xref: /freebsd/sys/kern/vfs_bio.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD$
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/eventhandler.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/mount.h>
38 #include <sys/mutex.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58 
59 struct	bio_ops bioops;		/* I/O operation notification */
60 
61 struct	buf_ops buf_ops_bio = {
62 	"buf_ops_bio",
63 	bwrite
64 };
65 
66 struct buf *buf;		/* buffer header pool */
67 struct swqueue bswlist;
68 struct mtx buftimelock;		/* Interlock on setting prio and timo */
69 
70 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71 		vm_offset_t to);
72 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73 		vm_offset_t to);
74 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75 			       int pageno, vm_page_t m);
76 static void vfs_clean_pages(struct buf * bp);
77 static void vfs_setdirty(struct buf *bp);
78 static void vfs_vmio_release(struct buf *bp);
79 static void vfs_backgroundwritedone(struct buf *bp);
80 static int flushbufqueues(void);
81 
82 static int bd_request;
83 
84 static void buf_daemon __P((void));
85 /*
86  * bogus page -- for I/O to/from partially complete buffers
87  * this is a temporary solution to the problem, but it is not
88  * really that bad.  it would be better to split the buffer
89  * for input in the case of buffers partially already in memory,
90  * but the code is intricate enough already.
91  */
92 vm_page_t bogus_page;
93 int vmiodirenable = FALSE;
94 int runningbufspace;
95 static vm_offset_t bogus_offset;
96 
97 static int bufspace, maxbufspace,
98 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100 static int needsbuffer;
101 static int lorunningspace, hirunningspace, runningbufreq;
102 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103 static int numfreebuffers, lofreebuffers, hifreebuffers;
104 static int getnewbufcalls;
105 static int getnewbufrestarts;
106 
107 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108 	&numdirtybuffers, 0, "");
109 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110 	&lodirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112 	&hidirtybuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114 	&numfreebuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116 	&lofreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118 	&hifreebuffers, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120 	&runningbufspace, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122 	&lorunningspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124 	&hirunningspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126 	&maxbufspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128 	&hibufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130 	&lobufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132 	&bufspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134 	&maxbufmallocspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136 	&bufmallocspace, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138 	&getnewbufcalls, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140 	&getnewbufrestarts, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142 	&vmiodirenable, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144 	&bufdefragcnt, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146 	&buffreekvacnt, 0, "");
147 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148 	&bufreusecnt, 0, "");
149 
150 static int bufhashmask;
151 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153 char *buf_wmesg = BUF_WMESG;
154 
155 extern int vm_swap_size;
156 
157 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161 
162 /*
163  * Buffer hash table code.  Note that the logical block scans linearly, which
164  * gives us some L1 cache locality.
165  */
166 
167 static __inline
168 struct bufhashhdr *
169 bufhash(struct vnode *vnp, daddr_t bn)
170 {
171 	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172 }
173 
174 /*
175  *	numdirtywakeup:
176  *
177  *	If someone is blocked due to there being too many dirty buffers,
178  *	and numdirtybuffers is now reasonable, wake them up.
179  */
180 
181 static __inline void
182 numdirtywakeup(int level)
183 {
184 	if (numdirtybuffers <= level) {
185 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187 			wakeup(&needsbuffer);
188 		}
189 	}
190 }
191 
192 /*
193  *	bufspacewakeup:
194  *
195  *	Called when buffer space is potentially available for recovery.
196  *	getnewbuf() will block on this flag when it is unable to free
197  *	sufficient buffer space.  Buffer space becomes recoverable when
198  *	bp's get placed back in the queues.
199  */
200 
201 static __inline void
202 bufspacewakeup(void)
203 {
204 	/*
205 	 * If someone is waiting for BUF space, wake them up.  Even
206 	 * though we haven't freed the kva space yet, the waiting
207 	 * process will be able to now.
208 	 */
209 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211 		wakeup(&needsbuffer);
212 	}
213 }
214 
215 /*
216  * runningbufwakeup() - in-progress I/O accounting.
217  *
218  */
219 static __inline void
220 runningbufwakeup(struct buf *bp)
221 {
222 	if (bp->b_runningbufspace) {
223 		runningbufspace -= bp->b_runningbufspace;
224 		bp->b_runningbufspace = 0;
225 		if (runningbufreq && runningbufspace <= lorunningspace) {
226 			runningbufreq = 0;
227 			wakeup(&runningbufreq);
228 		}
229 	}
230 }
231 
232 /*
233  *	bufcountwakeup:
234  *
235  *	Called when a buffer has been added to one of the free queues to
236  *	account for the buffer and to wakeup anyone waiting for free buffers.
237  *	This typically occurs when large amounts of metadata are being handled
238  *	by the buffer cache ( else buffer space runs out first, usually ).
239  */
240 
241 static __inline void
242 bufcountwakeup(void)
243 {
244 	++numfreebuffers;
245 	if (needsbuffer) {
246 		needsbuffer &= ~VFS_BIO_NEED_ANY;
247 		if (numfreebuffers >= hifreebuffers)
248 			needsbuffer &= ~VFS_BIO_NEED_FREE;
249 		wakeup(&needsbuffer);
250 	}
251 }
252 
253 /*
254  *	waitrunningbufspace()
255  *
256  *	runningbufspace is a measure of the amount of I/O currently
257  *	running.  This routine is used in async-write situations to
258  *	prevent creating huge backups of pending writes to a device.
259  *	Only asynchronous writes are governed by this function.
260  *
261  *	Reads will adjust runningbufspace, but will not block based on it.
262  *	The read load has a side effect of reducing the allowed write load.
263  *
264  *	This does NOT turn an async write into a sync write.  It waits
265  *	for earlier writes to complete and generally returns before the
266  *	caller's write has reached the device.
267  */
268 static __inline void
269 waitrunningbufspace(void)
270 {
271 	while (runningbufspace > hirunningspace) {
272 		++runningbufreq;
273 		tsleep(&runningbufreq, PVM, "wdrain", 0);
274 	}
275 }
276 
277 
278 /*
279  *	vfs_buf_test_cache:
280  *
281  *	Called when a buffer is extended.  This function clears the B_CACHE
282  *	bit if the newly extended portion of the buffer does not contain
283  *	valid data.
284  */
285 static __inline__
286 void
287 vfs_buf_test_cache(struct buf *bp,
288 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
289 		  vm_page_t m)
290 {
291 	GIANT_REQUIRED;
292 
293 	if (bp->b_flags & B_CACHE) {
294 		int base = (foff + off) & PAGE_MASK;
295 		if (vm_page_is_valid(m, base, size) == 0)
296 			bp->b_flags &= ~B_CACHE;
297 	}
298 }
299 
300 static __inline__
301 void
302 bd_wakeup(int dirtybuflevel)
303 {
304 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
305 		bd_request = 1;
306 		wakeup(&bd_request);
307 	}
308 }
309 
310 /*
311  * bd_speedup - speedup the buffer cache flushing code
312  */
313 
314 static __inline__
315 void
316 bd_speedup(void)
317 {
318 	bd_wakeup(1);
319 }
320 
321 /*
322  * Initialize buffer headers and related structures.
323  */
324 
325 caddr_t
326 bufhashinit(caddr_t vaddr)
327 {
328 	/* first, make a null hash table */
329 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
330 		;
331 	bufhashtbl = (void *)vaddr;
332 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
333 	--bufhashmask;
334 	return(vaddr);
335 }
336 
337 void
338 bufinit(void)
339 {
340 	struct buf *bp;
341 	int i;
342 
343 	GIANT_REQUIRED;
344 
345 	TAILQ_INIT(&bswlist);
346 	LIST_INIT(&invalhash);
347 	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
348 
349 	for (i = 0; i <= bufhashmask; i++)
350 		LIST_INIT(&bufhashtbl[i]);
351 
352 	/* next, make a null set of free lists */
353 	for (i = 0; i < BUFFER_QUEUES; i++)
354 		TAILQ_INIT(&bufqueues[i]);
355 
356 	/* finally, initialize each buffer header and stick on empty q */
357 	for (i = 0; i < nbuf; i++) {
358 		bp = &buf[i];
359 		bzero(bp, sizeof *bp);
360 		bp->b_flags = B_INVAL;	/* we're just an empty header */
361 		bp->b_dev = NODEV;
362 		bp->b_rcred = NOCRED;
363 		bp->b_wcred = NOCRED;
364 		bp->b_qindex = QUEUE_EMPTY;
365 		bp->b_xflags = 0;
366 		LIST_INIT(&bp->b_dep);
367 		BUF_LOCKINIT(bp);
368 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
369 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
370 	}
371 
372 	/*
373 	 * maxbufspace is the absolute maximum amount of buffer space we are
374 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
375 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
376 	 * used by most other processes.  The differential is required to
377 	 * ensure that buf_daemon is able to run when other processes might
378 	 * be blocked waiting for buffer space.
379 	 *
380 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
381 	 * this may result in KVM fragmentation which is not handled optimally
382 	 * by the system.
383 	 */
384 	maxbufspace = nbuf * BKVASIZE;
385 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
386 	lobufspace = hibufspace - MAXBSIZE;
387 
388 	lorunningspace = 512 * 1024;
389 	hirunningspace = 1024 * 1024;
390 
391 /*
392  * Limit the amount of malloc memory since it is wired permanently into
393  * the kernel space.  Even though this is accounted for in the buffer
394  * allocation, we don't want the malloced region to grow uncontrolled.
395  * The malloc scheme improves memory utilization significantly on average
396  * (small) directories.
397  */
398 	maxbufmallocspace = hibufspace / 20;
399 
400 /*
401  * Reduce the chance of a deadlock occuring by limiting the number
402  * of delayed-write dirty buffers we allow to stack up.
403  */
404 	hidirtybuffers = nbuf / 4 + 20;
405 	numdirtybuffers = 0;
406 /*
407  * To support extreme low-memory systems, make sure hidirtybuffers cannot
408  * eat up all available buffer space.  This occurs when our minimum cannot
409  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
410  * BKVASIZE'd (8K) buffers.
411  */
412 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
413 		hidirtybuffers >>= 1;
414 	}
415 	lodirtybuffers = hidirtybuffers / 2;
416 
417 /*
418  * Try to keep the number of free buffers in the specified range,
419  * and give special processes (e.g. like buf_daemon) access to an
420  * emergency reserve.
421  */
422 	lofreebuffers = nbuf / 18 + 5;
423 	hifreebuffers = 2 * lofreebuffers;
424 	numfreebuffers = nbuf;
425 
426 /*
427  * Maximum number of async ops initiated per buf_daemon loop.  This is
428  * somewhat of a hack at the moment, we really need to limit ourselves
429  * based on the number of bytes of I/O in-transit that were initiated
430  * from buf_daemon.
431  */
432 
433 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
434 	bogus_page = vm_page_alloc(kernel_object,
435 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
436 			VM_ALLOC_NORMAL);
437 	cnt.v_wire_count++;
438 }
439 
440 /*
441  * bfreekva() - free the kva allocation for a buffer.
442  *
443  *	Must be called at splbio() or higher as this is the only locking for
444  *	buffer_map.
445  *
446  *	Since this call frees up buffer space, we call bufspacewakeup().
447  */
448 static void
449 bfreekva(struct buf * bp)
450 {
451 	GIANT_REQUIRED;
452 
453 	if (bp->b_kvasize) {
454 		++buffreekvacnt;
455 		bufspace -= bp->b_kvasize;
456 		vm_map_delete(buffer_map,
457 		    (vm_offset_t) bp->b_kvabase,
458 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
459 		);
460 		bp->b_kvasize = 0;
461 		bufspacewakeup();
462 	}
463 }
464 
465 /*
466  *	bremfree:
467  *
468  *	Remove the buffer from the appropriate free list.
469  */
470 void
471 bremfree(struct buf * bp)
472 {
473 	int s = splbio();
474 	int old_qindex = bp->b_qindex;
475 
476 	GIANT_REQUIRED;
477 
478 	if (bp->b_qindex != QUEUE_NONE) {
479 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
480 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
481 		bp->b_qindex = QUEUE_NONE;
482 	} else {
483 		if (BUF_REFCNT(bp) <= 1)
484 			panic("bremfree: removing a buffer not on a queue");
485 	}
486 
487 	/*
488 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
489 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
490 	 * the buffer was free and we must decrement numfreebuffers.
491 	 */
492 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
493 		switch(old_qindex) {
494 		case QUEUE_DIRTY:
495 		case QUEUE_CLEAN:
496 		case QUEUE_EMPTY:
497 		case QUEUE_EMPTYKVA:
498 			--numfreebuffers;
499 			break;
500 		default:
501 			break;
502 		}
503 	}
504 	splx(s);
505 }
506 
507 
508 /*
509  * Get a buffer with the specified data.  Look in the cache first.  We
510  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
511  * is set, the buffer is valid and we do not have to do anything ( see
512  * getblk() ).  This is really just a special case of breadn().
513  */
514 int
515 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
516     struct buf ** bpp)
517 {
518 
519 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
520 }
521 
522 /*
523  * Operates like bread, but also starts asynchronous I/O on
524  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
525  * to initiating I/O . If B_CACHE is set, the buffer is valid
526  * and we do not have to do anything.
527  */
528 int
529 breadn(struct vnode * vp, daddr_t blkno, int size,
530     daddr_t * rablkno, int *rabsize,
531     int cnt, struct ucred * cred, struct buf ** bpp)
532 {
533 	struct buf *bp, *rabp;
534 	int i;
535 	int rv = 0, readwait = 0;
536 
537 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
538 
539 	/* if not found in cache, do some I/O */
540 	if ((bp->b_flags & B_CACHE) == 0) {
541 		if (curproc != PCPU_GET(idleproc))
542 			curproc->p_stats->p_ru.ru_inblock++;
543 		bp->b_iocmd = BIO_READ;
544 		bp->b_flags &= ~B_INVAL;
545 		bp->b_ioflags &= ~BIO_ERROR;
546 		if (bp->b_rcred == NOCRED) {
547 			if (cred != NOCRED)
548 				crhold(cred);
549 			bp->b_rcred = cred;
550 		}
551 		vfs_busy_pages(bp, 0);
552 		VOP_STRATEGY(vp, bp);
553 		++readwait;
554 	}
555 
556 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
557 		if (inmem(vp, *rablkno))
558 			continue;
559 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
560 
561 		if ((rabp->b_flags & B_CACHE) == 0) {
562 			if (curproc != PCPU_GET(idleproc))
563 				curproc->p_stats->p_ru.ru_inblock++;
564 			rabp->b_flags |= B_ASYNC;
565 			rabp->b_flags &= ~B_INVAL;
566 			rabp->b_ioflags &= ~BIO_ERROR;
567 			rabp->b_iocmd = BIO_READ;
568 			if (rabp->b_rcred == NOCRED) {
569 				if (cred != NOCRED)
570 					crhold(cred);
571 				rabp->b_rcred = cred;
572 			}
573 			vfs_busy_pages(rabp, 0);
574 			BUF_KERNPROC(rabp);
575 			VOP_STRATEGY(vp, rabp);
576 		} else {
577 			brelse(rabp);
578 		}
579 	}
580 
581 	if (readwait) {
582 		rv = bufwait(bp);
583 	}
584 	return (rv);
585 }
586 
587 /*
588  * Write, release buffer on completion.  (Done by iodone
589  * if async).  Do not bother writing anything if the buffer
590  * is invalid.
591  *
592  * Note that we set B_CACHE here, indicating that buffer is
593  * fully valid and thus cacheable.  This is true even of NFS
594  * now so we set it generally.  This could be set either here
595  * or in biodone() since the I/O is synchronous.  We put it
596  * here.
597  */
598 
599 int dobkgrdwrite = 1;
600 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
601 
602 int
603 bwrite(struct buf * bp)
604 {
605 	int oldflags, s;
606 	struct buf *newbp;
607 
608 	if (bp->b_flags & B_INVAL) {
609 		brelse(bp);
610 		return (0);
611 	}
612 
613 	oldflags = bp->b_flags;
614 
615 	if (BUF_REFCNT(bp) == 0)
616 		panic("bwrite: buffer is not busy???");
617 	s = splbio();
618 	/*
619 	 * If a background write is already in progress, delay
620 	 * writing this block if it is asynchronous. Otherwise
621 	 * wait for the background write to complete.
622 	 */
623 	if (bp->b_xflags & BX_BKGRDINPROG) {
624 		if (bp->b_flags & B_ASYNC) {
625 			splx(s);
626 			bdwrite(bp);
627 			return (0);
628 		}
629 		bp->b_xflags |= BX_BKGRDWAIT;
630 		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
631 		if (bp->b_xflags & BX_BKGRDINPROG)
632 			panic("bwrite: still writing");
633 	}
634 
635 	/* Mark the buffer clean */
636 	bundirty(bp);
637 
638 	/*
639 	 * If this buffer is marked for background writing and we
640 	 * do not have to wait for it, make a copy and write the
641 	 * copy so as to leave this buffer ready for further use.
642 	 *
643 	 * This optimization eats a lot of memory.  If we have a page
644 	 * or buffer shortfall we can't do it.
645 	 */
646 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
647 	    (bp->b_flags & B_ASYNC) &&
648 	    !vm_page_count_severe() &&
649 	    !buf_dirty_count_severe()) {
650 		if (bp->b_iodone != NULL) {
651 			printf("bp->b_iodone = %p\n", bp->b_iodone);
652 			panic("bwrite: need chained iodone");
653 		}
654 
655 		/* get a new block */
656 		newbp = geteblk(bp->b_bufsize);
657 
658 		/* set it to be identical to the old block */
659 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
660 		bgetvp(bp->b_vp, newbp);
661 		newbp->b_lblkno = bp->b_lblkno;
662 		newbp->b_blkno = bp->b_blkno;
663 		newbp->b_offset = bp->b_offset;
664 		newbp->b_iodone = vfs_backgroundwritedone;
665 		newbp->b_flags |= B_ASYNC;
666 		newbp->b_flags &= ~B_INVAL;
667 
668 		/* move over the dependencies */
669 		if (LIST_FIRST(&bp->b_dep) != NULL)
670 			buf_movedeps(bp, newbp);
671 
672 		/*
673 		 * Initiate write on the copy, release the original to
674 		 * the B_LOCKED queue so that it cannot go away until
675 		 * the background write completes. If not locked it could go
676 		 * away and then be reconstituted while it was being written.
677 		 * If the reconstituted buffer were written, we could end up
678 		 * with two background copies being written at the same time.
679 		 */
680 		bp->b_xflags |= BX_BKGRDINPROG;
681 		bp->b_flags |= B_LOCKED;
682 		bqrelse(bp);
683 		bp = newbp;
684 	}
685 
686 	bp->b_flags &= ~B_DONE;
687 	bp->b_ioflags &= ~BIO_ERROR;
688 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
689 	bp->b_iocmd = BIO_WRITE;
690 
691 	bp->b_vp->v_numoutput++;
692 	vfs_busy_pages(bp, 1);
693 
694 	/*
695 	 * Normal bwrites pipeline writes
696 	 */
697 	bp->b_runningbufspace = bp->b_bufsize;
698 	runningbufspace += bp->b_runningbufspace;
699 
700 	if (curproc != PCPU_GET(idleproc))
701 		curproc->p_stats->p_ru.ru_oublock++;
702 	splx(s);
703 	if (oldflags & B_ASYNC)
704 		BUF_KERNPROC(bp);
705 	BUF_STRATEGY(bp);
706 
707 	if ((oldflags & B_ASYNC) == 0) {
708 		int rtval = bufwait(bp);
709 		brelse(bp);
710 		return (rtval);
711 	} else {
712 		/*
713 		 * don't allow the async write to saturate the I/O
714 		 * system.  There is no chance of deadlock here because
715 		 * we are blocking on I/O that is already in-progress.
716 		 */
717 		waitrunningbufspace();
718 	}
719 
720 	return (0);
721 }
722 
723 /*
724  * Complete a background write started from bwrite.
725  */
726 static void
727 vfs_backgroundwritedone(bp)
728 	struct buf *bp;
729 {
730 	struct buf *origbp;
731 
732 	/*
733 	 * Find the original buffer that we are writing.
734 	 */
735 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
736 		panic("backgroundwritedone: lost buffer");
737 	/*
738 	 * Process dependencies then return any unfinished ones.
739 	 */
740 	if (LIST_FIRST(&bp->b_dep) != NULL)
741 		buf_complete(bp);
742 	if (LIST_FIRST(&bp->b_dep) != NULL)
743 		buf_movedeps(bp, origbp);
744 	/*
745 	 * Clear the BX_BKGRDINPROG flag in the original buffer
746 	 * and awaken it if it is waiting for the write to complete.
747 	 * If BX_BKGRDINPROG is not set in the original buffer it must
748 	 * have been released and re-instantiated - which is not legal.
749 	 */
750 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
751 	origbp->b_xflags &= ~BX_BKGRDINPROG;
752 	if (origbp->b_xflags & BX_BKGRDWAIT) {
753 		origbp->b_xflags &= ~BX_BKGRDWAIT;
754 		wakeup(&origbp->b_xflags);
755 	}
756 	/*
757 	 * Clear the B_LOCKED flag and remove it from the locked
758 	 * queue if it currently resides there.
759 	 */
760 	origbp->b_flags &= ~B_LOCKED;
761 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
762 		bremfree(origbp);
763 		bqrelse(origbp);
764 	}
765 	/*
766 	 * This buffer is marked B_NOCACHE, so when it is released
767 	 * by biodone, it will be tossed. We mark it with BIO_READ
768 	 * to avoid biodone doing a second vwakeup.
769 	 */
770 	bp->b_flags |= B_NOCACHE;
771 	bp->b_iocmd = BIO_READ;
772 	bp->b_flags &= ~(B_CACHE | B_DONE);
773 	bp->b_iodone = 0;
774 	bufdone(bp);
775 }
776 
777 /*
778  * Delayed write. (Buffer is marked dirty).  Do not bother writing
779  * anything if the buffer is marked invalid.
780  *
781  * Note that since the buffer must be completely valid, we can safely
782  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
783  * biodone() in order to prevent getblk from writing the buffer
784  * out synchronously.
785  */
786 void
787 bdwrite(struct buf * bp)
788 {
789 	GIANT_REQUIRED;
790 
791 	if (BUF_REFCNT(bp) == 0)
792 		panic("bdwrite: buffer is not busy");
793 
794 	if (bp->b_flags & B_INVAL) {
795 		brelse(bp);
796 		return;
797 	}
798 	bdirty(bp);
799 
800 	/*
801 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
802 	 * true even of NFS now.
803 	 */
804 	bp->b_flags |= B_CACHE;
805 
806 	/*
807 	 * This bmap keeps the system from needing to do the bmap later,
808 	 * perhaps when the system is attempting to do a sync.  Since it
809 	 * is likely that the indirect block -- or whatever other datastructure
810 	 * that the filesystem needs is still in memory now, it is a good
811 	 * thing to do this.  Note also, that if the pageout daemon is
812 	 * requesting a sync -- there might not be enough memory to do
813 	 * the bmap then...  So, this is important to do.
814 	 */
815 	if (bp->b_lblkno == bp->b_blkno) {
816 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
817 	}
818 
819 	/*
820 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
821 	 */
822 	vfs_setdirty(bp);
823 
824 	/*
825 	 * We need to do this here to satisfy the vnode_pager and the
826 	 * pageout daemon, so that it thinks that the pages have been
827 	 * "cleaned".  Note that since the pages are in a delayed write
828 	 * buffer -- the VFS layer "will" see that the pages get written
829 	 * out on the next sync, or perhaps the cluster will be completed.
830 	 */
831 	vfs_clean_pages(bp);
832 	bqrelse(bp);
833 
834 	/*
835 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
836 	 * buffers (midpoint between our recovery point and our stall
837 	 * point).
838 	 */
839 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
840 
841 	/*
842 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
843 	 * due to the softdep code.
844 	 */
845 }
846 
847 /*
848  *	bdirty:
849  *
850  *	Turn buffer into delayed write request.  We must clear BIO_READ and
851  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
852  *	itself to properly update it in the dirty/clean lists.  We mark it
853  *	B_DONE to ensure that any asynchronization of the buffer properly
854  *	clears B_DONE ( else a panic will occur later ).
855  *
856  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
857  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
858  *	should only be called if the buffer is known-good.
859  *
860  *	Since the buffer is not on a queue, we do not update the numfreebuffers
861  *	count.
862  *
863  *	Must be called at splbio().
864  *	The buffer must be on QUEUE_NONE.
865  */
866 void
867 bdirty(bp)
868 	struct buf *bp;
869 {
870 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
871 	bp->b_flags &= ~(B_RELBUF);
872 	bp->b_iocmd = BIO_WRITE;
873 
874 	if ((bp->b_flags & B_DELWRI) == 0) {
875 		bp->b_flags |= B_DONE | B_DELWRI;
876 		reassignbuf(bp, bp->b_vp);
877 		++numdirtybuffers;
878 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
879 	}
880 }
881 
882 /*
883  *	bundirty:
884  *
885  *	Clear B_DELWRI for buffer.
886  *
887  *	Since the buffer is not on a queue, we do not update the numfreebuffers
888  *	count.
889  *
890  *	Must be called at splbio().
891  *	The buffer must be on QUEUE_NONE.
892  */
893 
894 void
895 bundirty(bp)
896 	struct buf *bp;
897 {
898 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
899 
900 	if (bp->b_flags & B_DELWRI) {
901 		bp->b_flags &= ~B_DELWRI;
902 		reassignbuf(bp, bp->b_vp);
903 		--numdirtybuffers;
904 		numdirtywakeup(lodirtybuffers);
905 	}
906 	/*
907 	 * Since it is now being written, we can clear its deferred write flag.
908 	 */
909 	bp->b_flags &= ~B_DEFERRED;
910 }
911 
912 /*
913  *	bawrite:
914  *
915  *	Asynchronous write.  Start output on a buffer, but do not wait for
916  *	it to complete.  The buffer is released when the output completes.
917  *
918  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
919  *	B_INVAL buffers.  Not us.
920  */
921 void
922 bawrite(struct buf * bp)
923 {
924 	bp->b_flags |= B_ASYNC;
925 	(void) BUF_WRITE(bp);
926 }
927 
928 /*
929  *	bowrite:
930  *
931  *	Ordered write.  Start output on a buffer, and flag it so that the
932  *	device will write it in the order it was queued.  The buffer is
933  *	released when the output completes.  bwrite() ( or the VOP routine
934  *	anyway ) is responsible for handling B_INVAL buffers.
935  */
936 int
937 bowrite(struct buf * bp)
938 {
939 	bp->b_ioflags |= BIO_ORDERED;
940 	bp->b_flags |= B_ASYNC;
941 	return (BUF_WRITE(bp));
942 }
943 
944 /*
945  *	bwillwrite:
946  *
947  *	Called prior to the locking of any vnodes when we are expecting to
948  *	write.  We do not want to starve the buffer cache with too many
949  *	dirty buffers so we block here.  By blocking prior to the locking
950  *	of any vnodes we attempt to avoid the situation where a locked vnode
951  *	prevents the various system daemons from flushing related buffers.
952  */
953 
954 void
955 bwillwrite(void)
956 {
957 	if (numdirtybuffers >= hidirtybuffers) {
958 		int s;
959 
960 		s = splbio();
961 		while (numdirtybuffers >= hidirtybuffers) {
962 			bd_wakeup(1);
963 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
964 			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
965 		}
966 		splx(s);
967 	}
968 }
969 
970 /*
971  * Return true if we have too many dirty buffers.
972  */
973 int
974 buf_dirty_count_severe(void)
975 {
976 	return(numdirtybuffers >= hidirtybuffers);
977 }
978 
979 /*
980  *	brelse:
981  *
982  *	Release a busy buffer and, if requested, free its resources.  The
983  *	buffer will be stashed in the appropriate bufqueue[] allowing it
984  *	to be accessed later as a cache entity or reused for other purposes.
985  */
986 void
987 brelse(struct buf * bp)
988 {
989 	int s;
990 
991 	GIANT_REQUIRED;
992 
993 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
994 
995 	s = splbio();
996 
997 	if (bp->b_flags & B_LOCKED)
998 		bp->b_ioflags &= ~BIO_ERROR;
999 
1000 	if (bp->b_iocmd == BIO_WRITE &&
1001 	    (bp->b_ioflags & BIO_ERROR) &&
1002 	    !(bp->b_flags & B_INVAL)) {
1003 		/*
1004 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1005 		 * pages from being scrapped.  If B_INVAL is set then
1006 		 * this case is not run and the next case is run to
1007 		 * destroy the buffer.  B_INVAL can occur if the buffer
1008 		 * is outside the range supported by the underlying device.
1009 		 */
1010 		bp->b_ioflags &= ~BIO_ERROR;
1011 		bdirty(bp);
1012 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1013 	    (bp->b_ioflags & BIO_ERROR) ||
1014 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1015 		/*
1016 		 * Either a failed I/O or we were asked to free or not
1017 		 * cache the buffer.
1018 		 */
1019 		bp->b_flags |= B_INVAL;
1020 		if (LIST_FIRST(&bp->b_dep) != NULL)
1021 			buf_deallocate(bp);
1022 		if (bp->b_flags & B_DELWRI) {
1023 			--numdirtybuffers;
1024 			numdirtywakeup(lodirtybuffers);
1025 		}
1026 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1027 		if ((bp->b_flags & B_VMIO) == 0) {
1028 			if (bp->b_bufsize)
1029 				allocbuf(bp, 0);
1030 			if (bp->b_vp)
1031 				brelvp(bp);
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1037 	 * is called with B_DELWRI set, the underlying pages may wind up
1038 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1039 	 * because pages associated with a B_DELWRI bp are marked clean.
1040 	 *
1041 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1042 	 * if B_DELWRI is set.
1043 	 *
1044 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1045 	 * on pages to return pages to the VM page queues.
1046 	 */
1047 	if (bp->b_flags & B_DELWRI)
1048 		bp->b_flags &= ~B_RELBUF;
1049 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1050 		bp->b_flags |= B_RELBUF;
1051 
1052 	/*
1053 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1054 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1055 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1056 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1057 	 *
1058 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1059 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1060 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1061 	 *
1062 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1063 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1064 	 * the commit state and we cannot afford to lose the buffer. If the
1065 	 * buffer has a background write in progress, we need to keep it
1066 	 * around to prevent it from being reconstituted and starting a second
1067 	 * background write.
1068 	 */
1069 	if ((bp->b_flags & B_VMIO)
1070 	    && !(bp->b_vp->v_tag == VT_NFS &&
1071 		 !vn_isdisk(bp->b_vp, NULL) &&
1072 		 (bp->b_flags & B_DELWRI))
1073 	    ) {
1074 
1075 		int i, j, resid;
1076 		vm_page_t m;
1077 		off_t foff;
1078 		vm_pindex_t poff;
1079 		vm_object_t obj;
1080 		struct vnode *vp;
1081 
1082 		vp = bp->b_vp;
1083 
1084 		/*
1085 		 * Get the base offset and length of the buffer.  Note that
1086 		 * for block sizes that are less then PAGE_SIZE, the b_data
1087 		 * base of the buffer does not represent exactly b_offset and
1088 		 * neither b_offset nor b_size are necessarily page aligned.
1089 		 * Instead, the starting position of b_offset is:
1090 		 *
1091 		 * 	b_data + (b_offset & PAGE_MASK)
1092 		 *
1093 		 * block sizes less then DEV_BSIZE (usually 512) are not
1094 		 * supported due to the page granularity bits (m->valid,
1095 		 * m->dirty, etc...).
1096 		 *
1097 		 * See man buf(9) for more information
1098 		 */
1099 		resid = bp->b_bufsize;
1100 		foff = bp->b_offset;
1101 
1102 		for (i = 0; i < bp->b_npages; i++) {
1103 			int had_bogus = 0;
1104 
1105 			m = bp->b_pages[i];
1106 			vm_page_flag_clear(m, PG_ZERO);
1107 
1108 			/*
1109 			 * If we hit a bogus page, fixup *all* the bogus pages
1110 			 * now.
1111 			 */
1112 			if (m == bogus_page) {
1113 				VOP_GETVOBJECT(vp, &obj);
1114 				poff = OFF_TO_IDX(bp->b_offset);
1115 				had_bogus = 1;
1116 
1117 				for (j = i; j < bp->b_npages; j++) {
1118 					vm_page_t mtmp;
1119 					mtmp = bp->b_pages[j];
1120 					if (mtmp == bogus_page) {
1121 						mtmp = vm_page_lookup(obj, poff + j);
1122 						if (!mtmp) {
1123 							panic("brelse: page missing\n");
1124 						}
1125 						bp->b_pages[j] = mtmp;
1126 					}
1127 				}
1128 
1129 				if ((bp->b_flags & B_INVAL) == 0) {
1130 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1131 				}
1132 				m = bp->b_pages[i];
1133 			}
1134 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1135 				int poffset = foff & PAGE_MASK;
1136 				int presid = resid > (PAGE_SIZE - poffset) ?
1137 					(PAGE_SIZE - poffset) : resid;
1138 
1139 				KASSERT(presid >= 0, ("brelse: extra page"));
1140 				vm_page_set_invalid(m, poffset, presid);
1141 				if (had_bogus)
1142 					printf("avoided corruption bug in bogus_page/brelse code\n");
1143 			}
1144 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1145 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1146 		}
1147 
1148 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1149 			vfs_vmio_release(bp);
1150 
1151 	} else if (bp->b_flags & B_VMIO) {
1152 
1153 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1154 			vfs_vmio_release(bp);
1155 		}
1156 
1157 	}
1158 
1159 	if (bp->b_qindex != QUEUE_NONE)
1160 		panic("brelse: free buffer onto another queue???");
1161 	if (BUF_REFCNT(bp) > 1) {
1162 		/* do not release to free list */
1163 		BUF_UNLOCK(bp);
1164 		splx(s);
1165 		return;
1166 	}
1167 
1168 	/* enqueue */
1169 
1170 	/* buffers with no memory */
1171 	if (bp->b_bufsize == 0) {
1172 		bp->b_flags |= B_INVAL;
1173 		bp->b_xflags &= ~BX_BKGRDWRITE;
1174 		if (bp->b_xflags & BX_BKGRDINPROG)
1175 			panic("losing buffer 1");
1176 		if (bp->b_kvasize) {
1177 			bp->b_qindex = QUEUE_EMPTYKVA;
1178 		} else {
1179 			bp->b_qindex = QUEUE_EMPTY;
1180 		}
1181 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1182 		LIST_REMOVE(bp, b_hash);
1183 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1184 		bp->b_dev = NODEV;
1185 	/* buffers with junk contents */
1186 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1187 		bp->b_flags |= B_INVAL;
1188 		bp->b_xflags &= ~BX_BKGRDWRITE;
1189 		if (bp->b_xflags & BX_BKGRDINPROG)
1190 			panic("losing buffer 2");
1191 		bp->b_qindex = QUEUE_CLEAN;
1192 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1193 		LIST_REMOVE(bp, b_hash);
1194 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1195 		bp->b_dev = NODEV;
1196 
1197 	/* buffers that are locked */
1198 	} else if (bp->b_flags & B_LOCKED) {
1199 		bp->b_qindex = QUEUE_LOCKED;
1200 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1201 
1202 	/* remaining buffers */
1203 	} else {
1204 		if (bp->b_flags & B_DELWRI)
1205 			bp->b_qindex = QUEUE_DIRTY;
1206 		else
1207 			bp->b_qindex = QUEUE_CLEAN;
1208 		if (bp->b_flags & B_AGE)
1209 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1210 		else
1211 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1212 	}
1213 
1214 	/*
1215 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1216 	 * on the correct queue.
1217 	 */
1218 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1219 		bp->b_flags &= ~B_DELWRI;
1220 		--numdirtybuffers;
1221 		numdirtywakeup(lodirtybuffers);
1222 	}
1223 
1224 	/*
1225 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1226 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1227 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1228 	 * if B_INVAL is set ).
1229 	 */
1230 
1231 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1232 		bufcountwakeup();
1233 
1234 	/*
1235 	 * Something we can maybe free or reuse
1236 	 */
1237 	if (bp->b_bufsize || bp->b_kvasize)
1238 		bufspacewakeup();
1239 
1240 	/* unlock */
1241 	BUF_UNLOCK(bp);
1242 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1243 	bp->b_ioflags &= ~BIO_ORDERED;
1244 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1245 		panic("brelse: not dirty");
1246 	splx(s);
1247 }
1248 
1249 /*
1250  * Release a buffer back to the appropriate queue but do not try to free
1251  * it.  The buffer is expected to be used again soon.
1252  *
1253  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1254  * biodone() to requeue an async I/O on completion.  It is also used when
1255  * known good buffers need to be requeued but we think we may need the data
1256  * again soon.
1257  *
1258  * XXX we should be able to leave the B_RELBUF hint set on completion.
1259  */
1260 void
1261 bqrelse(struct buf * bp)
1262 {
1263 	int s;
1264 
1265 	s = splbio();
1266 
1267 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1268 
1269 	if (bp->b_qindex != QUEUE_NONE)
1270 		panic("bqrelse: free buffer onto another queue???");
1271 	if (BUF_REFCNT(bp) > 1) {
1272 		/* do not release to free list */
1273 		BUF_UNLOCK(bp);
1274 		splx(s);
1275 		return;
1276 	}
1277 	if (bp->b_flags & B_LOCKED) {
1278 		bp->b_ioflags &= ~BIO_ERROR;
1279 		bp->b_qindex = QUEUE_LOCKED;
1280 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1281 		/* buffers with stale but valid contents */
1282 	} else if (bp->b_flags & B_DELWRI) {
1283 		bp->b_qindex = QUEUE_DIRTY;
1284 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1285 	} else if (vm_page_count_severe()) {
1286 		/*
1287 		 * We are too low on memory, we have to try to free the
1288 		 * buffer (most importantly: the wired pages making up its
1289 		 * backing store) *now*.
1290 		 */
1291 		splx(s);
1292 		brelse(bp);
1293 		return;
1294 	} else {
1295 		bp->b_qindex = QUEUE_CLEAN;
1296 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1297 	}
1298 
1299 	if ((bp->b_flags & B_LOCKED) == 0 &&
1300 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1301 		bufcountwakeup();
1302 	}
1303 
1304 	/*
1305 	 * Something we can maybe free or reuse.
1306 	 */
1307 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1308 		bufspacewakeup();
1309 
1310 	/* unlock */
1311 	BUF_UNLOCK(bp);
1312 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1313 	bp->b_ioflags &= ~BIO_ORDERED;
1314 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1315 		panic("bqrelse: not dirty");
1316 	splx(s);
1317 }
1318 
1319 static void
1320 vfs_vmio_release(bp)
1321 	struct buf *bp;
1322 {
1323 	int i;
1324 	vm_page_t m;
1325 
1326 	GIANT_REQUIRED;
1327 
1328 	for (i = 0; i < bp->b_npages; i++) {
1329 		m = bp->b_pages[i];
1330 		bp->b_pages[i] = NULL;
1331 		/*
1332 		 * In order to keep page LRU ordering consistent, put
1333 		 * everything on the inactive queue.
1334 		 */
1335 		vm_page_unwire(m, 0);
1336 		/*
1337 		 * We don't mess with busy pages, it is
1338 		 * the responsibility of the process that
1339 		 * busied the pages to deal with them.
1340 		 */
1341 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1342 			continue;
1343 
1344 		if (m->wire_count == 0) {
1345 			vm_page_flag_clear(m, PG_ZERO);
1346 			/*
1347 			 * Might as well free the page if we can and it has
1348 			 * no valid data.  We also free the page if the
1349 			 * buffer was used for direct I/O
1350 			 */
1351 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1352 				vm_page_busy(m);
1353 				vm_page_protect(m, VM_PROT_NONE);
1354 				vm_page_free(m);
1355 			} else if (bp->b_flags & B_DIRECT) {
1356 				vm_page_try_to_free(m);
1357 			} else if (vm_page_count_severe()) {
1358 				vm_page_try_to_cache(m);
1359 			}
1360 		}
1361 	}
1362 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1363 
1364 	if (bp->b_bufsize) {
1365 		bufspacewakeup();
1366 		bp->b_bufsize = 0;
1367 	}
1368 	bp->b_npages = 0;
1369 	bp->b_flags &= ~B_VMIO;
1370 	if (bp->b_vp)
1371 		brelvp(bp);
1372 }
1373 
1374 /*
1375  * Check to see if a block is currently memory resident.
1376  */
1377 struct buf *
1378 gbincore(struct vnode * vp, daddr_t blkno)
1379 {
1380 	struct buf *bp;
1381 	struct bufhashhdr *bh;
1382 
1383 	bh = bufhash(vp, blkno);
1384 
1385 	/* Search hash chain */
1386 	LIST_FOREACH(bp, bh, b_hash) {
1387 		/* hit */
1388 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1389 		    (bp->b_flags & B_INVAL) == 0) {
1390 			break;
1391 		}
1392 	}
1393 	return (bp);
1394 }
1395 
1396 /*
1397  *	vfs_bio_awrite:
1398  *
1399  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1400  *	This is much better then the old way of writing only one buffer at
1401  *	a time.  Note that we may not be presented with the buffers in the
1402  *	correct order, so we search for the cluster in both directions.
1403  */
1404 int
1405 vfs_bio_awrite(struct buf * bp)
1406 {
1407 	int i;
1408 	int j;
1409 	daddr_t lblkno = bp->b_lblkno;
1410 	struct vnode *vp = bp->b_vp;
1411 	int s;
1412 	int ncl;
1413 	struct buf *bpa;
1414 	int nwritten;
1415 	int size;
1416 	int maxcl;
1417 
1418 	s = splbio();
1419 	/*
1420 	 * right now we support clustered writing only to regular files.  If
1421 	 * we find a clusterable block we could be in the middle of a cluster
1422 	 * rather then at the beginning.
1423 	 */
1424 	if ((vp->v_type == VREG) &&
1425 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1426 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1427 
1428 		size = vp->v_mount->mnt_stat.f_iosize;
1429 		maxcl = MAXPHYS / size;
1430 
1431 		for (i = 1; i < maxcl; i++) {
1432 			if ((bpa = gbincore(vp, lblkno + i)) &&
1433 			    BUF_REFCNT(bpa) == 0 &&
1434 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1435 			    (B_DELWRI | B_CLUSTEROK)) &&
1436 			    (bpa->b_bufsize == size)) {
1437 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1438 				    (bpa->b_blkno !=
1439 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1440 					break;
1441 			} else {
1442 				break;
1443 			}
1444 		}
1445 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1446 			if ((bpa = gbincore(vp, lblkno - j)) &&
1447 			    BUF_REFCNT(bpa) == 0 &&
1448 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1449 			    (B_DELWRI | B_CLUSTEROK)) &&
1450 			    (bpa->b_bufsize == size)) {
1451 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1452 				    (bpa->b_blkno !=
1453 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1454 					break;
1455 			} else {
1456 				break;
1457 			}
1458 		}
1459 		--j;
1460 		ncl = i + j;
1461 		/*
1462 		 * this is a possible cluster write
1463 		 */
1464 		if (ncl != 1) {
1465 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1466 			splx(s);
1467 			return nwritten;
1468 		}
1469 	}
1470 
1471 	BUF_LOCK(bp, LK_EXCLUSIVE);
1472 	bremfree(bp);
1473 	bp->b_flags |= B_ASYNC;
1474 
1475 	splx(s);
1476 	/*
1477 	 * default (old) behavior, writing out only one block
1478 	 *
1479 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1480 	 */
1481 	nwritten = bp->b_bufsize;
1482 	(void) BUF_WRITE(bp);
1483 
1484 	return nwritten;
1485 }
1486 
1487 /*
1488  *	getnewbuf:
1489  *
1490  *	Find and initialize a new buffer header, freeing up existing buffers
1491  *	in the bufqueues as necessary.  The new buffer is returned locked.
1492  *
1493  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1494  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1495  *
1496  *	We block if:
1497  *		We have insufficient buffer headers
1498  *		We have insufficient buffer space
1499  *		buffer_map is too fragmented ( space reservation fails )
1500  *		If we have to flush dirty buffers ( but we try to avoid this )
1501  *
1502  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1503  *	Instead we ask the buf daemon to do it for us.  We attempt to
1504  *	avoid piecemeal wakeups of the pageout daemon.
1505  */
1506 
1507 static struct buf *
1508 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1509 {
1510 	struct buf *bp;
1511 	struct buf *nbp;
1512 	int defrag = 0;
1513 	int nqindex;
1514 	static int flushingbufs;
1515 
1516 	GIANT_REQUIRED;
1517 
1518 	/*
1519 	 * We can't afford to block since we might be holding a vnode lock,
1520 	 * which may prevent system daemons from running.  We deal with
1521 	 * low-memory situations by proactively returning memory and running
1522 	 * async I/O rather then sync I/O.
1523 	 */
1524 
1525 	++getnewbufcalls;
1526 	--getnewbufrestarts;
1527 restart:
1528 	++getnewbufrestarts;
1529 
1530 	/*
1531 	 * Setup for scan.  If we do not have enough free buffers,
1532 	 * we setup a degenerate case that immediately fails.  Note
1533 	 * that if we are specially marked process, we are allowed to
1534 	 * dip into our reserves.
1535 	 *
1536 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1537 	 *
1538 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1539 	 * However, there are a number of cases (defragging, reusing, ...)
1540 	 * where we cannot backup.
1541 	 */
1542 	nqindex = QUEUE_EMPTYKVA;
1543 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1544 
1545 	if (nbp == NULL) {
1546 		/*
1547 		 * If no EMPTYKVA buffers and we are either
1548 		 * defragging or reusing, locate a CLEAN buffer
1549 		 * to free or reuse.  If bufspace useage is low
1550 		 * skip this step so we can allocate a new buffer.
1551 		 */
1552 		if (defrag || bufspace >= lobufspace) {
1553 			nqindex = QUEUE_CLEAN;
1554 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1555 		}
1556 
1557 		/*
1558 		 * If we could not find or were not allowed to reuse a
1559 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1560 		 * buffer.  We can only use an EMPTY buffer if allocating
1561 		 * its KVA would not otherwise run us out of buffer space.
1562 		 */
1563 		if (nbp == NULL && defrag == 0 &&
1564 		    bufspace + maxsize < hibufspace) {
1565 			nqindex = QUEUE_EMPTY;
1566 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1572 	 * depending.
1573 	 */
1574 
1575 	while ((bp = nbp) != NULL) {
1576 		int qindex = nqindex;
1577 
1578 		/*
1579 		 * Calculate next bp ( we can only use it if we do not block
1580 		 * or do other fancy things ).
1581 		 */
1582 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1583 			switch(qindex) {
1584 			case QUEUE_EMPTY:
1585 				nqindex = QUEUE_EMPTYKVA;
1586 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1587 					break;
1588 				/* fall through */
1589 			case QUEUE_EMPTYKVA:
1590 				nqindex = QUEUE_CLEAN;
1591 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1592 					break;
1593 				/* fall through */
1594 			case QUEUE_CLEAN:
1595 				/*
1596 				 * nbp is NULL.
1597 				 */
1598 				break;
1599 			}
1600 		}
1601 
1602 		/*
1603 		 * Sanity Checks
1604 		 */
1605 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1606 
1607 		/*
1608 		 * Note: we no longer distinguish between VMIO and non-VMIO
1609 		 * buffers.
1610 		 */
1611 
1612 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1613 
1614 		/*
1615 		 * If we are defragging then we need a buffer with
1616 		 * b_kvasize != 0.  XXX this situation should no longer
1617 		 * occur, if defrag is non-zero the buffer's b_kvasize
1618 		 * should also be non-zero at this point.  XXX
1619 		 */
1620 		if (defrag && bp->b_kvasize == 0) {
1621 			printf("Warning: defrag empty buffer %p\n", bp);
1622 			continue;
1623 		}
1624 
1625 		/*
1626 		 * Start freeing the bp.  This is somewhat involved.  nbp
1627 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1628 		 */
1629 
1630 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1631 			panic("getnewbuf: locked buf");
1632 		bremfree(bp);
1633 
1634 		if (qindex == QUEUE_CLEAN) {
1635 			if (bp->b_flags & B_VMIO) {
1636 				bp->b_flags &= ~B_ASYNC;
1637 				vfs_vmio_release(bp);
1638 			}
1639 			if (bp->b_vp)
1640 				brelvp(bp);
1641 		}
1642 
1643 		/*
1644 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1645 		 * the scan from this point on.
1646 		 *
1647 		 * Get the rest of the buffer freed up.  b_kva* is still
1648 		 * valid after this operation.
1649 		 */
1650 
1651 		if (bp->b_rcred != NOCRED) {
1652 			crfree(bp->b_rcred);
1653 			bp->b_rcred = NOCRED;
1654 		}
1655 		if (bp->b_wcred != NOCRED) {
1656 			crfree(bp->b_wcred);
1657 			bp->b_wcred = NOCRED;
1658 		}
1659 		if (LIST_FIRST(&bp->b_dep) != NULL)
1660 			buf_deallocate(bp);
1661 		if (bp->b_xflags & BX_BKGRDINPROG)
1662 			panic("losing buffer 3");
1663 		LIST_REMOVE(bp, b_hash);
1664 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1665 
1666 		if (bp->b_bufsize)
1667 			allocbuf(bp, 0);
1668 
1669 		bp->b_flags = 0;
1670 		bp->b_ioflags = 0;
1671 		bp->b_xflags = 0;
1672 		bp->b_dev = NODEV;
1673 		bp->b_vp = NULL;
1674 		bp->b_blkno = bp->b_lblkno = 0;
1675 		bp->b_offset = NOOFFSET;
1676 		bp->b_iodone = 0;
1677 		bp->b_error = 0;
1678 		bp->b_resid = 0;
1679 		bp->b_bcount = 0;
1680 		bp->b_npages = 0;
1681 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1682 		bp->b_magic = B_MAGIC_BIO;
1683 		bp->b_op = &buf_ops_bio;
1684 
1685 		LIST_INIT(&bp->b_dep);
1686 
1687 		/*
1688 		 * If we are defragging then free the buffer.
1689 		 */
1690 		if (defrag) {
1691 			bp->b_flags |= B_INVAL;
1692 			bfreekva(bp);
1693 			brelse(bp);
1694 			defrag = 0;
1695 			goto restart;
1696 		}
1697 
1698 		/*
1699 		 * If we are overcomitted then recover the buffer and its
1700 		 * KVM space.  This occurs in rare situations when multiple
1701 		 * processes are blocked in getnewbuf() or allocbuf().
1702 		 */
1703 		if (bufspace >= hibufspace)
1704 			flushingbufs = 1;
1705 		if (flushingbufs && bp->b_kvasize != 0) {
1706 			bp->b_flags |= B_INVAL;
1707 			bfreekva(bp);
1708 			brelse(bp);
1709 			goto restart;
1710 		}
1711 		if (bufspace < lobufspace)
1712 			flushingbufs = 0;
1713 		break;
1714 	}
1715 
1716 	/*
1717 	 * If we exhausted our list, sleep as appropriate.  We may have to
1718 	 * wakeup various daemons and write out some dirty buffers.
1719 	 *
1720 	 * Generally we are sleeping due to insufficient buffer space.
1721 	 */
1722 
1723 	if (bp == NULL) {
1724 		int flags;
1725 		char *waitmsg;
1726 
1727 		if (defrag) {
1728 			flags = VFS_BIO_NEED_BUFSPACE;
1729 			waitmsg = "nbufkv";
1730 		} else if (bufspace >= hibufspace) {
1731 			waitmsg = "nbufbs";
1732 			flags = VFS_BIO_NEED_BUFSPACE;
1733 		} else {
1734 			waitmsg = "newbuf";
1735 			flags = VFS_BIO_NEED_ANY;
1736 		}
1737 
1738 		bd_speedup();	/* heeeelp */
1739 
1740 		needsbuffer |= flags;
1741 		while (needsbuffer & flags) {
1742 			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1743 			    waitmsg, slptimeo))
1744 				return (NULL);
1745 		}
1746 	} else {
1747 		/*
1748 		 * We finally have a valid bp.  We aren't quite out of the
1749 		 * woods, we still have to reserve kva space.  In order
1750 		 * to keep fragmentation sane we only allocate kva in
1751 		 * BKVASIZE chunks.
1752 		 */
1753 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1754 
1755 		if (maxsize != bp->b_kvasize) {
1756 			vm_offset_t addr = 0;
1757 
1758 			bfreekva(bp);
1759 
1760 			if (vm_map_findspace(buffer_map,
1761 				vm_map_min(buffer_map), maxsize, &addr)) {
1762 				/*
1763 				 * Uh oh.  Buffer map is to fragmented.  We
1764 				 * must defragment the map.
1765 				 */
1766 				++bufdefragcnt;
1767 				defrag = 1;
1768 				bp->b_flags |= B_INVAL;
1769 				brelse(bp);
1770 				goto restart;
1771 			}
1772 			if (addr) {
1773 				vm_map_insert(buffer_map, NULL, 0,
1774 					addr, addr + maxsize,
1775 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1776 
1777 				bp->b_kvabase = (caddr_t) addr;
1778 				bp->b_kvasize = maxsize;
1779 				bufspace += bp->b_kvasize;
1780 				++bufreusecnt;
1781 			}
1782 		}
1783 		bp->b_data = bp->b_kvabase;
1784 	}
1785 	return(bp);
1786 }
1787 
1788 /*
1789  *	buf_daemon:
1790  *
1791  *	buffer flushing daemon.  Buffers are normally flushed by the
1792  *	update daemon but if it cannot keep up this process starts to
1793  *	take the load in an attempt to prevent getnewbuf() from blocking.
1794  */
1795 
1796 static struct proc *bufdaemonproc;
1797 
1798 static struct kproc_desc buf_kp = {
1799 	"bufdaemon",
1800 	buf_daemon,
1801 	&bufdaemonproc
1802 };
1803 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1804 
1805 static void
1806 buf_daemon()
1807 {
1808 	int s;
1809 
1810 	mtx_lock(&Giant);
1811 
1812 	/*
1813 	 * This process needs to be suspended prior to shutdown sync.
1814 	 */
1815 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1816 	    SHUTDOWN_PRI_LAST);
1817 
1818 	/*
1819 	 * This process is allowed to take the buffer cache to the limit
1820 	 */
1821 	curproc->p_flag |= P_BUFEXHAUST;
1822 	s = splbio();
1823 
1824 	for (;;) {
1825 		kthread_suspend_check(bufdaemonproc);
1826 
1827 		bd_request = 0;
1828 
1829 		/*
1830 		 * Do the flush.  Limit the amount of in-transit I/O we
1831 		 * allow to build up, otherwise we would completely saturate
1832 		 * the I/O system.  Wakeup any waiting processes before we
1833 		 * normally would so they can run in parallel with our drain.
1834 		 */
1835 		while (numdirtybuffers > lodirtybuffers) {
1836 			if (flushbufqueues() == 0)
1837 				break;
1838 			waitrunningbufspace();
1839 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1840 		}
1841 
1842 		/*
1843 		 * Only clear bd_request if we have reached our low water
1844 		 * mark.  The buf_daemon normally waits 5 seconds and
1845 		 * then incrementally flushes any dirty buffers that have
1846 		 * built up, within reason.
1847 		 *
1848 		 * If we were unable to hit our low water mark and couldn't
1849 		 * find any flushable buffers, we sleep half a second.
1850 		 * Otherwise we loop immediately.
1851 		 */
1852 		if (numdirtybuffers <= lodirtybuffers) {
1853 			/*
1854 			 * We reached our low water mark, reset the
1855 			 * request and sleep until we are needed again.
1856 			 * The sleep is just so the suspend code works.
1857 			 */
1858 			bd_request = 0;
1859 			tsleep(&bd_request, PVM, "psleep", hz);
1860 		} else {
1861 			/*
1862 			 * We couldn't find any flushable dirty buffers but
1863 			 * still have too many dirty buffers, we
1864 			 * have to sleep and try again.  (rare)
1865 			 */
1866 			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1867 		}
1868 	}
1869 }
1870 
1871 /*
1872  *	flushbufqueues:
1873  *
1874  *	Try to flush a buffer in the dirty queue.  We must be careful to
1875  *	free up B_INVAL buffers instead of write them, which NFS is
1876  *	particularly sensitive to.
1877  */
1878 
1879 static int
1880 flushbufqueues(void)
1881 {
1882 	struct buf *bp;
1883 	int r = 0;
1884 
1885 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1886 
1887 	while (bp) {
1888 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1889 		if ((bp->b_flags & B_DELWRI) != 0 &&
1890 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1891 			if (bp->b_flags & B_INVAL) {
1892 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1893 					panic("flushbufqueues: locked buf");
1894 				bremfree(bp);
1895 				brelse(bp);
1896 				++r;
1897 				break;
1898 			}
1899 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1900 			    (bp->b_flags & B_DEFERRED) == 0 &&
1901 			    buf_countdeps(bp, 0)) {
1902 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1903 				    bp, b_freelist);
1904 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1905 				    bp, b_freelist);
1906 				bp->b_flags |= B_DEFERRED;
1907 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1908 				continue;
1909 			}
1910 			vfs_bio_awrite(bp);
1911 			++r;
1912 			break;
1913 		}
1914 		bp = TAILQ_NEXT(bp, b_freelist);
1915 	}
1916 	return (r);
1917 }
1918 
1919 /*
1920  * Check to see if a block is currently memory resident.
1921  */
1922 struct buf *
1923 incore(struct vnode * vp, daddr_t blkno)
1924 {
1925 	struct buf *bp;
1926 
1927 	int s = splbio();
1928 	bp = gbincore(vp, blkno);
1929 	splx(s);
1930 	return (bp);
1931 }
1932 
1933 /*
1934  * Returns true if no I/O is needed to access the
1935  * associated VM object.  This is like incore except
1936  * it also hunts around in the VM system for the data.
1937  */
1938 
1939 int
1940 inmem(struct vnode * vp, daddr_t blkno)
1941 {
1942 	vm_object_t obj;
1943 	vm_offset_t toff, tinc, size;
1944 	vm_page_t m;
1945 	vm_ooffset_t off;
1946 
1947 	GIANT_REQUIRED;
1948 
1949 	if (incore(vp, blkno))
1950 		return 1;
1951 	if (vp->v_mount == NULL)
1952 		return 0;
1953 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1954 		return 0;
1955 
1956 	size = PAGE_SIZE;
1957 	if (size > vp->v_mount->mnt_stat.f_iosize)
1958 		size = vp->v_mount->mnt_stat.f_iosize;
1959 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1960 
1961 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1962 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1963 		if (!m)
1964 			goto notinmem;
1965 		tinc = size;
1966 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1967 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1968 		if (vm_page_is_valid(m,
1969 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1970 			goto notinmem;
1971 	}
1972 	return 1;
1973 
1974 notinmem:
1975 	return (0);
1976 }
1977 
1978 /*
1979  *	vfs_setdirty:
1980  *
1981  *	Sets the dirty range for a buffer based on the status of the dirty
1982  *	bits in the pages comprising the buffer.
1983  *
1984  *	The range is limited to the size of the buffer.
1985  *
1986  *	This routine is primarily used by NFS, but is generalized for the
1987  *	B_VMIO case.
1988  */
1989 static void
1990 vfs_setdirty(struct buf *bp)
1991 {
1992 	int i;
1993 	vm_object_t object;
1994 
1995 	GIANT_REQUIRED;
1996 	/*
1997 	 * Degenerate case - empty buffer
1998 	 */
1999 
2000 	if (bp->b_bufsize == 0)
2001 		return;
2002 
2003 	/*
2004 	 * We qualify the scan for modified pages on whether the
2005 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2006 	 * is not cleared simply by protecting pages off.
2007 	 */
2008 
2009 	if ((bp->b_flags & B_VMIO) == 0)
2010 		return;
2011 
2012 	object = bp->b_pages[0]->object;
2013 
2014 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2015 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2016 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2017 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2018 
2019 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2020 		vm_offset_t boffset;
2021 		vm_offset_t eoffset;
2022 
2023 		/*
2024 		 * test the pages to see if they have been modified directly
2025 		 * by users through the VM system.
2026 		 */
2027 		for (i = 0; i < bp->b_npages; i++) {
2028 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2029 			vm_page_test_dirty(bp->b_pages[i]);
2030 		}
2031 
2032 		/*
2033 		 * Calculate the encompassing dirty range, boffset and eoffset,
2034 		 * (eoffset - boffset) bytes.
2035 		 */
2036 
2037 		for (i = 0; i < bp->b_npages; i++) {
2038 			if (bp->b_pages[i]->dirty)
2039 				break;
2040 		}
2041 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2042 
2043 		for (i = bp->b_npages - 1; i >= 0; --i) {
2044 			if (bp->b_pages[i]->dirty) {
2045 				break;
2046 			}
2047 		}
2048 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2049 
2050 		/*
2051 		 * Fit it to the buffer.
2052 		 */
2053 
2054 		if (eoffset > bp->b_bcount)
2055 			eoffset = bp->b_bcount;
2056 
2057 		/*
2058 		 * If we have a good dirty range, merge with the existing
2059 		 * dirty range.
2060 		 */
2061 
2062 		if (boffset < eoffset) {
2063 			if (bp->b_dirtyoff > boffset)
2064 				bp->b_dirtyoff = boffset;
2065 			if (bp->b_dirtyend < eoffset)
2066 				bp->b_dirtyend = eoffset;
2067 		}
2068 	}
2069 }
2070 
2071 /*
2072  *	getblk:
2073  *
2074  *	Get a block given a specified block and offset into a file/device.
2075  *	The buffers B_DONE bit will be cleared on return, making it almost
2076  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2077  *	return.  The caller should clear B_INVAL prior to initiating a
2078  *	READ.
2079  *
2080  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2081  *	an existing buffer.
2082  *
2083  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2084  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2085  *	and then cleared based on the backing VM.  If the previous buffer is
2086  *	non-0-sized but invalid, B_CACHE will be cleared.
2087  *
2088  *	If getblk() must create a new buffer, the new buffer is returned with
2089  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2090  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2091  *	backing VM.
2092  *
2093  *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2094  *	B_CACHE bit is clear.
2095  *
2096  *	What this means, basically, is that the caller should use B_CACHE to
2097  *	determine whether the buffer is fully valid or not and should clear
2098  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2099  *	the buffer by loading its data area with something, the caller needs
2100  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2101  *	the caller should set B_CACHE ( as an optimization ), else the caller
2102  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2103  *	a write attempt or if it was a successfull read.  If the caller
2104  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2105  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2106  */
2107 struct buf *
2108 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2109 {
2110 	struct buf *bp;
2111 	int s;
2112 	struct bufhashhdr *bh;
2113 
2114 	if (size > MAXBSIZE)
2115 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2116 
2117 	s = splbio();
2118 loop:
2119 	/*
2120 	 * Block if we are low on buffers.   Certain processes are allowed
2121 	 * to completely exhaust the buffer cache.
2122          *
2123          * If this check ever becomes a bottleneck it may be better to
2124          * move it into the else, when gbincore() fails.  At the moment
2125          * it isn't a problem.
2126 	 *
2127 	 * XXX remove if 0 sections (clean this up after its proven)
2128          */
2129 	if (numfreebuffers == 0) {
2130 		if (curproc == PCPU_GET(idleproc))
2131 			return NULL;
2132 		needsbuffer |= VFS_BIO_NEED_ANY;
2133 	}
2134 
2135 	if ((bp = gbincore(vp, blkno))) {
2136 		/*
2137 		 * Buffer is in-core.  If the buffer is not busy, it must
2138 		 * be on a queue.
2139 		 */
2140 
2141 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2142 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2143 			    "getblk", slpflag, slptimeo) == ENOLCK)
2144 				goto loop;
2145 			splx(s);
2146 			return (struct buf *) NULL;
2147 		}
2148 
2149 		/*
2150 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2151 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2152 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2153 		 * backing VM cache.
2154 		 */
2155 		if (bp->b_flags & B_INVAL)
2156 			bp->b_flags &= ~B_CACHE;
2157 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2158 			bp->b_flags |= B_CACHE;
2159 		bremfree(bp);
2160 
2161 		/*
2162 		 * check for size inconsistancies for non-VMIO case.
2163 		 */
2164 
2165 		if (bp->b_bcount != size) {
2166 			if ((bp->b_flags & B_VMIO) == 0 ||
2167 			    (size > bp->b_kvasize)) {
2168 				if (bp->b_flags & B_DELWRI) {
2169 					bp->b_flags |= B_NOCACHE;
2170 					BUF_WRITE(bp);
2171 				} else {
2172 					if ((bp->b_flags & B_VMIO) &&
2173 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2174 						bp->b_flags |= B_RELBUF;
2175 						brelse(bp);
2176 					} else {
2177 						bp->b_flags |= B_NOCACHE;
2178 						BUF_WRITE(bp);
2179 					}
2180 				}
2181 				goto loop;
2182 			}
2183 		}
2184 
2185 		/*
2186 		 * If the size is inconsistant in the VMIO case, we can resize
2187 		 * the buffer.  This might lead to B_CACHE getting set or
2188 		 * cleared.  If the size has not changed, B_CACHE remains
2189 		 * unchanged from its previous state.
2190 		 */
2191 
2192 		if (bp->b_bcount != size)
2193 			allocbuf(bp, size);
2194 
2195 		KASSERT(bp->b_offset != NOOFFSET,
2196 		    ("getblk: no buffer offset"));
2197 
2198 		/*
2199 		 * A buffer with B_DELWRI set and B_CACHE clear must
2200 		 * be committed before we can return the buffer in
2201 		 * order to prevent the caller from issuing a read
2202 		 * ( due to B_CACHE not being set ) and overwriting
2203 		 * it.
2204 		 *
2205 		 * Most callers, including NFS and FFS, need this to
2206 		 * operate properly either because they assume they
2207 		 * can issue a read if B_CACHE is not set, or because
2208 		 * ( for example ) an uncached B_DELWRI might loop due
2209 		 * to softupdates re-dirtying the buffer.  In the latter
2210 		 * case, B_CACHE is set after the first write completes,
2211 		 * preventing further loops.
2212 		 */
2213 
2214 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2215 			BUF_WRITE(bp);
2216 			goto loop;
2217 		}
2218 
2219 		splx(s);
2220 		bp->b_flags &= ~B_DONE;
2221 	} else {
2222 		/*
2223 		 * Buffer is not in-core, create new buffer.  The buffer
2224 		 * returned by getnewbuf() is locked.  Note that the returned
2225 		 * buffer is also considered valid (not marked B_INVAL).
2226 		 */
2227 		int bsize, maxsize, vmio;
2228 		off_t offset;
2229 
2230 		if (vn_isdisk(vp, NULL))
2231 			bsize = DEV_BSIZE;
2232 		else if (vp->v_mountedhere)
2233 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2234 		else if (vp->v_mount)
2235 			bsize = vp->v_mount->mnt_stat.f_iosize;
2236 		else
2237 			bsize = size;
2238 
2239 		offset = (off_t)blkno * bsize;
2240 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2241 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2242 		maxsize = imax(maxsize, bsize);
2243 
2244 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2245 			if (slpflag || slptimeo) {
2246 				splx(s);
2247 				return NULL;
2248 			}
2249 			goto loop;
2250 		}
2251 
2252 		/*
2253 		 * This code is used to make sure that a buffer is not
2254 		 * created while the getnewbuf routine is blocked.
2255 		 * This can be a problem whether the vnode is locked or not.
2256 		 * If the buffer is created out from under us, we have to
2257 		 * throw away the one we just created.  There is now window
2258 		 * race because we are safely running at splbio() from the
2259 		 * point of the duplicate buffer creation through to here,
2260 		 * and we've locked the buffer.
2261 		 */
2262 		if (gbincore(vp, blkno)) {
2263 			bp->b_flags |= B_INVAL;
2264 			brelse(bp);
2265 			goto loop;
2266 		}
2267 
2268 		/*
2269 		 * Insert the buffer into the hash, so that it can
2270 		 * be found by incore.
2271 		 */
2272 		bp->b_blkno = bp->b_lblkno = blkno;
2273 		bp->b_offset = offset;
2274 
2275 		bgetvp(vp, bp);
2276 		LIST_REMOVE(bp, b_hash);
2277 		bh = bufhash(vp, blkno);
2278 		LIST_INSERT_HEAD(bh, bp, b_hash);
2279 
2280 		/*
2281 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2282 		 * buffer size starts out as 0, B_CACHE will be set by
2283 		 * allocbuf() for the VMIO case prior to it testing the
2284 		 * backing store for validity.
2285 		 */
2286 
2287 		if (vmio) {
2288 			bp->b_flags |= B_VMIO;
2289 #if defined(VFS_BIO_DEBUG)
2290 			if (vp->v_type != VREG)
2291 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2292 #endif
2293 		} else {
2294 			bp->b_flags &= ~B_VMIO;
2295 		}
2296 
2297 		allocbuf(bp, size);
2298 
2299 		splx(s);
2300 		bp->b_flags &= ~B_DONE;
2301 	}
2302 	return (bp);
2303 }
2304 
2305 /*
2306  * Get an empty, disassociated buffer of given size.  The buffer is initially
2307  * set to B_INVAL.
2308  */
2309 struct buf *
2310 geteblk(int size)
2311 {
2312 	struct buf *bp;
2313 	int s;
2314 	int maxsize;
2315 
2316 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2317 
2318 	s = splbio();
2319 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2320 	splx(s);
2321 	allocbuf(bp, size);
2322 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2323 	return (bp);
2324 }
2325 
2326 
2327 /*
2328  * This code constitutes the buffer memory from either anonymous system
2329  * memory (in the case of non-VMIO operations) or from an associated
2330  * VM object (in the case of VMIO operations).  This code is able to
2331  * resize a buffer up or down.
2332  *
2333  * Note that this code is tricky, and has many complications to resolve
2334  * deadlock or inconsistant data situations.  Tread lightly!!!
2335  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2336  * the caller.  Calling this code willy nilly can result in the loss of data.
2337  *
2338  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2339  * B_CACHE for the non-VMIO case.
2340  */
2341 
2342 int
2343 allocbuf(struct buf *bp, int size)
2344 {
2345 	int newbsize, mbsize;
2346 	int i;
2347 
2348 	GIANT_REQUIRED;
2349 
2350 	if (BUF_REFCNT(bp) == 0)
2351 		panic("allocbuf: buffer not busy");
2352 
2353 	if (bp->b_kvasize < size)
2354 		panic("allocbuf: buffer too small");
2355 
2356 	if ((bp->b_flags & B_VMIO) == 0) {
2357 		caddr_t origbuf;
2358 		int origbufsize;
2359 		/*
2360 		 * Just get anonymous memory from the kernel.  Don't
2361 		 * mess with B_CACHE.
2362 		 */
2363 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2364 #if !defined(NO_B_MALLOC)
2365 		if (bp->b_flags & B_MALLOC)
2366 			newbsize = mbsize;
2367 		else
2368 #endif
2369 			newbsize = round_page(size);
2370 
2371 		if (newbsize < bp->b_bufsize) {
2372 #if !defined(NO_B_MALLOC)
2373 			/*
2374 			 * malloced buffers are not shrunk
2375 			 */
2376 			if (bp->b_flags & B_MALLOC) {
2377 				if (newbsize) {
2378 					bp->b_bcount = size;
2379 				} else {
2380 					free(bp->b_data, M_BIOBUF);
2381 					if (bp->b_bufsize) {
2382 						bufmallocspace -= bp->b_bufsize;
2383 						bufspacewakeup();
2384 						bp->b_bufsize = 0;
2385 					}
2386 					bp->b_data = bp->b_kvabase;
2387 					bp->b_bcount = 0;
2388 					bp->b_flags &= ~B_MALLOC;
2389 				}
2390 				return 1;
2391 			}
2392 #endif
2393 			vm_hold_free_pages(
2394 			    bp,
2395 			    (vm_offset_t) bp->b_data + newbsize,
2396 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2397 		} else if (newbsize > bp->b_bufsize) {
2398 #if !defined(NO_B_MALLOC)
2399 			/*
2400 			 * We only use malloced memory on the first allocation.
2401 			 * and revert to page-allocated memory when the buffer
2402 			 * grows.
2403 			 */
2404 			if ( (bufmallocspace < maxbufmallocspace) &&
2405 				(bp->b_bufsize == 0) &&
2406 				(mbsize <= PAGE_SIZE/2)) {
2407 
2408 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2409 				bp->b_bufsize = mbsize;
2410 				bp->b_bcount = size;
2411 				bp->b_flags |= B_MALLOC;
2412 				bufmallocspace += mbsize;
2413 				return 1;
2414 			}
2415 #endif
2416 			origbuf = NULL;
2417 			origbufsize = 0;
2418 #if !defined(NO_B_MALLOC)
2419 			/*
2420 			 * If the buffer is growing on its other-than-first allocation,
2421 			 * then we revert to the page-allocation scheme.
2422 			 */
2423 			if (bp->b_flags & B_MALLOC) {
2424 				origbuf = bp->b_data;
2425 				origbufsize = bp->b_bufsize;
2426 				bp->b_data = bp->b_kvabase;
2427 				if (bp->b_bufsize) {
2428 					bufmallocspace -= bp->b_bufsize;
2429 					bufspacewakeup();
2430 					bp->b_bufsize = 0;
2431 				}
2432 				bp->b_flags &= ~B_MALLOC;
2433 				newbsize = round_page(newbsize);
2434 			}
2435 #endif
2436 			vm_hold_load_pages(
2437 			    bp,
2438 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2439 			    (vm_offset_t) bp->b_data + newbsize);
2440 #if !defined(NO_B_MALLOC)
2441 			if (origbuf) {
2442 				bcopy(origbuf, bp->b_data, origbufsize);
2443 				free(origbuf, M_BIOBUF);
2444 			}
2445 #endif
2446 		}
2447 	} else {
2448 		vm_page_t m;
2449 		int desiredpages;
2450 
2451 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2452 		desiredpages = (size == 0) ? 0 :
2453 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2454 
2455 #if !defined(NO_B_MALLOC)
2456 		if (bp->b_flags & B_MALLOC)
2457 			panic("allocbuf: VMIO buffer can't be malloced");
2458 #endif
2459 		/*
2460 		 * Set B_CACHE initially if buffer is 0 length or will become
2461 		 * 0-length.
2462 		 */
2463 		if (size == 0 || bp->b_bufsize == 0)
2464 			bp->b_flags |= B_CACHE;
2465 
2466 		if (newbsize < bp->b_bufsize) {
2467 			/*
2468 			 * DEV_BSIZE aligned new buffer size is less then the
2469 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2470 			 * if we have to remove any pages.
2471 			 */
2472 			if (desiredpages < bp->b_npages) {
2473 				for (i = desiredpages; i < bp->b_npages; i++) {
2474 					/*
2475 					 * the page is not freed here -- it
2476 					 * is the responsibility of
2477 					 * vnode_pager_setsize
2478 					 */
2479 					m = bp->b_pages[i];
2480 					KASSERT(m != bogus_page,
2481 					    ("allocbuf: bogus page found"));
2482 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2483 						;
2484 
2485 					bp->b_pages[i] = NULL;
2486 					vm_page_unwire(m, 0);
2487 				}
2488 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2489 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2490 				bp->b_npages = desiredpages;
2491 			}
2492 		} else if (size > bp->b_bcount) {
2493 			/*
2494 			 * We are growing the buffer, possibly in a
2495 			 * byte-granular fashion.
2496 			 */
2497 			struct vnode *vp;
2498 			vm_object_t obj;
2499 			vm_offset_t toff;
2500 			vm_offset_t tinc;
2501 
2502 			/*
2503 			 * Step 1, bring in the VM pages from the object,
2504 			 * allocating them if necessary.  We must clear
2505 			 * B_CACHE if these pages are not valid for the
2506 			 * range covered by the buffer.
2507 			 */
2508 
2509 			vp = bp->b_vp;
2510 			VOP_GETVOBJECT(vp, &obj);
2511 
2512 			while (bp->b_npages < desiredpages) {
2513 				vm_page_t m;
2514 				vm_pindex_t pi;
2515 
2516 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2517 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2518 					/*
2519 					 * note: must allocate system pages
2520 					 * since blocking here could intefere
2521 					 * with paging I/O, no matter which
2522 					 * process we are.
2523 					 */
2524 					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2525 					if (m == NULL) {
2526 						VM_WAIT;
2527 						vm_pageout_deficit += desiredpages - bp->b_npages;
2528 					} else {
2529 						vm_page_wire(m);
2530 						vm_page_wakeup(m);
2531 						bp->b_flags &= ~B_CACHE;
2532 						bp->b_pages[bp->b_npages] = m;
2533 						++bp->b_npages;
2534 					}
2535 					continue;
2536 				}
2537 
2538 				/*
2539 				 * We found a page.  If we have to sleep on it,
2540 				 * retry because it might have gotten freed out
2541 				 * from under us.
2542 				 *
2543 				 * We can only test PG_BUSY here.  Blocking on
2544 				 * m->busy might lead to a deadlock:
2545 				 *
2546 				 *  vm_fault->getpages->cluster_read->allocbuf
2547 				 *
2548 				 */
2549 
2550 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2551 					continue;
2552 
2553 				/*
2554 				 * We have a good page.  Should we wakeup the
2555 				 * page daemon?
2556 				 */
2557 				if ((curproc != pageproc) &&
2558 				    ((m->queue - m->pc) == PQ_CACHE) &&
2559 				    ((cnt.v_free_count + cnt.v_cache_count) <
2560 					(cnt.v_free_min + cnt.v_cache_min))) {
2561 					pagedaemon_wakeup();
2562 				}
2563 				vm_page_flag_clear(m, PG_ZERO);
2564 				vm_page_wire(m);
2565 				bp->b_pages[bp->b_npages] = m;
2566 				++bp->b_npages;
2567 			}
2568 
2569 			/*
2570 			 * Step 2.  We've loaded the pages into the buffer,
2571 			 * we have to figure out if we can still have B_CACHE
2572 			 * set.  Note that B_CACHE is set according to the
2573 			 * byte-granular range ( bcount and size ), new the
2574 			 * aligned range ( newbsize ).
2575 			 *
2576 			 * The VM test is against m->valid, which is DEV_BSIZE
2577 			 * aligned.  Needless to say, the validity of the data
2578 			 * needs to also be DEV_BSIZE aligned.  Note that this
2579 			 * fails with NFS if the server or some other client
2580 			 * extends the file's EOF.  If our buffer is resized,
2581 			 * B_CACHE may remain set! XXX
2582 			 */
2583 
2584 			toff = bp->b_bcount;
2585 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2586 
2587 			while ((bp->b_flags & B_CACHE) && toff < size) {
2588 				vm_pindex_t pi;
2589 
2590 				if (tinc > (size - toff))
2591 					tinc = size - toff;
2592 
2593 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2594 				    PAGE_SHIFT;
2595 
2596 				vfs_buf_test_cache(
2597 				    bp,
2598 				    bp->b_offset,
2599 				    toff,
2600 				    tinc,
2601 				    bp->b_pages[pi]
2602 				);
2603 				toff += tinc;
2604 				tinc = PAGE_SIZE;
2605 			}
2606 
2607 			/*
2608 			 * Step 3, fixup the KVM pmap.  Remember that
2609 			 * bp->b_data is relative to bp->b_offset, but
2610 			 * bp->b_offset may be offset into the first page.
2611 			 */
2612 
2613 			bp->b_data = (caddr_t)
2614 			    trunc_page((vm_offset_t)bp->b_data);
2615 			pmap_qenter(
2616 			    (vm_offset_t)bp->b_data,
2617 			    bp->b_pages,
2618 			    bp->b_npages
2619 			);
2620 
2621 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2622 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2623 		}
2624 	}
2625 	if (newbsize < bp->b_bufsize)
2626 		bufspacewakeup();
2627 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2628 	bp->b_bcount = size;		/* requested buffer size	*/
2629 	return 1;
2630 }
2631 
2632 /*
2633  *	bufwait:
2634  *
2635  *	Wait for buffer I/O completion, returning error status.  The buffer
2636  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2637  *	error and cleared.
2638  */
2639 int
2640 bufwait(register struct buf * bp)
2641 {
2642 	int s;
2643 
2644 	s = splbio();
2645 	while ((bp->b_flags & B_DONE) == 0) {
2646 		if (bp->b_iocmd == BIO_READ)
2647 			tsleep(bp, PRIBIO, "biord", 0);
2648 		else
2649 			tsleep(bp, PRIBIO, "biowr", 0);
2650 	}
2651 	splx(s);
2652 	if (bp->b_flags & B_EINTR) {
2653 		bp->b_flags &= ~B_EINTR;
2654 		return (EINTR);
2655 	}
2656 	if (bp->b_ioflags & BIO_ERROR) {
2657 		return (bp->b_error ? bp->b_error : EIO);
2658 	} else {
2659 		return (0);
2660 	}
2661 }
2662 
2663  /*
2664   * Call back function from struct bio back up to struct buf.
2665   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2666   */
2667 void
2668 bufdonebio(struct bio *bp)
2669 {
2670 	bufdone(bp->bio_caller2);
2671 }
2672 
2673 /*
2674  *	bufdone:
2675  *
2676  *	Finish I/O on a buffer, optionally calling a completion function.
2677  *	This is usually called from an interrupt so process blocking is
2678  *	not allowed.
2679  *
2680  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2681  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2682  *	assuming B_INVAL is clear.
2683  *
2684  *	For the VMIO case, we set B_CACHE if the op was a read and no
2685  *	read error occured, or if the op was a write.  B_CACHE is never
2686  *	set if the buffer is invalid or otherwise uncacheable.
2687  *
2688  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2689  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2690  *	in the biodone routine.
2691  */
2692 void
2693 bufdone(struct buf *bp)
2694 {
2695 	int s, error;
2696 	void    (*biodone) __P((struct buf *));
2697 
2698 	GIANT_REQUIRED;
2699 
2700 	s = splbio();
2701 
2702 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2703 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2704 
2705 	bp->b_flags |= B_DONE;
2706 	runningbufwakeup(bp);
2707 
2708 	if (bp->b_iocmd == BIO_DELETE) {
2709 		brelse(bp);
2710 		splx(s);
2711 		return;
2712 	}
2713 
2714 	if (bp->b_iocmd == BIO_WRITE) {
2715 		vwakeup(bp);
2716 	}
2717 
2718 	/* call optional completion function if requested */
2719 	if (bp->b_iodone != NULL) {
2720 		biodone = bp->b_iodone;
2721 		bp->b_iodone = NULL;
2722 		(*biodone) (bp);
2723 		splx(s);
2724 		return;
2725 	}
2726 	if (LIST_FIRST(&bp->b_dep) != NULL)
2727 		buf_complete(bp);
2728 
2729 	if (bp->b_flags & B_VMIO) {
2730 		int i;
2731 		vm_ooffset_t foff;
2732 		vm_page_t m;
2733 		vm_object_t obj;
2734 		int iosize;
2735 		struct vnode *vp = bp->b_vp;
2736 
2737 		error = VOP_GETVOBJECT(vp, &obj);
2738 
2739 #if defined(VFS_BIO_DEBUG)
2740 		if (vp->v_usecount == 0) {
2741 			panic("biodone: zero vnode ref count");
2742 		}
2743 
2744 		if (error) {
2745 			panic("biodone: missing VM object");
2746 		}
2747 
2748 		if ((vp->v_flag & VOBJBUF) == 0) {
2749 			panic("biodone: vnode is not setup for merged cache");
2750 		}
2751 #endif
2752 
2753 		foff = bp->b_offset;
2754 		KASSERT(bp->b_offset != NOOFFSET,
2755 		    ("biodone: no buffer offset"));
2756 
2757 		if (error) {
2758 			panic("biodone: no object");
2759 		}
2760 #if defined(VFS_BIO_DEBUG)
2761 		if (obj->paging_in_progress < bp->b_npages) {
2762 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2763 			    obj->paging_in_progress, bp->b_npages);
2764 		}
2765 #endif
2766 
2767 		/*
2768 		 * Set B_CACHE if the op was a normal read and no error
2769 		 * occured.  B_CACHE is set for writes in the b*write()
2770 		 * routines.
2771 		 */
2772 		iosize = bp->b_bcount - bp->b_resid;
2773 		if (bp->b_iocmd == BIO_READ &&
2774 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2775 		    !(bp->b_ioflags & BIO_ERROR)) {
2776 			bp->b_flags |= B_CACHE;
2777 		}
2778 
2779 		for (i = 0; i < bp->b_npages; i++) {
2780 			int bogusflag = 0;
2781 			int resid;
2782 
2783 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2784 			if (resid > iosize)
2785 				resid = iosize;
2786 
2787 			/*
2788 			 * cleanup bogus pages, restoring the originals
2789 			 */
2790 			m = bp->b_pages[i];
2791 			if (m == bogus_page) {
2792 				bogusflag = 1;
2793 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2794 				if (m == NULL)
2795 					panic("biodone: page disappeared!");
2796 				bp->b_pages[i] = m;
2797 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2798 			}
2799 #if defined(VFS_BIO_DEBUG)
2800 			if (OFF_TO_IDX(foff) != m->pindex) {
2801 				printf(
2802 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2803 				    (unsigned long)foff, m->pindex);
2804 			}
2805 #endif
2806 
2807 			/*
2808 			 * In the write case, the valid and clean bits are
2809 			 * already changed correctly ( see bdwrite() ), so we
2810 			 * only need to do this here in the read case.
2811 			 */
2812 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2813 				vfs_page_set_valid(bp, foff, i, m);
2814 			}
2815 			vm_page_flag_clear(m, PG_ZERO);
2816 
2817 			/*
2818 			 * when debugging new filesystems or buffer I/O methods, this
2819 			 * is the most common error that pops up.  if you see this, you
2820 			 * have not set the page busy flag correctly!!!
2821 			 */
2822 			if (m->busy == 0) {
2823 				printf("biodone: page busy < 0, "
2824 				    "pindex: %d, foff: 0x(%x,%x), "
2825 				    "resid: %d, index: %d\n",
2826 				    (int) m->pindex, (int)(foff >> 32),
2827 						(int) foff & 0xffffffff, resid, i);
2828 				if (!vn_isdisk(vp, NULL))
2829 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2830 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2831 					    (int) bp->b_lblkno,
2832 					    bp->b_flags, bp->b_npages);
2833 				else
2834 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2835 					    (int) bp->b_lblkno,
2836 					    bp->b_flags, bp->b_npages);
2837 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2838 				    m->valid, m->dirty, m->wire_count);
2839 				panic("biodone: page busy < 0\n");
2840 			}
2841 			vm_page_io_finish(m);
2842 			vm_object_pip_subtract(obj, 1);
2843 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2844 			iosize -= resid;
2845 		}
2846 		if (obj)
2847 			vm_object_pip_wakeupn(obj, 0);
2848 	}
2849 
2850 	/*
2851 	 * For asynchronous completions, release the buffer now. The brelse
2852 	 * will do a wakeup there if necessary - so no need to do a wakeup
2853 	 * here in the async case. The sync case always needs to do a wakeup.
2854 	 */
2855 
2856 	if (bp->b_flags & B_ASYNC) {
2857 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2858 			brelse(bp);
2859 		else
2860 			bqrelse(bp);
2861 	} else {
2862 		wakeup(bp);
2863 	}
2864 	splx(s);
2865 }
2866 
2867 /*
2868  * This routine is called in lieu of iodone in the case of
2869  * incomplete I/O.  This keeps the busy status for pages
2870  * consistant.
2871  */
2872 void
2873 vfs_unbusy_pages(struct buf * bp)
2874 {
2875 	int i;
2876 
2877 	GIANT_REQUIRED;
2878 
2879 	runningbufwakeup(bp);
2880 	if (bp->b_flags & B_VMIO) {
2881 		struct vnode *vp = bp->b_vp;
2882 		vm_object_t obj;
2883 
2884 		VOP_GETVOBJECT(vp, &obj);
2885 
2886 		for (i = 0; i < bp->b_npages; i++) {
2887 			vm_page_t m = bp->b_pages[i];
2888 
2889 			if (m == bogus_page) {
2890 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2891 				if (!m) {
2892 					panic("vfs_unbusy_pages: page missing\n");
2893 				}
2894 				bp->b_pages[i] = m;
2895 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2896 			}
2897 			vm_object_pip_subtract(obj, 1);
2898 			vm_page_flag_clear(m, PG_ZERO);
2899 			vm_page_io_finish(m);
2900 		}
2901 		vm_object_pip_wakeupn(obj, 0);
2902 	}
2903 }
2904 
2905 /*
2906  * vfs_page_set_valid:
2907  *
2908  *	Set the valid bits in a page based on the supplied offset.   The
2909  *	range is restricted to the buffer's size.
2910  *
2911  *	This routine is typically called after a read completes.
2912  */
2913 static void
2914 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2915 {
2916 	vm_ooffset_t soff, eoff;
2917 
2918 	GIANT_REQUIRED;
2919 	/*
2920 	 * Start and end offsets in buffer.  eoff - soff may not cross a
2921 	 * page boundry or cross the end of the buffer.  The end of the
2922 	 * buffer, in this case, is our file EOF, not the allocation size
2923 	 * of the buffer.
2924 	 */
2925 	soff = off;
2926 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2927 	if (eoff > bp->b_offset + bp->b_bcount)
2928 		eoff = bp->b_offset + bp->b_bcount;
2929 
2930 	/*
2931 	 * Set valid range.  This is typically the entire buffer and thus the
2932 	 * entire page.
2933 	 */
2934 	if (eoff > soff) {
2935 		vm_page_set_validclean(
2936 		    m,
2937 		   (vm_offset_t) (soff & PAGE_MASK),
2938 		   (vm_offset_t) (eoff - soff)
2939 		);
2940 	}
2941 }
2942 
2943 /*
2944  * This routine is called before a device strategy routine.
2945  * It is used to tell the VM system that paging I/O is in
2946  * progress, and treat the pages associated with the buffer
2947  * almost as being PG_BUSY.  Also the object paging_in_progress
2948  * flag is handled to make sure that the object doesn't become
2949  * inconsistant.
2950  *
2951  * Since I/O has not been initiated yet, certain buffer flags
2952  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
2953  * and should be ignored.
2954  */
2955 void
2956 vfs_busy_pages(struct buf * bp, int clear_modify)
2957 {
2958 	int i, bogus;
2959 
2960 	GIANT_REQUIRED;
2961 
2962 	if (bp->b_flags & B_VMIO) {
2963 		struct vnode *vp = bp->b_vp;
2964 		vm_object_t obj;
2965 		vm_ooffset_t foff;
2966 
2967 		VOP_GETVOBJECT(vp, &obj);
2968 		foff = bp->b_offset;
2969 		KASSERT(bp->b_offset != NOOFFSET,
2970 		    ("vfs_busy_pages: no buffer offset"));
2971 		vfs_setdirty(bp);
2972 
2973 retry:
2974 		for (i = 0; i < bp->b_npages; i++) {
2975 			vm_page_t m = bp->b_pages[i];
2976 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2977 				goto retry;
2978 		}
2979 
2980 		bogus = 0;
2981 		for (i = 0; i < bp->b_npages; i++) {
2982 			vm_page_t m = bp->b_pages[i];
2983 
2984 			vm_page_flag_clear(m, PG_ZERO);
2985 			if ((bp->b_flags & B_CLUSTER) == 0) {
2986 				vm_object_pip_add(obj, 1);
2987 				vm_page_io_start(m);
2988 			}
2989 
2990 			/*
2991 			 * When readying a buffer for a read ( i.e
2992 			 * clear_modify == 0 ), it is important to do
2993 			 * bogus_page replacement for valid pages in
2994 			 * partially instantiated buffers.  Partially
2995 			 * instantiated buffers can, in turn, occur when
2996 			 * reconstituting a buffer from its VM backing store
2997 			 * base.  We only have to do this if B_CACHE is
2998 			 * clear ( which causes the I/O to occur in the
2999 			 * first place ).  The replacement prevents the read
3000 			 * I/O from overwriting potentially dirty VM-backed
3001 			 * pages.  XXX bogus page replacement is, uh, bogus.
3002 			 * It may not work properly with small-block devices.
3003 			 * We need to find a better way.
3004 			 */
3005 
3006 			vm_page_protect(m, VM_PROT_NONE);
3007 			if (clear_modify)
3008 				vfs_page_set_valid(bp, foff, i, m);
3009 			else if (m->valid == VM_PAGE_BITS_ALL &&
3010 				(bp->b_flags & B_CACHE) == 0) {
3011 				bp->b_pages[i] = bogus_page;
3012 				bogus++;
3013 			}
3014 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3015 		}
3016 		if (bogus)
3017 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3018 	}
3019 }
3020 
3021 /*
3022  * Tell the VM system that the pages associated with this buffer
3023  * are clean.  This is used for delayed writes where the data is
3024  * going to go to disk eventually without additional VM intevention.
3025  *
3026  * Note that while we only really need to clean through to b_bcount, we
3027  * just go ahead and clean through to b_bufsize.
3028  */
3029 static void
3030 vfs_clean_pages(struct buf * bp)
3031 {
3032 	int i;
3033 
3034 	GIANT_REQUIRED;
3035 
3036 	if (bp->b_flags & B_VMIO) {
3037 		vm_ooffset_t foff;
3038 
3039 		foff = bp->b_offset;
3040 		KASSERT(bp->b_offset != NOOFFSET,
3041 		    ("vfs_clean_pages: no buffer offset"));
3042 		for (i = 0; i < bp->b_npages; i++) {
3043 			vm_page_t m = bp->b_pages[i];
3044 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3045 			vm_ooffset_t eoff = noff;
3046 
3047 			if (eoff > bp->b_offset + bp->b_bufsize)
3048 				eoff = bp->b_offset + bp->b_bufsize;
3049 			vfs_page_set_valid(bp, foff, i, m);
3050 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3051 			foff = noff;
3052 		}
3053 	}
3054 }
3055 
3056 /*
3057  *	vfs_bio_set_validclean:
3058  *
3059  *	Set the range within the buffer to valid and clean.  The range is
3060  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3061  *	itself may be offset from the beginning of the first page.
3062  *
3063  */
3064 
3065 void
3066 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3067 {
3068 	if (bp->b_flags & B_VMIO) {
3069 		int i;
3070 		int n;
3071 
3072 		/*
3073 		 * Fixup base to be relative to beginning of first page.
3074 		 * Set initial n to be the maximum number of bytes in the
3075 		 * first page that can be validated.
3076 		 */
3077 
3078 		base += (bp->b_offset & PAGE_MASK);
3079 		n = PAGE_SIZE - (base & PAGE_MASK);
3080 
3081 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3082 			vm_page_t m = bp->b_pages[i];
3083 
3084 			if (n > size)
3085 				n = size;
3086 
3087 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3088 			base += n;
3089 			size -= n;
3090 			n = PAGE_SIZE;
3091 		}
3092 	}
3093 }
3094 
3095 /*
3096  *	vfs_bio_clrbuf:
3097  *
3098  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3099  *	to clear BIO_ERROR and B_INVAL.
3100  *
3101  *	Note that while we only theoretically need to clear through b_bcount,
3102  *	we go ahead and clear through b_bufsize.
3103  */
3104 
3105 void
3106 vfs_bio_clrbuf(struct buf *bp) {
3107 	int i, mask = 0;
3108 	caddr_t sa, ea;
3109 
3110 	GIANT_REQUIRED;
3111 
3112 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3113 		bp->b_flags &= ~B_INVAL;
3114 		bp->b_ioflags &= ~BIO_ERROR;
3115 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3116 		    (bp->b_offset & PAGE_MASK) == 0) {
3117 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3118 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3119 			    ((bp->b_pages[0]->valid & mask) != mask)) {
3120 				bzero(bp->b_data, bp->b_bufsize);
3121 			}
3122 			bp->b_pages[0]->valid |= mask;
3123 			bp->b_resid = 0;
3124 			return;
3125 		}
3126 		ea = sa = bp->b_data;
3127 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3128 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3129 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3130 			ea = (caddr_t)(vm_offset_t)ulmin(
3131 			    (u_long)(vm_offset_t)ea,
3132 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3133 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3134 			if ((bp->b_pages[i]->valid & mask) == mask)
3135 				continue;
3136 			if ((bp->b_pages[i]->valid & mask) == 0) {
3137 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3138 					bzero(sa, ea - sa);
3139 				}
3140 			} else {
3141 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3142 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3143 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3144 						bzero(sa, DEV_BSIZE);
3145 				}
3146 			}
3147 			bp->b_pages[i]->valid |= mask;
3148 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3149 		}
3150 		bp->b_resid = 0;
3151 	} else {
3152 		clrbuf(bp);
3153 	}
3154 }
3155 
3156 /*
3157  * vm_hold_load_pages and vm_hold_free_pages get pages into
3158  * a buffers address space.  The pages are anonymous and are
3159  * not associated with a file object.
3160  */
3161 static void
3162 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3163 {
3164 	vm_offset_t pg;
3165 	vm_page_t p;
3166 	int index;
3167 
3168 	GIANT_REQUIRED;
3169 
3170 	to = round_page(to);
3171 	from = round_page(from);
3172 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3173 
3174 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3175 tryagain:
3176 		/*
3177 		 * note: must allocate system pages since blocking here
3178 		 * could intefere with paging I/O, no matter which
3179 		 * process we are.
3180 		 */
3181 		p = vm_page_alloc(kernel_object,
3182 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3183 		    VM_ALLOC_SYSTEM);
3184 		if (!p) {
3185 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3186 			VM_WAIT;
3187 			goto tryagain;
3188 		}
3189 		vm_page_wire(p);
3190 		p->valid = VM_PAGE_BITS_ALL;
3191 		vm_page_flag_clear(p, PG_ZERO);
3192 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3193 		bp->b_pages[index] = p;
3194 		vm_page_wakeup(p);
3195 	}
3196 	bp->b_npages = index;
3197 }
3198 
3199 void
3200 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3201 {
3202 	vm_offset_t pg;
3203 	vm_page_t p;
3204 	int index, newnpages;
3205 
3206 	GIANT_REQUIRED;
3207 
3208 	from = round_page(from);
3209 	to = round_page(to);
3210 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3211 
3212 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3213 		p = bp->b_pages[index];
3214 		if (p && (index < bp->b_npages)) {
3215 			if (p->busy) {
3216 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3217 					bp->b_blkno, bp->b_lblkno);
3218 			}
3219 			bp->b_pages[index] = NULL;
3220 			pmap_kremove(pg);
3221 			vm_page_busy(p);
3222 			vm_page_unwire(p, 0);
3223 			vm_page_free(p);
3224 		}
3225 	}
3226 	bp->b_npages = newnpages;
3227 }
3228 
3229 
3230 #include "opt_ddb.h"
3231 #ifdef DDB
3232 #include <ddb/ddb.h>
3233 
3234 DB_SHOW_COMMAND(buffer, db_show_buffer)
3235 {
3236 	/* get args */
3237 	struct buf *bp = (struct buf *)addr;
3238 
3239 	if (!have_addr) {
3240 		db_printf("usage: show buffer <addr>\n");
3241 		return;
3242 	}
3243 
3244 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3245 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3246 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3247 		  "b_blkno = %d, b_pblkno = %d\n",
3248 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3249 		  major(bp->b_dev), minor(bp->b_dev),
3250 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3251 	if (bp->b_npages) {
3252 		int i;
3253 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3254 		for (i = 0; i < bp->b_npages; i++) {
3255 			vm_page_t m;
3256 			m = bp->b_pages[i];
3257 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3258 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3259 			if ((i + 1) < bp->b_npages)
3260 				db_printf(",");
3261 		}
3262 		db_printf("\n");
3263 	}
3264 }
3265 #endif /* DDB */
3266