(&Giant);
1118 	}
1119 }
1120 
1121 /*
1122  * Return true if we have too many dirty buffers.
1123  */
1124 int
1125 buf_dirty_count_severe(void)
1126 {
1127 	return(numdirtybuffers >= hidirtybuffers);
1128 }
1129 
1130 /*
1131  *	brelse:
1132  *
1133  *	Release a busy buffer and, if requested, free its resources.  The
1134  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1135  *	to be accessed later as a cache entity or reused for other purposes.
1136  */
1137 void
1138 brelse(struct buf * bp)
1139 {
1140 	int s;
1141 
1142 	GIANT_REQUIRED;
1143 
1144 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1145 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1146 
1147 	s = splbio();
1148 
1149 	if (bp->b_flags & B_LOCKED)
1150 		bp->b_ioflags &= ~BIO_ERROR;
1151 
1152 	if (bp->b_iocmd == BIO_WRITE &&
1153 	    (bp->b_ioflags & BIO_ERROR) &&
1154 	    !(bp->b_flags & B_INVAL)) {
1155 		/*
1156 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1157 		 * pages from being scrapped.  If B_INVAL is set then
1158 		 * this case is not run and the next case is run to
1159 		 * destroy the buffer.  B_INVAL can occur if the buffer
1160 		 * is outside the range supported by the underlying device.
1161 		 */
1162 		bp->b_ioflags &= ~BIO_ERROR;
1163 		bdirty(bp);
1164 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1165 	    (bp->b_ioflags & BIO_ERROR) ||
1166 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1167 		/*
1168 		 * Either a failed I/O or we were asked to free or not
1169 		 * cache the buffer.
1170 		 */
1171 		bp->b_flags |= B_INVAL;
1172 		if (LIST_FIRST(&bp->b_dep) != NULL)
1173 			buf_deallocate(bp);
1174 		if (bp->b_flags & B_DELWRI) {
1175 			--numdirtybuffers;
1176 			numdirtywakeup(lodirtybuffers);
1177 		}
1178 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1179 		if ((bp->b_flags & B_VMIO) == 0) {
1180 			if (bp->b_bufsize)
1181 				allocbuf(bp, 0);
1182 			if (bp->b_vp)
1183 				brelvp(bp);
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1189 	 * is called with B_DELWRI set, the underlying pages may wind up
1190 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1191 	 * because pages associated with a B_DELWRI bp are marked clean.
1192 	 *
1193 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1194 	 * if B_DELWRI is set.
1195 	 *
1196 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1197 	 * on pages to return pages to the VM page queues.
1198 	 */
1199 	if (bp->b_flags & B_DELWRI)
1200 		bp->b_flags &= ~B_RELBUF;
1201 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1202 		bp->b_flags |= B_RELBUF;
1203 
1204 	/*
1205 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1206 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1207 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1208 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1209 	 *
1210 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1211 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1212 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1213 	 *
1214 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1215 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1216 	 * the commit state and we cannot afford to lose the buffer. If the
1217 	 * buffer has a background write in progress, we need to keep it
1218 	 * around to prevent it from being reconstituted and starting a second
1219 	 * background write.
1220 	 */
1221 	if ((bp->b_flags & B_VMIO)
1222 	    && !(bp->b_vp->v_mount != NULL &&
1223 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1224 		 !vn_isdisk(bp->b_vp, NULL) &&
1225 		 (bp->b_flags & B_DELWRI))
1226 	    ) {
1227 
1228 		int i, j, resid;
1229 		vm_page_t m;
1230 		off_t foff;
1231 		vm_pindex_t poff;
1232 		vm_object_t obj;
1233 		struct vnode *vp;
1234 
1235 		vp = bp->b_vp;
1236 		obj = bp->b_object;
1237 
1238 		/*
1239 		 * Get the base offset and length of the buffer.  Note that
1240 		 * in the VMIO case if the buffer block size is not
1241 		 * page-aligned then b_data pointer may not be page-aligned.
1242 		 * But our b_pages[] array *IS* page aligned.
1243 		 *
1244 		 * block sizes less then DEV_BSIZE (usually 512) are not
1245 		 * supported due to the page granularity bits (m->valid,
1246 		 * m->dirty, etc...).
1247 		 *
1248 		 * See man buf(9) for more information
1249 		 */
1250 		resid = bp->b_bufsize;
1251 		foff = bp->b_offset;
1252 
1253 		for (i = 0; i < bp->b_npages; i++) {
1254 			int had_bogus = 0;
1255 
1256 			m = bp->b_pages[i];
1257 			vm_page_lock_queues();
1258 			vm_page_flag_clear(m, PG_ZERO);
1259 			vm_page_unlock_queues();
1260 
1261 			/*
1262 			 * If we hit a bogus page, fixup *all* the bogus pages
1263 			 * now.
1264 			 */
1265 			if (m == bogus_page) {
1266 				poff = OFF_TO_IDX(bp->b_offset);
1267 				had_bogus = 1;
1268 
1269 				for (j = i; j < bp->b_npages; j++) {
1270 					vm_page_t mtmp;
1271 					mtmp = bp->b_pages[j];
1272 					if (mtmp == bogus_page) {
1273 						mtmp = vm_page_lookup(obj, poff + j);
1274 						if (!mtmp) {
1275 							panic("brelse: page missing\n");
1276 						}
1277 						bp->b_pages[j] = mtmp;
1278 					}
1279 				}
1280 
1281 				if ((bp->b_flags & B_INVAL) == 0) {
1282 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1283 				}
1284 				m = bp->b_pages[i];
1285 			}
1286 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1287 				int poffset = foff & PAGE_MASK;
1288 				int presid = resid > (PAGE_SIZE - poffset) ?
1289 					(PAGE_SIZE - poffset) : resid;
1290 
1291 				KASSERT(presid >= 0, ("brelse: extra page"));
1292 				vm_page_set_invalid(m, poffset, presid);
1293 				if (had_bogus)
1294 					printf("avoided corruption bug in bogus_page/brelse code\n");
1295 			}
1296 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1297 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1298 		}
1299 
1300 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1301 			vfs_vmio_release(bp);
1302 
1303 	} else if (bp->b_flags & B_VMIO) {
1304 
1305 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1306 			vfs_vmio_release(bp);
1307 		}
1308 
1309 	}
1310 
1311 	if (bp->b_qindex != QUEUE_NONE)
1312 		panic("brelse: free buffer onto another queue???");
1313 	if (BUF_REFCNT(bp) > 1) {
1314 		/* do not release to free list */
1315 		BUF_UNLOCK(bp);
1316 		splx(s);
1317 		return;
1318 	}
1319 
1320 	/* enqueue */
1321 
1322 	/* buffers with no memory */
1323 	if (bp->b_bufsize == 0) {
1324 		bp->b_flags |= B_INVAL;
1325 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1326 		if (bp->b_xflags & BX_BKGRDINPROG)
1327 			panic("losing buffer 1");
1328 		if (bp->b_kvasize) {
1329 			bp->b_qindex = QUEUE_EMPTYKVA;
1330 		} else {
1331 			bp->b_qindex = QUEUE_EMPTY;
1332 		}
1333 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1334 #ifdef USE_BUFHASH
1335 		LIST_REMOVE(bp, b_hash);
1336 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1337 #endif
1338 		bp->b_dev = NODEV;
1339 	/* buffers with junk contents */
1340 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1341 	    (bp->b_ioflags & BIO_ERROR)) {
1342 		bp->b_flags |= B_INVAL;
1343 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1344 		if (bp->b_xflags & BX_BKGRDINPROG)
1345 			panic("losing buffer 2");
1346 		bp->b_qindex = QUEUE_CLEAN;
1347 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1348 #ifdef USE_BUFHASH
1349 		LIST_REMOVE(bp, b_hash);
1350 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1351 #endif
1352 		bp->b_dev = NODEV;
1353 
1354 	/* buffers that are locked */
1355 	} else if (bp->b_flags & B_LOCKED) {
1356 		bp->b_qindex = QUEUE_LOCKED;
1357 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1358 
1359 	/* remaining buffers */
1360 	} else {
1361 		if (bp->b_flags & B_DELWRI)
1362 			bp->b_qindex = QUEUE_DIRTY;
1363 		else
1364 			bp->b_qindex = QUEUE_CLEAN;
1365 		if (bp->b_flags & B_AGE)
1366 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1367 		else
1368 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1369 	}
1370 
1371 	/*
1372 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1373 	 * placed the buffer on the correct queue.  We must also disassociate
1374 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1375 	 * find it.
1376 	 */
1377 	if (bp->b_flags & B_INVAL) {
1378 		if (bp->b_flags & B_DELWRI)
1379 			bundirty(bp);
1380 		if (bp->b_vp)
1381 			brelvp(bp);
1382 	}
1383 
1384 	/*
1385 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1386 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1387 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1388 	 * if B_INVAL is set ).
1389 	 */
1390 
1391 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1392 		bufcountwakeup();
1393 
1394 	/*
1395 	 * Something we can maybe free or reuse
1396 	 */
1397 	if (bp->b_bufsize || bp->b_kvasize)
1398 		bufspacewakeup();
1399 
1400 	/* unlock */
1401 	BUF_UNLOCK(bp);
1402 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1403 			B_DIRECT | B_NOWDRAIN);
1404 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1405 		panic("brelse: not dirty");
1406 	splx(s);
1407 }
1408 
1409 /*
1410  * Release a buffer back to the appropriate queue but do not try to free
1411  * it.  The buffer is expected to be used again soon.
1412  *
1413  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1414  * biodone() to requeue an async I/O on completion.  It is also used when
1415  * known good buffers need to be requeued but we think we may need the data
1416  * again soon.
1417  *
1418  * XXX we should be able to leave the B_RELBUF hint set on completion.
1419  */
1420 void
1421 bqrelse(struct buf * bp)
1422 {
1423 	int s;
1424 
1425 	s = splbio();
1426 
1427 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1428 
1429 	if (bp->b_qindex != QUEUE_NONE)
1430 		panic("bqrelse: free buffer onto another queue???");
1431 	if (BUF_REFCNT(bp) > 1) {
1432 		/* do not release to free list */
1433 		BUF_UNLOCK(bp);
1434 		splx(s);
1435 		return;
1436 	}
1437 	if (bp->b_flags & B_LOCKED) {
1438 		bp->b_ioflags &= ~BIO_ERROR;
1439 		bp->b_qindex = QUEUE_LOCKED;
1440 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1441 		/* buffers with stale but valid contents */
1442 	} else if (bp->b_flags & B_DELWRI) {
1443 		bp->b_qindex = QUEUE_DIRTY;
1444 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1445 	} else if (vm_page_count_severe()) {
1446 		/*
1447 		 * We are too low on memory, we have to try to free the
1448 		 * buffer (most importantly: the wired pages making up its
1449 		 * backing store) *now*.
1450 		 */
1451 		splx(s);
1452 		brelse(bp);
1453 		return;
1454 	} else {
1455 		bp->b_qindex = QUEUE_CLEAN;
1456 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1457 	}
1458 
1459 	if ((bp->b_flags & B_LOCKED) == 0 &&
1460 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1461 		bufcountwakeup();
1462 	}
1463 
1464 	/*
1465 	 * Something we can maybe free or reuse.
1466 	 */
1467 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1468 		bufspacewakeup();
1469 
1470 	/* unlock */
1471 	BUF_UNLOCK(bp);
1472 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1473 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1474 		panic("bqrelse: not dirty");
1475 	splx(s);
1476 }
1477 
1478 /* Give pages used by the bp back to the VM system (where possible) */
1479 static void
1480 vfs_vmio_release(bp)
1481 	struct buf *bp;
1482 {
1483 	int i;
1484 	vm_page_t m;
1485 
1486 	GIANT_REQUIRED;
1487 	vm_page_lock_queues();
1488 	for (i = 0; i < bp->b_npages; i++) {
1489 		m = bp->b_pages[i];
1490 		bp->b_pages[i] = NULL;
1491 		/*
1492 		 * In order to keep page LRU ordering consistent, put
1493 		 * everything on the inactive queue.
1494 		 */
1495 		vm_page_unwire(m, 0);
1496 		/*
1497 		 * We don't mess with busy pages, it is
1498 		 * the responsibility of the process that
1499 		 * busied the pages to deal with them.
1500 		 */
1501 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1502 			continue;
1503 
1504 		if (m->wire_count == 0) {
1505 			vm_page_flag_clear(m, PG_ZERO);
1506 			/*
1507 			 * Might as well free the page if we can and it has
1508 			 * no valid data.  We also free the page if the
1509 			 * buffer was used for direct I/O
1510 			 */
1511 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1512 			    m->hold_count == 0) {
1513 				vm_page_busy(m);
1514 				pmap_remove_all(m);
1515 				vm_page_free(m);
1516 			} else if (bp->b_flags & B_DIRECT) {
1517 				vm_page_try_to_free(m);
1518 			} else if (vm_page_count_severe()) {
1519 				vm_page_try_to_cache(m);
1520 			}
1521 		}
1522 	}
1523 	vm_page_unlock_queues();
1524 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1525 
1526 	if (bp->b_bufsize) {
1527 		bufspacewakeup();
1528 		bp->b_bufsize = 0;
1529 	}
1530 	bp->b_npages = 0;
1531 	bp->b_flags &= ~B_VMIO;
1532 	if (bp->b_vp)
1533 		brelvp(bp);
1534 }
1535 
1536 #ifdef USE_BUFHASH
1537 /*
1538  * XXX MOVED TO VFS_SUBR.C
1539  *
1540  * Check to see if a block is currently memory resident.
1541  */
1542 struct buf *
1543 gbincore(struct vnode * vp, daddr_t blkno)
1544 {
1545 	struct buf *bp;
1546 	struct bufhashhdr *bh;
1547 
1548 	bh = bufhash(vp, blkno);
1549 
1550 	/* Search hash chain */
1551 	LIST_FOREACH(bp, bh, b_hash) {
1552 		/* hit */
1553 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1554 		    (bp->b_flags & B_INVAL) == 0) {
1555 			break;
1556 		}
1557 	}
1558 	return (bp);
1559 }
1560 #endif
1561 
1562 /*
1563  *	vfs_bio_awrite:
1564  *
1565  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1566  *	This is much better then the old way of writing only one buffer at
1567  *	a time.  Note that we may not be presented with the buffers in the
1568  *	correct order, so we search for the cluster in both directions.
1569  */
1570 int
1571 vfs_bio_awrite(struct buf * bp)
1572 {
1573 	int i;
1574 	int j;
1575 	daddr_t lblkno = bp->b_lblkno;
1576 	struct vnode *vp = bp->b_vp;
1577 	int s;
1578 	int ncl;
1579 	struct buf *bpa;
1580 	int nwritten;
1581 	int size;
1582 	int maxcl;
1583 
1584 	s = splbio();
1585 	/*
1586 	 * right now we support clustered writing only to regular files.  If
1587 	 * we find a clusterable block we could be in the middle of a cluster
1588 	 * rather then at the beginning.
1589 	 */
1590 	if ((vp->v_type == VREG) &&
1591 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1592 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1593 
1594 		size = vp->v_mount->mnt_stat.f_iosize;
1595 		maxcl = MAXPHYS / size;
1596 
1597 		VI_LOCK(vp);
1598 		for (i = 1; i < maxcl; i++) {
1599 			if ((bpa = gbincore(vp, lblkno + i)) &&
1600 			    BUF_REFCNT(bpa) == 0 &&
1601 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1602 			    (B_DELWRI | B_CLUSTEROK)) &&
1603 			    (bpa->b_bufsize == size)) {
1604 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1605 				    (bpa->b_blkno !=
1606 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1607 					break;
1608 			} else {
1609 				break;
1610 			}
1611 		}
1612 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1613 			if ((bpa = gbincore(vp, lblkno - j)) &&
1614 			    BUF_REFCNT(bpa) == 0 &&
1615 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1616 			    (B_DELWRI | B_CLUSTEROK)) &&
1617 			    (bpa->b_bufsize == size)) {
1618 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1619 				    (bpa->b_blkno !=
1620 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1621 					break;
1622 			} else {
1623 				break;
1624 			}
1625 		}
1626 		VI_UNLOCK(vp);
1627 		--j;
1628 		ncl = i + j;
1629 		/*
1630 		 * this is a possible cluster write
1631 		 */
1632 		if (ncl != 1) {
1633 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1634 			splx(s);
1635 			return nwritten;
1636 		}
1637 	}
1638 
1639 	BUF_LOCK(bp, LK_EXCLUSIVE);
1640 	bremfree(bp);
1641 	bp->b_flags |= B_ASYNC;
1642 
1643 	splx(s);
1644 	/*
1645 	 * default (old) behavior, writing out only one block
1646 	 *
1647 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1648 	 */
1649 	nwritten = bp->b_bufsize;
1650 	(void) BUF_WRITE(bp);
1651 
1652 	return nwritten;
1653 }
1654 
1655 /*
1656  *	getnewbuf:
1657  *
1658  *	Find and initialize a new buffer header, freeing up existing buffers
1659  *	in the bufqueues as necessary.  The new buffer is returned locked.
1660  *
1661  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1662  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1663  *
1664  *	We block if:
1665  *		We have insufficient buffer headers
1666  *		We have insufficient buffer space
1667  *		buffer_map is too fragmented ( space reservation fails )
1668  *		If we have to flush dirty buffers ( but we try to avoid this )
1669  *
1670  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1671  *	Instead we ask the buf daemon to do it for us.  We attempt to
1672  *	avoid piecemeal wakeups of the pageout daemon.
1673  */
1674 
1675 static struct buf *
1676 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1677 {
1678 	struct buf *bp;
1679 	struct buf *nbp;
1680 	int defrag = 0;
1681 	int nqindex;
1682 	static int flushingbufs;
1683 
1684 	GIANT_REQUIRED;
1685 
1686 	/*
1687 	 * We can't afford to block since we might be holding a vnode lock,
1688 	 * which may prevent system daemons from running.  We deal with
1689 	 * low-memory situations by proactively returning memory and running
1690 	 * async I/O rather then sync I/O.
1691 	 */
1692 
1693 	++getnewbufcalls;
1694 	--getnewbufrestarts;
1695 restart:
1696 	++getnewbufrestarts;
1697 
1698 	/*
1699 	 * Setup for scan.  If we do not have enough free buffers,
1700 	 * we setup a degenerate case that immediately fails.  Note
1701 	 * that if we are specially marked process, we are allowed to
1702 	 * dip into our reserves.
1703 	 *
1704 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1705 	 *
1706 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1707 	 * However, there are a number of cases (defragging, reusing, ...)
1708 	 * where we cannot backup.
1709 	 */
1710 	nqindex = QUEUE_EMPTYKVA;
1711 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1712 
1713 	if (nbp == NULL) {
1714 		/*
1715 		 * If no EMPTYKVA buffers and we are either
1716 		 * defragging or reusing, locate a CLEAN buffer
1717 		 * to free or reuse.  If bufspace useage is low
1718 		 * skip this step so we can allocate a new buffer.
1719 		 */
1720 		if (defrag || bufspace >= lobufspace) {
1721 			nqindex = QUEUE_CLEAN;
1722 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1723 		}
1724 
1725 		/*
1726 		 * If we could not find or were not allowed to reuse a
1727 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1728 		 * buffer.  We can only use an EMPTY buffer if allocating
1729 		 * its KVA would not otherwise run us out of buffer space.
1730 		 */
1731 		if (nbp == NULL && defrag == 0 &&
1732 		    bufspace + maxsize < hibufspace) {
1733 			nqindex = QUEUE_EMPTY;
1734 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1740 	 * depending.
1741 	 */
1742 
1743 	while ((bp = nbp) != NULL) {
1744 		int qindex = nqindex;
1745 
1746 		/*
1747 		 * Calculate next bp ( we can only use it if we do not block
1748 		 * or do other fancy things ).
1749 		 */
1750 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1751 			switch(qindex) {
1752 			case QUEUE_EMPTY:
1753 				nqindex = QUEUE_EMPTYKVA;
1754 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1755 					break;
1756 				/* FALLTHROUGH */
1757 			case QUEUE_EMPTYKVA:
1758 				nqindex = QUEUE_CLEAN;
1759 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1760 					break;
1761 				/* FALLTHROUGH */
1762 			case QUEUE_CLEAN:
1763 				/*
1764 				 * nbp is NULL.
1765 				 */
1766 				break;
1767 			}
1768 		}
1769 
1770 		/*
1771 		 * Sanity Checks
1772 		 */
1773 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1774 
1775 		/*
1776 		 * Note: we no longer distinguish between VMIO and non-VMIO
1777 		 * buffers.
1778 		 */
1779 
1780 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1781 
1782 		/*
1783 		 * If we are defragging then we need a buffer with
1784 		 * b_kvasize != 0.  XXX this situation should no longer
1785 		 * occur, if defrag is non-zero the buffer's b_kvasize
1786 		 * should also be non-zero at this point.  XXX
1787 		 */
1788 		if (defrag && bp->b_kvasize == 0) {
1789 			printf("Warning: defrag empty buffer %p\n", bp);
1790 			continue;
1791 		}
1792 
1793 		/*
1794 		 * Start freeing the bp.  This is somewhat involved.  nbp
1795 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1796 		 */
1797 
1798 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1799 			panic("getnewbuf: locked buf");
1800 		bremfree(bp);
1801 
1802 		if (qindex == QUEUE_CLEAN) {
1803 			if (bp->b_flags & B_VMIO) {
1804 				bp->b_flags &= ~B_ASYNC;
1805 				vfs_vmio_release(bp);
1806 			}
1807 			if (bp->b_vp)
1808 				brelvp(bp);
1809 		}
1810 
1811 		/*
1812 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1813 		 * the scan from this point on.
1814 		 *
1815 		 * Get the rest of the buffer freed up.  b_kva* is still
1816 		 * valid after this operation.
1817 		 */
1818 
1819 		if (bp->b_rcred != NOCRED) {
1820 			crfree(bp->b_rcred);
1821 			bp->b_rcred = NOCRED;
1822 		}
1823 		if (bp->b_wcred != NOCRED) {
1824 			crfree(bp->b_wcred);
1825 			bp->b_wcred = NOCRED;
1826 		}
1827 		if (LIST_FIRST(&bp->b_dep) != NULL)
1828 			buf_deallocate(bp);
1829 		if (bp->b_xflags & BX_BKGRDINPROG)
1830 			panic("losing buffer 3");
1831 #ifdef USE_BUFHASH
1832 		LIST_REMOVE(bp, b_hash);
1833 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1834 #endif
1835 
1836 		if (bp->b_bufsize)
1837 			allocbuf(bp, 0);
1838 
1839 		bp->b_flags = 0;
1840 		bp->b_ioflags = 0;
1841 		bp->b_xflags = 0;
1842 		bp->b_dev = NODEV;
1843 		bp->b_vp = NULL;
1844 		bp->b_blkno = bp->b_lblkno = 0;
1845 		bp->b_offset = NOOFFSET;
1846 		bp->b_iodone = 0;
1847 		bp->b_error = 0;
1848 		bp->b_resid = 0;
1849 		bp->b_bcount = 0;
1850 		bp->b_npages = 0;
1851 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1852 		bp->b_magic = B_MAGIC_BIO;
1853 		bp->b_op = &buf_ops_bio;
1854 		bp->b_object = NULL;
1855 
1856 		LIST_INIT(&bp->b_dep);
1857 
1858 		/*
1859 		 * If we are defragging then free the buffer.
1860 		 */
1861 		if (defrag) {
1862 			bp->b_flags |= B_INVAL;
1863 			bfreekva(bp);
1864 			brelse(bp);
1865 			defrag = 0;
1866 			goto restart;
1867 		}
1868 
1869 		/*
1870 		 * If we are overcomitted then recover the buffer and its
1871 		 * KVM space.  This occurs in rare situations when multiple
1872 		 * processes are blocked in getnewbuf() or allocbuf().
1873 		 */
1874 		if (bufspace >= hibufspace)
1875 			flushingbufs = 1;
1876 		if (flushingbufs && bp->b_kvasize != 0) {
1877 			bp->b_flags |= B_INVAL;
1878 			bfreekva(bp);
1879 			brelse(bp);
1880 			goto restart;
1881 		}
1882 		if (bufspace < lobufspace)
1883 			flushingbufs = 0;
1884 		break;
1885 	}
1886 
1887 	/*
1888 	 * If we exhausted our list, sleep as appropriate.  We may have to
1889 	 * wakeup various daemons and write out some dirty buffers.
1890 	 *
1891 	 * Generally we are sleeping due to insufficient buffer space.
1892 	 */
1893 
1894 	if (bp == NULL) {
1895 		int flags;
1896 		char *waitmsg;
1897 
1898 		if (defrag) {
1899 			flags = VFS_BIO_NEED_BUFSPACE;
1900 			waitmsg = "nbufkv";
1901 		} else if (bufspace >= hibufspace) {
1902 			waitmsg = "nbufbs";
1903 			flags = VFS_BIO_NEED_BUFSPACE;
1904 		} else {
1905 			waitmsg = "newbuf";
1906 			flags = VFS_BIO_NEED_ANY;
1907 		}
1908 
1909 		bd_speedup();	/* heeeelp */
1910 
1911 		needsbuffer |= flags;
1912 		while (needsbuffer & flags) {
1913 			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1914 			    waitmsg, slptimeo))
1915 				return (NULL);
1916 		}
1917 	} else {
1918 		/*
1919 		 * We finally have a valid bp.  We aren't quite out of the
1920 		 * woods, we still have to reserve kva space.  In order
1921 		 * to keep fragmentation sane we only allocate kva in
1922 		 * BKVASIZE chunks.
1923 		 */
1924 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1925 
1926 		if (maxsize != bp->b_kvasize) {
1927 			vm_offset_t addr = 0;
1928 
1929 			bfreekva(bp);
1930 
1931 			if (vm_map_findspace(buffer_map,
1932 				vm_map_min(buffer_map), maxsize, &addr)) {
1933 				/*
1934 				 * Uh oh.  Buffer map is to fragmented.  We
1935 				 * must defragment the map.
1936 				 */
1937 				++bufdefragcnt;
1938 				defrag = 1;
1939 				bp->b_flags |= B_INVAL;
1940 				brelse(bp);
1941 				goto restart;
1942 			}
1943 			if (addr) {
1944 				vm_map_insert(buffer_map, NULL, 0,
1945 					addr, addr + maxsize,
1946 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1947 
1948 				bp->b_kvabase = (caddr_t) addr;
1949 				bp->b_kvasize = maxsize;
1950 				bufspace += bp->b_kvasize;
1951 				++bufreusecnt;
1952 			}
1953 		}
1954 		bp->b_data = bp->b_kvabase;
1955 	}
1956 	return(bp);
1957 }
1958 
1959 /*
1960  *	buf_daemon:
1961  *
1962  *	buffer flushing daemon.  Buffers are normally flushed by the
1963  *	update daemon but if it cannot keep up this process starts to
1964  *	take the load in an attempt to prevent getnewbuf() from blocking.
1965  */
1966 
1967 static struct proc *bufdaemonproc;
1968 
1969 static struct kproc_desc buf_kp = {
1970 	"bufdaemon",
1971 	buf_daemon,
1972 	&bufdaemonproc
1973 };
1974 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1975 
1976 static void
1977 buf_daemon()
1978 {
1979 	int s;
1980 
1981 	mtx_lock(&Giant);
1982 
1983 	/*
1984 	 * This process needs to be suspended prior to shutdown sync.
1985 	 */
1986 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1987 	    SHUTDOWN_PRI_LAST);
1988 
1989 	/*
1990 	 * This process is allowed to take the buffer cache to the limit
1991 	 */
1992 	s = splbio();
1993 
1994 	for (;;) {
1995 		kthread_suspend_check(bufdaemonproc);
1996 
1997 		bd_request = 0;
1998 
1999 		/*
2000 		 * Do the flush.  Limit the amount of in-transit I/O we
2001 		 * allow to build up, otherwise we would completely saturate
2002 		 * the I/O system.  Wakeup any waiting processes before we
2003 		 * normally would so they can run in parallel with our drain.
2004 		 */
2005 		while (numdirtybuffers > lodirtybuffers) {
2006 			if (flushbufqueues() == 0)
2007 				break;
2008 			waitrunningbufspace();
2009 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2010 		}
2011 
2012 		/*
2013 		 * Only clear bd_request if we have reached our low water
2014 		 * mark.  The buf_daemon normally waits 1 second and
2015 		 * then incrementally flushes any dirty buffers that have
2016 		 * built up, within reason.
2017 		 *
2018 		 * If we were unable to hit our low water mark and couldn't
2019 		 * find any flushable buffers, we sleep half a second.
2020 		 * Otherwise we loop immediately.
2021 		 */
2022 		if (numdirtybuffers <= lodirtybuffers) {
2023 			/*
2024 			 * We reached our low water mark, reset the
2025 			 * request and sleep until we are needed again.
2026 			 * The sleep is just so the suspend code works.
2027 			 */
2028 			bd_request = 0;
2029 			tsleep(&bd_request, PVM, "psleep", hz);
2030 		} else {
2031 			/*
2032 			 * We couldn't find any flushable dirty buffers but
2033 			 * still have too many dirty buffers, we
2034 			 * have to sleep and try again.  (rare)
2035 			 */
2036 			tsleep(&bd_request, PVM, "qsleep", hz / 10);
2037 		}
2038 	}
2039 }
2040 
2041 /*
2042  *	flushbufqueues:
2043  *
2044  *	Try to flush a buffer in the dirty queue.  We must be careful to
2045  *	free up B_INVAL buffers instead of write them, which NFS is
2046  *	particularly sensitive to.
2047  */
2048 int flushwithdeps = 0;
2049 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2050     0, "Number of buffers flushed with dependecies that require rollbacks");
2051 static int
2052 flushbufqueues(void)
2053 {
2054 	struct thread *td = curthread;
2055 	struct vnode *vp;
2056 	struct buf *bp;
2057 
2058 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2059 		KASSERT((bp->b_flags & B_DELWRI),
2060 		    ("unexpected clean buffer %p", bp));
2061 		if ((bp->b_xflags & BX_BKGRDINPROG) != 0)
2062 			continue;
2063 		if (bp->b_flags & B_INVAL) {
2064 			if (BUF_LOCK(bp, LK_EXCLUSIVE) != 0)
2065 				panic("flushbufqueues: locked buf");
2066 			bremfree(bp);
2067 			brelse(bp);
2068 			return (1);
2069 		}
2070 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0))
2071 			continue;
2072 		/*
2073 		 * We must hold the lock on a vnode before writing
2074 		 * one of its buffers. Otherwise we may confuse, or
2075 		 * in the case of a snapshot vnode, deadlock the
2076 		 * system.
2077 		 */
2078 		if ((vp = bp->b_vp) == NULL ||
2079 		    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2080 			vfs_bio_awrite(bp);
2081 			if (vp != NULL)
2082 				VOP_UNLOCK(vp, 0, td);
2083 			return (1);
2084 		}
2085 	}
2086 	/*
2087 	 * Could not find any buffers without rollback dependencies,
2088 	 * so just write the first one in the hopes of eventually
2089 	 * making progress.
2090 	 */
2091 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2092 		KASSERT((bp->b_flags & B_DELWRI),
2093 		    ("unexpected clean buffer %p", bp));
2094 		if ((bp->b_xflags & BX_BKGRDINPROG) != 0)
2095 			continue;
2096 		if (bp->b_flags & B_INVAL) {
2097 			if (BUF_LOCK(bp, LK_EXCLUSIVE) != 0)
2098 				panic("flushbufqueues: locked buf");
2099 			bremfree(bp);
2100 			brelse(bp);
2101 			return (1);
2102 		}
2103 		/*
2104 		 * We must hold the lock on a vnode before writing
2105 		 * one of its buffers. Otherwise we may confuse, or
2106 		 * in the case of a snapshot vnode, deadlock the
2107 		 * system.
2108 		 */
2109 		if ((vp = bp->b_vp) == NULL ||
2110 		    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2111 			vfs_bio_awrite(bp);
2112 			if (vp != NULL)
2113 				VOP_UNLOCK(vp, 0, td);
2114 			flushwithdeps += 1;
2115 			return (0);
2116 		}
2117 	}
2118 	return (0);
2119 }
2120 
2121 /*
2122  * Check to see if a block is currently memory resident.
2123  */
2124 struct buf *
2125 incore(struct vnode * vp, daddr_t blkno)
2126 {
2127 	struct buf *bp;
2128 
2129 	int s = splbio();
2130 	VI_LOCK(vp);
2131 	bp = gbincore(vp, blkno);
2132 	VI_UNLOCK(vp);
2133 	splx(s);
2134 	return (bp);
2135 }
2136 
2137 /*
2138  * Returns true if no I/O is needed to access the
2139  * associated VM object.  This is like incore except
2140  * it also hunts around in the VM system for the data.
2141  */
2142 
2143 int
2144 inmem(struct vnode * vp, daddr_t blkno)
2145 {
2146 	vm_object_t obj;
2147 	vm_offset_t toff, tinc, size;
2148 	vm_page_t m;
2149 	vm_ooffset_t off;
2150 
2151 	GIANT_REQUIRED;
2152 	ASSERT_VOP_LOCKED(vp, "inmem");
2153 
2154 	if (incore(vp, blkno))
2155 		return 1;
2156 	if (vp->v_mount == NULL)
2157 		return 0;
2158 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2159 		return 0;
2160 
2161 	size = PAGE_SIZE;
2162 	if (size > vp->v_mount->mnt_stat.f_iosize)
2163 		size = vp->v_mount->mnt_stat.f_iosize;
2164 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2165 
2166 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2167 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2168 		if (!m)
2169 			goto notinmem;
2170 		tinc = size;
2171 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2172 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2173 		if (vm_page_is_valid(m,
2174 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2175 			goto notinmem;
2176 	}
2177 	return 1;
2178 
2179 notinmem:
2180 	return (0);
2181 }
2182 
2183 /*
2184  *	vfs_setdirty:
2185  *
2186  *	Sets the dirty range for a buffer based on the status of the dirty
2187  *	bits in the pages comprising the buffer.
2188  *
2189  *	The range is limited to the size of the buffer.
2190  *
2191  *	This routine is primarily used by NFS, but is generalized for the
2192  *	B_VMIO case.
2193  */
2194 static void
2195 vfs_setdirty(struct buf *bp)
2196 {
2197 	int i;
2198 	vm_object_t object;
2199 
2200 	GIANT_REQUIRED;
2201 	/*
2202 	 * Degenerate case - empty buffer
2203 	 */
2204 
2205 	if (bp->b_bufsize == 0)
2206 		return;
2207 
2208 	/*
2209 	 * We qualify the scan for modified pages on whether the
2210 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2211 	 * is not cleared simply by protecting pages off.
2212 	 */
2213 
2214 	if ((bp->b_flags & B_VMIO) == 0)
2215 		return;
2216 
2217 	object = bp->b_pages[0]->object;
2218 
2219 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2220 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2221 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2222 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2223 
2224 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2225 		vm_offset_t boffset;
2226 		vm_offset_t eoffset;
2227 
2228 		vm_page_lock_queues();
2229 		/*
2230 		 * test the pages to see if they have been modified directly
2231 		 * by users through the VM system.
2232 		 */
2233 		for (i = 0; i < bp->b_npages; i++) {
2234 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2235 			vm_page_test_dirty(bp->b_pages[i]);
2236 		}
2237 
2238 		/*
2239 		 * Calculate the encompassing dirty range, boffset and eoffset,
2240 		 * (eoffset - boffset) bytes.
2241 		 */
2242 
2243 		for (i = 0; i < bp->b_npages; i++) {
2244 			if (bp->b_pages[i]->dirty)
2245 				break;
2246 		}
2247 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2248 
2249 		for (i = bp->b_npages - 1; i >= 0; --i) {
2250 			if (bp->b_pages[i]->dirty) {
2251 				break;
2252 			}
2253 		}
2254 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2255 
2256 		vm_page_unlock_queues();
2257 		/*
2258 		 * Fit it to the buffer.
2259 		 */
2260 
2261 		if (eoffset > bp->b_bcount)
2262 			eoffset = bp->b_bcount;
2263 
2264 		/*
2265 		 * If we have a good dirty range, merge with the existing
2266 		 * dirty range.
2267 		 */
2268 
2269 		if (boffset < eoffset) {
2270 			if (bp->b_dirtyoff > boffset)
2271 				bp->b_dirtyoff = boffset;
2272 			if (bp->b_dirtyend < eoffset)
2273 				bp->b_dirtyend = eoffset;
2274 		}
2275 	}
2276 }
2277 
2278 /*
2279  *	getblk:
2280  *
2281  *	Get a block given a specified block and offset into a file/device.
2282  *	The buffers B_DONE bit will be cleared on return, making it almost
2283  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2284  *	return.  The caller should clear B_INVAL prior to initiating a
2285  *	READ.
2286  *
2287  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2288  *	an existing buffer.
2289  *
2290  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2291  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2292  *	and then cleared based on the backing VM.  If the previous buffer is
2293  *	non-0-sized but invalid, B_CACHE will be cleared.
2294  *
2295  *	If getblk() must create a new buffer, the new buffer is returned with
2296  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2297  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2298  *	backing VM.
2299  *
2300  *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2301  *	B_CACHE bit is clear.
2302  *
2303  *	What this means, basically, is that the caller should use B_CACHE to
2304  *	determine whether the buffer is fully valid or not and should clear
2305  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2306  *	the buffer by loading its data area with something, the caller needs
2307  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2308  *	the caller should set B_CACHE ( as an optimization ), else the caller
2309  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2310  *	a write attempt or if it was a successfull read.  If the caller
2311  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2312  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2313  */
2314 struct buf *
2315 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2316 {
2317 	struct buf *bp;
2318 	int s;
2319 #ifdef USE_BUFHASH
2320 	struct bufhashhdr *bh;
2321 #endif
2322 	ASSERT_VOP_LOCKED(vp, "getblk");
2323 
2324 	if (size > MAXBSIZE)
2325 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2326 
2327 	s = splbio();
2328 loop:
2329 	/*
2330 	 * Block if we are low on buffers.   Certain processes are allowed
2331 	 * to completely exhaust the buffer cache.
2332          *
2333          * If this check ever becomes a bottleneck it may be better to
2334          * move it into the else, when gbincore() fails.  At the moment
2335          * it isn't a problem.
2336 	 *
2337 	 * XXX remove if 0 sections (clean this up after its proven)
2338          */
2339 	if (numfreebuffers == 0) {
2340 		if (curthread == PCPU_GET(idlethread))
2341 			return NULL;
2342 		needsbuffer |= VFS_BIO_NEED_ANY;
2343 	}
2344 
2345 	VI_LOCK(vp);
2346 	if ((bp = gbincore(vp, blkno))) {
2347 		VI_UNLOCK(vp);
2348 		/*
2349 		 * Buffer is in-core.  If the buffer is not busy, it must
2350 		 * be on a queue.
2351 		 */
2352 
2353 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2354 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2355 			    "getblk", slpflag, slptimeo) == ENOLCK)
2356 				goto loop;
2357 			splx(s);
2358 			return (struct buf *) NULL;
2359 		}
2360 
2361 		/*
2362 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2363 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2364 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2365 		 * backing VM cache.
2366 		 */
2367 		if (bp->b_flags & B_INVAL)
2368 			bp->b_flags &= ~B_CACHE;
2369 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2370 			bp->b_flags |= B_CACHE;
2371 		bremfree(bp);
2372 
2373 		/*
2374 		 * check for size inconsistancies for non-VMIO case.
2375 		 */
2376 
2377 		if (bp->b_bcount != size) {
2378 			if ((bp->b_flags & B_VMIO) == 0 ||
2379 			    (size > bp->b_kvasize)) {
2380 				if (bp->b_flags & B_DELWRI) {
2381 					bp->b_flags |= B_NOCACHE;
2382 					BUF_WRITE(bp);
2383 				} else {
2384 					if ((bp->b_flags & B_VMIO) &&
2385 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2386 						bp->b_flags |= B_RELBUF;
2387 						brelse(bp);
2388 					} else {
2389 						bp->b_flags |= B_NOCACHE;
2390 						BUF_WRITE(bp);
2391 					}
2392 				}
2393 				goto loop;
2394 			}
2395 		}
2396 
2397 		/*
2398 		 * If the size is inconsistant in the VMIO case, we can resize
2399 		 * the buffer.  This might lead to B_CACHE getting set or
2400 		 * cleared.  If the size has not changed, B_CACHE remains
2401 		 * unchanged from its previous state.
2402 		 */
2403 
2404 		if (bp->b_bcount != size)
2405 			allocbuf(bp, size);
2406 
2407 		KASSERT(bp->b_offset != NOOFFSET,
2408 		    ("getblk: no buffer offset"));
2409 
2410 		/*
2411 		 * A buffer with B_DELWRI set and B_CACHE clear must
2412 		 * be committed before we can return the buffer in
2413 		 * order to prevent the caller from issuing a read
2414 		 * ( due to B_CACHE not being set ) and overwriting
2415 		 * it.
2416 		 *
2417 		 * Most callers, including NFS and FFS, need this to
2418 		 * operate properly either because they assume they
2419 		 * can issue a read if B_CACHE is not set, or because
2420 		 * ( for example ) an uncached B_DELWRI might loop due
2421 		 * to softupdates re-dirtying the buffer.  In the latter
2422 		 * case, B_CACHE is set after the first write completes,
2423 		 * preventing further loops.
2424 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2425 		 * above while extending the buffer, we cannot allow the
2426 		 * buffer to remain with B_CACHE set after the write
2427 		 * completes or it will represent a corrupt state.  To
2428 		 * deal with this we set B_NOCACHE to scrap the buffer
2429 		 * after the write.
2430 		 *
2431 		 * We might be able to do something fancy, like setting
2432 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2433 		 * so the below call doesn't set B_CACHE, but that gets real
2434 		 * confusing.  This is much easier.
2435 		 */
2436 
2437 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2438 			bp->b_flags |= B_NOCACHE;
2439 			BUF_WRITE(bp);
2440 			goto loop;
2441 		}
2442 
2443 		splx(s);
2444 		bp->b_flags &= ~B_DONE;
2445 	} else {
2446 		int bsize, maxsize, vmio;
2447 		off_t offset;
2448 
2449 		/*
2450 		 * Buffer is not in-core, create new buffer.  The buffer
2451 		 * returned by getnewbuf() is locked.  Note that the returned
2452 		 * buffer is also considered valid (not marked B_INVAL).
2453 		 */
2454 		VI_UNLOCK(vp);
2455 		if (vn_isdisk(vp, NULL))
2456 			bsize = DEV_BSIZE;
2457 		else if (vp->v_mountedhere)
2458 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2459 		else if (vp->v_mount)
2460 			bsize = vp->v_mount->mnt_stat.f_iosize;
2461 		else
2462 			bsize = size;
2463 
2464 		offset = blkno * bsize;
2465 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2466 		    (vp->v_vflag & VV_OBJBUF);
2467 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2468 		maxsize = imax(maxsize, bsize);
2469 
2470 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2471 			if (slpflag || slptimeo) {
2472 				splx(s);
2473 				return NULL;
2474 			}
2475 			goto loop;
2476 		}
2477 
2478 		/*
2479 		 * This code is used to make sure that a buffer is not
2480 		 * created while the getnewbuf routine is blocked.
2481 		 * This can be a problem whether the vnode is locked or not.
2482 		 * If the buffer is created out from under us, we have to
2483 		 * throw away the one we just created.  There is now window
2484 		 * race because we are safely running at splbio() from the
2485 		 * point of the duplicate buffer creation through to here,
2486 		 * and we've locked the buffer.
2487 		 *
2488 		 * Note: this must occur before we associate the buffer
2489 		 * with the vp especially considering limitations in
2490 		 * the splay tree implementation when dealing with duplicate
2491 		 * lblkno's.
2492 		 */
2493 		VI_LOCK(vp);
2494 		if (gbincore(vp, blkno)) {
2495 			VI_UNLOCK(vp);
2496 			bp->b_flags |= B_INVAL;
2497 			brelse(bp);
2498 			goto loop;
2499 		}
2500 		VI_UNLOCK(vp);
2501 
2502 		/*
2503 		 * Insert the buffer into the hash, so that it can
2504 		 * be found by incore.
2505 		 */
2506 		bp->b_blkno = bp->b_lblkno = blkno;
2507 		bp->b_offset = offset;
2508 
2509 		bgetvp(vp, bp);
2510 #ifdef USE_BUFHASH
2511 		LIST_REMOVE(bp, b_hash);
2512 		bh = bufhash(vp, blkno);
2513 		LIST_INSERT_HEAD(bh, bp, b_hash);
2514 #endif
2515 
2516 		/*
2517 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2518 		 * buffer size starts out as 0, B_CACHE will be set by
2519 		 * allocbuf() for the VMIO case prior to it testing the
2520 		 * backing store for validity.
2521 		 */
2522 
2523 		if (vmio) {
2524 			bp->b_flags |= B_VMIO;
2525 #if defined(VFS_BIO_DEBUG)
2526 			if (vp->v_type != VREG)
2527 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2528 #endif
2529 			VOP_GETVOBJECT(vp, &bp->b_object);
2530 		} else {
2531 			bp->b_flags &= ~B_VMIO;
2532 			bp->b_object = NULL;
2533 		}
2534 
2535 		allocbuf(bp, size);
2536 
2537 		splx(s);
2538 		bp->b_flags &= ~B_DONE;
2539 	}
2540 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2541 	return (bp);
2542 }
2543 
2544 /*
2545  * Get an empty, disassociated buffer of given size.  The buffer is initially
2546  * set to B_INVAL.
2547  */
2548 struct buf *
2549 geteblk(int size)
2550 {
2551 	struct buf *bp;
2552 	int s;
2553 	int maxsize;
2554 
2555 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2556 
2557 	s = splbio();
2558 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2559 		continue;
2560 	splx(s);
2561 	allocbuf(bp, size);
2562 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2563 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2564 	return (bp);
2565 }
2566 
2567 
2568 /*
2569  * This code constitutes the buffer memory from either anonymous system
2570  * memory (in the case of non-VMIO operations) or from an associated
2571  * VM object (in the case of VMIO operations).  This code is able to
2572  * resize a buffer up or down.
2573  *
2574  * Note that this code is tricky, and has many complications to resolve
2575  * deadlock or inconsistant data situations.  Tread lightly!!!
2576  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2577  * the caller.  Calling this code willy nilly can result in the loss of data.
2578  *
2579  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2580  * B_CACHE for the non-VMIO case.
2581  */
2582 
2583 int
2584 allocbuf(struct buf *bp, int size)
2585 {
2586 	int newbsize, mbsize;
2587 	int i;
2588 
2589 	GIANT_REQUIRED;
2590 
2591 	if (BUF_REFCNT(bp) == 0)
2592 		panic("allocbuf: buffer not busy");
2593 
2594 	if (bp->b_kvasize < size)
2595 		panic("allocbuf: buffer too small");
2596 
2597 	if ((bp->b_flags & B_VMIO) == 0) {
2598 		caddr_t origbuf;
2599 		int origbufsize;
2600 		/*
2601 		 * Just get anonymous memory from the kernel.  Don't
2602 		 * mess with B_CACHE.
2603 		 */
2604 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2605 		if (bp->b_flags & B_MALLOC)
2606 			newbsize = mbsize;
2607 		else
2608 			newbsize = round_page(size);
2609 
2610 		if (newbsize < bp->b_bufsize) {
2611 			/*
2612 			 * malloced buffers are not shrunk
2613 			 */
2614 			if (bp->b_flags & B_MALLOC) {
2615 				if (newbsize) {
2616 					bp->b_bcount = size;
2617 				} else {
2618 					free(bp->b_data, M_BIOBUF);
2619 					if (bp->b_bufsize) {
2620 						bufmallocspace -= bp->b_bufsize;
2621 						bufspacewakeup();
2622 						bp->b_bufsize = 0;
2623 					}
2624 					bp->b_data = bp->b_kvabase;
2625 					bp->b_bcount = 0;
2626 					bp->b_flags &= ~B_MALLOC;
2627 				}
2628 				return 1;
2629 			}
2630 			vm_hold_free_pages(
2631 			    bp,
2632 			    (vm_offset_t) bp->b_data + newbsize,
2633 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2634 		} else if (newbsize > bp->b_bufsize) {
2635 			/*
2636 			 * We only use malloced memory on the first allocation.
2637 			 * and revert to page-allocated memory when the buffer
2638 			 * grows.
2639 			 */
2640 			if ( (bufmallocspace < maxbufmallocspace) &&
2641 				(bp->b_bufsize == 0) &&
2642 				(mbsize <= PAGE_SIZE/2)) {
2643 
2644 				bp->b_data = malloc(mbsize, M_BIOBUF, 0);
2645 				bp->b_bufsize = mbsize;
2646 				bp->b_bcount = size;
2647 				bp->b_flags |= B_MALLOC;
2648 				bufmallocspace += mbsize;
2649 				return 1;
2650 			}
2651 			origbuf = NULL;
2652 			origbufsize = 0;
2653 			/*
2654 			 * If the buffer is growing on its other-than-first allocation,
2655 			 * then we revert to the page-allocation scheme.
2656 			 */
2657 			if (bp->b_flags & B_MALLOC) {
2658 				origbuf = bp->b_data;
2659 				origbufsize = bp->b_bufsize;
2660 				bp->b_data = bp->b_kvabase;
2661 				if (bp->b_bufsize) {
2662 					bufmallocspace -= bp->b_bufsize;
2663 					bufspacewakeup();
2664 					bp->b_bufsize = 0;
2665 				}
2666 				bp->b_flags &= ~B_MALLOC;
2667 				newbsize = round_page(newbsize);
2668 			}
2669 			vm_hold_load_pages(
2670 			    bp,
2671 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2672 			    (vm_offset_t) bp->b_data + newbsize);
2673 			if (origbuf) {
2674 				bcopy(origbuf, bp->b_data, origbufsize);
2675 				free(origbuf, M_BIOBUF);
2676 			}
2677 		}
2678 	} else {
2679 		int desiredpages;
2680 
2681 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2682 		desiredpages = (size == 0) ? 0 :
2683 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2684 
2685 		if (bp->b_flags & B_MALLOC)
2686 			panic("allocbuf: VMIO buffer can't be malloced");
2687 		/*
2688 		 * Set B_CACHE initially if buffer is 0 length or will become
2689 		 * 0-length.
2690 		 */
2691 		if (size == 0 || bp->b_bufsize == 0)
2692 			bp->b_flags |= B_CACHE;
2693 
2694 		if (newbsize < bp->b_bufsize) {
2695 			/*
2696 			 * DEV_BSIZE aligned new buffer size is less then the
2697 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2698 			 * if we have to remove any pages.
2699 			 */
2700 			if (desiredpages < bp->b_npages) {
2701 				vm_page_t m;
2702 
2703 				vm_page_lock_queues();
2704 				for (i = desiredpages; i < bp->b_npages; i++) {
2705 					/*
2706 					 * the page is not freed here -- it
2707 					 * is the responsibility of
2708 					 * vnode_pager_setsize
2709 					 */
2710 					m = bp->b_pages[i];
2711 					KASSERT(m != bogus_page,
2712 					    ("allocbuf: bogus page found"));
2713 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2714 						vm_page_lock_queues();
2715 
2716 					bp->b_pages[i] = NULL;
2717 					vm_page_unwire(m, 0);
2718 				}
2719 				vm_page_unlock_queues();
2720 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2721 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2722 				bp->b_npages = desiredpages;
2723 			}
2724 		} else if (size > bp->b_bcount) {
2725 			/*
2726 			 * We are growing the buffer, possibly in a
2727 			 * byte-granular fashion.
2728 			 */
2729 			struct vnode *vp;
2730 			vm_object_t obj;
2731 			vm_offset_t toff;
2732 			vm_offset_t tinc;
2733 
2734 			/*
2735 			 * Step 1, bring in the VM pages from the object,
2736 			 * allocating them if necessary.  We must clear
2737 			 * B_CACHE if these pages are not valid for the
2738 			 * range covered by the buffer.
2739 			 */
2740 
2741 			vp = bp->b_vp;
2742 			obj = bp->b_object;
2743 
2744 			while (bp->b_npages < desiredpages) {
2745 				vm_page_t m;
2746 				vm_pindex_t pi;
2747 
2748 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2749 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2750 					/*
2751 					 * note: must allocate system pages
2752 					 * since blocking here could intefere
2753 					 * with paging I/O, no matter which
2754 					 * process we are.
2755 					 */
2756 					m = vm_page_alloc(obj, pi,
2757 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2758 					if (m == NULL) {
2759 						atomic_add_int(&vm_pageout_deficit,
2760 						    desiredpages - bp->b_npages);
2761 						VM_WAIT;
2762 					} else {
2763 						vm_page_lock_queues();
2764 						vm_page_wakeup(m);
2765 						vm_page_unlock_queues();
2766 						bp->b_flags &= ~B_CACHE;
2767 						bp->b_pages[bp->b_npages] = m;
2768 						++bp->b_npages;
2769 					}
2770 					continue;
2771 				}
2772 
2773 				/*
2774 				 * We found a page.  If we have to sleep on it,
2775 				 * retry because it might have gotten freed out
2776 				 * from under us.
2777 				 *
2778 				 * We can only test PG_BUSY here.  Blocking on
2779 				 * m->busy might lead to a deadlock:
2780 				 *
2781 				 *  vm_fault->getpages->cluster_read->allocbuf
2782 				 *
2783 				 */
2784 				vm_page_lock_queues();
2785 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2786 					continue;
2787 
2788 				/*
2789 				 * We have a good page.  Should we wakeup the
2790 				 * page daemon?
2791 				 */
2792 				if ((curproc != pageproc) &&
2793 				    ((m->queue - m->pc) == PQ_CACHE) &&
2794 				    ((cnt.v_free_count + cnt.v_cache_count) <
2795 					(cnt.v_free_min + cnt.v_cache_min))) {
2796 					pagedaemon_wakeup();
2797 				}
2798 				vm_page_flag_clear(m, PG_ZERO);
2799 				vm_page_wire(m);
2800 				vm_page_unlock_queues();
2801 				bp->b_pages[bp->b_npages] = m;
2802 				++bp->b_npages;
2803 			}
2804 
2805 			/*
2806 			 * Step 2.  We've loaded the pages into the buffer,
2807 			 * we have to figure out if we can still have B_CACHE
2808 			 * set.  Note that B_CACHE is set according to the
2809 			 * byte-granular range ( bcount and size ), new the
2810 			 * aligned range ( newbsize ).
2811 			 *
2812 			 * The VM test is against m->valid, which is DEV_BSIZE
2813 			 * aligned.  Needless to say, the validity of the data
2814 			 * needs to also be DEV_BSIZE aligned.  Note that this
2815 			 * fails with NFS if the server or some other client
2816 			 * extends the file's EOF.  If our buffer is resized,
2817 			 * B_CACHE may remain set! XXX
2818 			 */
2819 
2820 			toff = bp->b_bcount;
2821 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2822 
2823 			while ((bp->b_flags & B_CACHE) && toff < size) {
2824 				vm_pindex_t pi;
2825 
2826 				if (tinc > (size - toff))
2827 					tinc = size - toff;
2828 
2829 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2830 				    PAGE_SHIFT;
2831 
2832 				vfs_buf_test_cache(
2833 				    bp,
2834 				    bp->b_offset,
2835 				    toff,
2836 				    tinc,
2837 				    bp->b_pages[pi]
2838 				);
2839 				toff += tinc;
2840 				tinc = PAGE_SIZE;
2841 			}
2842 
2843 			/*
2844 			 * Step 3, fixup the KVM pmap.  Remember that
2845 			 * bp->b_data is relative to bp->b_offset, but
2846 			 * bp->b_offset may be offset into the first page.
2847 			 */
2848 
2849 			bp->b_data = (caddr_t)
2850 			    trunc_page((vm_offset_t)bp->b_data);
2851 			pmap_qenter(
2852 			    (vm_offset_t)bp->b_data,
2853 			    bp->b_pages,
2854 			    bp->b_npages
2855 			);
2856 
2857 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2858 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2859 		}
2860 	}
2861 	if (newbsize < bp->b_bufsize)
2862 		bufspacewakeup();
2863 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2864 	bp->b_bcount = size;		/* requested buffer size	*/
2865 	return 1;
2866 }
2867 
2868 void
2869 biodone(struct bio *bp)
2870 {
2871 	bp->bio_flags |= BIO_DONE;
2872 	if (bp->bio_done != NULL)
2873 		bp->bio_done(bp);
2874 	else
2875 		wakeup(bp);
2876 }
2877 
2878 /*
2879  * Wait for a BIO to finish.
2880  *
2881  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2882  * case is not yet clear.
2883  */
2884 int
2885 biowait(struct bio *bp, const char *wchan)
2886 {
2887 
2888 	while ((bp->bio_flags & BIO_DONE) == 0)
2889 		msleep(bp, NULL, PRIBIO, wchan, hz / 10);
2890 	if (bp->bio_error != 0)
2891 		return (bp->bio_error);
2892 	if (!(bp->bio_flags & BIO_ERROR))
2893 		return (0);
2894 	return (EIO);
2895 }
2896 
2897 void
2898 biofinish(struct bio *bp, struct devstat *stat, int error)
2899 {
2900 
2901 	if (error) {
2902 		bp->bio_error = error;
2903 		bp->bio_flags |= BIO_ERROR;
2904 	}
2905 	if (stat != NULL)
2906 		devstat_end_transaction_bio(stat, bp);
2907 	biodone(bp);
2908 }
2909 
2910 void
2911 bioq_init(struct bio_queue_head *head)
2912 {
2913 	TAILQ_INIT(&head->queue);
2914 	head->last_pblkno = 0;
2915 	head->insert_point = NULL;
2916 	head->switch_point = NULL;
2917 }
2918 
2919 void
2920 bioq_remove(struct bio_queue_head *head, struct bio *bp)
2921 {
2922 	if (bp == head->switch_point)
2923 		head->switch_point = TAILQ_NEXT(bp, bio_queue);
2924 	if (bp == head->insert_point) {
2925 		head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue);
2926 		if (head->insert_point == NULL)
2927 			head->last_pblkno = 0;
2928 	} else if (bp == TAILQ_FIRST(&head->queue))
2929 		head->last_pblkno = bp->bio_pblkno;
2930 	TAILQ_REMOVE(&head->queue, bp, bio_queue);
2931 	if (TAILQ_FIRST(&head->queue) == head->switch_point)
2932 		head->switch_point = NULL;
2933 }
2934 
2935 /*
2936  *	bufwait:
2937  *
2938  *	Wait for buffer I/O completion, returning error status.  The buffer
2939  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
2940  *	error and cleared.
2941  */
2942 int
2943 bufwait(register struct buf * bp)
2944 {
2945 	int s;
2946 
2947 	s = splbio();
2948 	while ((bp->b_flags & B_DONE) == 0) {
2949 		if (bp->b_iocmd == BIO_READ)
2950 			tsleep(bp, PRIBIO, "biord", 0);
2951 		else
2952 			tsleep(bp, PRIBIO, "biowr", 0);
2953 	}
2954 	splx(s);
2955 	if (bp->b_flags & B_EINTR) {
2956 		bp->b_flags &= ~B_EINTR;
2957 		return (EINTR);
2958 	}
2959 	if (bp->b_ioflags & BIO_ERROR) {
2960 		return (bp->b_error ? bp->b_error : EIO);
2961 	} else {
2962 		return (0);
2963 	}
2964 }
2965 
2966  /*
2967   * Call back function from struct bio back up to struct buf.
2968   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2969   */
2970 void
2971 bufdonebio(struct bio *bp)
2972 {
2973 	bufdone(bp->bio_caller2);
2974 }
2975 
2976 /*
2977  *	bufdone:
2978  *
2979  *	Finish I/O on a buffer, optionally calling a completion function.
2980  *	This is usually called from an interrupt so process blocking is
2981  *	not allowed.
2982  *
2983  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2984  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2985  *	assuming B_INVAL is clear.
2986  *
2987  *	For the VMIO case, we set B_CACHE if the op was a read and no
2988  *	read error occured, or if the op was a write.  B_CACHE is never
2989  *	set if the buffer is invalid or otherwise uncacheable.
2990  *
2991  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2992  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2993  *	in the biodone routine.
2994  */
2995 void
2996 bufdone(struct buf *bp)
2997 {
2998 	int s;
2999 	void    (*biodone)(struct buf *);
3000 
3001 	GIANT_REQUIRED;
3002 
3003 	s = splbio();
3004 
3005 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3006 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3007 
3008 	bp->b_flags |= B_DONE;
3009 	runningbufwakeup(bp);
3010 
3011 	if (bp->b_iocmd == BIO_DELETE) {
3012 		brelse(bp);
3013 		splx(s);
3014 		return;
3015 	}
3016 
3017 	if (bp->b_iocmd == BIO_WRITE) {
3018 		vwakeup(bp);
3019 	}
3020 
3021 	/* call optional completion function if requested */
3022 	if (bp->b_iodone != NULL) {
3023 		biodone = bp->b_iodone;
3024 		bp->b_iodone = NULL;
3025 		(*biodone) (bp);
3026 		splx(s);
3027 		return;
3028 	}
3029 	if (LIST_FIRST(&bp->b_dep) != NULL)
3030 		buf_complete(bp);
3031 
3032 	if (bp->b_flags & B_VMIO) {
3033 		int i;
3034 		vm_ooffset_t foff;
3035 		vm_page_t m;
3036 		vm_object_t obj;
3037 		int iosize;
3038 		struct vnode *vp = bp->b_vp;
3039 
3040 		obj = bp->b_object;
3041 
3042 #if defined(VFS_BIO_DEBUG)
3043 		mp_fixme("usecount and vflag accessed without locks.");
3044 		if (vp->v_usecount == 0) {
3045 			panic("biodone: zero vnode ref count");
3046 		}
3047 
3048 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3049 			panic("biodone: vnode is not setup for merged cache");
3050 		}
3051 #endif
3052 
3053 		foff = bp->b_offset;
3054 		KASSERT(bp->b_offset != NOOFFSET,
3055 		    ("biodone: no buffer offset"));
3056 
3057 #if defined(VFS_BIO_DEBUG)
3058 		if (obj->paging_in_progress < bp->b_npages) {
3059 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3060 			    obj->paging_in_progress, bp->b_npages);
3061 		}
3062 #endif
3063 
3064 		/*
3065 		 * Set B_CACHE if the op was a normal read and no error
3066 		 * occured.  B_CACHE is set for writes in the b*write()
3067 		 * routines.
3068 		 */
3069 		iosize = bp->b_bcount - bp->b_resid;
3070 		if (bp->b_iocmd == BIO_READ &&
3071 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3072 		    !(bp->b_ioflags & BIO_ERROR)) {
3073 			bp->b_flags |= B_CACHE;
3074 		}
3075 		vm_page_lock_queues();
3076 		for (i = 0; i < bp->b_npages; i++) {
3077 			int bogusflag = 0;
3078 			int resid;
3079 
3080 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3081 			if (resid > iosize)
3082 				resid = iosize;
3083 
3084 			/*
3085 			 * cleanup bogus pages, restoring the originals
3086 			 */
3087 			m = bp->b_pages[i];
3088 			if (m == bogus_page) {
3089 				bogusflag = 1;
3090 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3091 				if (m == NULL)
3092 					panic("biodone: page disappeared!");
3093 				bp->b_pages[i] = m;
3094 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3095 			}
3096 #if defined(VFS_BIO_DEBUG)
3097 			if (OFF_TO_IDX(foff) != m->pindex) {
3098 				printf(
3099 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3100 				    (intmax_t)foff, (uintmax_t)m->pindex);
3101 			}
3102 #endif
3103 
3104 			/*
3105 			 * In the write case, the valid and clean bits are
3106 			 * already changed correctly ( see bdwrite() ), so we
3107 			 * only need to do this here in the read case.
3108 			 */
3109 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3110 				vfs_page_set_valid(bp, foff, i, m);
3111 			}
3112 			vm_page_flag_clear(m, PG_ZERO);
3113 
3114 			/*
3115 			 * when debugging new filesystems or buffer I/O methods, this
3116 			 * is the most common error that pops up.  if you see this, you
3117 			 * have not set the page busy flag correctly!!!
3118 			 */
3119 			if (m->busy == 0) {
3120 				printf("biodone: page busy < 0, "
3121 				    "pindex: %d, foff: 0x(%x,%x), "
3122 				    "resid: %d, index: %d\n",
3123 				    (int) m->pindex, (int)(foff >> 32),
3124 						(int) foff & 0xffffffff, resid, i);
3125 				if (!vn_isdisk(vp, NULL))
3126 					printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3127 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3128 					    (intmax_t) bp->b_lblkno,
3129 					    bp->b_flags, bp->b_npages);
3130 				else
3131 					printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3132 					    (intmax_t) bp->b_lblkno,
3133 					    bp->b_flags, bp->b_npages);
3134 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3135 				    m->valid, m->dirty, m->wire_count);
3136 				panic("biodone: page busy < 0\n");
3137 			}
3138 			vm_page_io_finish(m);
3139 			vm_object_pip_subtract(obj, 1);
3140 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3141 			iosize -= resid;
3142 		}
3143 		vm_page_unlock_queues();
3144 		if (obj)
3145 			vm_object_pip_wakeupn(obj, 0);
3146 	}
3147 
3148 	/*
3149 	 * For asynchronous completions, release the buffer now. The brelse
3150 	 * will do a wakeup there if necessary - so no need to do a wakeup
3151 	 * here in the async case. The sync case always needs to do a wakeup.
3152 	 */
3153 
3154 	if (bp->b_flags & B_ASYNC) {
3155 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3156 			brelse(bp);
3157 		else
3158 			bqrelse(bp);
3159 	} else {
3160 		wakeup(bp);
3161 	}
3162 	splx(s);
3163 }
3164 
3165 /*
3166  * This routine is called in lieu of iodone in the case of
3167  * incomplete I/O.  This keeps the busy status for pages
3168  * consistant.
3169  */
3170 void
3171 vfs_unbusy_pages(struct buf * bp)
3172 {
3173 	int i;
3174 
3175 	GIANT_REQUIRED;
3176 
3177 	runningbufwakeup(bp);
3178 	if (bp->b_flags & B_VMIO) {
3179 		vm_object_t obj;
3180 
3181 		obj = bp->b_object;
3182 		vm_page_lock_queues();
3183 		for (i = 0; i < bp->b_npages; i++) {
3184 			vm_page_t m = bp->b_pages[i];
3185 
3186 			if (m == bogus_page) {
3187 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3188 				if (!m) {
3189 					panic("vfs_unbusy_pages: page missing\n");
3190 				}
3191 				bp->b_pages[i] = m;
3192 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3193 			}
3194 			vm_object_pip_subtract(obj, 1);
3195 			vm_page_flag_clear(m, PG_ZERO);
3196 			vm_page_io_finish(m);
3197 		}
3198 		vm_page_unlock_queues();
3199 		vm_object_pip_wakeupn(obj, 0);
3200 	}
3201 }
3202 
3203 /*
3204  * vfs_page_set_valid:
3205  *
3206  *	Set the valid bits in a page based on the supplied offset.   The
3207  *	range is restricted to the buffer's size.
3208  *
3209  *	This routine is typically called after a read completes.
3210  */
3211 static void
3212 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3213 {
3214 	vm_ooffset_t soff, eoff;
3215 
3216 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3217 	/*
3218 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3219 	 * page boundry or cross the end of the buffer.  The end of the
3220 	 * buffer, in this case, is our file EOF, not the allocation size
3221 	 * of the buffer.
3222 	 */
3223 	soff = off;
3224 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3225 	if (eoff > bp->b_offset + bp->b_bcount)
3226 		eoff = bp->b_offset + bp->b_bcount;
3227 
3228 	/*
3229 	 * Set valid range.  This is typically the entire buffer and thus the
3230 	 * entire page.
3231 	 */
3232 	if (eoff > soff) {
3233 		vm_page_set_validclean(
3234 		    m,
3235 		   (vm_offset_t) (soff & PAGE_MASK),
3236 		   (vm_offset_t) (eoff - soff)
3237 		);
3238 	}
3239 }
3240 
3241 /*
3242  * This routine is called before a device strategy routine.
3243  * It is used to tell the VM system that paging I/O is in
3244  * progress, and treat the pages associated with the buffer
3245  * almost as being PG_BUSY.  Also the object paging_in_progress
3246  * flag is handled to make sure that the object doesn't become
3247  * inconsistant.
3248  *
3249  * Since I/O has not been initiated yet, certain buffer flags
3250  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3251  * and should be ignored.
3252  */
3253 void
3254 vfs_busy_pages(struct buf * bp, int clear_modify)
3255 {
3256 	int i, bogus;
3257 
3258 	if (bp->b_flags & B_VMIO) {
3259 		vm_object_t obj;
3260 		vm_ooffset_t foff;
3261 
3262 		obj = bp->b_object;
3263 		foff = bp->b_offset;
3264 		KASSERT(bp->b_offset != NOOFFSET,
3265 		    ("vfs_busy_pages: no buffer offset"));
3266 		vfs_setdirty(bp);
3267 retry:
3268 		vm_page_lock_queues();
3269 		for (i = 0; i < bp->b_npages; i++) {
3270 			vm_page_t m = bp->b_pages[i];
3271 
3272 			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3273 				goto retry;
3274 		}
3275 		bogus = 0;
3276 		for (i = 0; i < bp->b_npages; i++) {
3277 			vm_page_t m = bp->b_pages[i];
3278 
3279 			vm_page_flag_clear(m, PG_ZERO);
3280 			if ((bp->b_flags & B_CLUSTER) == 0) {
3281 				vm_object_pip_add(obj, 1);
3282 				vm_page_io_start(m);
3283 			}
3284 			/*
3285 			 * When readying a buffer for a read ( i.e
3286 			 * clear_modify == 0 ), it is important to do
3287 			 * bogus_page replacement for valid pages in
3288 			 * partially instantiated buffers.  Partially
3289 			 * instantiated buffers can, in turn, occur when
3290 			 * reconstituting a buffer from its VM backing store
3291 			 * base.  We only have to do this if B_CACHE is
3292 			 * clear ( which causes the I/O to occur in the
3293 			 * first place ).  The replacement prevents the read
3294 			 * I/O from overwriting potentially dirty VM-backed
3295 			 * pages.  XXX bogus page replacement is, uh, bogus.
3296 			 * It may not work properly with small-block devices.
3297 			 * We need to find a better way.
3298 			 */
3299 			pmap_remove_all(m);
3300 			if (clear_modify)
3301 				vfs_page_set_valid(bp, foff, i, m);
3302 			else if (m->valid == VM_PAGE_BITS_ALL &&
3303 				(bp->b_flags & B_CACHE) == 0) {
3304 				bp->b_pages[i] = bogus_page;
3305 				bogus++;
3306 			}
3307 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3308 		}
3309 		vm_page_unlock_queues();
3310 		if (bogus)
3311 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3312 	}
3313 }
3314 
3315 /*
3316  * Tell the VM system that the pages associated with this buffer
3317  * are clean.  This is used for delayed writes where the data is
3318  * going to go to disk eventually without additional VM intevention.
3319  *
3320  * Note that while we only really need to clean through to b_bcount, we
3321  * just go ahead and clean through to b_bufsize.
3322  */
3323 static void
3324 vfs_clean_pages(struct buf * bp)
3325 {
3326 	int i;
3327 
3328 	GIANT_REQUIRED;
3329 
3330 	if (bp->b_flags & B_VMIO) {
3331 		vm_ooffset_t foff;
3332 
3333 		foff = bp->b_offset;
3334 		KASSERT(bp->b_offset != NOOFFSET,
3335 		    ("vfs_clean_pages: no buffer offset"));
3336 		vm_page_lock_queues();
3337 		for (i = 0; i < bp->b_npages; i++) {
3338 			vm_page_t m = bp->b_pages[i];
3339 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3340 			vm_ooffset_t eoff = noff;
3341 
3342 			if (eoff > bp->b_offset + bp->b_bufsize)
3343 				eoff = bp->b_offset + bp->b_bufsize;
3344 			vfs_page_set_valid(bp, foff, i, m);
3345 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3346 			foff = noff;
3347 		}
3348 		vm_page_unlock_queues();
3349 	}
3350 }
3351 
3352 /*
3353  *	vfs_bio_set_validclean:
3354  *
3355  *	Set the range within the buffer to valid and clean.  The range is
3356  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3357  *	itself may be offset from the beginning of the first page.
3358  *
3359  */
3360 
3361 void
3362 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3363 {
3364 	if (bp->b_flags & B_VMIO) {
3365 		int i;
3366 		int n;
3367 
3368 		/*
3369 		 * Fixup base to be relative to beginning of first page.
3370 		 * Set initial n to be the maximum number of bytes in the
3371 		 * first page that can be validated.
3372 		 */
3373 
3374 		base += (bp->b_offset & PAGE_MASK);
3375 		n = PAGE_SIZE - (base & PAGE_MASK);
3376 
3377 		vm_page_lock_queues();
3378 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3379 			vm_page_t m = bp->b_pages[i];
3380 
3381 			if (n > size)
3382 				n = size;
3383 
3384 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3385 			base += n;
3386 			size -= n;
3387 			n = PAGE_SIZE;
3388 		}
3389 		vm_page_unlock_queues();
3390 	}
3391 }
3392 
3393 /*
3394  *	vfs_bio_clrbuf:
3395  *
3396  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3397  *	to clear BIO_ERROR and B_INVAL.
3398  *
3399  *	Note that while we only theoretically need to clear through b_bcount,
3400  *	we go ahead and clear through b_bufsize.
3401  */
3402 
3403 void
3404 vfs_bio_clrbuf(struct buf *bp)
3405 {
3406 	int i, mask = 0;
3407 	caddr_t sa, ea;
3408 
3409 	GIANT_REQUIRED;
3410 
3411 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3412 		bp->b_flags &= ~B_INVAL;
3413 		bp->b_ioflags &= ~BIO_ERROR;
3414 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3415 		    (bp->b_offset & PAGE_MASK) == 0) {
3416 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3417 			if ((bp->b_pages[0]->valid & mask) == mask) {
3418 				bp->b_resid = 0;
3419 				return;
3420 			}
3421 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3422 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3423 				bzero(bp->b_data, bp->b_bufsize);
3424 				bp->b_pages[0]->valid |= mask;
3425 				bp->b_resid = 0;
3426 				return;
3427 			}
3428 		}
3429 		ea = sa = bp->b_data;
3430 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3431 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3432 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3433 			ea = (caddr_t)(vm_offset_t)ulmin(
3434 			    (u_long)(vm_offset_t)ea,
3435 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3436 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3437 			if ((bp->b_pages[i]->valid & mask) == mask)
3438 				continue;
3439 			if ((bp->b_pages[i]->valid & mask) == 0) {
3440 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3441 					bzero(sa, ea - sa);
3442 				}
3443 			} else {
3444 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3445 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3446 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3447 						bzero(sa, DEV_BSIZE);
3448 				}
3449 			}
3450 			bp->b_pages[i]->valid |= mask;
3451 			vm_page_lock_queues();
3452 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3453 			vm_page_unlock_queues();
3454 		}
3455 		bp->b_resid = 0;
3456 	} else {
3457 		clrbuf(bp);
3458 	}
3459 }
3460 
3461 /*
3462  * vm_hold_load_pages and vm_hold_free_pages get pages into
3463  * a buffers address space.  The pages are anonymous and are
3464  * not associated with a file object.
3465  */
3466 static void
3467 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3468 {
3469 	vm_offset_t pg;
3470 	vm_page_t p;
3471 	int index;
3472 
3473 	GIANT_REQUIRED;
3474 
3475 	to = round_page(to);
3476 	from = round_page(from);
3477 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3478 
3479 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3480 tryagain:
3481 		/*
3482 		 * note: must allocate system pages since blocking here
3483 		 * could intefere with paging I/O, no matter which
3484 		 * process we are.
3485 		 */
3486 		vm_object_lock(kernel_object);
3487 		p = vm_page_alloc(kernel_object,
3488 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3489 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3490 		vm_object_unlock(kernel_object);
3491 		if (!p) {
3492 			atomic_add_int(&vm_pageout_deficit,
3493 			    (to - pg) >> PAGE_SHIFT);
3494 			VM_WAIT;
3495 			goto tryagain;
3496 		}
3497 		vm_page_lock_queues();
3498 		p->valid = VM_PAGE_BITS_ALL;
3499 		vm_page_unlock_queues();
3500 		pmap_qenter(pg, &p, 1);
3501 		bp->b_pages[index] = p;
3502 		vm_page_lock_queues();
3503 		vm_page_wakeup(p);
3504 		vm_page_unlock_queues();
3505 	}
3506 	bp->b_npages = index;
3507 }
3508 
3509 /* Return pages associated with this buf to the vm system */
3510 static void
3511 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3512 {
3513 	vm_offset_t pg;
3514 	vm_page_t p;
3515 	int index, newnpages;
3516 
3517 	GIANT_REQUIRED;
3518 
3519 	from = round_page(from);
3520 	to = round_page(to);
3521 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3522 
3523 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3524 		p = bp->b_pages[index];
3525 		if (p && (index < bp->b_npages)) {
3526 			if (p->busy) {
3527 				printf(
3528 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3529 				    (intmax_t)bp->b_blkno,
3530 				    (intmax_t)bp->b_lblkno);
3531 			}
3532 			bp->b_pages[index] = NULL;
3533 			pmap_qremove(pg, 1);
3534 			vm_page_lock_queues();
3535 			vm_page_busy(p);
3536 			vm_page_unwire(p, 0);
3537 			vm_page_free(p);
3538 			vm_page_unlock_queues();
3539 		}
3540 	}
3541 	bp->b_npages = newnpages;
3542 }
3543 
3544 /*
3545  * Map an IO request into kernel virtual address space.
3546  *
3547  * All requests are (re)mapped into kernel VA space.
3548  * Notice that we use b_bufsize for the size of the buffer
3549  * to be mapped.  b_bcount might be modified by the driver.
3550  *
3551  * Note that even if the caller determines that the address space should
3552  * be valid, a race or a smaller-file mapped into a larger space may
3553  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3554  * check the return value.
3555  */
3556 int
3557 vmapbuf(struct buf *bp)
3558 {
3559 	caddr_t addr, kva;
3560 	vm_offset_t pa;
3561 	int pidx, i;
3562 	struct vm_page *m;
3563 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3564 
3565 	GIANT_REQUIRED;
3566 
3567 	if ((bp->b_flags & B_PHYS) == 0)
3568 		panic("vmapbuf");
3569 
3570 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3571 	     addr < bp->b_data + bp->b_bufsize;
3572 	     addr += PAGE_SIZE, pidx++) {
3573 		/*
3574 		 * Do the vm_fault if needed; do the copy-on-write thing
3575 		 * when reading stuff off device into memory.
3576 		 *
3577 		 * NOTE! Must use pmap_extract() because addr may be in
3578 		 * the userland address space, and kextract is only guarenteed
3579 		 * to work for the kernland address space (see: sparc64 port).
3580 		 */
3581 retry:
3582 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3583 			(bp->b_iocmd == BIO_READ) ?
3584 			(VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ);
3585 		if (i < 0) {
3586 			printf("vmapbuf: warning, bad user address during I/O\n");
3587 			vm_page_lock_queues();
3588 			for (i = 0; i < pidx; ++i) {
3589 				vm_page_unhold(bp->b_pages[i]);
3590 				bp->b_pages[i] = NULL;
3591 			}
3592 			vm_page_unlock_queues();
3593 			return(-1);
3594 		}
3595 		pa = trunc_page(pmap_extract(pmap, (vm_offset_t) addr));
3596 		if (pa == 0) {
3597 			printf("vmapbuf: warning, race against user address during I/O");
3598 			goto retry;
3599 		}
3600 		m = PHYS_TO_VM_PAGE(pa);
3601 		vm_page_lock_queues();
3602 		vm_page_hold(m);
3603 		vm_page_unlock_queues();
3604 		bp->b_pages[pidx] = m;
3605 	}
3606 	if (pidx > btoc(MAXPHYS))
3607 		panic("vmapbuf: mapped more than MAXPHYS");
3608 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3609 
3610 	kva = bp->b_saveaddr;
3611 	bp->b_npages = pidx;
3612 	bp->b_saveaddr = bp->b_data;
3613 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3614 	return(0);
3615 }
3616 
3617 /*
3618  * Free the io map PTEs associated with this IO operation.
3619  * We also invalidate the TLB entries and restore the original b_addr.
3620  */
3621 void
3622 vunmapbuf(struct buf *bp)
3623 {
3624 	int pidx;
3625 	int npages;
3626 
3627 	GIANT_REQUIRED;
3628 
3629 	if ((bp->b_flags & B_PHYS) == 0)
3630 		panic("vunmapbuf");
3631 
3632 	npages = bp->b_npages;
3633 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3634 		     npages);
3635 	vm_page_lock_queues();
3636 	for (pidx = 0; pidx < npages; pidx++)
3637 		vm_page_unhold(bp->b_pages[pidx]);
3638 	vm_page_unlock_queues();
3639 
3640 	bp->b_data = bp->b_saveaddr;
3641 }
3642 
3643 #include "opt_ddb.h"
3644 #ifdef DDB
3645 #include <ddb/ddb.h>
3646 
3647 /* DDB command to show buffer data */
3648 DB_SHOW_COMMAND(buffer, db_show_buffer)
3649 {
3650 	/* get args */
3651 	struct buf *bp = (struct buf *)addr;
3652 
3653 	if (!have_addr) {
3654 		db_printf("usage: show buffer <addr>\n");
3655 		return;
3656 	}
3657 
3658 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3659 	db_printf(
3660 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3661 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3662 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3663 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3664 	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3665 	if (bp->b_npages) {
3666 		int i;
3667 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3668 		for (i = 0; i < bp->b_npages; i++) {
3669 			vm_page_t m;
3670 			m = bp->b_pages[i];
3671 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3672 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3673 			if ((i + 1) < bp->b_npages)
3674 				db_printf(",");
3675 		}
3676 		db_printf("\n");
3677 	}
3678 }
3679 #endif /* DDB */
3680