xref: /freebsd/sys/kern/vfs_bio.c (revision 488ab515d6cc02f6f743f0badfc8e94eb553cd30)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/bitset.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/buf.h>
57 #include <sys/devicestat.h>
58 #include <sys/eventhandler.h>
59 #include <sys/fail.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/proc.h>
68 #include <sys/racct.h>
69 #include <sys/resourcevar.h>
70 #include <sys/rwlock.h>
71 #include <sys/smp.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
74 #include <sys/vmem.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/watchdog.h>
78 #include <geom/geom.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_map.h>
88 #include <vm/swap_pager.h>
89 #include "opt_swap.h"
90 
91 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
92 
93 struct	bio_ops bioops;		/* I/O operation notification */
94 
95 struct	buf_ops buf_ops_bio = {
96 	.bop_name	=	"buf_ops_bio",
97 	.bop_write	=	bufwrite,
98 	.bop_strategy	=	bufstrategy,
99 	.bop_sync	=	bufsync,
100 	.bop_bdflush	=	bufbdflush,
101 };
102 
103 struct bufqueue {
104 	struct mtx_padalign	bq_lock;
105 	TAILQ_HEAD(, buf)	bq_queue;
106 	uint8_t			bq_index;
107 	uint16_t		bq_subqueue;
108 	int			bq_len;
109 } __aligned(CACHE_LINE_SIZE);
110 
111 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
112 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
113 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
114 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
115 
116 struct bufdomain {
117 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
118 	struct bufqueue bd_dirtyq;
119 	struct bufqueue	*bd_cleanq;
120 	struct mtx_padalign bd_run_lock;
121 	/* Constants */
122 	long		bd_maxbufspace;
123 	long		bd_hibufspace;
124 	long 		bd_lobufspace;
125 	long 		bd_bufspacethresh;
126 	int		bd_hifreebuffers;
127 	int		bd_lofreebuffers;
128 	int		bd_hidirtybuffers;
129 	int		bd_lodirtybuffers;
130 	int		bd_dirtybufthresh;
131 	int		bd_lim;
132 	/* atomics */
133 	int		bd_wanted;
134 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
135 	int __aligned(CACHE_LINE_SIZE)	bd_running;
136 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
137 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
138 } __aligned(CACHE_LINE_SIZE);
139 
140 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
141 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
142 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
143 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
144 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
145 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
146 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
147 #define	BD_DOMAIN(bd)		(bd - bdomain)
148 
149 static struct buf *buf;		/* buffer header pool */
150 extern struct buf *swbuf;	/* Swap buffer header pool. */
151 caddr_t unmapped_buf;
152 
153 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
154 struct proc *bufdaemonproc;
155 
156 static int inmem(struct vnode *vp, daddr_t blkno);
157 static void vm_hold_free_pages(struct buf *bp, int newbsize);
158 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
159 		vm_offset_t to);
160 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
161 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
162 		vm_page_t m);
163 static void vfs_clean_pages_dirty_buf(struct buf *bp);
164 static void vfs_setdirty_locked_object(struct buf *bp);
165 static void vfs_vmio_invalidate(struct buf *bp);
166 static void vfs_vmio_truncate(struct buf *bp, int npages);
167 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
168 static int vfs_bio_clcheck(struct vnode *vp, int size,
169 		daddr_t lblkno, daddr_t blkno);
170 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
171 		void (*)(struct buf *));
172 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
173 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
174 static void buf_daemon(void);
175 static __inline void bd_wakeup(void);
176 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
177 static void bufkva_reclaim(vmem_t *, int);
178 static void bufkva_free(struct buf *);
179 static int buf_import(void *, void **, int, int, int);
180 static void buf_release(void *, void **, int);
181 static void maxbcachebuf_adjust(void);
182 static inline struct bufdomain *bufdomain(struct buf *);
183 static void bq_remove(struct bufqueue *bq, struct buf *bp);
184 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
185 static int buf_recycle(struct bufdomain *, bool kva);
186 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
187 	    const char *lockname);
188 static void bd_init(struct bufdomain *bd);
189 static int bd_flushall(struct bufdomain *bd);
190 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
191 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
192 
193 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
194 int vmiodirenable = TRUE;
195 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
196     "Use the VM system for directory writes");
197 long runningbufspace;
198 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
199     "Amount of presently outstanding async buffer io");
200 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
201     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
202 static counter_u64_t bufkvaspace;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
204     "Kernel virtual memory used for buffers");
205 static long maxbufspace;
206 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
207     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
208     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
209     "Maximum allowed value of bufspace (including metadata)");
210 static long bufmallocspace;
211 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
212     "Amount of malloced memory for buffers");
213 static long maxbufmallocspace;
214 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
215     0, "Maximum amount of malloced memory for buffers");
216 static long lobufspace;
217 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
218     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
219     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
220     "Minimum amount of buffers we want to have");
221 long hibufspace;
222 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
223     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
224     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
225     "Maximum allowed value of bufspace (excluding metadata)");
226 long bufspacethresh;
227 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
228     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
229     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
230     "Bufspace consumed before waking the daemon to free some");
231 static counter_u64_t buffreekvacnt;
232 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
233     "Number of times we have freed the KVA space from some buffer");
234 static counter_u64_t bufdefragcnt;
235 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
236     "Number of times we have had to repeat buffer allocation to defragment");
237 static long lorunningspace;
238 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
239     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
240     "Minimum preferred space used for in-progress I/O");
241 static long hirunningspace;
242 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
243     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
244     "Maximum amount of space to use for in-progress I/O");
245 int dirtybufferflushes;
246 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
247     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
248 int bdwriteskip;
249 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
250     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
251 int altbufferflushes;
252 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
253     0, "Number of fsync flushes to limit dirty buffers");
254 static int recursiveflushes;
255 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
256     0, "Number of flushes skipped due to being recursive");
257 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
258 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
259     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
260     "Number of buffers that are dirty (has unwritten changes) at the moment");
261 static int lodirtybuffers;
262 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
263     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
264     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
265     "How many buffers we want to have free before bufdaemon can sleep");
266 static int hidirtybuffers;
267 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
268     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
269     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
270     "When the number of dirty buffers is considered severe");
271 int dirtybufthresh;
272 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
273     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
274     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
275     "Number of bdwrite to bawrite conversions to clear dirty buffers");
276 static int numfreebuffers;
277 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
278     "Number of free buffers");
279 static int lofreebuffers;
280 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
281     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
282     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
283    "Target number of free buffers");
284 static int hifreebuffers;
285 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
286     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
287     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
288    "Threshold for clean buffer recycling");
289 static counter_u64_t getnewbufcalls;
290 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
291    &getnewbufcalls, "Number of calls to getnewbuf");
292 static counter_u64_t getnewbufrestarts;
293 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
294     &getnewbufrestarts,
295     "Number of times getnewbuf has had to restart a buffer acquisition");
296 static counter_u64_t mappingrestarts;
297 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
298     &mappingrestarts,
299     "Number of times getblk has had to restart a buffer mapping for "
300     "unmapped buffer");
301 static counter_u64_t numbufallocfails;
302 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
303     &numbufallocfails, "Number of times buffer allocations failed");
304 static int flushbufqtarget = 100;
305 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
306     "Amount of work to do in flushbufqueues when helping bufdaemon");
307 static counter_u64_t notbufdflushes;
308 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
309     "Number of dirty buffer flushes done by the bufdaemon helpers");
310 static long barrierwrites;
311 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
312     "Number of barrier writes");
313 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
314     &unmapped_buf_allowed, 0,
315     "Permit the use of the unmapped i/o");
316 int maxbcachebuf = MAXBCACHEBUF;
317 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
318     "Maximum size of a buffer cache block");
319 
320 /*
321  * This lock synchronizes access to bd_request.
322  */
323 static struct mtx_padalign __exclusive_cache_line bdlock;
324 
325 /*
326  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
327  * waitrunningbufspace().
328  */
329 static struct mtx_padalign __exclusive_cache_line rbreqlock;
330 
331 /*
332  * Lock that protects bdirtywait.
333  */
334 static struct mtx_padalign __exclusive_cache_line bdirtylock;
335 
336 /*
337  * Wakeup point for bufdaemon, as well as indicator of whether it is already
338  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
339  * is idling.
340  */
341 static int bd_request;
342 
343 /*
344  * Request for the buf daemon to write more buffers than is indicated by
345  * lodirtybuf.  This may be necessary to push out excess dependencies or
346  * defragment the address space where a simple count of the number of dirty
347  * buffers is insufficient to characterize the demand for flushing them.
348  */
349 static int bd_speedupreq;
350 
351 /*
352  * Synchronization (sleep/wakeup) variable for active buffer space requests.
353  * Set when wait starts, cleared prior to wakeup().
354  * Used in runningbufwakeup() and waitrunningbufspace().
355  */
356 static int runningbufreq;
357 
358 /*
359  * Synchronization for bwillwrite() waiters.
360  */
361 static int bdirtywait;
362 
363 /*
364  * Definitions for the buffer free lists.
365  */
366 #define QUEUE_NONE	0	/* on no queue */
367 #define QUEUE_EMPTY	1	/* empty buffer headers */
368 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
369 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
370 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
371 
372 /* Maximum number of buffer domains. */
373 #define	BUF_DOMAINS	8
374 
375 struct bufdomainset bdlodirty;		/* Domains > lodirty */
376 struct bufdomainset bdhidirty;		/* Domains > hidirty */
377 
378 /* Configured number of clean queues. */
379 static int __read_mostly buf_domains;
380 
381 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
382 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
383 struct bufqueue __exclusive_cache_line bqempty;
384 
385 /*
386  * per-cpu empty buffer cache.
387  */
388 uma_zone_t buf_zone;
389 
390 /*
391  * Single global constant for BUF_WMESG, to avoid getting multiple references.
392  * buf_wmesg is referred from macros.
393  */
394 const char *buf_wmesg = BUF_WMESG;
395 
396 static int
397 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
398 {
399 	long value;
400 	int error;
401 
402 	value = *(long *)arg1;
403 	error = sysctl_handle_long(oidp, &value, 0, req);
404 	if (error != 0 || req->newptr == NULL)
405 		return (error);
406 	mtx_lock(&rbreqlock);
407 	if (arg1 == &hirunningspace) {
408 		if (value < lorunningspace)
409 			error = EINVAL;
410 		else
411 			hirunningspace = value;
412 	} else {
413 		KASSERT(arg1 == &lorunningspace,
414 		    ("%s: unknown arg1", __func__));
415 		if (value > hirunningspace)
416 			error = EINVAL;
417 		else
418 			lorunningspace = value;
419 	}
420 	mtx_unlock(&rbreqlock);
421 	return (error);
422 }
423 
424 static int
425 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
426 {
427 	int error;
428 	int value;
429 	int i;
430 
431 	value = *(int *)arg1;
432 	error = sysctl_handle_int(oidp, &value, 0, req);
433 	if (error != 0 || req->newptr == NULL)
434 		return (error);
435 	*(int *)arg1 = value;
436 	for (i = 0; i < buf_domains; i++)
437 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
438 		    value / buf_domains;
439 
440 	return (error);
441 }
442 
443 static int
444 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
445 {
446 	long value;
447 	int error;
448 	int i;
449 
450 	value = *(long *)arg1;
451 	error = sysctl_handle_long(oidp, &value, 0, req);
452 	if (error != 0 || req->newptr == NULL)
453 		return (error);
454 	*(long *)arg1 = value;
455 	for (i = 0; i < buf_domains; i++)
456 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
457 		    value / buf_domains;
458 
459 	return (error);
460 }
461 
462 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
463     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
464 static int
465 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
466 {
467 	long lvalue;
468 	int ivalue;
469 	int i;
470 
471 	lvalue = 0;
472 	for (i = 0; i < buf_domains; i++)
473 		lvalue += bdomain[i].bd_bufspace;
474 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
475 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
476 	if (lvalue > INT_MAX)
477 		/* On overflow, still write out a long to trigger ENOMEM. */
478 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
479 	ivalue = lvalue;
480 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
481 }
482 #else
483 static int
484 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
485 {
486 	long lvalue;
487 	int i;
488 
489 	lvalue = 0;
490 	for (i = 0; i < buf_domains; i++)
491 		lvalue += bdomain[i].bd_bufspace;
492 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
493 }
494 #endif
495 
496 static int
497 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
498 {
499 	int value;
500 	int i;
501 
502 	value = 0;
503 	for (i = 0; i < buf_domains; i++)
504 		value += bdomain[i].bd_numdirtybuffers;
505 	return (sysctl_handle_int(oidp, &value, 0, req));
506 }
507 
508 /*
509  *	bdirtywakeup:
510  *
511  *	Wakeup any bwillwrite() waiters.
512  */
513 static void
514 bdirtywakeup(void)
515 {
516 	mtx_lock(&bdirtylock);
517 	if (bdirtywait) {
518 		bdirtywait = 0;
519 		wakeup(&bdirtywait);
520 	}
521 	mtx_unlock(&bdirtylock);
522 }
523 
524 /*
525  *	bd_clear:
526  *
527  *	Clear a domain from the appropriate bitsets when dirtybuffers
528  *	is decremented.
529  */
530 static void
531 bd_clear(struct bufdomain *bd)
532 {
533 
534 	mtx_lock(&bdirtylock);
535 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
536 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
537 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
538 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
539 	mtx_unlock(&bdirtylock);
540 }
541 
542 /*
543  *	bd_set:
544  *
545  *	Set a domain in the appropriate bitsets when dirtybuffers
546  *	is incremented.
547  */
548 static void
549 bd_set(struct bufdomain *bd)
550 {
551 
552 	mtx_lock(&bdirtylock);
553 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
554 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
555 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
556 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
557 	mtx_unlock(&bdirtylock);
558 }
559 
560 /*
561  *	bdirtysub:
562  *
563  *	Decrement the numdirtybuffers count by one and wakeup any
564  *	threads blocked in bwillwrite().
565  */
566 static void
567 bdirtysub(struct buf *bp)
568 {
569 	struct bufdomain *bd;
570 	int num;
571 
572 	bd = bufdomain(bp);
573 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
574 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
575 		bdirtywakeup();
576 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
577 		bd_clear(bd);
578 }
579 
580 /*
581  *	bdirtyadd:
582  *
583  *	Increment the numdirtybuffers count by one and wakeup the buf
584  *	daemon if needed.
585  */
586 static void
587 bdirtyadd(struct buf *bp)
588 {
589 	struct bufdomain *bd;
590 	int num;
591 
592 	/*
593 	 * Only do the wakeup once as we cross the boundary.  The
594 	 * buf daemon will keep running until the condition clears.
595 	 */
596 	bd = bufdomain(bp);
597 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
598 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
599 		bd_wakeup();
600 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
601 		bd_set(bd);
602 }
603 
604 /*
605  *	bufspace_daemon_wakeup:
606  *
607  *	Wakeup the daemons responsible for freeing clean bufs.
608  */
609 static void
610 bufspace_daemon_wakeup(struct bufdomain *bd)
611 {
612 
613 	/*
614 	 * avoid the lock if the daemon is running.
615 	 */
616 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
617 		BD_RUN_LOCK(bd);
618 		atomic_store_int(&bd->bd_running, 1);
619 		wakeup(&bd->bd_running);
620 		BD_RUN_UNLOCK(bd);
621 	}
622 }
623 
624 /*
625  *	bufspace_daemon_wait:
626  *
627  *	Sleep until the domain falls below a limit or one second passes.
628  */
629 static void
630 bufspace_daemon_wait(struct bufdomain *bd)
631 {
632 	/*
633 	 * Re-check our limits and sleep.  bd_running must be
634 	 * cleared prior to checking the limits to avoid missed
635 	 * wakeups.  The waker will adjust one of bufspace or
636 	 * freebuffers prior to checking bd_running.
637 	 */
638 	BD_RUN_LOCK(bd);
639 	atomic_store_int(&bd->bd_running, 0);
640 	if (bd->bd_bufspace < bd->bd_bufspacethresh &&
641 	    bd->bd_freebuffers > bd->bd_lofreebuffers) {
642 		msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
643 		    "-", hz);
644 	} else {
645 		/* Avoid spurious wakeups while running. */
646 		atomic_store_int(&bd->bd_running, 1);
647 		BD_RUN_UNLOCK(bd);
648 	}
649 }
650 
651 /*
652  *	bufspace_adjust:
653  *
654  *	Adjust the reported bufspace for a KVA managed buffer, possibly
655  * 	waking any waiters.
656  */
657 static void
658 bufspace_adjust(struct buf *bp, int bufsize)
659 {
660 	struct bufdomain *bd;
661 	long space;
662 	int diff;
663 
664 	KASSERT((bp->b_flags & B_MALLOC) == 0,
665 	    ("bufspace_adjust: malloc buf %p", bp));
666 	bd = bufdomain(bp);
667 	diff = bufsize - bp->b_bufsize;
668 	if (diff < 0) {
669 		atomic_subtract_long(&bd->bd_bufspace, -diff);
670 	} else if (diff > 0) {
671 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
672 		/* Wake up the daemon on the transition. */
673 		if (space < bd->bd_bufspacethresh &&
674 		    space + diff >= bd->bd_bufspacethresh)
675 			bufspace_daemon_wakeup(bd);
676 	}
677 	bp->b_bufsize = bufsize;
678 }
679 
680 /*
681  *	bufspace_reserve:
682  *
683  *	Reserve bufspace before calling allocbuf().  metadata has a
684  *	different space limit than data.
685  */
686 static int
687 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
688 {
689 	long limit, new;
690 	long space;
691 
692 	if (metadata)
693 		limit = bd->bd_maxbufspace;
694 	else
695 		limit = bd->bd_hibufspace;
696 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
697 	new = space + size;
698 	if (new > limit) {
699 		atomic_subtract_long(&bd->bd_bufspace, size);
700 		return (ENOSPC);
701 	}
702 
703 	/* Wake up the daemon on the transition. */
704 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
705 		bufspace_daemon_wakeup(bd);
706 
707 	return (0);
708 }
709 
710 /*
711  *	bufspace_release:
712  *
713  *	Release reserved bufspace after bufspace_adjust() has consumed it.
714  */
715 static void
716 bufspace_release(struct bufdomain *bd, int size)
717 {
718 
719 	atomic_subtract_long(&bd->bd_bufspace, size);
720 }
721 
722 /*
723  *	bufspace_wait:
724  *
725  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
726  *	supplied.  bd_wanted must be set prior to polling for space.  The
727  *	operation must be re-tried on return.
728  */
729 static void
730 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
731     int slpflag, int slptimeo)
732 {
733 	struct thread *td;
734 	int error, fl, norunbuf;
735 
736 	if ((gbflags & GB_NOWAIT_BD) != 0)
737 		return;
738 
739 	td = curthread;
740 	BD_LOCK(bd);
741 	while (bd->bd_wanted) {
742 		if (vp != NULL && vp->v_type != VCHR &&
743 		    (td->td_pflags & TDP_BUFNEED) == 0) {
744 			BD_UNLOCK(bd);
745 			/*
746 			 * getblk() is called with a vnode locked, and
747 			 * some majority of the dirty buffers may as
748 			 * well belong to the vnode.  Flushing the
749 			 * buffers there would make a progress that
750 			 * cannot be achieved by the buf_daemon, that
751 			 * cannot lock the vnode.
752 			 */
753 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
754 			    (td->td_pflags & TDP_NORUNNINGBUF);
755 
756 			/*
757 			 * Play bufdaemon.  The getnewbuf() function
758 			 * may be called while the thread owns lock
759 			 * for another dirty buffer for the same
760 			 * vnode, which makes it impossible to use
761 			 * VOP_FSYNC() there, due to the buffer lock
762 			 * recursion.
763 			 */
764 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
765 			fl = buf_flush(vp, bd, flushbufqtarget);
766 			td->td_pflags &= norunbuf;
767 			BD_LOCK(bd);
768 			if (fl != 0)
769 				continue;
770 			if (bd->bd_wanted == 0)
771 				break;
772 		}
773 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
774 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
775 		if (error != 0)
776 			break;
777 	}
778 	BD_UNLOCK(bd);
779 }
780 
781 
782 /*
783  *	bufspace_daemon:
784  *
785  *	buffer space management daemon.  Tries to maintain some marginal
786  *	amount of free buffer space so that requesting processes neither
787  *	block nor work to reclaim buffers.
788  */
789 static void
790 bufspace_daemon(void *arg)
791 {
792 	struct bufdomain *bd;
793 
794 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
795 	    SHUTDOWN_PRI_LAST + 100);
796 
797 	bd = arg;
798 	for (;;) {
799 		kthread_suspend_check();
800 
801 		/*
802 		 * Free buffers from the clean queue until we meet our
803 		 * targets.
804 		 *
805 		 * Theory of operation:  The buffer cache is most efficient
806 		 * when some free buffer headers and space are always
807 		 * available to getnewbuf().  This daemon attempts to prevent
808 		 * the excessive blocking and synchronization associated
809 		 * with shortfall.  It goes through three phases according
810 		 * demand:
811 		 *
812 		 * 1)	The daemon wakes up voluntarily once per-second
813 		 *	during idle periods when the counters are below
814 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
815 		 *
816 		 * 2)	The daemon wakes up as we cross the thresholds
817 		 *	ahead of any potential blocking.  This may bounce
818 		 *	slightly according to the rate of consumption and
819 		 *	release.
820 		 *
821 		 * 3)	The daemon and consumers are starved for working
822 		 *	clean buffers.  This is the 'bufspace' sleep below
823 		 *	which will inefficiently trade bufs with bqrelse
824 		 *	until we return to condition 2.
825 		 */
826 		while (bd->bd_bufspace > bd->bd_lobufspace ||
827 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
828 			if (buf_recycle(bd, false) != 0) {
829 				if (bd_flushall(bd))
830 					continue;
831 				/*
832 				 * Speedup dirty if we've run out of clean
833 				 * buffers.  This is possible in particular
834 				 * because softdep may held many bufs locked
835 				 * pending writes to other bufs which are
836 				 * marked for delayed write, exhausting
837 				 * clean space until they are written.
838 				 */
839 				bd_speedup();
840 				BD_LOCK(bd);
841 				if (bd->bd_wanted) {
842 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
843 					    PRIBIO|PDROP, "bufspace", hz/10);
844 				} else
845 					BD_UNLOCK(bd);
846 			}
847 			maybe_yield();
848 		}
849 		bufspace_daemon_wait(bd);
850 	}
851 }
852 
853 /*
854  *	bufmallocadjust:
855  *
856  *	Adjust the reported bufspace for a malloc managed buffer, possibly
857  *	waking any waiters.
858  */
859 static void
860 bufmallocadjust(struct buf *bp, int bufsize)
861 {
862 	int diff;
863 
864 	KASSERT((bp->b_flags & B_MALLOC) != 0,
865 	    ("bufmallocadjust: non-malloc buf %p", bp));
866 	diff = bufsize - bp->b_bufsize;
867 	if (diff < 0)
868 		atomic_subtract_long(&bufmallocspace, -diff);
869 	else
870 		atomic_add_long(&bufmallocspace, diff);
871 	bp->b_bufsize = bufsize;
872 }
873 
874 /*
875  *	runningwakeup:
876  *
877  *	Wake up processes that are waiting on asynchronous writes to fall
878  *	below lorunningspace.
879  */
880 static void
881 runningwakeup(void)
882 {
883 
884 	mtx_lock(&rbreqlock);
885 	if (runningbufreq) {
886 		runningbufreq = 0;
887 		wakeup(&runningbufreq);
888 	}
889 	mtx_unlock(&rbreqlock);
890 }
891 
892 /*
893  *	runningbufwakeup:
894  *
895  *	Decrement the outstanding write count according.
896  */
897 void
898 runningbufwakeup(struct buf *bp)
899 {
900 	long space, bspace;
901 
902 	bspace = bp->b_runningbufspace;
903 	if (bspace == 0)
904 		return;
905 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
906 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
907 	    space, bspace));
908 	bp->b_runningbufspace = 0;
909 	/*
910 	 * Only acquire the lock and wakeup on the transition from exceeding
911 	 * the threshold to falling below it.
912 	 */
913 	if (space < lorunningspace)
914 		return;
915 	if (space - bspace > lorunningspace)
916 		return;
917 	runningwakeup();
918 }
919 
920 /*
921  *	waitrunningbufspace()
922  *
923  *	runningbufspace is a measure of the amount of I/O currently
924  *	running.  This routine is used in async-write situations to
925  *	prevent creating huge backups of pending writes to a device.
926  *	Only asynchronous writes are governed by this function.
927  *
928  *	This does NOT turn an async write into a sync write.  It waits
929  *	for earlier writes to complete and generally returns before the
930  *	caller's write has reached the device.
931  */
932 void
933 waitrunningbufspace(void)
934 {
935 
936 	mtx_lock(&rbreqlock);
937 	while (runningbufspace > hirunningspace) {
938 		runningbufreq = 1;
939 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
940 	}
941 	mtx_unlock(&rbreqlock);
942 }
943 
944 
945 /*
946  *	vfs_buf_test_cache:
947  *
948  *	Called when a buffer is extended.  This function clears the B_CACHE
949  *	bit if the newly extended portion of the buffer does not contain
950  *	valid data.
951  */
952 static __inline void
953 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
954     vm_offset_t size, vm_page_t m)
955 {
956 
957 	VM_OBJECT_ASSERT_LOCKED(m->object);
958 	if (bp->b_flags & B_CACHE) {
959 		int base = (foff + off) & PAGE_MASK;
960 		if (vm_page_is_valid(m, base, size) == 0)
961 			bp->b_flags &= ~B_CACHE;
962 	}
963 }
964 
965 /* Wake up the buffer daemon if necessary */
966 static void
967 bd_wakeup(void)
968 {
969 
970 	mtx_lock(&bdlock);
971 	if (bd_request == 0) {
972 		bd_request = 1;
973 		wakeup(&bd_request);
974 	}
975 	mtx_unlock(&bdlock);
976 }
977 
978 /*
979  * Adjust the maxbcachbuf tunable.
980  */
981 static void
982 maxbcachebuf_adjust(void)
983 {
984 	int i;
985 
986 	/*
987 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
988 	 */
989 	i = 2;
990 	while (i * 2 <= maxbcachebuf)
991 		i *= 2;
992 	maxbcachebuf = i;
993 	if (maxbcachebuf < MAXBSIZE)
994 		maxbcachebuf = MAXBSIZE;
995 	if (maxbcachebuf > MAXPHYS)
996 		maxbcachebuf = MAXPHYS;
997 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
998 		printf("maxbcachebuf=%d\n", maxbcachebuf);
999 }
1000 
1001 /*
1002  * bd_speedup - speedup the buffer cache flushing code
1003  */
1004 void
1005 bd_speedup(void)
1006 {
1007 	int needwake;
1008 
1009 	mtx_lock(&bdlock);
1010 	needwake = 0;
1011 	if (bd_speedupreq == 0 || bd_request == 0)
1012 		needwake = 1;
1013 	bd_speedupreq = 1;
1014 	bd_request = 1;
1015 	if (needwake)
1016 		wakeup(&bd_request);
1017 	mtx_unlock(&bdlock);
1018 }
1019 
1020 #ifndef NSWBUF_MIN
1021 #define	NSWBUF_MIN	16
1022 #endif
1023 
1024 #ifdef __i386__
1025 #define	TRANSIENT_DENOM	5
1026 #else
1027 #define	TRANSIENT_DENOM 10
1028 #endif
1029 
1030 /*
1031  * Calculating buffer cache scaling values and reserve space for buffer
1032  * headers.  This is called during low level kernel initialization and
1033  * may be called more then once.  We CANNOT write to the memory area
1034  * being reserved at this time.
1035  */
1036 caddr_t
1037 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1038 {
1039 	int tuned_nbuf;
1040 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1041 
1042 	/*
1043 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1044 	 * PAGE_SIZE is >= 1K)
1045 	 */
1046 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1047 
1048 	maxbcachebuf_adjust();
1049 	/*
1050 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1051 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1052 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1053 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1054 	 * the buffer cache we limit the eventual kva reservation to
1055 	 * maxbcache bytes.
1056 	 *
1057 	 * factor represents the 1/4 x ram conversion.
1058 	 */
1059 	if (nbuf == 0) {
1060 		int factor = 4 * BKVASIZE / 1024;
1061 
1062 		nbuf = 50;
1063 		if (physmem_est > 4096)
1064 			nbuf += min((physmem_est - 4096) / factor,
1065 			    65536 / factor);
1066 		if (physmem_est > 65536)
1067 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1068 			    32 * 1024 * 1024 / (factor * 5));
1069 
1070 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1071 			nbuf = maxbcache / BKVASIZE;
1072 		tuned_nbuf = 1;
1073 	} else
1074 		tuned_nbuf = 0;
1075 
1076 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1077 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1078 	if (nbuf > maxbuf) {
1079 		if (!tuned_nbuf)
1080 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1081 			    maxbuf);
1082 		nbuf = maxbuf;
1083 	}
1084 
1085 	/*
1086 	 * Ideal allocation size for the transient bio submap is 10%
1087 	 * of the maximal space buffer map.  This roughly corresponds
1088 	 * to the amount of the buffer mapped for typical UFS load.
1089 	 *
1090 	 * Clip the buffer map to reserve space for the transient
1091 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1092 	 * maximum buffer map extent on the platform.
1093 	 *
1094 	 * The fall-back to the maxbuf in case of maxbcache unset,
1095 	 * allows to not trim the buffer KVA for the architectures
1096 	 * with ample KVA space.
1097 	 */
1098 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1099 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1100 		buf_sz = (long)nbuf * BKVASIZE;
1101 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1102 		    (TRANSIENT_DENOM - 1)) {
1103 			/*
1104 			 * There is more KVA than memory.  Do not
1105 			 * adjust buffer map size, and assign the rest
1106 			 * of maxbuf to transient map.
1107 			 */
1108 			biotmap_sz = maxbuf_sz - buf_sz;
1109 		} else {
1110 			/*
1111 			 * Buffer map spans all KVA we could afford on
1112 			 * this platform.  Give 10% (20% on i386) of
1113 			 * the buffer map to the transient bio map.
1114 			 */
1115 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1116 			buf_sz -= biotmap_sz;
1117 		}
1118 		if (biotmap_sz / INT_MAX > MAXPHYS)
1119 			bio_transient_maxcnt = INT_MAX;
1120 		else
1121 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
1122 		/*
1123 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1124 		 * using the transient mapping.
1125 		 */
1126 		if (bio_transient_maxcnt > 1024)
1127 			bio_transient_maxcnt = 1024;
1128 		if (tuned_nbuf)
1129 			nbuf = buf_sz / BKVASIZE;
1130 	}
1131 
1132 	/*
1133 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
1134 	 * We have no less then 16 and no more then 256.
1135 	 */
1136 	nswbuf = min(nbuf / 4, 256);
1137 	TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
1138 	if (nswbuf < NSWBUF_MIN)
1139 		nswbuf = NSWBUF_MIN;
1140 
1141 	/*
1142 	 * Reserve space for the buffer cache buffers
1143 	 */
1144 	swbuf = (void *)v;
1145 	v = (caddr_t)(swbuf + nswbuf);
1146 	buf = (void *)v;
1147 	v = (caddr_t)(buf + nbuf);
1148 
1149 	return(v);
1150 }
1151 
1152 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1153 void
1154 bufinit(void)
1155 {
1156 	struct buf *bp;
1157 	int i;
1158 
1159 	KASSERT(maxbcachebuf >= MAXBSIZE,
1160 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1161 	    MAXBSIZE));
1162 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1163 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1164 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1165 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1166 
1167 	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
1168 
1169 	/* finally, initialize each buffer header and stick on empty q */
1170 	for (i = 0; i < nbuf; i++) {
1171 		bp = &buf[i];
1172 		bzero(bp, sizeof *bp);
1173 		bp->b_flags = B_INVAL;
1174 		bp->b_rcred = NOCRED;
1175 		bp->b_wcred = NOCRED;
1176 		bp->b_qindex = QUEUE_NONE;
1177 		bp->b_domain = -1;
1178 		bp->b_subqueue = mp_maxid + 1;
1179 		bp->b_xflags = 0;
1180 		bp->b_data = bp->b_kvabase = unmapped_buf;
1181 		LIST_INIT(&bp->b_dep);
1182 		BUF_LOCKINIT(bp);
1183 		bq_insert(&bqempty, bp, false);
1184 	}
1185 
1186 	/*
1187 	 * maxbufspace is the absolute maximum amount of buffer space we are
1188 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1189 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1190 	 * used by most other requests.  The differential is required to
1191 	 * ensure that metadata deadlocks don't occur.
1192 	 *
1193 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1194 	 * this may result in KVM fragmentation which is not handled optimally
1195 	 * by the system. XXX This is less true with vmem.  We could use
1196 	 * PAGE_SIZE.
1197 	 */
1198 	maxbufspace = (long)nbuf * BKVASIZE;
1199 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1200 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1201 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1202 
1203 	/*
1204 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1205 	 * arbitrarily and may need further tuning. It corresponds to
1206 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1207 	 * which fits with many RAID controllers' tagged queuing limits.
1208 	 * The lower 1 MiB limit is the historical upper limit for
1209 	 * hirunningspace.
1210 	 */
1211 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1212 	    16 * 1024 * 1024), 1024 * 1024);
1213 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1214 
1215 	/*
1216 	 * Limit the amount of malloc memory since it is wired permanently into
1217 	 * the kernel space.  Even though this is accounted for in the buffer
1218 	 * allocation, we don't want the malloced region to grow uncontrolled.
1219 	 * The malloc scheme improves memory utilization significantly on
1220 	 * average (small) directories.
1221 	 */
1222 	maxbufmallocspace = hibufspace / 20;
1223 
1224 	/*
1225 	 * Reduce the chance of a deadlock occurring by limiting the number
1226 	 * of delayed-write dirty buffers we allow to stack up.
1227 	 */
1228 	hidirtybuffers = nbuf / 4 + 20;
1229 	dirtybufthresh = hidirtybuffers * 9 / 10;
1230 	/*
1231 	 * To support extreme low-memory systems, make sure hidirtybuffers
1232 	 * cannot eat up all available buffer space.  This occurs when our
1233 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1234 	 * buffer space assuming BKVASIZE'd buffers.
1235 	 */
1236 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1237 		hidirtybuffers >>= 1;
1238 	}
1239 	lodirtybuffers = hidirtybuffers / 2;
1240 
1241 	/*
1242 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1243 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1244 	 * are counted as free but will be unavailable to threads executing
1245 	 * on other cpus.
1246 	 *
1247 	 * hifreebuffers is the free target for the bufspace daemon.  This
1248 	 * should be set appropriately to limit work per-iteration.
1249 	 */
1250 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1251 	hifreebuffers = (3 * lofreebuffers) / 2;
1252 	numfreebuffers = nbuf;
1253 
1254 	/* Setup the kva and free list allocators. */
1255 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1256 	buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
1257 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1258 
1259 	/*
1260 	 * Size the clean queue according to the amount of buffer space.
1261 	 * One queue per-256mb up to the max.  More queues gives better
1262 	 * concurrency but less accurate LRU.
1263 	 */
1264 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1265 	for (i = 0 ; i < buf_domains; i++) {
1266 		struct bufdomain *bd;
1267 
1268 		bd = &bdomain[i];
1269 		bd_init(bd);
1270 		bd->bd_freebuffers = nbuf / buf_domains;
1271 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1272 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1273 		bd->bd_bufspace = 0;
1274 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1275 		bd->bd_hibufspace = hibufspace / buf_domains;
1276 		bd->bd_lobufspace = lobufspace / buf_domains;
1277 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1278 		bd->bd_numdirtybuffers = 0;
1279 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1280 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1281 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1282 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1283 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1284 	}
1285 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1286 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1287 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1288 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1289 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1290 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1291 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1292 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1293 }
1294 
1295 #ifdef INVARIANTS
1296 static inline void
1297 vfs_buf_check_mapped(struct buf *bp)
1298 {
1299 
1300 	KASSERT(bp->b_kvabase != unmapped_buf,
1301 	    ("mapped buf: b_kvabase was not updated %p", bp));
1302 	KASSERT(bp->b_data != unmapped_buf,
1303 	    ("mapped buf: b_data was not updated %p", bp));
1304 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1305 	    MAXPHYS, ("b_data + b_offset unmapped %p", bp));
1306 }
1307 
1308 static inline void
1309 vfs_buf_check_unmapped(struct buf *bp)
1310 {
1311 
1312 	KASSERT(bp->b_data == unmapped_buf,
1313 	    ("unmapped buf: corrupted b_data %p", bp));
1314 }
1315 
1316 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1317 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1318 #else
1319 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1320 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1321 #endif
1322 
1323 static int
1324 isbufbusy(struct buf *bp)
1325 {
1326 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1327 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1328 		return (1);
1329 	return (0);
1330 }
1331 
1332 /*
1333  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1334  */
1335 void
1336 bufshutdown(int show_busybufs)
1337 {
1338 	static int first_buf_printf = 1;
1339 	struct buf *bp;
1340 	int iter, nbusy, pbusy;
1341 #ifndef PREEMPTION
1342 	int subiter;
1343 #endif
1344 
1345 	/*
1346 	 * Sync filesystems for shutdown
1347 	 */
1348 	wdog_kern_pat(WD_LASTVAL);
1349 	sys_sync(curthread, NULL);
1350 
1351 	/*
1352 	 * With soft updates, some buffers that are
1353 	 * written will be remarked as dirty until other
1354 	 * buffers are written.
1355 	 */
1356 	for (iter = pbusy = 0; iter < 20; iter++) {
1357 		nbusy = 0;
1358 		for (bp = &buf[nbuf]; --bp >= buf; )
1359 			if (isbufbusy(bp))
1360 				nbusy++;
1361 		if (nbusy == 0) {
1362 			if (first_buf_printf)
1363 				printf("All buffers synced.");
1364 			break;
1365 		}
1366 		if (first_buf_printf) {
1367 			printf("Syncing disks, buffers remaining... ");
1368 			first_buf_printf = 0;
1369 		}
1370 		printf("%d ", nbusy);
1371 		if (nbusy < pbusy)
1372 			iter = 0;
1373 		pbusy = nbusy;
1374 
1375 		wdog_kern_pat(WD_LASTVAL);
1376 		sys_sync(curthread, NULL);
1377 
1378 #ifdef PREEMPTION
1379 		/*
1380 		 * Spin for a while to allow interrupt threads to run.
1381 		 */
1382 		DELAY(50000 * iter);
1383 #else
1384 		/*
1385 		 * Context switch several times to allow interrupt
1386 		 * threads to run.
1387 		 */
1388 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1389 			thread_lock(curthread);
1390 			mi_switch(SW_VOL, NULL);
1391 			thread_unlock(curthread);
1392 			DELAY(1000);
1393 		}
1394 #endif
1395 	}
1396 	printf("\n");
1397 	/*
1398 	 * Count only busy local buffers to prevent forcing
1399 	 * a fsck if we're just a client of a wedged NFS server
1400 	 */
1401 	nbusy = 0;
1402 	for (bp = &buf[nbuf]; --bp >= buf; ) {
1403 		if (isbufbusy(bp)) {
1404 #if 0
1405 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1406 			if (bp->b_dev == NULL) {
1407 				TAILQ_REMOVE(&mountlist,
1408 				    bp->b_vp->v_mount, mnt_list);
1409 				continue;
1410 			}
1411 #endif
1412 			nbusy++;
1413 			if (show_busybufs > 0) {
1414 				printf(
1415 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1416 				    nbusy, bp, bp->b_vp, bp->b_flags,
1417 				    (intmax_t)bp->b_blkno,
1418 				    (intmax_t)bp->b_lblkno);
1419 				BUF_LOCKPRINTINFO(bp);
1420 				if (show_busybufs > 1)
1421 					vn_printf(bp->b_vp,
1422 					    "vnode content: ");
1423 			}
1424 		}
1425 	}
1426 	if (nbusy) {
1427 		/*
1428 		 * Failed to sync all blocks. Indicate this and don't
1429 		 * unmount filesystems (thus forcing an fsck on reboot).
1430 		 */
1431 		printf("Giving up on %d buffers\n", nbusy);
1432 		DELAY(5000000);	/* 5 seconds */
1433 	} else {
1434 		if (!first_buf_printf)
1435 			printf("Final sync complete\n");
1436 		/*
1437 		 * Unmount filesystems
1438 		 */
1439 		if (panicstr == NULL)
1440 			vfs_unmountall();
1441 	}
1442 	swapoff_all();
1443 	DELAY(100000);		/* wait for console output to finish */
1444 }
1445 
1446 static void
1447 bpmap_qenter(struct buf *bp)
1448 {
1449 
1450 	BUF_CHECK_MAPPED(bp);
1451 
1452 	/*
1453 	 * bp->b_data is relative to bp->b_offset, but
1454 	 * bp->b_offset may be offset into the first page.
1455 	 */
1456 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1457 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1458 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1459 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1460 }
1461 
1462 static inline struct bufdomain *
1463 bufdomain(struct buf *bp)
1464 {
1465 
1466 	return (&bdomain[bp->b_domain]);
1467 }
1468 
1469 static struct bufqueue *
1470 bufqueue(struct buf *bp)
1471 {
1472 
1473 	switch (bp->b_qindex) {
1474 	case QUEUE_NONE:
1475 		/* FALLTHROUGH */
1476 	case QUEUE_SENTINEL:
1477 		return (NULL);
1478 	case QUEUE_EMPTY:
1479 		return (&bqempty);
1480 	case QUEUE_DIRTY:
1481 		return (&bufdomain(bp)->bd_dirtyq);
1482 	case QUEUE_CLEAN:
1483 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1484 	default:
1485 		break;
1486 	}
1487 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1488 }
1489 
1490 /*
1491  * Return the locked bufqueue that bp is a member of.
1492  */
1493 static struct bufqueue *
1494 bufqueue_acquire(struct buf *bp)
1495 {
1496 	struct bufqueue *bq, *nbq;
1497 
1498 	/*
1499 	 * bp can be pushed from a per-cpu queue to the
1500 	 * cleanq while we're waiting on the lock.  Retry
1501 	 * if the queues don't match.
1502 	 */
1503 	bq = bufqueue(bp);
1504 	BQ_LOCK(bq);
1505 	for (;;) {
1506 		nbq = bufqueue(bp);
1507 		if (bq == nbq)
1508 			break;
1509 		BQ_UNLOCK(bq);
1510 		BQ_LOCK(nbq);
1511 		bq = nbq;
1512 	}
1513 	return (bq);
1514 }
1515 
1516 /*
1517  *	binsfree:
1518  *
1519  *	Insert the buffer into the appropriate free list.  Requires a
1520  *	locked buffer on entry and buffer is unlocked before return.
1521  */
1522 static void
1523 binsfree(struct buf *bp, int qindex)
1524 {
1525 	struct bufdomain *bd;
1526 	struct bufqueue *bq;
1527 
1528 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1529 	    ("binsfree: Invalid qindex %d", qindex));
1530 	BUF_ASSERT_XLOCKED(bp);
1531 
1532 	/*
1533 	 * Handle delayed bremfree() processing.
1534 	 */
1535 	if (bp->b_flags & B_REMFREE) {
1536 		if (bp->b_qindex == qindex) {
1537 			bp->b_flags |= B_REUSE;
1538 			bp->b_flags &= ~B_REMFREE;
1539 			BUF_UNLOCK(bp);
1540 			return;
1541 		}
1542 		bq = bufqueue_acquire(bp);
1543 		bq_remove(bq, bp);
1544 		BQ_UNLOCK(bq);
1545 	}
1546 	bd = bufdomain(bp);
1547 	if (qindex == QUEUE_CLEAN) {
1548 		if (bd->bd_lim != 0)
1549 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1550 		else
1551 			bq = bd->bd_cleanq;
1552 	} else
1553 		bq = &bd->bd_dirtyq;
1554 	bq_insert(bq, bp, true);
1555 }
1556 
1557 /*
1558  * buf_free:
1559  *
1560  *	Free a buffer to the buf zone once it no longer has valid contents.
1561  */
1562 static void
1563 buf_free(struct buf *bp)
1564 {
1565 
1566 	if (bp->b_flags & B_REMFREE)
1567 		bremfreef(bp);
1568 	if (bp->b_vflags & BV_BKGRDINPROG)
1569 		panic("losing buffer 1");
1570 	if (bp->b_rcred != NOCRED) {
1571 		crfree(bp->b_rcred);
1572 		bp->b_rcred = NOCRED;
1573 	}
1574 	if (bp->b_wcred != NOCRED) {
1575 		crfree(bp->b_wcred);
1576 		bp->b_wcred = NOCRED;
1577 	}
1578 	if (!LIST_EMPTY(&bp->b_dep))
1579 		buf_deallocate(bp);
1580 	bufkva_free(bp);
1581 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1582 	BUF_UNLOCK(bp);
1583 	uma_zfree(buf_zone, bp);
1584 }
1585 
1586 /*
1587  * buf_import:
1588  *
1589  *	Import bufs into the uma cache from the buf list.  The system still
1590  *	expects a static array of bufs and much of the synchronization
1591  *	around bufs assumes type stable storage.  As a result, UMA is used
1592  *	only as a per-cpu cache of bufs still maintained on a global list.
1593  */
1594 static int
1595 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1596 {
1597 	struct buf *bp;
1598 	int i;
1599 
1600 	BQ_LOCK(&bqempty);
1601 	for (i = 0; i < cnt; i++) {
1602 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1603 		if (bp == NULL)
1604 			break;
1605 		bq_remove(&bqempty, bp);
1606 		store[i] = bp;
1607 	}
1608 	BQ_UNLOCK(&bqempty);
1609 
1610 	return (i);
1611 }
1612 
1613 /*
1614  * buf_release:
1615  *
1616  *	Release bufs from the uma cache back to the buffer queues.
1617  */
1618 static void
1619 buf_release(void *arg, void **store, int cnt)
1620 {
1621 	struct bufqueue *bq;
1622 	struct buf *bp;
1623         int i;
1624 
1625 	bq = &bqempty;
1626 	BQ_LOCK(bq);
1627         for (i = 0; i < cnt; i++) {
1628 		bp = store[i];
1629 		/* Inline bq_insert() to batch locking. */
1630 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1631 		bp->b_flags &= ~(B_AGE | B_REUSE);
1632 		bq->bq_len++;
1633 		bp->b_qindex = bq->bq_index;
1634 	}
1635 	BQ_UNLOCK(bq);
1636 }
1637 
1638 /*
1639  * buf_alloc:
1640  *
1641  *	Allocate an empty buffer header.
1642  */
1643 static struct buf *
1644 buf_alloc(struct bufdomain *bd)
1645 {
1646 	struct buf *bp;
1647 	int freebufs;
1648 
1649 	/*
1650 	 * We can only run out of bufs in the buf zone if the average buf
1651 	 * is less than BKVASIZE.  In this case the actual wait/block will
1652 	 * come from buf_reycle() failing to flush one of these small bufs.
1653 	 */
1654 	bp = NULL;
1655 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1656 	if (freebufs > 0)
1657 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1658 	if (bp == NULL) {
1659 		atomic_fetchadd_int(&bd->bd_freebuffers, 1);
1660 		bufspace_daemon_wakeup(bd);
1661 		counter_u64_add(numbufallocfails, 1);
1662 		return (NULL);
1663 	}
1664 	/*
1665 	 * Wake-up the bufspace daemon on transition below threshold.
1666 	 */
1667 	if (freebufs == bd->bd_lofreebuffers)
1668 		bufspace_daemon_wakeup(bd);
1669 
1670 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1671 		panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
1672 
1673 	KASSERT(bp->b_vp == NULL,
1674 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1675 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1676 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1677 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1678 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1679 	KASSERT(bp->b_npages == 0,
1680 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1681 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1682 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1683 
1684 	bp->b_domain = BD_DOMAIN(bd);
1685 	bp->b_flags = 0;
1686 	bp->b_ioflags = 0;
1687 	bp->b_xflags = 0;
1688 	bp->b_vflags = 0;
1689 	bp->b_vp = NULL;
1690 	bp->b_blkno = bp->b_lblkno = 0;
1691 	bp->b_offset = NOOFFSET;
1692 	bp->b_iodone = 0;
1693 	bp->b_error = 0;
1694 	bp->b_resid = 0;
1695 	bp->b_bcount = 0;
1696 	bp->b_npages = 0;
1697 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1698 	bp->b_bufobj = NULL;
1699 	bp->b_data = bp->b_kvabase = unmapped_buf;
1700 	bp->b_fsprivate1 = NULL;
1701 	bp->b_fsprivate2 = NULL;
1702 	bp->b_fsprivate3 = NULL;
1703 	LIST_INIT(&bp->b_dep);
1704 
1705 	return (bp);
1706 }
1707 
1708 /*
1709  *	buf_recycle:
1710  *
1711  *	Free a buffer from the given bufqueue.  kva controls whether the
1712  *	freed buf must own some kva resources.  This is used for
1713  *	defragmenting.
1714  */
1715 static int
1716 buf_recycle(struct bufdomain *bd, bool kva)
1717 {
1718 	struct bufqueue *bq;
1719 	struct buf *bp, *nbp;
1720 
1721 	if (kva)
1722 		counter_u64_add(bufdefragcnt, 1);
1723 	nbp = NULL;
1724 	bq = bd->bd_cleanq;
1725 	BQ_LOCK(bq);
1726 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1727 	    ("buf_recycle: Locks don't match"));
1728 	nbp = TAILQ_FIRST(&bq->bq_queue);
1729 
1730 	/*
1731 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1732 	 * depending.
1733 	 */
1734 	while ((bp = nbp) != NULL) {
1735 		/*
1736 		 * Calculate next bp (we can only use it if we do not
1737 		 * release the bqlock).
1738 		 */
1739 		nbp = TAILQ_NEXT(bp, b_freelist);
1740 
1741 		/*
1742 		 * If we are defragging then we need a buffer with
1743 		 * some kva to reclaim.
1744 		 */
1745 		if (kva && bp->b_kvasize == 0)
1746 			continue;
1747 
1748 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1749 			continue;
1750 
1751 		/*
1752 		 * Implement a second chance algorithm for frequently
1753 		 * accessed buffers.
1754 		 */
1755 		if ((bp->b_flags & B_REUSE) != 0) {
1756 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1757 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1758 			bp->b_flags &= ~B_REUSE;
1759 			BUF_UNLOCK(bp);
1760 			continue;
1761 		}
1762 
1763 		/*
1764 		 * Skip buffers with background writes in progress.
1765 		 */
1766 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1767 			BUF_UNLOCK(bp);
1768 			continue;
1769 		}
1770 
1771 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1772 		    ("buf_recycle: inconsistent queue %d bp %p",
1773 		    bp->b_qindex, bp));
1774 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1775 		    ("getnewbuf: queue domain %d doesn't match request %d",
1776 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1777 		/*
1778 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1779 		 * the scan from this point on.
1780 		 */
1781 		bq_remove(bq, bp);
1782 		BQ_UNLOCK(bq);
1783 
1784 		/*
1785 		 * Requeue the background write buffer with error and
1786 		 * restart the scan.
1787 		 */
1788 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1789 			bqrelse(bp);
1790 			BQ_LOCK(bq);
1791 			nbp = TAILQ_FIRST(&bq->bq_queue);
1792 			continue;
1793 		}
1794 		bp->b_flags |= B_INVAL;
1795 		brelse(bp);
1796 		return (0);
1797 	}
1798 	bd->bd_wanted = 1;
1799 	BQ_UNLOCK(bq);
1800 
1801 	return (ENOBUFS);
1802 }
1803 
1804 /*
1805  *	bremfree:
1806  *
1807  *	Mark the buffer for removal from the appropriate free list.
1808  *
1809  */
1810 void
1811 bremfree(struct buf *bp)
1812 {
1813 
1814 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1815 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1816 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1817 	KASSERT(bp->b_qindex != QUEUE_NONE,
1818 	    ("bremfree: buffer %p not on a queue.", bp));
1819 	BUF_ASSERT_XLOCKED(bp);
1820 
1821 	bp->b_flags |= B_REMFREE;
1822 }
1823 
1824 /*
1825  *	bremfreef:
1826  *
1827  *	Force an immediate removal from a free list.  Used only in nfs when
1828  *	it abuses the b_freelist pointer.
1829  */
1830 void
1831 bremfreef(struct buf *bp)
1832 {
1833 	struct bufqueue *bq;
1834 
1835 	bq = bufqueue_acquire(bp);
1836 	bq_remove(bq, bp);
1837 	BQ_UNLOCK(bq);
1838 }
1839 
1840 static void
1841 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1842 {
1843 
1844 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1845 	TAILQ_INIT(&bq->bq_queue);
1846 	bq->bq_len = 0;
1847 	bq->bq_index = qindex;
1848 	bq->bq_subqueue = subqueue;
1849 }
1850 
1851 static void
1852 bd_init(struct bufdomain *bd)
1853 {
1854 	int domain;
1855 	int i;
1856 
1857 	domain = bd - bdomain;
1858 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1859 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1860 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1861 	for (i = 0; i <= mp_maxid; i++)
1862 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1863 		    "bufq clean subqueue lock");
1864 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1865 }
1866 
1867 /*
1868  *	bq_remove:
1869  *
1870  *	Removes a buffer from the free list, must be called with the
1871  *	correct qlock held.
1872  */
1873 static void
1874 bq_remove(struct bufqueue *bq, struct buf *bp)
1875 {
1876 
1877 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1878 	    bp, bp->b_vp, bp->b_flags);
1879 	KASSERT(bp->b_qindex != QUEUE_NONE,
1880 	    ("bq_remove: buffer %p not on a queue.", bp));
1881 	KASSERT(bufqueue(bp) == bq,
1882 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1883 
1884 	BQ_ASSERT_LOCKED(bq);
1885 	if (bp->b_qindex != QUEUE_EMPTY) {
1886 		BUF_ASSERT_XLOCKED(bp);
1887 	}
1888 	KASSERT(bq->bq_len >= 1,
1889 	    ("queue %d underflow", bp->b_qindex));
1890 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1891 	bq->bq_len--;
1892 	bp->b_qindex = QUEUE_NONE;
1893 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1894 }
1895 
1896 static void
1897 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1898 {
1899 	struct buf *bp;
1900 
1901 	BQ_ASSERT_LOCKED(bq);
1902 	if (bq != bd->bd_cleanq) {
1903 		BD_LOCK(bd);
1904 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1905 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1906 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1907 			    b_freelist);
1908 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1909 		}
1910 		bd->bd_cleanq->bq_len += bq->bq_len;
1911 		bq->bq_len = 0;
1912 	}
1913 	if (bd->bd_wanted) {
1914 		bd->bd_wanted = 0;
1915 		wakeup(&bd->bd_wanted);
1916 	}
1917 	if (bq != bd->bd_cleanq)
1918 		BD_UNLOCK(bd);
1919 }
1920 
1921 static int
1922 bd_flushall(struct bufdomain *bd)
1923 {
1924 	struct bufqueue *bq;
1925 	int flushed;
1926 	int i;
1927 
1928 	if (bd->bd_lim == 0)
1929 		return (0);
1930 	flushed = 0;
1931 	for (i = 0; i <= mp_maxid; i++) {
1932 		bq = &bd->bd_subq[i];
1933 		if (bq->bq_len == 0)
1934 			continue;
1935 		BQ_LOCK(bq);
1936 		bd_flush(bd, bq);
1937 		BQ_UNLOCK(bq);
1938 		flushed++;
1939 	}
1940 
1941 	return (flushed);
1942 }
1943 
1944 static void
1945 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1946 {
1947 	struct bufdomain *bd;
1948 
1949 	if (bp->b_qindex != QUEUE_NONE)
1950 		panic("bq_insert: free buffer %p onto another queue?", bp);
1951 
1952 	bd = bufdomain(bp);
1953 	if (bp->b_flags & B_AGE) {
1954 		/* Place this buf directly on the real queue. */
1955 		if (bq->bq_index == QUEUE_CLEAN)
1956 			bq = bd->bd_cleanq;
1957 		BQ_LOCK(bq);
1958 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
1959 	} else {
1960 		BQ_LOCK(bq);
1961 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1962 	}
1963 	bp->b_flags &= ~(B_AGE | B_REUSE);
1964 	bq->bq_len++;
1965 	bp->b_qindex = bq->bq_index;
1966 	bp->b_subqueue = bq->bq_subqueue;
1967 
1968 	/*
1969 	 * Unlock before we notify so that we don't wakeup a waiter that
1970 	 * fails a trylock on the buf and sleeps again.
1971 	 */
1972 	if (unlock)
1973 		BUF_UNLOCK(bp);
1974 
1975 	if (bp->b_qindex == QUEUE_CLEAN) {
1976 		/*
1977 		 * Flush the per-cpu queue and notify any waiters.
1978 		 */
1979 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
1980 		    bq->bq_len >= bd->bd_lim))
1981 			bd_flush(bd, bq);
1982 	}
1983 	BQ_UNLOCK(bq);
1984 }
1985 
1986 /*
1987  *	bufkva_free:
1988  *
1989  *	Free the kva allocation for a buffer.
1990  *
1991  */
1992 static void
1993 bufkva_free(struct buf *bp)
1994 {
1995 
1996 #ifdef INVARIANTS
1997 	if (bp->b_kvasize == 0) {
1998 		KASSERT(bp->b_kvabase == unmapped_buf &&
1999 		    bp->b_data == unmapped_buf,
2000 		    ("Leaked KVA space on %p", bp));
2001 	} else if (buf_mapped(bp))
2002 		BUF_CHECK_MAPPED(bp);
2003 	else
2004 		BUF_CHECK_UNMAPPED(bp);
2005 #endif
2006 	if (bp->b_kvasize == 0)
2007 		return;
2008 
2009 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2010 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2011 	counter_u64_add(buffreekvacnt, 1);
2012 	bp->b_data = bp->b_kvabase = unmapped_buf;
2013 	bp->b_kvasize = 0;
2014 }
2015 
2016 /*
2017  *	bufkva_alloc:
2018  *
2019  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2020  */
2021 static int
2022 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2023 {
2024 	vm_offset_t addr;
2025 	int error;
2026 
2027 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2028 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2029 
2030 	bufkva_free(bp);
2031 
2032 	addr = 0;
2033 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2034 	if (error != 0) {
2035 		/*
2036 		 * Buffer map is too fragmented.  Request the caller
2037 		 * to defragment the map.
2038 		 */
2039 		return (error);
2040 	}
2041 	bp->b_kvabase = (caddr_t)addr;
2042 	bp->b_kvasize = maxsize;
2043 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2044 	if ((gbflags & GB_UNMAPPED) != 0) {
2045 		bp->b_data = unmapped_buf;
2046 		BUF_CHECK_UNMAPPED(bp);
2047 	} else {
2048 		bp->b_data = bp->b_kvabase;
2049 		BUF_CHECK_MAPPED(bp);
2050 	}
2051 	return (0);
2052 }
2053 
2054 /*
2055  *	bufkva_reclaim:
2056  *
2057  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2058  *	callback that fires to avoid returning failure.
2059  */
2060 static void
2061 bufkva_reclaim(vmem_t *vmem, int flags)
2062 {
2063 	bool done;
2064 	int q;
2065 	int i;
2066 
2067 	done = false;
2068 	for (i = 0; i < 5; i++) {
2069 		for (q = 0; q < buf_domains; q++)
2070 			if (buf_recycle(&bdomain[q], true) != 0)
2071 				done = true;
2072 		if (done)
2073 			break;
2074 	}
2075 	return;
2076 }
2077 
2078 /*
2079  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2080  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2081  * the buffer is valid and we do not have to do anything.
2082  */
2083 static void
2084 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2085     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2086 {
2087 	struct buf *rabp;
2088 	int i;
2089 
2090 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2091 		if (inmem(vp, *rablkno))
2092 			continue;
2093 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2094 		if ((rabp->b_flags & B_CACHE) != 0) {
2095 			brelse(rabp);
2096 			continue;
2097 		}
2098 		if (!TD_IS_IDLETHREAD(curthread)) {
2099 #ifdef RACCT
2100 			if (racct_enable) {
2101 				PROC_LOCK(curproc);
2102 				racct_add_buf(curproc, rabp, 0);
2103 				PROC_UNLOCK(curproc);
2104 			}
2105 #endif /* RACCT */
2106 			curthread->td_ru.ru_inblock++;
2107 		}
2108 		rabp->b_flags |= B_ASYNC;
2109 		rabp->b_flags &= ~B_INVAL;
2110 		if ((flags & GB_CKHASH) != 0) {
2111 			rabp->b_flags |= B_CKHASH;
2112 			rabp->b_ckhashcalc = ckhashfunc;
2113 		}
2114 		rabp->b_ioflags &= ~BIO_ERROR;
2115 		rabp->b_iocmd = BIO_READ;
2116 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2117 			rabp->b_rcred = crhold(cred);
2118 		vfs_busy_pages(rabp, 0);
2119 		BUF_KERNPROC(rabp);
2120 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2121 		bstrategy(rabp);
2122 	}
2123 }
2124 
2125 /*
2126  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2127  *
2128  * Get a buffer with the specified data.  Look in the cache first.  We
2129  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2130  * is set, the buffer is valid and we do not have to do anything, see
2131  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2132  *
2133  * Always return a NULL buffer pointer (in bpp) when returning an error.
2134  */
2135 int
2136 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
2137     int *rabsize, int cnt, struct ucred *cred, int flags,
2138     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2139 {
2140 	struct buf *bp;
2141 	int readwait, rv;
2142 
2143 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2144 	/*
2145 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
2146 	 */
2147 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
2148 	if (bp == NULL)
2149 		return (EBUSY);
2150 
2151 	/*
2152 	 * If not found in cache, do some I/O
2153 	 */
2154 	readwait = 0;
2155 	if ((bp->b_flags & B_CACHE) == 0) {
2156 		if (!TD_IS_IDLETHREAD(curthread)) {
2157 #ifdef RACCT
2158 			if (racct_enable) {
2159 				PROC_LOCK(curproc);
2160 				racct_add_buf(curproc, bp, 0);
2161 				PROC_UNLOCK(curproc);
2162 			}
2163 #endif /* RACCT */
2164 			curthread->td_ru.ru_inblock++;
2165 		}
2166 		bp->b_iocmd = BIO_READ;
2167 		bp->b_flags &= ~B_INVAL;
2168 		if ((flags & GB_CKHASH) != 0) {
2169 			bp->b_flags |= B_CKHASH;
2170 			bp->b_ckhashcalc = ckhashfunc;
2171 		}
2172 		bp->b_ioflags &= ~BIO_ERROR;
2173 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2174 			bp->b_rcred = crhold(cred);
2175 		vfs_busy_pages(bp, 0);
2176 		bp->b_iooffset = dbtob(bp->b_blkno);
2177 		bstrategy(bp);
2178 		++readwait;
2179 	}
2180 
2181 	/*
2182 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2183 	 */
2184 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2185 
2186 	rv = 0;
2187 	if (readwait) {
2188 		rv = bufwait(bp);
2189 		if (rv != 0) {
2190 			brelse(bp);
2191 			*bpp = NULL;
2192 		}
2193 	}
2194 	return (rv);
2195 }
2196 
2197 /*
2198  * Write, release buffer on completion.  (Done by iodone
2199  * if async).  Do not bother writing anything if the buffer
2200  * is invalid.
2201  *
2202  * Note that we set B_CACHE here, indicating that buffer is
2203  * fully valid and thus cacheable.  This is true even of NFS
2204  * now so we set it generally.  This could be set either here
2205  * or in biodone() since the I/O is synchronous.  We put it
2206  * here.
2207  */
2208 int
2209 bufwrite(struct buf *bp)
2210 {
2211 	int oldflags;
2212 	struct vnode *vp;
2213 	long space;
2214 	int vp_md;
2215 
2216 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2217 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2218 		bp->b_flags |= B_INVAL | B_RELBUF;
2219 		bp->b_flags &= ~B_CACHE;
2220 		brelse(bp);
2221 		return (ENXIO);
2222 	}
2223 	if (bp->b_flags & B_INVAL) {
2224 		brelse(bp);
2225 		return (0);
2226 	}
2227 
2228 	if (bp->b_flags & B_BARRIER)
2229 		barrierwrites++;
2230 
2231 	oldflags = bp->b_flags;
2232 
2233 	BUF_ASSERT_HELD(bp);
2234 
2235 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2236 	    ("FFS background buffer should not get here %p", bp));
2237 
2238 	vp = bp->b_vp;
2239 	if (vp)
2240 		vp_md = vp->v_vflag & VV_MD;
2241 	else
2242 		vp_md = 0;
2243 
2244 	/*
2245 	 * Mark the buffer clean.  Increment the bufobj write count
2246 	 * before bundirty() call, to prevent other thread from seeing
2247 	 * empty dirty list and zero counter for writes in progress,
2248 	 * falsely indicating that the bufobj is clean.
2249 	 */
2250 	bufobj_wref(bp->b_bufobj);
2251 	bundirty(bp);
2252 
2253 	bp->b_flags &= ~B_DONE;
2254 	bp->b_ioflags &= ~BIO_ERROR;
2255 	bp->b_flags |= B_CACHE;
2256 	bp->b_iocmd = BIO_WRITE;
2257 
2258 	vfs_busy_pages(bp, 1);
2259 
2260 	/*
2261 	 * Normal bwrites pipeline writes
2262 	 */
2263 	bp->b_runningbufspace = bp->b_bufsize;
2264 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2265 
2266 	if (!TD_IS_IDLETHREAD(curthread)) {
2267 #ifdef RACCT
2268 		if (racct_enable) {
2269 			PROC_LOCK(curproc);
2270 			racct_add_buf(curproc, bp, 1);
2271 			PROC_UNLOCK(curproc);
2272 		}
2273 #endif /* RACCT */
2274 		curthread->td_ru.ru_oublock++;
2275 	}
2276 	if (oldflags & B_ASYNC)
2277 		BUF_KERNPROC(bp);
2278 	bp->b_iooffset = dbtob(bp->b_blkno);
2279 	buf_track(bp, __func__);
2280 	bstrategy(bp);
2281 
2282 	if ((oldflags & B_ASYNC) == 0) {
2283 		int rtval = bufwait(bp);
2284 		brelse(bp);
2285 		return (rtval);
2286 	} else if (space > hirunningspace) {
2287 		/*
2288 		 * don't allow the async write to saturate the I/O
2289 		 * system.  We will not deadlock here because
2290 		 * we are blocking waiting for I/O that is already in-progress
2291 		 * to complete. We do not block here if it is the update
2292 		 * or syncer daemon trying to clean up as that can lead
2293 		 * to deadlock.
2294 		 */
2295 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2296 			waitrunningbufspace();
2297 	}
2298 
2299 	return (0);
2300 }
2301 
2302 void
2303 bufbdflush(struct bufobj *bo, struct buf *bp)
2304 {
2305 	struct buf *nbp;
2306 
2307 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
2308 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2309 		altbufferflushes++;
2310 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
2311 		BO_LOCK(bo);
2312 		/*
2313 		 * Try to find a buffer to flush.
2314 		 */
2315 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2316 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2317 			    BUF_LOCK(nbp,
2318 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2319 				continue;
2320 			if (bp == nbp)
2321 				panic("bdwrite: found ourselves");
2322 			BO_UNLOCK(bo);
2323 			/* Don't countdeps with the bo lock held. */
2324 			if (buf_countdeps(nbp, 0)) {
2325 				BO_LOCK(bo);
2326 				BUF_UNLOCK(nbp);
2327 				continue;
2328 			}
2329 			if (nbp->b_flags & B_CLUSTEROK) {
2330 				vfs_bio_awrite(nbp);
2331 			} else {
2332 				bremfree(nbp);
2333 				bawrite(nbp);
2334 			}
2335 			dirtybufferflushes++;
2336 			break;
2337 		}
2338 		if (nbp == NULL)
2339 			BO_UNLOCK(bo);
2340 	}
2341 }
2342 
2343 /*
2344  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2345  * anything if the buffer is marked invalid.
2346  *
2347  * Note that since the buffer must be completely valid, we can safely
2348  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2349  * biodone() in order to prevent getblk from writing the buffer
2350  * out synchronously.
2351  */
2352 void
2353 bdwrite(struct buf *bp)
2354 {
2355 	struct thread *td = curthread;
2356 	struct vnode *vp;
2357 	struct bufobj *bo;
2358 
2359 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2360 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2361 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2362 	    ("Barrier request in delayed write %p", bp));
2363 	BUF_ASSERT_HELD(bp);
2364 
2365 	if (bp->b_flags & B_INVAL) {
2366 		brelse(bp);
2367 		return;
2368 	}
2369 
2370 	/*
2371 	 * If we have too many dirty buffers, don't create any more.
2372 	 * If we are wildly over our limit, then force a complete
2373 	 * cleanup. Otherwise, just keep the situation from getting
2374 	 * out of control. Note that we have to avoid a recursive
2375 	 * disaster and not try to clean up after our own cleanup!
2376 	 */
2377 	vp = bp->b_vp;
2378 	bo = bp->b_bufobj;
2379 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2380 		td->td_pflags |= TDP_INBDFLUSH;
2381 		BO_BDFLUSH(bo, bp);
2382 		td->td_pflags &= ~TDP_INBDFLUSH;
2383 	} else
2384 		recursiveflushes++;
2385 
2386 	bdirty(bp);
2387 	/*
2388 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2389 	 * true even of NFS now.
2390 	 */
2391 	bp->b_flags |= B_CACHE;
2392 
2393 	/*
2394 	 * This bmap keeps the system from needing to do the bmap later,
2395 	 * perhaps when the system is attempting to do a sync.  Since it
2396 	 * is likely that the indirect block -- or whatever other datastructure
2397 	 * that the filesystem needs is still in memory now, it is a good
2398 	 * thing to do this.  Note also, that if the pageout daemon is
2399 	 * requesting a sync -- there might not be enough memory to do
2400 	 * the bmap then...  So, this is important to do.
2401 	 */
2402 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2403 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2404 	}
2405 
2406 	buf_track(bp, __func__);
2407 
2408 	/*
2409 	 * Set the *dirty* buffer range based upon the VM system dirty
2410 	 * pages.
2411 	 *
2412 	 * Mark the buffer pages as clean.  We need to do this here to
2413 	 * satisfy the vnode_pager and the pageout daemon, so that it
2414 	 * thinks that the pages have been "cleaned".  Note that since
2415 	 * the pages are in a delayed write buffer -- the VFS layer
2416 	 * "will" see that the pages get written out on the next sync,
2417 	 * or perhaps the cluster will be completed.
2418 	 */
2419 	vfs_clean_pages_dirty_buf(bp);
2420 	bqrelse(bp);
2421 
2422 	/*
2423 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2424 	 * due to the softdep code.
2425 	 */
2426 }
2427 
2428 /*
2429  *	bdirty:
2430  *
2431  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2432  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2433  *	itself to properly update it in the dirty/clean lists.  We mark it
2434  *	B_DONE to ensure that any asynchronization of the buffer properly
2435  *	clears B_DONE ( else a panic will occur later ).
2436  *
2437  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2438  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2439  *	should only be called if the buffer is known-good.
2440  *
2441  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2442  *	count.
2443  *
2444  *	The buffer must be on QUEUE_NONE.
2445  */
2446 void
2447 bdirty(struct buf *bp)
2448 {
2449 
2450 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2451 	    bp, bp->b_vp, bp->b_flags);
2452 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2453 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2454 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2455 	BUF_ASSERT_HELD(bp);
2456 	bp->b_flags &= ~(B_RELBUF);
2457 	bp->b_iocmd = BIO_WRITE;
2458 
2459 	if ((bp->b_flags & B_DELWRI) == 0) {
2460 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2461 		reassignbuf(bp);
2462 		bdirtyadd(bp);
2463 	}
2464 }
2465 
2466 /*
2467  *	bundirty:
2468  *
2469  *	Clear B_DELWRI for buffer.
2470  *
2471  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2472  *	count.
2473  *
2474  *	The buffer must be on QUEUE_NONE.
2475  */
2476 
2477 void
2478 bundirty(struct buf *bp)
2479 {
2480 
2481 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2482 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2483 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2484 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2485 	BUF_ASSERT_HELD(bp);
2486 
2487 	if (bp->b_flags & B_DELWRI) {
2488 		bp->b_flags &= ~B_DELWRI;
2489 		reassignbuf(bp);
2490 		bdirtysub(bp);
2491 	}
2492 	/*
2493 	 * Since it is now being written, we can clear its deferred write flag.
2494 	 */
2495 	bp->b_flags &= ~B_DEFERRED;
2496 }
2497 
2498 /*
2499  *	bawrite:
2500  *
2501  *	Asynchronous write.  Start output on a buffer, but do not wait for
2502  *	it to complete.  The buffer is released when the output completes.
2503  *
2504  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2505  *	B_INVAL buffers.  Not us.
2506  */
2507 void
2508 bawrite(struct buf *bp)
2509 {
2510 
2511 	bp->b_flags |= B_ASYNC;
2512 	(void) bwrite(bp);
2513 }
2514 
2515 /*
2516  *	babarrierwrite:
2517  *
2518  *	Asynchronous barrier write.  Start output on a buffer, but do not
2519  *	wait for it to complete.  Place a write barrier after this write so
2520  *	that this buffer and all buffers written before it are committed to
2521  *	the disk before any buffers written after this write are committed
2522  *	to the disk.  The buffer is released when the output completes.
2523  */
2524 void
2525 babarrierwrite(struct buf *bp)
2526 {
2527 
2528 	bp->b_flags |= B_ASYNC | B_BARRIER;
2529 	(void) bwrite(bp);
2530 }
2531 
2532 /*
2533  *	bbarrierwrite:
2534  *
2535  *	Synchronous barrier write.  Start output on a buffer and wait for
2536  *	it to complete.  Place a write barrier after this write so that
2537  *	this buffer and all buffers written before it are committed to
2538  *	the disk before any buffers written after this write are committed
2539  *	to the disk.  The buffer is released when the output completes.
2540  */
2541 int
2542 bbarrierwrite(struct buf *bp)
2543 {
2544 
2545 	bp->b_flags |= B_BARRIER;
2546 	return (bwrite(bp));
2547 }
2548 
2549 /*
2550  *	bwillwrite:
2551  *
2552  *	Called prior to the locking of any vnodes when we are expecting to
2553  *	write.  We do not want to starve the buffer cache with too many
2554  *	dirty buffers so we block here.  By blocking prior to the locking
2555  *	of any vnodes we attempt to avoid the situation where a locked vnode
2556  *	prevents the various system daemons from flushing related buffers.
2557  */
2558 void
2559 bwillwrite(void)
2560 {
2561 
2562 	if (buf_dirty_count_severe()) {
2563 		mtx_lock(&bdirtylock);
2564 		while (buf_dirty_count_severe()) {
2565 			bdirtywait = 1;
2566 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2567 			    "flswai", 0);
2568 		}
2569 		mtx_unlock(&bdirtylock);
2570 	}
2571 }
2572 
2573 /*
2574  * Return true if we have too many dirty buffers.
2575  */
2576 int
2577 buf_dirty_count_severe(void)
2578 {
2579 
2580 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2581 }
2582 
2583 /*
2584  *	brelse:
2585  *
2586  *	Release a busy buffer and, if requested, free its resources.  The
2587  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2588  *	to be accessed later as a cache entity or reused for other purposes.
2589  */
2590 void
2591 brelse(struct buf *bp)
2592 {
2593 	struct mount *v_mnt;
2594 	int qindex;
2595 
2596 	/*
2597 	 * Many functions erroneously call brelse with a NULL bp under rare
2598 	 * error conditions. Simply return when called with a NULL bp.
2599 	 */
2600 	if (bp == NULL)
2601 		return;
2602 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2603 	    bp, bp->b_vp, bp->b_flags);
2604 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2605 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2606 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2607 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2608 
2609 	if (BUF_LOCKRECURSED(bp)) {
2610 		/*
2611 		 * Do not process, in particular, do not handle the
2612 		 * B_INVAL/B_RELBUF and do not release to free list.
2613 		 */
2614 		BUF_UNLOCK(bp);
2615 		return;
2616 	}
2617 
2618 	if (bp->b_flags & B_MANAGED) {
2619 		bqrelse(bp);
2620 		return;
2621 	}
2622 
2623 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2624 		BO_LOCK(bp->b_bufobj);
2625 		bp->b_vflags &= ~BV_BKGRDERR;
2626 		BO_UNLOCK(bp->b_bufobj);
2627 		bdirty(bp);
2628 	}
2629 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2630 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2631 	    !(bp->b_flags & B_INVAL)) {
2632 		/*
2633 		 * Failed write, redirty.  All errors except ENXIO (which
2634 		 * means the device is gone) are treated as being
2635 		 * transient.
2636 		 *
2637 		 * XXX Treating EIO as transient is not correct; the
2638 		 * contract with the local storage device drivers is that
2639 		 * they will only return EIO once the I/O is no longer
2640 		 * retriable.  Network I/O also respects this through the
2641 		 * guarantees of TCP and/or the internal retries of NFS.
2642 		 * ENOMEM might be transient, but we also have no way of
2643 		 * knowing when its ok to retry/reschedule.  In general,
2644 		 * this entire case should be made obsolete through better
2645 		 * error handling/recovery and resource scheduling.
2646 		 *
2647 		 * Do this also for buffers that failed with ENXIO, but have
2648 		 * non-empty dependencies - the soft updates code might need
2649 		 * to access the buffer to untangle them.
2650 		 *
2651 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2652 		 */
2653 		bp->b_ioflags &= ~BIO_ERROR;
2654 		bdirty(bp);
2655 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2656 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2657 		/*
2658 		 * Either a failed read I/O, or we were asked to free or not
2659 		 * cache the buffer, or we failed to write to a device that's
2660 		 * no longer present.
2661 		 */
2662 		bp->b_flags |= B_INVAL;
2663 		if (!LIST_EMPTY(&bp->b_dep))
2664 			buf_deallocate(bp);
2665 		if (bp->b_flags & B_DELWRI)
2666 			bdirtysub(bp);
2667 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2668 		if ((bp->b_flags & B_VMIO) == 0) {
2669 			allocbuf(bp, 0);
2670 			if (bp->b_vp)
2671 				brelvp(bp);
2672 		}
2673 	}
2674 
2675 	/*
2676 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2677 	 * is called with B_DELWRI set, the underlying pages may wind up
2678 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2679 	 * because pages associated with a B_DELWRI bp are marked clean.
2680 	 *
2681 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2682 	 * if B_DELWRI is set.
2683 	 */
2684 	if (bp->b_flags & B_DELWRI)
2685 		bp->b_flags &= ~B_RELBUF;
2686 
2687 	/*
2688 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2689 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2690 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2691 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2692 	 *
2693 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2694 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2695 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2696 	 *
2697 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2698 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2699 	 * the commit state and we cannot afford to lose the buffer. If the
2700 	 * buffer has a background write in progress, we need to keep it
2701 	 * around to prevent it from being reconstituted and starting a second
2702 	 * background write.
2703 	 */
2704 
2705 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2706 
2707 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2708 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2709 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2710 	    vn_isdisk(bp->b_vp, NULL) || (bp->b_flags & B_DELWRI) == 0)) {
2711 		vfs_vmio_invalidate(bp);
2712 		allocbuf(bp, 0);
2713 	}
2714 
2715 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2716 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2717 		allocbuf(bp, 0);
2718 		bp->b_flags &= ~B_NOREUSE;
2719 		if (bp->b_vp != NULL)
2720 			brelvp(bp);
2721 	}
2722 
2723 	/*
2724 	 * If the buffer has junk contents signal it and eventually
2725 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2726 	 * doesn't find it.
2727 	 */
2728 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2729 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2730 		bp->b_flags |= B_INVAL;
2731 	if (bp->b_flags & B_INVAL) {
2732 		if (bp->b_flags & B_DELWRI)
2733 			bundirty(bp);
2734 		if (bp->b_vp)
2735 			brelvp(bp);
2736 	}
2737 
2738 	buf_track(bp, __func__);
2739 
2740 	/* buffers with no memory */
2741 	if (bp->b_bufsize == 0) {
2742 		buf_free(bp);
2743 		return;
2744 	}
2745 	/* buffers with junk contents */
2746 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2747 	    (bp->b_ioflags & BIO_ERROR)) {
2748 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2749 		if (bp->b_vflags & BV_BKGRDINPROG)
2750 			panic("losing buffer 2");
2751 		qindex = QUEUE_CLEAN;
2752 		bp->b_flags |= B_AGE;
2753 	/* remaining buffers */
2754 	} else if (bp->b_flags & B_DELWRI)
2755 		qindex = QUEUE_DIRTY;
2756 	else
2757 		qindex = QUEUE_CLEAN;
2758 
2759 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2760 		panic("brelse: not dirty");
2761 
2762 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2763 	/* binsfree unlocks bp. */
2764 	binsfree(bp, qindex);
2765 }
2766 
2767 /*
2768  * Release a buffer back to the appropriate queue but do not try to free
2769  * it.  The buffer is expected to be used again soon.
2770  *
2771  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2772  * biodone() to requeue an async I/O on completion.  It is also used when
2773  * known good buffers need to be requeued but we think we may need the data
2774  * again soon.
2775  *
2776  * XXX we should be able to leave the B_RELBUF hint set on completion.
2777  */
2778 void
2779 bqrelse(struct buf *bp)
2780 {
2781 	int qindex;
2782 
2783 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2784 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2785 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2786 
2787 	qindex = QUEUE_NONE;
2788 	if (BUF_LOCKRECURSED(bp)) {
2789 		/* do not release to free list */
2790 		BUF_UNLOCK(bp);
2791 		return;
2792 	}
2793 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2794 
2795 	if (bp->b_flags & B_MANAGED) {
2796 		if (bp->b_flags & B_REMFREE)
2797 			bremfreef(bp);
2798 		goto out;
2799 	}
2800 
2801 	/* buffers with stale but valid contents */
2802 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2803 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2804 		BO_LOCK(bp->b_bufobj);
2805 		bp->b_vflags &= ~BV_BKGRDERR;
2806 		BO_UNLOCK(bp->b_bufobj);
2807 		qindex = QUEUE_DIRTY;
2808 	} else {
2809 		if ((bp->b_flags & B_DELWRI) == 0 &&
2810 		    (bp->b_xflags & BX_VNDIRTY))
2811 			panic("bqrelse: not dirty");
2812 		if ((bp->b_flags & B_NOREUSE) != 0) {
2813 			brelse(bp);
2814 			return;
2815 		}
2816 		qindex = QUEUE_CLEAN;
2817 	}
2818 	buf_track(bp, __func__);
2819 	/* binsfree unlocks bp. */
2820 	binsfree(bp, qindex);
2821 	return;
2822 
2823 out:
2824 	buf_track(bp, __func__);
2825 	/* unlock */
2826 	BUF_UNLOCK(bp);
2827 }
2828 
2829 /*
2830  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2831  * restore bogus pages.
2832  */
2833 static void
2834 vfs_vmio_iodone(struct buf *bp)
2835 {
2836 	vm_ooffset_t foff;
2837 	vm_page_t m;
2838 	vm_object_t obj;
2839 	struct vnode *vp;
2840 	int i, iosize, resid;
2841 	bool bogus;
2842 
2843 	obj = bp->b_bufobj->bo_object;
2844 	KASSERT(obj->paging_in_progress >= bp->b_npages,
2845 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2846 	    obj->paging_in_progress, bp->b_npages));
2847 
2848 	vp = bp->b_vp;
2849 	KASSERT(vp->v_holdcnt > 0,
2850 	    ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
2851 	KASSERT(vp->v_object != NULL,
2852 	    ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
2853 
2854 	foff = bp->b_offset;
2855 	KASSERT(bp->b_offset != NOOFFSET,
2856 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2857 
2858 	bogus = false;
2859 	iosize = bp->b_bcount - bp->b_resid;
2860 	VM_OBJECT_WLOCK(obj);
2861 	for (i = 0; i < bp->b_npages; i++) {
2862 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2863 		if (resid > iosize)
2864 			resid = iosize;
2865 
2866 		/*
2867 		 * cleanup bogus pages, restoring the originals
2868 		 */
2869 		m = bp->b_pages[i];
2870 		if (m == bogus_page) {
2871 			bogus = true;
2872 			m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2873 			if (m == NULL)
2874 				panic("biodone: page disappeared!");
2875 			bp->b_pages[i] = m;
2876 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2877 			/*
2878 			 * In the write case, the valid and clean bits are
2879 			 * already changed correctly ( see bdwrite() ), so we
2880 			 * only need to do this here in the read case.
2881 			 */
2882 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2883 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2884 			    "has unexpected dirty bits", m));
2885 			vfs_page_set_valid(bp, foff, m);
2886 		}
2887 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2888 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2889 		    (intmax_t)foff, (uintmax_t)m->pindex));
2890 
2891 		vm_page_sunbusy(m);
2892 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2893 		iosize -= resid;
2894 	}
2895 	vm_object_pip_wakeupn(obj, bp->b_npages);
2896 	VM_OBJECT_WUNLOCK(obj);
2897 	if (bogus && buf_mapped(bp)) {
2898 		BUF_CHECK_MAPPED(bp);
2899 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2900 		    bp->b_pages, bp->b_npages);
2901 	}
2902 }
2903 
2904 /*
2905  * Unwire a page held by a buf and either free it or update the page queues to
2906  * reflect its recent use.
2907  */
2908 static void
2909 vfs_vmio_unwire(struct buf *bp, vm_page_t m)
2910 {
2911 	bool freed;
2912 
2913 	vm_page_lock(m);
2914 	if (vm_page_unwire_noq(m)) {
2915 		if ((bp->b_flags & B_DIRECT) != 0)
2916 			freed = vm_page_try_to_free(m);
2917 		else
2918 			freed = false;
2919 		if (!freed) {
2920 			/*
2921 			 * Use a racy check of the valid bits to determine
2922 			 * whether we can accelerate reclamation of the page.
2923 			 * The valid bits will be stable unless the page is
2924 			 * being mapped or is referenced by multiple buffers,
2925 			 * and in those cases we expect races to be rare.  At
2926 			 * worst we will either accelerate reclamation of a
2927 			 * valid page and violate LRU, or unnecessarily defer
2928 			 * reclamation of an invalid page.
2929 			 *
2930 			 * The B_NOREUSE flag marks data that is not expected to
2931 			 * be reused, so accelerate reclamation in that case
2932 			 * too.  Otherwise, maintain LRU.
2933 			 */
2934 			if (m->valid == 0 || (bp->b_flags & B_NOREUSE) != 0)
2935 				vm_page_deactivate_noreuse(m);
2936 			else if (vm_page_active(m))
2937 				vm_page_reference(m);
2938 			else
2939 				vm_page_deactivate(m);
2940 		}
2941 	}
2942 	vm_page_unlock(m);
2943 }
2944 
2945 /*
2946  * Perform page invalidation when a buffer is released.  The fully invalid
2947  * pages will be reclaimed later in vfs_vmio_truncate().
2948  */
2949 static void
2950 vfs_vmio_invalidate(struct buf *bp)
2951 {
2952 	vm_object_t obj;
2953 	vm_page_t m;
2954 	int i, resid, poffset, presid;
2955 
2956 	if (buf_mapped(bp)) {
2957 		BUF_CHECK_MAPPED(bp);
2958 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2959 	} else
2960 		BUF_CHECK_UNMAPPED(bp);
2961 	/*
2962 	 * Get the base offset and length of the buffer.  Note that
2963 	 * in the VMIO case if the buffer block size is not
2964 	 * page-aligned then b_data pointer may not be page-aligned.
2965 	 * But our b_pages[] array *IS* page aligned.
2966 	 *
2967 	 * block sizes less then DEV_BSIZE (usually 512) are not
2968 	 * supported due to the page granularity bits (m->valid,
2969 	 * m->dirty, etc...).
2970 	 *
2971 	 * See man buf(9) for more information
2972 	 */
2973 	obj = bp->b_bufobj->bo_object;
2974 	resid = bp->b_bufsize;
2975 	poffset = bp->b_offset & PAGE_MASK;
2976 	VM_OBJECT_WLOCK(obj);
2977 	for (i = 0; i < bp->b_npages; i++) {
2978 		m = bp->b_pages[i];
2979 		if (m == bogus_page)
2980 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
2981 		bp->b_pages[i] = NULL;
2982 
2983 		presid = resid > (PAGE_SIZE - poffset) ?
2984 		    (PAGE_SIZE - poffset) : resid;
2985 		KASSERT(presid >= 0, ("brelse: extra page"));
2986 		while (vm_page_xbusied(m)) {
2987 			vm_page_lock(m);
2988 			VM_OBJECT_WUNLOCK(obj);
2989 			vm_page_busy_sleep(m, "mbncsh", true);
2990 			VM_OBJECT_WLOCK(obj);
2991 		}
2992 		if (pmap_page_wired_mappings(m) == 0)
2993 			vm_page_set_invalid(m, poffset, presid);
2994 		vfs_vmio_unwire(bp, m);
2995 		resid -= presid;
2996 		poffset = 0;
2997 	}
2998 	VM_OBJECT_WUNLOCK(obj);
2999 	bp->b_npages = 0;
3000 }
3001 
3002 /*
3003  * Page-granular truncation of an existing VMIO buffer.
3004  */
3005 static void
3006 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3007 {
3008 	vm_object_t obj;
3009 	vm_page_t m;
3010 	int i;
3011 
3012 	if (bp->b_npages == desiredpages)
3013 		return;
3014 
3015 	if (buf_mapped(bp)) {
3016 		BUF_CHECK_MAPPED(bp);
3017 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3018 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3019 	} else
3020 		BUF_CHECK_UNMAPPED(bp);
3021 
3022 	/*
3023 	 * The object lock is needed only if we will attempt to free pages.
3024 	 */
3025 	obj = (bp->b_flags & B_DIRECT) != 0 ? bp->b_bufobj->bo_object : NULL;
3026 	if (obj != NULL)
3027 		VM_OBJECT_WLOCK(obj);
3028 	for (i = desiredpages; i < bp->b_npages; i++) {
3029 		m = bp->b_pages[i];
3030 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3031 		bp->b_pages[i] = NULL;
3032 		vfs_vmio_unwire(bp, m);
3033 	}
3034 	if (obj != NULL)
3035 		VM_OBJECT_WUNLOCK(obj);
3036 	bp->b_npages = desiredpages;
3037 }
3038 
3039 /*
3040  * Byte granular extension of VMIO buffers.
3041  */
3042 static void
3043 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3044 {
3045 	/*
3046 	 * We are growing the buffer, possibly in a
3047 	 * byte-granular fashion.
3048 	 */
3049 	vm_object_t obj;
3050 	vm_offset_t toff;
3051 	vm_offset_t tinc;
3052 	vm_page_t m;
3053 
3054 	/*
3055 	 * Step 1, bring in the VM pages from the object, allocating
3056 	 * them if necessary.  We must clear B_CACHE if these pages
3057 	 * are not valid for the range covered by the buffer.
3058 	 */
3059 	obj = bp->b_bufobj->bo_object;
3060 	VM_OBJECT_WLOCK(obj);
3061 	if (bp->b_npages < desiredpages) {
3062 		/*
3063 		 * We must allocate system pages since blocking
3064 		 * here could interfere with paging I/O, no
3065 		 * matter which process we are.
3066 		 *
3067 		 * Only exclusive busy can be tested here.
3068 		 * Blocking on shared busy might lead to
3069 		 * deadlocks once allocbuf() is called after
3070 		 * pages are vfs_busy_pages().
3071 		 */
3072 		(void)vm_page_grab_pages(obj,
3073 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3074 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3075 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3076 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3077 		bp->b_npages = desiredpages;
3078 	}
3079 
3080 	/*
3081 	 * Step 2.  We've loaded the pages into the buffer,
3082 	 * we have to figure out if we can still have B_CACHE
3083 	 * set.  Note that B_CACHE is set according to the
3084 	 * byte-granular range ( bcount and size ), not the
3085 	 * aligned range ( newbsize ).
3086 	 *
3087 	 * The VM test is against m->valid, which is DEV_BSIZE
3088 	 * aligned.  Needless to say, the validity of the data
3089 	 * needs to also be DEV_BSIZE aligned.  Note that this
3090 	 * fails with NFS if the server or some other client
3091 	 * extends the file's EOF.  If our buffer is resized,
3092 	 * B_CACHE may remain set! XXX
3093 	 */
3094 	toff = bp->b_bcount;
3095 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3096 	while ((bp->b_flags & B_CACHE) && toff < size) {
3097 		vm_pindex_t pi;
3098 
3099 		if (tinc > (size - toff))
3100 			tinc = size - toff;
3101 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3102 		m = bp->b_pages[pi];
3103 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3104 		toff += tinc;
3105 		tinc = PAGE_SIZE;
3106 	}
3107 	VM_OBJECT_WUNLOCK(obj);
3108 
3109 	/*
3110 	 * Step 3, fixup the KVA pmap.
3111 	 */
3112 	if (buf_mapped(bp))
3113 		bpmap_qenter(bp);
3114 	else
3115 		BUF_CHECK_UNMAPPED(bp);
3116 }
3117 
3118 /*
3119  * Check to see if a block at a particular lbn is available for a clustered
3120  * write.
3121  */
3122 static int
3123 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3124 {
3125 	struct buf *bpa;
3126 	int match;
3127 
3128 	match = 0;
3129 
3130 	/* If the buf isn't in core skip it */
3131 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3132 		return (0);
3133 
3134 	/* If the buf is busy we don't want to wait for it */
3135 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3136 		return (0);
3137 
3138 	/* Only cluster with valid clusterable delayed write buffers */
3139 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3140 	    (B_DELWRI | B_CLUSTEROK))
3141 		goto done;
3142 
3143 	if (bpa->b_bufsize != size)
3144 		goto done;
3145 
3146 	/*
3147 	 * Check to see if it is in the expected place on disk and that the
3148 	 * block has been mapped.
3149 	 */
3150 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3151 		match = 1;
3152 done:
3153 	BUF_UNLOCK(bpa);
3154 	return (match);
3155 }
3156 
3157 /*
3158  *	vfs_bio_awrite:
3159  *
3160  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3161  *	This is much better then the old way of writing only one buffer at
3162  *	a time.  Note that we may not be presented with the buffers in the
3163  *	correct order, so we search for the cluster in both directions.
3164  */
3165 int
3166 vfs_bio_awrite(struct buf *bp)
3167 {
3168 	struct bufobj *bo;
3169 	int i;
3170 	int j;
3171 	daddr_t lblkno = bp->b_lblkno;
3172 	struct vnode *vp = bp->b_vp;
3173 	int ncl;
3174 	int nwritten;
3175 	int size;
3176 	int maxcl;
3177 	int gbflags;
3178 
3179 	bo = &vp->v_bufobj;
3180 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3181 	/*
3182 	 * right now we support clustered writing only to regular files.  If
3183 	 * we find a clusterable block we could be in the middle of a cluster
3184 	 * rather then at the beginning.
3185 	 */
3186 	if ((vp->v_type == VREG) &&
3187 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3188 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3189 
3190 		size = vp->v_mount->mnt_stat.f_iosize;
3191 		maxcl = MAXPHYS / size;
3192 
3193 		BO_RLOCK(bo);
3194 		for (i = 1; i < maxcl; i++)
3195 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3196 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3197 				break;
3198 
3199 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3200 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3201 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3202 				break;
3203 		BO_RUNLOCK(bo);
3204 		--j;
3205 		ncl = i + j;
3206 		/*
3207 		 * this is a possible cluster write
3208 		 */
3209 		if (ncl != 1) {
3210 			BUF_UNLOCK(bp);
3211 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3212 			    gbflags);
3213 			return (nwritten);
3214 		}
3215 	}
3216 	bremfree(bp);
3217 	bp->b_flags |= B_ASYNC;
3218 	/*
3219 	 * default (old) behavior, writing out only one block
3220 	 *
3221 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3222 	 */
3223 	nwritten = bp->b_bufsize;
3224 	(void) bwrite(bp);
3225 
3226 	return (nwritten);
3227 }
3228 
3229 /*
3230  *	getnewbuf_kva:
3231  *
3232  *	Allocate KVA for an empty buf header according to gbflags.
3233  */
3234 static int
3235 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3236 {
3237 
3238 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3239 		/*
3240 		 * In order to keep fragmentation sane we only allocate kva
3241 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3242 		 */
3243 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3244 
3245 		if (maxsize != bp->b_kvasize &&
3246 		    bufkva_alloc(bp, maxsize, gbflags))
3247 			return (ENOSPC);
3248 	}
3249 	return (0);
3250 }
3251 
3252 /*
3253  *	getnewbuf:
3254  *
3255  *	Find and initialize a new buffer header, freeing up existing buffers
3256  *	in the bufqueues as necessary.  The new buffer is returned locked.
3257  *
3258  *	We block if:
3259  *		We have insufficient buffer headers
3260  *		We have insufficient buffer space
3261  *		buffer_arena is too fragmented ( space reservation fails )
3262  *		If we have to flush dirty buffers ( but we try to avoid this )
3263  *
3264  *	The caller is responsible for releasing the reserved bufspace after
3265  *	allocbuf() is called.
3266  */
3267 static struct buf *
3268 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3269 {
3270 	struct bufdomain *bd;
3271 	struct buf *bp;
3272 	bool metadata, reserved;
3273 
3274 	bp = NULL;
3275 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3276 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3277 	if (!unmapped_buf_allowed)
3278 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3279 
3280 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3281 	    vp->v_type == VCHR)
3282 		metadata = true;
3283 	else
3284 		metadata = false;
3285 	if (vp == NULL)
3286 		bd = &bdomain[0];
3287 	else
3288 		bd = &bdomain[vp->v_bufobj.bo_domain];
3289 
3290 	counter_u64_add(getnewbufcalls, 1);
3291 	reserved = false;
3292 	do {
3293 		if (reserved == false &&
3294 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3295 			counter_u64_add(getnewbufrestarts, 1);
3296 			continue;
3297 		}
3298 		reserved = true;
3299 		if ((bp = buf_alloc(bd)) == NULL) {
3300 			counter_u64_add(getnewbufrestarts, 1);
3301 			continue;
3302 		}
3303 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3304 			return (bp);
3305 		break;
3306 	} while (buf_recycle(bd, false) == 0);
3307 
3308 	if (reserved)
3309 		bufspace_release(bd, maxsize);
3310 	if (bp != NULL) {
3311 		bp->b_flags |= B_INVAL;
3312 		brelse(bp);
3313 	}
3314 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3315 
3316 	return (NULL);
3317 }
3318 
3319 /*
3320  *	buf_daemon:
3321  *
3322  *	buffer flushing daemon.  Buffers are normally flushed by the
3323  *	update daemon but if it cannot keep up this process starts to
3324  *	take the load in an attempt to prevent getnewbuf() from blocking.
3325  */
3326 static struct kproc_desc buf_kp = {
3327 	"bufdaemon",
3328 	buf_daemon,
3329 	&bufdaemonproc
3330 };
3331 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3332 
3333 static int
3334 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3335 {
3336 	int flushed;
3337 
3338 	flushed = flushbufqueues(vp, bd, target, 0);
3339 	if (flushed == 0) {
3340 		/*
3341 		 * Could not find any buffers without rollback
3342 		 * dependencies, so just write the first one
3343 		 * in the hopes of eventually making progress.
3344 		 */
3345 		if (vp != NULL && target > 2)
3346 			target /= 2;
3347 		flushbufqueues(vp, bd, target, 1);
3348 	}
3349 	return (flushed);
3350 }
3351 
3352 static void
3353 buf_daemon()
3354 {
3355 	struct bufdomain *bd;
3356 	int speedupreq;
3357 	int lodirty;
3358 	int i;
3359 
3360 	/*
3361 	 * This process needs to be suspended prior to shutdown sync.
3362 	 */
3363 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
3364 	    SHUTDOWN_PRI_LAST + 100);
3365 
3366 	/*
3367 	 * Start the buf clean daemons as children threads.
3368 	 */
3369 	for (i = 0 ; i < buf_domains; i++) {
3370 		int error;
3371 
3372 		error = kthread_add((void (*)(void *))bufspace_daemon,
3373 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3374 		if (error)
3375 			panic("error %d spawning bufspace daemon", error);
3376 	}
3377 
3378 	/*
3379 	 * This process is allowed to take the buffer cache to the limit
3380 	 */
3381 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3382 	mtx_lock(&bdlock);
3383 	for (;;) {
3384 		bd_request = 0;
3385 		mtx_unlock(&bdlock);
3386 
3387 		kthread_suspend_check();
3388 
3389 		/*
3390 		 * Save speedupreq for this pass and reset to capture new
3391 		 * requests.
3392 		 */
3393 		speedupreq = bd_speedupreq;
3394 		bd_speedupreq = 0;
3395 
3396 		/*
3397 		 * Flush each domain sequentially according to its level and
3398 		 * the speedup request.
3399 		 */
3400 		for (i = 0; i < buf_domains; i++) {
3401 			bd = &bdomain[i];
3402 			if (speedupreq)
3403 				lodirty = bd->bd_numdirtybuffers / 2;
3404 			else
3405 				lodirty = bd->bd_lodirtybuffers;
3406 			while (bd->bd_numdirtybuffers > lodirty) {
3407 				if (buf_flush(NULL, bd,
3408 				    bd->bd_numdirtybuffers - lodirty) == 0)
3409 					break;
3410 				kern_yield(PRI_USER);
3411 			}
3412 		}
3413 
3414 		/*
3415 		 * Only clear bd_request if we have reached our low water
3416 		 * mark.  The buf_daemon normally waits 1 second and
3417 		 * then incrementally flushes any dirty buffers that have
3418 		 * built up, within reason.
3419 		 *
3420 		 * If we were unable to hit our low water mark and couldn't
3421 		 * find any flushable buffers, we sleep for a short period
3422 		 * to avoid endless loops on unlockable buffers.
3423 		 */
3424 		mtx_lock(&bdlock);
3425 		if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3426 			/*
3427 			 * We reached our low water mark, reset the
3428 			 * request and sleep until we are needed again.
3429 			 * The sleep is just so the suspend code works.
3430 			 */
3431 			bd_request = 0;
3432 			/*
3433 			 * Do an extra wakeup in case dirty threshold
3434 			 * changed via sysctl and the explicit transition
3435 			 * out of shortfall was missed.
3436 			 */
3437 			bdirtywakeup();
3438 			if (runningbufspace <= lorunningspace)
3439 				runningwakeup();
3440 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3441 		} else {
3442 			/*
3443 			 * We couldn't find any flushable dirty buffers but
3444 			 * still have too many dirty buffers, we
3445 			 * have to sleep and try again.  (rare)
3446 			 */
3447 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3448 		}
3449 	}
3450 }
3451 
3452 /*
3453  *	flushbufqueues:
3454  *
3455  *	Try to flush a buffer in the dirty queue.  We must be careful to
3456  *	free up B_INVAL buffers instead of write them, which NFS is
3457  *	particularly sensitive to.
3458  */
3459 static int flushwithdeps = 0;
3460 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
3461     0, "Number of buffers flushed with dependecies that require rollbacks");
3462 
3463 static int
3464 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3465     int flushdeps)
3466 {
3467 	struct bufqueue *bq;
3468 	struct buf *sentinel;
3469 	struct vnode *vp;
3470 	struct mount *mp;
3471 	struct buf *bp;
3472 	int hasdeps;
3473 	int flushed;
3474 	int error;
3475 	bool unlock;
3476 
3477 	flushed = 0;
3478 	bq = &bd->bd_dirtyq;
3479 	bp = NULL;
3480 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3481 	sentinel->b_qindex = QUEUE_SENTINEL;
3482 	BQ_LOCK(bq);
3483 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3484 	BQ_UNLOCK(bq);
3485 	while (flushed != target) {
3486 		maybe_yield();
3487 		BQ_LOCK(bq);
3488 		bp = TAILQ_NEXT(sentinel, b_freelist);
3489 		if (bp != NULL) {
3490 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3491 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3492 			    b_freelist);
3493 		} else {
3494 			BQ_UNLOCK(bq);
3495 			break;
3496 		}
3497 		/*
3498 		 * Skip sentinels inserted by other invocations of the
3499 		 * flushbufqueues(), taking care to not reorder them.
3500 		 *
3501 		 * Only flush the buffers that belong to the
3502 		 * vnode locked by the curthread.
3503 		 */
3504 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3505 		    bp->b_vp != lvp)) {
3506 			BQ_UNLOCK(bq);
3507 			continue;
3508 		}
3509 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3510 		BQ_UNLOCK(bq);
3511 		if (error != 0)
3512 			continue;
3513 
3514 		/*
3515 		 * BKGRDINPROG can only be set with the buf and bufobj
3516 		 * locks both held.  We tolerate a race to clear it here.
3517 		 */
3518 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3519 		    (bp->b_flags & B_DELWRI) == 0) {
3520 			BUF_UNLOCK(bp);
3521 			continue;
3522 		}
3523 		if (bp->b_flags & B_INVAL) {
3524 			bremfreef(bp);
3525 			brelse(bp);
3526 			flushed++;
3527 			continue;
3528 		}
3529 
3530 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3531 			if (flushdeps == 0) {
3532 				BUF_UNLOCK(bp);
3533 				continue;
3534 			}
3535 			hasdeps = 1;
3536 		} else
3537 			hasdeps = 0;
3538 		/*
3539 		 * We must hold the lock on a vnode before writing
3540 		 * one of its buffers. Otherwise we may confuse, or
3541 		 * in the case of a snapshot vnode, deadlock the
3542 		 * system.
3543 		 *
3544 		 * The lock order here is the reverse of the normal
3545 		 * of vnode followed by buf lock.  This is ok because
3546 		 * the NOWAIT will prevent deadlock.
3547 		 */
3548 		vp = bp->b_vp;
3549 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3550 			BUF_UNLOCK(bp);
3551 			continue;
3552 		}
3553 		if (lvp == NULL) {
3554 			unlock = true;
3555 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3556 		} else {
3557 			ASSERT_VOP_LOCKED(vp, "getbuf");
3558 			unlock = false;
3559 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3560 			    vn_lock(vp, LK_TRYUPGRADE);
3561 		}
3562 		if (error == 0) {
3563 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3564 			    bp, bp->b_vp, bp->b_flags);
3565 			if (curproc == bufdaemonproc) {
3566 				vfs_bio_awrite(bp);
3567 			} else {
3568 				bremfree(bp);
3569 				bwrite(bp);
3570 				counter_u64_add(notbufdflushes, 1);
3571 			}
3572 			vn_finished_write(mp);
3573 			if (unlock)
3574 				VOP_UNLOCK(vp, 0);
3575 			flushwithdeps += hasdeps;
3576 			flushed++;
3577 
3578 			/*
3579 			 * Sleeping on runningbufspace while holding
3580 			 * vnode lock leads to deadlock.
3581 			 */
3582 			if (curproc == bufdaemonproc &&
3583 			    runningbufspace > hirunningspace)
3584 				waitrunningbufspace();
3585 			continue;
3586 		}
3587 		vn_finished_write(mp);
3588 		BUF_UNLOCK(bp);
3589 	}
3590 	BQ_LOCK(bq);
3591 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3592 	BQ_UNLOCK(bq);
3593 	free(sentinel, M_TEMP);
3594 	return (flushed);
3595 }
3596 
3597 /*
3598  * Check to see if a block is currently memory resident.
3599  */
3600 struct buf *
3601 incore(struct bufobj *bo, daddr_t blkno)
3602 {
3603 	struct buf *bp;
3604 
3605 	BO_RLOCK(bo);
3606 	bp = gbincore(bo, blkno);
3607 	BO_RUNLOCK(bo);
3608 	return (bp);
3609 }
3610 
3611 /*
3612  * Returns true if no I/O is needed to access the
3613  * associated VM object.  This is like incore except
3614  * it also hunts around in the VM system for the data.
3615  */
3616 
3617 static int
3618 inmem(struct vnode * vp, daddr_t blkno)
3619 {
3620 	vm_object_t obj;
3621 	vm_offset_t toff, tinc, size;
3622 	vm_page_t m;
3623 	vm_ooffset_t off;
3624 
3625 	ASSERT_VOP_LOCKED(vp, "inmem");
3626 
3627 	if (incore(&vp->v_bufobj, blkno))
3628 		return 1;
3629 	if (vp->v_mount == NULL)
3630 		return 0;
3631 	obj = vp->v_object;
3632 	if (obj == NULL)
3633 		return (0);
3634 
3635 	size = PAGE_SIZE;
3636 	if (size > vp->v_mount->mnt_stat.f_iosize)
3637 		size = vp->v_mount->mnt_stat.f_iosize;
3638 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3639 
3640 	VM_OBJECT_RLOCK(obj);
3641 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3642 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
3643 		if (!m)
3644 			goto notinmem;
3645 		tinc = size;
3646 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3647 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3648 		if (vm_page_is_valid(m,
3649 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
3650 			goto notinmem;
3651 	}
3652 	VM_OBJECT_RUNLOCK(obj);
3653 	return 1;
3654 
3655 notinmem:
3656 	VM_OBJECT_RUNLOCK(obj);
3657 	return (0);
3658 }
3659 
3660 /*
3661  * Set the dirty range for a buffer based on the status of the dirty
3662  * bits in the pages comprising the buffer.  The range is limited
3663  * to the size of the buffer.
3664  *
3665  * Tell the VM system that the pages associated with this buffer
3666  * are clean.  This is used for delayed writes where the data is
3667  * going to go to disk eventually without additional VM intevention.
3668  *
3669  * Note that while we only really need to clean through to b_bcount, we
3670  * just go ahead and clean through to b_bufsize.
3671  */
3672 static void
3673 vfs_clean_pages_dirty_buf(struct buf *bp)
3674 {
3675 	vm_ooffset_t foff, noff, eoff;
3676 	vm_page_t m;
3677 	int i;
3678 
3679 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3680 		return;
3681 
3682 	foff = bp->b_offset;
3683 	KASSERT(bp->b_offset != NOOFFSET,
3684 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3685 
3686 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3687 	vfs_drain_busy_pages(bp);
3688 	vfs_setdirty_locked_object(bp);
3689 	for (i = 0; i < bp->b_npages; i++) {
3690 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3691 		eoff = noff;
3692 		if (eoff > bp->b_offset + bp->b_bufsize)
3693 			eoff = bp->b_offset + bp->b_bufsize;
3694 		m = bp->b_pages[i];
3695 		vfs_page_set_validclean(bp, foff, m);
3696 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3697 		foff = noff;
3698 	}
3699 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3700 }
3701 
3702 static void
3703 vfs_setdirty_locked_object(struct buf *bp)
3704 {
3705 	vm_object_t object;
3706 	int i;
3707 
3708 	object = bp->b_bufobj->bo_object;
3709 	VM_OBJECT_ASSERT_WLOCKED(object);
3710 
3711 	/*
3712 	 * We qualify the scan for modified pages on whether the
3713 	 * object has been flushed yet.
3714 	 */
3715 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
3716 		vm_offset_t boffset;
3717 		vm_offset_t eoffset;
3718 
3719 		/*
3720 		 * test the pages to see if they have been modified directly
3721 		 * by users through the VM system.
3722 		 */
3723 		for (i = 0; i < bp->b_npages; i++)
3724 			vm_page_test_dirty(bp->b_pages[i]);
3725 
3726 		/*
3727 		 * Calculate the encompassing dirty range, boffset and eoffset,
3728 		 * (eoffset - boffset) bytes.
3729 		 */
3730 
3731 		for (i = 0; i < bp->b_npages; i++) {
3732 			if (bp->b_pages[i]->dirty)
3733 				break;
3734 		}
3735 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3736 
3737 		for (i = bp->b_npages - 1; i >= 0; --i) {
3738 			if (bp->b_pages[i]->dirty) {
3739 				break;
3740 			}
3741 		}
3742 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3743 
3744 		/*
3745 		 * Fit it to the buffer.
3746 		 */
3747 
3748 		if (eoffset > bp->b_bcount)
3749 			eoffset = bp->b_bcount;
3750 
3751 		/*
3752 		 * If we have a good dirty range, merge with the existing
3753 		 * dirty range.
3754 		 */
3755 
3756 		if (boffset < eoffset) {
3757 			if (bp->b_dirtyoff > boffset)
3758 				bp->b_dirtyoff = boffset;
3759 			if (bp->b_dirtyend < eoffset)
3760 				bp->b_dirtyend = eoffset;
3761 		}
3762 	}
3763 }
3764 
3765 /*
3766  * Allocate the KVA mapping for an existing buffer.
3767  * If an unmapped buffer is provided but a mapped buffer is requested, take
3768  * also care to properly setup mappings between pages and KVA.
3769  */
3770 static void
3771 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3772 {
3773 	int bsize, maxsize, need_mapping, need_kva;
3774 	off_t offset;
3775 
3776 	need_mapping = bp->b_data == unmapped_buf &&
3777 	    (gbflags & GB_UNMAPPED) == 0;
3778 	need_kva = bp->b_kvabase == unmapped_buf &&
3779 	    bp->b_data == unmapped_buf &&
3780 	    (gbflags & GB_KVAALLOC) != 0;
3781 	if (!need_mapping && !need_kva)
3782 		return;
3783 
3784 	BUF_CHECK_UNMAPPED(bp);
3785 
3786 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3787 		/*
3788 		 * Buffer is not mapped, but the KVA was already
3789 		 * reserved at the time of the instantiation.  Use the
3790 		 * allocated space.
3791 		 */
3792 		goto has_addr;
3793 	}
3794 
3795 	/*
3796 	 * Calculate the amount of the address space we would reserve
3797 	 * if the buffer was mapped.
3798 	 */
3799 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3800 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3801 	offset = blkno * bsize;
3802 	maxsize = size + (offset & PAGE_MASK);
3803 	maxsize = imax(maxsize, bsize);
3804 
3805 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3806 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3807 			/*
3808 			 * XXXKIB: defragmentation cannot
3809 			 * succeed, not sure what else to do.
3810 			 */
3811 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3812 		}
3813 		counter_u64_add(mappingrestarts, 1);
3814 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3815 	}
3816 has_addr:
3817 	if (need_mapping) {
3818 		/* b_offset is handled by bpmap_qenter. */
3819 		bp->b_data = bp->b_kvabase;
3820 		BUF_CHECK_MAPPED(bp);
3821 		bpmap_qenter(bp);
3822 	}
3823 }
3824 
3825 /*
3826  *	getblk:
3827  *
3828  *	Get a block given a specified block and offset into a file/device.
3829  *	The buffers B_DONE bit will be cleared on return, making it almost
3830  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3831  *	return.  The caller should clear B_INVAL prior to initiating a
3832  *	READ.
3833  *
3834  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3835  *	an existing buffer.
3836  *
3837  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3838  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3839  *	and then cleared based on the backing VM.  If the previous buffer is
3840  *	non-0-sized but invalid, B_CACHE will be cleared.
3841  *
3842  *	If getblk() must create a new buffer, the new buffer is returned with
3843  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3844  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3845  *	backing VM.
3846  *
3847  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3848  *	B_CACHE bit is clear.
3849  *
3850  *	What this means, basically, is that the caller should use B_CACHE to
3851  *	determine whether the buffer is fully valid or not and should clear
3852  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3853  *	the buffer by loading its data area with something, the caller needs
3854  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3855  *	the caller should set B_CACHE ( as an optimization ), else the caller
3856  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3857  *	a write attempt or if it was a successful read.  If the caller
3858  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3859  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3860  */
3861 struct buf *
3862 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3863     int flags)
3864 {
3865 	struct buf *bp;
3866 	struct bufobj *bo;
3867 	int bsize, error, maxsize, vmio;
3868 	off_t offset;
3869 
3870 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3871 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3872 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3873 	ASSERT_VOP_LOCKED(vp, "getblk");
3874 	if (size > maxbcachebuf)
3875 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3876 		    maxbcachebuf);
3877 	if (!unmapped_buf_allowed)
3878 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3879 
3880 	bo = &vp->v_bufobj;
3881 loop:
3882 	BO_RLOCK(bo);
3883 	bp = gbincore(bo, blkno);
3884 	if (bp != NULL) {
3885 		int lockflags;
3886 		/*
3887 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3888 		 * it must be on a queue.
3889 		 */
3890 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3891 
3892 		if (flags & GB_LOCK_NOWAIT)
3893 			lockflags |= LK_NOWAIT;
3894 
3895 		error = BUF_TIMELOCK(bp, lockflags,
3896 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3897 
3898 		/*
3899 		 * If we slept and got the lock we have to restart in case
3900 		 * the buffer changed identities.
3901 		 */
3902 		if (error == ENOLCK)
3903 			goto loop;
3904 		/* We timed out or were interrupted. */
3905 		else if (error)
3906 			return (NULL);
3907 		/* If recursed, assume caller knows the rules. */
3908 		else if (BUF_LOCKRECURSED(bp))
3909 			goto end;
3910 
3911 		/*
3912 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3913 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3914 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3915 		 * backing VM cache.
3916 		 */
3917 		if (bp->b_flags & B_INVAL)
3918 			bp->b_flags &= ~B_CACHE;
3919 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3920 			bp->b_flags |= B_CACHE;
3921 		if (bp->b_flags & B_MANAGED)
3922 			MPASS(bp->b_qindex == QUEUE_NONE);
3923 		else
3924 			bremfree(bp);
3925 
3926 		/*
3927 		 * check for size inconsistencies for non-VMIO case.
3928 		 */
3929 		if (bp->b_bcount != size) {
3930 			if ((bp->b_flags & B_VMIO) == 0 ||
3931 			    (size > bp->b_kvasize)) {
3932 				if (bp->b_flags & B_DELWRI) {
3933 					bp->b_flags |= B_NOCACHE;
3934 					bwrite(bp);
3935 				} else {
3936 					if (LIST_EMPTY(&bp->b_dep)) {
3937 						bp->b_flags |= B_RELBUF;
3938 						brelse(bp);
3939 					} else {
3940 						bp->b_flags |= B_NOCACHE;
3941 						bwrite(bp);
3942 					}
3943 				}
3944 				goto loop;
3945 			}
3946 		}
3947 
3948 		/*
3949 		 * Handle the case of unmapped buffer which should
3950 		 * become mapped, or the buffer for which KVA
3951 		 * reservation is requested.
3952 		 */
3953 		bp_unmapped_get_kva(bp, blkno, size, flags);
3954 
3955 		/*
3956 		 * If the size is inconsistent in the VMIO case, we can resize
3957 		 * the buffer.  This might lead to B_CACHE getting set or
3958 		 * cleared.  If the size has not changed, B_CACHE remains
3959 		 * unchanged from its previous state.
3960 		 */
3961 		allocbuf(bp, size);
3962 
3963 		KASSERT(bp->b_offset != NOOFFSET,
3964 		    ("getblk: no buffer offset"));
3965 
3966 		/*
3967 		 * A buffer with B_DELWRI set and B_CACHE clear must
3968 		 * be committed before we can return the buffer in
3969 		 * order to prevent the caller from issuing a read
3970 		 * ( due to B_CACHE not being set ) and overwriting
3971 		 * it.
3972 		 *
3973 		 * Most callers, including NFS and FFS, need this to
3974 		 * operate properly either because they assume they
3975 		 * can issue a read if B_CACHE is not set, or because
3976 		 * ( for example ) an uncached B_DELWRI might loop due
3977 		 * to softupdates re-dirtying the buffer.  In the latter
3978 		 * case, B_CACHE is set after the first write completes,
3979 		 * preventing further loops.
3980 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3981 		 * above while extending the buffer, we cannot allow the
3982 		 * buffer to remain with B_CACHE set after the write
3983 		 * completes or it will represent a corrupt state.  To
3984 		 * deal with this we set B_NOCACHE to scrap the buffer
3985 		 * after the write.
3986 		 *
3987 		 * We might be able to do something fancy, like setting
3988 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3989 		 * so the below call doesn't set B_CACHE, but that gets real
3990 		 * confusing.  This is much easier.
3991 		 */
3992 
3993 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3994 			bp->b_flags |= B_NOCACHE;
3995 			bwrite(bp);
3996 			goto loop;
3997 		}
3998 		bp->b_flags &= ~B_DONE;
3999 	} else {
4000 		/*
4001 		 * Buffer is not in-core, create new buffer.  The buffer
4002 		 * returned by getnewbuf() is locked.  Note that the returned
4003 		 * buffer is also considered valid (not marked B_INVAL).
4004 		 */
4005 		BO_RUNLOCK(bo);
4006 		/*
4007 		 * If the user does not want us to create the buffer, bail out
4008 		 * here.
4009 		 */
4010 		if (flags & GB_NOCREAT)
4011 			return NULL;
4012 		if (bdomain[bo->bo_domain].bd_freebuffers == 0 &&
4013 		    TD_IS_IDLETHREAD(curthread))
4014 			return NULL;
4015 
4016 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
4017 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4018 		offset = blkno * bsize;
4019 		vmio = vp->v_object != NULL;
4020 		if (vmio) {
4021 			maxsize = size + (offset & PAGE_MASK);
4022 		} else {
4023 			maxsize = size;
4024 			/* Do not allow non-VMIO notmapped buffers. */
4025 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4026 		}
4027 		maxsize = imax(maxsize, bsize);
4028 
4029 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4030 		if (bp == NULL) {
4031 			if (slpflag || slptimeo)
4032 				return NULL;
4033 			/*
4034 			 * XXX This is here until the sleep path is diagnosed
4035 			 * enough to work under very low memory conditions.
4036 			 *
4037 			 * There's an issue on low memory, 4BSD+non-preempt
4038 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4039 			 * exhaustion occurs without sleeping for buffer
4040 			 * reclaimation.  This just sticks in a loop and
4041 			 * constantly attempts to allocate a buffer, which
4042 			 * hits exhaustion and tries to wakeup bufdaemon.
4043 			 * This never happens because we never yield.
4044 			 *
4045 			 * The real solution is to identify and fix these cases
4046 			 * so we aren't effectively busy-waiting in a loop
4047 			 * until the reclaimation path has cycles to run.
4048 			 */
4049 			kern_yield(PRI_USER);
4050 			goto loop;
4051 		}
4052 
4053 		/*
4054 		 * This code is used to make sure that a buffer is not
4055 		 * created while the getnewbuf routine is blocked.
4056 		 * This can be a problem whether the vnode is locked or not.
4057 		 * If the buffer is created out from under us, we have to
4058 		 * throw away the one we just created.
4059 		 *
4060 		 * Note: this must occur before we associate the buffer
4061 		 * with the vp especially considering limitations in
4062 		 * the splay tree implementation when dealing with duplicate
4063 		 * lblkno's.
4064 		 */
4065 		BO_LOCK(bo);
4066 		if (gbincore(bo, blkno)) {
4067 			BO_UNLOCK(bo);
4068 			bp->b_flags |= B_INVAL;
4069 			bufspace_release(bufdomain(bp), maxsize);
4070 			brelse(bp);
4071 			goto loop;
4072 		}
4073 
4074 		/*
4075 		 * Insert the buffer into the hash, so that it can
4076 		 * be found by incore.
4077 		 */
4078 		bp->b_blkno = bp->b_lblkno = blkno;
4079 		bp->b_offset = offset;
4080 		bgetvp(vp, bp);
4081 		BO_UNLOCK(bo);
4082 
4083 		/*
4084 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4085 		 * buffer size starts out as 0, B_CACHE will be set by
4086 		 * allocbuf() for the VMIO case prior to it testing the
4087 		 * backing store for validity.
4088 		 */
4089 
4090 		if (vmio) {
4091 			bp->b_flags |= B_VMIO;
4092 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4093 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4094 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4095 		} else {
4096 			bp->b_flags &= ~B_VMIO;
4097 			KASSERT(bp->b_bufobj->bo_object == NULL,
4098 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4099 			    bp, bp->b_bufobj->bo_object));
4100 			BUF_CHECK_MAPPED(bp);
4101 		}
4102 
4103 		allocbuf(bp, size);
4104 		bufspace_release(bufdomain(bp), maxsize);
4105 		bp->b_flags &= ~B_DONE;
4106 	}
4107 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4108 	BUF_ASSERT_HELD(bp);
4109 end:
4110 	buf_track(bp, __func__);
4111 	KASSERT(bp->b_bufobj == bo,
4112 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4113 	return (bp);
4114 }
4115 
4116 /*
4117  * Get an empty, disassociated buffer of given size.  The buffer is initially
4118  * set to B_INVAL.
4119  */
4120 struct buf *
4121 geteblk(int size, int flags)
4122 {
4123 	struct buf *bp;
4124 	int maxsize;
4125 
4126 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4127 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4128 		if ((flags & GB_NOWAIT_BD) &&
4129 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4130 			return (NULL);
4131 	}
4132 	allocbuf(bp, size);
4133 	bufspace_release(bufdomain(bp), maxsize);
4134 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4135 	BUF_ASSERT_HELD(bp);
4136 	return (bp);
4137 }
4138 
4139 /*
4140  * Truncate the backing store for a non-vmio buffer.
4141  */
4142 static void
4143 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4144 {
4145 
4146 	if (bp->b_flags & B_MALLOC) {
4147 		/*
4148 		 * malloced buffers are not shrunk
4149 		 */
4150 		if (newbsize == 0) {
4151 			bufmallocadjust(bp, 0);
4152 			free(bp->b_data, M_BIOBUF);
4153 			bp->b_data = bp->b_kvabase;
4154 			bp->b_flags &= ~B_MALLOC;
4155 		}
4156 		return;
4157 	}
4158 	vm_hold_free_pages(bp, newbsize);
4159 	bufspace_adjust(bp, newbsize);
4160 }
4161 
4162 /*
4163  * Extend the backing for a non-VMIO buffer.
4164  */
4165 static void
4166 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4167 {
4168 	caddr_t origbuf;
4169 	int origbufsize;
4170 
4171 	/*
4172 	 * We only use malloced memory on the first allocation.
4173 	 * and revert to page-allocated memory when the buffer
4174 	 * grows.
4175 	 *
4176 	 * There is a potential smp race here that could lead
4177 	 * to bufmallocspace slightly passing the max.  It
4178 	 * is probably extremely rare and not worth worrying
4179 	 * over.
4180 	 */
4181 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4182 	    bufmallocspace < maxbufmallocspace) {
4183 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4184 		bp->b_flags |= B_MALLOC;
4185 		bufmallocadjust(bp, newbsize);
4186 		return;
4187 	}
4188 
4189 	/*
4190 	 * If the buffer is growing on its other-than-first
4191 	 * allocation then we revert to the page-allocation
4192 	 * scheme.
4193 	 */
4194 	origbuf = NULL;
4195 	origbufsize = 0;
4196 	if (bp->b_flags & B_MALLOC) {
4197 		origbuf = bp->b_data;
4198 		origbufsize = bp->b_bufsize;
4199 		bp->b_data = bp->b_kvabase;
4200 		bufmallocadjust(bp, 0);
4201 		bp->b_flags &= ~B_MALLOC;
4202 		newbsize = round_page(newbsize);
4203 	}
4204 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4205 	    (vm_offset_t) bp->b_data + newbsize);
4206 	if (origbuf != NULL) {
4207 		bcopy(origbuf, bp->b_data, origbufsize);
4208 		free(origbuf, M_BIOBUF);
4209 	}
4210 	bufspace_adjust(bp, newbsize);
4211 }
4212 
4213 /*
4214  * This code constitutes the buffer memory from either anonymous system
4215  * memory (in the case of non-VMIO operations) or from an associated
4216  * VM object (in the case of VMIO operations).  This code is able to
4217  * resize a buffer up or down.
4218  *
4219  * Note that this code is tricky, and has many complications to resolve
4220  * deadlock or inconsistent data situations.  Tread lightly!!!
4221  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4222  * the caller.  Calling this code willy nilly can result in the loss of data.
4223  *
4224  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4225  * B_CACHE for the non-VMIO case.
4226  */
4227 int
4228 allocbuf(struct buf *bp, int size)
4229 {
4230 	int newbsize;
4231 
4232 	BUF_ASSERT_HELD(bp);
4233 
4234 	if (bp->b_bcount == size)
4235 		return (1);
4236 
4237 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4238 		panic("allocbuf: buffer too small");
4239 
4240 	newbsize = roundup2(size, DEV_BSIZE);
4241 	if ((bp->b_flags & B_VMIO) == 0) {
4242 		if ((bp->b_flags & B_MALLOC) == 0)
4243 			newbsize = round_page(newbsize);
4244 		/*
4245 		 * Just get anonymous memory from the kernel.  Don't
4246 		 * mess with B_CACHE.
4247 		 */
4248 		if (newbsize < bp->b_bufsize)
4249 			vfs_nonvmio_truncate(bp, newbsize);
4250 		else if (newbsize > bp->b_bufsize)
4251 			vfs_nonvmio_extend(bp, newbsize);
4252 	} else {
4253 		int desiredpages;
4254 
4255 		desiredpages = (size == 0) ? 0 :
4256 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4257 
4258 		if (bp->b_flags & B_MALLOC)
4259 			panic("allocbuf: VMIO buffer can't be malloced");
4260 		/*
4261 		 * Set B_CACHE initially if buffer is 0 length or will become
4262 		 * 0-length.
4263 		 */
4264 		if (size == 0 || bp->b_bufsize == 0)
4265 			bp->b_flags |= B_CACHE;
4266 
4267 		if (newbsize < bp->b_bufsize)
4268 			vfs_vmio_truncate(bp, desiredpages);
4269 		/* XXX This looks as if it should be newbsize > b_bufsize */
4270 		else if (size > bp->b_bcount)
4271 			vfs_vmio_extend(bp, desiredpages, size);
4272 		bufspace_adjust(bp, newbsize);
4273 	}
4274 	bp->b_bcount = size;		/* requested buffer size. */
4275 	return (1);
4276 }
4277 
4278 extern int inflight_transient_maps;
4279 
4280 void
4281 biodone(struct bio *bp)
4282 {
4283 	struct mtx *mtxp;
4284 	void (*done)(struct bio *);
4285 	vm_offset_t start, end;
4286 
4287 	biotrack(bp, __func__);
4288 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4289 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4290 		bp->bio_flags |= BIO_UNMAPPED;
4291 		start = trunc_page((vm_offset_t)bp->bio_data);
4292 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4293 		bp->bio_data = unmapped_buf;
4294 		pmap_qremove(start, atop(end - start));
4295 		vmem_free(transient_arena, start, end - start);
4296 		atomic_add_int(&inflight_transient_maps, -1);
4297 	}
4298 	done = bp->bio_done;
4299 	if (done == NULL) {
4300 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4301 		mtx_lock(mtxp);
4302 		bp->bio_flags |= BIO_DONE;
4303 		wakeup(bp);
4304 		mtx_unlock(mtxp);
4305 	} else
4306 		done(bp);
4307 }
4308 
4309 /*
4310  * Wait for a BIO to finish.
4311  */
4312 int
4313 biowait(struct bio *bp, const char *wchan)
4314 {
4315 	struct mtx *mtxp;
4316 
4317 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4318 	mtx_lock(mtxp);
4319 	while ((bp->bio_flags & BIO_DONE) == 0)
4320 		msleep(bp, mtxp, PRIBIO, wchan, 0);
4321 	mtx_unlock(mtxp);
4322 	if (bp->bio_error != 0)
4323 		return (bp->bio_error);
4324 	if (!(bp->bio_flags & BIO_ERROR))
4325 		return (0);
4326 	return (EIO);
4327 }
4328 
4329 void
4330 biofinish(struct bio *bp, struct devstat *stat, int error)
4331 {
4332 
4333 	if (error) {
4334 		bp->bio_error = error;
4335 		bp->bio_flags |= BIO_ERROR;
4336 	}
4337 	if (stat != NULL)
4338 		devstat_end_transaction_bio(stat, bp);
4339 	biodone(bp);
4340 }
4341 
4342 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4343 void
4344 biotrack_buf(struct bio *bp, const char *location)
4345 {
4346 
4347 	buf_track(bp->bio_track_bp, location);
4348 }
4349 #endif
4350 
4351 /*
4352  *	bufwait:
4353  *
4354  *	Wait for buffer I/O completion, returning error status.  The buffer
4355  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4356  *	error and cleared.
4357  */
4358 int
4359 bufwait(struct buf *bp)
4360 {
4361 	if (bp->b_iocmd == BIO_READ)
4362 		bwait(bp, PRIBIO, "biord");
4363 	else
4364 		bwait(bp, PRIBIO, "biowr");
4365 	if (bp->b_flags & B_EINTR) {
4366 		bp->b_flags &= ~B_EINTR;
4367 		return (EINTR);
4368 	}
4369 	if (bp->b_ioflags & BIO_ERROR) {
4370 		return (bp->b_error ? bp->b_error : EIO);
4371 	} else {
4372 		return (0);
4373 	}
4374 }
4375 
4376 /*
4377  *	bufdone:
4378  *
4379  *	Finish I/O on a buffer, optionally calling a completion function.
4380  *	This is usually called from an interrupt so process blocking is
4381  *	not allowed.
4382  *
4383  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4384  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4385  *	assuming B_INVAL is clear.
4386  *
4387  *	For the VMIO case, we set B_CACHE if the op was a read and no
4388  *	read error occurred, or if the op was a write.  B_CACHE is never
4389  *	set if the buffer is invalid or otherwise uncacheable.
4390  *
4391  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
4392  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4393  *	in the biodone routine.
4394  */
4395 void
4396 bufdone(struct buf *bp)
4397 {
4398 	struct bufobj *dropobj;
4399 	void    (*biodone)(struct buf *);
4400 
4401 	buf_track(bp, __func__);
4402 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4403 	dropobj = NULL;
4404 
4405 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4406 	BUF_ASSERT_HELD(bp);
4407 
4408 	runningbufwakeup(bp);
4409 	if (bp->b_iocmd == BIO_WRITE)
4410 		dropobj = bp->b_bufobj;
4411 	/* call optional completion function if requested */
4412 	if (bp->b_iodone != NULL) {
4413 		biodone = bp->b_iodone;
4414 		bp->b_iodone = NULL;
4415 		(*biodone) (bp);
4416 		if (dropobj)
4417 			bufobj_wdrop(dropobj);
4418 		return;
4419 	}
4420 	if (bp->b_flags & B_VMIO) {
4421 		/*
4422 		 * Set B_CACHE if the op was a normal read and no error
4423 		 * occurred.  B_CACHE is set for writes in the b*write()
4424 		 * routines.
4425 		 */
4426 		if (bp->b_iocmd == BIO_READ &&
4427 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4428 		    !(bp->b_ioflags & BIO_ERROR))
4429 			bp->b_flags |= B_CACHE;
4430 		vfs_vmio_iodone(bp);
4431 	}
4432 	if (!LIST_EMPTY(&bp->b_dep))
4433 		buf_complete(bp);
4434 	if ((bp->b_flags & B_CKHASH) != 0) {
4435 		KASSERT(bp->b_iocmd == BIO_READ,
4436 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4437 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4438 		(*bp->b_ckhashcalc)(bp);
4439 	}
4440 	/*
4441 	 * For asynchronous completions, release the buffer now. The brelse
4442 	 * will do a wakeup there if necessary - so no need to do a wakeup
4443 	 * here in the async case. The sync case always needs to do a wakeup.
4444 	 */
4445 	if (bp->b_flags & B_ASYNC) {
4446 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4447 		    (bp->b_ioflags & BIO_ERROR))
4448 			brelse(bp);
4449 		else
4450 			bqrelse(bp);
4451 	} else
4452 		bdone(bp);
4453 	if (dropobj)
4454 		bufobj_wdrop(dropobj);
4455 }
4456 
4457 /*
4458  * This routine is called in lieu of iodone in the case of
4459  * incomplete I/O.  This keeps the busy status for pages
4460  * consistent.
4461  */
4462 void
4463 vfs_unbusy_pages(struct buf *bp)
4464 {
4465 	int i;
4466 	vm_object_t obj;
4467 	vm_page_t m;
4468 
4469 	runningbufwakeup(bp);
4470 	if (!(bp->b_flags & B_VMIO))
4471 		return;
4472 
4473 	obj = bp->b_bufobj->bo_object;
4474 	VM_OBJECT_WLOCK(obj);
4475 	for (i = 0; i < bp->b_npages; i++) {
4476 		m = bp->b_pages[i];
4477 		if (m == bogus_page) {
4478 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4479 			if (!m)
4480 				panic("vfs_unbusy_pages: page missing\n");
4481 			bp->b_pages[i] = m;
4482 			if (buf_mapped(bp)) {
4483 				BUF_CHECK_MAPPED(bp);
4484 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4485 				    bp->b_pages, bp->b_npages);
4486 			} else
4487 				BUF_CHECK_UNMAPPED(bp);
4488 		}
4489 		vm_page_sunbusy(m);
4490 	}
4491 	vm_object_pip_wakeupn(obj, bp->b_npages);
4492 	VM_OBJECT_WUNLOCK(obj);
4493 }
4494 
4495 /*
4496  * vfs_page_set_valid:
4497  *
4498  *	Set the valid bits in a page based on the supplied offset.   The
4499  *	range is restricted to the buffer's size.
4500  *
4501  *	This routine is typically called after a read completes.
4502  */
4503 static void
4504 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4505 {
4506 	vm_ooffset_t eoff;
4507 
4508 	/*
4509 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4510 	 * page boundary and eoff is not greater than the end of the buffer.
4511 	 * The end of the buffer, in this case, is our file EOF, not the
4512 	 * allocation size of the buffer.
4513 	 */
4514 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4515 	if (eoff > bp->b_offset + bp->b_bcount)
4516 		eoff = bp->b_offset + bp->b_bcount;
4517 
4518 	/*
4519 	 * Set valid range.  This is typically the entire buffer and thus the
4520 	 * entire page.
4521 	 */
4522 	if (eoff > off)
4523 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4524 }
4525 
4526 /*
4527  * vfs_page_set_validclean:
4528  *
4529  *	Set the valid bits and clear the dirty bits in a page based on the
4530  *	supplied offset.   The range is restricted to the buffer's size.
4531  */
4532 static void
4533 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4534 {
4535 	vm_ooffset_t soff, eoff;
4536 
4537 	/*
4538 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4539 	 * page boundary or cross the end of the buffer.  The end of the
4540 	 * buffer, in this case, is our file EOF, not the allocation size
4541 	 * of the buffer.
4542 	 */
4543 	soff = off;
4544 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4545 	if (eoff > bp->b_offset + bp->b_bcount)
4546 		eoff = bp->b_offset + bp->b_bcount;
4547 
4548 	/*
4549 	 * Set valid range.  This is typically the entire buffer and thus the
4550 	 * entire page.
4551 	 */
4552 	if (eoff > soff) {
4553 		vm_page_set_validclean(
4554 		    m,
4555 		   (vm_offset_t) (soff & PAGE_MASK),
4556 		   (vm_offset_t) (eoff - soff)
4557 		);
4558 	}
4559 }
4560 
4561 /*
4562  * Ensure that all buffer pages are not exclusive busied.  If any page is
4563  * exclusive busy, drain it.
4564  */
4565 void
4566 vfs_drain_busy_pages(struct buf *bp)
4567 {
4568 	vm_page_t m;
4569 	int i, last_busied;
4570 
4571 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4572 	last_busied = 0;
4573 	for (i = 0; i < bp->b_npages; i++) {
4574 		m = bp->b_pages[i];
4575 		if (vm_page_xbusied(m)) {
4576 			for (; last_busied < i; last_busied++)
4577 				vm_page_sbusy(bp->b_pages[last_busied]);
4578 			while (vm_page_xbusied(m)) {
4579 				vm_page_lock(m);
4580 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4581 				vm_page_busy_sleep(m, "vbpage", true);
4582 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4583 			}
4584 		}
4585 	}
4586 	for (i = 0; i < last_busied; i++)
4587 		vm_page_sunbusy(bp->b_pages[i]);
4588 }
4589 
4590 /*
4591  * This routine is called before a device strategy routine.
4592  * It is used to tell the VM system that paging I/O is in
4593  * progress, and treat the pages associated with the buffer
4594  * almost as being exclusive busy.  Also the object paging_in_progress
4595  * flag is handled to make sure that the object doesn't become
4596  * inconsistent.
4597  *
4598  * Since I/O has not been initiated yet, certain buffer flags
4599  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4600  * and should be ignored.
4601  */
4602 void
4603 vfs_busy_pages(struct buf *bp, int clear_modify)
4604 {
4605 	vm_object_t obj;
4606 	vm_ooffset_t foff;
4607 	vm_page_t m;
4608 	int i;
4609 	bool bogus;
4610 
4611 	if (!(bp->b_flags & B_VMIO))
4612 		return;
4613 
4614 	obj = bp->b_bufobj->bo_object;
4615 	foff = bp->b_offset;
4616 	KASSERT(bp->b_offset != NOOFFSET,
4617 	    ("vfs_busy_pages: no buffer offset"));
4618 	VM_OBJECT_WLOCK(obj);
4619 	vfs_drain_busy_pages(bp);
4620 	if (bp->b_bufsize != 0)
4621 		vfs_setdirty_locked_object(bp);
4622 	bogus = false;
4623 	for (i = 0; i < bp->b_npages; i++) {
4624 		m = bp->b_pages[i];
4625 
4626 		if ((bp->b_flags & B_CLUSTER) == 0) {
4627 			vm_object_pip_add(obj, 1);
4628 			vm_page_sbusy(m);
4629 		}
4630 		/*
4631 		 * When readying a buffer for a read ( i.e
4632 		 * clear_modify == 0 ), it is important to do
4633 		 * bogus_page replacement for valid pages in
4634 		 * partially instantiated buffers.  Partially
4635 		 * instantiated buffers can, in turn, occur when
4636 		 * reconstituting a buffer from its VM backing store
4637 		 * base.  We only have to do this if B_CACHE is
4638 		 * clear ( which causes the I/O to occur in the
4639 		 * first place ).  The replacement prevents the read
4640 		 * I/O from overwriting potentially dirty VM-backed
4641 		 * pages.  XXX bogus page replacement is, uh, bogus.
4642 		 * It may not work properly with small-block devices.
4643 		 * We need to find a better way.
4644 		 */
4645 		if (clear_modify) {
4646 			pmap_remove_write(m);
4647 			vfs_page_set_validclean(bp, foff, m);
4648 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4649 		    (bp->b_flags & B_CACHE) == 0) {
4650 			bp->b_pages[i] = bogus_page;
4651 			bogus = true;
4652 		}
4653 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4654 	}
4655 	VM_OBJECT_WUNLOCK(obj);
4656 	if (bogus && buf_mapped(bp)) {
4657 		BUF_CHECK_MAPPED(bp);
4658 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4659 		    bp->b_pages, bp->b_npages);
4660 	}
4661 }
4662 
4663 /*
4664  *	vfs_bio_set_valid:
4665  *
4666  *	Set the range within the buffer to valid.  The range is
4667  *	relative to the beginning of the buffer, b_offset.  Note that
4668  *	b_offset itself may be offset from the beginning of the first
4669  *	page.
4670  */
4671 void
4672 vfs_bio_set_valid(struct buf *bp, int base, int size)
4673 {
4674 	int i, n;
4675 	vm_page_t m;
4676 
4677 	if (!(bp->b_flags & B_VMIO))
4678 		return;
4679 
4680 	/*
4681 	 * Fixup base to be relative to beginning of first page.
4682 	 * Set initial n to be the maximum number of bytes in the
4683 	 * first page that can be validated.
4684 	 */
4685 	base += (bp->b_offset & PAGE_MASK);
4686 	n = PAGE_SIZE - (base & PAGE_MASK);
4687 
4688 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4689 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4690 		m = bp->b_pages[i];
4691 		if (n > size)
4692 			n = size;
4693 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4694 		base += n;
4695 		size -= n;
4696 		n = PAGE_SIZE;
4697 	}
4698 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4699 }
4700 
4701 /*
4702  *	vfs_bio_clrbuf:
4703  *
4704  *	If the specified buffer is a non-VMIO buffer, clear the entire
4705  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4706  *	validate only the previously invalid portions of the buffer.
4707  *	This routine essentially fakes an I/O, so we need to clear
4708  *	BIO_ERROR and B_INVAL.
4709  *
4710  *	Note that while we only theoretically need to clear through b_bcount,
4711  *	we go ahead and clear through b_bufsize.
4712  */
4713 void
4714 vfs_bio_clrbuf(struct buf *bp)
4715 {
4716 	int i, j, mask, sa, ea, slide;
4717 
4718 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4719 		clrbuf(bp);
4720 		return;
4721 	}
4722 	bp->b_flags &= ~B_INVAL;
4723 	bp->b_ioflags &= ~BIO_ERROR;
4724 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4725 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4726 	    (bp->b_offset & PAGE_MASK) == 0) {
4727 		if (bp->b_pages[0] == bogus_page)
4728 			goto unlock;
4729 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4730 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4731 		if ((bp->b_pages[0]->valid & mask) == mask)
4732 			goto unlock;
4733 		if ((bp->b_pages[0]->valid & mask) == 0) {
4734 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4735 			bp->b_pages[0]->valid |= mask;
4736 			goto unlock;
4737 		}
4738 	}
4739 	sa = bp->b_offset & PAGE_MASK;
4740 	slide = 0;
4741 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4742 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4743 		ea = slide & PAGE_MASK;
4744 		if (ea == 0)
4745 			ea = PAGE_SIZE;
4746 		if (bp->b_pages[i] == bogus_page)
4747 			continue;
4748 		j = sa / DEV_BSIZE;
4749 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4750 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4751 		if ((bp->b_pages[i]->valid & mask) == mask)
4752 			continue;
4753 		if ((bp->b_pages[i]->valid & mask) == 0)
4754 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4755 		else {
4756 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4757 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4758 					pmap_zero_page_area(bp->b_pages[i],
4759 					    sa, DEV_BSIZE);
4760 				}
4761 			}
4762 		}
4763 		bp->b_pages[i]->valid |= mask;
4764 	}
4765 unlock:
4766 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4767 	bp->b_resid = 0;
4768 }
4769 
4770 void
4771 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4772 {
4773 	vm_page_t m;
4774 	int i, n;
4775 
4776 	if (buf_mapped(bp)) {
4777 		BUF_CHECK_MAPPED(bp);
4778 		bzero(bp->b_data + base, size);
4779 	} else {
4780 		BUF_CHECK_UNMAPPED(bp);
4781 		n = PAGE_SIZE - (base & PAGE_MASK);
4782 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4783 			m = bp->b_pages[i];
4784 			if (n > size)
4785 				n = size;
4786 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4787 			base += n;
4788 			size -= n;
4789 			n = PAGE_SIZE;
4790 		}
4791 	}
4792 }
4793 
4794 /*
4795  * Update buffer flags based on I/O request parameters, optionally releasing the
4796  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4797  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4798  * I/O).  Otherwise the buffer is released to the cache.
4799  */
4800 static void
4801 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4802 {
4803 
4804 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4805 	    ("buf %p non-VMIO noreuse", bp));
4806 
4807 	if ((ioflag & IO_DIRECT) != 0)
4808 		bp->b_flags |= B_DIRECT;
4809 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4810 		bp->b_flags |= B_RELBUF;
4811 		if ((ioflag & IO_NOREUSE) != 0)
4812 			bp->b_flags |= B_NOREUSE;
4813 		if (release)
4814 			brelse(bp);
4815 	} else if (release)
4816 		bqrelse(bp);
4817 }
4818 
4819 void
4820 vfs_bio_brelse(struct buf *bp, int ioflag)
4821 {
4822 
4823 	b_io_dismiss(bp, ioflag, true);
4824 }
4825 
4826 void
4827 vfs_bio_set_flags(struct buf *bp, int ioflag)
4828 {
4829 
4830 	b_io_dismiss(bp, ioflag, false);
4831 }
4832 
4833 /*
4834  * vm_hold_load_pages and vm_hold_free_pages get pages into
4835  * a buffers address space.  The pages are anonymous and are
4836  * not associated with a file object.
4837  */
4838 static void
4839 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4840 {
4841 	vm_offset_t pg;
4842 	vm_page_t p;
4843 	int index;
4844 
4845 	BUF_CHECK_MAPPED(bp);
4846 
4847 	to = round_page(to);
4848 	from = round_page(from);
4849 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4850 
4851 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4852 		/*
4853 		 * note: must allocate system pages since blocking here
4854 		 * could interfere with paging I/O, no matter which
4855 		 * process we are.
4856 		 */
4857 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4858 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
4859 		    VM_ALLOC_WAITOK);
4860 		pmap_qenter(pg, &p, 1);
4861 		bp->b_pages[index] = p;
4862 	}
4863 	bp->b_npages = index;
4864 }
4865 
4866 /* Return pages associated with this buf to the vm system */
4867 static void
4868 vm_hold_free_pages(struct buf *bp, int newbsize)
4869 {
4870 	vm_offset_t from;
4871 	vm_page_t p;
4872 	int index, newnpages;
4873 
4874 	BUF_CHECK_MAPPED(bp);
4875 
4876 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4877 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4878 	if (bp->b_npages > newnpages)
4879 		pmap_qremove(from, bp->b_npages - newnpages);
4880 	for (index = newnpages; index < bp->b_npages; index++) {
4881 		p = bp->b_pages[index];
4882 		bp->b_pages[index] = NULL;
4883 		p->wire_count--;
4884 		vm_page_free(p);
4885 	}
4886 	vm_wire_sub(bp->b_npages - newnpages);
4887 	bp->b_npages = newnpages;
4888 }
4889 
4890 /*
4891  * Map an IO request into kernel virtual address space.
4892  *
4893  * All requests are (re)mapped into kernel VA space.
4894  * Notice that we use b_bufsize for the size of the buffer
4895  * to be mapped.  b_bcount might be modified by the driver.
4896  *
4897  * Note that even if the caller determines that the address space should
4898  * be valid, a race or a smaller-file mapped into a larger space may
4899  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4900  * check the return value.
4901  *
4902  * This function only works with pager buffers.
4903  */
4904 int
4905 vmapbuf(struct buf *bp, int mapbuf)
4906 {
4907 	vm_prot_t prot;
4908 	int pidx;
4909 
4910 	if (bp->b_bufsize < 0)
4911 		return (-1);
4912 	prot = VM_PROT_READ;
4913 	if (bp->b_iocmd == BIO_READ)
4914 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4915 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4916 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4917 	    btoc(MAXPHYS))) < 0)
4918 		return (-1);
4919 	bp->b_npages = pidx;
4920 	bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4921 	if (mapbuf || !unmapped_buf_allowed) {
4922 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4923 		bp->b_data = bp->b_kvabase + bp->b_offset;
4924 	} else
4925 		bp->b_data = unmapped_buf;
4926 	return(0);
4927 }
4928 
4929 /*
4930  * Free the io map PTEs associated with this IO operation.
4931  * We also invalidate the TLB entries and restore the original b_addr.
4932  *
4933  * This function only works with pager buffers.
4934  */
4935 void
4936 vunmapbuf(struct buf *bp)
4937 {
4938 	int npages;
4939 
4940 	npages = bp->b_npages;
4941 	if (buf_mapped(bp))
4942 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4943 	vm_page_unhold_pages(bp->b_pages, npages);
4944 
4945 	bp->b_data = unmapped_buf;
4946 }
4947 
4948 void
4949 bdone(struct buf *bp)
4950 {
4951 	struct mtx *mtxp;
4952 
4953 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4954 	mtx_lock(mtxp);
4955 	bp->b_flags |= B_DONE;
4956 	wakeup(bp);
4957 	mtx_unlock(mtxp);
4958 }
4959 
4960 void
4961 bwait(struct buf *bp, u_char pri, const char *wchan)
4962 {
4963 	struct mtx *mtxp;
4964 
4965 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4966 	mtx_lock(mtxp);
4967 	while ((bp->b_flags & B_DONE) == 0)
4968 		msleep(bp, mtxp, pri, wchan, 0);
4969 	mtx_unlock(mtxp);
4970 }
4971 
4972 int
4973 bufsync(struct bufobj *bo, int waitfor)
4974 {
4975 
4976 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
4977 }
4978 
4979 void
4980 bufstrategy(struct bufobj *bo, struct buf *bp)
4981 {
4982 	int i = 0;
4983 	struct vnode *vp;
4984 
4985 	vp = bp->b_vp;
4986 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4987 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4988 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4989 	i = VOP_STRATEGY(vp, bp);
4990 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4991 }
4992 
4993 /*
4994  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
4995  */
4996 void
4997 bufobj_init(struct bufobj *bo, void *private)
4998 {
4999 	static volatile int bufobj_cleanq;
5000 
5001         bo->bo_domain =
5002             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5003         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5004         bo->bo_private = private;
5005         TAILQ_INIT(&bo->bo_clean.bv_hd);
5006         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5007 }
5008 
5009 void
5010 bufobj_wrefl(struct bufobj *bo)
5011 {
5012 
5013 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5014 	ASSERT_BO_WLOCKED(bo);
5015 	bo->bo_numoutput++;
5016 }
5017 
5018 void
5019 bufobj_wref(struct bufobj *bo)
5020 {
5021 
5022 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5023 	BO_LOCK(bo);
5024 	bo->bo_numoutput++;
5025 	BO_UNLOCK(bo);
5026 }
5027 
5028 void
5029 bufobj_wdrop(struct bufobj *bo)
5030 {
5031 
5032 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5033 	BO_LOCK(bo);
5034 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5035 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5036 		bo->bo_flag &= ~BO_WWAIT;
5037 		wakeup(&bo->bo_numoutput);
5038 	}
5039 	BO_UNLOCK(bo);
5040 }
5041 
5042 int
5043 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5044 {
5045 	int error;
5046 
5047 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5048 	ASSERT_BO_WLOCKED(bo);
5049 	error = 0;
5050 	while (bo->bo_numoutput) {
5051 		bo->bo_flag |= BO_WWAIT;
5052 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5053 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5054 		if (error)
5055 			break;
5056 	}
5057 	return (error);
5058 }
5059 
5060 /*
5061  * Set bio_data or bio_ma for struct bio from the struct buf.
5062  */
5063 void
5064 bdata2bio(struct buf *bp, struct bio *bip)
5065 {
5066 
5067 	if (!buf_mapped(bp)) {
5068 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5069 		bip->bio_ma = bp->b_pages;
5070 		bip->bio_ma_n = bp->b_npages;
5071 		bip->bio_data = unmapped_buf;
5072 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5073 		bip->bio_flags |= BIO_UNMAPPED;
5074 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5075 		    PAGE_SIZE == bp->b_npages,
5076 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5077 		    (long long)bip->bio_length, bip->bio_ma_n));
5078 	} else {
5079 		bip->bio_data = bp->b_data;
5080 		bip->bio_ma = NULL;
5081 	}
5082 }
5083 
5084 /*
5085  * The MIPS pmap code currently doesn't handle aliased pages.
5086  * The VIPT caches may not handle page aliasing themselves, leading
5087  * to data corruption.
5088  *
5089  * As such, this code makes a system extremely unhappy if said
5090  * system doesn't support unaliasing the above situation in hardware.
5091  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5092  * this feature at build time, so it has to be handled in software.
5093  *
5094  * Once the MIPS pmap/cache code grows to support this function on
5095  * earlier chips, it should be flipped back off.
5096  */
5097 #ifdef	__mips__
5098 static int buf_pager_relbuf = 1;
5099 #else
5100 static int buf_pager_relbuf = 0;
5101 #endif
5102 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5103     &buf_pager_relbuf, 0,
5104     "Make buffer pager release buffers after reading");
5105 
5106 /*
5107  * The buffer pager.  It uses buffer reads to validate pages.
5108  *
5109  * In contrast to the generic local pager from vm/vnode_pager.c, this
5110  * pager correctly and easily handles volumes where the underlying
5111  * device block size is greater than the machine page size.  The
5112  * buffer cache transparently extends the requested page run to be
5113  * aligned at the block boundary, and does the necessary bogus page
5114  * replacements in the addends to avoid obliterating already valid
5115  * pages.
5116  *
5117  * The only non-trivial issue is that the exclusive busy state for
5118  * pages, which is assumed by the vm_pager_getpages() interface, is
5119  * incompatible with the VMIO buffer cache's desire to share-busy the
5120  * pages.  This function performs a trivial downgrade of the pages'
5121  * state before reading buffers, and a less trivial upgrade from the
5122  * shared-busy to excl-busy state after the read.
5123  */
5124 int
5125 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5126     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5127     vbg_get_blksize_t get_blksize)
5128 {
5129 	vm_page_t m;
5130 	vm_object_t object;
5131 	struct buf *bp;
5132 	struct mount *mp;
5133 	daddr_t lbn, lbnp;
5134 	vm_ooffset_t la, lb, poff, poffe;
5135 	long bsize;
5136 	int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5137 	bool redo, lpart;
5138 
5139 	object = vp->v_object;
5140 	mp = vp->v_mount;
5141 	error = 0;
5142 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5143 	if (la >= object->un_pager.vnp.vnp_size)
5144 		return (VM_PAGER_BAD);
5145 
5146 	/*
5147 	 * Change the meaning of la from where the last requested page starts
5148 	 * to where it ends, because that's the end of the requested region
5149 	 * and the start of the potential read-ahead region.
5150 	 */
5151 	la += PAGE_SIZE;
5152 	lpart = la > object->un_pager.vnp.vnp_size;
5153 	bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
5154 
5155 	/*
5156 	 * Calculate read-ahead, behind and total pages.
5157 	 */
5158 	pgsin = count;
5159 	lb = IDX_TO_OFF(ma[0]->pindex);
5160 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5161 	pgsin += pgsin_b;
5162 	if (rbehind != NULL)
5163 		*rbehind = pgsin_b;
5164 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5165 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5166 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5167 		    PAGE_SIZE) - la);
5168 	pgsin += pgsin_a;
5169 	if (rahead != NULL)
5170 		*rahead = pgsin_a;
5171 	VM_CNT_INC(v_vnodein);
5172 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5173 
5174 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5175 	    != 0) ? GB_UNMAPPED : 0;
5176 	VM_OBJECT_WLOCK(object);
5177 again:
5178 	for (i = 0; i < count; i++)
5179 		vm_page_busy_downgrade(ma[i]);
5180 	VM_OBJECT_WUNLOCK(object);
5181 
5182 	lbnp = -1;
5183 	for (i = 0; i < count; i++) {
5184 		m = ma[i];
5185 
5186 		/*
5187 		 * Pages are shared busy and the object lock is not
5188 		 * owned, which together allow for the pages'
5189 		 * invalidation.  The racy test for validity avoids
5190 		 * useless creation of the buffer for the most typical
5191 		 * case when invalidation is not used in redo or for
5192 		 * parallel read.  The shared->excl upgrade loop at
5193 		 * the end of the function catches the race in a
5194 		 * reliable way (protected by the object lock).
5195 		 */
5196 		if (m->valid == VM_PAGE_BITS_ALL)
5197 			continue;
5198 
5199 		poff = IDX_TO_OFF(m->pindex);
5200 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5201 		for (; poff < poffe; poff += bsize) {
5202 			lbn = get_lblkno(vp, poff);
5203 			if (lbn == lbnp)
5204 				goto next_page;
5205 			lbnp = lbn;
5206 
5207 			bsize = get_blksize(vp, lbn);
5208 			error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
5209 			    br_flags, &bp);
5210 			if (error != 0)
5211 				goto end_pages;
5212 			if (LIST_EMPTY(&bp->b_dep)) {
5213 				/*
5214 				 * Invalidation clears m->valid, but
5215 				 * may leave B_CACHE flag if the
5216 				 * buffer existed at the invalidation
5217 				 * time.  In this case, recycle the
5218 				 * buffer to do real read on next
5219 				 * bread() after redo.
5220 				 *
5221 				 * Otherwise B_RELBUF is not strictly
5222 				 * necessary, enable to reduce buf
5223 				 * cache pressure.
5224 				 */
5225 				if (buf_pager_relbuf ||
5226 				    m->valid != VM_PAGE_BITS_ALL)
5227 					bp->b_flags |= B_RELBUF;
5228 
5229 				bp->b_flags &= ~B_NOCACHE;
5230 				brelse(bp);
5231 			} else {
5232 				bqrelse(bp);
5233 			}
5234 		}
5235 		KASSERT(1 /* racy, enable for debugging */ ||
5236 		    m->valid == VM_PAGE_BITS_ALL || i == count - 1,
5237 		    ("buf %d %p invalid", i, m));
5238 		if (i == count - 1 && lpart) {
5239 			VM_OBJECT_WLOCK(object);
5240 			if (m->valid != 0 &&
5241 			    m->valid != VM_PAGE_BITS_ALL)
5242 				vm_page_zero_invalid(m, TRUE);
5243 			VM_OBJECT_WUNLOCK(object);
5244 		}
5245 next_page:;
5246 	}
5247 end_pages:
5248 
5249 	VM_OBJECT_WLOCK(object);
5250 	redo = false;
5251 	for (i = 0; i < count; i++) {
5252 		vm_page_sunbusy(ma[i]);
5253 		ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL);
5254 
5255 		/*
5256 		 * Since the pages were only sbusy while neither the
5257 		 * buffer nor the object lock was held by us, or
5258 		 * reallocated while vm_page_grab() slept for busy
5259 		 * relinguish, they could have been invalidated.
5260 		 * Recheck the valid bits and re-read as needed.
5261 		 *
5262 		 * Note that the last page is made fully valid in the
5263 		 * read loop, and partial validity for the page at
5264 		 * index count - 1 could mean that the page was
5265 		 * invalidated or removed, so we must restart for
5266 		 * safety as well.
5267 		 */
5268 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
5269 			redo = true;
5270 	}
5271 	if (redo && error == 0)
5272 		goto again;
5273 	VM_OBJECT_WUNLOCK(object);
5274 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5275 }
5276 
5277 #include "opt_ddb.h"
5278 #ifdef DDB
5279 #include <ddb/ddb.h>
5280 
5281 /* DDB command to show buffer data */
5282 DB_SHOW_COMMAND(buffer, db_show_buffer)
5283 {
5284 	/* get args */
5285 	struct buf *bp = (struct buf *)addr;
5286 #ifdef FULL_BUF_TRACKING
5287 	uint32_t i, j;
5288 #endif
5289 
5290 	if (!have_addr) {
5291 		db_printf("usage: show buffer <addr>\n");
5292 		return;
5293 	}
5294 
5295 	db_printf("buf at %p\n", bp);
5296 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
5297 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
5298 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
5299 	db_printf(
5300 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5301 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
5302 	    "b_dep = %p\n",
5303 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5304 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5305 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
5306 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5307 	    bp->b_kvabase, bp->b_kvasize);
5308 	if (bp->b_npages) {
5309 		int i;
5310 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5311 		for (i = 0; i < bp->b_npages; i++) {
5312 			vm_page_t m;
5313 			m = bp->b_pages[i];
5314 			if (m != NULL)
5315 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5316 				    (u_long)m->pindex,
5317 				    (u_long)VM_PAGE_TO_PHYS(m));
5318 			else
5319 				db_printf("( ??? )");
5320 			if ((i + 1) < bp->b_npages)
5321 				db_printf(",");
5322 		}
5323 		db_printf("\n");
5324 	}
5325 	BUF_LOCKPRINTINFO(bp);
5326 #if defined(FULL_BUF_TRACKING)
5327 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5328 
5329 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5330 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5331 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5332 			continue;
5333 		db_printf(" %2u: %s\n", j,
5334 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5335 	}
5336 #elif defined(BUF_TRACKING)
5337 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5338 #endif
5339 	db_printf(" ");
5340 }
5341 
5342 DB_SHOW_COMMAND(bufqueues, bufqueues)
5343 {
5344 	struct bufdomain *bd;
5345 	struct buf *bp;
5346 	long total;
5347 	int i, j, cnt;
5348 
5349 	db_printf("bqempty: %d\n", bqempty.bq_len);
5350 
5351 	for (i = 0; i < buf_domains; i++) {
5352 		bd = &bdomain[i];
5353 		db_printf("Buf domain %d\n", i);
5354 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5355 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5356 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5357 		db_printf("\n");
5358 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5359 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5360 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5361 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5362 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5363 		db_printf("\n");
5364 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5365 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5366 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5367 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5368 		db_printf("\n");
5369 		total = 0;
5370 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5371 			total += bp->b_bufsize;
5372 		db_printf("\tcleanq count\t%d (%ld)\n",
5373 		    bd->bd_cleanq->bq_len, total);
5374 		total = 0;
5375 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5376 			total += bp->b_bufsize;
5377 		db_printf("\tdirtyq count\t%d (%ld)\n",
5378 		    bd->bd_dirtyq.bq_len, total);
5379 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5380 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5381 		db_printf("\tCPU ");
5382 		for (j = 0; j <= mp_maxid; j++)
5383 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5384 		db_printf("\n");
5385 		cnt = 0;
5386 		total = 0;
5387 		for (j = 0; j < nbuf; j++)
5388 			if (buf[j].b_domain == i && BUF_ISLOCKED(&buf[j])) {
5389 				cnt++;
5390 				total += buf[j].b_bufsize;
5391 			}
5392 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5393 		cnt = 0;
5394 		total = 0;
5395 		for (j = 0; j < nbuf; j++)
5396 			if (buf[j].b_domain == i) {
5397 				cnt++;
5398 				total += buf[j].b_bufsize;
5399 			}
5400 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5401 	}
5402 }
5403 
5404 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5405 {
5406 	struct buf *bp;
5407 	int i;
5408 
5409 	for (i = 0; i < nbuf; i++) {
5410 		bp = &buf[i];
5411 		if (BUF_ISLOCKED(bp)) {
5412 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5413 			db_printf("\n");
5414 			if (db_pager_quit)
5415 				break;
5416 		}
5417 	}
5418 }
5419 
5420 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5421 {
5422 	struct vnode *vp;
5423 	struct buf *bp;
5424 
5425 	if (!have_addr) {
5426 		db_printf("usage: show vnodebufs <addr>\n");
5427 		return;
5428 	}
5429 	vp = (struct vnode *)addr;
5430 	db_printf("Clean buffers:\n");
5431 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5432 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5433 		db_printf("\n");
5434 	}
5435 	db_printf("Dirty buffers:\n");
5436 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5437 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5438 		db_printf("\n");
5439 	}
5440 }
5441 
5442 DB_COMMAND(countfreebufs, db_coundfreebufs)
5443 {
5444 	struct buf *bp;
5445 	int i, used = 0, nfree = 0;
5446 
5447 	if (have_addr) {
5448 		db_printf("usage: countfreebufs\n");
5449 		return;
5450 	}
5451 
5452 	for (i = 0; i < nbuf; i++) {
5453 		bp = &buf[i];
5454 		if (bp->b_qindex == QUEUE_EMPTY)
5455 			nfree++;
5456 		else
5457 			used++;
5458 	}
5459 
5460 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5461 	    nfree + used);
5462 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5463 }
5464 #endif /* DDB */
5465