xref: /freebsd/sys/kern/vfs_bio.c (revision 41466b50c1d5bfd1cf6adaae547a579a75d7c04e)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD$
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/eventhandler.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/mount.h>
38 #include <sys/mutex.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58 
59 struct	bio_ops bioops;		/* I/O operation notification */
60 
61 struct	buf_ops buf_ops_bio = {
62 	"buf_ops_bio",
63 	bwrite
64 };
65 
66 struct buf *buf;		/* buffer header pool */
67 struct swqueue bswlist;
68 struct mtx buftimelock;		/* Interlock on setting prio and timo */
69 
70 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71 		vm_offset_t to);
72 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73 		vm_offset_t to);
74 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75 			       int pageno, vm_page_t m);
76 static void vfs_clean_pages(struct buf * bp);
77 static void vfs_setdirty(struct buf *bp);
78 static void vfs_vmio_release(struct buf *bp);
79 static void vfs_backgroundwritedone(struct buf *bp);
80 static int flushbufqueues(void);
81 
82 static int bd_request;
83 
84 static void buf_daemon __P((void));
85 /*
86  * bogus page -- for I/O to/from partially complete buffers
87  * this is a temporary solution to the problem, but it is not
88  * really that bad.  it would be better to split the buffer
89  * for input in the case of buffers partially already in memory,
90  * but the code is intricate enough already.
91  */
92 vm_page_t bogus_page;
93 int vmiodirenable = TRUE;
94 int runningbufspace;
95 static vm_offset_t bogus_offset;
96 
97 static int bufspace, maxbufspace,
98 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100 static int needsbuffer;
101 static int lorunningspace, hirunningspace, runningbufreq;
102 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103 static int numfreebuffers, lofreebuffers, hifreebuffers;
104 static int getnewbufcalls;
105 static int getnewbufrestarts;
106 
107 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108 	&numdirtybuffers, 0, "");
109 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110 	&lodirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112 	&hidirtybuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114 	&numfreebuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116 	&lofreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118 	&hifreebuffers, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120 	&runningbufspace, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122 	&lorunningspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124 	&hirunningspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126 	&maxbufspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128 	&hibufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130 	&lobufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132 	&bufspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134 	&maxbufmallocspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136 	&bufmallocspace, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138 	&getnewbufcalls, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140 	&getnewbufrestarts, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142 	&vmiodirenable, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144 	&bufdefragcnt, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146 	&buffreekvacnt, 0, "");
147 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148 	&bufreusecnt, 0, "");
149 
150 static int bufhashmask;
151 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153 char *buf_wmesg = BUF_WMESG;
154 
155 extern int vm_swap_size;
156 
157 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161 
162 /*
163  * Buffer hash table code.  Note that the logical block scans linearly, which
164  * gives us some L1 cache locality.
165  */
166 
167 static __inline
168 struct bufhashhdr *
169 bufhash(struct vnode *vnp, daddr_t bn)
170 {
171 	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172 }
173 
174 /*
175  *	numdirtywakeup:
176  *
177  *	If someone is blocked due to there being too many dirty buffers,
178  *	and numdirtybuffers is now reasonable, wake them up.
179  */
180 
181 static __inline void
182 numdirtywakeup(int level)
183 {
184 	if (numdirtybuffers <= level) {
185 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187 			wakeup(&needsbuffer);
188 		}
189 	}
190 }
191 
192 /*
193  *	bufspacewakeup:
194  *
195  *	Called when buffer space is potentially available for recovery.
196  *	getnewbuf() will block on this flag when it is unable to free
197  *	sufficient buffer space.  Buffer space becomes recoverable when
198  *	bp's get placed back in the queues.
199  */
200 
201 static __inline void
202 bufspacewakeup(void)
203 {
204 	/*
205 	 * If someone is waiting for BUF space, wake them up.  Even
206 	 * though we haven't freed the kva space yet, the waiting
207 	 * process will be able to now.
208 	 */
209 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211 		wakeup(&needsbuffer);
212 	}
213 }
214 
215 /*
216  * runningbufwakeup() - in-progress I/O accounting.
217  *
218  */
219 static __inline void
220 runningbufwakeup(struct buf *bp)
221 {
222 	if (bp->b_runningbufspace) {
223 		runningbufspace -= bp->b_runningbufspace;
224 		bp->b_runningbufspace = 0;
225 		if (runningbufreq && runningbufspace <= lorunningspace) {
226 			runningbufreq = 0;
227 			wakeup(&runningbufreq);
228 		}
229 	}
230 }
231 
232 /*
233  *	bufcountwakeup:
234  *
235  *	Called when a buffer has been added to one of the free queues to
236  *	account for the buffer and to wakeup anyone waiting for free buffers.
237  *	This typically occurs when large amounts of metadata are being handled
238  *	by the buffer cache ( else buffer space runs out first, usually ).
239  */
240 
241 static __inline void
242 bufcountwakeup(void)
243 {
244 	++numfreebuffers;
245 	if (needsbuffer) {
246 		needsbuffer &= ~VFS_BIO_NEED_ANY;
247 		if (numfreebuffers >= hifreebuffers)
248 			needsbuffer &= ~VFS_BIO_NEED_FREE;
249 		wakeup(&needsbuffer);
250 	}
251 }
252 
253 /*
254  *	waitrunningbufspace()
255  *
256  *	runningbufspace is a measure of the amount of I/O currently
257  *	running.  This routine is used in async-write situations to
258  *	prevent creating huge backups of pending writes to a device.
259  *	Only asynchronous writes are governed by this function.
260  *
261  *	Reads will adjust runningbufspace, but will not block based on it.
262  *	The read load has a side effect of reducing the allowed write load.
263  *
264  *	This does NOT turn an async write into a sync write.  It waits
265  *	for earlier writes to complete and generally returns before the
266  *	caller's write has reached the device.
267  */
268 static __inline void
269 waitrunningbufspace(void)
270 {
271 	while (runningbufspace > hirunningspace) {
272 		++runningbufreq;
273 		tsleep(&runningbufreq, PVM, "wdrain", 0);
274 	}
275 }
276 
277 
278 /*
279  *	vfs_buf_test_cache:
280  *
281  *	Called when a buffer is extended.  This function clears the B_CACHE
282  *	bit if the newly extended portion of the buffer does not contain
283  *	valid data.
284  */
285 static __inline__
286 void
287 vfs_buf_test_cache(struct buf *bp,
288 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
289 		  vm_page_t m)
290 {
291 	GIANT_REQUIRED;
292 
293 	if (bp->b_flags & B_CACHE) {
294 		int base = (foff + off) & PAGE_MASK;
295 		if (vm_page_is_valid(m, base, size) == 0)
296 			bp->b_flags &= ~B_CACHE;
297 	}
298 }
299 
300 static __inline__
301 void
302 bd_wakeup(int dirtybuflevel)
303 {
304 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
305 		bd_request = 1;
306 		wakeup(&bd_request);
307 	}
308 }
309 
310 /*
311  * bd_speedup - speedup the buffer cache flushing code
312  */
313 
314 static __inline__
315 void
316 bd_speedup(void)
317 {
318 	bd_wakeup(1);
319 }
320 
321 /*
322  * Calculating buffer cache scaling values and reserve space for buffer
323  * headers.  This is called during low level kernel initialization and
324  * may be called more then once.  We CANNOT write to the memory area
325  * being reserved at this time.
326  */
327 caddr_t
328 kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
329 {
330 	/*
331 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
332 	 * For the first 64MB of ram nominally allocate sufficient buffers to
333 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
334 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
335 	 * the buffer cache we limit the eventual kva reservation to
336 	 * maxbcache bytes.
337 	 *
338 	 * factor represents the 1/4 x ram conversion.
339 	 */
340 	if (nbuf == 0) {
341 		int factor = 4 * BKVASIZE / PAGE_SIZE;
342 
343 		nbuf = 50;
344 		if (physmem_est > 1024)
345 			nbuf += min((physmem_est - 1024) / factor,
346 			    16384 / factor);
347 		if (physmem_est > 16384)
348 			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
349 
350 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
351 			nbuf = maxbcache / BKVASIZE;
352 	}
353 
354 #if 0
355 	/*
356 	 * Do not allow the buffer_map to be more then 1/2 the size of the
357 	 * kernel_map.
358 	 */
359 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
360 	    (BKVASIZE * 2)) {
361 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
362 		    (BKVASIZE * 2);
363 		printf("Warning: nbufs capped at %d\n", nbuf);
364 	}
365 #endif
366 
367 	/*
368 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
369 	 * We have no less then 16 and no more then 256.
370 	 */
371 	nswbuf = max(min(nbuf/4, 256), 16);
372 
373 	/*
374 	 * Reserve space for the buffer cache buffers
375 	 */
376 	swbuf = (void *)v;
377 	v = (caddr_t)(swbuf + nswbuf);
378 	buf = (void *)v;
379 	v = (caddr_t)(buf + nbuf);
380 
381 	/*
382 	 * Calculate the hash table size and reserve space
383 	 */
384 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
385 		;
386 	bufhashtbl = (void *)v;
387 	v = (caddr_t)(bufhashtbl + bufhashmask);
388 	--bufhashmask;
389 
390 	return(v);
391 }
392 
393 void
394 bufinit(void)
395 {
396 	struct buf *bp;
397 	int i;
398 
399 	GIANT_REQUIRED;
400 
401 	TAILQ_INIT(&bswlist);
402 	LIST_INIT(&invalhash);
403 	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
404 
405 	for (i = 0; i <= bufhashmask; i++)
406 		LIST_INIT(&bufhashtbl[i]);
407 
408 	/* next, make a null set of free lists */
409 	for (i = 0; i < BUFFER_QUEUES; i++)
410 		TAILQ_INIT(&bufqueues[i]);
411 
412 	/* finally, initialize each buffer header and stick on empty q */
413 	for (i = 0; i < nbuf; i++) {
414 		bp = &buf[i];
415 		bzero(bp, sizeof *bp);
416 		bp->b_flags = B_INVAL;	/* we're just an empty header */
417 		bp->b_dev = NODEV;
418 		bp->b_rcred = NOCRED;
419 		bp->b_wcred = NOCRED;
420 		bp->b_qindex = QUEUE_EMPTY;
421 		bp->b_xflags = 0;
422 		LIST_INIT(&bp->b_dep);
423 		BUF_LOCKINIT(bp);
424 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
425 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
426 	}
427 
428 	/*
429 	 * maxbufspace is the absolute maximum amount of buffer space we are
430 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
431 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
432 	 * used by most other processes.  The differential is required to
433 	 * ensure that buf_daemon is able to run when other processes might
434 	 * be blocked waiting for buffer space.
435 	 *
436 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
437 	 * this may result in KVM fragmentation which is not handled optimally
438 	 * by the system.
439 	 */
440 	maxbufspace = nbuf * BKVASIZE;
441 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
442 	lobufspace = hibufspace - MAXBSIZE;
443 
444 	lorunningspace = 512 * 1024;
445 	hirunningspace = 1024 * 1024;
446 
447 /*
448  * Limit the amount of malloc memory since it is wired permanently into
449  * the kernel space.  Even though this is accounted for in the buffer
450  * allocation, we don't want the malloced region to grow uncontrolled.
451  * The malloc scheme improves memory utilization significantly on average
452  * (small) directories.
453  */
454 	maxbufmallocspace = hibufspace / 20;
455 
456 /*
457  * Reduce the chance of a deadlock occuring by limiting the number
458  * of delayed-write dirty buffers we allow to stack up.
459  */
460 	hidirtybuffers = nbuf / 4 + 20;
461 	numdirtybuffers = 0;
462 /*
463  * To support extreme low-memory systems, make sure hidirtybuffers cannot
464  * eat up all available buffer space.  This occurs when our minimum cannot
465  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
466  * BKVASIZE'd (8K) buffers.
467  */
468 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
469 		hidirtybuffers >>= 1;
470 	}
471 	lodirtybuffers = hidirtybuffers / 2;
472 
473 /*
474  * Try to keep the number of free buffers in the specified range,
475  * and give special processes (e.g. like buf_daemon) access to an
476  * emergency reserve.
477  */
478 	lofreebuffers = nbuf / 18 + 5;
479 	hifreebuffers = 2 * lofreebuffers;
480 	numfreebuffers = nbuf;
481 
482 /*
483  * Maximum number of async ops initiated per buf_daemon loop.  This is
484  * somewhat of a hack at the moment, we really need to limit ourselves
485  * based on the number of bytes of I/O in-transit that were initiated
486  * from buf_daemon.
487  */
488 
489 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
490 	bogus_page = vm_page_alloc(kernel_object,
491 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
492 			VM_ALLOC_NORMAL);
493 	cnt.v_wire_count++;
494 }
495 
496 /*
497  * bfreekva() - free the kva allocation for a buffer.
498  *
499  *	Must be called at splbio() or higher as this is the only locking for
500  *	buffer_map.
501  *
502  *	Since this call frees up buffer space, we call bufspacewakeup().
503  */
504 static void
505 bfreekva(struct buf * bp)
506 {
507 	GIANT_REQUIRED;
508 
509 	if (bp->b_kvasize) {
510 		++buffreekvacnt;
511 		bufspace -= bp->b_kvasize;
512 		vm_map_delete(buffer_map,
513 		    (vm_offset_t) bp->b_kvabase,
514 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
515 		);
516 		bp->b_kvasize = 0;
517 		bufspacewakeup();
518 	}
519 }
520 
521 /*
522  *	bremfree:
523  *
524  *	Remove the buffer from the appropriate free list.
525  */
526 void
527 bremfree(struct buf * bp)
528 {
529 	int s = splbio();
530 	int old_qindex = bp->b_qindex;
531 
532 	GIANT_REQUIRED;
533 
534 	if (bp->b_qindex != QUEUE_NONE) {
535 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
536 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
537 		bp->b_qindex = QUEUE_NONE;
538 	} else {
539 		if (BUF_REFCNT(bp) <= 1)
540 			panic("bremfree: removing a buffer not on a queue");
541 	}
542 
543 	/*
544 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
545 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
546 	 * the buffer was free and we must decrement numfreebuffers.
547 	 */
548 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
549 		switch(old_qindex) {
550 		case QUEUE_DIRTY:
551 		case QUEUE_CLEAN:
552 		case QUEUE_EMPTY:
553 		case QUEUE_EMPTYKVA:
554 			--numfreebuffers;
555 			break;
556 		default:
557 			break;
558 		}
559 	}
560 	splx(s);
561 }
562 
563 
564 /*
565  * Get a buffer with the specified data.  Look in the cache first.  We
566  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
567  * is set, the buffer is valid and we do not have to do anything ( see
568  * getblk() ).  This is really just a special case of breadn().
569  */
570 int
571 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
572     struct buf ** bpp)
573 {
574 
575 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
576 }
577 
578 /*
579  * Operates like bread, but also starts asynchronous I/O on
580  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
581  * to initiating I/O . If B_CACHE is set, the buffer is valid
582  * and we do not have to do anything.
583  */
584 int
585 breadn(struct vnode * vp, daddr_t blkno, int size,
586     daddr_t * rablkno, int *rabsize,
587     int cnt, struct ucred * cred, struct buf ** bpp)
588 {
589 	struct buf *bp, *rabp;
590 	int i;
591 	int rv = 0, readwait = 0;
592 
593 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
594 
595 	/* if not found in cache, do some I/O */
596 	if ((bp->b_flags & B_CACHE) == 0) {
597 		if (curthread != PCPU_GET(idlethread))
598 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
599 		bp->b_iocmd = BIO_READ;
600 		bp->b_flags &= ~B_INVAL;
601 		bp->b_ioflags &= ~BIO_ERROR;
602 		if (bp->b_rcred == NOCRED && cred != NOCRED)
603 			bp->b_rcred = crhold(cred);
604 		vfs_busy_pages(bp, 0);
605 		VOP_STRATEGY(vp, bp);
606 		++readwait;
607 	}
608 
609 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
610 		if (inmem(vp, *rablkno))
611 			continue;
612 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
613 
614 		if ((rabp->b_flags & B_CACHE) == 0) {
615 			if (curthread != PCPU_GET(idlethread))
616 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
617 			rabp->b_flags |= B_ASYNC;
618 			rabp->b_flags &= ~B_INVAL;
619 			rabp->b_ioflags &= ~BIO_ERROR;
620 			rabp->b_iocmd = BIO_READ;
621 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
622 				rabp->b_rcred = crhold(cred);
623 			vfs_busy_pages(rabp, 0);
624 			BUF_KERNPROC(rabp);
625 			VOP_STRATEGY(vp, rabp);
626 		} else {
627 			brelse(rabp);
628 		}
629 	}
630 
631 	if (readwait) {
632 		rv = bufwait(bp);
633 	}
634 	return (rv);
635 }
636 
637 /*
638  * Write, release buffer on completion.  (Done by iodone
639  * if async).  Do not bother writing anything if the buffer
640  * is invalid.
641  *
642  * Note that we set B_CACHE here, indicating that buffer is
643  * fully valid and thus cacheable.  This is true even of NFS
644  * now so we set it generally.  This could be set either here
645  * or in biodone() since the I/O is synchronous.  We put it
646  * here.
647  */
648 
649 int dobkgrdwrite = 1;
650 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
651 
652 int
653 bwrite(struct buf * bp)
654 {
655 	int oldflags, s;
656 	struct buf *newbp;
657 
658 	if (bp->b_flags & B_INVAL) {
659 		brelse(bp);
660 		return (0);
661 	}
662 
663 	oldflags = bp->b_flags;
664 
665 	if (BUF_REFCNT(bp) == 0)
666 		panic("bwrite: buffer is not busy???");
667 	s = splbio();
668 	/*
669 	 * If a background write is already in progress, delay
670 	 * writing this block if it is asynchronous. Otherwise
671 	 * wait for the background write to complete.
672 	 */
673 	if (bp->b_xflags & BX_BKGRDINPROG) {
674 		if (bp->b_flags & B_ASYNC) {
675 			splx(s);
676 			bdwrite(bp);
677 			return (0);
678 		}
679 		bp->b_xflags |= BX_BKGRDWAIT;
680 		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
681 		if (bp->b_xflags & BX_BKGRDINPROG)
682 			panic("bwrite: still writing");
683 	}
684 
685 	/* Mark the buffer clean */
686 	bundirty(bp);
687 
688 	/*
689 	 * If this buffer is marked for background writing and we
690 	 * do not have to wait for it, make a copy and write the
691 	 * copy so as to leave this buffer ready for further use.
692 	 *
693 	 * This optimization eats a lot of memory.  If we have a page
694 	 * or buffer shortfall we can't do it.
695 	 */
696 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
697 	    (bp->b_flags & B_ASYNC) &&
698 	    !vm_page_count_severe() &&
699 	    !buf_dirty_count_severe()) {
700 		if (bp->b_iodone != NULL) {
701 			printf("bp->b_iodone = %p\n", bp->b_iodone);
702 			panic("bwrite: need chained iodone");
703 		}
704 
705 		/* get a new block */
706 		newbp = geteblk(bp->b_bufsize);
707 
708 		/* set it to be identical to the old block */
709 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
710 		bgetvp(bp->b_vp, newbp);
711 		newbp->b_lblkno = bp->b_lblkno;
712 		newbp->b_blkno = bp->b_blkno;
713 		newbp->b_offset = bp->b_offset;
714 		newbp->b_iodone = vfs_backgroundwritedone;
715 		newbp->b_flags |= B_ASYNC;
716 		newbp->b_flags &= ~B_INVAL;
717 
718 		/* move over the dependencies */
719 		if (LIST_FIRST(&bp->b_dep) != NULL)
720 			buf_movedeps(bp, newbp);
721 
722 		/*
723 		 * Initiate write on the copy, release the original to
724 		 * the B_LOCKED queue so that it cannot go away until
725 		 * the background write completes. If not locked it could go
726 		 * away and then be reconstituted while it was being written.
727 		 * If the reconstituted buffer were written, we could end up
728 		 * with two background copies being written at the same time.
729 		 */
730 		bp->b_xflags |= BX_BKGRDINPROG;
731 		bp->b_flags |= B_LOCKED;
732 		bqrelse(bp);
733 		bp = newbp;
734 	}
735 
736 	bp->b_flags &= ~B_DONE;
737 	bp->b_ioflags &= ~BIO_ERROR;
738 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
739 	bp->b_iocmd = BIO_WRITE;
740 
741 	bp->b_vp->v_numoutput++;
742 	vfs_busy_pages(bp, 1);
743 
744 	/*
745 	 * Normal bwrites pipeline writes
746 	 */
747 	bp->b_runningbufspace = bp->b_bufsize;
748 	runningbufspace += bp->b_runningbufspace;
749 
750 	if (curthread != PCPU_GET(idlethread))
751 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
752 	splx(s);
753 	if (oldflags & B_ASYNC)
754 		BUF_KERNPROC(bp);
755 	BUF_STRATEGY(bp);
756 
757 	if ((oldflags & B_ASYNC) == 0) {
758 		int rtval = bufwait(bp);
759 		brelse(bp);
760 		return (rtval);
761 	} else {
762 		/*
763 		 * don't allow the async write to saturate the I/O
764 		 * system.  There is no chance of deadlock here because
765 		 * we are blocking on I/O that is already in-progress.
766 		 */
767 		waitrunningbufspace();
768 	}
769 
770 	return (0);
771 }
772 
773 /*
774  * Complete a background write started from bwrite.
775  */
776 static void
777 vfs_backgroundwritedone(bp)
778 	struct buf *bp;
779 {
780 	struct buf *origbp;
781 
782 	/*
783 	 * Find the original buffer that we are writing.
784 	 */
785 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
786 		panic("backgroundwritedone: lost buffer");
787 	/*
788 	 * Process dependencies then return any unfinished ones.
789 	 */
790 	if (LIST_FIRST(&bp->b_dep) != NULL)
791 		buf_complete(bp);
792 	if (LIST_FIRST(&bp->b_dep) != NULL)
793 		buf_movedeps(bp, origbp);
794 	/*
795 	 * Clear the BX_BKGRDINPROG flag in the original buffer
796 	 * and awaken it if it is waiting for the write to complete.
797 	 * If BX_BKGRDINPROG is not set in the original buffer it must
798 	 * have been released and re-instantiated - which is not legal.
799 	 */
800 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
801 	origbp->b_xflags &= ~BX_BKGRDINPROG;
802 	if (origbp->b_xflags & BX_BKGRDWAIT) {
803 		origbp->b_xflags &= ~BX_BKGRDWAIT;
804 		wakeup(&origbp->b_xflags);
805 	}
806 	/*
807 	 * Clear the B_LOCKED flag and remove it from the locked
808 	 * queue if it currently resides there.
809 	 */
810 	origbp->b_flags &= ~B_LOCKED;
811 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
812 		bremfree(origbp);
813 		bqrelse(origbp);
814 	}
815 	/*
816 	 * This buffer is marked B_NOCACHE, so when it is released
817 	 * by biodone, it will be tossed. We mark it with BIO_READ
818 	 * to avoid biodone doing a second vwakeup.
819 	 */
820 	bp->b_flags |= B_NOCACHE;
821 	bp->b_iocmd = BIO_READ;
822 	bp->b_flags &= ~(B_CACHE | B_DONE);
823 	bp->b_iodone = 0;
824 	bufdone(bp);
825 }
826 
827 /*
828  * Delayed write. (Buffer is marked dirty).  Do not bother writing
829  * anything if the buffer is marked invalid.
830  *
831  * Note that since the buffer must be completely valid, we can safely
832  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
833  * biodone() in order to prevent getblk from writing the buffer
834  * out synchronously.
835  */
836 void
837 bdwrite(struct buf * bp)
838 {
839 	GIANT_REQUIRED;
840 
841 	if (BUF_REFCNT(bp) == 0)
842 		panic("bdwrite: buffer is not busy");
843 
844 	if (bp->b_flags & B_INVAL) {
845 		brelse(bp);
846 		return;
847 	}
848 	bdirty(bp);
849 
850 	/*
851 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
852 	 * true even of NFS now.
853 	 */
854 	bp->b_flags |= B_CACHE;
855 
856 	/*
857 	 * This bmap keeps the system from needing to do the bmap later,
858 	 * perhaps when the system is attempting to do a sync.  Since it
859 	 * is likely that the indirect block -- or whatever other datastructure
860 	 * that the filesystem needs is still in memory now, it is a good
861 	 * thing to do this.  Note also, that if the pageout daemon is
862 	 * requesting a sync -- there might not be enough memory to do
863 	 * the bmap then...  So, this is important to do.
864 	 */
865 	if (bp->b_lblkno == bp->b_blkno) {
866 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
867 	}
868 
869 	/*
870 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
871 	 */
872 	vfs_setdirty(bp);
873 
874 	/*
875 	 * We need to do this here to satisfy the vnode_pager and the
876 	 * pageout daemon, so that it thinks that the pages have been
877 	 * "cleaned".  Note that since the pages are in a delayed write
878 	 * buffer -- the VFS layer "will" see that the pages get written
879 	 * out on the next sync, or perhaps the cluster will be completed.
880 	 */
881 	vfs_clean_pages(bp);
882 	bqrelse(bp);
883 
884 	/*
885 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
886 	 * buffers (midpoint between our recovery point and our stall
887 	 * point).
888 	 */
889 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
890 
891 	/*
892 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
893 	 * due to the softdep code.
894 	 */
895 }
896 
897 /*
898  *	bdirty:
899  *
900  *	Turn buffer into delayed write request.  We must clear BIO_READ and
901  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
902  *	itself to properly update it in the dirty/clean lists.  We mark it
903  *	B_DONE to ensure that any asynchronization of the buffer properly
904  *	clears B_DONE ( else a panic will occur later ).
905  *
906  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
907  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
908  *	should only be called if the buffer is known-good.
909  *
910  *	Since the buffer is not on a queue, we do not update the numfreebuffers
911  *	count.
912  *
913  *	Must be called at splbio().
914  *	The buffer must be on QUEUE_NONE.
915  */
916 void
917 bdirty(bp)
918 	struct buf *bp;
919 {
920 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
921 	bp->b_flags &= ~(B_RELBUF);
922 	bp->b_iocmd = BIO_WRITE;
923 
924 	if ((bp->b_flags & B_DELWRI) == 0) {
925 		bp->b_flags |= B_DONE | B_DELWRI;
926 		reassignbuf(bp, bp->b_vp);
927 		++numdirtybuffers;
928 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
929 	}
930 }
931 
932 /*
933  *	bundirty:
934  *
935  *	Clear B_DELWRI for buffer.
936  *
937  *	Since the buffer is not on a queue, we do not update the numfreebuffers
938  *	count.
939  *
940  *	Must be called at splbio().
941  *	The buffer must be on QUEUE_NONE.
942  */
943 
944 void
945 bundirty(bp)
946 	struct buf *bp;
947 {
948 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
949 
950 	if (bp->b_flags & B_DELWRI) {
951 		bp->b_flags &= ~B_DELWRI;
952 		reassignbuf(bp, bp->b_vp);
953 		--numdirtybuffers;
954 		numdirtywakeup(lodirtybuffers);
955 	}
956 	/*
957 	 * Since it is now being written, we can clear its deferred write flag.
958 	 */
959 	bp->b_flags &= ~B_DEFERRED;
960 }
961 
962 /*
963  *	bawrite:
964  *
965  *	Asynchronous write.  Start output on a buffer, but do not wait for
966  *	it to complete.  The buffer is released when the output completes.
967  *
968  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
969  *	B_INVAL buffers.  Not us.
970  */
971 void
972 bawrite(struct buf * bp)
973 {
974 	bp->b_flags |= B_ASYNC;
975 	(void) BUF_WRITE(bp);
976 }
977 
978 /*
979  *	bowrite:
980  *
981  *	Ordered write.  Start output on a buffer, and flag it so that the
982  *	device will write it in the order it was queued.  The buffer is
983  *	released when the output completes.  bwrite() ( or the VOP routine
984  *	anyway ) is responsible for handling B_INVAL buffers.
985  */
986 int
987 bowrite(struct buf * bp)
988 {
989 	bp->b_ioflags |= BIO_ORDERED;
990 	bp->b_flags |= B_ASYNC;
991 	return (BUF_WRITE(bp));
992 }
993 
994 /*
995  *	bwillwrite:
996  *
997  *	Called prior to the locking of any vnodes when we are expecting to
998  *	write.  We do not want to starve the buffer cache with too many
999  *	dirty buffers so we block here.  By blocking prior to the locking
1000  *	of any vnodes we attempt to avoid the situation where a locked vnode
1001  *	prevents the various system daemons from flushing related buffers.
1002  */
1003 
1004 void
1005 bwillwrite(void)
1006 {
1007 	if (numdirtybuffers >= hidirtybuffers) {
1008 		int s;
1009 
1010 		s = splbio();
1011 		while (numdirtybuffers >= hidirtybuffers) {
1012 			bd_wakeup(1);
1013 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1014 			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1015 		}
1016 		splx(s);
1017 	}
1018 }
1019 
1020 /*
1021  * Return true if we have too many dirty buffers.
1022  */
1023 int
1024 buf_dirty_count_severe(void)
1025 {
1026 	return(numdirtybuffers >= hidirtybuffers);
1027 }
1028 
1029 /*
1030  *	brelse:
1031  *
1032  *	Release a busy buffer and, if requested, free its resources.  The
1033  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1034  *	to be accessed later as a cache entity or reused for other purposes.
1035  */
1036 void
1037 brelse(struct buf * bp)
1038 {
1039 	int s;
1040 
1041 	GIANT_REQUIRED;
1042 
1043 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1044 
1045 	s = splbio();
1046 
1047 	if (bp->b_flags & B_LOCKED)
1048 		bp->b_ioflags &= ~BIO_ERROR;
1049 
1050 	if (bp->b_iocmd == BIO_WRITE &&
1051 	    (bp->b_ioflags & BIO_ERROR) &&
1052 	    !(bp->b_flags & B_INVAL)) {
1053 		/*
1054 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1055 		 * pages from being scrapped.  If B_INVAL is set then
1056 		 * this case is not run and the next case is run to
1057 		 * destroy the buffer.  B_INVAL can occur if the buffer
1058 		 * is outside the range supported by the underlying device.
1059 		 */
1060 		bp->b_ioflags &= ~BIO_ERROR;
1061 		bdirty(bp);
1062 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1063 	    (bp->b_ioflags & BIO_ERROR) ||
1064 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1065 		/*
1066 		 * Either a failed I/O or we were asked to free or not
1067 		 * cache the buffer.
1068 		 */
1069 		bp->b_flags |= B_INVAL;
1070 		if (LIST_FIRST(&bp->b_dep) != NULL)
1071 			buf_deallocate(bp);
1072 		if (bp->b_flags & B_DELWRI) {
1073 			--numdirtybuffers;
1074 			numdirtywakeup(lodirtybuffers);
1075 		}
1076 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1077 		if ((bp->b_flags & B_VMIO) == 0) {
1078 			if (bp->b_bufsize)
1079 				allocbuf(bp, 0);
1080 			if (bp->b_vp)
1081 				brelvp(bp);
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1087 	 * is called with B_DELWRI set, the underlying pages may wind up
1088 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1089 	 * because pages associated with a B_DELWRI bp are marked clean.
1090 	 *
1091 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1092 	 * if B_DELWRI is set.
1093 	 *
1094 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1095 	 * on pages to return pages to the VM page queues.
1096 	 */
1097 	if (bp->b_flags & B_DELWRI)
1098 		bp->b_flags &= ~B_RELBUF;
1099 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1100 		bp->b_flags |= B_RELBUF;
1101 
1102 	/*
1103 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1104 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1105 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1106 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1107 	 *
1108 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1109 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1110 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1111 	 *
1112 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1113 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1114 	 * the commit state and we cannot afford to lose the buffer. If the
1115 	 * buffer has a background write in progress, we need to keep it
1116 	 * around to prevent it from being reconstituted and starting a second
1117 	 * background write.
1118 	 */
1119 	if ((bp->b_flags & B_VMIO)
1120 	    && !(bp->b_vp->v_tag == VT_NFS &&
1121 		 !vn_isdisk(bp->b_vp, NULL) &&
1122 		 (bp->b_flags & B_DELWRI))
1123 	    ) {
1124 
1125 		int i, j, resid;
1126 		vm_page_t m;
1127 		off_t foff;
1128 		vm_pindex_t poff;
1129 		vm_object_t obj;
1130 		struct vnode *vp;
1131 
1132 		vp = bp->b_vp;
1133 
1134 		/*
1135 		 * Get the base offset and length of the buffer.  Note that
1136 		 * in the VMIO case if the buffer block size is not
1137 		 * page-aligned then b_data pointer may not be page-aligned.
1138 		 * But our b_pages[] array *IS* page aligned.
1139 		 *
1140 		 * block sizes less then DEV_BSIZE (usually 512) are not
1141 		 * supported due to the page granularity bits (m->valid,
1142 		 * m->dirty, etc...).
1143 		 *
1144 		 * See man buf(9) for more information
1145 		 */
1146 		resid = bp->b_bufsize;
1147 		foff = bp->b_offset;
1148 
1149 		for (i = 0; i < bp->b_npages; i++) {
1150 			int had_bogus = 0;
1151 
1152 			m = bp->b_pages[i];
1153 			vm_page_flag_clear(m, PG_ZERO);
1154 
1155 			/*
1156 			 * If we hit a bogus page, fixup *all* the bogus pages
1157 			 * now.
1158 			 */
1159 			if (m == bogus_page) {
1160 				VOP_GETVOBJECT(vp, &obj);
1161 				poff = OFF_TO_IDX(bp->b_offset);
1162 				had_bogus = 1;
1163 
1164 				for (j = i; j < bp->b_npages; j++) {
1165 					vm_page_t mtmp;
1166 					mtmp = bp->b_pages[j];
1167 					if (mtmp == bogus_page) {
1168 						mtmp = vm_page_lookup(obj, poff + j);
1169 						if (!mtmp) {
1170 							panic("brelse: page missing\n");
1171 						}
1172 						bp->b_pages[j] = mtmp;
1173 					}
1174 				}
1175 
1176 				if ((bp->b_flags & B_INVAL) == 0) {
1177 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1178 				}
1179 				m = bp->b_pages[i];
1180 			}
1181 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1182 				int poffset = foff & PAGE_MASK;
1183 				int presid = resid > (PAGE_SIZE - poffset) ?
1184 					(PAGE_SIZE - poffset) : resid;
1185 
1186 				KASSERT(presid >= 0, ("brelse: extra page"));
1187 				vm_page_set_invalid(m, poffset, presid);
1188 				if (had_bogus)
1189 					printf("avoided corruption bug in bogus_page/brelse code\n");
1190 			}
1191 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1192 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1193 		}
1194 
1195 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1196 			vfs_vmio_release(bp);
1197 
1198 	} else if (bp->b_flags & B_VMIO) {
1199 
1200 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1201 			vfs_vmio_release(bp);
1202 		}
1203 
1204 	}
1205 
1206 	if (bp->b_qindex != QUEUE_NONE)
1207 		panic("brelse: free buffer onto another queue???");
1208 	if (BUF_REFCNT(bp) > 1) {
1209 		/* do not release to free list */
1210 		BUF_UNLOCK(bp);
1211 		splx(s);
1212 		return;
1213 	}
1214 
1215 	/* enqueue */
1216 
1217 	/* buffers with no memory */
1218 	if (bp->b_bufsize == 0) {
1219 		bp->b_flags |= B_INVAL;
1220 		bp->b_xflags &= ~BX_BKGRDWRITE;
1221 		if (bp->b_xflags & BX_BKGRDINPROG)
1222 			panic("losing buffer 1");
1223 		if (bp->b_kvasize) {
1224 			bp->b_qindex = QUEUE_EMPTYKVA;
1225 		} else {
1226 			bp->b_qindex = QUEUE_EMPTY;
1227 		}
1228 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1229 		LIST_REMOVE(bp, b_hash);
1230 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1231 		bp->b_dev = NODEV;
1232 	/* buffers with junk contents */
1233 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1234 		bp->b_flags |= B_INVAL;
1235 		bp->b_xflags &= ~BX_BKGRDWRITE;
1236 		if (bp->b_xflags & BX_BKGRDINPROG)
1237 			panic("losing buffer 2");
1238 		bp->b_qindex = QUEUE_CLEAN;
1239 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1240 		LIST_REMOVE(bp, b_hash);
1241 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1242 		bp->b_dev = NODEV;
1243 
1244 	/* buffers that are locked */
1245 	} else if (bp->b_flags & B_LOCKED) {
1246 		bp->b_qindex = QUEUE_LOCKED;
1247 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1248 
1249 	/* remaining buffers */
1250 	} else {
1251 		if (bp->b_flags & B_DELWRI)
1252 			bp->b_qindex = QUEUE_DIRTY;
1253 		else
1254 			bp->b_qindex = QUEUE_CLEAN;
1255 		if (bp->b_flags & B_AGE)
1256 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1257 		else
1258 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1259 	}
1260 
1261 	/*
1262 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1263 	 * on the correct queue.
1264 	 */
1265 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1266 		bp->b_flags &= ~B_DELWRI;
1267 		--numdirtybuffers;
1268 		numdirtywakeup(lodirtybuffers);
1269 	}
1270 
1271 	/*
1272 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1273 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1274 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1275 	 * if B_INVAL is set ).
1276 	 */
1277 
1278 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1279 		bufcountwakeup();
1280 
1281 	/*
1282 	 * Something we can maybe free or reuse
1283 	 */
1284 	if (bp->b_bufsize || bp->b_kvasize)
1285 		bufspacewakeup();
1286 
1287 	/* unlock */
1288 	BUF_UNLOCK(bp);
1289 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1290 	bp->b_ioflags &= ~BIO_ORDERED;
1291 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1292 		panic("brelse: not dirty");
1293 	splx(s);
1294 }
1295 
1296 /*
1297  * Release a buffer back to the appropriate queue but do not try to free
1298  * it.  The buffer is expected to be used again soon.
1299  *
1300  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1301  * biodone() to requeue an async I/O on completion.  It is also used when
1302  * known good buffers need to be requeued but we think we may need the data
1303  * again soon.
1304  *
1305  * XXX we should be able to leave the B_RELBUF hint set on completion.
1306  */
1307 void
1308 bqrelse(struct buf * bp)
1309 {
1310 	int s;
1311 
1312 	s = splbio();
1313 
1314 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1315 
1316 	if (bp->b_qindex != QUEUE_NONE)
1317 		panic("bqrelse: free buffer onto another queue???");
1318 	if (BUF_REFCNT(bp) > 1) {
1319 		/* do not release to free list */
1320 		BUF_UNLOCK(bp);
1321 		splx(s);
1322 		return;
1323 	}
1324 	if (bp->b_flags & B_LOCKED) {
1325 		bp->b_ioflags &= ~BIO_ERROR;
1326 		bp->b_qindex = QUEUE_LOCKED;
1327 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1328 		/* buffers with stale but valid contents */
1329 	} else if (bp->b_flags & B_DELWRI) {
1330 		bp->b_qindex = QUEUE_DIRTY;
1331 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1332 	} else if (vm_page_count_severe()) {
1333 		/*
1334 		 * We are too low on memory, we have to try to free the
1335 		 * buffer (most importantly: the wired pages making up its
1336 		 * backing store) *now*.
1337 		 */
1338 		splx(s);
1339 		brelse(bp);
1340 		return;
1341 	} else {
1342 		bp->b_qindex = QUEUE_CLEAN;
1343 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1344 	}
1345 
1346 	if ((bp->b_flags & B_LOCKED) == 0 &&
1347 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1348 		bufcountwakeup();
1349 	}
1350 
1351 	/*
1352 	 * Something we can maybe free or reuse.
1353 	 */
1354 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1355 		bufspacewakeup();
1356 
1357 	/* unlock */
1358 	BUF_UNLOCK(bp);
1359 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1360 	bp->b_ioflags &= ~BIO_ORDERED;
1361 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1362 		panic("bqrelse: not dirty");
1363 	splx(s);
1364 }
1365 
1366 static void
1367 vfs_vmio_release(bp)
1368 	struct buf *bp;
1369 {
1370 	int i;
1371 	vm_page_t m;
1372 
1373 	GIANT_REQUIRED;
1374 
1375 	for (i = 0; i < bp->b_npages; i++) {
1376 		m = bp->b_pages[i];
1377 		bp->b_pages[i] = NULL;
1378 		/*
1379 		 * In order to keep page LRU ordering consistent, put
1380 		 * everything on the inactive queue.
1381 		 */
1382 		vm_page_unwire(m, 0);
1383 		/*
1384 		 * We don't mess with busy pages, it is
1385 		 * the responsibility of the process that
1386 		 * busied the pages to deal with them.
1387 		 */
1388 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1389 			continue;
1390 
1391 		if (m->wire_count == 0) {
1392 			vm_page_flag_clear(m, PG_ZERO);
1393 			/*
1394 			 * Might as well free the page if we can and it has
1395 			 * no valid data.  We also free the page if the
1396 			 * buffer was used for direct I/O
1397 			 */
1398 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1399 				vm_page_busy(m);
1400 				vm_page_protect(m, VM_PROT_NONE);
1401 				vm_page_free(m);
1402 			} else if (bp->b_flags & B_DIRECT) {
1403 				vm_page_try_to_free(m);
1404 			} else if (vm_page_count_severe()) {
1405 				vm_page_try_to_cache(m);
1406 			}
1407 		}
1408 	}
1409 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1410 
1411 	if (bp->b_bufsize) {
1412 		bufspacewakeup();
1413 		bp->b_bufsize = 0;
1414 	}
1415 	bp->b_npages = 0;
1416 	bp->b_flags &= ~B_VMIO;
1417 	if (bp->b_vp)
1418 		brelvp(bp);
1419 }
1420 
1421 /*
1422  * Check to see if a block is currently memory resident.
1423  */
1424 struct buf *
1425 gbincore(struct vnode * vp, daddr_t blkno)
1426 {
1427 	struct buf *bp;
1428 	struct bufhashhdr *bh;
1429 
1430 	bh = bufhash(vp, blkno);
1431 
1432 	/* Search hash chain */
1433 	LIST_FOREACH(bp, bh, b_hash) {
1434 		/* hit */
1435 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1436 		    (bp->b_flags & B_INVAL) == 0) {
1437 			break;
1438 		}
1439 	}
1440 	return (bp);
1441 }
1442 
1443 /*
1444  *	vfs_bio_awrite:
1445  *
1446  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1447  *	This is much better then the old way of writing only one buffer at
1448  *	a time.  Note that we may not be presented with the buffers in the
1449  *	correct order, so we search for the cluster in both directions.
1450  */
1451 int
1452 vfs_bio_awrite(struct buf * bp)
1453 {
1454 	int i;
1455 	int j;
1456 	daddr_t lblkno = bp->b_lblkno;
1457 	struct vnode *vp = bp->b_vp;
1458 	int s;
1459 	int ncl;
1460 	struct buf *bpa;
1461 	int nwritten;
1462 	int size;
1463 	int maxcl;
1464 
1465 	s = splbio();
1466 	/*
1467 	 * right now we support clustered writing only to regular files.  If
1468 	 * we find a clusterable block we could be in the middle of a cluster
1469 	 * rather then at the beginning.
1470 	 */
1471 	if ((vp->v_type == VREG) &&
1472 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1473 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1474 
1475 		size = vp->v_mount->mnt_stat.f_iosize;
1476 		maxcl = MAXPHYS / size;
1477 
1478 		for (i = 1; i < maxcl; i++) {
1479 			if ((bpa = gbincore(vp, lblkno + i)) &&
1480 			    BUF_REFCNT(bpa) == 0 &&
1481 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1482 			    (B_DELWRI | B_CLUSTEROK)) &&
1483 			    (bpa->b_bufsize == size)) {
1484 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1485 				    (bpa->b_blkno !=
1486 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1487 					break;
1488 			} else {
1489 				break;
1490 			}
1491 		}
1492 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1493 			if ((bpa = gbincore(vp, lblkno - j)) &&
1494 			    BUF_REFCNT(bpa) == 0 &&
1495 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1496 			    (B_DELWRI | B_CLUSTEROK)) &&
1497 			    (bpa->b_bufsize == size)) {
1498 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1499 				    (bpa->b_blkno !=
1500 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1501 					break;
1502 			} else {
1503 				break;
1504 			}
1505 		}
1506 		--j;
1507 		ncl = i + j;
1508 		/*
1509 		 * this is a possible cluster write
1510 		 */
1511 		if (ncl != 1) {
1512 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1513 			splx(s);
1514 			return nwritten;
1515 		}
1516 	}
1517 
1518 	BUF_LOCK(bp, LK_EXCLUSIVE);
1519 	bremfree(bp);
1520 	bp->b_flags |= B_ASYNC;
1521 
1522 	splx(s);
1523 	/*
1524 	 * default (old) behavior, writing out only one block
1525 	 *
1526 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1527 	 */
1528 	nwritten = bp->b_bufsize;
1529 	(void) BUF_WRITE(bp);
1530 
1531 	return nwritten;
1532 }
1533 
1534 /*
1535  *	getnewbuf:
1536  *
1537  *	Find and initialize a new buffer header, freeing up existing buffers
1538  *	in the bufqueues as necessary.  The new buffer is returned locked.
1539  *
1540  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1541  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1542  *
1543  *	We block if:
1544  *		We have insufficient buffer headers
1545  *		We have insufficient buffer space
1546  *		buffer_map is too fragmented ( space reservation fails )
1547  *		If we have to flush dirty buffers ( but we try to avoid this )
1548  *
1549  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1550  *	Instead we ask the buf daemon to do it for us.  We attempt to
1551  *	avoid piecemeal wakeups of the pageout daemon.
1552  */
1553 
1554 static struct buf *
1555 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1556 {
1557 	struct buf *bp;
1558 	struct buf *nbp;
1559 	int defrag = 0;
1560 	int nqindex;
1561 	static int flushingbufs;
1562 
1563 	GIANT_REQUIRED;
1564 
1565 	/*
1566 	 * We can't afford to block since we might be holding a vnode lock,
1567 	 * which may prevent system daemons from running.  We deal with
1568 	 * low-memory situations by proactively returning memory and running
1569 	 * async I/O rather then sync I/O.
1570 	 */
1571 
1572 	++getnewbufcalls;
1573 	--getnewbufrestarts;
1574 restart:
1575 	++getnewbufrestarts;
1576 
1577 	/*
1578 	 * Setup for scan.  If we do not have enough free buffers,
1579 	 * we setup a degenerate case that immediately fails.  Note
1580 	 * that if we are specially marked process, we are allowed to
1581 	 * dip into our reserves.
1582 	 *
1583 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1584 	 *
1585 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1586 	 * However, there are a number of cases (defragging, reusing, ...)
1587 	 * where we cannot backup.
1588 	 */
1589 	nqindex = QUEUE_EMPTYKVA;
1590 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1591 
1592 	if (nbp == NULL) {
1593 		/*
1594 		 * If no EMPTYKVA buffers and we are either
1595 		 * defragging or reusing, locate a CLEAN buffer
1596 		 * to free or reuse.  If bufspace useage is low
1597 		 * skip this step so we can allocate a new buffer.
1598 		 */
1599 		if (defrag || bufspace >= lobufspace) {
1600 			nqindex = QUEUE_CLEAN;
1601 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1602 		}
1603 
1604 		/*
1605 		 * If we could not find or were not allowed to reuse a
1606 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1607 		 * buffer.  We can only use an EMPTY buffer if allocating
1608 		 * its KVA would not otherwise run us out of buffer space.
1609 		 */
1610 		if (nbp == NULL && defrag == 0 &&
1611 		    bufspace + maxsize < hibufspace) {
1612 			nqindex = QUEUE_EMPTY;
1613 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1619 	 * depending.
1620 	 */
1621 
1622 	while ((bp = nbp) != NULL) {
1623 		int qindex = nqindex;
1624 
1625 		/*
1626 		 * Calculate next bp ( we can only use it if we do not block
1627 		 * or do other fancy things ).
1628 		 */
1629 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1630 			switch(qindex) {
1631 			case QUEUE_EMPTY:
1632 				nqindex = QUEUE_EMPTYKVA;
1633 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1634 					break;
1635 				/* fall through */
1636 			case QUEUE_EMPTYKVA:
1637 				nqindex = QUEUE_CLEAN;
1638 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1639 					break;
1640 				/* fall through */
1641 			case QUEUE_CLEAN:
1642 				/*
1643 				 * nbp is NULL.
1644 				 */
1645 				break;
1646 			}
1647 		}
1648 
1649 		/*
1650 		 * Sanity Checks
1651 		 */
1652 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1653 
1654 		/*
1655 		 * Note: we no longer distinguish between VMIO and non-VMIO
1656 		 * buffers.
1657 		 */
1658 
1659 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1660 
1661 		/*
1662 		 * If we are defragging then we need a buffer with
1663 		 * b_kvasize != 0.  XXX this situation should no longer
1664 		 * occur, if defrag is non-zero the buffer's b_kvasize
1665 		 * should also be non-zero at this point.  XXX
1666 		 */
1667 		if (defrag && bp->b_kvasize == 0) {
1668 			printf("Warning: defrag empty buffer %p\n", bp);
1669 			continue;
1670 		}
1671 
1672 		/*
1673 		 * Start freeing the bp.  This is somewhat involved.  nbp
1674 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1675 		 */
1676 
1677 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1678 			panic("getnewbuf: locked buf");
1679 		bremfree(bp);
1680 
1681 		if (qindex == QUEUE_CLEAN) {
1682 			if (bp->b_flags & B_VMIO) {
1683 				bp->b_flags &= ~B_ASYNC;
1684 				vfs_vmio_release(bp);
1685 			}
1686 			if (bp->b_vp)
1687 				brelvp(bp);
1688 		}
1689 
1690 		/*
1691 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1692 		 * the scan from this point on.
1693 		 *
1694 		 * Get the rest of the buffer freed up.  b_kva* is still
1695 		 * valid after this operation.
1696 		 */
1697 
1698 		if (bp->b_rcred != NOCRED) {
1699 			crfree(bp->b_rcred);
1700 			bp->b_rcred = NOCRED;
1701 		}
1702 		if (bp->b_wcred != NOCRED) {
1703 			crfree(bp->b_wcred);
1704 			bp->b_wcred = NOCRED;
1705 		}
1706 		if (LIST_FIRST(&bp->b_dep) != NULL)
1707 			buf_deallocate(bp);
1708 		if (bp->b_xflags & BX_BKGRDINPROG)
1709 			panic("losing buffer 3");
1710 		LIST_REMOVE(bp, b_hash);
1711 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1712 
1713 		if (bp->b_bufsize)
1714 			allocbuf(bp, 0);
1715 
1716 		bp->b_flags = 0;
1717 		bp->b_ioflags = 0;
1718 		bp->b_xflags = 0;
1719 		bp->b_dev = NODEV;
1720 		bp->b_vp = NULL;
1721 		bp->b_blkno = bp->b_lblkno = 0;
1722 		bp->b_offset = NOOFFSET;
1723 		bp->b_iodone = 0;
1724 		bp->b_error = 0;
1725 		bp->b_resid = 0;
1726 		bp->b_bcount = 0;
1727 		bp->b_npages = 0;
1728 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1729 		bp->b_magic = B_MAGIC_BIO;
1730 		bp->b_op = &buf_ops_bio;
1731 
1732 		LIST_INIT(&bp->b_dep);
1733 
1734 		/*
1735 		 * If we are defragging then free the buffer.
1736 		 */
1737 		if (defrag) {
1738 			bp->b_flags |= B_INVAL;
1739 			bfreekva(bp);
1740 			brelse(bp);
1741 			defrag = 0;
1742 			goto restart;
1743 		}
1744 
1745 		/*
1746 		 * If we are overcomitted then recover the buffer and its
1747 		 * KVM space.  This occurs in rare situations when multiple
1748 		 * processes are blocked in getnewbuf() or allocbuf().
1749 		 */
1750 		if (bufspace >= hibufspace)
1751 			flushingbufs = 1;
1752 		if (flushingbufs && bp->b_kvasize != 0) {
1753 			bp->b_flags |= B_INVAL;
1754 			bfreekva(bp);
1755 			brelse(bp);
1756 			goto restart;
1757 		}
1758 		if (bufspace < lobufspace)
1759 			flushingbufs = 0;
1760 		break;
1761 	}
1762 
1763 	/*
1764 	 * If we exhausted our list, sleep as appropriate.  We may have to
1765 	 * wakeup various daemons and write out some dirty buffers.
1766 	 *
1767 	 * Generally we are sleeping due to insufficient buffer space.
1768 	 */
1769 
1770 	if (bp == NULL) {
1771 		int flags;
1772 		char *waitmsg;
1773 
1774 		if (defrag) {
1775 			flags = VFS_BIO_NEED_BUFSPACE;
1776 			waitmsg = "nbufkv";
1777 		} else if (bufspace >= hibufspace) {
1778 			waitmsg = "nbufbs";
1779 			flags = VFS_BIO_NEED_BUFSPACE;
1780 		} else {
1781 			waitmsg = "newbuf";
1782 			flags = VFS_BIO_NEED_ANY;
1783 		}
1784 
1785 		bd_speedup();	/* heeeelp */
1786 
1787 		needsbuffer |= flags;
1788 		while (needsbuffer & flags) {
1789 			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1790 			    waitmsg, slptimeo))
1791 				return (NULL);
1792 		}
1793 	} else {
1794 		/*
1795 		 * We finally have a valid bp.  We aren't quite out of the
1796 		 * woods, we still have to reserve kva space.  In order
1797 		 * to keep fragmentation sane we only allocate kva in
1798 		 * BKVASIZE chunks.
1799 		 */
1800 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1801 
1802 		if (maxsize != bp->b_kvasize) {
1803 			vm_offset_t addr = 0;
1804 
1805 			bfreekva(bp);
1806 
1807 			if (vm_map_findspace(buffer_map,
1808 				vm_map_min(buffer_map), maxsize, &addr)) {
1809 				/*
1810 				 * Uh oh.  Buffer map is to fragmented.  We
1811 				 * must defragment the map.
1812 				 */
1813 				++bufdefragcnt;
1814 				defrag = 1;
1815 				bp->b_flags |= B_INVAL;
1816 				brelse(bp);
1817 				goto restart;
1818 			}
1819 			if (addr) {
1820 				vm_map_insert(buffer_map, NULL, 0,
1821 					addr, addr + maxsize,
1822 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1823 
1824 				bp->b_kvabase = (caddr_t) addr;
1825 				bp->b_kvasize = maxsize;
1826 				bufspace += bp->b_kvasize;
1827 				++bufreusecnt;
1828 			}
1829 		}
1830 		bp->b_data = bp->b_kvabase;
1831 	}
1832 	return(bp);
1833 }
1834 
1835 /*
1836  *	buf_daemon:
1837  *
1838  *	buffer flushing daemon.  Buffers are normally flushed by the
1839  *	update daemon but if it cannot keep up this process starts to
1840  *	take the load in an attempt to prevent getnewbuf() from blocking.
1841  */
1842 
1843 static struct proc *bufdaemonproc;
1844 
1845 static struct kproc_desc buf_kp = {
1846 	"bufdaemon",
1847 	buf_daemon,
1848 	&bufdaemonproc
1849 };
1850 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1851 
1852 static void
1853 buf_daemon()
1854 {
1855 	int s;
1856 
1857 	mtx_lock(&Giant);
1858 
1859 	/*
1860 	 * This process needs to be suspended prior to shutdown sync.
1861 	 */
1862 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1863 	    SHUTDOWN_PRI_LAST);
1864 
1865 	/*
1866 	 * This process is allowed to take the buffer cache to the limit
1867 	 */
1868 	curproc->p_flag |= P_BUFEXHAUST;
1869 	s = splbio();
1870 
1871 	for (;;) {
1872 		kthread_suspend_check(bufdaemonproc);
1873 
1874 		bd_request = 0;
1875 
1876 		/*
1877 		 * Do the flush.  Limit the amount of in-transit I/O we
1878 		 * allow to build up, otherwise we would completely saturate
1879 		 * the I/O system.  Wakeup any waiting processes before we
1880 		 * normally would so they can run in parallel with our drain.
1881 		 */
1882 		while (numdirtybuffers > lodirtybuffers) {
1883 			if (flushbufqueues() == 0)
1884 				break;
1885 			waitrunningbufspace();
1886 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1887 		}
1888 
1889 		/*
1890 		 * Only clear bd_request if we have reached our low water
1891 		 * mark.  The buf_daemon normally waits 5 seconds and
1892 		 * then incrementally flushes any dirty buffers that have
1893 		 * built up, within reason.
1894 		 *
1895 		 * If we were unable to hit our low water mark and couldn't
1896 		 * find any flushable buffers, we sleep half a second.
1897 		 * Otherwise we loop immediately.
1898 		 */
1899 		if (numdirtybuffers <= lodirtybuffers) {
1900 			/*
1901 			 * We reached our low water mark, reset the
1902 			 * request and sleep until we are needed again.
1903 			 * The sleep is just so the suspend code works.
1904 			 */
1905 			bd_request = 0;
1906 			tsleep(&bd_request, PVM, "psleep", hz);
1907 		} else {
1908 			/*
1909 			 * We couldn't find any flushable dirty buffers but
1910 			 * still have too many dirty buffers, we
1911 			 * have to sleep and try again.  (rare)
1912 			 */
1913 			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1914 		}
1915 	}
1916 }
1917 
1918 /*
1919  *	flushbufqueues:
1920  *
1921  *	Try to flush a buffer in the dirty queue.  We must be careful to
1922  *	free up B_INVAL buffers instead of write them, which NFS is
1923  *	particularly sensitive to.
1924  */
1925 
1926 static int
1927 flushbufqueues(void)
1928 {
1929 	struct buf *bp;
1930 	int r = 0;
1931 
1932 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1933 
1934 	while (bp) {
1935 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1936 		if ((bp->b_flags & B_DELWRI) != 0 &&
1937 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1938 			if (bp->b_flags & B_INVAL) {
1939 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1940 					panic("flushbufqueues: locked buf");
1941 				bremfree(bp);
1942 				brelse(bp);
1943 				++r;
1944 				break;
1945 			}
1946 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1947 			    (bp->b_flags & B_DEFERRED) == 0 &&
1948 			    buf_countdeps(bp, 0)) {
1949 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1950 				    bp, b_freelist);
1951 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1952 				    bp, b_freelist);
1953 				bp->b_flags |= B_DEFERRED;
1954 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1955 				continue;
1956 			}
1957 			vfs_bio_awrite(bp);
1958 			++r;
1959 			break;
1960 		}
1961 		bp = TAILQ_NEXT(bp, b_freelist);
1962 	}
1963 	return (r);
1964 }
1965 
1966 /*
1967  * Check to see if a block is currently memory resident.
1968  */
1969 struct buf *
1970 incore(struct vnode * vp, daddr_t blkno)
1971 {
1972 	struct buf *bp;
1973 
1974 	int s = splbio();
1975 	bp = gbincore(vp, blkno);
1976 	splx(s);
1977 	return (bp);
1978 }
1979 
1980 /*
1981  * Returns true if no I/O is needed to access the
1982  * associated VM object.  This is like incore except
1983  * it also hunts around in the VM system for the data.
1984  */
1985 
1986 int
1987 inmem(struct vnode * vp, daddr_t blkno)
1988 {
1989 	vm_object_t obj;
1990 	vm_offset_t toff, tinc, size;
1991 	vm_page_t m;
1992 	vm_ooffset_t off;
1993 
1994 	GIANT_REQUIRED;
1995 
1996 	if (incore(vp, blkno))
1997 		return 1;
1998 	if (vp->v_mount == NULL)
1999 		return 0;
2000 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2001 		return 0;
2002 
2003 	size = PAGE_SIZE;
2004 	if (size > vp->v_mount->mnt_stat.f_iosize)
2005 		size = vp->v_mount->mnt_stat.f_iosize;
2006 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2007 
2008 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2009 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2010 		if (!m)
2011 			goto notinmem;
2012 		tinc = size;
2013 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2014 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2015 		if (vm_page_is_valid(m,
2016 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2017 			goto notinmem;
2018 	}
2019 	return 1;
2020 
2021 notinmem:
2022 	return (0);
2023 }
2024 
2025 /*
2026  *	vfs_setdirty:
2027  *
2028  *	Sets the dirty range for a buffer based on the status of the dirty
2029  *	bits in the pages comprising the buffer.
2030  *
2031  *	The range is limited to the size of the buffer.
2032  *
2033  *	This routine is primarily used by NFS, but is generalized for the
2034  *	B_VMIO case.
2035  */
2036 static void
2037 vfs_setdirty(struct buf *bp)
2038 {
2039 	int i;
2040 	vm_object_t object;
2041 
2042 	GIANT_REQUIRED;
2043 	/*
2044 	 * Degenerate case - empty buffer
2045 	 */
2046 
2047 	if (bp->b_bufsize == 0)
2048 		return;
2049 
2050 	/*
2051 	 * We qualify the scan for modified pages on whether the
2052 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2053 	 * is not cleared simply by protecting pages off.
2054 	 */
2055 
2056 	if ((bp->b_flags & B_VMIO) == 0)
2057 		return;
2058 
2059 	object = bp->b_pages[0]->object;
2060 
2061 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2062 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2063 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2064 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2065 
2066 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2067 		vm_offset_t boffset;
2068 		vm_offset_t eoffset;
2069 
2070 		/*
2071 		 * test the pages to see if they have been modified directly
2072 		 * by users through the VM system.
2073 		 */
2074 		for (i = 0; i < bp->b_npages; i++) {
2075 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2076 			vm_page_test_dirty(bp->b_pages[i]);
2077 		}
2078 
2079 		/*
2080 		 * Calculate the encompassing dirty range, boffset and eoffset,
2081 		 * (eoffset - boffset) bytes.
2082 		 */
2083 
2084 		for (i = 0; i < bp->b_npages; i++) {
2085 			if (bp->b_pages[i]->dirty)
2086 				break;
2087 		}
2088 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2089 
2090 		for (i = bp->b_npages - 1; i >= 0; --i) {
2091 			if (bp->b_pages[i]->dirty) {
2092 				break;
2093 			}
2094 		}
2095 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2096 
2097 		/*
2098 		 * Fit it to the buffer.
2099 		 */
2100 
2101 		if (eoffset > bp->b_bcount)
2102 			eoffset = bp->b_bcount;
2103 
2104 		/*
2105 		 * If we have a good dirty range, merge with the existing
2106 		 * dirty range.
2107 		 */
2108 
2109 		if (boffset < eoffset) {
2110 			if (bp->b_dirtyoff > boffset)
2111 				bp->b_dirtyoff = boffset;
2112 			if (bp->b_dirtyend < eoffset)
2113 				bp->b_dirtyend = eoffset;
2114 		}
2115 	}
2116 }
2117 
2118 /*
2119  *	getblk:
2120  *
2121  *	Get a block given a specified block and offset into a file/device.
2122  *	The buffers B_DONE bit will be cleared on return, making it almost
2123  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2124  *	return.  The caller should clear B_INVAL prior to initiating a
2125  *	READ.
2126  *
2127  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2128  *	an existing buffer.
2129  *
2130  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2131  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2132  *	and then cleared based on the backing VM.  If the previous buffer is
2133  *	non-0-sized but invalid, B_CACHE will be cleared.
2134  *
2135  *	If getblk() must create a new buffer, the new buffer is returned with
2136  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2137  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2138  *	backing VM.
2139  *
2140  *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2141  *	B_CACHE bit is clear.
2142  *
2143  *	What this means, basically, is that the caller should use B_CACHE to
2144  *	determine whether the buffer is fully valid or not and should clear
2145  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2146  *	the buffer by loading its data area with something, the caller needs
2147  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2148  *	the caller should set B_CACHE ( as an optimization ), else the caller
2149  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2150  *	a write attempt or if it was a successfull read.  If the caller
2151  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2152  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2153  */
2154 struct buf *
2155 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2156 {
2157 	struct buf *bp;
2158 	int s;
2159 	struct bufhashhdr *bh;
2160 
2161 	if (size > MAXBSIZE)
2162 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2163 
2164 	s = splbio();
2165 loop:
2166 	/*
2167 	 * Block if we are low on buffers.   Certain processes are allowed
2168 	 * to completely exhaust the buffer cache.
2169          *
2170          * If this check ever becomes a bottleneck it may be better to
2171          * move it into the else, when gbincore() fails.  At the moment
2172          * it isn't a problem.
2173 	 *
2174 	 * XXX remove if 0 sections (clean this up after its proven)
2175          */
2176 	if (numfreebuffers == 0) {
2177 		if (curthread == PCPU_GET(idlethread))
2178 			return NULL;
2179 		needsbuffer |= VFS_BIO_NEED_ANY;
2180 	}
2181 
2182 	if ((bp = gbincore(vp, blkno))) {
2183 		/*
2184 		 * Buffer is in-core.  If the buffer is not busy, it must
2185 		 * be on a queue.
2186 		 */
2187 
2188 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2189 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2190 			    "getblk", slpflag, slptimeo) == ENOLCK)
2191 				goto loop;
2192 			splx(s);
2193 			return (struct buf *) NULL;
2194 		}
2195 
2196 		/*
2197 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2198 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2199 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2200 		 * backing VM cache.
2201 		 */
2202 		if (bp->b_flags & B_INVAL)
2203 			bp->b_flags &= ~B_CACHE;
2204 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2205 			bp->b_flags |= B_CACHE;
2206 		bremfree(bp);
2207 
2208 		/*
2209 		 * check for size inconsistancies for non-VMIO case.
2210 		 */
2211 
2212 		if (bp->b_bcount != size) {
2213 			if ((bp->b_flags & B_VMIO) == 0 ||
2214 			    (size > bp->b_kvasize)) {
2215 				if (bp->b_flags & B_DELWRI) {
2216 					bp->b_flags |= B_NOCACHE;
2217 					BUF_WRITE(bp);
2218 				} else {
2219 					if ((bp->b_flags & B_VMIO) &&
2220 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2221 						bp->b_flags |= B_RELBUF;
2222 						brelse(bp);
2223 					} else {
2224 						bp->b_flags |= B_NOCACHE;
2225 						BUF_WRITE(bp);
2226 					}
2227 				}
2228 				goto loop;
2229 			}
2230 		}
2231 
2232 		/*
2233 		 * If the size is inconsistant in the VMIO case, we can resize
2234 		 * the buffer.  This might lead to B_CACHE getting set or
2235 		 * cleared.  If the size has not changed, B_CACHE remains
2236 		 * unchanged from its previous state.
2237 		 */
2238 
2239 		if (bp->b_bcount != size)
2240 			allocbuf(bp, size);
2241 
2242 		KASSERT(bp->b_offset != NOOFFSET,
2243 		    ("getblk: no buffer offset"));
2244 
2245 		/*
2246 		 * A buffer with B_DELWRI set and B_CACHE clear must
2247 		 * be committed before we can return the buffer in
2248 		 * order to prevent the caller from issuing a read
2249 		 * ( due to B_CACHE not being set ) and overwriting
2250 		 * it.
2251 		 *
2252 		 * Most callers, including NFS and FFS, need this to
2253 		 * operate properly either because they assume they
2254 		 * can issue a read if B_CACHE is not set, or because
2255 		 * ( for example ) an uncached B_DELWRI might loop due
2256 		 * to softupdates re-dirtying the buffer.  In the latter
2257 		 * case, B_CACHE is set after the first write completes,
2258 		 * preventing further loops.
2259 		 */
2260 
2261 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2262 			BUF_WRITE(bp);
2263 			goto loop;
2264 		}
2265 
2266 		splx(s);
2267 		bp->b_flags &= ~B_DONE;
2268 	} else {
2269 		/*
2270 		 * Buffer is not in-core, create new buffer.  The buffer
2271 		 * returned by getnewbuf() is locked.  Note that the returned
2272 		 * buffer is also considered valid (not marked B_INVAL).
2273 		 */
2274 		int bsize, maxsize, vmio;
2275 		off_t offset;
2276 
2277 		if (vn_isdisk(vp, NULL))
2278 			bsize = DEV_BSIZE;
2279 		else if (vp->v_mountedhere)
2280 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2281 		else if (vp->v_mount)
2282 			bsize = vp->v_mount->mnt_stat.f_iosize;
2283 		else
2284 			bsize = size;
2285 
2286 		offset = (off_t)blkno * bsize;
2287 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2288 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2289 		maxsize = imax(maxsize, bsize);
2290 
2291 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2292 			if (slpflag || slptimeo) {
2293 				splx(s);
2294 				return NULL;
2295 			}
2296 			goto loop;
2297 		}
2298 
2299 		/*
2300 		 * This code is used to make sure that a buffer is not
2301 		 * created while the getnewbuf routine is blocked.
2302 		 * This can be a problem whether the vnode is locked or not.
2303 		 * If the buffer is created out from under us, we have to
2304 		 * throw away the one we just created.  There is now window
2305 		 * race because we are safely running at splbio() from the
2306 		 * point of the duplicate buffer creation through to here,
2307 		 * and we've locked the buffer.
2308 		 */
2309 		if (gbincore(vp, blkno)) {
2310 			bp->b_flags |= B_INVAL;
2311 			brelse(bp);
2312 			goto loop;
2313 		}
2314 
2315 		/*
2316 		 * Insert the buffer into the hash, so that it can
2317 		 * be found by incore.
2318 		 */
2319 		bp->b_blkno = bp->b_lblkno = blkno;
2320 		bp->b_offset = offset;
2321 
2322 		bgetvp(vp, bp);
2323 		LIST_REMOVE(bp, b_hash);
2324 		bh = bufhash(vp, blkno);
2325 		LIST_INSERT_HEAD(bh, bp, b_hash);
2326 
2327 		/*
2328 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2329 		 * buffer size starts out as 0, B_CACHE will be set by
2330 		 * allocbuf() for the VMIO case prior to it testing the
2331 		 * backing store for validity.
2332 		 */
2333 
2334 		if (vmio) {
2335 			bp->b_flags |= B_VMIO;
2336 #if defined(VFS_BIO_DEBUG)
2337 			if (vp->v_type != VREG)
2338 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2339 #endif
2340 		} else {
2341 			bp->b_flags &= ~B_VMIO;
2342 		}
2343 
2344 		allocbuf(bp, size);
2345 
2346 		splx(s);
2347 		bp->b_flags &= ~B_DONE;
2348 	}
2349 	return (bp);
2350 }
2351 
2352 /*
2353  * Get an empty, disassociated buffer of given size.  The buffer is initially
2354  * set to B_INVAL.
2355  */
2356 struct buf *
2357 geteblk(int size)
2358 {
2359 	struct buf *bp;
2360 	int s;
2361 	int maxsize;
2362 
2363 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2364 
2365 	s = splbio();
2366 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2367 	splx(s);
2368 	allocbuf(bp, size);
2369 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2370 	return (bp);
2371 }
2372 
2373 
2374 /*
2375  * This code constitutes the buffer memory from either anonymous system
2376  * memory (in the case of non-VMIO operations) or from an associated
2377  * VM object (in the case of VMIO operations).  This code is able to
2378  * resize a buffer up or down.
2379  *
2380  * Note that this code is tricky, and has many complications to resolve
2381  * deadlock or inconsistant data situations.  Tread lightly!!!
2382  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2383  * the caller.  Calling this code willy nilly can result in the loss of data.
2384  *
2385  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2386  * B_CACHE for the non-VMIO case.
2387  */
2388 
2389 int
2390 allocbuf(struct buf *bp, int size)
2391 {
2392 	int newbsize, mbsize;
2393 	int i;
2394 
2395 	GIANT_REQUIRED;
2396 
2397 	if (BUF_REFCNT(bp) == 0)
2398 		panic("allocbuf: buffer not busy");
2399 
2400 	if (bp->b_kvasize < size)
2401 		panic("allocbuf: buffer too small");
2402 
2403 	if ((bp->b_flags & B_VMIO) == 0) {
2404 		caddr_t origbuf;
2405 		int origbufsize;
2406 		/*
2407 		 * Just get anonymous memory from the kernel.  Don't
2408 		 * mess with B_CACHE.
2409 		 */
2410 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2411 #if !defined(NO_B_MALLOC)
2412 		if (bp->b_flags & B_MALLOC)
2413 			newbsize = mbsize;
2414 		else
2415 #endif
2416 			newbsize = round_page(size);
2417 
2418 		if (newbsize < bp->b_bufsize) {
2419 #if !defined(NO_B_MALLOC)
2420 			/*
2421 			 * malloced buffers are not shrunk
2422 			 */
2423 			if (bp->b_flags & B_MALLOC) {
2424 				if (newbsize) {
2425 					bp->b_bcount = size;
2426 				} else {
2427 					free(bp->b_data, M_BIOBUF);
2428 					if (bp->b_bufsize) {
2429 						bufmallocspace -= bp->b_bufsize;
2430 						bufspacewakeup();
2431 						bp->b_bufsize = 0;
2432 					}
2433 					bp->b_data = bp->b_kvabase;
2434 					bp->b_bcount = 0;
2435 					bp->b_flags &= ~B_MALLOC;
2436 				}
2437 				return 1;
2438 			}
2439 #endif
2440 			vm_hold_free_pages(
2441 			    bp,
2442 			    (vm_offset_t) bp->b_data + newbsize,
2443 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2444 		} else if (newbsize > bp->b_bufsize) {
2445 #if !defined(NO_B_MALLOC)
2446 			/*
2447 			 * We only use malloced memory on the first allocation.
2448 			 * and revert to page-allocated memory when the buffer
2449 			 * grows.
2450 			 */
2451 			if ( (bufmallocspace < maxbufmallocspace) &&
2452 				(bp->b_bufsize == 0) &&
2453 				(mbsize <= PAGE_SIZE/2)) {
2454 
2455 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2456 				bp->b_bufsize = mbsize;
2457 				bp->b_bcount = size;
2458 				bp->b_flags |= B_MALLOC;
2459 				bufmallocspace += mbsize;
2460 				return 1;
2461 			}
2462 #endif
2463 			origbuf = NULL;
2464 			origbufsize = 0;
2465 #if !defined(NO_B_MALLOC)
2466 			/*
2467 			 * If the buffer is growing on its other-than-first allocation,
2468 			 * then we revert to the page-allocation scheme.
2469 			 */
2470 			if (bp->b_flags & B_MALLOC) {
2471 				origbuf = bp->b_data;
2472 				origbufsize = bp->b_bufsize;
2473 				bp->b_data = bp->b_kvabase;
2474 				if (bp->b_bufsize) {
2475 					bufmallocspace -= bp->b_bufsize;
2476 					bufspacewakeup();
2477 					bp->b_bufsize = 0;
2478 				}
2479 				bp->b_flags &= ~B_MALLOC;
2480 				newbsize = round_page(newbsize);
2481 			}
2482 #endif
2483 			vm_hold_load_pages(
2484 			    bp,
2485 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2486 			    (vm_offset_t) bp->b_data + newbsize);
2487 #if !defined(NO_B_MALLOC)
2488 			if (origbuf) {
2489 				bcopy(origbuf, bp->b_data, origbufsize);
2490 				free(origbuf, M_BIOBUF);
2491 			}
2492 #endif
2493 		}
2494 	} else {
2495 		vm_page_t m;
2496 		int desiredpages;
2497 
2498 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2499 		desiredpages = (size == 0) ? 0 :
2500 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2501 
2502 #if !defined(NO_B_MALLOC)
2503 		if (bp->b_flags & B_MALLOC)
2504 			panic("allocbuf: VMIO buffer can't be malloced");
2505 #endif
2506 		/*
2507 		 * Set B_CACHE initially if buffer is 0 length or will become
2508 		 * 0-length.
2509 		 */
2510 		if (size == 0 || bp->b_bufsize == 0)
2511 			bp->b_flags |= B_CACHE;
2512 
2513 		if (newbsize < bp->b_bufsize) {
2514 			/*
2515 			 * DEV_BSIZE aligned new buffer size is less then the
2516 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2517 			 * if we have to remove any pages.
2518 			 */
2519 			if (desiredpages < bp->b_npages) {
2520 				for (i = desiredpages; i < bp->b_npages; i++) {
2521 					/*
2522 					 * the page is not freed here -- it
2523 					 * is the responsibility of
2524 					 * vnode_pager_setsize
2525 					 */
2526 					m = bp->b_pages[i];
2527 					KASSERT(m != bogus_page,
2528 					    ("allocbuf: bogus page found"));
2529 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2530 						;
2531 
2532 					bp->b_pages[i] = NULL;
2533 					vm_page_unwire(m, 0);
2534 				}
2535 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2536 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2537 				bp->b_npages = desiredpages;
2538 			}
2539 		} else if (size > bp->b_bcount) {
2540 			/*
2541 			 * We are growing the buffer, possibly in a
2542 			 * byte-granular fashion.
2543 			 */
2544 			struct vnode *vp;
2545 			vm_object_t obj;
2546 			vm_offset_t toff;
2547 			vm_offset_t tinc;
2548 
2549 			/*
2550 			 * Step 1, bring in the VM pages from the object,
2551 			 * allocating them if necessary.  We must clear
2552 			 * B_CACHE if these pages are not valid for the
2553 			 * range covered by the buffer.
2554 			 */
2555 
2556 			vp = bp->b_vp;
2557 			VOP_GETVOBJECT(vp, &obj);
2558 
2559 			while (bp->b_npages < desiredpages) {
2560 				vm_page_t m;
2561 				vm_pindex_t pi;
2562 
2563 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2564 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2565 					/*
2566 					 * note: must allocate system pages
2567 					 * since blocking here could intefere
2568 					 * with paging I/O, no matter which
2569 					 * process we are.
2570 					 */
2571 					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2572 					if (m == NULL) {
2573 						VM_WAIT;
2574 						vm_pageout_deficit += desiredpages - bp->b_npages;
2575 					} else {
2576 						vm_page_wire(m);
2577 						vm_page_wakeup(m);
2578 						bp->b_flags &= ~B_CACHE;
2579 						bp->b_pages[bp->b_npages] = m;
2580 						++bp->b_npages;
2581 					}
2582 					continue;
2583 				}
2584 
2585 				/*
2586 				 * We found a page.  If we have to sleep on it,
2587 				 * retry because it might have gotten freed out
2588 				 * from under us.
2589 				 *
2590 				 * We can only test PG_BUSY here.  Blocking on
2591 				 * m->busy might lead to a deadlock:
2592 				 *
2593 				 *  vm_fault->getpages->cluster_read->allocbuf
2594 				 *
2595 				 */
2596 
2597 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2598 					continue;
2599 
2600 				/*
2601 				 * We have a good page.  Should we wakeup the
2602 				 * page daemon?
2603 				 */
2604 				if ((curproc != pageproc) &&
2605 				    ((m->queue - m->pc) == PQ_CACHE) &&
2606 				    ((cnt.v_free_count + cnt.v_cache_count) <
2607 					(cnt.v_free_min + cnt.v_cache_min))) {
2608 					pagedaemon_wakeup();
2609 				}
2610 				vm_page_flag_clear(m, PG_ZERO);
2611 				vm_page_wire(m);
2612 				bp->b_pages[bp->b_npages] = m;
2613 				++bp->b_npages;
2614 			}
2615 
2616 			/*
2617 			 * Step 2.  We've loaded the pages into the buffer,
2618 			 * we have to figure out if we can still have B_CACHE
2619 			 * set.  Note that B_CACHE is set according to the
2620 			 * byte-granular range ( bcount and size ), new the
2621 			 * aligned range ( newbsize ).
2622 			 *
2623 			 * The VM test is against m->valid, which is DEV_BSIZE
2624 			 * aligned.  Needless to say, the validity of the data
2625 			 * needs to also be DEV_BSIZE aligned.  Note that this
2626 			 * fails with NFS if the server or some other client
2627 			 * extends the file's EOF.  If our buffer is resized,
2628 			 * B_CACHE may remain set! XXX
2629 			 */
2630 
2631 			toff = bp->b_bcount;
2632 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2633 
2634 			while ((bp->b_flags & B_CACHE) && toff < size) {
2635 				vm_pindex_t pi;
2636 
2637 				if (tinc > (size - toff))
2638 					tinc = size - toff;
2639 
2640 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2641 				    PAGE_SHIFT;
2642 
2643 				vfs_buf_test_cache(
2644 				    bp,
2645 				    bp->b_offset,
2646 				    toff,
2647 				    tinc,
2648 				    bp->b_pages[pi]
2649 				);
2650 				toff += tinc;
2651 				tinc = PAGE_SIZE;
2652 			}
2653 
2654 			/*
2655 			 * Step 3, fixup the KVM pmap.  Remember that
2656 			 * bp->b_data is relative to bp->b_offset, but
2657 			 * bp->b_offset may be offset into the first page.
2658 			 */
2659 
2660 			bp->b_data = (caddr_t)
2661 			    trunc_page((vm_offset_t)bp->b_data);
2662 			pmap_qenter(
2663 			    (vm_offset_t)bp->b_data,
2664 			    bp->b_pages,
2665 			    bp->b_npages
2666 			);
2667 
2668 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2669 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2670 		}
2671 	}
2672 	if (newbsize < bp->b_bufsize)
2673 		bufspacewakeup();
2674 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2675 	bp->b_bcount = size;		/* requested buffer size	*/
2676 	return 1;
2677 }
2678 
2679 /*
2680  *	bufwait:
2681  *
2682  *	Wait for buffer I/O completion, returning error status.  The buffer
2683  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2684  *	error and cleared.
2685  */
2686 int
2687 bufwait(register struct buf * bp)
2688 {
2689 	int s;
2690 
2691 	s = splbio();
2692 	while ((bp->b_flags & B_DONE) == 0) {
2693 		if (bp->b_iocmd == BIO_READ)
2694 			tsleep(bp, PRIBIO, "biord", 0);
2695 		else
2696 			tsleep(bp, PRIBIO, "biowr", 0);
2697 	}
2698 	splx(s);
2699 	if (bp->b_flags & B_EINTR) {
2700 		bp->b_flags &= ~B_EINTR;
2701 		return (EINTR);
2702 	}
2703 	if (bp->b_ioflags & BIO_ERROR) {
2704 		return (bp->b_error ? bp->b_error : EIO);
2705 	} else {
2706 		return (0);
2707 	}
2708 }
2709 
2710  /*
2711   * Call back function from struct bio back up to struct buf.
2712   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2713   */
2714 void
2715 bufdonebio(struct bio *bp)
2716 {
2717 	bufdone(bp->bio_caller2);
2718 }
2719 
2720 /*
2721  *	bufdone:
2722  *
2723  *	Finish I/O on a buffer, optionally calling a completion function.
2724  *	This is usually called from an interrupt so process blocking is
2725  *	not allowed.
2726  *
2727  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2728  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2729  *	assuming B_INVAL is clear.
2730  *
2731  *	For the VMIO case, we set B_CACHE if the op was a read and no
2732  *	read error occured, or if the op was a write.  B_CACHE is never
2733  *	set if the buffer is invalid or otherwise uncacheable.
2734  *
2735  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2736  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2737  *	in the biodone routine.
2738  */
2739 void
2740 bufdone(struct buf *bp)
2741 {
2742 	int s, error;
2743 	void    (*biodone) __P((struct buf *));
2744 
2745 	GIANT_REQUIRED;
2746 
2747 	s = splbio();
2748 
2749 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2750 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2751 
2752 	bp->b_flags |= B_DONE;
2753 	runningbufwakeup(bp);
2754 
2755 	if (bp->b_iocmd == BIO_DELETE) {
2756 		brelse(bp);
2757 		splx(s);
2758 		return;
2759 	}
2760 
2761 	if (bp->b_iocmd == BIO_WRITE) {
2762 		vwakeup(bp);
2763 	}
2764 
2765 	/* call optional completion function if requested */
2766 	if (bp->b_iodone != NULL) {
2767 		biodone = bp->b_iodone;
2768 		bp->b_iodone = NULL;
2769 		(*biodone) (bp);
2770 		splx(s);
2771 		return;
2772 	}
2773 	if (LIST_FIRST(&bp->b_dep) != NULL)
2774 		buf_complete(bp);
2775 
2776 	if (bp->b_flags & B_VMIO) {
2777 		int i;
2778 		vm_ooffset_t foff;
2779 		vm_page_t m;
2780 		vm_object_t obj;
2781 		int iosize;
2782 		struct vnode *vp = bp->b_vp;
2783 
2784 		error = VOP_GETVOBJECT(vp, &obj);
2785 
2786 #if defined(VFS_BIO_DEBUG)
2787 		if (vp->v_usecount == 0) {
2788 			panic("biodone: zero vnode ref count");
2789 		}
2790 
2791 		if (error) {
2792 			panic("biodone: missing VM object");
2793 		}
2794 
2795 		if ((vp->v_flag & VOBJBUF) == 0) {
2796 			panic("biodone: vnode is not setup for merged cache");
2797 		}
2798 #endif
2799 
2800 		foff = bp->b_offset;
2801 		KASSERT(bp->b_offset != NOOFFSET,
2802 		    ("biodone: no buffer offset"));
2803 
2804 		if (error) {
2805 			panic("biodone: no object");
2806 		}
2807 #if defined(VFS_BIO_DEBUG)
2808 		if (obj->paging_in_progress < bp->b_npages) {
2809 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2810 			    obj->paging_in_progress, bp->b_npages);
2811 		}
2812 #endif
2813 
2814 		/*
2815 		 * Set B_CACHE if the op was a normal read and no error
2816 		 * occured.  B_CACHE is set for writes in the b*write()
2817 		 * routines.
2818 		 */
2819 		iosize = bp->b_bcount - bp->b_resid;
2820 		if (bp->b_iocmd == BIO_READ &&
2821 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2822 		    !(bp->b_ioflags & BIO_ERROR)) {
2823 			bp->b_flags |= B_CACHE;
2824 		}
2825 
2826 		for (i = 0; i < bp->b_npages; i++) {
2827 			int bogusflag = 0;
2828 			int resid;
2829 
2830 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2831 			if (resid > iosize)
2832 				resid = iosize;
2833 
2834 			/*
2835 			 * cleanup bogus pages, restoring the originals
2836 			 */
2837 			m = bp->b_pages[i];
2838 			if (m == bogus_page) {
2839 				bogusflag = 1;
2840 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2841 				if (m == NULL)
2842 					panic("biodone: page disappeared!");
2843 				bp->b_pages[i] = m;
2844 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2845 			}
2846 #if defined(VFS_BIO_DEBUG)
2847 			if (OFF_TO_IDX(foff) != m->pindex) {
2848 				printf(
2849 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2850 				    (unsigned long)foff, m->pindex);
2851 			}
2852 #endif
2853 
2854 			/*
2855 			 * In the write case, the valid and clean bits are
2856 			 * already changed correctly ( see bdwrite() ), so we
2857 			 * only need to do this here in the read case.
2858 			 */
2859 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2860 				vfs_page_set_valid(bp, foff, i, m);
2861 			}
2862 			vm_page_flag_clear(m, PG_ZERO);
2863 
2864 			/*
2865 			 * when debugging new filesystems or buffer I/O methods, this
2866 			 * is the most common error that pops up.  if you see this, you
2867 			 * have not set the page busy flag correctly!!!
2868 			 */
2869 			if (m->busy == 0) {
2870 				printf("biodone: page busy < 0, "
2871 				    "pindex: %d, foff: 0x(%x,%x), "
2872 				    "resid: %d, index: %d\n",
2873 				    (int) m->pindex, (int)(foff >> 32),
2874 						(int) foff & 0xffffffff, resid, i);
2875 				if (!vn_isdisk(vp, NULL))
2876 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2877 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2878 					    (int) bp->b_lblkno,
2879 					    bp->b_flags, bp->b_npages);
2880 				else
2881 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2882 					    (int) bp->b_lblkno,
2883 					    bp->b_flags, bp->b_npages);
2884 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2885 				    m->valid, m->dirty, m->wire_count);
2886 				panic("biodone: page busy < 0\n");
2887 			}
2888 			vm_page_io_finish(m);
2889 			vm_object_pip_subtract(obj, 1);
2890 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2891 			iosize -= resid;
2892 		}
2893 		if (obj)
2894 			vm_object_pip_wakeupn(obj, 0);
2895 	}
2896 
2897 	/*
2898 	 * For asynchronous completions, release the buffer now. The brelse
2899 	 * will do a wakeup there if necessary - so no need to do a wakeup
2900 	 * here in the async case. The sync case always needs to do a wakeup.
2901 	 */
2902 
2903 	if (bp->b_flags & B_ASYNC) {
2904 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2905 			brelse(bp);
2906 		else
2907 			bqrelse(bp);
2908 	} else {
2909 		wakeup(bp);
2910 	}
2911 	splx(s);
2912 }
2913 
2914 /*
2915  * This routine is called in lieu of iodone in the case of
2916  * incomplete I/O.  This keeps the busy status for pages
2917  * consistant.
2918  */
2919 void
2920 vfs_unbusy_pages(struct buf * bp)
2921 {
2922 	int i;
2923 
2924 	GIANT_REQUIRED;
2925 
2926 	runningbufwakeup(bp);
2927 	if (bp->b_flags & B_VMIO) {
2928 		struct vnode *vp = bp->b_vp;
2929 		vm_object_t obj;
2930 
2931 		VOP_GETVOBJECT(vp, &obj);
2932 
2933 		for (i = 0; i < bp->b_npages; i++) {
2934 			vm_page_t m = bp->b_pages[i];
2935 
2936 			if (m == bogus_page) {
2937 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2938 				if (!m) {
2939 					panic("vfs_unbusy_pages: page missing\n");
2940 				}
2941 				bp->b_pages[i] = m;
2942 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2943 			}
2944 			vm_object_pip_subtract(obj, 1);
2945 			vm_page_flag_clear(m, PG_ZERO);
2946 			vm_page_io_finish(m);
2947 		}
2948 		vm_object_pip_wakeupn(obj, 0);
2949 	}
2950 }
2951 
2952 /*
2953  * vfs_page_set_valid:
2954  *
2955  *	Set the valid bits in a page based on the supplied offset.   The
2956  *	range is restricted to the buffer's size.
2957  *
2958  *	This routine is typically called after a read completes.
2959  */
2960 static void
2961 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2962 {
2963 	vm_ooffset_t soff, eoff;
2964 
2965 	GIANT_REQUIRED;
2966 	/*
2967 	 * Start and end offsets in buffer.  eoff - soff may not cross a
2968 	 * page boundry or cross the end of the buffer.  The end of the
2969 	 * buffer, in this case, is our file EOF, not the allocation size
2970 	 * of the buffer.
2971 	 */
2972 	soff = off;
2973 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2974 	if (eoff > bp->b_offset + bp->b_bcount)
2975 		eoff = bp->b_offset + bp->b_bcount;
2976 
2977 	/*
2978 	 * Set valid range.  This is typically the entire buffer and thus the
2979 	 * entire page.
2980 	 */
2981 	if (eoff > soff) {
2982 		vm_page_set_validclean(
2983 		    m,
2984 		   (vm_offset_t) (soff & PAGE_MASK),
2985 		   (vm_offset_t) (eoff - soff)
2986 		);
2987 	}
2988 }
2989 
2990 /*
2991  * This routine is called before a device strategy routine.
2992  * It is used to tell the VM system that paging I/O is in
2993  * progress, and treat the pages associated with the buffer
2994  * almost as being PG_BUSY.  Also the object paging_in_progress
2995  * flag is handled to make sure that the object doesn't become
2996  * inconsistant.
2997  *
2998  * Since I/O has not been initiated yet, certain buffer flags
2999  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3000  * and should be ignored.
3001  */
3002 void
3003 vfs_busy_pages(struct buf * bp, int clear_modify)
3004 {
3005 	int i, bogus;
3006 
3007 	GIANT_REQUIRED;
3008 
3009 	if (bp->b_flags & B_VMIO) {
3010 		struct vnode *vp = bp->b_vp;
3011 		vm_object_t obj;
3012 		vm_ooffset_t foff;
3013 
3014 		VOP_GETVOBJECT(vp, &obj);
3015 		foff = bp->b_offset;
3016 		KASSERT(bp->b_offset != NOOFFSET,
3017 		    ("vfs_busy_pages: no buffer offset"));
3018 		vfs_setdirty(bp);
3019 
3020 retry:
3021 		for (i = 0; i < bp->b_npages; i++) {
3022 			vm_page_t m = bp->b_pages[i];
3023 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3024 				goto retry;
3025 		}
3026 
3027 		bogus = 0;
3028 		for (i = 0; i < bp->b_npages; i++) {
3029 			vm_page_t m = bp->b_pages[i];
3030 
3031 			vm_page_flag_clear(m, PG_ZERO);
3032 			if ((bp->b_flags & B_CLUSTER) == 0) {
3033 				vm_object_pip_add(obj, 1);
3034 				vm_page_io_start(m);
3035 			}
3036 
3037 			/*
3038 			 * When readying a buffer for a read ( i.e
3039 			 * clear_modify == 0 ), it is important to do
3040 			 * bogus_page replacement for valid pages in
3041 			 * partially instantiated buffers.  Partially
3042 			 * instantiated buffers can, in turn, occur when
3043 			 * reconstituting a buffer from its VM backing store
3044 			 * base.  We only have to do this if B_CACHE is
3045 			 * clear ( which causes the I/O to occur in the
3046 			 * first place ).  The replacement prevents the read
3047 			 * I/O from overwriting potentially dirty VM-backed
3048 			 * pages.  XXX bogus page replacement is, uh, bogus.
3049 			 * It may not work properly with small-block devices.
3050 			 * We need to find a better way.
3051 			 */
3052 
3053 			vm_page_protect(m, VM_PROT_NONE);
3054 			if (clear_modify)
3055 				vfs_page_set_valid(bp, foff, i, m);
3056 			else if (m->valid == VM_PAGE_BITS_ALL &&
3057 				(bp->b_flags & B_CACHE) == 0) {
3058 				bp->b_pages[i] = bogus_page;
3059 				bogus++;
3060 			}
3061 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3062 		}
3063 		if (bogus)
3064 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3065 	}
3066 }
3067 
3068 /*
3069  * Tell the VM system that the pages associated with this buffer
3070  * are clean.  This is used for delayed writes where the data is
3071  * going to go to disk eventually without additional VM intevention.
3072  *
3073  * Note that while we only really need to clean through to b_bcount, we
3074  * just go ahead and clean through to b_bufsize.
3075  */
3076 static void
3077 vfs_clean_pages(struct buf * bp)
3078 {
3079 	int i;
3080 
3081 	GIANT_REQUIRED;
3082 
3083 	if (bp->b_flags & B_VMIO) {
3084 		vm_ooffset_t foff;
3085 
3086 		foff = bp->b_offset;
3087 		KASSERT(bp->b_offset != NOOFFSET,
3088 		    ("vfs_clean_pages: no buffer offset"));
3089 		for (i = 0; i < bp->b_npages; i++) {
3090 			vm_page_t m = bp->b_pages[i];
3091 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3092 			vm_ooffset_t eoff = noff;
3093 
3094 			if (eoff > bp->b_offset + bp->b_bufsize)
3095 				eoff = bp->b_offset + bp->b_bufsize;
3096 			vfs_page_set_valid(bp, foff, i, m);
3097 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3098 			foff = noff;
3099 		}
3100 	}
3101 }
3102 
3103 /*
3104  *	vfs_bio_set_validclean:
3105  *
3106  *	Set the range within the buffer to valid and clean.  The range is
3107  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3108  *	itself may be offset from the beginning of the first page.
3109  *
3110  */
3111 
3112 void
3113 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3114 {
3115 	if (bp->b_flags & B_VMIO) {
3116 		int i;
3117 		int n;
3118 
3119 		/*
3120 		 * Fixup base to be relative to beginning of first page.
3121 		 * Set initial n to be the maximum number of bytes in the
3122 		 * first page that can be validated.
3123 		 */
3124 
3125 		base += (bp->b_offset & PAGE_MASK);
3126 		n = PAGE_SIZE - (base & PAGE_MASK);
3127 
3128 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3129 			vm_page_t m = bp->b_pages[i];
3130 
3131 			if (n > size)
3132 				n = size;
3133 
3134 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3135 			base += n;
3136 			size -= n;
3137 			n = PAGE_SIZE;
3138 		}
3139 	}
3140 }
3141 
3142 /*
3143  *	vfs_bio_clrbuf:
3144  *
3145  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3146  *	to clear BIO_ERROR and B_INVAL.
3147  *
3148  *	Note that while we only theoretically need to clear through b_bcount,
3149  *	we go ahead and clear through b_bufsize.
3150  */
3151 
3152 void
3153 vfs_bio_clrbuf(struct buf *bp) {
3154 	int i, mask = 0;
3155 	caddr_t sa, ea;
3156 
3157 	GIANT_REQUIRED;
3158 
3159 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3160 		bp->b_flags &= ~B_INVAL;
3161 		bp->b_ioflags &= ~BIO_ERROR;
3162 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3163 		    (bp->b_offset & PAGE_MASK) == 0) {
3164 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3165 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3166 			    ((bp->b_pages[0]->valid & mask) != mask)) {
3167 				bzero(bp->b_data, bp->b_bufsize);
3168 			}
3169 			bp->b_pages[0]->valid |= mask;
3170 			bp->b_resid = 0;
3171 			return;
3172 		}
3173 		ea = sa = bp->b_data;
3174 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3175 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3176 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3177 			ea = (caddr_t)(vm_offset_t)ulmin(
3178 			    (u_long)(vm_offset_t)ea,
3179 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3180 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3181 			if ((bp->b_pages[i]->valid & mask) == mask)
3182 				continue;
3183 			if ((bp->b_pages[i]->valid & mask) == 0) {
3184 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3185 					bzero(sa, ea - sa);
3186 				}
3187 			} else {
3188 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3189 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3190 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3191 						bzero(sa, DEV_BSIZE);
3192 				}
3193 			}
3194 			bp->b_pages[i]->valid |= mask;
3195 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3196 		}
3197 		bp->b_resid = 0;
3198 	} else {
3199 		clrbuf(bp);
3200 	}
3201 }
3202 
3203 /*
3204  * vm_hold_load_pages and vm_hold_free_pages get pages into
3205  * a buffers address space.  The pages are anonymous and are
3206  * not associated with a file object.
3207  */
3208 static void
3209 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3210 {
3211 	vm_offset_t pg;
3212 	vm_page_t p;
3213 	int index;
3214 
3215 	GIANT_REQUIRED;
3216 
3217 	to = round_page(to);
3218 	from = round_page(from);
3219 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3220 
3221 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3222 tryagain:
3223 		/*
3224 		 * note: must allocate system pages since blocking here
3225 		 * could intefere with paging I/O, no matter which
3226 		 * process we are.
3227 		 */
3228 		p = vm_page_alloc(kernel_object,
3229 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3230 		    VM_ALLOC_SYSTEM);
3231 		if (!p) {
3232 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3233 			VM_WAIT;
3234 			goto tryagain;
3235 		}
3236 		vm_page_wire(p);
3237 		p->valid = VM_PAGE_BITS_ALL;
3238 		vm_page_flag_clear(p, PG_ZERO);
3239 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3240 		bp->b_pages[index] = p;
3241 		vm_page_wakeup(p);
3242 	}
3243 	bp->b_npages = index;
3244 }
3245 
3246 void
3247 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3248 {
3249 	vm_offset_t pg;
3250 	vm_page_t p;
3251 	int index, newnpages;
3252 
3253 	GIANT_REQUIRED;
3254 
3255 	from = round_page(from);
3256 	to = round_page(to);
3257 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3258 
3259 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3260 		p = bp->b_pages[index];
3261 		if (p && (index < bp->b_npages)) {
3262 			if (p->busy) {
3263 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3264 					bp->b_blkno, bp->b_lblkno);
3265 			}
3266 			bp->b_pages[index] = NULL;
3267 			pmap_kremove(pg);
3268 			vm_page_busy(p);
3269 			vm_page_unwire(p, 0);
3270 			vm_page_free(p);
3271 		}
3272 	}
3273 	bp->b_npages = newnpages;
3274 }
3275 
3276 
3277 #include "opt_ddb.h"
3278 #ifdef DDB
3279 #include <ddb/ddb.h>
3280 
3281 DB_SHOW_COMMAND(buffer, db_show_buffer)
3282 {
3283 	/* get args */
3284 	struct buf *bp = (struct buf *)addr;
3285 
3286 	if (!have_addr) {
3287 		db_printf("usage: show buffer <addr>\n");
3288 		return;
3289 	}
3290 
3291 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3292 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3293 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3294 		  "b_blkno = %d, b_pblkno = %d\n",
3295 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3296 		  major(bp->b_dev), minor(bp->b_dev),
3297 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3298 	if (bp->b_npages) {
3299 		int i;
3300 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3301 		for (i = 0; i < bp->b_npages; i++) {
3302 			vm_page_t m;
3303 			m = bp->b_pages[i];
3304 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3305 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3306 			if ((i + 1) < bp->b_npages)
3307 				db_printf(",");
3308 		}
3309 		db_printf("\n");
3310 	}
3311 }
3312 #endif /* DDB */
3313