1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bio.h> 33 #include <sys/buf.h> 34 #include <sys/eventhandler.h> 35 #include <sys/lock.h> 36 #include <sys/malloc.h> 37 #include <sys/mount.h> 38 #include <sys/mutex.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/ktr.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 58 59 struct bio_ops bioops; /* I/O operation notification */ 60 61 struct buf_ops buf_ops_bio = { 62 "buf_ops_bio", 63 bwrite 64 }; 65 66 struct buf *buf; /* buffer header pool */ 67 struct swqueue bswlist; 68 struct mtx buftimelock; /* Interlock on setting prio and timo */ 69 70 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 71 vm_offset_t to); 72 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 73 vm_offset_t to); 74 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 75 int pageno, vm_page_t m); 76 static void vfs_clean_pages(struct buf * bp); 77 static void vfs_setdirty(struct buf *bp); 78 static void vfs_vmio_release(struct buf *bp); 79 static void vfs_backgroundwritedone(struct buf *bp); 80 static int flushbufqueues(void); 81 82 static int bd_request; 83 84 static void buf_daemon __P((void)); 85 /* 86 * bogus page -- for I/O to/from partially complete buffers 87 * this is a temporary solution to the problem, but it is not 88 * really that bad. it would be better to split the buffer 89 * for input in the case of buffers partially already in memory, 90 * but the code is intricate enough already. 91 */ 92 vm_page_t bogus_page; 93 int vmiodirenable = FALSE; 94 int runningbufspace; 95 static vm_offset_t bogus_offset; 96 97 static int bufspace, maxbufspace, 98 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 99 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 100 static int needsbuffer; 101 static int lorunningspace, hirunningspace, runningbufreq; 102 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 103 static int numfreebuffers, lofreebuffers, hifreebuffers; 104 static int getnewbufcalls; 105 static int getnewbufrestarts; 106 107 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 108 &numdirtybuffers, 0, ""); 109 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 110 &lodirtybuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 112 &hidirtybuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 114 &numfreebuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 116 &lofreebuffers, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 118 &hifreebuffers, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 120 &runningbufspace, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, 122 &lorunningspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, 124 &hirunningspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, 126 &maxbufspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 128 &hibufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, 130 &lobufspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 132 &bufspace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 134 &maxbufmallocspace, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 136 &bufmallocspace, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 138 &getnewbufcalls, 0, ""); 139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 140 &getnewbufrestarts, 0, ""); 141 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 142 &vmiodirenable, 0, ""); 143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, 144 &bufdefragcnt, 0, ""); 145 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, 146 &buffreekvacnt, 0, ""); 147 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, 148 &bufreusecnt, 0, ""); 149 150 static int bufhashmask; 151 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 152 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 153 char *buf_wmesg = BUF_WMESG; 154 155 extern int vm_swap_size; 156 157 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 158 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 159 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 160 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 161 162 /* 163 * Buffer hash table code. Note that the logical block scans linearly, which 164 * gives us some L1 cache locality. 165 */ 166 167 static __inline 168 struct bufhashhdr * 169 bufhash(struct vnode *vnp, daddr_t bn) 170 { 171 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 172 } 173 174 /* 175 * numdirtywakeup: 176 * 177 * If someone is blocked due to there being too many dirty buffers, 178 * and numdirtybuffers is now reasonable, wake them up. 179 */ 180 181 static __inline void 182 numdirtywakeup(int level) 183 { 184 if (numdirtybuffers <= level) { 185 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 186 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 187 wakeup(&needsbuffer); 188 } 189 } 190 } 191 192 /* 193 * bufspacewakeup: 194 * 195 * Called when buffer space is potentially available for recovery. 196 * getnewbuf() will block on this flag when it is unable to free 197 * sufficient buffer space. Buffer space becomes recoverable when 198 * bp's get placed back in the queues. 199 */ 200 201 static __inline void 202 bufspacewakeup(void) 203 { 204 /* 205 * If someone is waiting for BUF space, wake them up. Even 206 * though we haven't freed the kva space yet, the waiting 207 * process will be able to now. 208 */ 209 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 210 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 211 wakeup(&needsbuffer); 212 } 213 } 214 215 /* 216 * runningbufwakeup() - in-progress I/O accounting. 217 * 218 */ 219 static __inline void 220 runningbufwakeup(struct buf *bp) 221 { 222 if (bp->b_runningbufspace) { 223 runningbufspace -= bp->b_runningbufspace; 224 bp->b_runningbufspace = 0; 225 if (runningbufreq && runningbufspace <= lorunningspace) { 226 runningbufreq = 0; 227 wakeup(&runningbufreq); 228 } 229 } 230 } 231 232 /* 233 * bufcountwakeup: 234 * 235 * Called when a buffer has been added to one of the free queues to 236 * account for the buffer and to wakeup anyone waiting for free buffers. 237 * This typically occurs when large amounts of metadata are being handled 238 * by the buffer cache ( else buffer space runs out first, usually ). 239 */ 240 241 static __inline void 242 bufcountwakeup(void) 243 { 244 ++numfreebuffers; 245 if (needsbuffer) { 246 needsbuffer &= ~VFS_BIO_NEED_ANY; 247 if (numfreebuffers >= hifreebuffers) 248 needsbuffer &= ~VFS_BIO_NEED_FREE; 249 wakeup(&needsbuffer); 250 } 251 } 252 253 /* 254 * waitrunningbufspace() 255 * 256 * runningbufspace is a measure of the amount of I/O currently 257 * running. This routine is used in async-write situations to 258 * prevent creating huge backups of pending writes to a device. 259 * Only asynchronous writes are governed by this function. 260 * 261 * Reads will adjust runningbufspace, but will not block based on it. 262 * The read load has a side effect of reducing the allowed write load. 263 * 264 * This does NOT turn an async write into a sync write. It waits 265 * for earlier writes to complete and generally returns before the 266 * caller's write has reached the device. 267 */ 268 static __inline void 269 waitrunningbufspace(void) 270 { 271 while (runningbufspace > hirunningspace) { 272 ++runningbufreq; 273 tsleep(&runningbufreq, PVM, "wdrain", 0); 274 } 275 } 276 277 278 /* 279 * vfs_buf_test_cache: 280 * 281 * Called when a buffer is extended. This function clears the B_CACHE 282 * bit if the newly extended portion of the buffer does not contain 283 * valid data. 284 */ 285 static __inline__ 286 void 287 vfs_buf_test_cache(struct buf *bp, 288 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 289 vm_page_t m) 290 { 291 GIANT_REQUIRED; 292 293 if (bp->b_flags & B_CACHE) { 294 int base = (foff + off) & PAGE_MASK; 295 if (vm_page_is_valid(m, base, size) == 0) 296 bp->b_flags &= ~B_CACHE; 297 } 298 } 299 300 static __inline__ 301 void 302 bd_wakeup(int dirtybuflevel) 303 { 304 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 305 bd_request = 1; 306 wakeup(&bd_request); 307 } 308 } 309 310 /* 311 * bd_speedup - speedup the buffer cache flushing code 312 */ 313 314 static __inline__ 315 void 316 bd_speedup(void) 317 { 318 bd_wakeup(1); 319 } 320 321 /* 322 * Initialize buffer headers and related structures. 323 */ 324 325 caddr_t 326 bufhashinit(caddr_t vaddr) 327 { 328 /* first, make a null hash table */ 329 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 330 ; 331 bufhashtbl = (void *)vaddr; 332 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; 333 --bufhashmask; 334 return(vaddr); 335 } 336 337 void 338 bufinit(void) 339 { 340 struct buf *bp; 341 int i; 342 343 GIANT_REQUIRED; 344 345 TAILQ_INIT(&bswlist); 346 LIST_INIT(&invalhash); 347 mtx_init(&buftimelock, "buftime lock", MTX_DEF); 348 349 for (i = 0; i <= bufhashmask; i++) 350 LIST_INIT(&bufhashtbl[i]); 351 352 /* next, make a null set of free lists */ 353 for (i = 0; i < BUFFER_QUEUES; i++) 354 TAILQ_INIT(&bufqueues[i]); 355 356 /* finally, initialize each buffer header and stick on empty q */ 357 for (i = 0; i < nbuf; i++) { 358 bp = &buf[i]; 359 bzero(bp, sizeof *bp); 360 bp->b_flags = B_INVAL; /* we're just an empty header */ 361 bp->b_dev = NODEV; 362 bp->b_rcred = NOCRED; 363 bp->b_wcred = NOCRED; 364 bp->b_qindex = QUEUE_EMPTY; 365 bp->b_xflags = 0; 366 LIST_INIT(&bp->b_dep); 367 BUF_LOCKINIT(bp); 368 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 369 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 370 } 371 372 /* 373 * maxbufspace is the absolute maximum amount of buffer space we are 374 * allowed to reserve in KVM and in real terms. The absolute maximum 375 * is nominally used by buf_daemon. hibufspace is the nominal maximum 376 * used by most other processes. The differential is required to 377 * ensure that buf_daemon is able to run when other processes might 378 * be blocked waiting for buffer space. 379 * 380 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 381 * this may result in KVM fragmentation which is not handled optimally 382 * by the system. 383 */ 384 maxbufspace = nbuf * BKVASIZE; 385 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 386 lobufspace = hibufspace - MAXBSIZE; 387 388 lorunningspace = 512 * 1024; 389 hirunningspace = 1024 * 1024; 390 391 /* 392 * Limit the amount of malloc memory since it is wired permanently into 393 * the kernel space. Even though this is accounted for in the buffer 394 * allocation, we don't want the malloced region to grow uncontrolled. 395 * The malloc scheme improves memory utilization significantly on average 396 * (small) directories. 397 */ 398 maxbufmallocspace = hibufspace / 20; 399 400 /* 401 * Reduce the chance of a deadlock occuring by limiting the number 402 * of delayed-write dirty buffers we allow to stack up. 403 */ 404 hidirtybuffers = nbuf / 4 + 20; 405 numdirtybuffers = 0; 406 /* 407 * To support extreme low-memory systems, make sure hidirtybuffers cannot 408 * eat up all available buffer space. This occurs when our minimum cannot 409 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 410 * BKVASIZE'd (8K) buffers. 411 */ 412 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 413 hidirtybuffers >>= 1; 414 } 415 lodirtybuffers = hidirtybuffers / 2; 416 417 /* 418 * Try to keep the number of free buffers in the specified range, 419 * and give special processes (e.g. like buf_daemon) access to an 420 * emergency reserve. 421 */ 422 lofreebuffers = nbuf / 18 + 5; 423 hifreebuffers = 2 * lofreebuffers; 424 numfreebuffers = nbuf; 425 426 /* 427 * Maximum number of async ops initiated per buf_daemon loop. This is 428 * somewhat of a hack at the moment, we really need to limit ourselves 429 * based on the number of bytes of I/O in-transit that were initiated 430 * from buf_daemon. 431 */ 432 433 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 434 bogus_page = vm_page_alloc(kernel_object, 435 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 436 VM_ALLOC_NORMAL); 437 cnt.v_wire_count++; 438 } 439 440 /* 441 * bfreekva() - free the kva allocation for a buffer. 442 * 443 * Must be called at splbio() or higher as this is the only locking for 444 * buffer_map. 445 * 446 * Since this call frees up buffer space, we call bufspacewakeup(). 447 */ 448 static void 449 bfreekva(struct buf * bp) 450 { 451 GIANT_REQUIRED; 452 453 if (bp->b_kvasize) { 454 ++buffreekvacnt; 455 bufspace -= bp->b_kvasize; 456 vm_map_delete(buffer_map, 457 (vm_offset_t) bp->b_kvabase, 458 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 459 ); 460 bp->b_kvasize = 0; 461 bufspacewakeup(); 462 } 463 } 464 465 /* 466 * bremfree: 467 * 468 * Remove the buffer from the appropriate free list. 469 */ 470 void 471 bremfree(struct buf * bp) 472 { 473 int s = splbio(); 474 int old_qindex = bp->b_qindex; 475 476 GIANT_REQUIRED; 477 478 if (bp->b_qindex != QUEUE_NONE) { 479 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 480 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 481 bp->b_qindex = QUEUE_NONE; 482 } else { 483 if (BUF_REFCNT(bp) <= 1) 484 panic("bremfree: removing a buffer not on a queue"); 485 } 486 487 /* 488 * Fixup numfreebuffers count. If the buffer is invalid or not 489 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 490 * the buffer was free and we must decrement numfreebuffers. 491 */ 492 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 493 switch(old_qindex) { 494 case QUEUE_DIRTY: 495 case QUEUE_CLEAN: 496 case QUEUE_EMPTY: 497 case QUEUE_EMPTYKVA: 498 --numfreebuffers; 499 break; 500 default: 501 break; 502 } 503 } 504 splx(s); 505 } 506 507 508 /* 509 * Get a buffer with the specified data. Look in the cache first. We 510 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 511 * is set, the buffer is valid and we do not have to do anything ( see 512 * getblk() ). This is really just a special case of breadn(). 513 */ 514 int 515 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 516 struct buf ** bpp) 517 { 518 519 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 520 } 521 522 /* 523 * Operates like bread, but also starts asynchronous I/O on 524 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 525 * to initiating I/O . If B_CACHE is set, the buffer is valid 526 * and we do not have to do anything. 527 */ 528 int 529 breadn(struct vnode * vp, daddr_t blkno, int size, 530 daddr_t * rablkno, int *rabsize, 531 int cnt, struct ucred * cred, struct buf ** bpp) 532 { 533 struct buf *bp, *rabp; 534 int i; 535 int rv = 0, readwait = 0; 536 537 *bpp = bp = getblk(vp, blkno, size, 0, 0); 538 539 /* if not found in cache, do some I/O */ 540 if ((bp->b_flags & B_CACHE) == 0) { 541 if (curproc != PCPU_GET(idleproc)) 542 curproc->p_stats->p_ru.ru_inblock++; 543 bp->b_iocmd = BIO_READ; 544 bp->b_flags &= ~B_INVAL; 545 bp->b_ioflags &= ~BIO_ERROR; 546 if (bp->b_rcred == NOCRED) { 547 if (cred != NOCRED) 548 crhold(cred); 549 bp->b_rcred = cred; 550 } 551 vfs_busy_pages(bp, 0); 552 VOP_STRATEGY(vp, bp); 553 ++readwait; 554 } 555 556 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 557 if (inmem(vp, *rablkno)) 558 continue; 559 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 560 561 if ((rabp->b_flags & B_CACHE) == 0) { 562 if (curproc != PCPU_GET(idleproc)) 563 curproc->p_stats->p_ru.ru_inblock++; 564 rabp->b_flags |= B_ASYNC; 565 rabp->b_flags &= ~B_INVAL; 566 rabp->b_ioflags &= ~BIO_ERROR; 567 rabp->b_iocmd = BIO_READ; 568 if (rabp->b_rcred == NOCRED) { 569 if (cred != NOCRED) 570 crhold(cred); 571 rabp->b_rcred = cred; 572 } 573 vfs_busy_pages(rabp, 0); 574 BUF_KERNPROC(rabp); 575 VOP_STRATEGY(vp, rabp); 576 } else { 577 brelse(rabp); 578 } 579 } 580 581 if (readwait) { 582 rv = bufwait(bp); 583 } 584 return (rv); 585 } 586 587 /* 588 * Write, release buffer on completion. (Done by iodone 589 * if async). Do not bother writing anything if the buffer 590 * is invalid. 591 * 592 * Note that we set B_CACHE here, indicating that buffer is 593 * fully valid and thus cacheable. This is true even of NFS 594 * now so we set it generally. This could be set either here 595 * or in biodone() since the I/O is synchronous. We put it 596 * here. 597 */ 598 599 int dobkgrdwrite = 1; 600 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, ""); 601 602 int 603 bwrite(struct buf * bp) 604 { 605 int oldflags, s; 606 struct buf *newbp; 607 608 if (bp->b_flags & B_INVAL) { 609 brelse(bp); 610 return (0); 611 } 612 613 oldflags = bp->b_flags; 614 615 if (BUF_REFCNT(bp) == 0) 616 panic("bwrite: buffer is not busy???"); 617 s = splbio(); 618 /* 619 * If a background write is already in progress, delay 620 * writing this block if it is asynchronous. Otherwise 621 * wait for the background write to complete. 622 */ 623 if (bp->b_xflags & BX_BKGRDINPROG) { 624 if (bp->b_flags & B_ASYNC) { 625 splx(s); 626 bdwrite(bp); 627 return (0); 628 } 629 bp->b_xflags |= BX_BKGRDWAIT; 630 tsleep(&bp->b_xflags, PRIBIO, "biord", 0); 631 if (bp->b_xflags & BX_BKGRDINPROG) 632 panic("bwrite: still writing"); 633 } 634 635 /* Mark the buffer clean */ 636 bundirty(bp); 637 638 /* 639 * If this buffer is marked for background writing and we 640 * do not have to wait for it, make a copy and write the 641 * copy so as to leave this buffer ready for further use. 642 * 643 * This optimization eats a lot of memory. If we have a page 644 * or buffer shortfall we can't do it. 645 */ 646 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 647 (bp->b_flags & B_ASYNC) && 648 !vm_page_count_severe() && 649 !buf_dirty_count_severe()) { 650 if (bp->b_iodone != NULL) { 651 printf("bp->b_iodone = %p\n", bp->b_iodone); 652 panic("bwrite: need chained iodone"); 653 } 654 655 /* get a new block */ 656 newbp = geteblk(bp->b_bufsize); 657 658 /* set it to be identical to the old block */ 659 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 660 bgetvp(bp->b_vp, newbp); 661 newbp->b_lblkno = bp->b_lblkno; 662 newbp->b_blkno = bp->b_blkno; 663 newbp->b_offset = bp->b_offset; 664 newbp->b_iodone = vfs_backgroundwritedone; 665 newbp->b_flags |= B_ASYNC; 666 newbp->b_flags &= ~B_INVAL; 667 668 /* move over the dependencies */ 669 if (LIST_FIRST(&bp->b_dep) != NULL) 670 buf_movedeps(bp, newbp); 671 672 /* 673 * Initiate write on the copy, release the original to 674 * the B_LOCKED queue so that it cannot go away until 675 * the background write completes. If not locked it could go 676 * away and then be reconstituted while it was being written. 677 * If the reconstituted buffer were written, we could end up 678 * with two background copies being written at the same time. 679 */ 680 bp->b_xflags |= BX_BKGRDINPROG; 681 bp->b_flags |= B_LOCKED; 682 bqrelse(bp); 683 bp = newbp; 684 } 685 686 bp->b_flags &= ~B_DONE; 687 bp->b_ioflags &= ~BIO_ERROR; 688 bp->b_flags |= B_WRITEINPROG | B_CACHE; 689 bp->b_iocmd = BIO_WRITE; 690 691 bp->b_vp->v_numoutput++; 692 vfs_busy_pages(bp, 1); 693 694 /* 695 * Normal bwrites pipeline writes 696 */ 697 bp->b_runningbufspace = bp->b_bufsize; 698 runningbufspace += bp->b_runningbufspace; 699 700 if (curproc != PCPU_GET(idleproc)) 701 curproc->p_stats->p_ru.ru_oublock++; 702 splx(s); 703 if (oldflags & B_ASYNC) 704 BUF_KERNPROC(bp); 705 BUF_STRATEGY(bp); 706 707 if ((oldflags & B_ASYNC) == 0) { 708 int rtval = bufwait(bp); 709 brelse(bp); 710 return (rtval); 711 } else { 712 /* 713 * don't allow the async write to saturate the I/O 714 * system. There is no chance of deadlock here because 715 * we are blocking on I/O that is already in-progress. 716 */ 717 waitrunningbufspace(); 718 } 719 720 return (0); 721 } 722 723 /* 724 * Complete a background write started from bwrite. 725 */ 726 static void 727 vfs_backgroundwritedone(bp) 728 struct buf *bp; 729 { 730 struct buf *origbp; 731 732 /* 733 * Find the original buffer that we are writing. 734 */ 735 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 736 panic("backgroundwritedone: lost buffer"); 737 /* 738 * Process dependencies then return any unfinished ones. 739 */ 740 if (LIST_FIRST(&bp->b_dep) != NULL) 741 buf_complete(bp); 742 if (LIST_FIRST(&bp->b_dep) != NULL) 743 buf_movedeps(bp, origbp); 744 /* 745 * Clear the BX_BKGRDINPROG flag in the original buffer 746 * and awaken it if it is waiting for the write to complete. 747 * If BX_BKGRDINPROG is not set in the original buffer it must 748 * have been released and re-instantiated - which is not legal. 749 */ 750 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); 751 origbp->b_xflags &= ~BX_BKGRDINPROG; 752 if (origbp->b_xflags & BX_BKGRDWAIT) { 753 origbp->b_xflags &= ~BX_BKGRDWAIT; 754 wakeup(&origbp->b_xflags); 755 } 756 /* 757 * Clear the B_LOCKED flag and remove it from the locked 758 * queue if it currently resides there. 759 */ 760 origbp->b_flags &= ~B_LOCKED; 761 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 762 bremfree(origbp); 763 bqrelse(origbp); 764 } 765 /* 766 * This buffer is marked B_NOCACHE, so when it is released 767 * by biodone, it will be tossed. We mark it with BIO_READ 768 * to avoid biodone doing a second vwakeup. 769 */ 770 bp->b_flags |= B_NOCACHE; 771 bp->b_iocmd = BIO_READ; 772 bp->b_flags &= ~(B_CACHE | B_DONE); 773 bp->b_iodone = 0; 774 bufdone(bp); 775 } 776 777 /* 778 * Delayed write. (Buffer is marked dirty). Do not bother writing 779 * anything if the buffer is marked invalid. 780 * 781 * Note that since the buffer must be completely valid, we can safely 782 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 783 * biodone() in order to prevent getblk from writing the buffer 784 * out synchronously. 785 */ 786 void 787 bdwrite(struct buf * bp) 788 { 789 GIANT_REQUIRED; 790 791 if (BUF_REFCNT(bp) == 0) 792 panic("bdwrite: buffer is not busy"); 793 794 if (bp->b_flags & B_INVAL) { 795 brelse(bp); 796 return; 797 } 798 bdirty(bp); 799 800 /* 801 * Set B_CACHE, indicating that the buffer is fully valid. This is 802 * true even of NFS now. 803 */ 804 bp->b_flags |= B_CACHE; 805 806 /* 807 * This bmap keeps the system from needing to do the bmap later, 808 * perhaps when the system is attempting to do a sync. Since it 809 * is likely that the indirect block -- or whatever other datastructure 810 * that the filesystem needs is still in memory now, it is a good 811 * thing to do this. Note also, that if the pageout daemon is 812 * requesting a sync -- there might not be enough memory to do 813 * the bmap then... So, this is important to do. 814 */ 815 if (bp->b_lblkno == bp->b_blkno) { 816 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 817 } 818 819 /* 820 * Set the *dirty* buffer range based upon the VM system dirty pages. 821 */ 822 vfs_setdirty(bp); 823 824 /* 825 * We need to do this here to satisfy the vnode_pager and the 826 * pageout daemon, so that it thinks that the pages have been 827 * "cleaned". Note that since the pages are in a delayed write 828 * buffer -- the VFS layer "will" see that the pages get written 829 * out on the next sync, or perhaps the cluster will be completed. 830 */ 831 vfs_clean_pages(bp); 832 bqrelse(bp); 833 834 /* 835 * Wakeup the buffer flushing daemon if we have a lot of dirty 836 * buffers (midpoint between our recovery point and our stall 837 * point). 838 */ 839 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 840 841 /* 842 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 843 * due to the softdep code. 844 */ 845 } 846 847 /* 848 * bdirty: 849 * 850 * Turn buffer into delayed write request. We must clear BIO_READ and 851 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 852 * itself to properly update it in the dirty/clean lists. We mark it 853 * B_DONE to ensure that any asynchronization of the buffer properly 854 * clears B_DONE ( else a panic will occur later ). 855 * 856 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 857 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 858 * should only be called if the buffer is known-good. 859 * 860 * Since the buffer is not on a queue, we do not update the numfreebuffers 861 * count. 862 * 863 * Must be called at splbio(). 864 * The buffer must be on QUEUE_NONE. 865 */ 866 void 867 bdirty(bp) 868 struct buf *bp; 869 { 870 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 871 bp->b_flags &= ~(B_RELBUF); 872 bp->b_iocmd = BIO_WRITE; 873 874 if ((bp->b_flags & B_DELWRI) == 0) { 875 bp->b_flags |= B_DONE | B_DELWRI; 876 reassignbuf(bp, bp->b_vp); 877 ++numdirtybuffers; 878 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 879 } 880 } 881 882 /* 883 * bundirty: 884 * 885 * Clear B_DELWRI for buffer. 886 * 887 * Since the buffer is not on a queue, we do not update the numfreebuffers 888 * count. 889 * 890 * Must be called at splbio(). 891 * The buffer must be on QUEUE_NONE. 892 */ 893 894 void 895 bundirty(bp) 896 struct buf *bp; 897 { 898 KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 899 900 if (bp->b_flags & B_DELWRI) { 901 bp->b_flags &= ~B_DELWRI; 902 reassignbuf(bp, bp->b_vp); 903 --numdirtybuffers; 904 numdirtywakeup(lodirtybuffers); 905 } 906 /* 907 * Since it is now being written, we can clear its deferred write flag. 908 */ 909 bp->b_flags &= ~B_DEFERRED; 910 } 911 912 /* 913 * bawrite: 914 * 915 * Asynchronous write. Start output on a buffer, but do not wait for 916 * it to complete. The buffer is released when the output completes. 917 * 918 * bwrite() ( or the VOP routine anyway ) is responsible for handling 919 * B_INVAL buffers. Not us. 920 */ 921 void 922 bawrite(struct buf * bp) 923 { 924 bp->b_flags |= B_ASYNC; 925 (void) BUF_WRITE(bp); 926 } 927 928 /* 929 * bowrite: 930 * 931 * Ordered write. Start output on a buffer, and flag it so that the 932 * device will write it in the order it was queued. The buffer is 933 * released when the output completes. bwrite() ( or the VOP routine 934 * anyway ) is responsible for handling B_INVAL buffers. 935 */ 936 int 937 bowrite(struct buf * bp) 938 { 939 bp->b_ioflags |= BIO_ORDERED; 940 bp->b_flags |= B_ASYNC; 941 return (BUF_WRITE(bp)); 942 } 943 944 /* 945 * bwillwrite: 946 * 947 * Called prior to the locking of any vnodes when we are expecting to 948 * write. We do not want to starve the buffer cache with too many 949 * dirty buffers so we block here. By blocking prior to the locking 950 * of any vnodes we attempt to avoid the situation where a locked vnode 951 * prevents the various system daemons from flushing related buffers. 952 */ 953 954 void 955 bwillwrite(void) 956 { 957 if (numdirtybuffers >= hidirtybuffers) { 958 int s; 959 960 s = splbio(); 961 while (numdirtybuffers >= hidirtybuffers) { 962 bd_wakeup(1); 963 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 964 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); 965 } 966 splx(s); 967 } 968 } 969 970 /* 971 * Return true if we have too many dirty buffers. 972 */ 973 int 974 buf_dirty_count_severe(void) 975 { 976 return(numdirtybuffers >= hidirtybuffers); 977 } 978 979 /* 980 * brelse: 981 * 982 * Release a busy buffer and, if requested, free its resources. The 983 * buffer will be stashed in the appropriate bufqueue[] allowing it 984 * to be accessed later as a cache entity or reused for other purposes. 985 */ 986 void 987 brelse(struct buf * bp) 988 { 989 int s; 990 991 GIANT_REQUIRED; 992 993 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 994 995 s = splbio(); 996 997 if (bp->b_flags & B_LOCKED) 998 bp->b_ioflags &= ~BIO_ERROR; 999 1000 if (bp->b_iocmd == BIO_WRITE && 1001 (bp->b_ioflags & BIO_ERROR) && 1002 !(bp->b_flags & B_INVAL)) { 1003 /* 1004 * Failed write, redirty. Must clear BIO_ERROR to prevent 1005 * pages from being scrapped. If B_INVAL is set then 1006 * this case is not run and the next case is run to 1007 * destroy the buffer. B_INVAL can occur if the buffer 1008 * is outside the range supported by the underlying device. 1009 */ 1010 bp->b_ioflags &= ~BIO_ERROR; 1011 bdirty(bp); 1012 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1013 (bp->b_ioflags & BIO_ERROR) || 1014 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1015 /* 1016 * Either a failed I/O or we were asked to free or not 1017 * cache the buffer. 1018 */ 1019 bp->b_flags |= B_INVAL; 1020 if (LIST_FIRST(&bp->b_dep) != NULL) 1021 buf_deallocate(bp); 1022 if (bp->b_flags & B_DELWRI) { 1023 --numdirtybuffers; 1024 numdirtywakeup(lodirtybuffers); 1025 } 1026 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1027 if ((bp->b_flags & B_VMIO) == 0) { 1028 if (bp->b_bufsize) 1029 allocbuf(bp, 0); 1030 if (bp->b_vp) 1031 brelvp(bp); 1032 } 1033 } 1034 1035 /* 1036 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1037 * is called with B_DELWRI set, the underlying pages may wind up 1038 * getting freed causing a previous write (bdwrite()) to get 'lost' 1039 * because pages associated with a B_DELWRI bp are marked clean. 1040 * 1041 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1042 * if B_DELWRI is set. 1043 * 1044 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1045 * on pages to return pages to the VM page queues. 1046 */ 1047 if (bp->b_flags & B_DELWRI) 1048 bp->b_flags &= ~B_RELBUF; 1049 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1050 bp->b_flags |= B_RELBUF; 1051 1052 /* 1053 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1054 * constituted, not even NFS buffers now. Two flags effect this. If 1055 * B_INVAL, the struct buf is invalidated but the VM object is kept 1056 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1057 * 1058 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1059 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1060 * buffer is also B_INVAL because it hits the re-dirtying code above. 1061 * 1062 * Normally we can do this whether a buffer is B_DELWRI or not. If 1063 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1064 * the commit state and we cannot afford to lose the buffer. If the 1065 * buffer has a background write in progress, we need to keep it 1066 * around to prevent it from being reconstituted and starting a second 1067 * background write. 1068 */ 1069 if ((bp->b_flags & B_VMIO) 1070 && !(bp->b_vp->v_tag == VT_NFS && 1071 !vn_isdisk(bp->b_vp, NULL) && 1072 (bp->b_flags & B_DELWRI)) 1073 ) { 1074 1075 int i, j, resid; 1076 vm_page_t m; 1077 off_t foff; 1078 vm_pindex_t poff; 1079 vm_object_t obj; 1080 struct vnode *vp; 1081 1082 vp = bp->b_vp; 1083 1084 /* 1085 * Get the base offset and length of the buffer. Note that 1086 * for block sizes that are less then PAGE_SIZE, the b_data 1087 * base of the buffer does not represent exactly b_offset and 1088 * neither b_offset nor b_size are necessarily page aligned. 1089 * Instead, the starting position of b_offset is: 1090 * 1091 * b_data + (b_offset & PAGE_MASK) 1092 * 1093 * block sizes less then DEV_BSIZE (usually 512) are not 1094 * supported due to the page granularity bits (m->valid, 1095 * m->dirty, etc...). 1096 * 1097 * See man buf(9) for more information 1098 */ 1099 resid = bp->b_bufsize; 1100 foff = bp->b_offset; 1101 1102 for (i = 0; i < bp->b_npages; i++) { 1103 int had_bogus = 0; 1104 1105 m = bp->b_pages[i]; 1106 vm_page_flag_clear(m, PG_ZERO); 1107 1108 /* 1109 * If we hit a bogus page, fixup *all* the bogus pages 1110 * now. 1111 */ 1112 if (m == bogus_page) { 1113 VOP_GETVOBJECT(vp, &obj); 1114 poff = OFF_TO_IDX(bp->b_offset); 1115 had_bogus = 1; 1116 1117 for (j = i; j < bp->b_npages; j++) { 1118 vm_page_t mtmp; 1119 mtmp = bp->b_pages[j]; 1120 if (mtmp == bogus_page) { 1121 mtmp = vm_page_lookup(obj, poff + j); 1122 if (!mtmp) { 1123 panic("brelse: page missing\n"); 1124 } 1125 bp->b_pages[j] = mtmp; 1126 } 1127 } 1128 1129 if ((bp->b_flags & B_INVAL) == 0) { 1130 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1131 } 1132 m = bp->b_pages[i]; 1133 } 1134 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1135 int poffset = foff & PAGE_MASK; 1136 int presid = resid > (PAGE_SIZE - poffset) ? 1137 (PAGE_SIZE - poffset) : resid; 1138 1139 KASSERT(presid >= 0, ("brelse: extra page")); 1140 vm_page_set_invalid(m, poffset, presid); 1141 if (had_bogus) 1142 printf("avoided corruption bug in bogus_page/brelse code\n"); 1143 } 1144 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1145 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1146 } 1147 1148 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1149 vfs_vmio_release(bp); 1150 1151 } else if (bp->b_flags & B_VMIO) { 1152 1153 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1154 vfs_vmio_release(bp); 1155 } 1156 1157 } 1158 1159 if (bp->b_qindex != QUEUE_NONE) 1160 panic("brelse: free buffer onto another queue???"); 1161 if (BUF_REFCNT(bp) > 1) { 1162 /* do not release to free list */ 1163 BUF_UNLOCK(bp); 1164 splx(s); 1165 return; 1166 } 1167 1168 /* enqueue */ 1169 1170 /* buffers with no memory */ 1171 if (bp->b_bufsize == 0) { 1172 bp->b_flags |= B_INVAL; 1173 bp->b_xflags &= ~BX_BKGRDWRITE; 1174 if (bp->b_xflags & BX_BKGRDINPROG) 1175 panic("losing buffer 1"); 1176 if (bp->b_kvasize) { 1177 bp->b_qindex = QUEUE_EMPTYKVA; 1178 } else { 1179 bp->b_qindex = QUEUE_EMPTY; 1180 } 1181 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1182 LIST_REMOVE(bp, b_hash); 1183 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1184 bp->b_dev = NODEV; 1185 /* buffers with junk contents */ 1186 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) { 1187 bp->b_flags |= B_INVAL; 1188 bp->b_xflags &= ~BX_BKGRDWRITE; 1189 if (bp->b_xflags & BX_BKGRDINPROG) 1190 panic("losing buffer 2"); 1191 bp->b_qindex = QUEUE_CLEAN; 1192 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1193 LIST_REMOVE(bp, b_hash); 1194 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1195 bp->b_dev = NODEV; 1196 1197 /* buffers that are locked */ 1198 } else if (bp->b_flags & B_LOCKED) { 1199 bp->b_qindex = QUEUE_LOCKED; 1200 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1201 1202 /* remaining buffers */ 1203 } else { 1204 if (bp->b_flags & B_DELWRI) 1205 bp->b_qindex = QUEUE_DIRTY; 1206 else 1207 bp->b_qindex = QUEUE_CLEAN; 1208 if (bp->b_flags & B_AGE) 1209 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1210 else 1211 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1212 } 1213 1214 /* 1215 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1216 * on the correct queue. 1217 */ 1218 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) { 1219 bp->b_flags &= ~B_DELWRI; 1220 --numdirtybuffers; 1221 numdirtywakeup(lodirtybuffers); 1222 } 1223 1224 /* 1225 * Fixup numfreebuffers count. The bp is on an appropriate queue 1226 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1227 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1228 * if B_INVAL is set ). 1229 */ 1230 1231 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1232 bufcountwakeup(); 1233 1234 /* 1235 * Something we can maybe free or reuse 1236 */ 1237 if (bp->b_bufsize || bp->b_kvasize) 1238 bufspacewakeup(); 1239 1240 /* unlock */ 1241 BUF_UNLOCK(bp); 1242 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT); 1243 bp->b_ioflags &= ~BIO_ORDERED; 1244 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1245 panic("brelse: not dirty"); 1246 splx(s); 1247 } 1248 1249 /* 1250 * Release a buffer back to the appropriate queue but do not try to free 1251 * it. The buffer is expected to be used again soon. 1252 * 1253 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1254 * biodone() to requeue an async I/O on completion. It is also used when 1255 * known good buffers need to be requeued but we think we may need the data 1256 * again soon. 1257 * 1258 * XXX we should be able to leave the B_RELBUF hint set on completion. 1259 */ 1260 void 1261 bqrelse(struct buf * bp) 1262 { 1263 int s; 1264 1265 s = splbio(); 1266 1267 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1268 1269 if (bp->b_qindex != QUEUE_NONE) 1270 panic("bqrelse: free buffer onto another queue???"); 1271 if (BUF_REFCNT(bp) > 1) { 1272 /* do not release to free list */ 1273 BUF_UNLOCK(bp); 1274 splx(s); 1275 return; 1276 } 1277 if (bp->b_flags & B_LOCKED) { 1278 bp->b_ioflags &= ~BIO_ERROR; 1279 bp->b_qindex = QUEUE_LOCKED; 1280 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1281 /* buffers with stale but valid contents */ 1282 } else if (bp->b_flags & B_DELWRI) { 1283 bp->b_qindex = QUEUE_DIRTY; 1284 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1285 } else if (vm_page_count_severe()) { 1286 /* 1287 * We are too low on memory, we have to try to free the 1288 * buffer (most importantly: the wired pages making up its 1289 * backing store) *now*. 1290 */ 1291 splx(s); 1292 brelse(bp); 1293 return; 1294 } else { 1295 bp->b_qindex = QUEUE_CLEAN; 1296 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1297 } 1298 1299 if ((bp->b_flags & B_LOCKED) == 0 && 1300 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1301 bufcountwakeup(); 1302 } 1303 1304 /* 1305 * Something we can maybe free or reuse. 1306 */ 1307 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1308 bufspacewakeup(); 1309 1310 /* unlock */ 1311 BUF_UNLOCK(bp); 1312 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1313 bp->b_ioflags &= ~BIO_ORDERED; 1314 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1315 panic("bqrelse: not dirty"); 1316 splx(s); 1317 } 1318 1319 static void 1320 vfs_vmio_release(bp) 1321 struct buf *bp; 1322 { 1323 int i; 1324 vm_page_t m; 1325 1326 GIANT_REQUIRED; 1327 1328 for (i = 0; i < bp->b_npages; i++) { 1329 m = bp->b_pages[i]; 1330 bp->b_pages[i] = NULL; 1331 /* 1332 * In order to keep page LRU ordering consistent, put 1333 * everything on the inactive queue. 1334 */ 1335 vm_page_unwire(m, 0); 1336 /* 1337 * We don't mess with busy pages, it is 1338 * the responsibility of the process that 1339 * busied the pages to deal with them. 1340 */ 1341 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1342 continue; 1343 1344 if (m->wire_count == 0) { 1345 vm_page_flag_clear(m, PG_ZERO); 1346 /* 1347 * Might as well free the page if we can and it has 1348 * no valid data. We also free the page if the 1349 * buffer was used for direct I/O 1350 */ 1351 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1352 vm_page_busy(m); 1353 vm_page_protect(m, VM_PROT_NONE); 1354 vm_page_free(m); 1355 } else if (bp->b_flags & B_DIRECT) { 1356 vm_page_try_to_free(m); 1357 } else if (vm_page_count_severe()) { 1358 vm_page_try_to_cache(m); 1359 } 1360 } 1361 } 1362 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1363 1364 if (bp->b_bufsize) { 1365 bufspacewakeup(); 1366 bp->b_bufsize = 0; 1367 } 1368 bp->b_npages = 0; 1369 bp->b_flags &= ~B_VMIO; 1370 if (bp->b_vp) 1371 brelvp(bp); 1372 } 1373 1374 /* 1375 * Check to see if a block is currently memory resident. 1376 */ 1377 struct buf * 1378 gbincore(struct vnode * vp, daddr_t blkno) 1379 { 1380 struct buf *bp; 1381 struct bufhashhdr *bh; 1382 1383 bh = bufhash(vp, blkno); 1384 1385 /* Search hash chain */ 1386 LIST_FOREACH(bp, bh, b_hash) { 1387 /* hit */ 1388 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1389 (bp->b_flags & B_INVAL) == 0) { 1390 break; 1391 } 1392 } 1393 return (bp); 1394 } 1395 1396 /* 1397 * vfs_bio_awrite: 1398 * 1399 * Implement clustered async writes for clearing out B_DELWRI buffers. 1400 * This is much better then the old way of writing only one buffer at 1401 * a time. Note that we may not be presented with the buffers in the 1402 * correct order, so we search for the cluster in both directions. 1403 */ 1404 int 1405 vfs_bio_awrite(struct buf * bp) 1406 { 1407 int i; 1408 int j; 1409 daddr_t lblkno = bp->b_lblkno; 1410 struct vnode *vp = bp->b_vp; 1411 int s; 1412 int ncl; 1413 struct buf *bpa; 1414 int nwritten; 1415 int size; 1416 int maxcl; 1417 1418 s = splbio(); 1419 /* 1420 * right now we support clustered writing only to regular files. If 1421 * we find a clusterable block we could be in the middle of a cluster 1422 * rather then at the beginning. 1423 */ 1424 if ((vp->v_type == VREG) && 1425 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1426 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1427 1428 size = vp->v_mount->mnt_stat.f_iosize; 1429 maxcl = MAXPHYS / size; 1430 1431 for (i = 1; i < maxcl; i++) { 1432 if ((bpa = gbincore(vp, lblkno + i)) && 1433 BUF_REFCNT(bpa) == 0 && 1434 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1435 (B_DELWRI | B_CLUSTEROK)) && 1436 (bpa->b_bufsize == size)) { 1437 if ((bpa->b_blkno == bpa->b_lblkno) || 1438 (bpa->b_blkno != 1439 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1440 break; 1441 } else { 1442 break; 1443 } 1444 } 1445 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1446 if ((bpa = gbincore(vp, lblkno - j)) && 1447 BUF_REFCNT(bpa) == 0 && 1448 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1449 (B_DELWRI | B_CLUSTEROK)) && 1450 (bpa->b_bufsize == size)) { 1451 if ((bpa->b_blkno == bpa->b_lblkno) || 1452 (bpa->b_blkno != 1453 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1454 break; 1455 } else { 1456 break; 1457 } 1458 } 1459 --j; 1460 ncl = i + j; 1461 /* 1462 * this is a possible cluster write 1463 */ 1464 if (ncl != 1) { 1465 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1466 splx(s); 1467 return nwritten; 1468 } 1469 } 1470 1471 BUF_LOCK(bp, LK_EXCLUSIVE); 1472 bremfree(bp); 1473 bp->b_flags |= B_ASYNC; 1474 1475 splx(s); 1476 /* 1477 * default (old) behavior, writing out only one block 1478 * 1479 * XXX returns b_bufsize instead of b_bcount for nwritten? 1480 */ 1481 nwritten = bp->b_bufsize; 1482 (void) BUF_WRITE(bp); 1483 1484 return nwritten; 1485 } 1486 1487 /* 1488 * getnewbuf: 1489 * 1490 * Find and initialize a new buffer header, freeing up existing buffers 1491 * in the bufqueues as necessary. The new buffer is returned locked. 1492 * 1493 * Important: B_INVAL is not set. If the caller wishes to throw the 1494 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1495 * 1496 * We block if: 1497 * We have insufficient buffer headers 1498 * We have insufficient buffer space 1499 * buffer_map is too fragmented ( space reservation fails ) 1500 * If we have to flush dirty buffers ( but we try to avoid this ) 1501 * 1502 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1503 * Instead we ask the buf daemon to do it for us. We attempt to 1504 * avoid piecemeal wakeups of the pageout daemon. 1505 */ 1506 1507 static struct buf * 1508 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1509 { 1510 struct buf *bp; 1511 struct buf *nbp; 1512 int defrag = 0; 1513 int nqindex; 1514 static int flushingbufs; 1515 1516 GIANT_REQUIRED; 1517 1518 /* 1519 * We can't afford to block since we might be holding a vnode lock, 1520 * which may prevent system daemons from running. We deal with 1521 * low-memory situations by proactively returning memory and running 1522 * async I/O rather then sync I/O. 1523 */ 1524 1525 ++getnewbufcalls; 1526 --getnewbufrestarts; 1527 restart: 1528 ++getnewbufrestarts; 1529 1530 /* 1531 * Setup for scan. If we do not have enough free buffers, 1532 * we setup a degenerate case that immediately fails. Note 1533 * that if we are specially marked process, we are allowed to 1534 * dip into our reserves. 1535 * 1536 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1537 * 1538 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1539 * However, there are a number of cases (defragging, reusing, ...) 1540 * where we cannot backup. 1541 */ 1542 nqindex = QUEUE_EMPTYKVA; 1543 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1544 1545 if (nbp == NULL) { 1546 /* 1547 * If no EMPTYKVA buffers and we are either 1548 * defragging or reusing, locate a CLEAN buffer 1549 * to free or reuse. If bufspace useage is low 1550 * skip this step so we can allocate a new buffer. 1551 */ 1552 if (defrag || bufspace >= lobufspace) { 1553 nqindex = QUEUE_CLEAN; 1554 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1555 } 1556 1557 /* 1558 * If we could not find or were not allowed to reuse a 1559 * CLEAN buffer, check to see if it is ok to use an EMPTY 1560 * buffer. We can only use an EMPTY buffer if allocating 1561 * its KVA would not otherwise run us out of buffer space. 1562 */ 1563 if (nbp == NULL && defrag == 0 && 1564 bufspace + maxsize < hibufspace) { 1565 nqindex = QUEUE_EMPTY; 1566 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1567 } 1568 } 1569 1570 /* 1571 * Run scan, possibly freeing data and/or kva mappings on the fly 1572 * depending. 1573 */ 1574 1575 while ((bp = nbp) != NULL) { 1576 int qindex = nqindex; 1577 1578 /* 1579 * Calculate next bp ( we can only use it if we do not block 1580 * or do other fancy things ). 1581 */ 1582 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1583 switch(qindex) { 1584 case QUEUE_EMPTY: 1585 nqindex = QUEUE_EMPTYKVA; 1586 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1587 break; 1588 /* fall through */ 1589 case QUEUE_EMPTYKVA: 1590 nqindex = QUEUE_CLEAN; 1591 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1592 break; 1593 /* fall through */ 1594 case QUEUE_CLEAN: 1595 /* 1596 * nbp is NULL. 1597 */ 1598 break; 1599 } 1600 } 1601 1602 /* 1603 * Sanity Checks 1604 */ 1605 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1606 1607 /* 1608 * Note: we no longer distinguish between VMIO and non-VMIO 1609 * buffers. 1610 */ 1611 1612 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1613 1614 /* 1615 * If we are defragging then we need a buffer with 1616 * b_kvasize != 0. XXX this situation should no longer 1617 * occur, if defrag is non-zero the buffer's b_kvasize 1618 * should also be non-zero at this point. XXX 1619 */ 1620 if (defrag && bp->b_kvasize == 0) { 1621 printf("Warning: defrag empty buffer %p\n", bp); 1622 continue; 1623 } 1624 1625 /* 1626 * Start freeing the bp. This is somewhat involved. nbp 1627 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1628 */ 1629 1630 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1631 panic("getnewbuf: locked buf"); 1632 bremfree(bp); 1633 1634 if (qindex == QUEUE_CLEAN) { 1635 if (bp->b_flags & B_VMIO) { 1636 bp->b_flags &= ~B_ASYNC; 1637 vfs_vmio_release(bp); 1638 } 1639 if (bp->b_vp) 1640 brelvp(bp); 1641 } 1642 1643 /* 1644 * NOTE: nbp is now entirely invalid. We can only restart 1645 * the scan from this point on. 1646 * 1647 * Get the rest of the buffer freed up. b_kva* is still 1648 * valid after this operation. 1649 */ 1650 1651 if (bp->b_rcred != NOCRED) { 1652 crfree(bp->b_rcred); 1653 bp->b_rcred = NOCRED; 1654 } 1655 if (bp->b_wcred != NOCRED) { 1656 crfree(bp->b_wcred); 1657 bp->b_wcred = NOCRED; 1658 } 1659 if (LIST_FIRST(&bp->b_dep) != NULL) 1660 buf_deallocate(bp); 1661 if (bp->b_xflags & BX_BKGRDINPROG) 1662 panic("losing buffer 3"); 1663 LIST_REMOVE(bp, b_hash); 1664 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1665 1666 if (bp->b_bufsize) 1667 allocbuf(bp, 0); 1668 1669 bp->b_flags = 0; 1670 bp->b_ioflags = 0; 1671 bp->b_xflags = 0; 1672 bp->b_dev = NODEV; 1673 bp->b_vp = NULL; 1674 bp->b_blkno = bp->b_lblkno = 0; 1675 bp->b_offset = NOOFFSET; 1676 bp->b_iodone = 0; 1677 bp->b_error = 0; 1678 bp->b_resid = 0; 1679 bp->b_bcount = 0; 1680 bp->b_npages = 0; 1681 bp->b_dirtyoff = bp->b_dirtyend = 0; 1682 bp->b_magic = B_MAGIC_BIO; 1683 bp->b_op = &buf_ops_bio; 1684 1685 LIST_INIT(&bp->b_dep); 1686 1687 /* 1688 * If we are defragging then free the buffer. 1689 */ 1690 if (defrag) { 1691 bp->b_flags |= B_INVAL; 1692 bfreekva(bp); 1693 brelse(bp); 1694 defrag = 0; 1695 goto restart; 1696 } 1697 1698 /* 1699 * If we are overcomitted then recover the buffer and its 1700 * KVM space. This occurs in rare situations when multiple 1701 * processes are blocked in getnewbuf() or allocbuf(). 1702 */ 1703 if (bufspace >= hibufspace) 1704 flushingbufs = 1; 1705 if (flushingbufs && bp->b_kvasize != 0) { 1706 bp->b_flags |= B_INVAL; 1707 bfreekva(bp); 1708 brelse(bp); 1709 goto restart; 1710 } 1711 if (bufspace < lobufspace) 1712 flushingbufs = 0; 1713 break; 1714 } 1715 1716 /* 1717 * If we exhausted our list, sleep as appropriate. We may have to 1718 * wakeup various daemons and write out some dirty buffers. 1719 * 1720 * Generally we are sleeping due to insufficient buffer space. 1721 */ 1722 1723 if (bp == NULL) { 1724 int flags; 1725 char *waitmsg; 1726 1727 if (defrag) { 1728 flags = VFS_BIO_NEED_BUFSPACE; 1729 waitmsg = "nbufkv"; 1730 } else if (bufspace >= hibufspace) { 1731 waitmsg = "nbufbs"; 1732 flags = VFS_BIO_NEED_BUFSPACE; 1733 } else { 1734 waitmsg = "newbuf"; 1735 flags = VFS_BIO_NEED_ANY; 1736 } 1737 1738 bd_speedup(); /* heeeelp */ 1739 1740 needsbuffer |= flags; 1741 while (needsbuffer & flags) { 1742 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1743 waitmsg, slptimeo)) 1744 return (NULL); 1745 } 1746 } else { 1747 /* 1748 * We finally have a valid bp. We aren't quite out of the 1749 * woods, we still have to reserve kva space. In order 1750 * to keep fragmentation sane we only allocate kva in 1751 * BKVASIZE chunks. 1752 */ 1753 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1754 1755 if (maxsize != bp->b_kvasize) { 1756 vm_offset_t addr = 0; 1757 1758 bfreekva(bp); 1759 1760 if (vm_map_findspace(buffer_map, 1761 vm_map_min(buffer_map), maxsize, &addr)) { 1762 /* 1763 * Uh oh. Buffer map is to fragmented. We 1764 * must defragment the map. 1765 */ 1766 ++bufdefragcnt; 1767 defrag = 1; 1768 bp->b_flags |= B_INVAL; 1769 brelse(bp); 1770 goto restart; 1771 } 1772 if (addr) { 1773 vm_map_insert(buffer_map, NULL, 0, 1774 addr, addr + maxsize, 1775 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1776 1777 bp->b_kvabase = (caddr_t) addr; 1778 bp->b_kvasize = maxsize; 1779 bufspace += bp->b_kvasize; 1780 ++bufreusecnt; 1781 } 1782 } 1783 bp->b_data = bp->b_kvabase; 1784 } 1785 return(bp); 1786 } 1787 1788 /* 1789 * buf_daemon: 1790 * 1791 * buffer flushing daemon. Buffers are normally flushed by the 1792 * update daemon but if it cannot keep up this process starts to 1793 * take the load in an attempt to prevent getnewbuf() from blocking. 1794 */ 1795 1796 static struct proc *bufdaemonproc; 1797 1798 static struct kproc_desc buf_kp = { 1799 "bufdaemon", 1800 buf_daemon, 1801 &bufdaemonproc 1802 }; 1803 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1804 1805 static void 1806 buf_daemon() 1807 { 1808 int s; 1809 1810 mtx_lock(&Giant); 1811 1812 /* 1813 * This process needs to be suspended prior to shutdown sync. 1814 */ 1815 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 1816 SHUTDOWN_PRI_LAST); 1817 1818 /* 1819 * This process is allowed to take the buffer cache to the limit 1820 */ 1821 curproc->p_flag |= P_BUFEXHAUST; 1822 s = splbio(); 1823 1824 for (;;) { 1825 kthread_suspend_check(bufdaemonproc); 1826 1827 bd_request = 0; 1828 1829 /* 1830 * Do the flush. Limit the amount of in-transit I/O we 1831 * allow to build up, otherwise we would completely saturate 1832 * the I/O system. Wakeup any waiting processes before we 1833 * normally would so they can run in parallel with our drain. 1834 */ 1835 while (numdirtybuffers > lodirtybuffers) { 1836 if (flushbufqueues() == 0) 1837 break; 1838 waitrunningbufspace(); 1839 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1840 } 1841 1842 /* 1843 * Only clear bd_request if we have reached our low water 1844 * mark. The buf_daemon normally waits 5 seconds and 1845 * then incrementally flushes any dirty buffers that have 1846 * built up, within reason. 1847 * 1848 * If we were unable to hit our low water mark and couldn't 1849 * find any flushable buffers, we sleep half a second. 1850 * Otherwise we loop immediately. 1851 */ 1852 if (numdirtybuffers <= lodirtybuffers) { 1853 /* 1854 * We reached our low water mark, reset the 1855 * request and sleep until we are needed again. 1856 * The sleep is just so the suspend code works. 1857 */ 1858 bd_request = 0; 1859 tsleep(&bd_request, PVM, "psleep", hz); 1860 } else { 1861 /* 1862 * We couldn't find any flushable dirty buffers but 1863 * still have too many dirty buffers, we 1864 * have to sleep and try again. (rare) 1865 */ 1866 tsleep(&bd_request, PVM, "qsleep", hz / 2); 1867 } 1868 } 1869 } 1870 1871 /* 1872 * flushbufqueues: 1873 * 1874 * Try to flush a buffer in the dirty queue. We must be careful to 1875 * free up B_INVAL buffers instead of write them, which NFS is 1876 * particularly sensitive to. 1877 */ 1878 1879 static int 1880 flushbufqueues(void) 1881 { 1882 struct buf *bp; 1883 int r = 0; 1884 1885 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1886 1887 while (bp) { 1888 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1889 if ((bp->b_flags & B_DELWRI) != 0 && 1890 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 1891 if (bp->b_flags & B_INVAL) { 1892 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1893 panic("flushbufqueues: locked buf"); 1894 bremfree(bp); 1895 brelse(bp); 1896 ++r; 1897 break; 1898 } 1899 if (LIST_FIRST(&bp->b_dep) != NULL && 1900 (bp->b_flags & B_DEFERRED) == 0 && 1901 buf_countdeps(bp, 0)) { 1902 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 1903 bp, b_freelist); 1904 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 1905 bp, b_freelist); 1906 bp->b_flags |= B_DEFERRED; 1907 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1908 continue; 1909 } 1910 vfs_bio_awrite(bp); 1911 ++r; 1912 break; 1913 } 1914 bp = TAILQ_NEXT(bp, b_freelist); 1915 } 1916 return (r); 1917 } 1918 1919 /* 1920 * Check to see if a block is currently memory resident. 1921 */ 1922 struct buf * 1923 incore(struct vnode * vp, daddr_t blkno) 1924 { 1925 struct buf *bp; 1926 1927 int s = splbio(); 1928 bp = gbincore(vp, blkno); 1929 splx(s); 1930 return (bp); 1931 } 1932 1933 /* 1934 * Returns true if no I/O is needed to access the 1935 * associated VM object. This is like incore except 1936 * it also hunts around in the VM system for the data. 1937 */ 1938 1939 int 1940 inmem(struct vnode * vp, daddr_t blkno) 1941 { 1942 vm_object_t obj; 1943 vm_offset_t toff, tinc, size; 1944 vm_page_t m; 1945 vm_ooffset_t off; 1946 1947 GIANT_REQUIRED; 1948 1949 if (incore(vp, blkno)) 1950 return 1; 1951 if (vp->v_mount == NULL) 1952 return 0; 1953 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 1954 return 0; 1955 1956 size = PAGE_SIZE; 1957 if (size > vp->v_mount->mnt_stat.f_iosize) 1958 size = vp->v_mount->mnt_stat.f_iosize; 1959 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 1960 1961 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 1962 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 1963 if (!m) 1964 goto notinmem; 1965 tinc = size; 1966 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 1967 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 1968 if (vm_page_is_valid(m, 1969 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 1970 goto notinmem; 1971 } 1972 return 1; 1973 1974 notinmem: 1975 return (0); 1976 } 1977 1978 /* 1979 * vfs_setdirty: 1980 * 1981 * Sets the dirty range for a buffer based on the status of the dirty 1982 * bits in the pages comprising the buffer. 1983 * 1984 * The range is limited to the size of the buffer. 1985 * 1986 * This routine is primarily used by NFS, but is generalized for the 1987 * B_VMIO case. 1988 */ 1989 static void 1990 vfs_setdirty(struct buf *bp) 1991 { 1992 int i; 1993 vm_object_t object; 1994 1995 GIANT_REQUIRED; 1996 /* 1997 * Degenerate case - empty buffer 1998 */ 1999 2000 if (bp->b_bufsize == 0) 2001 return; 2002 2003 /* 2004 * We qualify the scan for modified pages on whether the 2005 * object has been flushed yet. The OBJ_WRITEABLE flag 2006 * is not cleared simply by protecting pages off. 2007 */ 2008 2009 if ((bp->b_flags & B_VMIO) == 0) 2010 return; 2011 2012 object = bp->b_pages[0]->object; 2013 2014 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2015 printf("Warning: object %p writeable but not mightbedirty\n", object); 2016 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2017 printf("Warning: object %p mightbedirty but not writeable\n", object); 2018 2019 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2020 vm_offset_t boffset; 2021 vm_offset_t eoffset; 2022 2023 /* 2024 * test the pages to see if they have been modified directly 2025 * by users through the VM system. 2026 */ 2027 for (i = 0; i < bp->b_npages; i++) { 2028 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2029 vm_page_test_dirty(bp->b_pages[i]); 2030 } 2031 2032 /* 2033 * Calculate the encompassing dirty range, boffset and eoffset, 2034 * (eoffset - boffset) bytes. 2035 */ 2036 2037 for (i = 0; i < bp->b_npages; i++) { 2038 if (bp->b_pages[i]->dirty) 2039 break; 2040 } 2041 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2042 2043 for (i = bp->b_npages - 1; i >= 0; --i) { 2044 if (bp->b_pages[i]->dirty) { 2045 break; 2046 } 2047 } 2048 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2049 2050 /* 2051 * Fit it to the buffer. 2052 */ 2053 2054 if (eoffset > bp->b_bcount) 2055 eoffset = bp->b_bcount; 2056 2057 /* 2058 * If we have a good dirty range, merge with the existing 2059 * dirty range. 2060 */ 2061 2062 if (boffset < eoffset) { 2063 if (bp->b_dirtyoff > boffset) 2064 bp->b_dirtyoff = boffset; 2065 if (bp->b_dirtyend < eoffset) 2066 bp->b_dirtyend = eoffset; 2067 } 2068 } 2069 } 2070 2071 /* 2072 * getblk: 2073 * 2074 * Get a block given a specified block and offset into a file/device. 2075 * The buffers B_DONE bit will be cleared on return, making it almost 2076 * ready for an I/O initiation. B_INVAL may or may not be set on 2077 * return. The caller should clear B_INVAL prior to initiating a 2078 * READ. 2079 * 2080 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2081 * an existing buffer. 2082 * 2083 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2084 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2085 * and then cleared based on the backing VM. If the previous buffer is 2086 * non-0-sized but invalid, B_CACHE will be cleared. 2087 * 2088 * If getblk() must create a new buffer, the new buffer is returned with 2089 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2090 * case it is returned with B_INVAL clear and B_CACHE set based on the 2091 * backing VM. 2092 * 2093 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2094 * B_CACHE bit is clear. 2095 * 2096 * What this means, basically, is that the caller should use B_CACHE to 2097 * determine whether the buffer is fully valid or not and should clear 2098 * B_INVAL prior to issuing a read. If the caller intends to validate 2099 * the buffer by loading its data area with something, the caller needs 2100 * to clear B_INVAL. If the caller does this without issuing an I/O, 2101 * the caller should set B_CACHE ( as an optimization ), else the caller 2102 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2103 * a write attempt or if it was a successfull read. If the caller 2104 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2105 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2106 */ 2107 struct buf * 2108 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2109 { 2110 struct buf *bp; 2111 int s; 2112 struct bufhashhdr *bh; 2113 2114 if (size > MAXBSIZE) 2115 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2116 2117 s = splbio(); 2118 loop: 2119 /* 2120 * Block if we are low on buffers. Certain processes are allowed 2121 * to completely exhaust the buffer cache. 2122 * 2123 * If this check ever becomes a bottleneck it may be better to 2124 * move it into the else, when gbincore() fails. At the moment 2125 * it isn't a problem. 2126 * 2127 * XXX remove if 0 sections (clean this up after its proven) 2128 */ 2129 if (numfreebuffers == 0) { 2130 if (curproc == PCPU_GET(idleproc)) 2131 return NULL; 2132 needsbuffer |= VFS_BIO_NEED_ANY; 2133 } 2134 2135 if ((bp = gbincore(vp, blkno))) { 2136 /* 2137 * Buffer is in-core. If the buffer is not busy, it must 2138 * be on a queue. 2139 */ 2140 2141 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2142 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2143 "getblk", slpflag, slptimeo) == ENOLCK) 2144 goto loop; 2145 splx(s); 2146 return (struct buf *) NULL; 2147 } 2148 2149 /* 2150 * The buffer is locked. B_CACHE is cleared if the buffer is 2151 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2152 * and for a VMIO buffer B_CACHE is adjusted according to the 2153 * backing VM cache. 2154 */ 2155 if (bp->b_flags & B_INVAL) 2156 bp->b_flags &= ~B_CACHE; 2157 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2158 bp->b_flags |= B_CACHE; 2159 bremfree(bp); 2160 2161 /* 2162 * check for size inconsistancies for non-VMIO case. 2163 */ 2164 2165 if (bp->b_bcount != size) { 2166 if ((bp->b_flags & B_VMIO) == 0 || 2167 (size > bp->b_kvasize)) { 2168 if (bp->b_flags & B_DELWRI) { 2169 bp->b_flags |= B_NOCACHE; 2170 BUF_WRITE(bp); 2171 } else { 2172 if ((bp->b_flags & B_VMIO) && 2173 (LIST_FIRST(&bp->b_dep) == NULL)) { 2174 bp->b_flags |= B_RELBUF; 2175 brelse(bp); 2176 } else { 2177 bp->b_flags |= B_NOCACHE; 2178 BUF_WRITE(bp); 2179 } 2180 } 2181 goto loop; 2182 } 2183 } 2184 2185 /* 2186 * If the size is inconsistant in the VMIO case, we can resize 2187 * the buffer. This might lead to B_CACHE getting set or 2188 * cleared. If the size has not changed, B_CACHE remains 2189 * unchanged from its previous state. 2190 */ 2191 2192 if (bp->b_bcount != size) 2193 allocbuf(bp, size); 2194 2195 KASSERT(bp->b_offset != NOOFFSET, 2196 ("getblk: no buffer offset")); 2197 2198 /* 2199 * A buffer with B_DELWRI set and B_CACHE clear must 2200 * be committed before we can return the buffer in 2201 * order to prevent the caller from issuing a read 2202 * ( due to B_CACHE not being set ) and overwriting 2203 * it. 2204 * 2205 * Most callers, including NFS and FFS, need this to 2206 * operate properly either because they assume they 2207 * can issue a read if B_CACHE is not set, or because 2208 * ( for example ) an uncached B_DELWRI might loop due 2209 * to softupdates re-dirtying the buffer. In the latter 2210 * case, B_CACHE is set after the first write completes, 2211 * preventing further loops. 2212 */ 2213 2214 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2215 BUF_WRITE(bp); 2216 goto loop; 2217 } 2218 2219 splx(s); 2220 bp->b_flags &= ~B_DONE; 2221 } else { 2222 /* 2223 * Buffer is not in-core, create new buffer. The buffer 2224 * returned by getnewbuf() is locked. Note that the returned 2225 * buffer is also considered valid (not marked B_INVAL). 2226 */ 2227 int bsize, maxsize, vmio; 2228 off_t offset; 2229 2230 if (vn_isdisk(vp, NULL)) 2231 bsize = DEV_BSIZE; 2232 else if (vp->v_mountedhere) 2233 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2234 else if (vp->v_mount) 2235 bsize = vp->v_mount->mnt_stat.f_iosize; 2236 else 2237 bsize = size; 2238 2239 offset = (off_t)blkno * bsize; 2240 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2241 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2242 maxsize = imax(maxsize, bsize); 2243 2244 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2245 if (slpflag || slptimeo) { 2246 splx(s); 2247 return NULL; 2248 } 2249 goto loop; 2250 } 2251 2252 /* 2253 * This code is used to make sure that a buffer is not 2254 * created while the getnewbuf routine is blocked. 2255 * This can be a problem whether the vnode is locked or not. 2256 * If the buffer is created out from under us, we have to 2257 * throw away the one we just created. There is now window 2258 * race because we are safely running at splbio() from the 2259 * point of the duplicate buffer creation through to here, 2260 * and we've locked the buffer. 2261 */ 2262 if (gbincore(vp, blkno)) { 2263 bp->b_flags |= B_INVAL; 2264 brelse(bp); 2265 goto loop; 2266 } 2267 2268 /* 2269 * Insert the buffer into the hash, so that it can 2270 * be found by incore. 2271 */ 2272 bp->b_blkno = bp->b_lblkno = blkno; 2273 bp->b_offset = offset; 2274 2275 bgetvp(vp, bp); 2276 LIST_REMOVE(bp, b_hash); 2277 bh = bufhash(vp, blkno); 2278 LIST_INSERT_HEAD(bh, bp, b_hash); 2279 2280 /* 2281 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2282 * buffer size starts out as 0, B_CACHE will be set by 2283 * allocbuf() for the VMIO case prior to it testing the 2284 * backing store for validity. 2285 */ 2286 2287 if (vmio) { 2288 bp->b_flags |= B_VMIO; 2289 #if defined(VFS_BIO_DEBUG) 2290 if (vp->v_type != VREG) 2291 printf("getblk: vmioing file type %d???\n", vp->v_type); 2292 #endif 2293 } else { 2294 bp->b_flags &= ~B_VMIO; 2295 } 2296 2297 allocbuf(bp, size); 2298 2299 splx(s); 2300 bp->b_flags &= ~B_DONE; 2301 } 2302 return (bp); 2303 } 2304 2305 /* 2306 * Get an empty, disassociated buffer of given size. The buffer is initially 2307 * set to B_INVAL. 2308 */ 2309 struct buf * 2310 geteblk(int size) 2311 { 2312 struct buf *bp; 2313 int s; 2314 int maxsize; 2315 2316 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2317 2318 s = splbio(); 2319 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0); 2320 splx(s); 2321 allocbuf(bp, size); 2322 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2323 return (bp); 2324 } 2325 2326 2327 /* 2328 * This code constitutes the buffer memory from either anonymous system 2329 * memory (in the case of non-VMIO operations) or from an associated 2330 * VM object (in the case of VMIO operations). This code is able to 2331 * resize a buffer up or down. 2332 * 2333 * Note that this code is tricky, and has many complications to resolve 2334 * deadlock or inconsistant data situations. Tread lightly!!! 2335 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2336 * the caller. Calling this code willy nilly can result in the loss of data. 2337 * 2338 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2339 * B_CACHE for the non-VMIO case. 2340 */ 2341 2342 int 2343 allocbuf(struct buf *bp, int size) 2344 { 2345 int newbsize, mbsize; 2346 int i; 2347 2348 GIANT_REQUIRED; 2349 2350 if (BUF_REFCNT(bp) == 0) 2351 panic("allocbuf: buffer not busy"); 2352 2353 if (bp->b_kvasize < size) 2354 panic("allocbuf: buffer too small"); 2355 2356 if ((bp->b_flags & B_VMIO) == 0) { 2357 caddr_t origbuf; 2358 int origbufsize; 2359 /* 2360 * Just get anonymous memory from the kernel. Don't 2361 * mess with B_CACHE. 2362 */ 2363 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2364 #if !defined(NO_B_MALLOC) 2365 if (bp->b_flags & B_MALLOC) 2366 newbsize = mbsize; 2367 else 2368 #endif 2369 newbsize = round_page(size); 2370 2371 if (newbsize < bp->b_bufsize) { 2372 #if !defined(NO_B_MALLOC) 2373 /* 2374 * malloced buffers are not shrunk 2375 */ 2376 if (bp->b_flags & B_MALLOC) { 2377 if (newbsize) { 2378 bp->b_bcount = size; 2379 } else { 2380 free(bp->b_data, M_BIOBUF); 2381 if (bp->b_bufsize) { 2382 bufmallocspace -= bp->b_bufsize; 2383 bufspacewakeup(); 2384 bp->b_bufsize = 0; 2385 } 2386 bp->b_data = bp->b_kvabase; 2387 bp->b_bcount = 0; 2388 bp->b_flags &= ~B_MALLOC; 2389 } 2390 return 1; 2391 } 2392 #endif 2393 vm_hold_free_pages( 2394 bp, 2395 (vm_offset_t) bp->b_data + newbsize, 2396 (vm_offset_t) bp->b_data + bp->b_bufsize); 2397 } else if (newbsize > bp->b_bufsize) { 2398 #if !defined(NO_B_MALLOC) 2399 /* 2400 * We only use malloced memory on the first allocation. 2401 * and revert to page-allocated memory when the buffer 2402 * grows. 2403 */ 2404 if ( (bufmallocspace < maxbufmallocspace) && 2405 (bp->b_bufsize == 0) && 2406 (mbsize <= PAGE_SIZE/2)) { 2407 2408 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2409 bp->b_bufsize = mbsize; 2410 bp->b_bcount = size; 2411 bp->b_flags |= B_MALLOC; 2412 bufmallocspace += mbsize; 2413 return 1; 2414 } 2415 #endif 2416 origbuf = NULL; 2417 origbufsize = 0; 2418 #if !defined(NO_B_MALLOC) 2419 /* 2420 * If the buffer is growing on its other-than-first allocation, 2421 * then we revert to the page-allocation scheme. 2422 */ 2423 if (bp->b_flags & B_MALLOC) { 2424 origbuf = bp->b_data; 2425 origbufsize = bp->b_bufsize; 2426 bp->b_data = bp->b_kvabase; 2427 if (bp->b_bufsize) { 2428 bufmallocspace -= bp->b_bufsize; 2429 bufspacewakeup(); 2430 bp->b_bufsize = 0; 2431 } 2432 bp->b_flags &= ~B_MALLOC; 2433 newbsize = round_page(newbsize); 2434 } 2435 #endif 2436 vm_hold_load_pages( 2437 bp, 2438 (vm_offset_t) bp->b_data + bp->b_bufsize, 2439 (vm_offset_t) bp->b_data + newbsize); 2440 #if !defined(NO_B_MALLOC) 2441 if (origbuf) { 2442 bcopy(origbuf, bp->b_data, origbufsize); 2443 free(origbuf, M_BIOBUF); 2444 } 2445 #endif 2446 } 2447 } else { 2448 vm_page_t m; 2449 int desiredpages; 2450 2451 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2452 desiredpages = (size == 0) ? 0 : 2453 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2454 2455 #if !defined(NO_B_MALLOC) 2456 if (bp->b_flags & B_MALLOC) 2457 panic("allocbuf: VMIO buffer can't be malloced"); 2458 #endif 2459 /* 2460 * Set B_CACHE initially if buffer is 0 length or will become 2461 * 0-length. 2462 */ 2463 if (size == 0 || bp->b_bufsize == 0) 2464 bp->b_flags |= B_CACHE; 2465 2466 if (newbsize < bp->b_bufsize) { 2467 /* 2468 * DEV_BSIZE aligned new buffer size is less then the 2469 * DEV_BSIZE aligned existing buffer size. Figure out 2470 * if we have to remove any pages. 2471 */ 2472 if (desiredpages < bp->b_npages) { 2473 for (i = desiredpages; i < bp->b_npages; i++) { 2474 /* 2475 * the page is not freed here -- it 2476 * is the responsibility of 2477 * vnode_pager_setsize 2478 */ 2479 m = bp->b_pages[i]; 2480 KASSERT(m != bogus_page, 2481 ("allocbuf: bogus page found")); 2482 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2483 ; 2484 2485 bp->b_pages[i] = NULL; 2486 vm_page_unwire(m, 0); 2487 } 2488 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2489 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2490 bp->b_npages = desiredpages; 2491 } 2492 } else if (size > bp->b_bcount) { 2493 /* 2494 * We are growing the buffer, possibly in a 2495 * byte-granular fashion. 2496 */ 2497 struct vnode *vp; 2498 vm_object_t obj; 2499 vm_offset_t toff; 2500 vm_offset_t tinc; 2501 2502 /* 2503 * Step 1, bring in the VM pages from the object, 2504 * allocating them if necessary. We must clear 2505 * B_CACHE if these pages are not valid for the 2506 * range covered by the buffer. 2507 */ 2508 2509 vp = bp->b_vp; 2510 VOP_GETVOBJECT(vp, &obj); 2511 2512 while (bp->b_npages < desiredpages) { 2513 vm_page_t m; 2514 vm_pindex_t pi; 2515 2516 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2517 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2518 /* 2519 * note: must allocate system pages 2520 * since blocking here could intefere 2521 * with paging I/O, no matter which 2522 * process we are. 2523 */ 2524 m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM); 2525 if (m == NULL) { 2526 VM_WAIT; 2527 vm_pageout_deficit += desiredpages - bp->b_npages; 2528 } else { 2529 vm_page_wire(m); 2530 vm_page_wakeup(m); 2531 bp->b_flags &= ~B_CACHE; 2532 bp->b_pages[bp->b_npages] = m; 2533 ++bp->b_npages; 2534 } 2535 continue; 2536 } 2537 2538 /* 2539 * We found a page. If we have to sleep on it, 2540 * retry because it might have gotten freed out 2541 * from under us. 2542 * 2543 * We can only test PG_BUSY here. Blocking on 2544 * m->busy might lead to a deadlock: 2545 * 2546 * vm_fault->getpages->cluster_read->allocbuf 2547 * 2548 */ 2549 2550 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2551 continue; 2552 2553 /* 2554 * We have a good page. Should we wakeup the 2555 * page daemon? 2556 */ 2557 if ((curproc != pageproc) && 2558 ((m->queue - m->pc) == PQ_CACHE) && 2559 ((cnt.v_free_count + cnt.v_cache_count) < 2560 (cnt.v_free_min + cnt.v_cache_min))) { 2561 pagedaemon_wakeup(); 2562 } 2563 vm_page_flag_clear(m, PG_ZERO); 2564 vm_page_wire(m); 2565 bp->b_pages[bp->b_npages] = m; 2566 ++bp->b_npages; 2567 } 2568 2569 /* 2570 * Step 2. We've loaded the pages into the buffer, 2571 * we have to figure out if we can still have B_CACHE 2572 * set. Note that B_CACHE is set according to the 2573 * byte-granular range ( bcount and size ), new the 2574 * aligned range ( newbsize ). 2575 * 2576 * The VM test is against m->valid, which is DEV_BSIZE 2577 * aligned. Needless to say, the validity of the data 2578 * needs to also be DEV_BSIZE aligned. Note that this 2579 * fails with NFS if the server or some other client 2580 * extends the file's EOF. If our buffer is resized, 2581 * B_CACHE may remain set! XXX 2582 */ 2583 2584 toff = bp->b_bcount; 2585 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2586 2587 while ((bp->b_flags & B_CACHE) && toff < size) { 2588 vm_pindex_t pi; 2589 2590 if (tinc > (size - toff)) 2591 tinc = size - toff; 2592 2593 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2594 PAGE_SHIFT; 2595 2596 vfs_buf_test_cache( 2597 bp, 2598 bp->b_offset, 2599 toff, 2600 tinc, 2601 bp->b_pages[pi] 2602 ); 2603 toff += tinc; 2604 tinc = PAGE_SIZE; 2605 } 2606 2607 /* 2608 * Step 3, fixup the KVM pmap. Remember that 2609 * bp->b_data is relative to bp->b_offset, but 2610 * bp->b_offset may be offset into the first page. 2611 */ 2612 2613 bp->b_data = (caddr_t) 2614 trunc_page((vm_offset_t)bp->b_data); 2615 pmap_qenter( 2616 (vm_offset_t)bp->b_data, 2617 bp->b_pages, 2618 bp->b_npages 2619 ); 2620 2621 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2622 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2623 } 2624 } 2625 if (newbsize < bp->b_bufsize) 2626 bufspacewakeup(); 2627 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2628 bp->b_bcount = size; /* requested buffer size */ 2629 return 1; 2630 } 2631 2632 /* 2633 * bufwait: 2634 * 2635 * Wait for buffer I/O completion, returning error status. The buffer 2636 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2637 * error and cleared. 2638 */ 2639 int 2640 bufwait(register struct buf * bp) 2641 { 2642 int s; 2643 2644 s = splbio(); 2645 while ((bp->b_flags & B_DONE) == 0) { 2646 if (bp->b_iocmd == BIO_READ) 2647 tsleep(bp, PRIBIO, "biord", 0); 2648 else 2649 tsleep(bp, PRIBIO, "biowr", 0); 2650 } 2651 splx(s); 2652 if (bp->b_flags & B_EINTR) { 2653 bp->b_flags &= ~B_EINTR; 2654 return (EINTR); 2655 } 2656 if (bp->b_ioflags & BIO_ERROR) { 2657 return (bp->b_error ? bp->b_error : EIO); 2658 } else { 2659 return (0); 2660 } 2661 } 2662 2663 /* 2664 * Call back function from struct bio back up to struct buf. 2665 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 2666 */ 2667 void 2668 bufdonebio(struct bio *bp) 2669 { 2670 bufdone(bp->bio_caller2); 2671 } 2672 2673 /* 2674 * bufdone: 2675 * 2676 * Finish I/O on a buffer, optionally calling a completion function. 2677 * This is usually called from an interrupt so process blocking is 2678 * not allowed. 2679 * 2680 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2681 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2682 * assuming B_INVAL is clear. 2683 * 2684 * For the VMIO case, we set B_CACHE if the op was a read and no 2685 * read error occured, or if the op was a write. B_CACHE is never 2686 * set if the buffer is invalid or otherwise uncacheable. 2687 * 2688 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2689 * initiator to leave B_INVAL set to brelse the buffer out of existance 2690 * in the biodone routine. 2691 */ 2692 void 2693 bufdone(struct buf *bp) 2694 { 2695 int s, error; 2696 void (*biodone) __P((struct buf *)); 2697 2698 GIANT_REQUIRED; 2699 2700 s = splbio(); 2701 2702 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2703 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2704 2705 bp->b_flags |= B_DONE; 2706 runningbufwakeup(bp); 2707 2708 if (bp->b_iocmd == BIO_DELETE) { 2709 brelse(bp); 2710 splx(s); 2711 return; 2712 } 2713 2714 if (bp->b_iocmd == BIO_WRITE) { 2715 vwakeup(bp); 2716 } 2717 2718 /* call optional completion function if requested */ 2719 if (bp->b_iodone != NULL) { 2720 biodone = bp->b_iodone; 2721 bp->b_iodone = NULL; 2722 (*biodone) (bp); 2723 splx(s); 2724 return; 2725 } 2726 if (LIST_FIRST(&bp->b_dep) != NULL) 2727 buf_complete(bp); 2728 2729 if (bp->b_flags & B_VMIO) { 2730 int i; 2731 vm_ooffset_t foff; 2732 vm_page_t m; 2733 vm_object_t obj; 2734 int iosize; 2735 struct vnode *vp = bp->b_vp; 2736 2737 error = VOP_GETVOBJECT(vp, &obj); 2738 2739 #if defined(VFS_BIO_DEBUG) 2740 if (vp->v_usecount == 0) { 2741 panic("biodone: zero vnode ref count"); 2742 } 2743 2744 if (error) { 2745 panic("biodone: missing VM object"); 2746 } 2747 2748 if ((vp->v_flag & VOBJBUF) == 0) { 2749 panic("biodone: vnode is not setup for merged cache"); 2750 } 2751 #endif 2752 2753 foff = bp->b_offset; 2754 KASSERT(bp->b_offset != NOOFFSET, 2755 ("biodone: no buffer offset")); 2756 2757 if (error) { 2758 panic("biodone: no object"); 2759 } 2760 #if defined(VFS_BIO_DEBUG) 2761 if (obj->paging_in_progress < bp->b_npages) { 2762 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2763 obj->paging_in_progress, bp->b_npages); 2764 } 2765 #endif 2766 2767 /* 2768 * Set B_CACHE if the op was a normal read and no error 2769 * occured. B_CACHE is set for writes in the b*write() 2770 * routines. 2771 */ 2772 iosize = bp->b_bcount - bp->b_resid; 2773 if (bp->b_iocmd == BIO_READ && 2774 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 2775 !(bp->b_ioflags & BIO_ERROR)) { 2776 bp->b_flags |= B_CACHE; 2777 } 2778 2779 for (i = 0; i < bp->b_npages; i++) { 2780 int bogusflag = 0; 2781 int resid; 2782 2783 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2784 if (resid > iosize) 2785 resid = iosize; 2786 2787 /* 2788 * cleanup bogus pages, restoring the originals 2789 */ 2790 m = bp->b_pages[i]; 2791 if (m == bogus_page) { 2792 bogusflag = 1; 2793 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2794 if (m == NULL) 2795 panic("biodone: page disappeared!"); 2796 bp->b_pages[i] = m; 2797 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2798 } 2799 #if defined(VFS_BIO_DEBUG) 2800 if (OFF_TO_IDX(foff) != m->pindex) { 2801 printf( 2802 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2803 (unsigned long)foff, m->pindex); 2804 } 2805 #endif 2806 2807 /* 2808 * In the write case, the valid and clean bits are 2809 * already changed correctly ( see bdwrite() ), so we 2810 * only need to do this here in the read case. 2811 */ 2812 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 2813 vfs_page_set_valid(bp, foff, i, m); 2814 } 2815 vm_page_flag_clear(m, PG_ZERO); 2816 2817 /* 2818 * when debugging new filesystems or buffer I/O methods, this 2819 * is the most common error that pops up. if you see this, you 2820 * have not set the page busy flag correctly!!! 2821 */ 2822 if (m->busy == 0) { 2823 printf("biodone: page busy < 0, " 2824 "pindex: %d, foff: 0x(%x,%x), " 2825 "resid: %d, index: %d\n", 2826 (int) m->pindex, (int)(foff >> 32), 2827 (int) foff & 0xffffffff, resid, i); 2828 if (!vn_isdisk(vp, NULL)) 2829 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2830 bp->b_vp->v_mount->mnt_stat.f_iosize, 2831 (int) bp->b_lblkno, 2832 bp->b_flags, bp->b_npages); 2833 else 2834 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2835 (int) bp->b_lblkno, 2836 bp->b_flags, bp->b_npages); 2837 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2838 m->valid, m->dirty, m->wire_count); 2839 panic("biodone: page busy < 0\n"); 2840 } 2841 vm_page_io_finish(m); 2842 vm_object_pip_subtract(obj, 1); 2843 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2844 iosize -= resid; 2845 } 2846 if (obj) 2847 vm_object_pip_wakeupn(obj, 0); 2848 } 2849 2850 /* 2851 * For asynchronous completions, release the buffer now. The brelse 2852 * will do a wakeup there if necessary - so no need to do a wakeup 2853 * here in the async case. The sync case always needs to do a wakeup. 2854 */ 2855 2856 if (bp->b_flags & B_ASYNC) { 2857 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 2858 brelse(bp); 2859 else 2860 bqrelse(bp); 2861 } else { 2862 wakeup(bp); 2863 } 2864 splx(s); 2865 } 2866 2867 /* 2868 * This routine is called in lieu of iodone in the case of 2869 * incomplete I/O. This keeps the busy status for pages 2870 * consistant. 2871 */ 2872 void 2873 vfs_unbusy_pages(struct buf * bp) 2874 { 2875 int i; 2876 2877 GIANT_REQUIRED; 2878 2879 runningbufwakeup(bp); 2880 if (bp->b_flags & B_VMIO) { 2881 struct vnode *vp = bp->b_vp; 2882 vm_object_t obj; 2883 2884 VOP_GETVOBJECT(vp, &obj); 2885 2886 for (i = 0; i < bp->b_npages; i++) { 2887 vm_page_t m = bp->b_pages[i]; 2888 2889 if (m == bogus_page) { 2890 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2891 if (!m) { 2892 panic("vfs_unbusy_pages: page missing\n"); 2893 } 2894 bp->b_pages[i] = m; 2895 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2896 } 2897 vm_object_pip_subtract(obj, 1); 2898 vm_page_flag_clear(m, PG_ZERO); 2899 vm_page_io_finish(m); 2900 } 2901 vm_object_pip_wakeupn(obj, 0); 2902 } 2903 } 2904 2905 /* 2906 * vfs_page_set_valid: 2907 * 2908 * Set the valid bits in a page based on the supplied offset. The 2909 * range is restricted to the buffer's size. 2910 * 2911 * This routine is typically called after a read completes. 2912 */ 2913 static void 2914 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 2915 { 2916 vm_ooffset_t soff, eoff; 2917 2918 GIANT_REQUIRED; 2919 /* 2920 * Start and end offsets in buffer. eoff - soff may not cross a 2921 * page boundry or cross the end of the buffer. The end of the 2922 * buffer, in this case, is our file EOF, not the allocation size 2923 * of the buffer. 2924 */ 2925 soff = off; 2926 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2927 if (eoff > bp->b_offset + bp->b_bcount) 2928 eoff = bp->b_offset + bp->b_bcount; 2929 2930 /* 2931 * Set valid range. This is typically the entire buffer and thus the 2932 * entire page. 2933 */ 2934 if (eoff > soff) { 2935 vm_page_set_validclean( 2936 m, 2937 (vm_offset_t) (soff & PAGE_MASK), 2938 (vm_offset_t) (eoff - soff) 2939 ); 2940 } 2941 } 2942 2943 /* 2944 * This routine is called before a device strategy routine. 2945 * It is used to tell the VM system that paging I/O is in 2946 * progress, and treat the pages associated with the buffer 2947 * almost as being PG_BUSY. Also the object paging_in_progress 2948 * flag is handled to make sure that the object doesn't become 2949 * inconsistant. 2950 * 2951 * Since I/O has not been initiated yet, certain buffer flags 2952 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 2953 * and should be ignored. 2954 */ 2955 void 2956 vfs_busy_pages(struct buf * bp, int clear_modify) 2957 { 2958 int i, bogus; 2959 2960 GIANT_REQUIRED; 2961 2962 if (bp->b_flags & B_VMIO) { 2963 struct vnode *vp = bp->b_vp; 2964 vm_object_t obj; 2965 vm_ooffset_t foff; 2966 2967 VOP_GETVOBJECT(vp, &obj); 2968 foff = bp->b_offset; 2969 KASSERT(bp->b_offset != NOOFFSET, 2970 ("vfs_busy_pages: no buffer offset")); 2971 vfs_setdirty(bp); 2972 2973 retry: 2974 for (i = 0; i < bp->b_npages; i++) { 2975 vm_page_t m = bp->b_pages[i]; 2976 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 2977 goto retry; 2978 } 2979 2980 bogus = 0; 2981 for (i = 0; i < bp->b_npages; i++) { 2982 vm_page_t m = bp->b_pages[i]; 2983 2984 vm_page_flag_clear(m, PG_ZERO); 2985 if ((bp->b_flags & B_CLUSTER) == 0) { 2986 vm_object_pip_add(obj, 1); 2987 vm_page_io_start(m); 2988 } 2989 2990 /* 2991 * When readying a buffer for a read ( i.e 2992 * clear_modify == 0 ), it is important to do 2993 * bogus_page replacement for valid pages in 2994 * partially instantiated buffers. Partially 2995 * instantiated buffers can, in turn, occur when 2996 * reconstituting a buffer from its VM backing store 2997 * base. We only have to do this if B_CACHE is 2998 * clear ( which causes the I/O to occur in the 2999 * first place ). The replacement prevents the read 3000 * I/O from overwriting potentially dirty VM-backed 3001 * pages. XXX bogus page replacement is, uh, bogus. 3002 * It may not work properly with small-block devices. 3003 * We need to find a better way. 3004 */ 3005 3006 vm_page_protect(m, VM_PROT_NONE); 3007 if (clear_modify) 3008 vfs_page_set_valid(bp, foff, i, m); 3009 else if (m->valid == VM_PAGE_BITS_ALL && 3010 (bp->b_flags & B_CACHE) == 0) { 3011 bp->b_pages[i] = bogus_page; 3012 bogus++; 3013 } 3014 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3015 } 3016 if (bogus) 3017 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3018 } 3019 } 3020 3021 /* 3022 * Tell the VM system that the pages associated with this buffer 3023 * are clean. This is used for delayed writes where the data is 3024 * going to go to disk eventually without additional VM intevention. 3025 * 3026 * Note that while we only really need to clean through to b_bcount, we 3027 * just go ahead and clean through to b_bufsize. 3028 */ 3029 static void 3030 vfs_clean_pages(struct buf * bp) 3031 { 3032 int i; 3033 3034 GIANT_REQUIRED; 3035 3036 if (bp->b_flags & B_VMIO) { 3037 vm_ooffset_t foff; 3038 3039 foff = bp->b_offset; 3040 KASSERT(bp->b_offset != NOOFFSET, 3041 ("vfs_clean_pages: no buffer offset")); 3042 for (i = 0; i < bp->b_npages; i++) { 3043 vm_page_t m = bp->b_pages[i]; 3044 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3045 vm_ooffset_t eoff = noff; 3046 3047 if (eoff > bp->b_offset + bp->b_bufsize) 3048 eoff = bp->b_offset + bp->b_bufsize; 3049 vfs_page_set_valid(bp, foff, i, m); 3050 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3051 foff = noff; 3052 } 3053 } 3054 } 3055 3056 /* 3057 * vfs_bio_set_validclean: 3058 * 3059 * Set the range within the buffer to valid and clean. The range is 3060 * relative to the beginning of the buffer, b_offset. Note that b_offset 3061 * itself may be offset from the beginning of the first page. 3062 * 3063 */ 3064 3065 void 3066 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3067 { 3068 if (bp->b_flags & B_VMIO) { 3069 int i; 3070 int n; 3071 3072 /* 3073 * Fixup base to be relative to beginning of first page. 3074 * Set initial n to be the maximum number of bytes in the 3075 * first page that can be validated. 3076 */ 3077 3078 base += (bp->b_offset & PAGE_MASK); 3079 n = PAGE_SIZE - (base & PAGE_MASK); 3080 3081 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3082 vm_page_t m = bp->b_pages[i]; 3083 3084 if (n > size) 3085 n = size; 3086 3087 vm_page_set_validclean(m, base & PAGE_MASK, n); 3088 base += n; 3089 size -= n; 3090 n = PAGE_SIZE; 3091 } 3092 } 3093 } 3094 3095 /* 3096 * vfs_bio_clrbuf: 3097 * 3098 * clear a buffer. This routine essentially fakes an I/O, so we need 3099 * to clear BIO_ERROR and B_INVAL. 3100 * 3101 * Note that while we only theoretically need to clear through b_bcount, 3102 * we go ahead and clear through b_bufsize. 3103 */ 3104 3105 void 3106 vfs_bio_clrbuf(struct buf *bp) { 3107 int i, mask = 0; 3108 caddr_t sa, ea; 3109 3110 GIANT_REQUIRED; 3111 3112 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3113 bp->b_flags &= ~B_INVAL; 3114 bp->b_ioflags &= ~BIO_ERROR; 3115 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3116 (bp->b_offset & PAGE_MASK) == 0) { 3117 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3118 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3119 ((bp->b_pages[0]->valid & mask) != mask)) { 3120 bzero(bp->b_data, bp->b_bufsize); 3121 } 3122 bp->b_pages[0]->valid |= mask; 3123 bp->b_resid = 0; 3124 return; 3125 } 3126 ea = sa = bp->b_data; 3127 for(i=0;i<bp->b_npages;i++,sa=ea) { 3128 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3129 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3130 ea = (caddr_t)(vm_offset_t)ulmin( 3131 (u_long)(vm_offset_t)ea, 3132 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3133 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3134 if ((bp->b_pages[i]->valid & mask) == mask) 3135 continue; 3136 if ((bp->b_pages[i]->valid & mask) == 0) { 3137 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3138 bzero(sa, ea - sa); 3139 } 3140 } else { 3141 for (; sa < ea; sa += DEV_BSIZE, j++) { 3142 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3143 (bp->b_pages[i]->valid & (1<<j)) == 0) 3144 bzero(sa, DEV_BSIZE); 3145 } 3146 } 3147 bp->b_pages[i]->valid |= mask; 3148 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3149 } 3150 bp->b_resid = 0; 3151 } else { 3152 clrbuf(bp); 3153 } 3154 } 3155 3156 /* 3157 * vm_hold_load_pages and vm_hold_free_pages get pages into 3158 * a buffers address space. The pages are anonymous and are 3159 * not associated with a file object. 3160 */ 3161 static void 3162 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3163 { 3164 vm_offset_t pg; 3165 vm_page_t p; 3166 int index; 3167 3168 GIANT_REQUIRED; 3169 3170 to = round_page(to); 3171 from = round_page(from); 3172 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3173 3174 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3175 tryagain: 3176 /* 3177 * note: must allocate system pages since blocking here 3178 * could intefere with paging I/O, no matter which 3179 * process we are. 3180 */ 3181 p = vm_page_alloc(kernel_object, 3182 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3183 VM_ALLOC_SYSTEM); 3184 if (!p) { 3185 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3186 VM_WAIT; 3187 goto tryagain; 3188 } 3189 vm_page_wire(p); 3190 p->valid = VM_PAGE_BITS_ALL; 3191 vm_page_flag_clear(p, PG_ZERO); 3192 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3193 bp->b_pages[index] = p; 3194 vm_page_wakeup(p); 3195 } 3196 bp->b_npages = index; 3197 } 3198 3199 void 3200 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3201 { 3202 vm_offset_t pg; 3203 vm_page_t p; 3204 int index, newnpages; 3205 3206 GIANT_REQUIRED; 3207 3208 from = round_page(from); 3209 to = round_page(to); 3210 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3211 3212 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3213 p = bp->b_pages[index]; 3214 if (p && (index < bp->b_npages)) { 3215 if (p->busy) { 3216 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3217 bp->b_blkno, bp->b_lblkno); 3218 } 3219 bp->b_pages[index] = NULL; 3220 pmap_kremove(pg); 3221 vm_page_busy(p); 3222 vm_page_unwire(p, 0); 3223 vm_page_free(p); 3224 } 3225 } 3226 bp->b_npages = newnpages; 3227 } 3228 3229 3230 #include "opt_ddb.h" 3231 #ifdef DDB 3232 #include <ddb/ddb.h> 3233 3234 DB_SHOW_COMMAND(buffer, db_show_buffer) 3235 { 3236 /* get args */ 3237 struct buf *bp = (struct buf *)addr; 3238 3239 if (!have_addr) { 3240 db_printf("usage: show buffer <addr>\n"); 3241 return; 3242 } 3243 3244 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3245 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3246 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3247 "b_blkno = %d, b_pblkno = %d\n", 3248 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3249 major(bp->b_dev), minor(bp->b_dev), 3250 bp->b_data, bp->b_blkno, bp->b_pblkno); 3251 if (bp->b_npages) { 3252 int i; 3253 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3254 for (i = 0; i < bp->b_npages; i++) { 3255 vm_page_t m; 3256 m = bp->b_pages[i]; 3257 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3258 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3259 if ((i + 1) < bp->b_npages) 3260 db_printf(","); 3261 } 3262 db_printf("\n"); 3263 } 3264 } 3265 #endif /* DDB */ 3266