xref: /freebsd/sys/kern/vfs_bio.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/bitset.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/buf.h>
57 #include <sys/devicestat.h>
58 #include <sys/eventhandler.h>
59 #include <sys/fail.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/proc.h>
68 #include <sys/racct.h>
69 #include <sys/resourcevar.h>
70 #include <sys/rwlock.h>
71 #include <sys/smp.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
74 #include <sys/vmem.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/watchdog.h>
78 #include <geom/geom.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_map.h>
88 #include <vm/swap_pager.h>
89 #include "opt_compat.h"
90 #include "opt_swap.h"
91 
92 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
93 
94 struct	bio_ops bioops;		/* I/O operation notification */
95 
96 struct	buf_ops buf_ops_bio = {
97 	.bop_name	=	"buf_ops_bio",
98 	.bop_write	=	bufwrite,
99 	.bop_strategy	=	bufstrategy,
100 	.bop_sync	=	bufsync,
101 	.bop_bdflush	=	bufbdflush,
102 };
103 
104 struct bufqueue {
105 	struct mtx_padalign	bq_lock;
106 	TAILQ_HEAD(, buf)	bq_queue;
107 	uint8_t			bq_index;
108 	uint16_t		bq_subqueue;
109 	int			bq_len;
110 } __aligned(CACHE_LINE_SIZE);
111 
112 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
113 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
114 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
115 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
116 
117 struct bufdomain {
118 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
119 	struct bufqueue bd_dirtyq;
120 	struct bufqueue	*bd_cleanq;
121 	struct mtx_padalign bd_run_lock;
122 	/* Constants */
123 	long		bd_maxbufspace;
124 	long		bd_hibufspace;
125 	long 		bd_lobufspace;
126 	long 		bd_bufspacethresh;
127 	int		bd_hifreebuffers;
128 	int		bd_lofreebuffers;
129 	int		bd_hidirtybuffers;
130 	int		bd_lodirtybuffers;
131 	int		bd_dirtybufthresh;
132 	int		bd_lim;
133 	/* atomics */
134 	int		bd_wanted;
135 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
136 	int __aligned(CACHE_LINE_SIZE)	bd_running;
137 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
138 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
139 } __aligned(CACHE_LINE_SIZE);
140 
141 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
142 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
143 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
144 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
145 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
146 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
147 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
148 #define	BD_DOMAIN(bd)		(bd - bdomain)
149 
150 static struct buf *buf;		/* buffer header pool */
151 extern struct buf *swbuf;	/* Swap buffer header pool. */
152 caddr_t unmapped_buf;
153 
154 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
155 struct proc *bufdaemonproc;
156 
157 static int inmem(struct vnode *vp, daddr_t blkno);
158 static void vm_hold_free_pages(struct buf *bp, int newbsize);
159 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
160 		vm_offset_t to);
161 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
162 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
163 		vm_page_t m);
164 static void vfs_clean_pages_dirty_buf(struct buf *bp);
165 static void vfs_setdirty_locked_object(struct buf *bp);
166 static void vfs_vmio_invalidate(struct buf *bp);
167 static void vfs_vmio_truncate(struct buf *bp, int npages);
168 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
169 static int vfs_bio_clcheck(struct vnode *vp, int size,
170 		daddr_t lblkno, daddr_t blkno);
171 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
172 		void (*)(struct buf *));
173 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
174 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
175 static void buf_daemon(void);
176 static __inline void bd_wakeup(void);
177 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
178 static void bufkva_reclaim(vmem_t *, int);
179 static void bufkva_free(struct buf *);
180 static int buf_import(void *, void **, int, int, int);
181 static void buf_release(void *, void **, int);
182 static void maxbcachebuf_adjust(void);
183 static inline struct bufdomain *bufdomain(struct buf *);
184 static void bq_remove(struct bufqueue *bq, struct buf *bp);
185 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
186 static int buf_recycle(struct bufdomain *, bool kva);
187 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
188 	    const char *lockname);
189 static void bd_init(struct bufdomain *bd);
190 static int bd_flushall(struct bufdomain *bd);
191 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
192 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
193 
194 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
195 int vmiodirenable = TRUE;
196 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
197     "Use the VM system for directory writes");
198 long runningbufspace;
199 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
200     "Amount of presently outstanding async buffer io");
201 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
202     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
203 static counter_u64_t bufkvaspace;
204 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
205     "Kernel virtual memory used for buffers");
206 static long maxbufspace;
207 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
208     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
209     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
210     "Maximum allowed value of bufspace (including metadata)");
211 static long bufmallocspace;
212 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
213     "Amount of malloced memory for buffers");
214 static long maxbufmallocspace;
215 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
216     0, "Maximum amount of malloced memory for buffers");
217 static long lobufspace;
218 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
219     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
220     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
221     "Minimum amount of buffers we want to have");
222 long hibufspace;
223 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
224     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
225     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
226     "Maximum allowed value of bufspace (excluding metadata)");
227 long bufspacethresh;
228 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
229     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
230     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
231     "Bufspace consumed before waking the daemon to free some");
232 static counter_u64_t buffreekvacnt;
233 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
234     "Number of times we have freed the KVA space from some buffer");
235 static counter_u64_t bufdefragcnt;
236 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
237     "Number of times we have had to repeat buffer allocation to defragment");
238 static long lorunningspace;
239 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
240     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
241     "Minimum preferred space used for in-progress I/O");
242 static long hirunningspace;
243 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
244     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
245     "Maximum amount of space to use for in-progress I/O");
246 int dirtybufferflushes;
247 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
248     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
249 int bdwriteskip;
250 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
251     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
252 int altbufferflushes;
253 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
254     0, "Number of fsync flushes to limit dirty buffers");
255 static int recursiveflushes;
256 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
257     0, "Number of flushes skipped due to being recursive");
258 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
259 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
260     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
261     "Number of buffers that are dirty (has unwritten changes) at the moment");
262 static int lodirtybuffers;
263 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
264     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
265     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
266     "How many buffers we want to have free before bufdaemon can sleep");
267 static int hidirtybuffers;
268 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
269     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
270     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
271     "When the number of dirty buffers is considered severe");
272 int dirtybufthresh;
273 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
274     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
275     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
276     "Number of bdwrite to bawrite conversions to clear dirty buffers");
277 static int numfreebuffers;
278 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
279     "Number of free buffers");
280 static int lofreebuffers;
281 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
282     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
283     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
284    "Target number of free buffers");
285 static int hifreebuffers;
286 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
287     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
288     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
289    "Threshold for clean buffer recycling");
290 static counter_u64_t getnewbufcalls;
291 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
292    &getnewbufcalls, "Number of calls to getnewbuf");
293 static counter_u64_t getnewbufrestarts;
294 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
295     &getnewbufrestarts,
296     "Number of times getnewbuf has had to restart a buffer acquisition");
297 static counter_u64_t mappingrestarts;
298 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
299     &mappingrestarts,
300     "Number of times getblk has had to restart a buffer mapping for "
301     "unmapped buffer");
302 static counter_u64_t numbufallocfails;
303 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
304     &numbufallocfails, "Number of times buffer allocations failed");
305 static int flushbufqtarget = 100;
306 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
307     "Amount of work to do in flushbufqueues when helping bufdaemon");
308 static counter_u64_t notbufdflushes;
309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
310     "Number of dirty buffer flushes done by the bufdaemon helpers");
311 static long barrierwrites;
312 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
313     "Number of barrier writes");
314 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
315     &unmapped_buf_allowed, 0,
316     "Permit the use of the unmapped i/o");
317 int maxbcachebuf = MAXBCACHEBUF;
318 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
319     "Maximum size of a buffer cache block");
320 
321 /*
322  * This lock synchronizes access to bd_request.
323  */
324 static struct mtx_padalign __exclusive_cache_line bdlock;
325 
326 /*
327  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
328  * waitrunningbufspace().
329  */
330 static struct mtx_padalign __exclusive_cache_line rbreqlock;
331 
332 /*
333  * Lock that protects bdirtywait.
334  */
335 static struct mtx_padalign __exclusive_cache_line bdirtylock;
336 
337 /*
338  * Wakeup point for bufdaemon, as well as indicator of whether it is already
339  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
340  * is idling.
341  */
342 static int bd_request;
343 
344 /*
345  * Request for the buf daemon to write more buffers than is indicated by
346  * lodirtybuf.  This may be necessary to push out excess dependencies or
347  * defragment the address space where a simple count of the number of dirty
348  * buffers is insufficient to characterize the demand for flushing them.
349  */
350 static int bd_speedupreq;
351 
352 /*
353  * Synchronization (sleep/wakeup) variable for active buffer space requests.
354  * Set when wait starts, cleared prior to wakeup().
355  * Used in runningbufwakeup() and waitrunningbufspace().
356  */
357 static int runningbufreq;
358 
359 /*
360  * Synchronization for bwillwrite() waiters.
361  */
362 static int bdirtywait;
363 
364 /*
365  * Definitions for the buffer free lists.
366  */
367 #define QUEUE_NONE	0	/* on no queue */
368 #define QUEUE_EMPTY	1	/* empty buffer headers */
369 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
370 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
371 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
372 
373 /* Maximum number of buffer domains. */
374 #define	BUF_DOMAINS	8
375 
376 struct bufdomainset bdlodirty;		/* Domains > lodirty */
377 struct bufdomainset bdhidirty;		/* Domains > hidirty */
378 
379 /* Configured number of clean queues. */
380 static int __read_mostly buf_domains;
381 
382 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
383 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
384 struct bufqueue __exclusive_cache_line bqempty;
385 
386 /*
387  * per-cpu empty buffer cache.
388  */
389 uma_zone_t buf_zone;
390 
391 /*
392  * Single global constant for BUF_WMESG, to avoid getting multiple references.
393  * buf_wmesg is referred from macros.
394  */
395 const char *buf_wmesg = BUF_WMESG;
396 
397 static int
398 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
399 {
400 	long value;
401 	int error;
402 
403 	value = *(long *)arg1;
404 	error = sysctl_handle_long(oidp, &value, 0, req);
405 	if (error != 0 || req->newptr == NULL)
406 		return (error);
407 	mtx_lock(&rbreqlock);
408 	if (arg1 == &hirunningspace) {
409 		if (value < lorunningspace)
410 			error = EINVAL;
411 		else
412 			hirunningspace = value;
413 	} else {
414 		KASSERT(arg1 == &lorunningspace,
415 		    ("%s: unknown arg1", __func__));
416 		if (value > hirunningspace)
417 			error = EINVAL;
418 		else
419 			lorunningspace = value;
420 	}
421 	mtx_unlock(&rbreqlock);
422 	return (error);
423 }
424 
425 static int
426 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
427 {
428 	int error;
429 	int value;
430 	int i;
431 
432 	value = *(int *)arg1;
433 	error = sysctl_handle_int(oidp, &value, 0, req);
434 	if (error != 0 || req->newptr == NULL)
435 		return (error);
436 	*(int *)arg1 = value;
437 	for (i = 0; i < buf_domains; i++)
438 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
439 		    value / buf_domains;
440 
441 	return (error);
442 }
443 
444 static int
445 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
446 {
447 	long value;
448 	int error;
449 	int i;
450 
451 	value = *(long *)arg1;
452 	error = sysctl_handle_long(oidp, &value, 0, req);
453 	if (error != 0 || req->newptr == NULL)
454 		return (error);
455 	*(long *)arg1 = value;
456 	for (i = 0; i < buf_domains; i++)
457 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
458 		    value / buf_domains;
459 
460 	return (error);
461 }
462 
463 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
464     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
465 static int
466 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
467 {
468 	long lvalue;
469 	int ivalue;
470 	int i;
471 
472 	lvalue = 0;
473 	for (i = 0; i < buf_domains; i++)
474 		lvalue += bdomain[i].bd_bufspace;
475 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
476 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
477 	if (lvalue > INT_MAX)
478 		/* On overflow, still write out a long to trigger ENOMEM. */
479 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
480 	ivalue = lvalue;
481 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
482 }
483 #else
484 static int
485 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
486 {
487 	long lvalue;
488 	int i;
489 
490 	lvalue = 0;
491 	for (i = 0; i < buf_domains; i++)
492 		lvalue += bdomain[i].bd_bufspace;
493 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
494 }
495 #endif
496 
497 static int
498 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
499 {
500 	int value;
501 	int i;
502 
503 	value = 0;
504 	for (i = 0; i < buf_domains; i++)
505 		value += bdomain[i].bd_numdirtybuffers;
506 	return (sysctl_handle_int(oidp, &value, 0, req));
507 }
508 
509 /*
510  *	bdirtywakeup:
511  *
512  *	Wakeup any bwillwrite() waiters.
513  */
514 static void
515 bdirtywakeup(void)
516 {
517 	mtx_lock(&bdirtylock);
518 	if (bdirtywait) {
519 		bdirtywait = 0;
520 		wakeup(&bdirtywait);
521 	}
522 	mtx_unlock(&bdirtylock);
523 }
524 
525 /*
526  *	bd_clear:
527  *
528  *	Clear a domain from the appropriate bitsets when dirtybuffers
529  *	is decremented.
530  */
531 static void
532 bd_clear(struct bufdomain *bd)
533 {
534 
535 	mtx_lock(&bdirtylock);
536 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
537 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
538 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
539 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
540 	mtx_unlock(&bdirtylock);
541 }
542 
543 /*
544  *	bd_set:
545  *
546  *	Set a domain in the appropriate bitsets when dirtybuffers
547  *	is incremented.
548  */
549 static void
550 bd_set(struct bufdomain *bd)
551 {
552 
553 	mtx_lock(&bdirtylock);
554 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
555 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
556 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
557 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
558 	mtx_unlock(&bdirtylock);
559 }
560 
561 /*
562  *	bdirtysub:
563  *
564  *	Decrement the numdirtybuffers count by one and wakeup any
565  *	threads blocked in bwillwrite().
566  */
567 static void
568 bdirtysub(struct buf *bp)
569 {
570 	struct bufdomain *bd;
571 	int num;
572 
573 	bd = bufdomain(bp);
574 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
575 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
576 		bdirtywakeup();
577 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
578 		bd_clear(bd);
579 }
580 
581 /*
582  *	bdirtyadd:
583  *
584  *	Increment the numdirtybuffers count by one and wakeup the buf
585  *	daemon if needed.
586  */
587 static void
588 bdirtyadd(struct buf *bp)
589 {
590 	struct bufdomain *bd;
591 	int num;
592 
593 	/*
594 	 * Only do the wakeup once as we cross the boundary.  The
595 	 * buf daemon will keep running until the condition clears.
596 	 */
597 	bd = bufdomain(bp);
598 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
599 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
600 		bd_wakeup();
601 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
602 		bd_set(bd);
603 }
604 
605 /*
606  *	bufspace_daemon_wakeup:
607  *
608  *	Wakeup the daemons responsible for freeing clean bufs.
609  */
610 static void
611 bufspace_daemon_wakeup(struct bufdomain *bd)
612 {
613 
614 	/*
615 	 * avoid the lock if the daemon is running.
616 	 */
617 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
618 		BD_RUN_LOCK(bd);
619 		atomic_store_int(&bd->bd_running, 1);
620 		wakeup(&bd->bd_running);
621 		BD_RUN_UNLOCK(bd);
622 	}
623 }
624 
625 /*
626  *	bufspace_daemon_wait:
627  *
628  *	Sleep until the domain falls below a limit or one second passes.
629  */
630 static void
631 bufspace_daemon_wait(struct bufdomain *bd)
632 {
633 	/*
634 	 * Re-check our limits and sleep.  bd_running must be
635 	 * cleared prior to checking the limits to avoid missed
636 	 * wakeups.  The waker will adjust one of bufspace or
637 	 * freebuffers prior to checking bd_running.
638 	 */
639 	BD_RUN_LOCK(bd);
640 	atomic_store_int(&bd->bd_running, 0);
641 	if (bd->bd_bufspace < bd->bd_bufspacethresh &&
642 	    bd->bd_freebuffers > bd->bd_lofreebuffers) {
643 		msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
644 		    "-", hz);
645 	} else {
646 		/* Avoid spurious wakeups while running. */
647 		atomic_store_int(&bd->bd_running, 1);
648 		BD_RUN_UNLOCK(bd);
649 	}
650 }
651 
652 /*
653  *	bufspace_adjust:
654  *
655  *	Adjust the reported bufspace for a KVA managed buffer, possibly
656  * 	waking any waiters.
657  */
658 static void
659 bufspace_adjust(struct buf *bp, int bufsize)
660 {
661 	struct bufdomain *bd;
662 	long space;
663 	int diff;
664 
665 	KASSERT((bp->b_flags & B_MALLOC) == 0,
666 	    ("bufspace_adjust: malloc buf %p", bp));
667 	bd = bufdomain(bp);
668 	diff = bufsize - bp->b_bufsize;
669 	if (diff < 0) {
670 		atomic_subtract_long(&bd->bd_bufspace, -diff);
671 	} else if (diff > 0) {
672 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
673 		/* Wake up the daemon on the transition. */
674 		if (space < bd->bd_bufspacethresh &&
675 		    space + diff >= bd->bd_bufspacethresh)
676 			bufspace_daemon_wakeup(bd);
677 	}
678 	bp->b_bufsize = bufsize;
679 }
680 
681 /*
682  *	bufspace_reserve:
683  *
684  *	Reserve bufspace before calling allocbuf().  metadata has a
685  *	different space limit than data.
686  */
687 static int
688 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
689 {
690 	long limit, new;
691 	long space;
692 
693 	if (metadata)
694 		limit = bd->bd_maxbufspace;
695 	else
696 		limit = bd->bd_hibufspace;
697 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
698 	new = space + size;
699 	if (new > limit) {
700 		atomic_subtract_long(&bd->bd_bufspace, size);
701 		return (ENOSPC);
702 	}
703 
704 	/* Wake up the daemon on the transition. */
705 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
706 		bufspace_daemon_wakeup(bd);
707 
708 	return (0);
709 }
710 
711 /*
712  *	bufspace_release:
713  *
714  *	Release reserved bufspace after bufspace_adjust() has consumed it.
715  */
716 static void
717 bufspace_release(struct bufdomain *bd, int size)
718 {
719 
720 	atomic_subtract_long(&bd->bd_bufspace, size);
721 }
722 
723 /*
724  *	bufspace_wait:
725  *
726  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
727  *	supplied.  bd_wanted must be set prior to polling for space.  The
728  *	operation must be re-tried on return.
729  */
730 static void
731 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
732     int slpflag, int slptimeo)
733 {
734 	struct thread *td;
735 	int error, fl, norunbuf;
736 
737 	if ((gbflags & GB_NOWAIT_BD) != 0)
738 		return;
739 
740 	td = curthread;
741 	BD_LOCK(bd);
742 	while (bd->bd_wanted) {
743 		if (vp != NULL && vp->v_type != VCHR &&
744 		    (td->td_pflags & TDP_BUFNEED) == 0) {
745 			BD_UNLOCK(bd);
746 			/*
747 			 * getblk() is called with a vnode locked, and
748 			 * some majority of the dirty buffers may as
749 			 * well belong to the vnode.  Flushing the
750 			 * buffers there would make a progress that
751 			 * cannot be achieved by the buf_daemon, that
752 			 * cannot lock the vnode.
753 			 */
754 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
755 			    (td->td_pflags & TDP_NORUNNINGBUF);
756 
757 			/*
758 			 * Play bufdaemon.  The getnewbuf() function
759 			 * may be called while the thread owns lock
760 			 * for another dirty buffer for the same
761 			 * vnode, which makes it impossible to use
762 			 * VOP_FSYNC() there, due to the buffer lock
763 			 * recursion.
764 			 */
765 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
766 			fl = buf_flush(vp, bd, flushbufqtarget);
767 			td->td_pflags &= norunbuf;
768 			BD_LOCK(bd);
769 			if (fl != 0)
770 				continue;
771 			if (bd->bd_wanted == 0)
772 				break;
773 		}
774 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
775 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
776 		if (error != 0)
777 			break;
778 	}
779 	BD_UNLOCK(bd);
780 }
781 
782 
783 /*
784  *	bufspace_daemon:
785  *
786  *	buffer space management daemon.  Tries to maintain some marginal
787  *	amount of free buffer space so that requesting processes neither
788  *	block nor work to reclaim buffers.
789  */
790 static void
791 bufspace_daemon(void *arg)
792 {
793 	struct bufdomain *bd;
794 
795 	bd = arg;
796 	for (;;) {
797 		kproc_suspend_check(curproc);
798 
799 		/*
800 		 * Free buffers from the clean queue until we meet our
801 		 * targets.
802 		 *
803 		 * Theory of operation:  The buffer cache is most efficient
804 		 * when some free buffer headers and space are always
805 		 * available to getnewbuf().  This daemon attempts to prevent
806 		 * the excessive blocking and synchronization associated
807 		 * with shortfall.  It goes through three phases according
808 		 * demand:
809 		 *
810 		 * 1)	The daemon wakes up voluntarily once per-second
811 		 *	during idle periods when the counters are below
812 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
813 		 *
814 		 * 2)	The daemon wakes up as we cross the thresholds
815 		 *	ahead of any potential blocking.  This may bounce
816 		 *	slightly according to the rate of consumption and
817 		 *	release.
818 		 *
819 		 * 3)	The daemon and consumers are starved for working
820 		 *	clean buffers.  This is the 'bufspace' sleep below
821 		 *	which will inefficiently trade bufs with bqrelse
822 		 *	until we return to condition 2.
823 		 */
824 		while (bd->bd_bufspace > bd->bd_lobufspace ||
825 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
826 			if (buf_recycle(bd, false) != 0) {
827 				if (bd_flushall(bd))
828 					continue;
829 				/*
830 				 * Speedup dirty if we've run out of clean
831 				 * buffers.  This is possible in particular
832 				 * because softdep may held many bufs locked
833 				 * pending writes to other bufs which are
834 				 * marked for delayed write, exhausting
835 				 * clean space until they are written.
836 				 */
837 				bd_speedup();
838 				BD_LOCK(bd);
839 				if (bd->bd_wanted) {
840 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
841 					    PRIBIO|PDROP, "bufspace", hz/10);
842 				} else
843 					BD_UNLOCK(bd);
844 			}
845 			maybe_yield();
846 		}
847 		bufspace_daemon_wait(bd);
848 	}
849 }
850 
851 /*
852  *	bufmallocadjust:
853  *
854  *	Adjust the reported bufspace for a malloc managed buffer, possibly
855  *	waking any waiters.
856  */
857 static void
858 bufmallocadjust(struct buf *bp, int bufsize)
859 {
860 	int diff;
861 
862 	KASSERT((bp->b_flags & B_MALLOC) != 0,
863 	    ("bufmallocadjust: non-malloc buf %p", bp));
864 	diff = bufsize - bp->b_bufsize;
865 	if (diff < 0)
866 		atomic_subtract_long(&bufmallocspace, -diff);
867 	else
868 		atomic_add_long(&bufmallocspace, diff);
869 	bp->b_bufsize = bufsize;
870 }
871 
872 /*
873  *	runningwakeup:
874  *
875  *	Wake up processes that are waiting on asynchronous writes to fall
876  *	below lorunningspace.
877  */
878 static void
879 runningwakeup(void)
880 {
881 
882 	mtx_lock(&rbreqlock);
883 	if (runningbufreq) {
884 		runningbufreq = 0;
885 		wakeup(&runningbufreq);
886 	}
887 	mtx_unlock(&rbreqlock);
888 }
889 
890 /*
891  *	runningbufwakeup:
892  *
893  *	Decrement the outstanding write count according.
894  */
895 void
896 runningbufwakeup(struct buf *bp)
897 {
898 	long space, bspace;
899 
900 	bspace = bp->b_runningbufspace;
901 	if (bspace == 0)
902 		return;
903 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
904 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
905 	    space, bspace));
906 	bp->b_runningbufspace = 0;
907 	/*
908 	 * Only acquire the lock and wakeup on the transition from exceeding
909 	 * the threshold to falling below it.
910 	 */
911 	if (space < lorunningspace)
912 		return;
913 	if (space - bspace > lorunningspace)
914 		return;
915 	runningwakeup();
916 }
917 
918 /*
919  *	waitrunningbufspace()
920  *
921  *	runningbufspace is a measure of the amount of I/O currently
922  *	running.  This routine is used in async-write situations to
923  *	prevent creating huge backups of pending writes to a device.
924  *	Only asynchronous writes are governed by this function.
925  *
926  *	This does NOT turn an async write into a sync write.  It waits
927  *	for earlier writes to complete and generally returns before the
928  *	caller's write has reached the device.
929  */
930 void
931 waitrunningbufspace(void)
932 {
933 
934 	mtx_lock(&rbreqlock);
935 	while (runningbufspace > hirunningspace) {
936 		runningbufreq = 1;
937 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
938 	}
939 	mtx_unlock(&rbreqlock);
940 }
941 
942 
943 /*
944  *	vfs_buf_test_cache:
945  *
946  *	Called when a buffer is extended.  This function clears the B_CACHE
947  *	bit if the newly extended portion of the buffer does not contain
948  *	valid data.
949  */
950 static __inline void
951 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
952     vm_offset_t size, vm_page_t m)
953 {
954 
955 	VM_OBJECT_ASSERT_LOCKED(m->object);
956 	if (bp->b_flags & B_CACHE) {
957 		int base = (foff + off) & PAGE_MASK;
958 		if (vm_page_is_valid(m, base, size) == 0)
959 			bp->b_flags &= ~B_CACHE;
960 	}
961 }
962 
963 /* Wake up the buffer daemon if necessary */
964 static void
965 bd_wakeup(void)
966 {
967 
968 	mtx_lock(&bdlock);
969 	if (bd_request == 0) {
970 		bd_request = 1;
971 		wakeup(&bd_request);
972 	}
973 	mtx_unlock(&bdlock);
974 }
975 
976 /*
977  * Adjust the maxbcachbuf tunable.
978  */
979 static void
980 maxbcachebuf_adjust(void)
981 {
982 	int i;
983 
984 	/*
985 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
986 	 */
987 	i = 2;
988 	while (i * 2 <= maxbcachebuf)
989 		i *= 2;
990 	maxbcachebuf = i;
991 	if (maxbcachebuf < MAXBSIZE)
992 		maxbcachebuf = MAXBSIZE;
993 	if (maxbcachebuf > MAXPHYS)
994 		maxbcachebuf = MAXPHYS;
995 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
996 		printf("maxbcachebuf=%d\n", maxbcachebuf);
997 }
998 
999 /*
1000  * bd_speedup - speedup the buffer cache flushing code
1001  */
1002 void
1003 bd_speedup(void)
1004 {
1005 	int needwake;
1006 
1007 	mtx_lock(&bdlock);
1008 	needwake = 0;
1009 	if (bd_speedupreq == 0 || bd_request == 0)
1010 		needwake = 1;
1011 	bd_speedupreq = 1;
1012 	bd_request = 1;
1013 	if (needwake)
1014 		wakeup(&bd_request);
1015 	mtx_unlock(&bdlock);
1016 }
1017 
1018 #ifndef NSWBUF_MIN
1019 #define	NSWBUF_MIN	16
1020 #endif
1021 
1022 #ifdef __i386__
1023 #define	TRANSIENT_DENOM	5
1024 #else
1025 #define	TRANSIENT_DENOM 10
1026 #endif
1027 
1028 /*
1029  * Calculating buffer cache scaling values and reserve space for buffer
1030  * headers.  This is called during low level kernel initialization and
1031  * may be called more then once.  We CANNOT write to the memory area
1032  * being reserved at this time.
1033  */
1034 caddr_t
1035 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1036 {
1037 	int tuned_nbuf;
1038 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1039 
1040 	/*
1041 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1042 	 * PAGE_SIZE is >= 1K)
1043 	 */
1044 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1045 
1046 	maxbcachebuf_adjust();
1047 	/*
1048 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1049 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1050 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1051 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1052 	 * the buffer cache we limit the eventual kva reservation to
1053 	 * maxbcache bytes.
1054 	 *
1055 	 * factor represents the 1/4 x ram conversion.
1056 	 */
1057 	if (nbuf == 0) {
1058 		int factor = 4 * BKVASIZE / 1024;
1059 
1060 		nbuf = 50;
1061 		if (physmem_est > 4096)
1062 			nbuf += min((physmem_est - 4096) / factor,
1063 			    65536 / factor);
1064 		if (physmem_est > 65536)
1065 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1066 			    32 * 1024 * 1024 / (factor * 5));
1067 
1068 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1069 			nbuf = maxbcache / BKVASIZE;
1070 		tuned_nbuf = 1;
1071 	} else
1072 		tuned_nbuf = 0;
1073 
1074 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1075 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1076 	if (nbuf > maxbuf) {
1077 		if (!tuned_nbuf)
1078 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1079 			    maxbuf);
1080 		nbuf = maxbuf;
1081 	}
1082 
1083 	/*
1084 	 * Ideal allocation size for the transient bio submap is 10%
1085 	 * of the maximal space buffer map.  This roughly corresponds
1086 	 * to the amount of the buffer mapped for typical UFS load.
1087 	 *
1088 	 * Clip the buffer map to reserve space for the transient
1089 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1090 	 * maximum buffer map extent on the platform.
1091 	 *
1092 	 * The fall-back to the maxbuf in case of maxbcache unset,
1093 	 * allows to not trim the buffer KVA for the architectures
1094 	 * with ample KVA space.
1095 	 */
1096 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1097 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1098 		buf_sz = (long)nbuf * BKVASIZE;
1099 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1100 		    (TRANSIENT_DENOM - 1)) {
1101 			/*
1102 			 * There is more KVA than memory.  Do not
1103 			 * adjust buffer map size, and assign the rest
1104 			 * of maxbuf to transient map.
1105 			 */
1106 			biotmap_sz = maxbuf_sz - buf_sz;
1107 		} else {
1108 			/*
1109 			 * Buffer map spans all KVA we could afford on
1110 			 * this platform.  Give 10% (20% on i386) of
1111 			 * the buffer map to the transient bio map.
1112 			 */
1113 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1114 			buf_sz -= biotmap_sz;
1115 		}
1116 		if (biotmap_sz / INT_MAX > MAXPHYS)
1117 			bio_transient_maxcnt = INT_MAX;
1118 		else
1119 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
1120 		/*
1121 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1122 		 * using the transient mapping.
1123 		 */
1124 		if (bio_transient_maxcnt > 1024)
1125 			bio_transient_maxcnt = 1024;
1126 		if (tuned_nbuf)
1127 			nbuf = buf_sz / BKVASIZE;
1128 	}
1129 
1130 	/*
1131 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
1132 	 * We have no less then 16 and no more then 256.
1133 	 */
1134 	nswbuf = min(nbuf / 4, 256);
1135 	TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
1136 	if (nswbuf < NSWBUF_MIN)
1137 		nswbuf = NSWBUF_MIN;
1138 
1139 	/*
1140 	 * Reserve space for the buffer cache buffers
1141 	 */
1142 	swbuf = (void *)v;
1143 	v = (caddr_t)(swbuf + nswbuf);
1144 	buf = (void *)v;
1145 	v = (caddr_t)(buf + nbuf);
1146 
1147 	return(v);
1148 }
1149 
1150 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1151 void
1152 bufinit(void)
1153 {
1154 	struct buf *bp;
1155 	int i;
1156 
1157 	KASSERT(maxbcachebuf >= MAXBSIZE,
1158 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1159 	    MAXBSIZE));
1160 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1161 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1162 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1163 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1164 
1165 	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
1166 
1167 	/* finally, initialize each buffer header and stick on empty q */
1168 	for (i = 0; i < nbuf; i++) {
1169 		bp = &buf[i];
1170 		bzero(bp, sizeof *bp);
1171 		bp->b_flags = B_INVAL;
1172 		bp->b_rcred = NOCRED;
1173 		bp->b_wcred = NOCRED;
1174 		bp->b_qindex = QUEUE_NONE;
1175 		bp->b_domain = -1;
1176 		bp->b_subqueue = mp_maxid + 1;
1177 		bp->b_xflags = 0;
1178 		bp->b_data = bp->b_kvabase = unmapped_buf;
1179 		LIST_INIT(&bp->b_dep);
1180 		BUF_LOCKINIT(bp);
1181 		bq_insert(&bqempty, bp, false);
1182 	}
1183 
1184 	/*
1185 	 * maxbufspace is the absolute maximum amount of buffer space we are
1186 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1187 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1188 	 * used by most other requests.  The differential is required to
1189 	 * ensure that metadata deadlocks don't occur.
1190 	 *
1191 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1192 	 * this may result in KVM fragmentation which is not handled optimally
1193 	 * by the system. XXX This is less true with vmem.  We could use
1194 	 * PAGE_SIZE.
1195 	 */
1196 	maxbufspace = (long)nbuf * BKVASIZE;
1197 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1198 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1199 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1200 
1201 	/*
1202 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1203 	 * arbitrarily and may need further tuning. It corresponds to
1204 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1205 	 * which fits with many RAID controllers' tagged queuing limits.
1206 	 * The lower 1 MiB limit is the historical upper limit for
1207 	 * hirunningspace.
1208 	 */
1209 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1210 	    16 * 1024 * 1024), 1024 * 1024);
1211 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1212 
1213 	/*
1214 	 * Limit the amount of malloc memory since it is wired permanently into
1215 	 * the kernel space.  Even though this is accounted for in the buffer
1216 	 * allocation, we don't want the malloced region to grow uncontrolled.
1217 	 * The malloc scheme improves memory utilization significantly on
1218 	 * average (small) directories.
1219 	 */
1220 	maxbufmallocspace = hibufspace / 20;
1221 
1222 	/*
1223 	 * Reduce the chance of a deadlock occurring by limiting the number
1224 	 * of delayed-write dirty buffers we allow to stack up.
1225 	 */
1226 	hidirtybuffers = nbuf / 4 + 20;
1227 	dirtybufthresh = hidirtybuffers * 9 / 10;
1228 	/*
1229 	 * To support extreme low-memory systems, make sure hidirtybuffers
1230 	 * cannot eat up all available buffer space.  This occurs when our
1231 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1232 	 * buffer space assuming BKVASIZE'd buffers.
1233 	 */
1234 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1235 		hidirtybuffers >>= 1;
1236 	}
1237 	lodirtybuffers = hidirtybuffers / 2;
1238 
1239 	/*
1240 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1241 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1242 	 * are counted as free but will be unavailable to threads executing
1243 	 * on other cpus.
1244 	 *
1245 	 * hifreebuffers is the free target for the bufspace daemon.  This
1246 	 * should be set appropriately to limit work per-iteration.
1247 	 */
1248 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1249 	hifreebuffers = (3 * lofreebuffers) / 2;
1250 	numfreebuffers = nbuf;
1251 
1252 	/* Setup the kva and free list allocators. */
1253 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1254 	buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
1255 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1256 
1257 	/*
1258 	 * Size the clean queue according to the amount of buffer space.
1259 	 * One queue per-256mb up to the max.  More queues gives better
1260 	 * concurrency but less accurate LRU.
1261 	 */
1262 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1263 	for (i = 0 ; i < buf_domains; i++) {
1264 		struct bufdomain *bd;
1265 
1266 		bd = &bdomain[i];
1267 		bd_init(bd);
1268 		bd->bd_freebuffers = nbuf / buf_domains;
1269 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1270 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1271 		bd->bd_bufspace = 0;
1272 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1273 		bd->bd_hibufspace = hibufspace / buf_domains;
1274 		bd->bd_lobufspace = lobufspace / buf_domains;
1275 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1276 		bd->bd_numdirtybuffers = 0;
1277 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1278 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1279 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1280 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1281 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1282 	}
1283 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1284 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1285 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1286 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1287 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1288 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1289 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1290 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1291 }
1292 
1293 #ifdef INVARIANTS
1294 static inline void
1295 vfs_buf_check_mapped(struct buf *bp)
1296 {
1297 
1298 	KASSERT(bp->b_kvabase != unmapped_buf,
1299 	    ("mapped buf: b_kvabase was not updated %p", bp));
1300 	KASSERT(bp->b_data != unmapped_buf,
1301 	    ("mapped buf: b_data was not updated %p", bp));
1302 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1303 	    MAXPHYS, ("b_data + b_offset unmapped %p", bp));
1304 }
1305 
1306 static inline void
1307 vfs_buf_check_unmapped(struct buf *bp)
1308 {
1309 
1310 	KASSERT(bp->b_data == unmapped_buf,
1311 	    ("unmapped buf: corrupted b_data %p", bp));
1312 }
1313 
1314 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1315 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1316 #else
1317 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1318 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1319 #endif
1320 
1321 static int
1322 isbufbusy(struct buf *bp)
1323 {
1324 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1325 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1326 		return (1);
1327 	return (0);
1328 }
1329 
1330 /*
1331  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1332  */
1333 void
1334 bufshutdown(int show_busybufs)
1335 {
1336 	static int first_buf_printf = 1;
1337 	struct buf *bp;
1338 	int iter, nbusy, pbusy;
1339 #ifndef PREEMPTION
1340 	int subiter;
1341 #endif
1342 
1343 	/*
1344 	 * Sync filesystems for shutdown
1345 	 */
1346 	wdog_kern_pat(WD_LASTVAL);
1347 	sys_sync(curthread, NULL);
1348 
1349 	/*
1350 	 * With soft updates, some buffers that are
1351 	 * written will be remarked as dirty until other
1352 	 * buffers are written.
1353 	 */
1354 	for (iter = pbusy = 0; iter < 20; iter++) {
1355 		nbusy = 0;
1356 		for (bp = &buf[nbuf]; --bp >= buf; )
1357 			if (isbufbusy(bp))
1358 				nbusy++;
1359 		if (nbusy == 0) {
1360 			if (first_buf_printf)
1361 				printf("All buffers synced.");
1362 			break;
1363 		}
1364 		if (first_buf_printf) {
1365 			printf("Syncing disks, buffers remaining... ");
1366 			first_buf_printf = 0;
1367 		}
1368 		printf("%d ", nbusy);
1369 		if (nbusy < pbusy)
1370 			iter = 0;
1371 		pbusy = nbusy;
1372 
1373 		wdog_kern_pat(WD_LASTVAL);
1374 		sys_sync(curthread, NULL);
1375 
1376 #ifdef PREEMPTION
1377 		/*
1378 		 * Spin for a while to allow interrupt threads to run.
1379 		 */
1380 		DELAY(50000 * iter);
1381 #else
1382 		/*
1383 		 * Context switch several times to allow interrupt
1384 		 * threads to run.
1385 		 */
1386 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1387 			thread_lock(curthread);
1388 			mi_switch(SW_VOL, NULL);
1389 			thread_unlock(curthread);
1390 			DELAY(1000);
1391 		}
1392 #endif
1393 	}
1394 	printf("\n");
1395 	/*
1396 	 * Count only busy local buffers to prevent forcing
1397 	 * a fsck if we're just a client of a wedged NFS server
1398 	 */
1399 	nbusy = 0;
1400 	for (bp = &buf[nbuf]; --bp >= buf; ) {
1401 		if (isbufbusy(bp)) {
1402 #if 0
1403 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1404 			if (bp->b_dev == NULL) {
1405 				TAILQ_REMOVE(&mountlist,
1406 				    bp->b_vp->v_mount, mnt_list);
1407 				continue;
1408 			}
1409 #endif
1410 			nbusy++;
1411 			if (show_busybufs > 0) {
1412 				printf(
1413 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1414 				    nbusy, bp, bp->b_vp, bp->b_flags,
1415 				    (intmax_t)bp->b_blkno,
1416 				    (intmax_t)bp->b_lblkno);
1417 				BUF_LOCKPRINTINFO(bp);
1418 				if (show_busybufs > 1)
1419 					vn_printf(bp->b_vp,
1420 					    "vnode content: ");
1421 			}
1422 		}
1423 	}
1424 	if (nbusy) {
1425 		/*
1426 		 * Failed to sync all blocks. Indicate this and don't
1427 		 * unmount filesystems (thus forcing an fsck on reboot).
1428 		 */
1429 		printf("Giving up on %d buffers\n", nbusy);
1430 		DELAY(5000000);	/* 5 seconds */
1431 	} else {
1432 		if (!first_buf_printf)
1433 			printf("Final sync complete\n");
1434 		/*
1435 		 * Unmount filesystems
1436 		 */
1437 		if (panicstr == NULL)
1438 			vfs_unmountall();
1439 	}
1440 	swapoff_all();
1441 	DELAY(100000);		/* wait for console output to finish */
1442 }
1443 
1444 static void
1445 bpmap_qenter(struct buf *bp)
1446 {
1447 
1448 	BUF_CHECK_MAPPED(bp);
1449 
1450 	/*
1451 	 * bp->b_data is relative to bp->b_offset, but
1452 	 * bp->b_offset may be offset into the first page.
1453 	 */
1454 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1455 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1456 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1457 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1458 }
1459 
1460 static inline struct bufdomain *
1461 bufdomain(struct buf *bp)
1462 {
1463 
1464 	return (&bdomain[bp->b_domain]);
1465 }
1466 
1467 static struct bufqueue *
1468 bufqueue(struct buf *bp)
1469 {
1470 
1471 	switch (bp->b_qindex) {
1472 	case QUEUE_NONE:
1473 		/* FALLTHROUGH */
1474 	case QUEUE_SENTINEL:
1475 		return (NULL);
1476 	case QUEUE_EMPTY:
1477 		return (&bqempty);
1478 	case QUEUE_DIRTY:
1479 		return (&bufdomain(bp)->bd_dirtyq);
1480 	case QUEUE_CLEAN:
1481 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1482 	default:
1483 		break;
1484 	}
1485 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1486 }
1487 
1488 /*
1489  * Return the locked bufqueue that bp is a member of.
1490  */
1491 static struct bufqueue *
1492 bufqueue_acquire(struct buf *bp)
1493 {
1494 	struct bufqueue *bq, *nbq;
1495 
1496 	/*
1497 	 * bp can be pushed from a per-cpu queue to the
1498 	 * cleanq while we're waiting on the lock.  Retry
1499 	 * if the queues don't match.
1500 	 */
1501 	bq = bufqueue(bp);
1502 	BQ_LOCK(bq);
1503 	for (;;) {
1504 		nbq = bufqueue(bp);
1505 		if (bq == nbq)
1506 			break;
1507 		BQ_UNLOCK(bq);
1508 		BQ_LOCK(nbq);
1509 		bq = nbq;
1510 	}
1511 	return (bq);
1512 }
1513 
1514 /*
1515  *	binsfree:
1516  *
1517  *	Insert the buffer into the appropriate free list.  Requires a
1518  *	locked buffer on entry and buffer is unlocked before return.
1519  */
1520 static void
1521 binsfree(struct buf *bp, int qindex)
1522 {
1523 	struct bufdomain *bd;
1524 	struct bufqueue *bq;
1525 
1526 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1527 	    ("binsfree: Invalid qindex %d", qindex));
1528 	BUF_ASSERT_XLOCKED(bp);
1529 
1530 	/*
1531 	 * Handle delayed bremfree() processing.
1532 	 */
1533 	if (bp->b_flags & B_REMFREE) {
1534 		if (bp->b_qindex == qindex) {
1535 			bp->b_flags |= B_REUSE;
1536 			bp->b_flags &= ~B_REMFREE;
1537 			BUF_UNLOCK(bp);
1538 			return;
1539 		}
1540 		bq = bufqueue_acquire(bp);
1541 		bq_remove(bq, bp);
1542 		BQ_UNLOCK(bq);
1543 	}
1544 	bd = bufdomain(bp);
1545 	if (qindex == QUEUE_CLEAN) {
1546 		if (bd->bd_lim != 0)
1547 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1548 		else
1549 			bq = bd->bd_cleanq;
1550 	} else
1551 		bq = &bd->bd_dirtyq;
1552 	bq_insert(bq, bp, true);
1553 }
1554 
1555 /*
1556  * buf_free:
1557  *
1558  *	Free a buffer to the buf zone once it no longer has valid contents.
1559  */
1560 static void
1561 buf_free(struct buf *bp)
1562 {
1563 
1564 	if (bp->b_flags & B_REMFREE)
1565 		bremfreef(bp);
1566 	if (bp->b_vflags & BV_BKGRDINPROG)
1567 		panic("losing buffer 1");
1568 	if (bp->b_rcred != NOCRED) {
1569 		crfree(bp->b_rcred);
1570 		bp->b_rcred = NOCRED;
1571 	}
1572 	if (bp->b_wcred != NOCRED) {
1573 		crfree(bp->b_wcred);
1574 		bp->b_wcred = NOCRED;
1575 	}
1576 	if (!LIST_EMPTY(&bp->b_dep))
1577 		buf_deallocate(bp);
1578 	bufkva_free(bp);
1579 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1580 	BUF_UNLOCK(bp);
1581 	uma_zfree(buf_zone, bp);
1582 }
1583 
1584 /*
1585  * buf_import:
1586  *
1587  *	Import bufs into the uma cache from the buf list.  The system still
1588  *	expects a static array of bufs and much of the synchronization
1589  *	around bufs assumes type stable storage.  As a result, UMA is used
1590  *	only as a per-cpu cache of bufs still maintained on a global list.
1591  */
1592 static int
1593 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1594 {
1595 	struct buf *bp;
1596 	int i;
1597 
1598 	BQ_LOCK(&bqempty);
1599 	for (i = 0; i < cnt; i++) {
1600 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1601 		if (bp == NULL)
1602 			break;
1603 		bq_remove(&bqempty, bp);
1604 		store[i] = bp;
1605 	}
1606 	BQ_UNLOCK(&bqempty);
1607 
1608 	return (i);
1609 }
1610 
1611 /*
1612  * buf_release:
1613  *
1614  *	Release bufs from the uma cache back to the buffer queues.
1615  */
1616 static void
1617 buf_release(void *arg, void **store, int cnt)
1618 {
1619 	struct bufqueue *bq;
1620 	struct buf *bp;
1621         int i;
1622 
1623 	bq = &bqempty;
1624 	BQ_LOCK(bq);
1625         for (i = 0; i < cnt; i++) {
1626 		bp = store[i];
1627 		/* Inline bq_insert() to batch locking. */
1628 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1629 		bp->b_flags &= ~(B_AGE | B_REUSE);
1630 		bq->bq_len++;
1631 		bp->b_qindex = bq->bq_index;
1632 	}
1633 	BQ_UNLOCK(bq);
1634 }
1635 
1636 /*
1637  * buf_alloc:
1638  *
1639  *	Allocate an empty buffer header.
1640  */
1641 static struct buf *
1642 buf_alloc(struct bufdomain *bd)
1643 {
1644 	struct buf *bp;
1645 	int freebufs;
1646 
1647 	/*
1648 	 * We can only run out of bufs in the buf zone if the average buf
1649 	 * is less than BKVASIZE.  In this case the actual wait/block will
1650 	 * come from buf_reycle() failing to flush one of these small bufs.
1651 	 */
1652 	bp = NULL;
1653 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1654 	if (freebufs > 0)
1655 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1656 	if (bp == NULL) {
1657 		atomic_fetchadd_int(&bd->bd_freebuffers, 1);
1658 		bufspace_daemon_wakeup(bd);
1659 		counter_u64_add(numbufallocfails, 1);
1660 		return (NULL);
1661 	}
1662 	/*
1663 	 * Wake-up the bufspace daemon on transition below threshold.
1664 	 */
1665 	if (freebufs == bd->bd_lofreebuffers)
1666 		bufspace_daemon_wakeup(bd);
1667 
1668 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1669 		panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
1670 
1671 	KASSERT(bp->b_vp == NULL,
1672 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1673 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1674 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1675 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1676 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1677 	KASSERT(bp->b_npages == 0,
1678 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1679 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1680 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1681 
1682 	bp->b_domain = BD_DOMAIN(bd);
1683 	bp->b_flags = 0;
1684 	bp->b_ioflags = 0;
1685 	bp->b_xflags = 0;
1686 	bp->b_vflags = 0;
1687 	bp->b_vp = NULL;
1688 	bp->b_blkno = bp->b_lblkno = 0;
1689 	bp->b_offset = NOOFFSET;
1690 	bp->b_iodone = 0;
1691 	bp->b_error = 0;
1692 	bp->b_resid = 0;
1693 	bp->b_bcount = 0;
1694 	bp->b_npages = 0;
1695 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1696 	bp->b_bufobj = NULL;
1697 	bp->b_data = bp->b_kvabase = unmapped_buf;
1698 	bp->b_fsprivate1 = NULL;
1699 	bp->b_fsprivate2 = NULL;
1700 	bp->b_fsprivate3 = NULL;
1701 	LIST_INIT(&bp->b_dep);
1702 
1703 	return (bp);
1704 }
1705 
1706 /*
1707  *	buf_recycle:
1708  *
1709  *	Free a buffer from the given bufqueue.  kva controls whether the
1710  *	freed buf must own some kva resources.  This is used for
1711  *	defragmenting.
1712  */
1713 static int
1714 buf_recycle(struct bufdomain *bd, bool kva)
1715 {
1716 	struct bufqueue *bq;
1717 	struct buf *bp, *nbp;
1718 
1719 	if (kva)
1720 		counter_u64_add(bufdefragcnt, 1);
1721 	nbp = NULL;
1722 	bq = bd->bd_cleanq;
1723 	BQ_LOCK(bq);
1724 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1725 	    ("buf_recycle: Locks don't match"));
1726 	nbp = TAILQ_FIRST(&bq->bq_queue);
1727 
1728 	/*
1729 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1730 	 * depending.
1731 	 */
1732 	while ((bp = nbp) != NULL) {
1733 		/*
1734 		 * Calculate next bp (we can only use it if we do not
1735 		 * release the bqlock).
1736 		 */
1737 		nbp = TAILQ_NEXT(bp, b_freelist);
1738 
1739 		/*
1740 		 * If we are defragging then we need a buffer with
1741 		 * some kva to reclaim.
1742 		 */
1743 		if (kva && bp->b_kvasize == 0)
1744 			continue;
1745 
1746 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1747 			continue;
1748 
1749 		/*
1750 		 * Implement a second chance algorithm for frequently
1751 		 * accessed buffers.
1752 		 */
1753 		if ((bp->b_flags & B_REUSE) != 0) {
1754 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1755 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1756 			bp->b_flags &= ~B_REUSE;
1757 			BUF_UNLOCK(bp);
1758 			continue;
1759 		}
1760 
1761 		/*
1762 		 * Skip buffers with background writes in progress.
1763 		 */
1764 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1765 			BUF_UNLOCK(bp);
1766 			continue;
1767 		}
1768 
1769 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1770 		    ("buf_recycle: inconsistent queue %d bp %p",
1771 		    bp->b_qindex, bp));
1772 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1773 		    ("getnewbuf: queue domain %d doesn't match request %d",
1774 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1775 		/*
1776 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1777 		 * the scan from this point on.
1778 		 */
1779 		bq_remove(bq, bp);
1780 		BQ_UNLOCK(bq);
1781 
1782 		/*
1783 		 * Requeue the background write buffer with error and
1784 		 * restart the scan.
1785 		 */
1786 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1787 			bqrelse(bp);
1788 			BQ_LOCK(bq);
1789 			nbp = TAILQ_FIRST(&bq->bq_queue);
1790 			continue;
1791 		}
1792 		bp->b_flags |= B_INVAL;
1793 		brelse(bp);
1794 		return (0);
1795 	}
1796 	bd->bd_wanted = 1;
1797 	BQ_UNLOCK(bq);
1798 
1799 	return (ENOBUFS);
1800 }
1801 
1802 /*
1803  *	bremfree:
1804  *
1805  *	Mark the buffer for removal from the appropriate free list.
1806  *
1807  */
1808 void
1809 bremfree(struct buf *bp)
1810 {
1811 
1812 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1813 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1814 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1815 	KASSERT(bp->b_qindex != QUEUE_NONE,
1816 	    ("bremfree: buffer %p not on a queue.", bp));
1817 	BUF_ASSERT_XLOCKED(bp);
1818 
1819 	bp->b_flags |= B_REMFREE;
1820 }
1821 
1822 /*
1823  *	bremfreef:
1824  *
1825  *	Force an immediate removal from a free list.  Used only in nfs when
1826  *	it abuses the b_freelist pointer.
1827  */
1828 void
1829 bremfreef(struct buf *bp)
1830 {
1831 	struct bufqueue *bq;
1832 
1833 	bq = bufqueue_acquire(bp);
1834 	bq_remove(bq, bp);
1835 	BQ_UNLOCK(bq);
1836 }
1837 
1838 static void
1839 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1840 {
1841 
1842 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1843 	TAILQ_INIT(&bq->bq_queue);
1844 	bq->bq_len = 0;
1845 	bq->bq_index = qindex;
1846 	bq->bq_subqueue = subqueue;
1847 }
1848 
1849 static void
1850 bd_init(struct bufdomain *bd)
1851 {
1852 	int domain;
1853 	int i;
1854 
1855 	domain = bd - bdomain;
1856 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1857 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1858 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1859 	for (i = 0; i <= mp_maxid; i++)
1860 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1861 		    "bufq clean subqueue lock");
1862 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1863 }
1864 
1865 /*
1866  *	bq_remove:
1867  *
1868  *	Removes a buffer from the free list, must be called with the
1869  *	correct qlock held.
1870  */
1871 static void
1872 bq_remove(struct bufqueue *bq, struct buf *bp)
1873 {
1874 
1875 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1876 	    bp, bp->b_vp, bp->b_flags);
1877 	KASSERT(bp->b_qindex != QUEUE_NONE,
1878 	    ("bq_remove: buffer %p not on a queue.", bp));
1879 	KASSERT(bufqueue(bp) == bq,
1880 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1881 
1882 	BQ_ASSERT_LOCKED(bq);
1883 	if (bp->b_qindex != QUEUE_EMPTY) {
1884 		BUF_ASSERT_XLOCKED(bp);
1885 	}
1886 	KASSERT(bq->bq_len >= 1,
1887 	    ("queue %d underflow", bp->b_qindex));
1888 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1889 	bq->bq_len--;
1890 	bp->b_qindex = QUEUE_NONE;
1891 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1892 }
1893 
1894 static void
1895 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1896 {
1897 	struct buf *bp;
1898 
1899 	BQ_ASSERT_LOCKED(bq);
1900 	if (bq != bd->bd_cleanq) {
1901 		BD_LOCK(bd);
1902 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1903 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1904 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1905 			    b_freelist);
1906 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1907 		}
1908 		bd->bd_cleanq->bq_len += bq->bq_len;
1909 		bq->bq_len = 0;
1910 	}
1911 	if (bd->bd_wanted) {
1912 		bd->bd_wanted = 0;
1913 		wakeup(&bd->bd_wanted);
1914 	}
1915 	if (bq != bd->bd_cleanq)
1916 		BD_UNLOCK(bd);
1917 }
1918 
1919 static int
1920 bd_flushall(struct bufdomain *bd)
1921 {
1922 	struct bufqueue *bq;
1923 	int flushed;
1924 	int i;
1925 
1926 	if (bd->bd_lim == 0)
1927 		return (0);
1928 	flushed = 0;
1929 	for (i = 0; i <= mp_maxid; i++) {
1930 		bq = &bd->bd_subq[i];
1931 		if (bq->bq_len == 0)
1932 			continue;
1933 		BQ_LOCK(bq);
1934 		bd_flush(bd, bq);
1935 		BQ_UNLOCK(bq);
1936 		flushed++;
1937 	}
1938 
1939 	return (flushed);
1940 }
1941 
1942 static void
1943 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1944 {
1945 	struct bufdomain *bd;
1946 
1947 	if (bp->b_qindex != QUEUE_NONE)
1948 		panic("bq_insert: free buffer %p onto another queue?", bp);
1949 
1950 	bd = bufdomain(bp);
1951 	if (bp->b_flags & B_AGE) {
1952 		/* Place this buf directly on the real queue. */
1953 		if (bq->bq_index == QUEUE_CLEAN)
1954 			bq = bd->bd_cleanq;
1955 		BQ_LOCK(bq);
1956 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
1957 	} else {
1958 		BQ_LOCK(bq);
1959 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1960 	}
1961 	bp->b_flags &= ~(B_AGE | B_REUSE);
1962 	bq->bq_len++;
1963 	bp->b_qindex = bq->bq_index;
1964 	bp->b_subqueue = bq->bq_subqueue;
1965 
1966 	/*
1967 	 * Unlock before we notify so that we don't wakeup a waiter that
1968 	 * fails a trylock on the buf and sleeps again.
1969 	 */
1970 	if (unlock)
1971 		BUF_UNLOCK(bp);
1972 
1973 	if (bp->b_qindex == QUEUE_CLEAN) {
1974 		/*
1975 		 * Flush the per-cpu queue and notify any waiters.
1976 		 */
1977 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
1978 		    bq->bq_len >= bd->bd_lim))
1979 			bd_flush(bd, bq);
1980 	}
1981 	BQ_UNLOCK(bq);
1982 }
1983 
1984 /*
1985  *	bufkva_free:
1986  *
1987  *	Free the kva allocation for a buffer.
1988  *
1989  */
1990 static void
1991 bufkva_free(struct buf *bp)
1992 {
1993 
1994 #ifdef INVARIANTS
1995 	if (bp->b_kvasize == 0) {
1996 		KASSERT(bp->b_kvabase == unmapped_buf &&
1997 		    bp->b_data == unmapped_buf,
1998 		    ("Leaked KVA space on %p", bp));
1999 	} else if (buf_mapped(bp))
2000 		BUF_CHECK_MAPPED(bp);
2001 	else
2002 		BUF_CHECK_UNMAPPED(bp);
2003 #endif
2004 	if (bp->b_kvasize == 0)
2005 		return;
2006 
2007 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2008 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2009 	counter_u64_add(buffreekvacnt, 1);
2010 	bp->b_data = bp->b_kvabase = unmapped_buf;
2011 	bp->b_kvasize = 0;
2012 }
2013 
2014 /*
2015  *	bufkva_alloc:
2016  *
2017  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2018  */
2019 static int
2020 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2021 {
2022 	vm_offset_t addr;
2023 	int error;
2024 
2025 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2026 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2027 
2028 	bufkva_free(bp);
2029 
2030 	addr = 0;
2031 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2032 	if (error != 0) {
2033 		/*
2034 		 * Buffer map is too fragmented.  Request the caller
2035 		 * to defragment the map.
2036 		 */
2037 		return (error);
2038 	}
2039 	bp->b_kvabase = (caddr_t)addr;
2040 	bp->b_kvasize = maxsize;
2041 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2042 	if ((gbflags & GB_UNMAPPED) != 0) {
2043 		bp->b_data = unmapped_buf;
2044 		BUF_CHECK_UNMAPPED(bp);
2045 	} else {
2046 		bp->b_data = bp->b_kvabase;
2047 		BUF_CHECK_MAPPED(bp);
2048 	}
2049 	return (0);
2050 }
2051 
2052 /*
2053  *	bufkva_reclaim:
2054  *
2055  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2056  *	callback that fires to avoid returning failure.
2057  */
2058 static void
2059 bufkva_reclaim(vmem_t *vmem, int flags)
2060 {
2061 	bool done;
2062 	int q;
2063 	int i;
2064 
2065 	done = false;
2066 	for (i = 0; i < 5; i++) {
2067 		for (q = 0; q < buf_domains; q++)
2068 			if (buf_recycle(&bdomain[q], true) != 0)
2069 				done = true;
2070 		if (done)
2071 			break;
2072 	}
2073 	return;
2074 }
2075 
2076 /*
2077  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2078  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2079  * the buffer is valid and we do not have to do anything.
2080  */
2081 static void
2082 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2083     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2084 {
2085 	struct buf *rabp;
2086 	int i;
2087 
2088 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2089 		if (inmem(vp, *rablkno))
2090 			continue;
2091 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2092 		if ((rabp->b_flags & B_CACHE) != 0) {
2093 			brelse(rabp);
2094 			continue;
2095 		}
2096 		if (!TD_IS_IDLETHREAD(curthread)) {
2097 #ifdef RACCT
2098 			if (racct_enable) {
2099 				PROC_LOCK(curproc);
2100 				racct_add_buf(curproc, rabp, 0);
2101 				PROC_UNLOCK(curproc);
2102 			}
2103 #endif /* RACCT */
2104 			curthread->td_ru.ru_inblock++;
2105 		}
2106 		rabp->b_flags |= B_ASYNC;
2107 		rabp->b_flags &= ~B_INVAL;
2108 		if ((flags & GB_CKHASH) != 0) {
2109 			rabp->b_flags |= B_CKHASH;
2110 			rabp->b_ckhashcalc = ckhashfunc;
2111 		}
2112 		rabp->b_ioflags &= ~BIO_ERROR;
2113 		rabp->b_iocmd = BIO_READ;
2114 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2115 			rabp->b_rcred = crhold(cred);
2116 		vfs_busy_pages(rabp, 0);
2117 		BUF_KERNPROC(rabp);
2118 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2119 		bstrategy(rabp);
2120 	}
2121 }
2122 
2123 /*
2124  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2125  *
2126  * Get a buffer with the specified data.  Look in the cache first.  We
2127  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2128  * is set, the buffer is valid and we do not have to do anything, see
2129  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2130  *
2131  * Always return a NULL buffer pointer (in bpp) when returning an error.
2132  */
2133 int
2134 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
2135     int *rabsize, int cnt, struct ucred *cred, int flags,
2136     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2137 {
2138 	struct buf *bp;
2139 	int readwait, rv;
2140 
2141 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2142 	/*
2143 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
2144 	 */
2145 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
2146 	if (bp == NULL)
2147 		return (EBUSY);
2148 
2149 	/*
2150 	 * If not found in cache, do some I/O
2151 	 */
2152 	readwait = 0;
2153 	if ((bp->b_flags & B_CACHE) == 0) {
2154 		if (!TD_IS_IDLETHREAD(curthread)) {
2155 #ifdef RACCT
2156 			if (racct_enable) {
2157 				PROC_LOCK(curproc);
2158 				racct_add_buf(curproc, bp, 0);
2159 				PROC_UNLOCK(curproc);
2160 			}
2161 #endif /* RACCT */
2162 			curthread->td_ru.ru_inblock++;
2163 		}
2164 		bp->b_iocmd = BIO_READ;
2165 		bp->b_flags &= ~B_INVAL;
2166 		if ((flags & GB_CKHASH) != 0) {
2167 			bp->b_flags |= B_CKHASH;
2168 			bp->b_ckhashcalc = ckhashfunc;
2169 		}
2170 		bp->b_ioflags &= ~BIO_ERROR;
2171 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2172 			bp->b_rcred = crhold(cred);
2173 		vfs_busy_pages(bp, 0);
2174 		bp->b_iooffset = dbtob(bp->b_blkno);
2175 		bstrategy(bp);
2176 		++readwait;
2177 	}
2178 
2179 	/*
2180 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2181 	 */
2182 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2183 
2184 	rv = 0;
2185 	if (readwait) {
2186 		rv = bufwait(bp);
2187 		if (rv != 0) {
2188 			brelse(bp);
2189 			*bpp = NULL;
2190 		}
2191 	}
2192 	return (rv);
2193 }
2194 
2195 /*
2196  * Write, release buffer on completion.  (Done by iodone
2197  * if async).  Do not bother writing anything if the buffer
2198  * is invalid.
2199  *
2200  * Note that we set B_CACHE here, indicating that buffer is
2201  * fully valid and thus cacheable.  This is true even of NFS
2202  * now so we set it generally.  This could be set either here
2203  * or in biodone() since the I/O is synchronous.  We put it
2204  * here.
2205  */
2206 int
2207 bufwrite(struct buf *bp)
2208 {
2209 	int oldflags;
2210 	struct vnode *vp;
2211 	long space;
2212 	int vp_md;
2213 
2214 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2215 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2216 		bp->b_flags |= B_INVAL | B_RELBUF;
2217 		bp->b_flags &= ~B_CACHE;
2218 		brelse(bp);
2219 		return (ENXIO);
2220 	}
2221 	if (bp->b_flags & B_INVAL) {
2222 		brelse(bp);
2223 		return (0);
2224 	}
2225 
2226 	if (bp->b_flags & B_BARRIER)
2227 		barrierwrites++;
2228 
2229 	oldflags = bp->b_flags;
2230 
2231 	BUF_ASSERT_HELD(bp);
2232 
2233 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2234 	    ("FFS background buffer should not get here %p", bp));
2235 
2236 	vp = bp->b_vp;
2237 	if (vp)
2238 		vp_md = vp->v_vflag & VV_MD;
2239 	else
2240 		vp_md = 0;
2241 
2242 	/*
2243 	 * Mark the buffer clean.  Increment the bufobj write count
2244 	 * before bundirty() call, to prevent other thread from seeing
2245 	 * empty dirty list and zero counter for writes in progress,
2246 	 * falsely indicating that the bufobj is clean.
2247 	 */
2248 	bufobj_wref(bp->b_bufobj);
2249 	bundirty(bp);
2250 
2251 	bp->b_flags &= ~B_DONE;
2252 	bp->b_ioflags &= ~BIO_ERROR;
2253 	bp->b_flags |= B_CACHE;
2254 	bp->b_iocmd = BIO_WRITE;
2255 
2256 	vfs_busy_pages(bp, 1);
2257 
2258 	/*
2259 	 * Normal bwrites pipeline writes
2260 	 */
2261 	bp->b_runningbufspace = bp->b_bufsize;
2262 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2263 
2264 	if (!TD_IS_IDLETHREAD(curthread)) {
2265 #ifdef RACCT
2266 		if (racct_enable) {
2267 			PROC_LOCK(curproc);
2268 			racct_add_buf(curproc, bp, 1);
2269 			PROC_UNLOCK(curproc);
2270 		}
2271 #endif /* RACCT */
2272 		curthread->td_ru.ru_oublock++;
2273 	}
2274 	if (oldflags & B_ASYNC)
2275 		BUF_KERNPROC(bp);
2276 	bp->b_iooffset = dbtob(bp->b_blkno);
2277 	buf_track(bp, __func__);
2278 	bstrategy(bp);
2279 
2280 	if ((oldflags & B_ASYNC) == 0) {
2281 		int rtval = bufwait(bp);
2282 		brelse(bp);
2283 		return (rtval);
2284 	} else if (space > hirunningspace) {
2285 		/*
2286 		 * don't allow the async write to saturate the I/O
2287 		 * system.  We will not deadlock here because
2288 		 * we are blocking waiting for I/O that is already in-progress
2289 		 * to complete. We do not block here if it is the update
2290 		 * or syncer daemon trying to clean up as that can lead
2291 		 * to deadlock.
2292 		 */
2293 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2294 			waitrunningbufspace();
2295 	}
2296 
2297 	return (0);
2298 }
2299 
2300 void
2301 bufbdflush(struct bufobj *bo, struct buf *bp)
2302 {
2303 	struct buf *nbp;
2304 
2305 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
2306 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2307 		altbufferflushes++;
2308 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
2309 		BO_LOCK(bo);
2310 		/*
2311 		 * Try to find a buffer to flush.
2312 		 */
2313 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2314 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2315 			    BUF_LOCK(nbp,
2316 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2317 				continue;
2318 			if (bp == nbp)
2319 				panic("bdwrite: found ourselves");
2320 			BO_UNLOCK(bo);
2321 			/* Don't countdeps with the bo lock held. */
2322 			if (buf_countdeps(nbp, 0)) {
2323 				BO_LOCK(bo);
2324 				BUF_UNLOCK(nbp);
2325 				continue;
2326 			}
2327 			if (nbp->b_flags & B_CLUSTEROK) {
2328 				vfs_bio_awrite(nbp);
2329 			} else {
2330 				bremfree(nbp);
2331 				bawrite(nbp);
2332 			}
2333 			dirtybufferflushes++;
2334 			break;
2335 		}
2336 		if (nbp == NULL)
2337 			BO_UNLOCK(bo);
2338 	}
2339 }
2340 
2341 /*
2342  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2343  * anything if the buffer is marked invalid.
2344  *
2345  * Note that since the buffer must be completely valid, we can safely
2346  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2347  * biodone() in order to prevent getblk from writing the buffer
2348  * out synchronously.
2349  */
2350 void
2351 bdwrite(struct buf *bp)
2352 {
2353 	struct thread *td = curthread;
2354 	struct vnode *vp;
2355 	struct bufobj *bo;
2356 
2357 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2358 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2359 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2360 	    ("Barrier request in delayed write %p", bp));
2361 	BUF_ASSERT_HELD(bp);
2362 
2363 	if (bp->b_flags & B_INVAL) {
2364 		brelse(bp);
2365 		return;
2366 	}
2367 
2368 	/*
2369 	 * If we have too many dirty buffers, don't create any more.
2370 	 * If we are wildly over our limit, then force a complete
2371 	 * cleanup. Otherwise, just keep the situation from getting
2372 	 * out of control. Note that we have to avoid a recursive
2373 	 * disaster and not try to clean up after our own cleanup!
2374 	 */
2375 	vp = bp->b_vp;
2376 	bo = bp->b_bufobj;
2377 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2378 		td->td_pflags |= TDP_INBDFLUSH;
2379 		BO_BDFLUSH(bo, bp);
2380 		td->td_pflags &= ~TDP_INBDFLUSH;
2381 	} else
2382 		recursiveflushes++;
2383 
2384 	bdirty(bp);
2385 	/*
2386 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2387 	 * true even of NFS now.
2388 	 */
2389 	bp->b_flags |= B_CACHE;
2390 
2391 	/*
2392 	 * This bmap keeps the system from needing to do the bmap later,
2393 	 * perhaps when the system is attempting to do a sync.  Since it
2394 	 * is likely that the indirect block -- or whatever other datastructure
2395 	 * that the filesystem needs is still in memory now, it is a good
2396 	 * thing to do this.  Note also, that if the pageout daemon is
2397 	 * requesting a sync -- there might not be enough memory to do
2398 	 * the bmap then...  So, this is important to do.
2399 	 */
2400 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2401 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2402 	}
2403 
2404 	buf_track(bp, __func__);
2405 
2406 	/*
2407 	 * Set the *dirty* buffer range based upon the VM system dirty
2408 	 * pages.
2409 	 *
2410 	 * Mark the buffer pages as clean.  We need to do this here to
2411 	 * satisfy the vnode_pager and the pageout daemon, so that it
2412 	 * thinks that the pages have been "cleaned".  Note that since
2413 	 * the pages are in a delayed write buffer -- the VFS layer
2414 	 * "will" see that the pages get written out on the next sync,
2415 	 * or perhaps the cluster will be completed.
2416 	 */
2417 	vfs_clean_pages_dirty_buf(bp);
2418 	bqrelse(bp);
2419 
2420 	/*
2421 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2422 	 * due to the softdep code.
2423 	 */
2424 }
2425 
2426 /*
2427  *	bdirty:
2428  *
2429  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2430  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2431  *	itself to properly update it in the dirty/clean lists.  We mark it
2432  *	B_DONE to ensure that any asynchronization of the buffer properly
2433  *	clears B_DONE ( else a panic will occur later ).
2434  *
2435  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2436  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2437  *	should only be called if the buffer is known-good.
2438  *
2439  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2440  *	count.
2441  *
2442  *	The buffer must be on QUEUE_NONE.
2443  */
2444 void
2445 bdirty(struct buf *bp)
2446 {
2447 
2448 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2449 	    bp, bp->b_vp, bp->b_flags);
2450 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2451 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2452 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2453 	BUF_ASSERT_HELD(bp);
2454 	bp->b_flags &= ~(B_RELBUF);
2455 	bp->b_iocmd = BIO_WRITE;
2456 
2457 	if ((bp->b_flags & B_DELWRI) == 0) {
2458 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2459 		reassignbuf(bp);
2460 		bdirtyadd(bp);
2461 	}
2462 }
2463 
2464 /*
2465  *	bundirty:
2466  *
2467  *	Clear B_DELWRI for buffer.
2468  *
2469  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2470  *	count.
2471  *
2472  *	The buffer must be on QUEUE_NONE.
2473  */
2474 
2475 void
2476 bundirty(struct buf *bp)
2477 {
2478 
2479 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2480 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2481 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2482 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2483 	BUF_ASSERT_HELD(bp);
2484 
2485 	if (bp->b_flags & B_DELWRI) {
2486 		bp->b_flags &= ~B_DELWRI;
2487 		reassignbuf(bp);
2488 		bdirtysub(bp);
2489 	}
2490 	/*
2491 	 * Since it is now being written, we can clear its deferred write flag.
2492 	 */
2493 	bp->b_flags &= ~B_DEFERRED;
2494 }
2495 
2496 /*
2497  *	bawrite:
2498  *
2499  *	Asynchronous write.  Start output on a buffer, but do not wait for
2500  *	it to complete.  The buffer is released when the output completes.
2501  *
2502  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2503  *	B_INVAL buffers.  Not us.
2504  */
2505 void
2506 bawrite(struct buf *bp)
2507 {
2508 
2509 	bp->b_flags |= B_ASYNC;
2510 	(void) bwrite(bp);
2511 }
2512 
2513 /*
2514  *	babarrierwrite:
2515  *
2516  *	Asynchronous barrier write.  Start output on a buffer, but do not
2517  *	wait for it to complete.  Place a write barrier after this write so
2518  *	that this buffer and all buffers written before it are committed to
2519  *	the disk before any buffers written after this write are committed
2520  *	to the disk.  The buffer is released when the output completes.
2521  */
2522 void
2523 babarrierwrite(struct buf *bp)
2524 {
2525 
2526 	bp->b_flags |= B_ASYNC | B_BARRIER;
2527 	(void) bwrite(bp);
2528 }
2529 
2530 /*
2531  *	bbarrierwrite:
2532  *
2533  *	Synchronous barrier write.  Start output on a buffer and wait for
2534  *	it to complete.  Place a write barrier after this write so that
2535  *	this buffer and all buffers written before it are committed to
2536  *	the disk before any buffers written after this write are committed
2537  *	to the disk.  The buffer is released when the output completes.
2538  */
2539 int
2540 bbarrierwrite(struct buf *bp)
2541 {
2542 
2543 	bp->b_flags |= B_BARRIER;
2544 	return (bwrite(bp));
2545 }
2546 
2547 /*
2548  *	bwillwrite:
2549  *
2550  *	Called prior to the locking of any vnodes when we are expecting to
2551  *	write.  We do not want to starve the buffer cache with too many
2552  *	dirty buffers so we block here.  By blocking prior to the locking
2553  *	of any vnodes we attempt to avoid the situation where a locked vnode
2554  *	prevents the various system daemons from flushing related buffers.
2555  */
2556 void
2557 bwillwrite(void)
2558 {
2559 
2560 	if (buf_dirty_count_severe()) {
2561 		mtx_lock(&bdirtylock);
2562 		while (buf_dirty_count_severe()) {
2563 			bdirtywait = 1;
2564 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2565 			    "flswai", 0);
2566 		}
2567 		mtx_unlock(&bdirtylock);
2568 	}
2569 }
2570 
2571 /*
2572  * Return true if we have too many dirty buffers.
2573  */
2574 int
2575 buf_dirty_count_severe(void)
2576 {
2577 
2578 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2579 }
2580 
2581 /*
2582  *	brelse:
2583  *
2584  *	Release a busy buffer and, if requested, free its resources.  The
2585  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2586  *	to be accessed later as a cache entity or reused for other purposes.
2587  */
2588 void
2589 brelse(struct buf *bp)
2590 {
2591 	struct mount *v_mnt;
2592 	int qindex;
2593 
2594 	/*
2595 	 * Many functions erroneously call brelse with a NULL bp under rare
2596 	 * error conditions. Simply return when called with a NULL bp.
2597 	 */
2598 	if (bp == NULL)
2599 		return;
2600 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2601 	    bp, bp->b_vp, bp->b_flags);
2602 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2603 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2604 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2605 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2606 
2607 	if (BUF_LOCKRECURSED(bp)) {
2608 		/*
2609 		 * Do not process, in particular, do not handle the
2610 		 * B_INVAL/B_RELBUF and do not release to free list.
2611 		 */
2612 		BUF_UNLOCK(bp);
2613 		return;
2614 	}
2615 
2616 	if (bp->b_flags & B_MANAGED) {
2617 		bqrelse(bp);
2618 		return;
2619 	}
2620 
2621 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2622 		BO_LOCK(bp->b_bufobj);
2623 		bp->b_vflags &= ~BV_BKGRDERR;
2624 		BO_UNLOCK(bp->b_bufobj);
2625 		bdirty(bp);
2626 	}
2627 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2628 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2629 	    !(bp->b_flags & B_INVAL)) {
2630 		/*
2631 		 * Failed write, redirty.  All errors except ENXIO (which
2632 		 * means the device is gone) are treated as being
2633 		 * transient.
2634 		 *
2635 		 * XXX Treating EIO as transient is not correct; the
2636 		 * contract with the local storage device drivers is that
2637 		 * they will only return EIO once the I/O is no longer
2638 		 * retriable.  Network I/O also respects this through the
2639 		 * guarantees of TCP and/or the internal retries of NFS.
2640 		 * ENOMEM might be transient, but we also have no way of
2641 		 * knowing when its ok to retry/reschedule.  In general,
2642 		 * this entire case should be made obsolete through better
2643 		 * error handling/recovery and resource scheduling.
2644 		 *
2645 		 * Do this also for buffers that failed with ENXIO, but have
2646 		 * non-empty dependencies - the soft updates code might need
2647 		 * to access the buffer to untangle them.
2648 		 *
2649 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2650 		 */
2651 		bp->b_ioflags &= ~BIO_ERROR;
2652 		bdirty(bp);
2653 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2654 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2655 		/*
2656 		 * Either a failed read I/O, or we were asked to free or not
2657 		 * cache the buffer, or we failed to write to a device that's
2658 		 * no longer present.
2659 		 */
2660 		bp->b_flags |= B_INVAL;
2661 		if (!LIST_EMPTY(&bp->b_dep))
2662 			buf_deallocate(bp);
2663 		if (bp->b_flags & B_DELWRI)
2664 			bdirtysub(bp);
2665 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2666 		if ((bp->b_flags & B_VMIO) == 0) {
2667 			allocbuf(bp, 0);
2668 			if (bp->b_vp)
2669 				brelvp(bp);
2670 		}
2671 	}
2672 
2673 	/*
2674 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2675 	 * is called with B_DELWRI set, the underlying pages may wind up
2676 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2677 	 * because pages associated with a B_DELWRI bp are marked clean.
2678 	 *
2679 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2680 	 * if B_DELWRI is set.
2681 	 */
2682 	if (bp->b_flags & B_DELWRI)
2683 		bp->b_flags &= ~B_RELBUF;
2684 
2685 	/*
2686 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2687 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2688 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2689 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2690 	 *
2691 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2692 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2693 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2694 	 *
2695 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2696 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2697 	 * the commit state and we cannot afford to lose the buffer. If the
2698 	 * buffer has a background write in progress, we need to keep it
2699 	 * around to prevent it from being reconstituted and starting a second
2700 	 * background write.
2701 	 */
2702 
2703 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2704 
2705 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2706 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2707 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2708 	    vn_isdisk(bp->b_vp, NULL) || (bp->b_flags & B_DELWRI) == 0)) {
2709 		vfs_vmio_invalidate(bp);
2710 		allocbuf(bp, 0);
2711 	}
2712 
2713 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2714 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2715 		allocbuf(bp, 0);
2716 		bp->b_flags &= ~B_NOREUSE;
2717 		if (bp->b_vp != NULL)
2718 			brelvp(bp);
2719 	}
2720 
2721 	/*
2722 	 * If the buffer has junk contents signal it and eventually
2723 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2724 	 * doesn't find it.
2725 	 */
2726 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2727 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2728 		bp->b_flags |= B_INVAL;
2729 	if (bp->b_flags & B_INVAL) {
2730 		if (bp->b_flags & B_DELWRI)
2731 			bundirty(bp);
2732 		if (bp->b_vp)
2733 			brelvp(bp);
2734 	}
2735 
2736 	buf_track(bp, __func__);
2737 
2738 	/* buffers with no memory */
2739 	if (bp->b_bufsize == 0) {
2740 		buf_free(bp);
2741 		return;
2742 	}
2743 	/* buffers with junk contents */
2744 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2745 	    (bp->b_ioflags & BIO_ERROR)) {
2746 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2747 		if (bp->b_vflags & BV_BKGRDINPROG)
2748 			panic("losing buffer 2");
2749 		qindex = QUEUE_CLEAN;
2750 		bp->b_flags |= B_AGE;
2751 	/* remaining buffers */
2752 	} else if (bp->b_flags & B_DELWRI)
2753 		qindex = QUEUE_DIRTY;
2754 	else
2755 		qindex = QUEUE_CLEAN;
2756 
2757 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2758 		panic("brelse: not dirty");
2759 
2760 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2761 	/* binsfree unlocks bp. */
2762 	binsfree(bp, qindex);
2763 }
2764 
2765 /*
2766  * Release a buffer back to the appropriate queue but do not try to free
2767  * it.  The buffer is expected to be used again soon.
2768  *
2769  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2770  * biodone() to requeue an async I/O on completion.  It is also used when
2771  * known good buffers need to be requeued but we think we may need the data
2772  * again soon.
2773  *
2774  * XXX we should be able to leave the B_RELBUF hint set on completion.
2775  */
2776 void
2777 bqrelse(struct buf *bp)
2778 {
2779 	int qindex;
2780 
2781 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2782 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2783 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2784 
2785 	qindex = QUEUE_NONE;
2786 	if (BUF_LOCKRECURSED(bp)) {
2787 		/* do not release to free list */
2788 		BUF_UNLOCK(bp);
2789 		return;
2790 	}
2791 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2792 
2793 	if (bp->b_flags & B_MANAGED) {
2794 		if (bp->b_flags & B_REMFREE)
2795 			bremfreef(bp);
2796 		goto out;
2797 	}
2798 
2799 	/* buffers with stale but valid contents */
2800 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2801 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2802 		BO_LOCK(bp->b_bufobj);
2803 		bp->b_vflags &= ~BV_BKGRDERR;
2804 		BO_UNLOCK(bp->b_bufobj);
2805 		qindex = QUEUE_DIRTY;
2806 	} else {
2807 		if ((bp->b_flags & B_DELWRI) == 0 &&
2808 		    (bp->b_xflags & BX_VNDIRTY))
2809 			panic("bqrelse: not dirty");
2810 		if ((bp->b_flags & B_NOREUSE) != 0) {
2811 			brelse(bp);
2812 			return;
2813 		}
2814 		qindex = QUEUE_CLEAN;
2815 	}
2816 	buf_track(bp, __func__);
2817 	/* binsfree unlocks bp. */
2818 	binsfree(bp, qindex);
2819 	return;
2820 
2821 out:
2822 	buf_track(bp, __func__);
2823 	/* unlock */
2824 	BUF_UNLOCK(bp);
2825 }
2826 
2827 /*
2828  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2829  * restore bogus pages.
2830  */
2831 static void
2832 vfs_vmio_iodone(struct buf *bp)
2833 {
2834 	vm_ooffset_t foff;
2835 	vm_page_t m;
2836 	vm_object_t obj;
2837 	struct vnode *vp;
2838 	int i, iosize, resid;
2839 	bool bogus;
2840 
2841 	obj = bp->b_bufobj->bo_object;
2842 	KASSERT(obj->paging_in_progress >= bp->b_npages,
2843 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2844 	    obj->paging_in_progress, bp->b_npages));
2845 
2846 	vp = bp->b_vp;
2847 	KASSERT(vp->v_holdcnt > 0,
2848 	    ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
2849 	KASSERT(vp->v_object != NULL,
2850 	    ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
2851 
2852 	foff = bp->b_offset;
2853 	KASSERT(bp->b_offset != NOOFFSET,
2854 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2855 
2856 	bogus = false;
2857 	iosize = bp->b_bcount - bp->b_resid;
2858 	VM_OBJECT_WLOCK(obj);
2859 	for (i = 0; i < bp->b_npages; i++) {
2860 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2861 		if (resid > iosize)
2862 			resid = iosize;
2863 
2864 		/*
2865 		 * cleanup bogus pages, restoring the originals
2866 		 */
2867 		m = bp->b_pages[i];
2868 		if (m == bogus_page) {
2869 			bogus = true;
2870 			m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2871 			if (m == NULL)
2872 				panic("biodone: page disappeared!");
2873 			bp->b_pages[i] = m;
2874 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2875 			/*
2876 			 * In the write case, the valid and clean bits are
2877 			 * already changed correctly ( see bdwrite() ), so we
2878 			 * only need to do this here in the read case.
2879 			 */
2880 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2881 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2882 			    "has unexpected dirty bits", m));
2883 			vfs_page_set_valid(bp, foff, m);
2884 		}
2885 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2886 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2887 		    (intmax_t)foff, (uintmax_t)m->pindex));
2888 
2889 		vm_page_sunbusy(m);
2890 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2891 		iosize -= resid;
2892 	}
2893 	vm_object_pip_wakeupn(obj, bp->b_npages);
2894 	VM_OBJECT_WUNLOCK(obj);
2895 	if (bogus && buf_mapped(bp)) {
2896 		BUF_CHECK_MAPPED(bp);
2897 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2898 		    bp->b_pages, bp->b_npages);
2899 	}
2900 }
2901 
2902 /*
2903  * Unwire a page held by a buf and either free it or update the page queues to
2904  * reflect its recent use.
2905  */
2906 static void
2907 vfs_vmio_unwire(struct buf *bp, vm_page_t m)
2908 {
2909 	bool freed;
2910 
2911 	vm_page_lock(m);
2912 	if (vm_page_unwire_noq(m)) {
2913 		if ((bp->b_flags & B_DIRECT) != 0)
2914 			freed = vm_page_try_to_free(m);
2915 		else
2916 			freed = false;
2917 		if (!freed) {
2918 			/*
2919 			 * Use a racy check of the valid bits to determine
2920 			 * whether we can accelerate reclamation of the page.
2921 			 * The valid bits will be stable unless the page is
2922 			 * being mapped or is referenced by multiple buffers,
2923 			 * and in those cases we expect races to be rare.  At
2924 			 * worst we will either accelerate reclamation of a
2925 			 * valid page and violate LRU, or unnecessarily defer
2926 			 * reclamation of an invalid page.
2927 			 *
2928 			 * The B_NOREUSE flag marks data that is not expected to
2929 			 * be reused, so accelerate reclamation in that case
2930 			 * too.  Otherwise, maintain LRU.
2931 			 */
2932 			if (m->valid == 0 || (bp->b_flags & B_NOREUSE) != 0)
2933 				vm_page_deactivate_noreuse(m);
2934 			else if (m->queue == PQ_ACTIVE)
2935 				vm_page_reference(m);
2936 			else
2937 				vm_page_deactivate(m);
2938 		}
2939 	}
2940 	vm_page_unlock(m);
2941 }
2942 
2943 /*
2944  * Perform page invalidation when a buffer is released.  The fully invalid
2945  * pages will be reclaimed later in vfs_vmio_truncate().
2946  */
2947 static void
2948 vfs_vmio_invalidate(struct buf *bp)
2949 {
2950 	vm_object_t obj;
2951 	vm_page_t m;
2952 	int i, resid, poffset, presid;
2953 
2954 	if (buf_mapped(bp)) {
2955 		BUF_CHECK_MAPPED(bp);
2956 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2957 	} else
2958 		BUF_CHECK_UNMAPPED(bp);
2959 	/*
2960 	 * Get the base offset and length of the buffer.  Note that
2961 	 * in the VMIO case if the buffer block size is not
2962 	 * page-aligned then b_data pointer may not be page-aligned.
2963 	 * But our b_pages[] array *IS* page aligned.
2964 	 *
2965 	 * block sizes less then DEV_BSIZE (usually 512) are not
2966 	 * supported due to the page granularity bits (m->valid,
2967 	 * m->dirty, etc...).
2968 	 *
2969 	 * See man buf(9) for more information
2970 	 */
2971 	obj = bp->b_bufobj->bo_object;
2972 	resid = bp->b_bufsize;
2973 	poffset = bp->b_offset & PAGE_MASK;
2974 	VM_OBJECT_WLOCK(obj);
2975 	for (i = 0; i < bp->b_npages; i++) {
2976 		m = bp->b_pages[i];
2977 		if (m == bogus_page)
2978 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
2979 		bp->b_pages[i] = NULL;
2980 
2981 		presid = resid > (PAGE_SIZE - poffset) ?
2982 		    (PAGE_SIZE - poffset) : resid;
2983 		KASSERT(presid >= 0, ("brelse: extra page"));
2984 		while (vm_page_xbusied(m)) {
2985 			vm_page_lock(m);
2986 			VM_OBJECT_WUNLOCK(obj);
2987 			vm_page_busy_sleep(m, "mbncsh", true);
2988 			VM_OBJECT_WLOCK(obj);
2989 		}
2990 		if (pmap_page_wired_mappings(m) == 0)
2991 			vm_page_set_invalid(m, poffset, presid);
2992 		vfs_vmio_unwire(bp, m);
2993 		resid -= presid;
2994 		poffset = 0;
2995 	}
2996 	VM_OBJECT_WUNLOCK(obj);
2997 	bp->b_npages = 0;
2998 }
2999 
3000 /*
3001  * Page-granular truncation of an existing VMIO buffer.
3002  */
3003 static void
3004 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3005 {
3006 	vm_object_t obj;
3007 	vm_page_t m;
3008 	int i;
3009 
3010 	if (bp->b_npages == desiredpages)
3011 		return;
3012 
3013 	if (buf_mapped(bp)) {
3014 		BUF_CHECK_MAPPED(bp);
3015 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3016 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3017 	} else
3018 		BUF_CHECK_UNMAPPED(bp);
3019 
3020 	/*
3021 	 * The object lock is needed only if we will attempt to free pages.
3022 	 */
3023 	obj = (bp->b_flags & B_DIRECT) != 0 ? bp->b_bufobj->bo_object : NULL;
3024 	if (obj != NULL)
3025 		VM_OBJECT_WLOCK(obj);
3026 	for (i = desiredpages; i < bp->b_npages; i++) {
3027 		m = bp->b_pages[i];
3028 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3029 		bp->b_pages[i] = NULL;
3030 		vfs_vmio_unwire(bp, m);
3031 	}
3032 	if (obj != NULL)
3033 		VM_OBJECT_WUNLOCK(obj);
3034 	bp->b_npages = desiredpages;
3035 }
3036 
3037 /*
3038  * Byte granular extension of VMIO buffers.
3039  */
3040 static void
3041 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3042 {
3043 	/*
3044 	 * We are growing the buffer, possibly in a
3045 	 * byte-granular fashion.
3046 	 */
3047 	vm_object_t obj;
3048 	vm_offset_t toff;
3049 	vm_offset_t tinc;
3050 	vm_page_t m;
3051 
3052 	/*
3053 	 * Step 1, bring in the VM pages from the object, allocating
3054 	 * them if necessary.  We must clear B_CACHE if these pages
3055 	 * are not valid for the range covered by the buffer.
3056 	 */
3057 	obj = bp->b_bufobj->bo_object;
3058 	VM_OBJECT_WLOCK(obj);
3059 	if (bp->b_npages < desiredpages) {
3060 		/*
3061 		 * We must allocate system pages since blocking
3062 		 * here could interfere with paging I/O, no
3063 		 * matter which process we are.
3064 		 *
3065 		 * Only exclusive busy can be tested here.
3066 		 * Blocking on shared busy might lead to
3067 		 * deadlocks once allocbuf() is called after
3068 		 * pages are vfs_busy_pages().
3069 		 */
3070 		(void)vm_page_grab_pages(obj,
3071 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3072 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3073 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3074 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3075 		bp->b_npages = desiredpages;
3076 	}
3077 
3078 	/*
3079 	 * Step 2.  We've loaded the pages into the buffer,
3080 	 * we have to figure out if we can still have B_CACHE
3081 	 * set.  Note that B_CACHE is set according to the
3082 	 * byte-granular range ( bcount and size ), not the
3083 	 * aligned range ( newbsize ).
3084 	 *
3085 	 * The VM test is against m->valid, which is DEV_BSIZE
3086 	 * aligned.  Needless to say, the validity of the data
3087 	 * needs to also be DEV_BSIZE aligned.  Note that this
3088 	 * fails with NFS if the server or some other client
3089 	 * extends the file's EOF.  If our buffer is resized,
3090 	 * B_CACHE may remain set! XXX
3091 	 */
3092 	toff = bp->b_bcount;
3093 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3094 	while ((bp->b_flags & B_CACHE) && toff < size) {
3095 		vm_pindex_t pi;
3096 
3097 		if (tinc > (size - toff))
3098 			tinc = size - toff;
3099 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3100 		m = bp->b_pages[pi];
3101 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3102 		toff += tinc;
3103 		tinc = PAGE_SIZE;
3104 	}
3105 	VM_OBJECT_WUNLOCK(obj);
3106 
3107 	/*
3108 	 * Step 3, fixup the KVA pmap.
3109 	 */
3110 	if (buf_mapped(bp))
3111 		bpmap_qenter(bp);
3112 	else
3113 		BUF_CHECK_UNMAPPED(bp);
3114 }
3115 
3116 /*
3117  * Check to see if a block at a particular lbn is available for a clustered
3118  * write.
3119  */
3120 static int
3121 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3122 {
3123 	struct buf *bpa;
3124 	int match;
3125 
3126 	match = 0;
3127 
3128 	/* If the buf isn't in core skip it */
3129 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3130 		return (0);
3131 
3132 	/* If the buf is busy we don't want to wait for it */
3133 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3134 		return (0);
3135 
3136 	/* Only cluster with valid clusterable delayed write buffers */
3137 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3138 	    (B_DELWRI | B_CLUSTEROK))
3139 		goto done;
3140 
3141 	if (bpa->b_bufsize != size)
3142 		goto done;
3143 
3144 	/*
3145 	 * Check to see if it is in the expected place on disk and that the
3146 	 * block has been mapped.
3147 	 */
3148 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3149 		match = 1;
3150 done:
3151 	BUF_UNLOCK(bpa);
3152 	return (match);
3153 }
3154 
3155 /*
3156  *	vfs_bio_awrite:
3157  *
3158  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3159  *	This is much better then the old way of writing only one buffer at
3160  *	a time.  Note that we may not be presented with the buffers in the
3161  *	correct order, so we search for the cluster in both directions.
3162  */
3163 int
3164 vfs_bio_awrite(struct buf *bp)
3165 {
3166 	struct bufobj *bo;
3167 	int i;
3168 	int j;
3169 	daddr_t lblkno = bp->b_lblkno;
3170 	struct vnode *vp = bp->b_vp;
3171 	int ncl;
3172 	int nwritten;
3173 	int size;
3174 	int maxcl;
3175 	int gbflags;
3176 
3177 	bo = &vp->v_bufobj;
3178 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3179 	/*
3180 	 * right now we support clustered writing only to regular files.  If
3181 	 * we find a clusterable block we could be in the middle of a cluster
3182 	 * rather then at the beginning.
3183 	 */
3184 	if ((vp->v_type == VREG) &&
3185 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3186 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3187 
3188 		size = vp->v_mount->mnt_stat.f_iosize;
3189 		maxcl = MAXPHYS / size;
3190 
3191 		BO_RLOCK(bo);
3192 		for (i = 1; i < maxcl; i++)
3193 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3194 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3195 				break;
3196 
3197 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3198 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3199 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3200 				break;
3201 		BO_RUNLOCK(bo);
3202 		--j;
3203 		ncl = i + j;
3204 		/*
3205 		 * this is a possible cluster write
3206 		 */
3207 		if (ncl != 1) {
3208 			BUF_UNLOCK(bp);
3209 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3210 			    gbflags);
3211 			return (nwritten);
3212 		}
3213 	}
3214 	bremfree(bp);
3215 	bp->b_flags |= B_ASYNC;
3216 	/*
3217 	 * default (old) behavior, writing out only one block
3218 	 *
3219 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3220 	 */
3221 	nwritten = bp->b_bufsize;
3222 	(void) bwrite(bp);
3223 
3224 	return (nwritten);
3225 }
3226 
3227 /*
3228  *	getnewbuf_kva:
3229  *
3230  *	Allocate KVA for an empty buf header according to gbflags.
3231  */
3232 static int
3233 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3234 {
3235 
3236 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3237 		/*
3238 		 * In order to keep fragmentation sane we only allocate kva
3239 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3240 		 */
3241 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3242 
3243 		if (maxsize != bp->b_kvasize &&
3244 		    bufkva_alloc(bp, maxsize, gbflags))
3245 			return (ENOSPC);
3246 	}
3247 	return (0);
3248 }
3249 
3250 /*
3251  *	getnewbuf:
3252  *
3253  *	Find and initialize a new buffer header, freeing up existing buffers
3254  *	in the bufqueues as necessary.  The new buffer is returned locked.
3255  *
3256  *	We block if:
3257  *		We have insufficient buffer headers
3258  *		We have insufficient buffer space
3259  *		buffer_arena is too fragmented ( space reservation fails )
3260  *		If we have to flush dirty buffers ( but we try to avoid this )
3261  *
3262  *	The caller is responsible for releasing the reserved bufspace after
3263  *	allocbuf() is called.
3264  */
3265 static struct buf *
3266 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3267 {
3268 	struct bufdomain *bd;
3269 	struct buf *bp;
3270 	bool metadata, reserved;
3271 
3272 	bp = NULL;
3273 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3274 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3275 	if (!unmapped_buf_allowed)
3276 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3277 
3278 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3279 	    vp->v_type == VCHR)
3280 		metadata = true;
3281 	else
3282 		metadata = false;
3283 	if (vp == NULL)
3284 		bd = &bdomain[0];
3285 	else
3286 		bd = &bdomain[vp->v_bufobj.bo_domain];
3287 
3288 	counter_u64_add(getnewbufcalls, 1);
3289 	reserved = false;
3290 	do {
3291 		if (reserved == false &&
3292 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3293 			counter_u64_add(getnewbufrestarts, 1);
3294 			continue;
3295 		}
3296 		reserved = true;
3297 		if ((bp = buf_alloc(bd)) == NULL) {
3298 			counter_u64_add(getnewbufrestarts, 1);
3299 			continue;
3300 		}
3301 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3302 			return (bp);
3303 		break;
3304 	} while (buf_recycle(bd, false) == 0);
3305 
3306 	if (reserved)
3307 		bufspace_release(bd, maxsize);
3308 	if (bp != NULL) {
3309 		bp->b_flags |= B_INVAL;
3310 		brelse(bp);
3311 	}
3312 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3313 
3314 	return (NULL);
3315 }
3316 
3317 /*
3318  *	buf_daemon:
3319  *
3320  *	buffer flushing daemon.  Buffers are normally flushed by the
3321  *	update daemon but if it cannot keep up this process starts to
3322  *	take the load in an attempt to prevent getnewbuf() from blocking.
3323  */
3324 static struct kproc_desc buf_kp = {
3325 	"bufdaemon",
3326 	buf_daemon,
3327 	&bufdaemonproc
3328 };
3329 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3330 
3331 static int
3332 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3333 {
3334 	int flushed;
3335 
3336 	flushed = flushbufqueues(vp, bd, target, 0);
3337 	if (flushed == 0) {
3338 		/*
3339 		 * Could not find any buffers without rollback
3340 		 * dependencies, so just write the first one
3341 		 * in the hopes of eventually making progress.
3342 		 */
3343 		if (vp != NULL && target > 2)
3344 			target /= 2;
3345 		flushbufqueues(vp, bd, target, 1);
3346 	}
3347 	return (flushed);
3348 }
3349 
3350 static void
3351 buf_daemon()
3352 {
3353 	struct bufdomain *bd;
3354 	int speedupreq;
3355 	int lodirty;
3356 	int i;
3357 
3358 	/*
3359 	 * This process needs to be suspended prior to shutdown sync.
3360 	 */
3361 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
3362 	    SHUTDOWN_PRI_LAST);
3363 
3364 	/*
3365 	 * Start the buf clean daemons as children threads.
3366 	 */
3367 	for (i = 0 ; i < buf_domains; i++) {
3368 		int error;
3369 
3370 		error = kthread_add((void (*)(void *))bufspace_daemon,
3371 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3372 		if (error)
3373 			panic("error %d spawning bufspace daemon", error);
3374 	}
3375 
3376 	/*
3377 	 * This process is allowed to take the buffer cache to the limit
3378 	 */
3379 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3380 	mtx_lock(&bdlock);
3381 	for (;;) {
3382 		bd_request = 0;
3383 		mtx_unlock(&bdlock);
3384 
3385 		kproc_suspend_check(bufdaemonproc);
3386 
3387 		/*
3388 		 * Save speedupreq for this pass and reset to capture new
3389 		 * requests.
3390 		 */
3391 		speedupreq = bd_speedupreq;
3392 		bd_speedupreq = 0;
3393 
3394 		/*
3395 		 * Flush each domain sequentially according to its level and
3396 		 * the speedup request.
3397 		 */
3398 		for (i = 0; i < buf_domains; i++) {
3399 			bd = &bdomain[i];
3400 			if (speedupreq)
3401 				lodirty = bd->bd_numdirtybuffers / 2;
3402 			else
3403 				lodirty = bd->bd_lodirtybuffers;
3404 			while (bd->bd_numdirtybuffers > lodirty) {
3405 				if (buf_flush(NULL, bd,
3406 				    bd->bd_numdirtybuffers - lodirty) == 0)
3407 					break;
3408 				kern_yield(PRI_USER);
3409 			}
3410 		}
3411 
3412 		/*
3413 		 * Only clear bd_request if we have reached our low water
3414 		 * mark.  The buf_daemon normally waits 1 second and
3415 		 * then incrementally flushes any dirty buffers that have
3416 		 * built up, within reason.
3417 		 *
3418 		 * If we were unable to hit our low water mark and couldn't
3419 		 * find any flushable buffers, we sleep for a short period
3420 		 * to avoid endless loops on unlockable buffers.
3421 		 */
3422 		mtx_lock(&bdlock);
3423 		if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3424 			/*
3425 			 * We reached our low water mark, reset the
3426 			 * request and sleep until we are needed again.
3427 			 * The sleep is just so the suspend code works.
3428 			 */
3429 			bd_request = 0;
3430 			/*
3431 			 * Do an extra wakeup in case dirty threshold
3432 			 * changed via sysctl and the explicit transition
3433 			 * out of shortfall was missed.
3434 			 */
3435 			bdirtywakeup();
3436 			if (runningbufspace <= lorunningspace)
3437 				runningwakeup();
3438 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3439 		} else {
3440 			/*
3441 			 * We couldn't find any flushable dirty buffers but
3442 			 * still have too many dirty buffers, we
3443 			 * have to sleep and try again.  (rare)
3444 			 */
3445 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3446 		}
3447 	}
3448 }
3449 
3450 /*
3451  *	flushbufqueues:
3452  *
3453  *	Try to flush a buffer in the dirty queue.  We must be careful to
3454  *	free up B_INVAL buffers instead of write them, which NFS is
3455  *	particularly sensitive to.
3456  */
3457 static int flushwithdeps = 0;
3458 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
3459     0, "Number of buffers flushed with dependecies that require rollbacks");
3460 
3461 static int
3462 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3463     int flushdeps)
3464 {
3465 	struct bufqueue *bq;
3466 	struct buf *sentinel;
3467 	struct vnode *vp;
3468 	struct mount *mp;
3469 	struct buf *bp;
3470 	int hasdeps;
3471 	int flushed;
3472 	int error;
3473 	bool unlock;
3474 
3475 	flushed = 0;
3476 	bq = &bd->bd_dirtyq;
3477 	bp = NULL;
3478 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3479 	sentinel->b_qindex = QUEUE_SENTINEL;
3480 	BQ_LOCK(bq);
3481 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3482 	BQ_UNLOCK(bq);
3483 	while (flushed != target) {
3484 		maybe_yield();
3485 		BQ_LOCK(bq);
3486 		bp = TAILQ_NEXT(sentinel, b_freelist);
3487 		if (bp != NULL) {
3488 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3489 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3490 			    b_freelist);
3491 		} else {
3492 			BQ_UNLOCK(bq);
3493 			break;
3494 		}
3495 		/*
3496 		 * Skip sentinels inserted by other invocations of the
3497 		 * flushbufqueues(), taking care to not reorder them.
3498 		 *
3499 		 * Only flush the buffers that belong to the
3500 		 * vnode locked by the curthread.
3501 		 */
3502 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3503 		    bp->b_vp != lvp)) {
3504 			BQ_UNLOCK(bq);
3505 			continue;
3506 		}
3507 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3508 		BQ_UNLOCK(bq);
3509 		if (error != 0)
3510 			continue;
3511 
3512 		/*
3513 		 * BKGRDINPROG can only be set with the buf and bufobj
3514 		 * locks both held.  We tolerate a race to clear it here.
3515 		 */
3516 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3517 		    (bp->b_flags & B_DELWRI) == 0) {
3518 			BUF_UNLOCK(bp);
3519 			continue;
3520 		}
3521 		if (bp->b_flags & B_INVAL) {
3522 			bremfreef(bp);
3523 			brelse(bp);
3524 			flushed++;
3525 			continue;
3526 		}
3527 
3528 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3529 			if (flushdeps == 0) {
3530 				BUF_UNLOCK(bp);
3531 				continue;
3532 			}
3533 			hasdeps = 1;
3534 		} else
3535 			hasdeps = 0;
3536 		/*
3537 		 * We must hold the lock on a vnode before writing
3538 		 * one of its buffers. Otherwise we may confuse, or
3539 		 * in the case of a snapshot vnode, deadlock the
3540 		 * system.
3541 		 *
3542 		 * The lock order here is the reverse of the normal
3543 		 * of vnode followed by buf lock.  This is ok because
3544 		 * the NOWAIT will prevent deadlock.
3545 		 */
3546 		vp = bp->b_vp;
3547 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3548 			BUF_UNLOCK(bp);
3549 			continue;
3550 		}
3551 		if (lvp == NULL) {
3552 			unlock = true;
3553 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3554 		} else {
3555 			ASSERT_VOP_LOCKED(vp, "getbuf");
3556 			unlock = false;
3557 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3558 			    vn_lock(vp, LK_TRYUPGRADE);
3559 		}
3560 		if (error == 0) {
3561 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3562 			    bp, bp->b_vp, bp->b_flags);
3563 			if (curproc == bufdaemonproc) {
3564 				vfs_bio_awrite(bp);
3565 			} else {
3566 				bremfree(bp);
3567 				bwrite(bp);
3568 				counter_u64_add(notbufdflushes, 1);
3569 			}
3570 			vn_finished_write(mp);
3571 			if (unlock)
3572 				VOP_UNLOCK(vp, 0);
3573 			flushwithdeps += hasdeps;
3574 			flushed++;
3575 
3576 			/*
3577 			 * Sleeping on runningbufspace while holding
3578 			 * vnode lock leads to deadlock.
3579 			 */
3580 			if (curproc == bufdaemonproc &&
3581 			    runningbufspace > hirunningspace)
3582 				waitrunningbufspace();
3583 			continue;
3584 		}
3585 		vn_finished_write(mp);
3586 		BUF_UNLOCK(bp);
3587 	}
3588 	BQ_LOCK(bq);
3589 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3590 	BQ_UNLOCK(bq);
3591 	free(sentinel, M_TEMP);
3592 	return (flushed);
3593 }
3594 
3595 /*
3596  * Check to see if a block is currently memory resident.
3597  */
3598 struct buf *
3599 incore(struct bufobj *bo, daddr_t blkno)
3600 {
3601 	struct buf *bp;
3602 
3603 	BO_RLOCK(bo);
3604 	bp = gbincore(bo, blkno);
3605 	BO_RUNLOCK(bo);
3606 	return (bp);
3607 }
3608 
3609 /*
3610  * Returns true if no I/O is needed to access the
3611  * associated VM object.  This is like incore except
3612  * it also hunts around in the VM system for the data.
3613  */
3614 
3615 static int
3616 inmem(struct vnode * vp, daddr_t blkno)
3617 {
3618 	vm_object_t obj;
3619 	vm_offset_t toff, tinc, size;
3620 	vm_page_t m;
3621 	vm_ooffset_t off;
3622 
3623 	ASSERT_VOP_LOCKED(vp, "inmem");
3624 
3625 	if (incore(&vp->v_bufobj, blkno))
3626 		return 1;
3627 	if (vp->v_mount == NULL)
3628 		return 0;
3629 	obj = vp->v_object;
3630 	if (obj == NULL)
3631 		return (0);
3632 
3633 	size = PAGE_SIZE;
3634 	if (size > vp->v_mount->mnt_stat.f_iosize)
3635 		size = vp->v_mount->mnt_stat.f_iosize;
3636 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3637 
3638 	VM_OBJECT_RLOCK(obj);
3639 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3640 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
3641 		if (!m)
3642 			goto notinmem;
3643 		tinc = size;
3644 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3645 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3646 		if (vm_page_is_valid(m,
3647 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
3648 			goto notinmem;
3649 	}
3650 	VM_OBJECT_RUNLOCK(obj);
3651 	return 1;
3652 
3653 notinmem:
3654 	VM_OBJECT_RUNLOCK(obj);
3655 	return (0);
3656 }
3657 
3658 /*
3659  * Set the dirty range for a buffer based on the status of the dirty
3660  * bits in the pages comprising the buffer.  The range is limited
3661  * to the size of the buffer.
3662  *
3663  * Tell the VM system that the pages associated with this buffer
3664  * are clean.  This is used for delayed writes where the data is
3665  * going to go to disk eventually without additional VM intevention.
3666  *
3667  * Note that while we only really need to clean through to b_bcount, we
3668  * just go ahead and clean through to b_bufsize.
3669  */
3670 static void
3671 vfs_clean_pages_dirty_buf(struct buf *bp)
3672 {
3673 	vm_ooffset_t foff, noff, eoff;
3674 	vm_page_t m;
3675 	int i;
3676 
3677 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3678 		return;
3679 
3680 	foff = bp->b_offset;
3681 	KASSERT(bp->b_offset != NOOFFSET,
3682 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3683 
3684 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3685 	vfs_drain_busy_pages(bp);
3686 	vfs_setdirty_locked_object(bp);
3687 	for (i = 0; i < bp->b_npages; i++) {
3688 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3689 		eoff = noff;
3690 		if (eoff > bp->b_offset + bp->b_bufsize)
3691 			eoff = bp->b_offset + bp->b_bufsize;
3692 		m = bp->b_pages[i];
3693 		vfs_page_set_validclean(bp, foff, m);
3694 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3695 		foff = noff;
3696 	}
3697 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3698 }
3699 
3700 static void
3701 vfs_setdirty_locked_object(struct buf *bp)
3702 {
3703 	vm_object_t object;
3704 	int i;
3705 
3706 	object = bp->b_bufobj->bo_object;
3707 	VM_OBJECT_ASSERT_WLOCKED(object);
3708 
3709 	/*
3710 	 * We qualify the scan for modified pages on whether the
3711 	 * object has been flushed yet.
3712 	 */
3713 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
3714 		vm_offset_t boffset;
3715 		vm_offset_t eoffset;
3716 
3717 		/*
3718 		 * test the pages to see if they have been modified directly
3719 		 * by users through the VM system.
3720 		 */
3721 		for (i = 0; i < bp->b_npages; i++)
3722 			vm_page_test_dirty(bp->b_pages[i]);
3723 
3724 		/*
3725 		 * Calculate the encompassing dirty range, boffset and eoffset,
3726 		 * (eoffset - boffset) bytes.
3727 		 */
3728 
3729 		for (i = 0; i < bp->b_npages; i++) {
3730 			if (bp->b_pages[i]->dirty)
3731 				break;
3732 		}
3733 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3734 
3735 		for (i = bp->b_npages - 1; i >= 0; --i) {
3736 			if (bp->b_pages[i]->dirty) {
3737 				break;
3738 			}
3739 		}
3740 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3741 
3742 		/*
3743 		 * Fit it to the buffer.
3744 		 */
3745 
3746 		if (eoffset > bp->b_bcount)
3747 			eoffset = bp->b_bcount;
3748 
3749 		/*
3750 		 * If we have a good dirty range, merge with the existing
3751 		 * dirty range.
3752 		 */
3753 
3754 		if (boffset < eoffset) {
3755 			if (bp->b_dirtyoff > boffset)
3756 				bp->b_dirtyoff = boffset;
3757 			if (bp->b_dirtyend < eoffset)
3758 				bp->b_dirtyend = eoffset;
3759 		}
3760 	}
3761 }
3762 
3763 /*
3764  * Allocate the KVA mapping for an existing buffer.
3765  * If an unmapped buffer is provided but a mapped buffer is requested, take
3766  * also care to properly setup mappings between pages and KVA.
3767  */
3768 static void
3769 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3770 {
3771 	int bsize, maxsize, need_mapping, need_kva;
3772 	off_t offset;
3773 
3774 	need_mapping = bp->b_data == unmapped_buf &&
3775 	    (gbflags & GB_UNMAPPED) == 0;
3776 	need_kva = bp->b_kvabase == unmapped_buf &&
3777 	    bp->b_data == unmapped_buf &&
3778 	    (gbflags & GB_KVAALLOC) != 0;
3779 	if (!need_mapping && !need_kva)
3780 		return;
3781 
3782 	BUF_CHECK_UNMAPPED(bp);
3783 
3784 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3785 		/*
3786 		 * Buffer is not mapped, but the KVA was already
3787 		 * reserved at the time of the instantiation.  Use the
3788 		 * allocated space.
3789 		 */
3790 		goto has_addr;
3791 	}
3792 
3793 	/*
3794 	 * Calculate the amount of the address space we would reserve
3795 	 * if the buffer was mapped.
3796 	 */
3797 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3798 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3799 	offset = blkno * bsize;
3800 	maxsize = size + (offset & PAGE_MASK);
3801 	maxsize = imax(maxsize, bsize);
3802 
3803 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3804 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3805 			/*
3806 			 * XXXKIB: defragmentation cannot
3807 			 * succeed, not sure what else to do.
3808 			 */
3809 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3810 		}
3811 		counter_u64_add(mappingrestarts, 1);
3812 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3813 	}
3814 has_addr:
3815 	if (need_mapping) {
3816 		/* b_offset is handled by bpmap_qenter. */
3817 		bp->b_data = bp->b_kvabase;
3818 		BUF_CHECK_MAPPED(bp);
3819 		bpmap_qenter(bp);
3820 	}
3821 }
3822 
3823 /*
3824  *	getblk:
3825  *
3826  *	Get a block given a specified block and offset into a file/device.
3827  *	The buffers B_DONE bit will be cleared on return, making it almost
3828  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3829  *	return.  The caller should clear B_INVAL prior to initiating a
3830  *	READ.
3831  *
3832  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3833  *	an existing buffer.
3834  *
3835  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3836  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3837  *	and then cleared based on the backing VM.  If the previous buffer is
3838  *	non-0-sized but invalid, B_CACHE will be cleared.
3839  *
3840  *	If getblk() must create a new buffer, the new buffer is returned with
3841  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3842  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3843  *	backing VM.
3844  *
3845  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3846  *	B_CACHE bit is clear.
3847  *
3848  *	What this means, basically, is that the caller should use B_CACHE to
3849  *	determine whether the buffer is fully valid or not and should clear
3850  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3851  *	the buffer by loading its data area with something, the caller needs
3852  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3853  *	the caller should set B_CACHE ( as an optimization ), else the caller
3854  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3855  *	a write attempt or if it was a successful read.  If the caller
3856  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3857  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3858  */
3859 struct buf *
3860 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3861     int flags)
3862 {
3863 	struct buf *bp;
3864 	struct bufobj *bo;
3865 	int bsize, error, maxsize, vmio;
3866 	off_t offset;
3867 
3868 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3869 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3870 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3871 	ASSERT_VOP_LOCKED(vp, "getblk");
3872 	if (size > maxbcachebuf)
3873 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3874 		    maxbcachebuf);
3875 	if (!unmapped_buf_allowed)
3876 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3877 
3878 	bo = &vp->v_bufobj;
3879 loop:
3880 	BO_RLOCK(bo);
3881 	bp = gbincore(bo, blkno);
3882 	if (bp != NULL) {
3883 		int lockflags;
3884 		/*
3885 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3886 		 * it must be on a queue.
3887 		 */
3888 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3889 
3890 		if (flags & GB_LOCK_NOWAIT)
3891 			lockflags |= LK_NOWAIT;
3892 
3893 		error = BUF_TIMELOCK(bp, lockflags,
3894 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3895 
3896 		/*
3897 		 * If we slept and got the lock we have to restart in case
3898 		 * the buffer changed identities.
3899 		 */
3900 		if (error == ENOLCK)
3901 			goto loop;
3902 		/* We timed out or were interrupted. */
3903 		else if (error)
3904 			return (NULL);
3905 		/* If recursed, assume caller knows the rules. */
3906 		else if (BUF_LOCKRECURSED(bp))
3907 			goto end;
3908 
3909 		/*
3910 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3911 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3912 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3913 		 * backing VM cache.
3914 		 */
3915 		if (bp->b_flags & B_INVAL)
3916 			bp->b_flags &= ~B_CACHE;
3917 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3918 			bp->b_flags |= B_CACHE;
3919 		if (bp->b_flags & B_MANAGED)
3920 			MPASS(bp->b_qindex == QUEUE_NONE);
3921 		else
3922 			bremfree(bp);
3923 
3924 		/*
3925 		 * check for size inconsistencies for non-VMIO case.
3926 		 */
3927 		if (bp->b_bcount != size) {
3928 			if ((bp->b_flags & B_VMIO) == 0 ||
3929 			    (size > bp->b_kvasize)) {
3930 				if (bp->b_flags & B_DELWRI) {
3931 					bp->b_flags |= B_NOCACHE;
3932 					bwrite(bp);
3933 				} else {
3934 					if (LIST_EMPTY(&bp->b_dep)) {
3935 						bp->b_flags |= B_RELBUF;
3936 						brelse(bp);
3937 					} else {
3938 						bp->b_flags |= B_NOCACHE;
3939 						bwrite(bp);
3940 					}
3941 				}
3942 				goto loop;
3943 			}
3944 		}
3945 
3946 		/*
3947 		 * Handle the case of unmapped buffer which should
3948 		 * become mapped, or the buffer for which KVA
3949 		 * reservation is requested.
3950 		 */
3951 		bp_unmapped_get_kva(bp, blkno, size, flags);
3952 
3953 		/*
3954 		 * If the size is inconsistent in the VMIO case, we can resize
3955 		 * the buffer.  This might lead to B_CACHE getting set or
3956 		 * cleared.  If the size has not changed, B_CACHE remains
3957 		 * unchanged from its previous state.
3958 		 */
3959 		allocbuf(bp, size);
3960 
3961 		KASSERT(bp->b_offset != NOOFFSET,
3962 		    ("getblk: no buffer offset"));
3963 
3964 		/*
3965 		 * A buffer with B_DELWRI set and B_CACHE clear must
3966 		 * be committed before we can return the buffer in
3967 		 * order to prevent the caller from issuing a read
3968 		 * ( due to B_CACHE not being set ) and overwriting
3969 		 * it.
3970 		 *
3971 		 * Most callers, including NFS and FFS, need this to
3972 		 * operate properly either because they assume they
3973 		 * can issue a read if B_CACHE is not set, or because
3974 		 * ( for example ) an uncached B_DELWRI might loop due
3975 		 * to softupdates re-dirtying the buffer.  In the latter
3976 		 * case, B_CACHE is set after the first write completes,
3977 		 * preventing further loops.
3978 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3979 		 * above while extending the buffer, we cannot allow the
3980 		 * buffer to remain with B_CACHE set after the write
3981 		 * completes or it will represent a corrupt state.  To
3982 		 * deal with this we set B_NOCACHE to scrap the buffer
3983 		 * after the write.
3984 		 *
3985 		 * We might be able to do something fancy, like setting
3986 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3987 		 * so the below call doesn't set B_CACHE, but that gets real
3988 		 * confusing.  This is much easier.
3989 		 */
3990 
3991 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3992 			bp->b_flags |= B_NOCACHE;
3993 			bwrite(bp);
3994 			goto loop;
3995 		}
3996 		bp->b_flags &= ~B_DONE;
3997 	} else {
3998 		/*
3999 		 * Buffer is not in-core, create new buffer.  The buffer
4000 		 * returned by getnewbuf() is locked.  Note that the returned
4001 		 * buffer is also considered valid (not marked B_INVAL).
4002 		 */
4003 		BO_RUNLOCK(bo);
4004 		/*
4005 		 * If the user does not want us to create the buffer, bail out
4006 		 * here.
4007 		 */
4008 		if (flags & GB_NOCREAT)
4009 			return NULL;
4010 		if (bdomain[bo->bo_domain].bd_freebuffers == 0 &&
4011 		    TD_IS_IDLETHREAD(curthread))
4012 			return NULL;
4013 
4014 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
4015 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4016 		offset = blkno * bsize;
4017 		vmio = vp->v_object != NULL;
4018 		if (vmio) {
4019 			maxsize = size + (offset & PAGE_MASK);
4020 		} else {
4021 			maxsize = size;
4022 			/* Do not allow non-VMIO notmapped buffers. */
4023 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4024 		}
4025 		maxsize = imax(maxsize, bsize);
4026 
4027 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4028 		if (bp == NULL) {
4029 			if (slpflag || slptimeo)
4030 				return NULL;
4031 			/*
4032 			 * XXX This is here until the sleep path is diagnosed
4033 			 * enough to work under very low memory conditions.
4034 			 *
4035 			 * There's an issue on low memory, 4BSD+non-preempt
4036 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4037 			 * exhaustion occurs without sleeping for buffer
4038 			 * reclaimation.  This just sticks in a loop and
4039 			 * constantly attempts to allocate a buffer, which
4040 			 * hits exhaustion and tries to wakeup bufdaemon.
4041 			 * This never happens because we never yield.
4042 			 *
4043 			 * The real solution is to identify and fix these cases
4044 			 * so we aren't effectively busy-waiting in a loop
4045 			 * until the reclaimation path has cycles to run.
4046 			 */
4047 			kern_yield(PRI_USER);
4048 			goto loop;
4049 		}
4050 
4051 		/*
4052 		 * This code is used to make sure that a buffer is not
4053 		 * created while the getnewbuf routine is blocked.
4054 		 * This can be a problem whether the vnode is locked or not.
4055 		 * If the buffer is created out from under us, we have to
4056 		 * throw away the one we just created.
4057 		 *
4058 		 * Note: this must occur before we associate the buffer
4059 		 * with the vp especially considering limitations in
4060 		 * the splay tree implementation when dealing with duplicate
4061 		 * lblkno's.
4062 		 */
4063 		BO_LOCK(bo);
4064 		if (gbincore(bo, blkno)) {
4065 			BO_UNLOCK(bo);
4066 			bp->b_flags |= B_INVAL;
4067 			bufspace_release(bufdomain(bp), maxsize);
4068 			brelse(bp);
4069 			goto loop;
4070 		}
4071 
4072 		/*
4073 		 * Insert the buffer into the hash, so that it can
4074 		 * be found by incore.
4075 		 */
4076 		bp->b_blkno = bp->b_lblkno = blkno;
4077 		bp->b_offset = offset;
4078 		bgetvp(vp, bp);
4079 		BO_UNLOCK(bo);
4080 
4081 		/*
4082 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4083 		 * buffer size starts out as 0, B_CACHE will be set by
4084 		 * allocbuf() for the VMIO case prior to it testing the
4085 		 * backing store for validity.
4086 		 */
4087 
4088 		if (vmio) {
4089 			bp->b_flags |= B_VMIO;
4090 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4091 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4092 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4093 		} else {
4094 			bp->b_flags &= ~B_VMIO;
4095 			KASSERT(bp->b_bufobj->bo_object == NULL,
4096 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4097 			    bp, bp->b_bufobj->bo_object));
4098 			BUF_CHECK_MAPPED(bp);
4099 		}
4100 
4101 		allocbuf(bp, size);
4102 		bufspace_release(bufdomain(bp), maxsize);
4103 		bp->b_flags &= ~B_DONE;
4104 	}
4105 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4106 	BUF_ASSERT_HELD(bp);
4107 end:
4108 	buf_track(bp, __func__);
4109 	KASSERT(bp->b_bufobj == bo,
4110 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4111 	return (bp);
4112 }
4113 
4114 /*
4115  * Get an empty, disassociated buffer of given size.  The buffer is initially
4116  * set to B_INVAL.
4117  */
4118 struct buf *
4119 geteblk(int size, int flags)
4120 {
4121 	struct buf *bp;
4122 	int maxsize;
4123 
4124 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4125 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4126 		if ((flags & GB_NOWAIT_BD) &&
4127 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4128 			return (NULL);
4129 	}
4130 	allocbuf(bp, size);
4131 	bufspace_release(bufdomain(bp), maxsize);
4132 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4133 	BUF_ASSERT_HELD(bp);
4134 	return (bp);
4135 }
4136 
4137 /*
4138  * Truncate the backing store for a non-vmio buffer.
4139  */
4140 static void
4141 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4142 {
4143 
4144 	if (bp->b_flags & B_MALLOC) {
4145 		/*
4146 		 * malloced buffers are not shrunk
4147 		 */
4148 		if (newbsize == 0) {
4149 			bufmallocadjust(bp, 0);
4150 			free(bp->b_data, M_BIOBUF);
4151 			bp->b_data = bp->b_kvabase;
4152 			bp->b_flags &= ~B_MALLOC;
4153 		}
4154 		return;
4155 	}
4156 	vm_hold_free_pages(bp, newbsize);
4157 	bufspace_adjust(bp, newbsize);
4158 }
4159 
4160 /*
4161  * Extend the backing for a non-VMIO buffer.
4162  */
4163 static void
4164 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4165 {
4166 	caddr_t origbuf;
4167 	int origbufsize;
4168 
4169 	/*
4170 	 * We only use malloced memory on the first allocation.
4171 	 * and revert to page-allocated memory when the buffer
4172 	 * grows.
4173 	 *
4174 	 * There is a potential smp race here that could lead
4175 	 * to bufmallocspace slightly passing the max.  It
4176 	 * is probably extremely rare and not worth worrying
4177 	 * over.
4178 	 */
4179 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4180 	    bufmallocspace < maxbufmallocspace) {
4181 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4182 		bp->b_flags |= B_MALLOC;
4183 		bufmallocadjust(bp, newbsize);
4184 		return;
4185 	}
4186 
4187 	/*
4188 	 * If the buffer is growing on its other-than-first
4189 	 * allocation then we revert to the page-allocation
4190 	 * scheme.
4191 	 */
4192 	origbuf = NULL;
4193 	origbufsize = 0;
4194 	if (bp->b_flags & B_MALLOC) {
4195 		origbuf = bp->b_data;
4196 		origbufsize = bp->b_bufsize;
4197 		bp->b_data = bp->b_kvabase;
4198 		bufmallocadjust(bp, 0);
4199 		bp->b_flags &= ~B_MALLOC;
4200 		newbsize = round_page(newbsize);
4201 	}
4202 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4203 	    (vm_offset_t) bp->b_data + newbsize);
4204 	if (origbuf != NULL) {
4205 		bcopy(origbuf, bp->b_data, origbufsize);
4206 		free(origbuf, M_BIOBUF);
4207 	}
4208 	bufspace_adjust(bp, newbsize);
4209 }
4210 
4211 /*
4212  * This code constitutes the buffer memory from either anonymous system
4213  * memory (in the case of non-VMIO operations) or from an associated
4214  * VM object (in the case of VMIO operations).  This code is able to
4215  * resize a buffer up or down.
4216  *
4217  * Note that this code is tricky, and has many complications to resolve
4218  * deadlock or inconsistent data situations.  Tread lightly!!!
4219  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4220  * the caller.  Calling this code willy nilly can result in the loss of data.
4221  *
4222  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4223  * B_CACHE for the non-VMIO case.
4224  */
4225 int
4226 allocbuf(struct buf *bp, int size)
4227 {
4228 	int newbsize;
4229 
4230 	BUF_ASSERT_HELD(bp);
4231 
4232 	if (bp->b_bcount == size)
4233 		return (1);
4234 
4235 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4236 		panic("allocbuf: buffer too small");
4237 
4238 	newbsize = roundup2(size, DEV_BSIZE);
4239 	if ((bp->b_flags & B_VMIO) == 0) {
4240 		if ((bp->b_flags & B_MALLOC) == 0)
4241 			newbsize = round_page(newbsize);
4242 		/*
4243 		 * Just get anonymous memory from the kernel.  Don't
4244 		 * mess with B_CACHE.
4245 		 */
4246 		if (newbsize < bp->b_bufsize)
4247 			vfs_nonvmio_truncate(bp, newbsize);
4248 		else if (newbsize > bp->b_bufsize)
4249 			vfs_nonvmio_extend(bp, newbsize);
4250 	} else {
4251 		int desiredpages;
4252 
4253 		desiredpages = (size == 0) ? 0 :
4254 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4255 
4256 		if (bp->b_flags & B_MALLOC)
4257 			panic("allocbuf: VMIO buffer can't be malloced");
4258 		/*
4259 		 * Set B_CACHE initially if buffer is 0 length or will become
4260 		 * 0-length.
4261 		 */
4262 		if (size == 0 || bp->b_bufsize == 0)
4263 			bp->b_flags |= B_CACHE;
4264 
4265 		if (newbsize < bp->b_bufsize)
4266 			vfs_vmio_truncate(bp, desiredpages);
4267 		/* XXX This looks as if it should be newbsize > b_bufsize */
4268 		else if (size > bp->b_bcount)
4269 			vfs_vmio_extend(bp, desiredpages, size);
4270 		bufspace_adjust(bp, newbsize);
4271 	}
4272 	bp->b_bcount = size;		/* requested buffer size. */
4273 	return (1);
4274 }
4275 
4276 extern int inflight_transient_maps;
4277 
4278 void
4279 biodone(struct bio *bp)
4280 {
4281 	struct mtx *mtxp;
4282 	void (*done)(struct bio *);
4283 	vm_offset_t start, end;
4284 
4285 	biotrack(bp, __func__);
4286 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4287 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4288 		bp->bio_flags |= BIO_UNMAPPED;
4289 		start = trunc_page((vm_offset_t)bp->bio_data);
4290 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4291 		bp->bio_data = unmapped_buf;
4292 		pmap_qremove(start, atop(end - start));
4293 		vmem_free(transient_arena, start, end - start);
4294 		atomic_add_int(&inflight_transient_maps, -1);
4295 	}
4296 	done = bp->bio_done;
4297 	if (done == NULL) {
4298 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4299 		mtx_lock(mtxp);
4300 		bp->bio_flags |= BIO_DONE;
4301 		wakeup(bp);
4302 		mtx_unlock(mtxp);
4303 	} else
4304 		done(bp);
4305 }
4306 
4307 /*
4308  * Wait for a BIO to finish.
4309  */
4310 int
4311 biowait(struct bio *bp, const char *wchan)
4312 {
4313 	struct mtx *mtxp;
4314 
4315 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4316 	mtx_lock(mtxp);
4317 	while ((bp->bio_flags & BIO_DONE) == 0)
4318 		msleep(bp, mtxp, PRIBIO, wchan, 0);
4319 	mtx_unlock(mtxp);
4320 	if (bp->bio_error != 0)
4321 		return (bp->bio_error);
4322 	if (!(bp->bio_flags & BIO_ERROR))
4323 		return (0);
4324 	return (EIO);
4325 }
4326 
4327 void
4328 biofinish(struct bio *bp, struct devstat *stat, int error)
4329 {
4330 
4331 	if (error) {
4332 		bp->bio_error = error;
4333 		bp->bio_flags |= BIO_ERROR;
4334 	}
4335 	if (stat != NULL)
4336 		devstat_end_transaction_bio(stat, bp);
4337 	biodone(bp);
4338 }
4339 
4340 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4341 void
4342 biotrack_buf(struct bio *bp, const char *location)
4343 {
4344 
4345 	buf_track(bp->bio_track_bp, location);
4346 }
4347 #endif
4348 
4349 /*
4350  *	bufwait:
4351  *
4352  *	Wait for buffer I/O completion, returning error status.  The buffer
4353  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4354  *	error and cleared.
4355  */
4356 int
4357 bufwait(struct buf *bp)
4358 {
4359 	if (bp->b_iocmd == BIO_READ)
4360 		bwait(bp, PRIBIO, "biord");
4361 	else
4362 		bwait(bp, PRIBIO, "biowr");
4363 	if (bp->b_flags & B_EINTR) {
4364 		bp->b_flags &= ~B_EINTR;
4365 		return (EINTR);
4366 	}
4367 	if (bp->b_ioflags & BIO_ERROR) {
4368 		return (bp->b_error ? bp->b_error : EIO);
4369 	} else {
4370 		return (0);
4371 	}
4372 }
4373 
4374 /*
4375  *	bufdone:
4376  *
4377  *	Finish I/O on a buffer, optionally calling a completion function.
4378  *	This is usually called from an interrupt so process blocking is
4379  *	not allowed.
4380  *
4381  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4382  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4383  *	assuming B_INVAL is clear.
4384  *
4385  *	For the VMIO case, we set B_CACHE if the op was a read and no
4386  *	read error occurred, or if the op was a write.  B_CACHE is never
4387  *	set if the buffer is invalid or otherwise uncacheable.
4388  *
4389  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
4390  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4391  *	in the biodone routine.
4392  */
4393 void
4394 bufdone(struct buf *bp)
4395 {
4396 	struct bufobj *dropobj;
4397 	void    (*biodone)(struct buf *);
4398 
4399 	buf_track(bp, __func__);
4400 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4401 	dropobj = NULL;
4402 
4403 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4404 	BUF_ASSERT_HELD(bp);
4405 
4406 	runningbufwakeup(bp);
4407 	if (bp->b_iocmd == BIO_WRITE)
4408 		dropobj = bp->b_bufobj;
4409 	/* call optional completion function if requested */
4410 	if (bp->b_iodone != NULL) {
4411 		biodone = bp->b_iodone;
4412 		bp->b_iodone = NULL;
4413 		(*biodone) (bp);
4414 		if (dropobj)
4415 			bufobj_wdrop(dropobj);
4416 		return;
4417 	}
4418 	if (bp->b_flags & B_VMIO) {
4419 		/*
4420 		 * Set B_CACHE if the op was a normal read and no error
4421 		 * occurred.  B_CACHE is set for writes in the b*write()
4422 		 * routines.
4423 		 */
4424 		if (bp->b_iocmd == BIO_READ &&
4425 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4426 		    !(bp->b_ioflags & BIO_ERROR))
4427 			bp->b_flags |= B_CACHE;
4428 		vfs_vmio_iodone(bp);
4429 	}
4430 	if (!LIST_EMPTY(&bp->b_dep))
4431 		buf_complete(bp);
4432 	if ((bp->b_flags & B_CKHASH) != 0) {
4433 		KASSERT(bp->b_iocmd == BIO_READ,
4434 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4435 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4436 		(*bp->b_ckhashcalc)(bp);
4437 	}
4438 	/*
4439 	 * For asynchronous completions, release the buffer now. The brelse
4440 	 * will do a wakeup there if necessary - so no need to do a wakeup
4441 	 * here in the async case. The sync case always needs to do a wakeup.
4442 	 */
4443 	if (bp->b_flags & B_ASYNC) {
4444 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4445 		    (bp->b_ioflags & BIO_ERROR))
4446 			brelse(bp);
4447 		else
4448 			bqrelse(bp);
4449 	} else
4450 		bdone(bp);
4451 	if (dropobj)
4452 		bufobj_wdrop(dropobj);
4453 }
4454 
4455 /*
4456  * This routine is called in lieu of iodone in the case of
4457  * incomplete I/O.  This keeps the busy status for pages
4458  * consistent.
4459  */
4460 void
4461 vfs_unbusy_pages(struct buf *bp)
4462 {
4463 	int i;
4464 	vm_object_t obj;
4465 	vm_page_t m;
4466 
4467 	runningbufwakeup(bp);
4468 	if (!(bp->b_flags & B_VMIO))
4469 		return;
4470 
4471 	obj = bp->b_bufobj->bo_object;
4472 	VM_OBJECT_WLOCK(obj);
4473 	for (i = 0; i < bp->b_npages; i++) {
4474 		m = bp->b_pages[i];
4475 		if (m == bogus_page) {
4476 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4477 			if (!m)
4478 				panic("vfs_unbusy_pages: page missing\n");
4479 			bp->b_pages[i] = m;
4480 			if (buf_mapped(bp)) {
4481 				BUF_CHECK_MAPPED(bp);
4482 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4483 				    bp->b_pages, bp->b_npages);
4484 			} else
4485 				BUF_CHECK_UNMAPPED(bp);
4486 		}
4487 		vm_page_sunbusy(m);
4488 	}
4489 	vm_object_pip_wakeupn(obj, bp->b_npages);
4490 	VM_OBJECT_WUNLOCK(obj);
4491 }
4492 
4493 /*
4494  * vfs_page_set_valid:
4495  *
4496  *	Set the valid bits in a page based on the supplied offset.   The
4497  *	range is restricted to the buffer's size.
4498  *
4499  *	This routine is typically called after a read completes.
4500  */
4501 static void
4502 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4503 {
4504 	vm_ooffset_t eoff;
4505 
4506 	/*
4507 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4508 	 * page boundary and eoff is not greater than the end of the buffer.
4509 	 * The end of the buffer, in this case, is our file EOF, not the
4510 	 * allocation size of the buffer.
4511 	 */
4512 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4513 	if (eoff > bp->b_offset + bp->b_bcount)
4514 		eoff = bp->b_offset + bp->b_bcount;
4515 
4516 	/*
4517 	 * Set valid range.  This is typically the entire buffer and thus the
4518 	 * entire page.
4519 	 */
4520 	if (eoff > off)
4521 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4522 }
4523 
4524 /*
4525  * vfs_page_set_validclean:
4526  *
4527  *	Set the valid bits and clear the dirty bits in a page based on the
4528  *	supplied offset.   The range is restricted to the buffer's size.
4529  */
4530 static void
4531 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4532 {
4533 	vm_ooffset_t soff, eoff;
4534 
4535 	/*
4536 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4537 	 * page boundary or cross the end of the buffer.  The end of the
4538 	 * buffer, in this case, is our file EOF, not the allocation size
4539 	 * of the buffer.
4540 	 */
4541 	soff = off;
4542 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4543 	if (eoff > bp->b_offset + bp->b_bcount)
4544 		eoff = bp->b_offset + bp->b_bcount;
4545 
4546 	/*
4547 	 * Set valid range.  This is typically the entire buffer and thus the
4548 	 * entire page.
4549 	 */
4550 	if (eoff > soff) {
4551 		vm_page_set_validclean(
4552 		    m,
4553 		   (vm_offset_t) (soff & PAGE_MASK),
4554 		   (vm_offset_t) (eoff - soff)
4555 		);
4556 	}
4557 }
4558 
4559 /*
4560  * Ensure that all buffer pages are not exclusive busied.  If any page is
4561  * exclusive busy, drain it.
4562  */
4563 void
4564 vfs_drain_busy_pages(struct buf *bp)
4565 {
4566 	vm_page_t m;
4567 	int i, last_busied;
4568 
4569 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4570 	last_busied = 0;
4571 	for (i = 0; i < bp->b_npages; i++) {
4572 		m = bp->b_pages[i];
4573 		if (vm_page_xbusied(m)) {
4574 			for (; last_busied < i; last_busied++)
4575 				vm_page_sbusy(bp->b_pages[last_busied]);
4576 			while (vm_page_xbusied(m)) {
4577 				vm_page_lock(m);
4578 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4579 				vm_page_busy_sleep(m, "vbpage", true);
4580 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4581 			}
4582 		}
4583 	}
4584 	for (i = 0; i < last_busied; i++)
4585 		vm_page_sunbusy(bp->b_pages[i]);
4586 }
4587 
4588 /*
4589  * This routine is called before a device strategy routine.
4590  * It is used to tell the VM system that paging I/O is in
4591  * progress, and treat the pages associated with the buffer
4592  * almost as being exclusive busy.  Also the object paging_in_progress
4593  * flag is handled to make sure that the object doesn't become
4594  * inconsistent.
4595  *
4596  * Since I/O has not been initiated yet, certain buffer flags
4597  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4598  * and should be ignored.
4599  */
4600 void
4601 vfs_busy_pages(struct buf *bp, int clear_modify)
4602 {
4603 	vm_object_t obj;
4604 	vm_ooffset_t foff;
4605 	vm_page_t m;
4606 	int i;
4607 	bool bogus;
4608 
4609 	if (!(bp->b_flags & B_VMIO))
4610 		return;
4611 
4612 	obj = bp->b_bufobj->bo_object;
4613 	foff = bp->b_offset;
4614 	KASSERT(bp->b_offset != NOOFFSET,
4615 	    ("vfs_busy_pages: no buffer offset"));
4616 	VM_OBJECT_WLOCK(obj);
4617 	vfs_drain_busy_pages(bp);
4618 	if (bp->b_bufsize != 0)
4619 		vfs_setdirty_locked_object(bp);
4620 	bogus = false;
4621 	for (i = 0; i < bp->b_npages; i++) {
4622 		m = bp->b_pages[i];
4623 
4624 		if ((bp->b_flags & B_CLUSTER) == 0) {
4625 			vm_object_pip_add(obj, 1);
4626 			vm_page_sbusy(m);
4627 		}
4628 		/*
4629 		 * When readying a buffer for a read ( i.e
4630 		 * clear_modify == 0 ), it is important to do
4631 		 * bogus_page replacement for valid pages in
4632 		 * partially instantiated buffers.  Partially
4633 		 * instantiated buffers can, in turn, occur when
4634 		 * reconstituting a buffer from its VM backing store
4635 		 * base.  We only have to do this if B_CACHE is
4636 		 * clear ( which causes the I/O to occur in the
4637 		 * first place ).  The replacement prevents the read
4638 		 * I/O from overwriting potentially dirty VM-backed
4639 		 * pages.  XXX bogus page replacement is, uh, bogus.
4640 		 * It may not work properly with small-block devices.
4641 		 * We need to find a better way.
4642 		 */
4643 		if (clear_modify) {
4644 			pmap_remove_write(m);
4645 			vfs_page_set_validclean(bp, foff, m);
4646 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4647 		    (bp->b_flags & B_CACHE) == 0) {
4648 			bp->b_pages[i] = bogus_page;
4649 			bogus = true;
4650 		}
4651 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4652 	}
4653 	VM_OBJECT_WUNLOCK(obj);
4654 	if (bogus && buf_mapped(bp)) {
4655 		BUF_CHECK_MAPPED(bp);
4656 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4657 		    bp->b_pages, bp->b_npages);
4658 	}
4659 }
4660 
4661 /*
4662  *	vfs_bio_set_valid:
4663  *
4664  *	Set the range within the buffer to valid.  The range is
4665  *	relative to the beginning of the buffer, b_offset.  Note that
4666  *	b_offset itself may be offset from the beginning of the first
4667  *	page.
4668  */
4669 void
4670 vfs_bio_set_valid(struct buf *bp, int base, int size)
4671 {
4672 	int i, n;
4673 	vm_page_t m;
4674 
4675 	if (!(bp->b_flags & B_VMIO))
4676 		return;
4677 
4678 	/*
4679 	 * Fixup base to be relative to beginning of first page.
4680 	 * Set initial n to be the maximum number of bytes in the
4681 	 * first page that can be validated.
4682 	 */
4683 	base += (bp->b_offset & PAGE_MASK);
4684 	n = PAGE_SIZE - (base & PAGE_MASK);
4685 
4686 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4687 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4688 		m = bp->b_pages[i];
4689 		if (n > size)
4690 			n = size;
4691 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4692 		base += n;
4693 		size -= n;
4694 		n = PAGE_SIZE;
4695 	}
4696 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4697 }
4698 
4699 /*
4700  *	vfs_bio_clrbuf:
4701  *
4702  *	If the specified buffer is a non-VMIO buffer, clear the entire
4703  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4704  *	validate only the previously invalid portions of the buffer.
4705  *	This routine essentially fakes an I/O, so we need to clear
4706  *	BIO_ERROR and B_INVAL.
4707  *
4708  *	Note that while we only theoretically need to clear through b_bcount,
4709  *	we go ahead and clear through b_bufsize.
4710  */
4711 void
4712 vfs_bio_clrbuf(struct buf *bp)
4713 {
4714 	int i, j, mask, sa, ea, slide;
4715 
4716 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4717 		clrbuf(bp);
4718 		return;
4719 	}
4720 	bp->b_flags &= ~B_INVAL;
4721 	bp->b_ioflags &= ~BIO_ERROR;
4722 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4723 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4724 	    (bp->b_offset & PAGE_MASK) == 0) {
4725 		if (bp->b_pages[0] == bogus_page)
4726 			goto unlock;
4727 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4728 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4729 		if ((bp->b_pages[0]->valid & mask) == mask)
4730 			goto unlock;
4731 		if ((bp->b_pages[0]->valid & mask) == 0) {
4732 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4733 			bp->b_pages[0]->valid |= mask;
4734 			goto unlock;
4735 		}
4736 	}
4737 	sa = bp->b_offset & PAGE_MASK;
4738 	slide = 0;
4739 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4740 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4741 		ea = slide & PAGE_MASK;
4742 		if (ea == 0)
4743 			ea = PAGE_SIZE;
4744 		if (bp->b_pages[i] == bogus_page)
4745 			continue;
4746 		j = sa / DEV_BSIZE;
4747 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4748 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4749 		if ((bp->b_pages[i]->valid & mask) == mask)
4750 			continue;
4751 		if ((bp->b_pages[i]->valid & mask) == 0)
4752 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4753 		else {
4754 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4755 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4756 					pmap_zero_page_area(bp->b_pages[i],
4757 					    sa, DEV_BSIZE);
4758 				}
4759 			}
4760 		}
4761 		bp->b_pages[i]->valid |= mask;
4762 	}
4763 unlock:
4764 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4765 	bp->b_resid = 0;
4766 }
4767 
4768 void
4769 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4770 {
4771 	vm_page_t m;
4772 	int i, n;
4773 
4774 	if (buf_mapped(bp)) {
4775 		BUF_CHECK_MAPPED(bp);
4776 		bzero(bp->b_data + base, size);
4777 	} else {
4778 		BUF_CHECK_UNMAPPED(bp);
4779 		n = PAGE_SIZE - (base & PAGE_MASK);
4780 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4781 			m = bp->b_pages[i];
4782 			if (n > size)
4783 				n = size;
4784 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4785 			base += n;
4786 			size -= n;
4787 			n = PAGE_SIZE;
4788 		}
4789 	}
4790 }
4791 
4792 /*
4793  * Update buffer flags based on I/O request parameters, optionally releasing the
4794  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4795  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4796  * I/O).  Otherwise the buffer is released to the cache.
4797  */
4798 static void
4799 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4800 {
4801 
4802 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4803 	    ("buf %p non-VMIO noreuse", bp));
4804 
4805 	if ((ioflag & IO_DIRECT) != 0)
4806 		bp->b_flags |= B_DIRECT;
4807 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4808 		bp->b_flags |= B_RELBUF;
4809 		if ((ioflag & IO_NOREUSE) != 0)
4810 			bp->b_flags |= B_NOREUSE;
4811 		if (release)
4812 			brelse(bp);
4813 	} else if (release)
4814 		bqrelse(bp);
4815 }
4816 
4817 void
4818 vfs_bio_brelse(struct buf *bp, int ioflag)
4819 {
4820 
4821 	b_io_dismiss(bp, ioflag, true);
4822 }
4823 
4824 void
4825 vfs_bio_set_flags(struct buf *bp, int ioflag)
4826 {
4827 
4828 	b_io_dismiss(bp, ioflag, false);
4829 }
4830 
4831 /*
4832  * vm_hold_load_pages and vm_hold_free_pages get pages into
4833  * a buffers address space.  The pages are anonymous and are
4834  * not associated with a file object.
4835  */
4836 static void
4837 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4838 {
4839 	vm_offset_t pg;
4840 	vm_page_t p;
4841 	int index;
4842 
4843 	BUF_CHECK_MAPPED(bp);
4844 
4845 	to = round_page(to);
4846 	from = round_page(from);
4847 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4848 
4849 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4850 		/*
4851 		 * note: must allocate system pages since blocking here
4852 		 * could interfere with paging I/O, no matter which
4853 		 * process we are.
4854 		 */
4855 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4856 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
4857 		    VM_ALLOC_WAITOK);
4858 		pmap_qenter(pg, &p, 1);
4859 		bp->b_pages[index] = p;
4860 	}
4861 	bp->b_npages = index;
4862 }
4863 
4864 /* Return pages associated with this buf to the vm system */
4865 static void
4866 vm_hold_free_pages(struct buf *bp, int newbsize)
4867 {
4868 	vm_offset_t from;
4869 	vm_page_t p;
4870 	int index, newnpages;
4871 
4872 	BUF_CHECK_MAPPED(bp);
4873 
4874 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4875 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4876 	if (bp->b_npages > newnpages)
4877 		pmap_qremove(from, bp->b_npages - newnpages);
4878 	for (index = newnpages; index < bp->b_npages; index++) {
4879 		p = bp->b_pages[index];
4880 		bp->b_pages[index] = NULL;
4881 		p->wire_count--;
4882 		vm_page_free(p);
4883 	}
4884 	vm_wire_sub(bp->b_npages - newnpages);
4885 	bp->b_npages = newnpages;
4886 }
4887 
4888 /*
4889  * Map an IO request into kernel virtual address space.
4890  *
4891  * All requests are (re)mapped into kernel VA space.
4892  * Notice that we use b_bufsize for the size of the buffer
4893  * to be mapped.  b_bcount might be modified by the driver.
4894  *
4895  * Note that even if the caller determines that the address space should
4896  * be valid, a race or a smaller-file mapped into a larger space may
4897  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4898  * check the return value.
4899  *
4900  * This function only works with pager buffers.
4901  */
4902 int
4903 vmapbuf(struct buf *bp, int mapbuf)
4904 {
4905 	vm_prot_t prot;
4906 	int pidx;
4907 
4908 	if (bp->b_bufsize < 0)
4909 		return (-1);
4910 	prot = VM_PROT_READ;
4911 	if (bp->b_iocmd == BIO_READ)
4912 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4913 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4914 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4915 	    btoc(MAXPHYS))) < 0)
4916 		return (-1);
4917 	bp->b_npages = pidx;
4918 	bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4919 	if (mapbuf || !unmapped_buf_allowed) {
4920 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4921 		bp->b_data = bp->b_kvabase + bp->b_offset;
4922 	} else
4923 		bp->b_data = unmapped_buf;
4924 	return(0);
4925 }
4926 
4927 /*
4928  * Free the io map PTEs associated with this IO operation.
4929  * We also invalidate the TLB entries and restore the original b_addr.
4930  *
4931  * This function only works with pager buffers.
4932  */
4933 void
4934 vunmapbuf(struct buf *bp)
4935 {
4936 	int npages;
4937 
4938 	npages = bp->b_npages;
4939 	if (buf_mapped(bp))
4940 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4941 	vm_page_unhold_pages(bp->b_pages, npages);
4942 
4943 	bp->b_data = unmapped_buf;
4944 }
4945 
4946 void
4947 bdone(struct buf *bp)
4948 {
4949 	struct mtx *mtxp;
4950 
4951 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4952 	mtx_lock(mtxp);
4953 	bp->b_flags |= B_DONE;
4954 	wakeup(bp);
4955 	mtx_unlock(mtxp);
4956 }
4957 
4958 void
4959 bwait(struct buf *bp, u_char pri, const char *wchan)
4960 {
4961 	struct mtx *mtxp;
4962 
4963 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4964 	mtx_lock(mtxp);
4965 	while ((bp->b_flags & B_DONE) == 0)
4966 		msleep(bp, mtxp, pri, wchan, 0);
4967 	mtx_unlock(mtxp);
4968 }
4969 
4970 int
4971 bufsync(struct bufobj *bo, int waitfor)
4972 {
4973 
4974 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
4975 }
4976 
4977 void
4978 bufstrategy(struct bufobj *bo, struct buf *bp)
4979 {
4980 	int i = 0;
4981 	struct vnode *vp;
4982 
4983 	vp = bp->b_vp;
4984 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4985 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4986 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4987 	i = VOP_STRATEGY(vp, bp);
4988 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4989 }
4990 
4991 /*
4992  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
4993  */
4994 void
4995 bufobj_init(struct bufobj *bo, void *private)
4996 {
4997 	static volatile int bufobj_cleanq;
4998 
4999         bo->bo_domain =
5000             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5001         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5002         bo->bo_private = private;
5003         TAILQ_INIT(&bo->bo_clean.bv_hd);
5004         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5005 }
5006 
5007 void
5008 bufobj_wrefl(struct bufobj *bo)
5009 {
5010 
5011 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5012 	ASSERT_BO_WLOCKED(bo);
5013 	bo->bo_numoutput++;
5014 }
5015 
5016 void
5017 bufobj_wref(struct bufobj *bo)
5018 {
5019 
5020 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5021 	BO_LOCK(bo);
5022 	bo->bo_numoutput++;
5023 	BO_UNLOCK(bo);
5024 }
5025 
5026 void
5027 bufobj_wdrop(struct bufobj *bo)
5028 {
5029 
5030 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5031 	BO_LOCK(bo);
5032 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5033 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5034 		bo->bo_flag &= ~BO_WWAIT;
5035 		wakeup(&bo->bo_numoutput);
5036 	}
5037 	BO_UNLOCK(bo);
5038 }
5039 
5040 int
5041 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5042 {
5043 	int error;
5044 
5045 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5046 	ASSERT_BO_WLOCKED(bo);
5047 	error = 0;
5048 	while (bo->bo_numoutput) {
5049 		bo->bo_flag |= BO_WWAIT;
5050 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5051 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5052 		if (error)
5053 			break;
5054 	}
5055 	return (error);
5056 }
5057 
5058 /*
5059  * Set bio_data or bio_ma for struct bio from the struct buf.
5060  */
5061 void
5062 bdata2bio(struct buf *bp, struct bio *bip)
5063 {
5064 
5065 	if (!buf_mapped(bp)) {
5066 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5067 		bip->bio_ma = bp->b_pages;
5068 		bip->bio_ma_n = bp->b_npages;
5069 		bip->bio_data = unmapped_buf;
5070 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5071 		bip->bio_flags |= BIO_UNMAPPED;
5072 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5073 		    PAGE_SIZE == bp->b_npages,
5074 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5075 		    (long long)bip->bio_length, bip->bio_ma_n));
5076 	} else {
5077 		bip->bio_data = bp->b_data;
5078 		bip->bio_ma = NULL;
5079 	}
5080 }
5081 
5082 /*
5083  * The MIPS pmap code currently doesn't handle aliased pages.
5084  * The VIPT caches may not handle page aliasing themselves, leading
5085  * to data corruption.
5086  *
5087  * As such, this code makes a system extremely unhappy if said
5088  * system doesn't support unaliasing the above situation in hardware.
5089  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5090  * this feature at build time, so it has to be handled in software.
5091  *
5092  * Once the MIPS pmap/cache code grows to support this function on
5093  * earlier chips, it should be flipped back off.
5094  */
5095 #ifdef	__mips__
5096 static int buf_pager_relbuf = 1;
5097 #else
5098 static int buf_pager_relbuf = 0;
5099 #endif
5100 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5101     &buf_pager_relbuf, 0,
5102     "Make buffer pager release buffers after reading");
5103 
5104 /*
5105  * The buffer pager.  It uses buffer reads to validate pages.
5106  *
5107  * In contrast to the generic local pager from vm/vnode_pager.c, this
5108  * pager correctly and easily handles volumes where the underlying
5109  * device block size is greater than the machine page size.  The
5110  * buffer cache transparently extends the requested page run to be
5111  * aligned at the block boundary, and does the necessary bogus page
5112  * replacements in the addends to avoid obliterating already valid
5113  * pages.
5114  *
5115  * The only non-trivial issue is that the exclusive busy state for
5116  * pages, which is assumed by the vm_pager_getpages() interface, is
5117  * incompatible with the VMIO buffer cache's desire to share-busy the
5118  * pages.  This function performs a trivial downgrade of the pages'
5119  * state before reading buffers, and a less trivial upgrade from the
5120  * shared-busy to excl-busy state after the read.
5121  */
5122 int
5123 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5124     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5125     vbg_get_blksize_t get_blksize)
5126 {
5127 	vm_page_t m;
5128 	vm_object_t object;
5129 	struct buf *bp;
5130 	struct mount *mp;
5131 	daddr_t lbn, lbnp;
5132 	vm_ooffset_t la, lb, poff, poffe;
5133 	long bsize;
5134 	int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5135 	bool redo, lpart;
5136 
5137 	object = vp->v_object;
5138 	mp = vp->v_mount;
5139 	error = 0;
5140 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5141 	if (la >= object->un_pager.vnp.vnp_size)
5142 		return (VM_PAGER_BAD);
5143 
5144 	/*
5145 	 * Change the meaning of la from where the last requested page starts
5146 	 * to where it ends, because that's the end of the requested region
5147 	 * and the start of the potential read-ahead region.
5148 	 */
5149 	la += PAGE_SIZE;
5150 	lpart = la > object->un_pager.vnp.vnp_size;
5151 	bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
5152 
5153 	/*
5154 	 * Calculate read-ahead, behind and total pages.
5155 	 */
5156 	pgsin = count;
5157 	lb = IDX_TO_OFF(ma[0]->pindex);
5158 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5159 	pgsin += pgsin_b;
5160 	if (rbehind != NULL)
5161 		*rbehind = pgsin_b;
5162 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5163 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5164 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5165 		    PAGE_SIZE) - la);
5166 	pgsin += pgsin_a;
5167 	if (rahead != NULL)
5168 		*rahead = pgsin_a;
5169 	VM_CNT_INC(v_vnodein);
5170 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5171 
5172 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5173 	    != 0) ? GB_UNMAPPED : 0;
5174 	VM_OBJECT_WLOCK(object);
5175 again:
5176 	for (i = 0; i < count; i++)
5177 		vm_page_busy_downgrade(ma[i]);
5178 	VM_OBJECT_WUNLOCK(object);
5179 
5180 	lbnp = -1;
5181 	for (i = 0; i < count; i++) {
5182 		m = ma[i];
5183 
5184 		/*
5185 		 * Pages are shared busy and the object lock is not
5186 		 * owned, which together allow for the pages'
5187 		 * invalidation.  The racy test for validity avoids
5188 		 * useless creation of the buffer for the most typical
5189 		 * case when invalidation is not used in redo or for
5190 		 * parallel read.  The shared->excl upgrade loop at
5191 		 * the end of the function catches the race in a
5192 		 * reliable way (protected by the object lock).
5193 		 */
5194 		if (m->valid == VM_PAGE_BITS_ALL)
5195 			continue;
5196 
5197 		poff = IDX_TO_OFF(m->pindex);
5198 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5199 		for (; poff < poffe; poff += bsize) {
5200 			lbn = get_lblkno(vp, poff);
5201 			if (lbn == lbnp)
5202 				goto next_page;
5203 			lbnp = lbn;
5204 
5205 			bsize = get_blksize(vp, lbn);
5206 			error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
5207 			    br_flags, &bp);
5208 			if (error != 0)
5209 				goto end_pages;
5210 			if (LIST_EMPTY(&bp->b_dep)) {
5211 				/*
5212 				 * Invalidation clears m->valid, but
5213 				 * may leave B_CACHE flag if the
5214 				 * buffer existed at the invalidation
5215 				 * time.  In this case, recycle the
5216 				 * buffer to do real read on next
5217 				 * bread() after redo.
5218 				 *
5219 				 * Otherwise B_RELBUF is not strictly
5220 				 * necessary, enable to reduce buf
5221 				 * cache pressure.
5222 				 */
5223 				if (buf_pager_relbuf ||
5224 				    m->valid != VM_PAGE_BITS_ALL)
5225 					bp->b_flags |= B_RELBUF;
5226 
5227 				bp->b_flags &= ~B_NOCACHE;
5228 				brelse(bp);
5229 			} else {
5230 				bqrelse(bp);
5231 			}
5232 		}
5233 		KASSERT(1 /* racy, enable for debugging */ ||
5234 		    m->valid == VM_PAGE_BITS_ALL || i == count - 1,
5235 		    ("buf %d %p invalid", i, m));
5236 		if (i == count - 1 && lpart) {
5237 			VM_OBJECT_WLOCK(object);
5238 			if (m->valid != 0 &&
5239 			    m->valid != VM_PAGE_BITS_ALL)
5240 				vm_page_zero_invalid(m, TRUE);
5241 			VM_OBJECT_WUNLOCK(object);
5242 		}
5243 next_page:;
5244 	}
5245 end_pages:
5246 
5247 	VM_OBJECT_WLOCK(object);
5248 	redo = false;
5249 	for (i = 0; i < count; i++) {
5250 		vm_page_sunbusy(ma[i]);
5251 		ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL);
5252 
5253 		/*
5254 		 * Since the pages were only sbusy while neither the
5255 		 * buffer nor the object lock was held by us, or
5256 		 * reallocated while vm_page_grab() slept for busy
5257 		 * relinguish, they could have been invalidated.
5258 		 * Recheck the valid bits and re-read as needed.
5259 		 *
5260 		 * Note that the last page is made fully valid in the
5261 		 * read loop, and partial validity for the page at
5262 		 * index count - 1 could mean that the page was
5263 		 * invalidated or removed, so we must restart for
5264 		 * safety as well.
5265 		 */
5266 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
5267 			redo = true;
5268 	}
5269 	if (redo && error == 0)
5270 		goto again;
5271 	VM_OBJECT_WUNLOCK(object);
5272 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5273 }
5274 
5275 #include "opt_ddb.h"
5276 #ifdef DDB
5277 #include <ddb/ddb.h>
5278 
5279 /* DDB command to show buffer data */
5280 DB_SHOW_COMMAND(buffer, db_show_buffer)
5281 {
5282 	/* get args */
5283 	struct buf *bp = (struct buf *)addr;
5284 #ifdef FULL_BUF_TRACKING
5285 	uint32_t i, j;
5286 #endif
5287 
5288 	if (!have_addr) {
5289 		db_printf("usage: show buffer <addr>\n");
5290 		return;
5291 	}
5292 
5293 	db_printf("buf at %p\n", bp);
5294 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
5295 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
5296 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
5297 	db_printf(
5298 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5299 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
5300 	    "b_dep = %p\n",
5301 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5302 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5303 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
5304 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5305 	    bp->b_kvabase, bp->b_kvasize);
5306 	if (bp->b_npages) {
5307 		int i;
5308 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5309 		for (i = 0; i < bp->b_npages; i++) {
5310 			vm_page_t m;
5311 			m = bp->b_pages[i];
5312 			if (m != NULL)
5313 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5314 				    (u_long)m->pindex,
5315 				    (u_long)VM_PAGE_TO_PHYS(m));
5316 			else
5317 				db_printf("( ??? )");
5318 			if ((i + 1) < bp->b_npages)
5319 				db_printf(",");
5320 		}
5321 		db_printf("\n");
5322 	}
5323 	BUF_LOCKPRINTINFO(bp);
5324 #if defined(FULL_BUF_TRACKING)
5325 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5326 
5327 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5328 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5329 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5330 			continue;
5331 		db_printf(" %2u: %s\n", j,
5332 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5333 	}
5334 #elif defined(BUF_TRACKING)
5335 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5336 #endif
5337 	db_printf(" ");
5338 }
5339 
5340 DB_SHOW_COMMAND(bufqueues, bufqueues)
5341 {
5342 	struct bufdomain *bd;
5343 	struct buf *bp;
5344 	long total;
5345 	int i, j, cnt;
5346 
5347 	db_printf("bqempty: %d\n", bqempty.bq_len);
5348 
5349 	for (i = 0; i < buf_domains; i++) {
5350 		bd = &bdomain[i];
5351 		db_printf("Buf domain %d\n", i);
5352 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5353 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5354 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5355 		db_printf("\n");
5356 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5357 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5358 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5359 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5360 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5361 		db_printf("\n");
5362 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5363 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5364 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5365 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5366 		db_printf("\n");
5367 		total = 0;
5368 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5369 			total += bp->b_bufsize;
5370 		db_printf("\tcleanq count\t%d (%ld)\n",
5371 		    bd->bd_cleanq->bq_len, total);
5372 		total = 0;
5373 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5374 			total += bp->b_bufsize;
5375 		db_printf("\tdirtyq count\t%d (%ld)\n",
5376 		    bd->bd_dirtyq.bq_len, total);
5377 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5378 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5379 		db_printf("\tCPU ");
5380 		for (j = 0; j <= mp_maxid; j++)
5381 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5382 		db_printf("\n");
5383 		cnt = 0;
5384 		total = 0;
5385 		for (j = 0; j < nbuf; j++)
5386 			if (buf[j].b_domain == i && BUF_ISLOCKED(&buf[j])) {
5387 				cnt++;
5388 				total += buf[j].b_bufsize;
5389 			}
5390 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5391 		cnt = 0;
5392 		total = 0;
5393 		for (j = 0; j < nbuf; j++)
5394 			if (buf[j].b_domain == i) {
5395 				cnt++;
5396 				total += buf[j].b_bufsize;
5397 			}
5398 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5399 	}
5400 }
5401 
5402 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5403 {
5404 	struct buf *bp;
5405 	int i;
5406 
5407 	for (i = 0; i < nbuf; i++) {
5408 		bp = &buf[i];
5409 		if (BUF_ISLOCKED(bp)) {
5410 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5411 			db_printf("\n");
5412 			if (db_pager_quit)
5413 				break;
5414 		}
5415 	}
5416 }
5417 
5418 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5419 {
5420 	struct vnode *vp;
5421 	struct buf *bp;
5422 
5423 	if (!have_addr) {
5424 		db_printf("usage: show vnodebufs <addr>\n");
5425 		return;
5426 	}
5427 	vp = (struct vnode *)addr;
5428 	db_printf("Clean buffers:\n");
5429 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5430 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5431 		db_printf("\n");
5432 	}
5433 	db_printf("Dirty buffers:\n");
5434 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5435 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5436 		db_printf("\n");
5437 	}
5438 }
5439 
5440 DB_COMMAND(countfreebufs, db_coundfreebufs)
5441 {
5442 	struct buf *bp;
5443 	int i, used = 0, nfree = 0;
5444 
5445 	if (have_addr) {
5446 		db_printf("usage: countfreebufs\n");
5447 		return;
5448 	}
5449 
5450 	for (i = 0; i < nbuf; i++) {
5451 		bp = &buf[i];
5452 		if (bp->b_qindex == QUEUE_EMPTY)
5453 			nfree++;
5454 		else
5455 			used++;
5456 	}
5457 
5458 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5459 	    nfree + used);
5460 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5461 }
5462 #endif /* DDB */
5463