xref: /freebsd/sys/kern/vfs_bio.c (revision 390e8cc2974df1888369c06339ef8e0e92b312b6)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD$
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/mutex.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_kern.h>
50 #include <vm/vm_pageout.h>
51 #include <vm/vm_page.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_map.h>
55 #include "opt_directio.h"
56 #include "opt_swap.h"
57 
58 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
59 
60 struct	bio_ops bioops;		/* I/O operation notification */
61 
62 struct	buf_ops buf_ops_bio = {
63 	"buf_ops_bio",
64 	bwrite
65 };
66 
67 /*
68  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
69  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
70  */
71 struct buf *buf;		/* buffer header pool */
72 
73 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74 		vm_offset_t to);
75 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76 		vm_offset_t to);
77 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
78 			       int pageno, vm_page_t m);
79 static void vfs_clean_pages(struct buf * bp);
80 static void vfs_setdirty(struct buf *bp);
81 static void vfs_vmio_release(struct buf *bp);
82 static void vfs_backgroundwritedone(struct buf *bp);
83 static int vfs_bio_clcheck(struct vnode *vp, int size,
84 		daddr_t lblkno, daddr_t blkno);
85 static int flushbufqueues(int flushdeps);
86 static void buf_daemon(void);
87 void bremfreel(struct buf * bp);
88 
89 int vmiodirenable = TRUE;
90 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
91     "Use the VM system for directory writes");
92 int runningbufspace;
93 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
94     "Amount of presently outstanding async buffer io");
95 static int bufspace;
96 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
97     "KVA memory used for bufs");
98 static int maxbufspace;
99 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
100     "Maximum allowed value of bufspace (including buf_daemon)");
101 static int bufmallocspace;
102 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
103     "Amount of malloced memory for buffers");
104 static int maxbufmallocspace;
105 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
106     "Maximum amount of malloced memory for buffers");
107 static int lobufspace;
108 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
109     "Minimum amount of buffers we want to have");
110 static int hibufspace;
111 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
112     "Maximum allowed value of bufspace (excluding buf_daemon)");
113 static int bufreusecnt;
114 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
115     "Number of times we have reused a buffer");
116 static int buffreekvacnt;
117 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
118     "Number of times we have freed the KVA space from some buffer");
119 static int bufdefragcnt;
120 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
121     "Number of times we have had to repeat buffer allocation to defragment");
122 static int lorunningspace;
123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
124     "Minimum preferred space used for in-progress I/O");
125 static int hirunningspace;
126 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
127     "Maximum amount of space to use for in-progress I/O");
128 static int dirtybufferflushes;
129 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
130     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
131 static int altbufferflushes;
132 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
133     0, "Number of fsync flushes to limit dirty buffers");
134 static int recursiveflushes;
135 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
136     0, "Number of flushes skipped due to being recursive");
137 static int numdirtybuffers;
138 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
139     "Number of buffers that are dirty (has unwritten changes) at the moment");
140 static int lodirtybuffers;
141 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
142     "How many buffers we want to have free before bufdaemon can sleep");
143 static int hidirtybuffers;
144 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
145     "When the number of dirty buffers is considered severe");
146 static int dirtybufthresh;
147 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
148     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
149 static int numfreebuffers;
150 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
151     "Number of free buffers");
152 static int lofreebuffers;
153 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
154    "XXX Unused");
155 static int hifreebuffers;
156 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
157    "XXX Complicatedly unused");
158 static int getnewbufcalls;
159 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
160    "Number of calls to getnewbuf");
161 static int getnewbufrestarts;
162 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
163     "Number of times getnewbuf has had to restart a buffer aquisition");
164 static int dobkgrdwrite = 1;
165 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
166     "Do background writes (honoring the BX_BKGRDWRITE flag)?");
167 
168 /*
169  * Wakeup point for bufdaemon, as well as indicator of whether it is already
170  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
171  * is idling.
172  */
173 static int bd_request;
174 
175 /*
176  * This lock synchronizes access to bd_request.
177  */
178 static struct mtx bdlock;
179 
180 /*
181  * bogus page -- for I/O to/from partially complete buffers
182  * this is a temporary solution to the problem, but it is not
183  * really that bad.  it would be better to split the buffer
184  * for input in the case of buffers partially already in memory,
185  * but the code is intricate enough already.
186  */
187 vm_page_t bogus_page;
188 
189 /*
190  * Synchronization (sleep/wakeup) variable for active buffer space requests.
191  * Set when wait starts, cleared prior to wakeup().
192  * Used in runningbufwakeup() and waitrunningbufspace().
193  */
194 static int runningbufreq;
195 
196 /*
197  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
198  * waitrunningbufspace().
199  */
200 static struct mtx rbreqlock;
201 
202 /*
203  * Synchronization (sleep/wakeup) variable for buffer requests.
204  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
205  * by and/or.
206  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
207  * getnewbuf(), and getblk().
208  */
209 static int needsbuffer;
210 
211 /*
212  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
213  */
214 static struct mtx nblock;
215 
216 /*
217  * Lock that protects against bwait()/bdone()/B_DONE races.
218  */
219 
220 static struct mtx bdonelock;
221 
222 /*
223  * Definitions for the buffer free lists.
224  */
225 #define BUFFER_QUEUES	6	/* number of free buffer queues */
226 
227 #define QUEUE_NONE	0	/* on no queue */
228 #define QUEUE_LOCKED	1	/* locked buffers */
229 #define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
230 #define QUEUE_DIRTY	3	/* B_DELWRI buffers */
231 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
232 #define QUEUE_EMPTY	5	/* empty buffer headers */
233 
234 /* Queues for free buffers with various properties */
235 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
236 
237 /* Lock for the bufqueues */
238 static struct mtx bqlock;
239 
240 /*
241  * Single global constant for BUF_WMESG, to avoid getting multiple references.
242  * buf_wmesg is referred from macros.
243  */
244 const char *buf_wmesg = BUF_WMESG;
245 
246 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
247 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
248 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
249 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
250 
251 #ifdef DIRECTIO
252 extern void ffs_rawread_setup(void);
253 #endif /* DIRECTIO */
254 /*
255  *	numdirtywakeup:
256  *
257  *	If someone is blocked due to there being too many dirty buffers,
258  *	and numdirtybuffers is now reasonable, wake them up.
259  */
260 
261 static __inline void
262 numdirtywakeup(int level)
263 {
264 	if (numdirtybuffers <= level) {
265 		mtx_lock(&nblock);
266 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
267 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
268 			wakeup(&needsbuffer);
269 		}
270 		mtx_unlock(&nblock);
271 	}
272 }
273 
274 /*
275  *	bufspacewakeup:
276  *
277  *	Called when buffer space is potentially available for recovery.
278  *	getnewbuf() will block on this flag when it is unable to free
279  *	sufficient buffer space.  Buffer space becomes recoverable when
280  *	bp's get placed back in the queues.
281  */
282 
283 static __inline void
284 bufspacewakeup(void)
285 {
286 	/*
287 	 * If someone is waiting for BUF space, wake them up.  Even
288 	 * though we haven't freed the kva space yet, the waiting
289 	 * process will be able to now.
290 	 */
291 	mtx_lock(&nblock);
292 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
293 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
294 		wakeup(&needsbuffer);
295 	}
296 	mtx_unlock(&nblock);
297 }
298 
299 /*
300  * runningbufwakeup() - in-progress I/O accounting.
301  *
302  */
303 static __inline void
304 runningbufwakeup(struct buf *bp)
305 {
306 	if (bp->b_runningbufspace) {
307 		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
308 		bp->b_runningbufspace = 0;
309 		mtx_lock(&rbreqlock);
310 		if (runningbufreq && runningbufspace <= lorunningspace) {
311 			runningbufreq = 0;
312 			wakeup(&runningbufreq);
313 		}
314 		mtx_unlock(&rbreqlock);
315 	}
316 }
317 
318 /*
319  *	bufcountwakeup:
320  *
321  *	Called when a buffer has been added to one of the free queues to
322  *	account for the buffer and to wakeup anyone waiting for free buffers.
323  *	This typically occurs when large amounts of metadata are being handled
324  *	by the buffer cache ( else buffer space runs out first, usually ).
325  */
326 
327 static __inline void
328 bufcountwakeup(void)
329 {
330 	atomic_add_int(&numfreebuffers, 1);
331 	mtx_lock(&nblock);
332 	if (needsbuffer) {
333 		needsbuffer &= ~VFS_BIO_NEED_ANY;
334 		if (numfreebuffers >= hifreebuffers)
335 			needsbuffer &= ~VFS_BIO_NEED_FREE;
336 		wakeup(&needsbuffer);
337 	}
338 	mtx_unlock(&nblock);
339 }
340 
341 /*
342  *	waitrunningbufspace()
343  *
344  *	runningbufspace is a measure of the amount of I/O currently
345  *	running.  This routine is used in async-write situations to
346  *	prevent creating huge backups of pending writes to a device.
347  *	Only asynchronous writes are governed by this function.
348  *
349  *	Reads will adjust runningbufspace, but will not block based on it.
350  *	The read load has a side effect of reducing the allowed write load.
351  *
352  *	This does NOT turn an async write into a sync write.  It waits
353  *	for earlier writes to complete and generally returns before the
354  *	caller's write has reached the device.
355  */
356 static __inline void
357 waitrunningbufspace(void)
358 {
359 	mtx_lock(&rbreqlock);
360 	while (runningbufspace > hirunningspace) {
361 		++runningbufreq;
362 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
363 	}
364 	mtx_unlock(&rbreqlock);
365 }
366 
367 
368 /*
369  *	vfs_buf_test_cache:
370  *
371  *	Called when a buffer is extended.  This function clears the B_CACHE
372  *	bit if the newly extended portion of the buffer does not contain
373  *	valid data.
374  */
375 static __inline__
376 void
377 vfs_buf_test_cache(struct buf *bp,
378 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
379 		  vm_page_t m)
380 {
381 	GIANT_REQUIRED;
382 
383 	if (bp->b_flags & B_CACHE) {
384 		int base = (foff + off) & PAGE_MASK;
385 		if (vm_page_is_valid(m, base, size) == 0)
386 			bp->b_flags &= ~B_CACHE;
387 	}
388 }
389 
390 /* Wake up the buffer deamon if necessary */
391 static __inline__
392 void
393 bd_wakeup(int dirtybuflevel)
394 {
395 	mtx_lock(&bdlock);
396 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
397 		bd_request = 1;
398 		wakeup(&bd_request);
399 	}
400 	mtx_unlock(&bdlock);
401 }
402 
403 /*
404  * bd_speedup - speedup the buffer cache flushing code
405  */
406 
407 static __inline__
408 void
409 bd_speedup(void)
410 {
411 	bd_wakeup(1);
412 }
413 
414 /*
415  * Calculating buffer cache scaling values and reserve space for buffer
416  * headers.  This is called during low level kernel initialization and
417  * may be called more then once.  We CANNOT write to the memory area
418  * being reserved at this time.
419  */
420 caddr_t
421 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
422 {
423 	/*
424 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
425 	 * PAGE_SIZE is >= 1K)
426 	 */
427 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
428 
429 	/*
430 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
431 	 * For the first 64MB of ram nominally allocate sufficient buffers to
432 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
433 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
434 	 * the buffer cache we limit the eventual kva reservation to
435 	 * maxbcache bytes.
436 	 *
437 	 * factor represents the 1/4 x ram conversion.
438 	 */
439 	if (nbuf == 0) {
440 		int factor = 4 * BKVASIZE / 1024;
441 
442 		nbuf = 50;
443 		if (physmem_est > 4096)
444 			nbuf += min((physmem_est - 4096) / factor,
445 			    65536 / factor);
446 		if (physmem_est > 65536)
447 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
448 
449 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
450 			nbuf = maxbcache / BKVASIZE;
451 	}
452 
453 #if 0
454 	/*
455 	 * Do not allow the buffer_map to be more then 1/2 the size of the
456 	 * kernel_map.
457 	 */
458 	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
459 	    (BKVASIZE * 2)) {
460 		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
461 		    (BKVASIZE * 2);
462 		printf("Warning: nbufs capped at %d\n", nbuf);
463 	}
464 #endif
465 
466 	/*
467 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
468 	 * We have no less then 16 and no more then 256.
469 	 */
470 	nswbuf = max(min(nbuf/4, 256), 16);
471 #ifdef NSWBUF_MIN
472 	if (nswbuf < NSWBUF_MIN)
473 		nswbuf = NSWBUF_MIN;
474 #endif
475 #ifdef DIRECTIO
476 	ffs_rawread_setup();
477 #endif
478 
479 	/*
480 	 * Reserve space for the buffer cache buffers
481 	 */
482 	swbuf = (void *)v;
483 	v = (caddr_t)(swbuf + nswbuf);
484 	buf = (void *)v;
485 	v = (caddr_t)(buf + nbuf);
486 
487 	return(v);
488 }
489 
490 /* Initialize the buffer subsystem.  Called before use of any buffers. */
491 void
492 bufinit(void)
493 {
494 	struct buf *bp;
495 	vm_offset_t bogus_offset;
496 	int i;
497 
498 	GIANT_REQUIRED;
499 
500 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
501 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
502 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
503 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
504 	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
505 
506 	/* next, make a null set of free lists */
507 	for (i = 0; i < BUFFER_QUEUES; i++)
508 		TAILQ_INIT(&bufqueues[i]);
509 
510 	/* finally, initialize each buffer header and stick on empty q */
511 	for (i = 0; i < nbuf; i++) {
512 		bp = &buf[i];
513 		bzero(bp, sizeof *bp);
514 		bp->b_flags = B_INVAL;	/* we're just an empty header */
515 		bp->b_dev = NODEV;
516 		bp->b_rcred = NOCRED;
517 		bp->b_wcred = NOCRED;
518 		bp->b_qindex = QUEUE_EMPTY;
519 		bp->b_vflags = 0;
520 		bp->b_xflags = 0;
521 		LIST_INIT(&bp->b_dep);
522 		BUF_LOCKINIT(bp);
523 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
524 	}
525 
526 	/*
527 	 * maxbufspace is the absolute maximum amount of buffer space we are
528 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
529 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
530 	 * used by most other processes.  The differential is required to
531 	 * ensure that buf_daemon is able to run when other processes might
532 	 * be blocked waiting for buffer space.
533 	 *
534 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
535 	 * this may result in KVM fragmentation which is not handled optimally
536 	 * by the system.
537 	 */
538 	maxbufspace = nbuf * BKVASIZE;
539 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
540 	lobufspace = hibufspace - MAXBSIZE;
541 
542 	lorunningspace = 512 * 1024;
543 	hirunningspace = 1024 * 1024;
544 
545 /*
546  * Limit the amount of malloc memory since it is wired permanently into
547  * the kernel space.  Even though this is accounted for in the buffer
548  * allocation, we don't want the malloced region to grow uncontrolled.
549  * The malloc scheme improves memory utilization significantly on average
550  * (small) directories.
551  */
552 	maxbufmallocspace = hibufspace / 20;
553 
554 /*
555  * Reduce the chance of a deadlock occuring by limiting the number
556  * of delayed-write dirty buffers we allow to stack up.
557  */
558 	hidirtybuffers = nbuf / 4 + 20;
559 	dirtybufthresh = hidirtybuffers * 9 / 10;
560 	numdirtybuffers = 0;
561 /*
562  * To support extreme low-memory systems, make sure hidirtybuffers cannot
563  * eat up all available buffer space.  This occurs when our minimum cannot
564  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
565  * BKVASIZE'd (8K) buffers.
566  */
567 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
568 		hidirtybuffers >>= 1;
569 	}
570 	lodirtybuffers = hidirtybuffers / 2;
571 
572 /*
573  * Try to keep the number of free buffers in the specified range,
574  * and give special processes (e.g. like buf_daemon) access to an
575  * emergency reserve.
576  */
577 	lofreebuffers = nbuf / 18 + 5;
578 	hifreebuffers = 2 * lofreebuffers;
579 	numfreebuffers = nbuf;
580 
581 /*
582  * Maximum number of async ops initiated per buf_daemon loop.  This is
583  * somewhat of a hack at the moment, we really need to limit ourselves
584  * based on the number of bytes of I/O in-transit that were initiated
585  * from buf_daemon.
586  */
587 
588 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
589 	VM_OBJECT_LOCK(kernel_object);
590 	bogus_page = vm_page_alloc(kernel_object,
591 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
592 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
593 	VM_OBJECT_UNLOCK(kernel_object);
594 }
595 
596 /*
597  * bfreekva() - free the kva allocation for a buffer.
598  *
599  *	Must be called at splbio() or higher as this is the only locking for
600  *	buffer_map.
601  *
602  *	Since this call frees up buffer space, we call bufspacewakeup().
603  */
604 static void
605 bfreekva(struct buf * bp)
606 {
607 	GIANT_REQUIRED;
608 
609 	if (bp->b_kvasize) {
610 		atomic_add_int(&buffreekvacnt, 1);
611 		atomic_subtract_int(&bufspace, bp->b_kvasize);
612 		vm_map_delete(buffer_map,
613 		    (vm_offset_t) bp->b_kvabase,
614 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
615 		);
616 		bp->b_kvasize = 0;
617 		bufspacewakeup();
618 	}
619 }
620 
621 /*
622  *	bremfree:
623  *
624  *	Remove the buffer from the appropriate free list.
625  */
626 void
627 bremfree(struct buf * bp)
628 {
629 	mtx_lock(&bqlock);
630 	bremfreel(bp);
631 	mtx_unlock(&bqlock);
632 }
633 
634 void
635 bremfreel(struct buf * bp)
636 {
637 	int s = splbio();
638 	int old_qindex = bp->b_qindex;
639 
640 	GIANT_REQUIRED;
641 
642 	if (bp->b_qindex != QUEUE_NONE) {
643 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
644 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
645 		bp->b_qindex = QUEUE_NONE;
646 	} else {
647 		if (BUF_REFCNT(bp) <= 1)
648 			panic("bremfree: removing a buffer not on a queue");
649 	}
650 
651 	/*
652 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
653 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
654 	 * the buffer was free and we must decrement numfreebuffers.
655 	 */
656 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
657 		switch(old_qindex) {
658 		case QUEUE_DIRTY:
659 		case QUEUE_CLEAN:
660 		case QUEUE_EMPTY:
661 		case QUEUE_EMPTYKVA:
662 			atomic_subtract_int(&numfreebuffers, 1);
663 			break;
664 		default:
665 			break;
666 		}
667 	}
668 	splx(s);
669 }
670 
671 
672 /*
673  * Get a buffer with the specified data.  Look in the cache first.  We
674  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
675  * is set, the buffer is valid and we do not have to do anything ( see
676  * getblk() ).  This is really just a special case of breadn().
677  */
678 int
679 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
680     struct buf ** bpp)
681 {
682 
683 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
684 }
685 
686 /*
687  * Operates like bread, but also starts asynchronous I/O on
688  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
689  * to initiating I/O . If B_CACHE is set, the buffer is valid
690  * and we do not have to do anything.
691  */
692 int
693 breadn(struct vnode * vp, daddr_t blkno, int size,
694     daddr_t * rablkno, int *rabsize,
695     int cnt, struct ucred * cred, struct buf ** bpp)
696 {
697 	struct buf *bp, *rabp;
698 	int i;
699 	int rv = 0, readwait = 0;
700 
701 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
702 
703 	/* if not found in cache, do some I/O */
704 	if ((bp->b_flags & B_CACHE) == 0) {
705 		if (curthread != PCPU_GET(idlethread))
706 			curthread->td_proc->p_stats->p_ru.ru_inblock++;
707 		bp->b_iocmd = BIO_READ;
708 		bp->b_flags &= ~B_INVAL;
709 		bp->b_ioflags &= ~BIO_ERROR;
710 		if (bp->b_rcred == NOCRED && cred != NOCRED)
711 			bp->b_rcred = crhold(cred);
712 		vfs_busy_pages(bp, 0);
713 		if (vp->v_type == VCHR)
714 			VOP_SPECSTRATEGY(vp, bp);
715 		else
716 			VOP_STRATEGY(vp, bp);
717 		++readwait;
718 	}
719 
720 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
721 		if (inmem(vp, *rablkno))
722 			continue;
723 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
724 
725 		if ((rabp->b_flags & B_CACHE) == 0) {
726 			if (curthread != PCPU_GET(idlethread))
727 				curthread->td_proc->p_stats->p_ru.ru_inblock++;
728 			rabp->b_flags |= B_ASYNC;
729 			rabp->b_flags &= ~B_INVAL;
730 			rabp->b_ioflags &= ~BIO_ERROR;
731 			rabp->b_iocmd = BIO_READ;
732 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
733 				rabp->b_rcred = crhold(cred);
734 			vfs_busy_pages(rabp, 0);
735 			BUF_KERNPROC(rabp);
736 			if (vp->v_type == VCHR)
737 				VOP_SPECSTRATEGY(vp, rabp);
738 			else
739 				VOP_STRATEGY(vp, rabp);
740 		} else {
741 			brelse(rabp);
742 		}
743 	}
744 
745 	if (readwait) {
746 		rv = bufwait(bp);
747 	}
748 	return (rv);
749 }
750 
751 /*
752  * Write, release buffer on completion.  (Done by iodone
753  * if async).  Do not bother writing anything if the buffer
754  * is invalid.
755  *
756  * Note that we set B_CACHE here, indicating that buffer is
757  * fully valid and thus cacheable.  This is true even of NFS
758  * now so we set it generally.  This could be set either here
759  * or in biodone() since the I/O is synchronous.  We put it
760  * here.
761  */
762 
763 int
764 bwrite(struct buf * bp)
765 {
766 	int oldflags, s;
767 	struct buf *newbp;
768 
769 	if (bp->b_flags & B_INVAL) {
770 		brelse(bp);
771 		return (0);
772 	}
773 
774 	oldflags = bp->b_flags;
775 
776 	if (BUF_REFCNT(bp) == 0)
777 		panic("bwrite: buffer is not busy???");
778 	s = splbio();
779 	/*
780 	 * If a background write is already in progress, delay
781 	 * writing this block if it is asynchronous. Otherwise
782 	 * wait for the background write to complete.
783 	 */
784 	if (bp->b_xflags & BX_BKGRDINPROG) {
785 		if (bp->b_flags & B_ASYNC) {
786 			splx(s);
787 			bdwrite(bp);
788 			return (0);
789 		}
790 		bp->b_xflags |= BX_BKGRDWAIT;
791 		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
792 		if (bp->b_xflags & BX_BKGRDINPROG)
793 			panic("bwrite: still writing");
794 	}
795 
796 	/* Mark the buffer clean */
797 	bundirty(bp);
798 
799 	/*
800 	 * If this buffer is marked for background writing and we
801 	 * do not have to wait for it, make a copy and write the
802 	 * copy so as to leave this buffer ready for further use.
803 	 *
804 	 * This optimization eats a lot of memory.  If we have a page
805 	 * or buffer shortfall we can't do it.
806 	 */
807 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
808 	    (bp->b_flags & B_ASYNC) &&
809 	    !vm_page_count_severe() &&
810 	    !buf_dirty_count_severe()) {
811 		if (bp->b_iodone != NULL) {
812 			printf("bp->b_iodone = %p\n", bp->b_iodone);
813 			panic("bwrite: need chained iodone");
814 		}
815 
816 		/* get a new block */
817 		newbp = geteblk(bp->b_bufsize);
818 
819 		/*
820 		 * set it to be identical to the old block.  We have to
821 		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
822 		 * to avoid confusing the splay tree and gbincore().
823 		 */
824 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
825 		newbp->b_lblkno = bp->b_lblkno;
826 		newbp->b_xflags |= BX_BKGRDMARKER;
827 		/* XXX The BX_ flags need to be protected as well */
828 		VI_LOCK(bp->b_vp);
829 		bgetvp(bp->b_vp, newbp);
830 		VI_UNLOCK(bp->b_vp);
831 		newbp->b_blkno = bp->b_blkno;
832 		newbp->b_offset = bp->b_offset;
833 		newbp->b_iodone = vfs_backgroundwritedone;
834 		newbp->b_flags |= B_ASYNC;
835 		newbp->b_flags &= ~B_INVAL;
836 
837 		/* move over the dependencies */
838 		if (LIST_FIRST(&bp->b_dep) != NULL)
839 			buf_movedeps(bp, newbp);
840 
841 		/*
842 		 * Initiate write on the copy, release the original to
843 		 * the B_LOCKED queue so that it cannot go away until
844 		 * the background write completes. If not locked it could go
845 		 * away and then be reconstituted while it was being written.
846 		 * If the reconstituted buffer were written, we could end up
847 		 * with two background copies being written at the same time.
848 		 */
849 		bp->b_xflags |= BX_BKGRDINPROG;
850 		bp->b_flags |= B_LOCKED;
851 		bqrelse(bp);
852 		bp = newbp;
853 	}
854 
855 	bp->b_flags &= ~B_DONE;
856 	bp->b_ioflags &= ~BIO_ERROR;
857 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
858 	bp->b_iocmd = BIO_WRITE;
859 
860 	VI_LOCK(bp->b_vp);
861 	bp->b_vp->v_numoutput++;
862 	VI_UNLOCK(bp->b_vp);
863 	vfs_busy_pages(bp, 1);
864 
865 	/*
866 	 * Normal bwrites pipeline writes
867 	 */
868 	bp->b_runningbufspace = bp->b_bufsize;
869 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
870 
871 	if (curthread != PCPU_GET(idlethread))
872 		curthread->td_proc->p_stats->p_ru.ru_oublock++;
873 	splx(s);
874 	if (oldflags & B_ASYNC)
875 		BUF_KERNPROC(bp);
876 	if (bp->b_vp->v_type == VCHR)
877 		VOP_SPECSTRATEGY(bp->b_vp, bp);
878 	else
879 		VOP_STRATEGY(bp->b_vp, bp);
880 
881 	if ((oldflags & B_ASYNC) == 0) {
882 		int rtval = bufwait(bp);
883 		brelse(bp);
884 		return (rtval);
885 	} else {
886 		/*
887 		 * don't allow the async write to saturate the I/O
888 		 * system.  We will not deadlock here because
889 		 * we are blocking waiting for I/O that is already in-progress
890 		 * to complete.
891 		 */
892 		waitrunningbufspace();
893 	}
894 
895 	return (0);
896 }
897 
898 /*
899  * Complete a background write started from bwrite.
900  */
901 static void
902 vfs_backgroundwritedone(bp)
903 	struct buf *bp;
904 {
905 	struct buf *origbp;
906 
907 	/*
908 	 * Find the original buffer that we are writing.
909 	 */
910 	VI_LOCK(bp->b_vp);
911 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
912 		panic("backgroundwritedone: lost buffer");
913 	VI_UNLOCK(bp->b_vp);
914 	/*
915 	 * Process dependencies then return any unfinished ones.
916 	 */
917 	if (LIST_FIRST(&bp->b_dep) != NULL)
918 		buf_complete(bp);
919 	if (LIST_FIRST(&bp->b_dep) != NULL)
920 		buf_movedeps(bp, origbp);
921 
922 	/* XXX Find out if origbp can disappear or get inconsistent */
923 	/*
924 	 * Clear the BX_BKGRDINPROG flag in the original buffer
925 	 * and awaken it if it is waiting for the write to complete.
926 	 * If BX_BKGRDINPROG is not set in the original buffer it must
927 	 * have been released and re-instantiated - which is not legal.
928 	 */
929 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
930 	    ("backgroundwritedone: lost buffer2"));
931 	origbp->b_xflags &= ~BX_BKGRDINPROG;
932 	if (origbp->b_xflags & BX_BKGRDWAIT) {
933 		origbp->b_xflags &= ~BX_BKGRDWAIT;
934 		wakeup(&origbp->b_xflags);
935 	}
936 	/*
937 	 * Clear the B_LOCKED flag and remove it from the locked
938 	 * queue if it currently resides there.
939 	 */
940 	origbp->b_flags &= ~B_LOCKED;
941 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
942 		bremfree(origbp);
943 		bqrelse(origbp);
944 	}
945 	/*
946 	 * This buffer is marked B_NOCACHE, so when it is released
947 	 * by biodone, it will be tossed. We mark it with BIO_READ
948 	 * to avoid biodone doing a second vwakeup.
949 	 */
950 	bp->b_flags |= B_NOCACHE;
951 	bp->b_iocmd = BIO_READ;
952 	bp->b_flags &= ~(B_CACHE | B_DONE);
953 	bp->b_iodone = 0;
954 	bufdone(bp);
955 }
956 
957 /*
958  * Delayed write. (Buffer is marked dirty).  Do not bother writing
959  * anything if the buffer is marked invalid.
960  *
961  * Note that since the buffer must be completely valid, we can safely
962  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
963  * biodone() in order to prevent getblk from writing the buffer
964  * out synchronously.
965  */
966 void
967 bdwrite(struct buf * bp)
968 {
969 	struct thread *td = curthread;
970 	struct vnode *vp;
971 	struct buf *nbp;
972 
973 	GIANT_REQUIRED;
974 
975 	if (BUF_REFCNT(bp) == 0)
976 		panic("bdwrite: buffer is not busy");
977 
978 	if (bp->b_flags & B_INVAL) {
979 		brelse(bp);
980 		return;
981 	}
982 
983 	/*
984 	 * If we have too many dirty buffers, don't create any more.
985 	 * If we are wildly over our limit, then force a complete
986 	 * cleanup. Otherwise, just keep the situation from getting
987 	 * out of control. Note that we have to avoid a recursive
988 	 * disaster and not try to clean up after our own cleanup!
989 	 */
990 	vp = bp->b_vp;
991 	VI_LOCK(vp);
992 	if (td->td_proc->p_flag & P_COWINPROGRESS) {
993 		recursiveflushes++;
994 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
995 		VI_UNLOCK(vp);
996 		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
997 		VI_LOCK(vp);
998 		altbufferflushes++;
999 	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1000 		/*
1001 		 * Try to find a buffer to flush.
1002 		 */
1003 		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1004 			if ((nbp->b_xflags & BX_BKGRDINPROG) ||
1005 			    buf_countdeps(nbp, 0) ||
1006 			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1007 				continue;
1008 			if (bp == nbp)
1009 				panic("bdwrite: found ourselves");
1010 			VI_UNLOCK(vp);
1011 			if (nbp->b_flags & B_CLUSTEROK) {
1012 				vfs_bio_awrite(nbp);
1013 			} else {
1014 				bremfree(nbp);
1015 				bawrite(nbp);
1016 			}
1017 			VI_LOCK(vp);
1018 			dirtybufferflushes++;
1019 			break;
1020 		}
1021 	}
1022 	VI_UNLOCK(vp);
1023 
1024 	bdirty(bp);
1025 	/*
1026 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1027 	 * true even of NFS now.
1028 	 */
1029 	bp->b_flags |= B_CACHE;
1030 
1031 	/*
1032 	 * This bmap keeps the system from needing to do the bmap later,
1033 	 * perhaps when the system is attempting to do a sync.  Since it
1034 	 * is likely that the indirect block -- or whatever other datastructure
1035 	 * that the filesystem needs is still in memory now, it is a good
1036 	 * thing to do this.  Note also, that if the pageout daemon is
1037 	 * requesting a sync -- there might not be enough memory to do
1038 	 * the bmap then...  So, this is important to do.
1039 	 */
1040 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1041 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1042 	}
1043 
1044 	/*
1045 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1046 	 */
1047 	vfs_setdirty(bp);
1048 
1049 	/*
1050 	 * We need to do this here to satisfy the vnode_pager and the
1051 	 * pageout daemon, so that it thinks that the pages have been
1052 	 * "cleaned".  Note that since the pages are in a delayed write
1053 	 * buffer -- the VFS layer "will" see that the pages get written
1054 	 * out on the next sync, or perhaps the cluster will be completed.
1055 	 */
1056 	vfs_clean_pages(bp);
1057 	bqrelse(bp);
1058 
1059 	/*
1060 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1061 	 * buffers (midpoint between our recovery point and our stall
1062 	 * point).
1063 	 */
1064 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1065 
1066 	/*
1067 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1068 	 * due to the softdep code.
1069 	 */
1070 }
1071 
1072 /*
1073  *	bdirty:
1074  *
1075  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1076  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1077  *	itself to properly update it in the dirty/clean lists.  We mark it
1078  *	B_DONE to ensure that any asynchronization of the buffer properly
1079  *	clears B_DONE ( else a panic will occur later ).
1080  *
1081  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1082  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1083  *	should only be called if the buffer is known-good.
1084  *
1085  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1086  *	count.
1087  *
1088  *	Must be called at splbio().
1089  *	The buffer must be on QUEUE_NONE.
1090  */
1091 void
1092 bdirty(bp)
1093 	struct buf *bp;
1094 {
1095 	KASSERT(bp->b_qindex == QUEUE_NONE,
1096 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1097 	bp->b_flags &= ~(B_RELBUF);
1098 	bp->b_iocmd = BIO_WRITE;
1099 
1100 	if ((bp->b_flags & B_DELWRI) == 0) {
1101 		bp->b_flags |= B_DONE | B_DELWRI;
1102 		reassignbuf(bp, bp->b_vp);
1103 		atomic_add_int(&numdirtybuffers, 1);
1104 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1105 	}
1106 }
1107 
1108 /*
1109  *	bundirty:
1110  *
1111  *	Clear B_DELWRI for buffer.
1112  *
1113  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1114  *	count.
1115  *
1116  *	Must be called at splbio().
1117  *	The buffer must be on QUEUE_NONE.
1118  */
1119 
1120 void
1121 bundirty(bp)
1122 	struct buf *bp;
1123 {
1124 	KASSERT(bp->b_qindex == QUEUE_NONE,
1125 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1126 
1127 	if (bp->b_flags & B_DELWRI) {
1128 		bp->b_flags &= ~B_DELWRI;
1129 		reassignbuf(bp, bp->b_vp);
1130 		atomic_subtract_int(&numdirtybuffers, 1);
1131 		numdirtywakeup(lodirtybuffers);
1132 	}
1133 	/*
1134 	 * Since it is now being written, we can clear its deferred write flag.
1135 	 */
1136 	bp->b_flags &= ~B_DEFERRED;
1137 }
1138 
1139 /*
1140  *	bawrite:
1141  *
1142  *	Asynchronous write.  Start output on a buffer, but do not wait for
1143  *	it to complete.  The buffer is released when the output completes.
1144  *
1145  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1146  *	B_INVAL buffers.  Not us.
1147  */
1148 void
1149 bawrite(struct buf * bp)
1150 {
1151 	bp->b_flags |= B_ASYNC;
1152 	(void) BUF_WRITE(bp);
1153 }
1154 
1155 /*
1156  *	bwillwrite:
1157  *
1158  *	Called prior to the locking of any vnodes when we are expecting to
1159  *	write.  We do not want to starve the buffer cache with too many
1160  *	dirty buffers so we block here.  By blocking prior to the locking
1161  *	of any vnodes we attempt to avoid the situation where a locked vnode
1162  *	prevents the various system daemons from flushing related buffers.
1163  */
1164 
1165 void
1166 bwillwrite(void)
1167 {
1168 	if (numdirtybuffers >= hidirtybuffers) {
1169 		int s;
1170 
1171 		mtx_lock(&Giant);
1172 		s = splbio();
1173 		mtx_lock(&nblock);
1174 		while (numdirtybuffers >= hidirtybuffers) {
1175 			bd_wakeup(1);
1176 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1177 			msleep(&needsbuffer, &nblock,
1178 			    (PRIBIO + 4), "flswai", 0);
1179 		}
1180 		splx(s);
1181 		mtx_unlock(&nblock);
1182 		mtx_unlock(&Giant);
1183 	}
1184 }
1185 
1186 /*
1187  * Return true if we have too many dirty buffers.
1188  */
1189 int
1190 buf_dirty_count_severe(void)
1191 {
1192 	return(numdirtybuffers >= hidirtybuffers);
1193 }
1194 
1195 /*
1196  *	brelse:
1197  *
1198  *	Release a busy buffer and, if requested, free its resources.  The
1199  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1200  *	to be accessed later as a cache entity or reused for other purposes.
1201  */
1202 void
1203 brelse(struct buf * bp)
1204 {
1205 	int s;
1206 
1207 	GIANT_REQUIRED;
1208 
1209 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1210 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1211 
1212 	s = splbio();
1213 
1214 	if (bp->b_flags & B_LOCKED)
1215 		bp->b_ioflags &= ~BIO_ERROR;
1216 
1217 	if (bp->b_iocmd == BIO_WRITE &&
1218 	    (bp->b_ioflags & BIO_ERROR) &&
1219 	    !(bp->b_flags & B_INVAL)) {
1220 		/*
1221 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1222 		 * pages from being scrapped.  If B_INVAL is set then
1223 		 * this case is not run and the next case is run to
1224 		 * destroy the buffer.  B_INVAL can occur if the buffer
1225 		 * is outside the range supported by the underlying device.
1226 		 */
1227 		bp->b_ioflags &= ~BIO_ERROR;
1228 		bdirty(bp);
1229 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1230 	    (bp->b_ioflags & BIO_ERROR) ||
1231 	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1232 		/*
1233 		 * Either a failed I/O or we were asked to free or not
1234 		 * cache the buffer.
1235 		 */
1236 		bp->b_flags |= B_INVAL;
1237 		if (LIST_FIRST(&bp->b_dep) != NULL)
1238 			buf_deallocate(bp);
1239 		if (bp->b_flags & B_DELWRI) {
1240 			atomic_subtract_int(&numdirtybuffers, 1);
1241 			numdirtywakeup(lodirtybuffers);
1242 		}
1243 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1244 		if ((bp->b_flags & B_VMIO) == 0) {
1245 			if (bp->b_bufsize)
1246 				allocbuf(bp, 0);
1247 			if (bp->b_vp)
1248 				brelvp(bp);
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1254 	 * is called with B_DELWRI set, the underlying pages may wind up
1255 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1256 	 * because pages associated with a B_DELWRI bp are marked clean.
1257 	 *
1258 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1259 	 * if B_DELWRI is set.
1260 	 *
1261 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1262 	 * on pages to return pages to the VM page queues.
1263 	 */
1264 	if (bp->b_flags & B_DELWRI)
1265 		bp->b_flags &= ~B_RELBUF;
1266 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1267 		bp->b_flags |= B_RELBUF;
1268 
1269 	/*
1270 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1271 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1272 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1273 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1274 	 *
1275 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1276 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1277 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1278 	 *
1279 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1280 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1281 	 * the commit state and we cannot afford to lose the buffer. If the
1282 	 * buffer has a background write in progress, we need to keep it
1283 	 * around to prevent it from being reconstituted and starting a second
1284 	 * background write.
1285 	 */
1286 	if ((bp->b_flags & B_VMIO)
1287 	    && !(bp->b_vp->v_mount != NULL &&
1288 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1289 		 !vn_isdisk(bp->b_vp, NULL) &&
1290 		 (bp->b_flags & B_DELWRI))
1291 	    ) {
1292 
1293 		int i, j, resid;
1294 		vm_page_t m;
1295 		off_t foff;
1296 		vm_pindex_t poff;
1297 		vm_object_t obj;
1298 		struct vnode *vp;
1299 
1300 		vp = bp->b_vp;
1301 		obj = bp->b_object;
1302 
1303 		/*
1304 		 * Get the base offset and length of the buffer.  Note that
1305 		 * in the VMIO case if the buffer block size is not
1306 		 * page-aligned then b_data pointer may not be page-aligned.
1307 		 * But our b_pages[] array *IS* page aligned.
1308 		 *
1309 		 * block sizes less then DEV_BSIZE (usually 512) are not
1310 		 * supported due to the page granularity bits (m->valid,
1311 		 * m->dirty, etc...).
1312 		 *
1313 		 * See man buf(9) for more information
1314 		 */
1315 		resid = bp->b_bufsize;
1316 		foff = bp->b_offset;
1317 		if (obj != NULL)
1318 			VM_OBJECT_LOCK(obj);
1319 		for (i = 0; i < bp->b_npages; i++) {
1320 			int had_bogus = 0;
1321 
1322 			m = bp->b_pages[i];
1323 			vm_page_lock_queues();
1324 			vm_page_flag_clear(m, PG_ZERO);
1325 			vm_page_unlock_queues();
1326 
1327 			/*
1328 			 * If we hit a bogus page, fixup *all* the bogus pages
1329 			 * now.
1330 			 */
1331 			if (m == bogus_page) {
1332 				poff = OFF_TO_IDX(bp->b_offset);
1333 				had_bogus = 1;
1334 
1335 				for (j = i; j < bp->b_npages; j++) {
1336 					vm_page_t mtmp;
1337 					mtmp = bp->b_pages[j];
1338 					if (mtmp == bogus_page) {
1339 						mtmp = vm_page_lookup(obj, poff + j);
1340 						if (!mtmp) {
1341 							panic("brelse: page missing\n");
1342 						}
1343 						bp->b_pages[j] = mtmp;
1344 					}
1345 				}
1346 
1347 				if ((bp->b_flags & B_INVAL) == 0) {
1348 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1349 				}
1350 				m = bp->b_pages[i];
1351 			}
1352 			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1353 				int poffset = foff & PAGE_MASK;
1354 				int presid = resid > (PAGE_SIZE - poffset) ?
1355 					(PAGE_SIZE - poffset) : resid;
1356 
1357 				KASSERT(presid >= 0, ("brelse: extra page"));
1358 				vm_page_set_invalid(m, poffset, presid);
1359 				if (had_bogus)
1360 					printf("avoided corruption bug in bogus_page/brelse code\n");
1361 			}
1362 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1363 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1364 		}
1365 		if (obj != NULL)
1366 			VM_OBJECT_UNLOCK(obj);
1367 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1368 			vfs_vmio_release(bp);
1369 
1370 	} else if (bp->b_flags & B_VMIO) {
1371 
1372 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1373 			vfs_vmio_release(bp);
1374 		}
1375 
1376 	}
1377 
1378 	if (bp->b_qindex != QUEUE_NONE)
1379 		panic("brelse: free buffer onto another queue???");
1380 	if (BUF_REFCNT(bp) > 1) {
1381 		/* do not release to free list */
1382 		BUF_UNLOCK(bp);
1383 		splx(s);
1384 		return;
1385 	}
1386 
1387 	/* enqueue */
1388 	mtx_lock(&bqlock);
1389 
1390 	/* buffers with no memory */
1391 	if (bp->b_bufsize == 0) {
1392 		bp->b_flags |= B_INVAL;
1393 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1394 		if (bp->b_xflags & BX_BKGRDINPROG)
1395 			panic("losing buffer 1");
1396 		if (bp->b_kvasize) {
1397 			bp->b_qindex = QUEUE_EMPTYKVA;
1398 		} else {
1399 			bp->b_qindex = QUEUE_EMPTY;
1400 		}
1401 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1402 		bp->b_dev = NODEV;
1403 	/* buffers with junk contents */
1404 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1405 	    (bp->b_ioflags & BIO_ERROR)) {
1406 		bp->b_flags |= B_INVAL;
1407 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1408 		if (bp->b_xflags & BX_BKGRDINPROG)
1409 			panic("losing buffer 2");
1410 		bp->b_qindex = QUEUE_CLEAN;
1411 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1412 		bp->b_dev = NODEV;
1413 
1414 	/* buffers that are locked */
1415 	} else if (bp->b_flags & B_LOCKED) {
1416 		bp->b_qindex = QUEUE_LOCKED;
1417 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1418 
1419 	/* remaining buffers */
1420 	} else {
1421 		if (bp->b_flags & B_DELWRI)
1422 			bp->b_qindex = QUEUE_DIRTY;
1423 		else
1424 			bp->b_qindex = QUEUE_CLEAN;
1425 		if (bp->b_flags & B_AGE)
1426 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1427 		else
1428 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1429 	}
1430 	mtx_unlock(&bqlock);
1431 
1432 	/*
1433 	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1434 	 * placed the buffer on the correct queue.  We must also disassociate
1435 	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1436 	 * find it.
1437 	 */
1438 	if (bp->b_flags & B_INVAL) {
1439 		if (bp->b_flags & B_DELWRI)
1440 			bundirty(bp);
1441 		if (bp->b_vp)
1442 			brelvp(bp);
1443 	}
1444 
1445 	/*
1446 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1447 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1448 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1449 	 * if B_INVAL is set ).
1450 	 */
1451 
1452 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1453 		bufcountwakeup();
1454 
1455 	/*
1456 	 * Something we can maybe free or reuse
1457 	 */
1458 	if (bp->b_bufsize || bp->b_kvasize)
1459 		bufspacewakeup();
1460 
1461 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1462 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1463 		panic("brelse: not dirty");
1464 	/* unlock */
1465 	BUF_UNLOCK(bp);
1466 	splx(s);
1467 }
1468 
1469 /*
1470  * Release a buffer back to the appropriate queue but do not try to free
1471  * it.  The buffer is expected to be used again soon.
1472  *
1473  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1474  * biodone() to requeue an async I/O on completion.  It is also used when
1475  * known good buffers need to be requeued but we think we may need the data
1476  * again soon.
1477  *
1478  * XXX we should be able to leave the B_RELBUF hint set on completion.
1479  */
1480 void
1481 bqrelse(struct buf * bp)
1482 {
1483 	int s;
1484 
1485 	s = splbio();
1486 
1487 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1488 
1489 	if (bp->b_qindex != QUEUE_NONE)
1490 		panic("bqrelse: free buffer onto another queue???");
1491 	if (BUF_REFCNT(bp) > 1) {
1492 		/* do not release to free list */
1493 		BUF_UNLOCK(bp);
1494 		splx(s);
1495 		return;
1496 	}
1497 	mtx_lock(&bqlock);
1498 	if (bp->b_flags & B_LOCKED) {
1499 		bp->b_ioflags &= ~BIO_ERROR;
1500 		bp->b_qindex = QUEUE_LOCKED;
1501 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1502 		/* buffers with stale but valid contents */
1503 	} else if (bp->b_flags & B_DELWRI) {
1504 		bp->b_qindex = QUEUE_DIRTY;
1505 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1506 	} else if (vm_page_count_severe()) {
1507 		/*
1508 		 * We are too low on memory, we have to try to free the
1509 		 * buffer (most importantly: the wired pages making up its
1510 		 * backing store) *now*.
1511 		 */
1512 		mtx_unlock(&bqlock);
1513 		splx(s);
1514 		brelse(bp);
1515 		return;
1516 	} else {
1517 		bp->b_qindex = QUEUE_CLEAN;
1518 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1519 	}
1520 	mtx_unlock(&bqlock);
1521 
1522 	if ((bp->b_flags & B_LOCKED) == 0 &&
1523 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1524 		bufcountwakeup();
1525 	}
1526 
1527 	/*
1528 	 * Something we can maybe free or reuse.
1529 	 */
1530 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1531 		bufspacewakeup();
1532 
1533 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1534 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1535 		panic("bqrelse: not dirty");
1536 	/* unlock */
1537 	BUF_UNLOCK(bp);
1538 	splx(s);
1539 }
1540 
1541 /* Give pages used by the bp back to the VM system (where possible) */
1542 static void
1543 vfs_vmio_release(bp)
1544 	struct buf *bp;
1545 {
1546 	int i;
1547 	vm_page_t m;
1548 
1549 	GIANT_REQUIRED;
1550 	vm_page_lock_queues();
1551 	for (i = 0; i < bp->b_npages; i++) {
1552 		m = bp->b_pages[i];
1553 		bp->b_pages[i] = NULL;
1554 		/*
1555 		 * In order to keep page LRU ordering consistent, put
1556 		 * everything on the inactive queue.
1557 		 */
1558 		vm_page_unwire(m, 0);
1559 		/*
1560 		 * We don't mess with busy pages, it is
1561 		 * the responsibility of the process that
1562 		 * busied the pages to deal with them.
1563 		 */
1564 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1565 			continue;
1566 
1567 		if (m->wire_count == 0) {
1568 			vm_page_flag_clear(m, PG_ZERO);
1569 			/*
1570 			 * Might as well free the page if we can and it has
1571 			 * no valid data.  We also free the page if the
1572 			 * buffer was used for direct I/O
1573 			 */
1574 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1575 			    m->hold_count == 0) {
1576 				vm_page_busy(m);
1577 				pmap_remove_all(m);
1578 				vm_page_free(m);
1579 			} else if (bp->b_flags & B_DIRECT) {
1580 				vm_page_try_to_free(m);
1581 			} else if (vm_page_count_severe()) {
1582 				vm_page_try_to_cache(m);
1583 			}
1584 		}
1585 	}
1586 	vm_page_unlock_queues();
1587 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1588 
1589 	if (bp->b_bufsize) {
1590 		bufspacewakeup();
1591 		bp->b_bufsize = 0;
1592 	}
1593 	bp->b_npages = 0;
1594 	bp->b_flags &= ~B_VMIO;
1595 	if (bp->b_vp)
1596 		brelvp(bp);
1597 }
1598 
1599 /*
1600  * Check to see if a block at a particular lbn is available for a clustered
1601  * write.
1602  */
1603 static int
1604 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1605 {
1606 	struct buf *bpa;
1607 	int match;
1608 
1609 	match = 0;
1610 
1611 	/* If the buf isn't in core skip it */
1612 	if ((bpa = gbincore(vp, lblkno)) == NULL)
1613 		return (0);
1614 
1615 	/* If the buf is busy we don't want to wait for it */
1616 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1617 		return (0);
1618 
1619 	/* Only cluster with valid clusterable delayed write buffers */
1620 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1621 	    (B_DELWRI | B_CLUSTEROK))
1622 		goto done;
1623 
1624 	if (bpa->b_bufsize != size)
1625 		goto done;
1626 
1627 	/*
1628 	 * Check to see if it is in the expected place on disk and that the
1629 	 * block has been mapped.
1630 	 */
1631 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1632 		match = 1;
1633 done:
1634 	BUF_UNLOCK(bpa);
1635 	return (match);
1636 }
1637 
1638 /*
1639  *	vfs_bio_awrite:
1640  *
1641  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1642  *	This is much better then the old way of writing only one buffer at
1643  *	a time.  Note that we may not be presented with the buffers in the
1644  *	correct order, so we search for the cluster in both directions.
1645  */
1646 int
1647 vfs_bio_awrite(struct buf * bp)
1648 {
1649 	int i;
1650 	int j;
1651 	daddr_t lblkno = bp->b_lblkno;
1652 	struct vnode *vp = bp->b_vp;
1653 	int s;
1654 	int ncl;
1655 	int nwritten;
1656 	int size;
1657 	int maxcl;
1658 
1659 	s = splbio();
1660 	/*
1661 	 * right now we support clustered writing only to regular files.  If
1662 	 * we find a clusterable block we could be in the middle of a cluster
1663 	 * rather then at the beginning.
1664 	 */
1665 	if ((vp->v_type == VREG) &&
1666 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1667 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1668 
1669 		size = vp->v_mount->mnt_stat.f_iosize;
1670 		maxcl = MAXPHYS / size;
1671 
1672 		VI_LOCK(vp);
1673 		for (i = 1; i < maxcl; i++)
1674 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1675 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1676 				break;
1677 
1678 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1679 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1680 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1681 				break;
1682 
1683 		VI_UNLOCK(vp);
1684 		--j;
1685 		ncl = i + j;
1686 		/*
1687 		 * this is a possible cluster write
1688 		 */
1689 		if (ncl != 1) {
1690 			BUF_UNLOCK(bp);
1691 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1692 			splx(s);
1693 			return nwritten;
1694 		}
1695 	}
1696 
1697 	bremfree(bp);
1698 	bp->b_flags |= B_ASYNC;
1699 
1700 	splx(s);
1701 	/*
1702 	 * default (old) behavior, writing out only one block
1703 	 *
1704 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1705 	 */
1706 	nwritten = bp->b_bufsize;
1707 	(void) BUF_WRITE(bp);
1708 
1709 	return nwritten;
1710 }
1711 
1712 /*
1713  *	getnewbuf:
1714  *
1715  *	Find and initialize a new buffer header, freeing up existing buffers
1716  *	in the bufqueues as necessary.  The new buffer is returned locked.
1717  *
1718  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1719  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1720  *
1721  *	We block if:
1722  *		We have insufficient buffer headers
1723  *		We have insufficient buffer space
1724  *		buffer_map is too fragmented ( space reservation fails )
1725  *		If we have to flush dirty buffers ( but we try to avoid this )
1726  *
1727  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1728  *	Instead we ask the buf daemon to do it for us.  We attempt to
1729  *	avoid piecemeal wakeups of the pageout daemon.
1730  */
1731 
1732 static struct buf *
1733 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1734 {
1735 	struct buf *bp;
1736 	struct buf *nbp;
1737 	int defrag = 0;
1738 	int nqindex;
1739 	static int flushingbufs;
1740 
1741 	GIANT_REQUIRED;
1742 
1743 	/*
1744 	 * We can't afford to block since we might be holding a vnode lock,
1745 	 * which may prevent system daemons from running.  We deal with
1746 	 * low-memory situations by proactively returning memory and running
1747 	 * async I/O rather then sync I/O.
1748 	 */
1749 
1750 	atomic_add_int(&getnewbufcalls, 1);
1751 	atomic_subtract_int(&getnewbufrestarts, 1);
1752 restart:
1753 	atomic_add_int(&getnewbufrestarts, 1);
1754 
1755 	/*
1756 	 * Setup for scan.  If we do not have enough free buffers,
1757 	 * we setup a degenerate case that immediately fails.  Note
1758 	 * that if we are specially marked process, we are allowed to
1759 	 * dip into our reserves.
1760 	 *
1761 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1762 	 *
1763 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1764 	 * However, there are a number of cases (defragging, reusing, ...)
1765 	 * where we cannot backup.
1766 	 */
1767 	mtx_lock(&bqlock);
1768 	nqindex = QUEUE_EMPTYKVA;
1769 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1770 
1771 	if (nbp == NULL) {
1772 		/*
1773 		 * If no EMPTYKVA buffers and we are either
1774 		 * defragging or reusing, locate a CLEAN buffer
1775 		 * to free or reuse.  If bufspace useage is low
1776 		 * skip this step so we can allocate a new buffer.
1777 		 */
1778 		if (defrag || bufspace >= lobufspace) {
1779 			nqindex = QUEUE_CLEAN;
1780 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1781 		}
1782 
1783 		/*
1784 		 * If we could not find or were not allowed to reuse a
1785 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1786 		 * buffer.  We can only use an EMPTY buffer if allocating
1787 		 * its KVA would not otherwise run us out of buffer space.
1788 		 */
1789 		if (nbp == NULL && defrag == 0 &&
1790 		    bufspace + maxsize < hibufspace) {
1791 			nqindex = QUEUE_EMPTY;
1792 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1798 	 * depending.
1799 	 */
1800 
1801 	while ((bp = nbp) != NULL) {
1802 		int qindex = nqindex;
1803 
1804 		/*
1805 		 * Calculate next bp ( we can only use it if we do not block
1806 		 * or do other fancy things ).
1807 		 */
1808 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1809 			switch(qindex) {
1810 			case QUEUE_EMPTY:
1811 				nqindex = QUEUE_EMPTYKVA;
1812 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1813 					break;
1814 				/* FALLTHROUGH */
1815 			case QUEUE_EMPTYKVA:
1816 				nqindex = QUEUE_CLEAN;
1817 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1818 					break;
1819 				/* FALLTHROUGH */
1820 			case QUEUE_CLEAN:
1821 				/*
1822 				 * nbp is NULL.
1823 				 */
1824 				break;
1825 			}
1826 		}
1827 
1828 		/*
1829 		 * Sanity Checks
1830 		 */
1831 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1832 
1833 		/*
1834 		 * Note: we no longer distinguish between VMIO and non-VMIO
1835 		 * buffers.
1836 		 */
1837 
1838 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1839 
1840 		/*
1841 		 * If we are defragging then we need a buffer with
1842 		 * b_kvasize != 0.  XXX this situation should no longer
1843 		 * occur, if defrag is non-zero the buffer's b_kvasize
1844 		 * should also be non-zero at this point.  XXX
1845 		 */
1846 		if (defrag && bp->b_kvasize == 0) {
1847 			printf("Warning: defrag empty buffer %p\n", bp);
1848 			continue;
1849 		}
1850 
1851 		/*
1852 		 * Start freeing the bp.  This is somewhat involved.  nbp
1853 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1854 		 */
1855 
1856 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1857 			panic("getnewbuf: locked buf");
1858 		bremfreel(bp);
1859 		mtx_unlock(&bqlock);
1860 
1861 		if (qindex == QUEUE_CLEAN) {
1862 			if (bp->b_flags & B_VMIO) {
1863 				bp->b_flags &= ~B_ASYNC;
1864 				vfs_vmio_release(bp);
1865 			}
1866 			if (bp->b_vp)
1867 				brelvp(bp);
1868 		}
1869 
1870 		/*
1871 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1872 		 * the scan from this point on.
1873 		 *
1874 		 * Get the rest of the buffer freed up.  b_kva* is still
1875 		 * valid after this operation.
1876 		 */
1877 
1878 		if (bp->b_rcred != NOCRED) {
1879 			crfree(bp->b_rcred);
1880 			bp->b_rcred = NOCRED;
1881 		}
1882 		if (bp->b_wcred != NOCRED) {
1883 			crfree(bp->b_wcred);
1884 			bp->b_wcred = NOCRED;
1885 		}
1886 		if (LIST_FIRST(&bp->b_dep) != NULL)
1887 			buf_deallocate(bp);
1888 		if (bp->b_xflags & BX_BKGRDINPROG)
1889 			panic("losing buffer 3");
1890 
1891 		if (bp->b_bufsize)
1892 			allocbuf(bp, 0);
1893 
1894 		bp->b_flags = 0;
1895 		bp->b_ioflags = 0;
1896 		bp->b_xflags = 0;
1897 		bp->b_vflags = 0;
1898 		bp->b_dev = NODEV;
1899 		bp->b_vp = NULL;
1900 		bp->b_blkno = bp->b_lblkno = 0;
1901 		bp->b_offset = NOOFFSET;
1902 		bp->b_iodone = 0;
1903 		bp->b_error = 0;
1904 		bp->b_resid = 0;
1905 		bp->b_bcount = 0;
1906 		bp->b_npages = 0;
1907 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1908 		bp->b_magic = B_MAGIC_BIO;
1909 		bp->b_op = &buf_ops_bio;
1910 		bp->b_object = NULL;
1911 
1912 		LIST_INIT(&bp->b_dep);
1913 
1914 		/*
1915 		 * If we are defragging then free the buffer.
1916 		 */
1917 		if (defrag) {
1918 			bp->b_flags |= B_INVAL;
1919 			bfreekva(bp);
1920 			brelse(bp);
1921 			defrag = 0;
1922 			goto restart;
1923 		}
1924 
1925 		/*
1926 		 * If we are overcomitted then recover the buffer and its
1927 		 * KVM space.  This occurs in rare situations when multiple
1928 		 * processes are blocked in getnewbuf() or allocbuf().
1929 		 */
1930 		if (bufspace >= hibufspace)
1931 			flushingbufs = 1;
1932 		if (flushingbufs && bp->b_kvasize != 0) {
1933 			bp->b_flags |= B_INVAL;
1934 			bfreekva(bp);
1935 			brelse(bp);
1936 			goto restart;
1937 		}
1938 		if (bufspace < lobufspace)
1939 			flushingbufs = 0;
1940 		break;
1941 	}
1942 
1943 	/*
1944 	 * If we exhausted our list, sleep as appropriate.  We may have to
1945 	 * wakeup various daemons and write out some dirty buffers.
1946 	 *
1947 	 * Generally we are sleeping due to insufficient buffer space.
1948 	 */
1949 
1950 	if (bp == NULL) {
1951 		int flags;
1952 		char *waitmsg;
1953 
1954 		mtx_unlock(&bqlock);
1955 		if (defrag) {
1956 			flags = VFS_BIO_NEED_BUFSPACE;
1957 			waitmsg = "nbufkv";
1958 		} else if (bufspace >= hibufspace) {
1959 			waitmsg = "nbufbs";
1960 			flags = VFS_BIO_NEED_BUFSPACE;
1961 		} else {
1962 			waitmsg = "newbuf";
1963 			flags = VFS_BIO_NEED_ANY;
1964 		}
1965 
1966 		bd_speedup();	/* heeeelp */
1967 
1968 		mtx_lock(&nblock);
1969 		needsbuffer |= flags;
1970 		while (needsbuffer & flags) {
1971 			if (msleep(&needsbuffer, &nblock,
1972 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1973 				mtx_unlock(&nblock);
1974 				return (NULL);
1975 			}
1976 		}
1977 		mtx_unlock(&nblock);
1978 	} else {
1979 		/*
1980 		 * We finally have a valid bp.  We aren't quite out of the
1981 		 * woods, we still have to reserve kva space.  In order
1982 		 * to keep fragmentation sane we only allocate kva in
1983 		 * BKVASIZE chunks.
1984 		 */
1985 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1986 
1987 		if (maxsize != bp->b_kvasize) {
1988 			vm_offset_t addr = 0;
1989 
1990 			bfreekva(bp);
1991 
1992 			if (vm_map_findspace(buffer_map,
1993 				vm_map_min(buffer_map), maxsize, &addr)) {
1994 				/*
1995 				 * Uh oh.  Buffer map is to fragmented.  We
1996 				 * must defragment the map.
1997 				 */
1998 				atomic_add_int(&bufdefragcnt, 1);
1999 				defrag = 1;
2000 				bp->b_flags |= B_INVAL;
2001 				brelse(bp);
2002 				goto restart;
2003 			}
2004 			if (addr) {
2005 				vm_map_insert(buffer_map, NULL, 0,
2006 					addr, addr + maxsize,
2007 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2008 
2009 				bp->b_kvabase = (caddr_t) addr;
2010 				bp->b_kvasize = maxsize;
2011 				atomic_add_int(&bufspace, bp->b_kvasize);
2012 				atomic_add_int(&bufreusecnt, 1);
2013 			}
2014 		}
2015 		bp->b_data = bp->b_kvabase;
2016 	}
2017 	return(bp);
2018 }
2019 
2020 /*
2021  *	buf_daemon:
2022  *
2023  *	buffer flushing daemon.  Buffers are normally flushed by the
2024  *	update daemon but if it cannot keep up this process starts to
2025  *	take the load in an attempt to prevent getnewbuf() from blocking.
2026  */
2027 
2028 static struct proc *bufdaemonproc;
2029 
2030 static struct kproc_desc buf_kp = {
2031 	"bufdaemon",
2032 	buf_daemon,
2033 	&bufdaemonproc
2034 };
2035 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2036 
2037 static void
2038 buf_daemon()
2039 {
2040 	int s;
2041 
2042 	mtx_lock(&Giant);
2043 
2044 	/*
2045 	 * This process needs to be suspended prior to shutdown sync.
2046 	 */
2047 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2048 	    SHUTDOWN_PRI_LAST);
2049 
2050 	/*
2051 	 * This process is allowed to take the buffer cache to the limit
2052 	 */
2053 	s = splbio();
2054 	mtx_lock(&bdlock);
2055 
2056 	for (;;) {
2057 		bd_request = 0;
2058 		mtx_unlock(&bdlock);
2059 
2060 		kthread_suspend_check(bufdaemonproc);
2061 
2062 		/*
2063 		 * Do the flush.  Limit the amount of in-transit I/O we
2064 		 * allow to build up, otherwise we would completely saturate
2065 		 * the I/O system.  Wakeup any waiting processes before we
2066 		 * normally would so they can run in parallel with our drain.
2067 		 */
2068 		while (numdirtybuffers > lodirtybuffers) {
2069 			if (flushbufqueues(0) == 0) {
2070 				/*
2071 				 * Could not find any buffers without rollback
2072 				 * dependencies, so just write the first one
2073 				 * in the hopes of eventually making progress.
2074 				 */
2075 				flushbufqueues(1);
2076 				break;
2077 			}
2078 			waitrunningbufspace();
2079 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2080 		}
2081 
2082 		/*
2083 		 * Only clear bd_request if we have reached our low water
2084 		 * mark.  The buf_daemon normally waits 1 second and
2085 		 * then incrementally flushes any dirty buffers that have
2086 		 * built up, within reason.
2087 		 *
2088 		 * If we were unable to hit our low water mark and couldn't
2089 		 * find any flushable buffers, we sleep half a second.
2090 		 * Otherwise we loop immediately.
2091 		 */
2092 		mtx_lock(&bdlock);
2093 		if (numdirtybuffers <= lodirtybuffers) {
2094 			/*
2095 			 * We reached our low water mark, reset the
2096 			 * request and sleep until we are needed again.
2097 			 * The sleep is just so the suspend code works.
2098 			 */
2099 			bd_request = 0;
2100 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2101 		} else {
2102 			/*
2103 			 * We couldn't find any flushable dirty buffers but
2104 			 * still have too many dirty buffers, we
2105 			 * have to sleep and try again.  (rare)
2106 			 */
2107 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2108 		}
2109 	}
2110 }
2111 
2112 /*
2113  *	flushbufqueues:
2114  *
2115  *	Try to flush a buffer in the dirty queue.  We must be careful to
2116  *	free up B_INVAL buffers instead of write them, which NFS is
2117  *	particularly sensitive to.
2118  */
2119 int flushwithdeps = 0;
2120 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2121     0, "Number of buffers flushed with dependecies that require rollbacks");
2122 static int
2123 flushbufqueues(int flushdeps)
2124 {
2125 	struct thread *td = curthread;
2126 	struct vnode *vp;
2127 	struct buf *bp;
2128 	int hasdeps;
2129 
2130 	mtx_lock(&bqlock);
2131 	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2132 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2133 			continue;
2134 		KASSERT((bp->b_flags & B_DELWRI),
2135 		    ("unexpected clean buffer %p", bp));
2136 		if ((bp->b_xflags & BX_BKGRDINPROG) != 0) {
2137 			BUF_UNLOCK(bp);
2138 			continue;
2139 		}
2140 		if (bp->b_flags & B_INVAL) {
2141 			bremfreel(bp);
2142 			mtx_unlock(&bqlock);
2143 			brelse(bp);
2144 			return (1);
2145 		}
2146 
2147 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2148 			if (flushdeps == 0) {
2149 				BUF_UNLOCK(bp);
2150 				continue;
2151 			}
2152 			hasdeps = 1;
2153 		} else
2154 			hasdeps = 0;
2155 		/*
2156 		 * We must hold the lock on a vnode before writing
2157 		 * one of its buffers. Otherwise we may confuse, or
2158 		 * in the case of a snapshot vnode, deadlock the
2159 		 * system.
2160 		 *
2161 		 * The lock order here is the reverse of the normal
2162 		 * of vnode followed by buf lock.  This is ok because
2163 		 * the NOWAIT will prevent deadlock.
2164 		 */
2165 		if ((vp = bp->b_vp) == NULL ||
2166 		    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2167 			mtx_unlock(&bqlock);
2168 			vfs_bio_awrite(bp);
2169 			if (vp != NULL)
2170 				VOP_UNLOCK(vp, 0, td);
2171 			flushwithdeps += hasdeps;
2172 			return (1);
2173 		}
2174 		BUF_UNLOCK(bp);
2175 	}
2176 	mtx_unlock(&bqlock);
2177 	return (0);
2178 }
2179 
2180 /*
2181  * Check to see if a block is currently memory resident.
2182  */
2183 struct buf *
2184 incore(struct vnode * vp, daddr_t blkno)
2185 {
2186 	struct buf *bp;
2187 
2188 	int s = splbio();
2189 	VI_LOCK(vp);
2190 	bp = gbincore(vp, blkno);
2191 	VI_UNLOCK(vp);
2192 	splx(s);
2193 	return (bp);
2194 }
2195 
2196 /*
2197  * Returns true if no I/O is needed to access the
2198  * associated VM object.  This is like incore except
2199  * it also hunts around in the VM system for the data.
2200  */
2201 
2202 int
2203 inmem(struct vnode * vp, daddr_t blkno)
2204 {
2205 	vm_object_t obj;
2206 	vm_offset_t toff, tinc, size;
2207 	vm_page_t m;
2208 	vm_ooffset_t off;
2209 
2210 	GIANT_REQUIRED;
2211 	ASSERT_VOP_LOCKED(vp, "inmem");
2212 
2213 	if (incore(vp, blkno))
2214 		return 1;
2215 	if (vp->v_mount == NULL)
2216 		return 0;
2217 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2218 		return 0;
2219 
2220 	size = PAGE_SIZE;
2221 	if (size > vp->v_mount->mnt_stat.f_iosize)
2222 		size = vp->v_mount->mnt_stat.f_iosize;
2223 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2224 
2225 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2226 		VM_OBJECT_LOCK(obj);
2227 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2228 		VM_OBJECT_UNLOCK(obj);
2229 		if (!m)
2230 			goto notinmem;
2231 		tinc = size;
2232 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2233 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2234 		if (vm_page_is_valid(m,
2235 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2236 			goto notinmem;
2237 	}
2238 	return 1;
2239 
2240 notinmem:
2241 	return (0);
2242 }
2243 
2244 /*
2245  *	vfs_setdirty:
2246  *
2247  *	Sets the dirty range for a buffer based on the status of the dirty
2248  *	bits in the pages comprising the buffer.
2249  *
2250  *	The range is limited to the size of the buffer.
2251  *
2252  *	This routine is primarily used by NFS, but is generalized for the
2253  *	B_VMIO case.
2254  */
2255 static void
2256 vfs_setdirty(struct buf *bp)
2257 {
2258 	int i;
2259 	vm_object_t object;
2260 
2261 	GIANT_REQUIRED;
2262 	/*
2263 	 * Degenerate case - empty buffer
2264 	 */
2265 
2266 	if (bp->b_bufsize == 0)
2267 		return;
2268 
2269 	/*
2270 	 * We qualify the scan for modified pages on whether the
2271 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2272 	 * is not cleared simply by protecting pages off.
2273 	 */
2274 
2275 	if ((bp->b_flags & B_VMIO) == 0)
2276 		return;
2277 
2278 	object = bp->b_pages[0]->object;
2279 	VM_OBJECT_LOCK(object);
2280 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2281 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2282 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2283 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2284 
2285 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2286 		vm_offset_t boffset;
2287 		vm_offset_t eoffset;
2288 
2289 		vm_page_lock_queues();
2290 		/*
2291 		 * test the pages to see if they have been modified directly
2292 		 * by users through the VM system.
2293 		 */
2294 		for (i = 0; i < bp->b_npages; i++) {
2295 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2296 			vm_page_test_dirty(bp->b_pages[i]);
2297 		}
2298 
2299 		/*
2300 		 * Calculate the encompassing dirty range, boffset and eoffset,
2301 		 * (eoffset - boffset) bytes.
2302 		 */
2303 
2304 		for (i = 0; i < bp->b_npages; i++) {
2305 			if (bp->b_pages[i]->dirty)
2306 				break;
2307 		}
2308 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2309 
2310 		for (i = bp->b_npages - 1; i >= 0; --i) {
2311 			if (bp->b_pages[i]->dirty) {
2312 				break;
2313 			}
2314 		}
2315 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2316 
2317 		vm_page_unlock_queues();
2318 		/*
2319 		 * Fit it to the buffer.
2320 		 */
2321 
2322 		if (eoffset > bp->b_bcount)
2323 			eoffset = bp->b_bcount;
2324 
2325 		/*
2326 		 * If we have a good dirty range, merge with the existing
2327 		 * dirty range.
2328 		 */
2329 
2330 		if (boffset < eoffset) {
2331 			if (bp->b_dirtyoff > boffset)
2332 				bp->b_dirtyoff = boffset;
2333 			if (bp->b_dirtyend < eoffset)
2334 				bp->b_dirtyend = eoffset;
2335 		}
2336 	}
2337 	VM_OBJECT_UNLOCK(object);
2338 }
2339 
2340 /*
2341  *	getblk:
2342  *
2343  *	Get a block given a specified block and offset into a file/device.
2344  *	The buffers B_DONE bit will be cleared on return, making it almost
2345  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2346  *	return.  The caller should clear B_INVAL prior to initiating a
2347  *	READ.
2348  *
2349  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2350  *	an existing buffer.
2351  *
2352  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2353  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2354  *	and then cleared based on the backing VM.  If the previous buffer is
2355  *	non-0-sized but invalid, B_CACHE will be cleared.
2356  *
2357  *	If getblk() must create a new buffer, the new buffer is returned with
2358  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2359  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2360  *	backing VM.
2361  *
2362  *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2363  *	B_CACHE bit is clear.
2364  *
2365  *	What this means, basically, is that the caller should use B_CACHE to
2366  *	determine whether the buffer is fully valid or not and should clear
2367  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2368  *	the buffer by loading its data area with something, the caller needs
2369  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2370  *	the caller should set B_CACHE ( as an optimization ), else the caller
2371  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2372  *	a write attempt or if it was a successfull read.  If the caller
2373  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2374  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2375  */
2376 struct buf *
2377 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2378     int flags)
2379 {
2380 	struct buf *bp;
2381 	int s;
2382 	int error;
2383 	ASSERT_VOP_LOCKED(vp, "getblk");
2384 
2385 	if (size > MAXBSIZE)
2386 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2387 
2388 	s = splbio();
2389 loop:
2390 	/*
2391 	 * Block if we are low on buffers.   Certain processes are allowed
2392 	 * to completely exhaust the buffer cache.
2393          *
2394          * If this check ever becomes a bottleneck it may be better to
2395          * move it into the else, when gbincore() fails.  At the moment
2396          * it isn't a problem.
2397 	 *
2398 	 * XXX remove if 0 sections (clean this up after its proven)
2399          */
2400 	if (numfreebuffers == 0) {
2401 		if (curthread == PCPU_GET(idlethread))
2402 			return NULL;
2403 		mtx_lock(&nblock);
2404 		needsbuffer |= VFS_BIO_NEED_ANY;
2405 		mtx_unlock(&nblock);
2406 	}
2407 
2408 	VI_LOCK(vp);
2409 	if ((bp = gbincore(vp, blkno))) {
2410 		int lockflags;
2411 		/*
2412 		 * Buffer is in-core.  If the buffer is not busy, it must
2413 		 * be on a queue.
2414 		 */
2415 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2416 
2417 		if (flags & GB_LOCK_NOWAIT)
2418 			lockflags |= LK_NOWAIT;
2419 
2420 		error = BUF_TIMELOCK(bp, lockflags,
2421 		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2422 
2423 		/*
2424 		 * If we slept and got the lock we have to restart in case
2425 		 * the buffer changed identities.
2426 		 */
2427 		if (error == ENOLCK)
2428 			goto loop;
2429 		/* We timed out or were interrupted. */
2430 		else if (error)
2431 			return (NULL);
2432 
2433 		/*
2434 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2435 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2436 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2437 		 * backing VM cache.
2438 		 */
2439 		if (bp->b_flags & B_INVAL)
2440 			bp->b_flags &= ~B_CACHE;
2441 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2442 			bp->b_flags |= B_CACHE;
2443 		bremfree(bp);
2444 
2445 		/*
2446 		 * check for size inconsistancies for non-VMIO case.
2447 		 */
2448 
2449 		if (bp->b_bcount != size) {
2450 			if ((bp->b_flags & B_VMIO) == 0 ||
2451 			    (size > bp->b_kvasize)) {
2452 				if (bp->b_flags & B_DELWRI) {
2453 					bp->b_flags |= B_NOCACHE;
2454 					BUF_WRITE(bp);
2455 				} else {
2456 					if ((bp->b_flags & B_VMIO) &&
2457 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2458 						bp->b_flags |= B_RELBUF;
2459 						brelse(bp);
2460 					} else {
2461 						bp->b_flags |= B_NOCACHE;
2462 						BUF_WRITE(bp);
2463 					}
2464 				}
2465 				goto loop;
2466 			}
2467 		}
2468 
2469 		/*
2470 		 * If the size is inconsistant in the VMIO case, we can resize
2471 		 * the buffer.  This might lead to B_CACHE getting set or
2472 		 * cleared.  If the size has not changed, B_CACHE remains
2473 		 * unchanged from its previous state.
2474 		 */
2475 
2476 		if (bp->b_bcount != size)
2477 			allocbuf(bp, size);
2478 
2479 		KASSERT(bp->b_offset != NOOFFSET,
2480 		    ("getblk: no buffer offset"));
2481 
2482 		/*
2483 		 * A buffer with B_DELWRI set and B_CACHE clear must
2484 		 * be committed before we can return the buffer in
2485 		 * order to prevent the caller from issuing a read
2486 		 * ( due to B_CACHE not being set ) and overwriting
2487 		 * it.
2488 		 *
2489 		 * Most callers, including NFS and FFS, need this to
2490 		 * operate properly either because they assume they
2491 		 * can issue a read if B_CACHE is not set, or because
2492 		 * ( for example ) an uncached B_DELWRI might loop due
2493 		 * to softupdates re-dirtying the buffer.  In the latter
2494 		 * case, B_CACHE is set after the first write completes,
2495 		 * preventing further loops.
2496 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2497 		 * above while extending the buffer, we cannot allow the
2498 		 * buffer to remain with B_CACHE set after the write
2499 		 * completes or it will represent a corrupt state.  To
2500 		 * deal with this we set B_NOCACHE to scrap the buffer
2501 		 * after the write.
2502 		 *
2503 		 * We might be able to do something fancy, like setting
2504 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2505 		 * so the below call doesn't set B_CACHE, but that gets real
2506 		 * confusing.  This is much easier.
2507 		 */
2508 
2509 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2510 			bp->b_flags |= B_NOCACHE;
2511 			BUF_WRITE(bp);
2512 			goto loop;
2513 		}
2514 
2515 		splx(s);
2516 		bp->b_flags &= ~B_DONE;
2517 	} else {
2518 		int bsize, maxsize, vmio;
2519 		off_t offset;
2520 
2521 		/*
2522 		 * Buffer is not in-core, create new buffer.  The buffer
2523 		 * returned by getnewbuf() is locked.  Note that the returned
2524 		 * buffer is also considered valid (not marked B_INVAL).
2525 		 */
2526 		VI_UNLOCK(vp);
2527 		if (vn_isdisk(vp, NULL))
2528 			bsize = DEV_BSIZE;
2529 		else if (vp->v_mountedhere)
2530 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2531 		else if (vp->v_mount)
2532 			bsize = vp->v_mount->mnt_stat.f_iosize;
2533 		else
2534 			bsize = size;
2535 
2536 		offset = blkno * bsize;
2537 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2538 		    (vp->v_vflag & VV_OBJBUF);
2539 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2540 		maxsize = imax(maxsize, bsize);
2541 
2542 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2543 			if (slpflag || slptimeo) {
2544 				splx(s);
2545 				return NULL;
2546 			}
2547 			goto loop;
2548 		}
2549 
2550 		/*
2551 		 * This code is used to make sure that a buffer is not
2552 		 * created while the getnewbuf routine is blocked.
2553 		 * This can be a problem whether the vnode is locked or not.
2554 		 * If the buffer is created out from under us, we have to
2555 		 * throw away the one we just created.  There is now window
2556 		 * race because we are safely running at splbio() from the
2557 		 * point of the duplicate buffer creation through to here,
2558 		 * and we've locked the buffer.
2559 		 *
2560 		 * Note: this must occur before we associate the buffer
2561 		 * with the vp especially considering limitations in
2562 		 * the splay tree implementation when dealing with duplicate
2563 		 * lblkno's.
2564 		 */
2565 		VI_LOCK(vp);
2566 		if (gbincore(vp, blkno)) {
2567 			VI_UNLOCK(vp);
2568 			bp->b_flags |= B_INVAL;
2569 			brelse(bp);
2570 			goto loop;
2571 		}
2572 
2573 		/*
2574 		 * Insert the buffer into the hash, so that it can
2575 		 * be found by incore.
2576 		 */
2577 		bp->b_blkno = bp->b_lblkno = blkno;
2578 		bp->b_offset = offset;
2579 
2580 		bgetvp(vp, bp);
2581 		VI_UNLOCK(vp);
2582 
2583 		/*
2584 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2585 		 * buffer size starts out as 0, B_CACHE will be set by
2586 		 * allocbuf() for the VMIO case prior to it testing the
2587 		 * backing store for validity.
2588 		 */
2589 
2590 		if (vmio) {
2591 			bp->b_flags |= B_VMIO;
2592 #if defined(VFS_BIO_DEBUG)
2593 			if (vp->v_type != VREG)
2594 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2595 #endif
2596 			VOP_GETVOBJECT(vp, &bp->b_object);
2597 		} else {
2598 			bp->b_flags &= ~B_VMIO;
2599 			bp->b_object = NULL;
2600 		}
2601 
2602 		allocbuf(bp, size);
2603 
2604 		splx(s);
2605 		bp->b_flags &= ~B_DONE;
2606 	}
2607 	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2608 	return (bp);
2609 }
2610 
2611 /*
2612  * Get an empty, disassociated buffer of given size.  The buffer is initially
2613  * set to B_INVAL.
2614  */
2615 struct buf *
2616 geteblk(int size)
2617 {
2618 	struct buf *bp;
2619 	int s;
2620 	int maxsize;
2621 
2622 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2623 
2624 	s = splbio();
2625 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2626 		continue;
2627 	splx(s);
2628 	allocbuf(bp, size);
2629 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2630 	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2631 	return (bp);
2632 }
2633 
2634 
2635 /*
2636  * This code constitutes the buffer memory from either anonymous system
2637  * memory (in the case of non-VMIO operations) or from an associated
2638  * VM object (in the case of VMIO operations).  This code is able to
2639  * resize a buffer up or down.
2640  *
2641  * Note that this code is tricky, and has many complications to resolve
2642  * deadlock or inconsistant data situations.  Tread lightly!!!
2643  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2644  * the caller.  Calling this code willy nilly can result in the loss of data.
2645  *
2646  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2647  * B_CACHE for the non-VMIO case.
2648  */
2649 
2650 int
2651 allocbuf(struct buf *bp, int size)
2652 {
2653 	int newbsize, mbsize;
2654 	int i;
2655 
2656 	GIANT_REQUIRED;
2657 
2658 	if (BUF_REFCNT(bp) == 0)
2659 		panic("allocbuf: buffer not busy");
2660 
2661 	if (bp->b_kvasize < size)
2662 		panic("allocbuf: buffer too small");
2663 
2664 	if ((bp->b_flags & B_VMIO) == 0) {
2665 		caddr_t origbuf;
2666 		int origbufsize;
2667 		/*
2668 		 * Just get anonymous memory from the kernel.  Don't
2669 		 * mess with B_CACHE.
2670 		 */
2671 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2672 		if (bp->b_flags & B_MALLOC)
2673 			newbsize = mbsize;
2674 		else
2675 			newbsize = round_page(size);
2676 
2677 		if (newbsize < bp->b_bufsize) {
2678 			/*
2679 			 * malloced buffers are not shrunk
2680 			 */
2681 			if (bp->b_flags & B_MALLOC) {
2682 				if (newbsize) {
2683 					bp->b_bcount = size;
2684 				} else {
2685 					free(bp->b_data, M_BIOBUF);
2686 					if (bp->b_bufsize) {
2687 						atomic_subtract_int(
2688 						    &bufmallocspace,
2689 						    bp->b_bufsize);
2690 						bufspacewakeup();
2691 						bp->b_bufsize = 0;
2692 					}
2693 					bp->b_data = bp->b_kvabase;
2694 					bp->b_bcount = 0;
2695 					bp->b_flags &= ~B_MALLOC;
2696 				}
2697 				return 1;
2698 			}
2699 			vm_hold_free_pages(
2700 			    bp,
2701 			    (vm_offset_t) bp->b_data + newbsize,
2702 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2703 		} else if (newbsize > bp->b_bufsize) {
2704 			/*
2705 			 * We only use malloced memory on the first allocation.
2706 			 * and revert to page-allocated memory when the buffer
2707 			 * grows.
2708 			 */
2709 			/*
2710 			 * There is a potential smp race here that could lead
2711 			 * to bufmallocspace slightly passing the max.  It
2712 			 * is probably extremely rare and not worth worrying
2713 			 * over.
2714 			 */
2715 			if ( (bufmallocspace < maxbufmallocspace) &&
2716 				(bp->b_bufsize == 0) &&
2717 				(mbsize <= PAGE_SIZE/2)) {
2718 
2719 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2720 				bp->b_bufsize = mbsize;
2721 				bp->b_bcount = size;
2722 				bp->b_flags |= B_MALLOC;
2723 				atomic_add_int(&bufmallocspace, mbsize);
2724 				return 1;
2725 			}
2726 			origbuf = NULL;
2727 			origbufsize = 0;
2728 			/*
2729 			 * If the buffer is growing on its other-than-first allocation,
2730 			 * then we revert to the page-allocation scheme.
2731 			 */
2732 			if (bp->b_flags & B_MALLOC) {
2733 				origbuf = bp->b_data;
2734 				origbufsize = bp->b_bufsize;
2735 				bp->b_data = bp->b_kvabase;
2736 				if (bp->b_bufsize) {
2737 					atomic_subtract_int(&bufmallocspace,
2738 					    bp->b_bufsize);
2739 					bufspacewakeup();
2740 					bp->b_bufsize = 0;
2741 				}
2742 				bp->b_flags &= ~B_MALLOC;
2743 				newbsize = round_page(newbsize);
2744 			}
2745 			vm_hold_load_pages(
2746 			    bp,
2747 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2748 			    (vm_offset_t) bp->b_data + newbsize);
2749 			if (origbuf) {
2750 				bcopy(origbuf, bp->b_data, origbufsize);
2751 				free(origbuf, M_BIOBUF);
2752 			}
2753 		}
2754 	} else {
2755 		int desiredpages;
2756 
2757 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2758 		desiredpages = (size == 0) ? 0 :
2759 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2760 
2761 		if (bp->b_flags & B_MALLOC)
2762 			panic("allocbuf: VMIO buffer can't be malloced");
2763 		/*
2764 		 * Set B_CACHE initially if buffer is 0 length or will become
2765 		 * 0-length.
2766 		 */
2767 		if (size == 0 || bp->b_bufsize == 0)
2768 			bp->b_flags |= B_CACHE;
2769 
2770 		if (newbsize < bp->b_bufsize) {
2771 			/*
2772 			 * DEV_BSIZE aligned new buffer size is less then the
2773 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2774 			 * if we have to remove any pages.
2775 			 */
2776 			if (desiredpages < bp->b_npages) {
2777 				vm_page_t m;
2778 
2779 				vm_page_lock_queues();
2780 				for (i = desiredpages; i < bp->b_npages; i++) {
2781 					/*
2782 					 * the page is not freed here -- it
2783 					 * is the responsibility of
2784 					 * vnode_pager_setsize
2785 					 */
2786 					m = bp->b_pages[i];
2787 					KASSERT(m != bogus_page,
2788 					    ("allocbuf: bogus page found"));
2789 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2790 						vm_page_lock_queues();
2791 
2792 					bp->b_pages[i] = NULL;
2793 					vm_page_unwire(m, 0);
2794 				}
2795 				vm_page_unlock_queues();
2796 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2797 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2798 				bp->b_npages = desiredpages;
2799 			}
2800 		} else if (size > bp->b_bcount) {
2801 			/*
2802 			 * We are growing the buffer, possibly in a
2803 			 * byte-granular fashion.
2804 			 */
2805 			struct vnode *vp;
2806 			vm_object_t obj;
2807 			vm_offset_t toff;
2808 			vm_offset_t tinc;
2809 
2810 			/*
2811 			 * Step 1, bring in the VM pages from the object,
2812 			 * allocating them if necessary.  We must clear
2813 			 * B_CACHE if these pages are not valid for the
2814 			 * range covered by the buffer.
2815 			 */
2816 
2817 			vp = bp->b_vp;
2818 			obj = bp->b_object;
2819 
2820 			VM_OBJECT_LOCK(obj);
2821 			while (bp->b_npages < desiredpages) {
2822 				vm_page_t m;
2823 				vm_pindex_t pi;
2824 
2825 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2826 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2827 					/*
2828 					 * note: must allocate system pages
2829 					 * since blocking here could intefere
2830 					 * with paging I/O, no matter which
2831 					 * process we are.
2832 					 */
2833 					m = vm_page_alloc(obj, pi,
2834 					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2835 					if (m == NULL) {
2836 						atomic_add_int(&vm_pageout_deficit,
2837 						    desiredpages - bp->b_npages);
2838 						VM_OBJECT_UNLOCK(obj);
2839 						VM_WAIT;
2840 						VM_OBJECT_LOCK(obj);
2841 					} else {
2842 						vm_page_lock_queues();
2843 						vm_page_wakeup(m);
2844 						vm_page_unlock_queues();
2845 						bp->b_flags &= ~B_CACHE;
2846 						bp->b_pages[bp->b_npages] = m;
2847 						++bp->b_npages;
2848 					}
2849 					continue;
2850 				}
2851 
2852 				/*
2853 				 * We found a page.  If we have to sleep on it,
2854 				 * retry because it might have gotten freed out
2855 				 * from under us.
2856 				 *
2857 				 * We can only test PG_BUSY here.  Blocking on
2858 				 * m->busy might lead to a deadlock:
2859 				 *
2860 				 *  vm_fault->getpages->cluster_read->allocbuf
2861 				 *
2862 				 */
2863 				vm_page_lock_queues();
2864 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2865 					continue;
2866 
2867 				/*
2868 				 * We have a good page.  Should we wakeup the
2869 				 * page daemon?
2870 				 */
2871 				if ((curproc != pageproc) &&
2872 				    ((m->queue - m->pc) == PQ_CACHE) &&
2873 				    ((cnt.v_free_count + cnt.v_cache_count) <
2874 					(cnt.v_free_min + cnt.v_cache_min))) {
2875 					pagedaemon_wakeup();
2876 				}
2877 				vm_page_flag_clear(m, PG_ZERO);
2878 				vm_page_wire(m);
2879 				vm_page_unlock_queues();
2880 				bp->b_pages[bp->b_npages] = m;
2881 				++bp->b_npages;
2882 			}
2883 			VM_OBJECT_UNLOCK(obj);
2884 
2885 			/*
2886 			 * Step 2.  We've loaded the pages into the buffer,
2887 			 * we have to figure out if we can still have B_CACHE
2888 			 * set.  Note that B_CACHE is set according to the
2889 			 * byte-granular range ( bcount and size ), new the
2890 			 * aligned range ( newbsize ).
2891 			 *
2892 			 * The VM test is against m->valid, which is DEV_BSIZE
2893 			 * aligned.  Needless to say, the validity of the data
2894 			 * needs to also be DEV_BSIZE aligned.  Note that this
2895 			 * fails with NFS if the server or some other client
2896 			 * extends the file's EOF.  If our buffer is resized,
2897 			 * B_CACHE may remain set! XXX
2898 			 */
2899 
2900 			toff = bp->b_bcount;
2901 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2902 
2903 			while ((bp->b_flags & B_CACHE) && toff < size) {
2904 				vm_pindex_t pi;
2905 
2906 				if (tinc > (size - toff))
2907 					tinc = size - toff;
2908 
2909 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2910 				    PAGE_SHIFT;
2911 
2912 				vfs_buf_test_cache(
2913 				    bp,
2914 				    bp->b_offset,
2915 				    toff,
2916 				    tinc,
2917 				    bp->b_pages[pi]
2918 				);
2919 				toff += tinc;
2920 				tinc = PAGE_SIZE;
2921 			}
2922 
2923 			/*
2924 			 * Step 3, fixup the KVM pmap.  Remember that
2925 			 * bp->b_data is relative to bp->b_offset, but
2926 			 * bp->b_offset may be offset into the first page.
2927 			 */
2928 
2929 			bp->b_data = (caddr_t)
2930 			    trunc_page((vm_offset_t)bp->b_data);
2931 			pmap_qenter(
2932 			    (vm_offset_t)bp->b_data,
2933 			    bp->b_pages,
2934 			    bp->b_npages
2935 			);
2936 
2937 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2938 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2939 		}
2940 	}
2941 	if (newbsize < bp->b_bufsize)
2942 		bufspacewakeup();
2943 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2944 	bp->b_bcount = size;		/* requested buffer size	*/
2945 	return 1;
2946 }
2947 
2948 void
2949 biodone(struct bio *bp)
2950 {
2951 	mtx_lock(&bdonelock);
2952 	bp->bio_flags |= BIO_DONE;
2953 	if (bp->bio_done == NULL)
2954 		wakeup(bp);
2955 	mtx_unlock(&bdonelock);
2956 	if (bp->bio_done != NULL)
2957 		bp->bio_done(bp);
2958 }
2959 
2960 /*
2961  * Wait for a BIO to finish.
2962  *
2963  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2964  * case is not yet clear.
2965  */
2966 int
2967 biowait(struct bio *bp, const char *wchan)
2968 {
2969 
2970 	mtx_lock(&bdonelock);
2971 	while ((bp->bio_flags & BIO_DONE) == 0)
2972 		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2973 	mtx_unlock(&bdonelock);
2974 	if (bp->bio_error != 0)
2975 		return (bp->bio_error);
2976 	if (!(bp->bio_flags & BIO_ERROR))
2977 		return (0);
2978 	return (EIO);
2979 }
2980 
2981 void
2982 biofinish(struct bio *bp, struct devstat *stat, int error)
2983 {
2984 
2985 	if (error) {
2986 		bp->bio_error = error;
2987 		bp->bio_flags |= BIO_ERROR;
2988 	}
2989 	if (stat != NULL)
2990 		devstat_end_transaction_bio(stat, bp);
2991 	biodone(bp);
2992 }
2993 
2994 /*
2995  *	bufwait:
2996  *
2997  *	Wait for buffer I/O completion, returning error status.  The buffer
2998  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
2999  *	error and cleared.
3000  */
3001 int
3002 bufwait(register struct buf * bp)
3003 {
3004 	int s;
3005 
3006 	s = splbio();
3007 	if (bp->b_iocmd == BIO_READ)
3008 		bwait(bp, PRIBIO, "biord");
3009 	else
3010 		bwait(bp, PRIBIO, "biowr");
3011 	splx(s);
3012 	if (bp->b_flags & B_EINTR) {
3013 		bp->b_flags &= ~B_EINTR;
3014 		return (EINTR);
3015 	}
3016 	if (bp->b_ioflags & BIO_ERROR) {
3017 		return (bp->b_error ? bp->b_error : EIO);
3018 	} else {
3019 		return (0);
3020 	}
3021 }
3022 
3023  /*
3024   * Call back function from struct bio back up to struct buf.
3025   * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3026   */
3027 void
3028 bufdonebio(struct bio *bp)
3029 {
3030 	bufdone(bp->bio_caller2);
3031 }
3032 
3033 /*
3034  *	bufdone:
3035  *
3036  *	Finish I/O on a buffer, optionally calling a completion function.
3037  *	This is usually called from an interrupt so process blocking is
3038  *	not allowed.
3039  *
3040  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3041  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3042  *	assuming B_INVAL is clear.
3043  *
3044  *	For the VMIO case, we set B_CACHE if the op was a read and no
3045  *	read error occured, or if the op was a write.  B_CACHE is never
3046  *	set if the buffer is invalid or otherwise uncacheable.
3047  *
3048  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3049  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3050  *	in the biodone routine.
3051  */
3052 void
3053 bufdone(struct buf *bp)
3054 {
3055 	int s;
3056 	void    (*biodone)(struct buf *);
3057 
3058 	GIANT_REQUIRED;
3059 
3060 	s = splbio();
3061 
3062 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3063 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3064 
3065 	bp->b_flags |= B_DONE;
3066 	runningbufwakeup(bp);
3067 
3068 	if (bp->b_iocmd == BIO_DELETE) {
3069 		brelse(bp);
3070 		splx(s);
3071 		return;
3072 	}
3073 
3074 	if (bp->b_iocmd == BIO_WRITE) {
3075 		vwakeup(bp);
3076 	}
3077 
3078 	/* call optional completion function if requested */
3079 	if (bp->b_iodone != NULL) {
3080 		biodone = bp->b_iodone;
3081 		bp->b_iodone = NULL;
3082 		(*biodone) (bp);
3083 		splx(s);
3084 		return;
3085 	}
3086 	if (LIST_FIRST(&bp->b_dep) != NULL)
3087 		buf_complete(bp);
3088 
3089 	if (bp->b_flags & B_VMIO) {
3090 		int i;
3091 		vm_ooffset_t foff;
3092 		vm_page_t m;
3093 		vm_object_t obj;
3094 		int iosize;
3095 		struct vnode *vp = bp->b_vp;
3096 
3097 		obj = bp->b_object;
3098 
3099 #if defined(VFS_BIO_DEBUG)
3100 		mp_fixme("usecount and vflag accessed without locks.");
3101 		if (vp->v_usecount == 0) {
3102 			panic("biodone: zero vnode ref count");
3103 		}
3104 
3105 		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3106 			panic("biodone: vnode is not setup for merged cache");
3107 		}
3108 #endif
3109 
3110 		foff = bp->b_offset;
3111 		KASSERT(bp->b_offset != NOOFFSET,
3112 		    ("biodone: no buffer offset"));
3113 
3114 		if (obj != NULL)
3115 			VM_OBJECT_LOCK(obj);
3116 #if defined(VFS_BIO_DEBUG)
3117 		if (obj->paging_in_progress < bp->b_npages) {
3118 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3119 			    obj->paging_in_progress, bp->b_npages);
3120 		}
3121 #endif
3122 
3123 		/*
3124 		 * Set B_CACHE if the op was a normal read and no error
3125 		 * occured.  B_CACHE is set for writes in the b*write()
3126 		 * routines.
3127 		 */
3128 		iosize = bp->b_bcount - bp->b_resid;
3129 		if (bp->b_iocmd == BIO_READ &&
3130 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3131 		    !(bp->b_ioflags & BIO_ERROR)) {
3132 			bp->b_flags |= B_CACHE;
3133 		}
3134 		vm_page_lock_queues();
3135 		for (i = 0; i < bp->b_npages; i++) {
3136 			int bogusflag = 0;
3137 			int resid;
3138 
3139 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3140 			if (resid > iosize)
3141 				resid = iosize;
3142 
3143 			/*
3144 			 * cleanup bogus pages, restoring the originals
3145 			 */
3146 			m = bp->b_pages[i];
3147 			if (m == bogus_page) {
3148 				bogusflag = 1;
3149 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3150 				if (m == NULL)
3151 					panic("biodone: page disappeared!");
3152 				bp->b_pages[i] = m;
3153 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3154 			}
3155 #if defined(VFS_BIO_DEBUG)
3156 			if (OFF_TO_IDX(foff) != m->pindex) {
3157 				printf(
3158 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3159 				    (intmax_t)foff, (uintmax_t)m->pindex);
3160 			}
3161 #endif
3162 
3163 			/*
3164 			 * In the write case, the valid and clean bits are
3165 			 * already changed correctly ( see bdwrite() ), so we
3166 			 * only need to do this here in the read case.
3167 			 */
3168 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3169 				vfs_page_set_valid(bp, foff, i, m);
3170 			}
3171 			vm_page_flag_clear(m, PG_ZERO);
3172 
3173 			/*
3174 			 * when debugging new filesystems or buffer I/O methods, this
3175 			 * is the most common error that pops up.  if you see this, you
3176 			 * have not set the page busy flag correctly!!!
3177 			 */
3178 			if (m->busy == 0) {
3179 				printf("biodone: page busy < 0, "
3180 				    "pindex: %d, foff: 0x(%x,%x), "
3181 				    "resid: %d, index: %d\n",
3182 				    (int) m->pindex, (int)(foff >> 32),
3183 						(int) foff & 0xffffffff, resid, i);
3184 				if (!vn_isdisk(vp, NULL))
3185 					printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n",
3186 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3187 					    (intmax_t) bp->b_lblkno,
3188 					    bp->b_flags, bp->b_npages);
3189 				else
3190 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3191 					    (intmax_t) bp->b_lblkno,
3192 					    bp->b_flags, bp->b_npages);
3193 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3194 				    m->valid, m->dirty, m->wire_count);
3195 				panic("biodone: page busy < 0\n");
3196 			}
3197 			vm_page_io_finish(m);
3198 			vm_object_pip_subtract(obj, 1);
3199 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3200 			iosize -= resid;
3201 		}
3202 		vm_page_unlock_queues();
3203 		if (obj != NULL) {
3204 			vm_object_pip_wakeupn(obj, 0);
3205 			VM_OBJECT_UNLOCK(obj);
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * For asynchronous completions, release the buffer now. The brelse
3211 	 * will do a wakeup there if necessary - so no need to do a wakeup
3212 	 * here in the async case. The sync case always needs to do a wakeup.
3213 	 */
3214 
3215 	if (bp->b_flags & B_ASYNC) {
3216 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3217 			brelse(bp);
3218 		else
3219 			bqrelse(bp);
3220 	} else {
3221 		bdone(bp);
3222 	}
3223 	splx(s);
3224 }
3225 
3226 /*
3227  * This routine is called in lieu of iodone in the case of
3228  * incomplete I/O.  This keeps the busy status for pages
3229  * consistant.
3230  */
3231 void
3232 vfs_unbusy_pages(struct buf * bp)
3233 {
3234 	int i;
3235 
3236 	GIANT_REQUIRED;
3237 
3238 	runningbufwakeup(bp);
3239 	if (bp->b_flags & B_VMIO) {
3240 		vm_object_t obj;
3241 
3242 		obj = bp->b_object;
3243 		VM_OBJECT_LOCK(obj);
3244 		vm_page_lock_queues();
3245 		for (i = 0; i < bp->b_npages; i++) {
3246 			vm_page_t m = bp->b_pages[i];
3247 
3248 			if (m == bogus_page) {
3249 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3250 				if (!m) {
3251 					panic("vfs_unbusy_pages: page missing\n");
3252 				}
3253 				bp->b_pages[i] = m;
3254 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3255 			}
3256 			vm_object_pip_subtract(obj, 1);
3257 			vm_page_flag_clear(m, PG_ZERO);
3258 			vm_page_io_finish(m);
3259 		}
3260 		vm_page_unlock_queues();
3261 		vm_object_pip_wakeupn(obj, 0);
3262 		VM_OBJECT_UNLOCK(obj);
3263 	}
3264 }
3265 
3266 /*
3267  * vfs_page_set_valid:
3268  *
3269  *	Set the valid bits in a page based on the supplied offset.   The
3270  *	range is restricted to the buffer's size.
3271  *
3272  *	This routine is typically called after a read completes.
3273  */
3274 static void
3275 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3276 {
3277 	vm_ooffset_t soff, eoff;
3278 
3279 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3280 	/*
3281 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3282 	 * page boundry or cross the end of the buffer.  The end of the
3283 	 * buffer, in this case, is our file EOF, not the allocation size
3284 	 * of the buffer.
3285 	 */
3286 	soff = off;
3287 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3288 	if (eoff > bp->b_offset + bp->b_bcount)
3289 		eoff = bp->b_offset + bp->b_bcount;
3290 
3291 	/*
3292 	 * Set valid range.  This is typically the entire buffer and thus the
3293 	 * entire page.
3294 	 */
3295 	if (eoff > soff) {
3296 		vm_page_set_validclean(
3297 		    m,
3298 		   (vm_offset_t) (soff & PAGE_MASK),
3299 		   (vm_offset_t) (eoff - soff)
3300 		);
3301 	}
3302 }
3303 
3304 /*
3305  * This routine is called before a device strategy routine.
3306  * It is used to tell the VM system that paging I/O is in
3307  * progress, and treat the pages associated with the buffer
3308  * almost as being PG_BUSY.  Also the object paging_in_progress
3309  * flag is handled to make sure that the object doesn't become
3310  * inconsistant.
3311  *
3312  * Since I/O has not been initiated yet, certain buffer flags
3313  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3314  * and should be ignored.
3315  */
3316 void
3317 vfs_busy_pages(struct buf * bp, int clear_modify)
3318 {
3319 	int i, bogus;
3320 
3321 	if (bp->b_flags & B_VMIO) {
3322 		vm_object_t obj;
3323 		vm_ooffset_t foff;
3324 
3325 		obj = bp->b_object;
3326 		foff = bp->b_offset;
3327 		KASSERT(bp->b_offset != NOOFFSET,
3328 		    ("vfs_busy_pages: no buffer offset"));
3329 		vfs_setdirty(bp);
3330 		if (obj != NULL)
3331 			VM_OBJECT_LOCK(obj);
3332 retry:
3333 		vm_page_lock_queues();
3334 		for (i = 0; i < bp->b_npages; i++) {
3335 			vm_page_t m = bp->b_pages[i];
3336 
3337 			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3338 				goto retry;
3339 		}
3340 		bogus = 0;
3341 		for (i = 0; i < bp->b_npages; i++) {
3342 			vm_page_t m = bp->b_pages[i];
3343 
3344 			vm_page_flag_clear(m, PG_ZERO);
3345 			if ((bp->b_flags & B_CLUSTER) == 0) {
3346 				vm_object_pip_add(obj, 1);
3347 				vm_page_io_start(m);
3348 			}
3349 			/*
3350 			 * When readying a buffer for a read ( i.e
3351 			 * clear_modify == 0 ), it is important to do
3352 			 * bogus_page replacement for valid pages in
3353 			 * partially instantiated buffers.  Partially
3354 			 * instantiated buffers can, in turn, occur when
3355 			 * reconstituting a buffer from its VM backing store
3356 			 * base.  We only have to do this if B_CACHE is
3357 			 * clear ( which causes the I/O to occur in the
3358 			 * first place ).  The replacement prevents the read
3359 			 * I/O from overwriting potentially dirty VM-backed
3360 			 * pages.  XXX bogus page replacement is, uh, bogus.
3361 			 * It may not work properly with small-block devices.
3362 			 * We need to find a better way.
3363 			 */
3364 			pmap_remove_all(m);
3365 			if (clear_modify)
3366 				vfs_page_set_valid(bp, foff, i, m);
3367 			else if (m->valid == VM_PAGE_BITS_ALL &&
3368 				(bp->b_flags & B_CACHE) == 0) {
3369 				bp->b_pages[i] = bogus_page;
3370 				bogus++;
3371 			}
3372 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3373 		}
3374 		vm_page_unlock_queues();
3375 		if (obj != NULL)
3376 			VM_OBJECT_UNLOCK(obj);
3377 		if (bogus)
3378 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3379 	}
3380 }
3381 
3382 /*
3383  * Tell the VM system that the pages associated with this buffer
3384  * are clean.  This is used for delayed writes where the data is
3385  * going to go to disk eventually without additional VM intevention.
3386  *
3387  * Note that while we only really need to clean through to b_bcount, we
3388  * just go ahead and clean through to b_bufsize.
3389  */
3390 static void
3391 vfs_clean_pages(struct buf * bp)
3392 {
3393 	int i;
3394 
3395 	GIANT_REQUIRED;
3396 
3397 	if (bp->b_flags & B_VMIO) {
3398 		vm_ooffset_t foff;
3399 
3400 		foff = bp->b_offset;
3401 		KASSERT(bp->b_offset != NOOFFSET,
3402 		    ("vfs_clean_pages: no buffer offset"));
3403 		vm_page_lock_queues();
3404 		for (i = 0; i < bp->b_npages; i++) {
3405 			vm_page_t m = bp->b_pages[i];
3406 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3407 			vm_ooffset_t eoff = noff;
3408 
3409 			if (eoff > bp->b_offset + bp->b_bufsize)
3410 				eoff = bp->b_offset + bp->b_bufsize;
3411 			vfs_page_set_valid(bp, foff, i, m);
3412 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3413 			foff = noff;
3414 		}
3415 		vm_page_unlock_queues();
3416 	}
3417 }
3418 
3419 /*
3420  *	vfs_bio_set_validclean:
3421  *
3422  *	Set the range within the buffer to valid and clean.  The range is
3423  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3424  *	itself may be offset from the beginning of the first page.
3425  *
3426  */
3427 
3428 void
3429 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3430 {
3431 	if (bp->b_flags & B_VMIO) {
3432 		int i;
3433 		int n;
3434 
3435 		/*
3436 		 * Fixup base to be relative to beginning of first page.
3437 		 * Set initial n to be the maximum number of bytes in the
3438 		 * first page that can be validated.
3439 		 */
3440 
3441 		base += (bp->b_offset & PAGE_MASK);
3442 		n = PAGE_SIZE - (base & PAGE_MASK);
3443 
3444 		vm_page_lock_queues();
3445 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3446 			vm_page_t m = bp->b_pages[i];
3447 
3448 			if (n > size)
3449 				n = size;
3450 
3451 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3452 			base += n;
3453 			size -= n;
3454 			n = PAGE_SIZE;
3455 		}
3456 		vm_page_unlock_queues();
3457 	}
3458 }
3459 
3460 /*
3461  *	vfs_bio_clrbuf:
3462  *
3463  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3464  *	to clear BIO_ERROR and B_INVAL.
3465  *
3466  *	Note that while we only theoretically need to clear through b_bcount,
3467  *	we go ahead and clear through b_bufsize.
3468  */
3469 
3470 void
3471 vfs_bio_clrbuf(struct buf *bp)
3472 {
3473 	int i, mask = 0;
3474 	caddr_t sa, ea;
3475 
3476 	GIANT_REQUIRED;
3477 
3478 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3479 		bp->b_flags &= ~B_INVAL;
3480 		bp->b_ioflags &= ~BIO_ERROR;
3481 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3482 		    (bp->b_offset & PAGE_MASK) == 0) {
3483 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3484 			if ((bp->b_pages[0]->valid & mask) == mask) {
3485 				bp->b_resid = 0;
3486 				return;
3487 			}
3488 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3489 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3490 				bzero(bp->b_data, bp->b_bufsize);
3491 				bp->b_pages[0]->valid |= mask;
3492 				bp->b_resid = 0;
3493 				return;
3494 			}
3495 		}
3496 		ea = sa = bp->b_data;
3497 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3498 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3499 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3500 			ea = (caddr_t)(vm_offset_t)ulmin(
3501 			    (u_long)(vm_offset_t)ea,
3502 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3503 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3504 			if ((bp->b_pages[i]->valid & mask) == mask)
3505 				continue;
3506 			if ((bp->b_pages[i]->valid & mask) == 0) {
3507 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3508 					bzero(sa, ea - sa);
3509 				}
3510 			} else {
3511 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3512 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3513 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3514 						bzero(sa, DEV_BSIZE);
3515 				}
3516 			}
3517 			bp->b_pages[i]->valid |= mask;
3518 			vm_page_lock_queues();
3519 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3520 			vm_page_unlock_queues();
3521 		}
3522 		bp->b_resid = 0;
3523 	} else {
3524 		clrbuf(bp);
3525 	}
3526 }
3527 
3528 /*
3529  * vm_hold_load_pages and vm_hold_free_pages get pages into
3530  * a buffers address space.  The pages are anonymous and are
3531  * not associated with a file object.
3532  */
3533 static void
3534 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3535 {
3536 	vm_offset_t pg;
3537 	vm_page_t p;
3538 	int index;
3539 
3540 	GIANT_REQUIRED;
3541 
3542 	to = round_page(to);
3543 	from = round_page(from);
3544 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3545 
3546 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3547 tryagain:
3548 		/*
3549 		 * note: must allocate system pages since blocking here
3550 		 * could intefere with paging I/O, no matter which
3551 		 * process we are.
3552 		 */
3553 		VM_OBJECT_LOCK(kernel_object);
3554 		p = vm_page_alloc(kernel_object,
3555 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3556 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3557 		VM_OBJECT_UNLOCK(kernel_object);
3558 		if (!p) {
3559 			atomic_add_int(&vm_pageout_deficit,
3560 			    (to - pg) >> PAGE_SHIFT);
3561 			VM_WAIT;
3562 			goto tryagain;
3563 		}
3564 		vm_page_lock_queues();
3565 		p->valid = VM_PAGE_BITS_ALL;
3566 		vm_page_unlock_queues();
3567 		pmap_qenter(pg, &p, 1);
3568 		bp->b_pages[index] = p;
3569 		vm_page_lock_queues();
3570 		vm_page_wakeup(p);
3571 		vm_page_unlock_queues();
3572 	}
3573 	bp->b_npages = index;
3574 }
3575 
3576 /* Return pages associated with this buf to the vm system */
3577 static void
3578 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3579 {
3580 	vm_offset_t pg;
3581 	vm_page_t p;
3582 	int index, newnpages;
3583 
3584 	GIANT_REQUIRED;
3585 
3586 	from = round_page(from);
3587 	to = round_page(to);
3588 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3589 
3590 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3591 		p = bp->b_pages[index];
3592 		if (p && (index < bp->b_npages)) {
3593 			if (p->busy) {
3594 				printf(
3595 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3596 				    (intmax_t)bp->b_blkno,
3597 				    (intmax_t)bp->b_lblkno);
3598 			}
3599 			bp->b_pages[index] = NULL;
3600 			pmap_qremove(pg, 1);
3601 			vm_page_lock_queues();
3602 			vm_page_busy(p);
3603 			vm_page_unwire(p, 0);
3604 			vm_page_free(p);
3605 			vm_page_unlock_queues();
3606 		}
3607 	}
3608 	bp->b_npages = newnpages;
3609 }
3610 
3611 /*
3612  * Map an IO request into kernel virtual address space.
3613  *
3614  * All requests are (re)mapped into kernel VA space.
3615  * Notice that we use b_bufsize for the size of the buffer
3616  * to be mapped.  b_bcount might be modified by the driver.
3617  *
3618  * Note that even if the caller determines that the address space should
3619  * be valid, a race or a smaller-file mapped into a larger space may
3620  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3621  * check the return value.
3622  */
3623 int
3624 vmapbuf(struct buf *bp)
3625 {
3626 	caddr_t addr, kva;
3627 	vm_paddr_t pa;
3628 	int pidx, i;
3629 	struct vm_page *m;
3630 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3631 
3632 	GIANT_REQUIRED;
3633 
3634 	if ((bp->b_flags & B_PHYS) == 0)
3635 		panic("vmapbuf");
3636 	if (bp->b_bufsize < 0)
3637 		return (-1);
3638 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3639 	     addr < bp->b_data + bp->b_bufsize;
3640 	     addr += PAGE_SIZE, pidx++) {
3641 		/*
3642 		 * Do the vm_fault if needed; do the copy-on-write thing
3643 		 * when reading stuff off device into memory.
3644 		 *
3645 		 * NOTE! Must use pmap_extract() because addr may be in
3646 		 * the userland address space, and kextract is only guarenteed
3647 		 * to work for the kernland address space (see: sparc64 port).
3648 		 */
3649 retry:
3650 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3651 			(bp->b_iocmd == BIO_READ) ?
3652 			(VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ);
3653 		if (i < 0) {
3654 			vm_page_lock_queues();
3655 			for (i = 0; i < pidx; ++i) {
3656 				vm_page_unhold(bp->b_pages[i]);
3657 				bp->b_pages[i] = NULL;
3658 			}
3659 			vm_page_unlock_queues();
3660 			return(-1);
3661 		}
3662 		pa = pmap_extract(pmap, (vm_offset_t)addr);
3663 		if (pa == 0) {
3664 			printf("vmapbuf: warning, race against user address during I/O");
3665 			goto retry;
3666 		}
3667 		m = PHYS_TO_VM_PAGE(pa);
3668 		vm_page_lock_queues();
3669 		vm_page_hold(m);
3670 		vm_page_unlock_queues();
3671 		bp->b_pages[pidx] = m;
3672 	}
3673 	if (pidx > btoc(MAXPHYS))
3674 		panic("vmapbuf: mapped more than MAXPHYS");
3675 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3676 
3677 	kva = bp->b_saveaddr;
3678 	bp->b_npages = pidx;
3679 	bp->b_saveaddr = bp->b_data;
3680 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3681 	return(0);
3682 }
3683 
3684 /*
3685  * Free the io map PTEs associated with this IO operation.
3686  * We also invalidate the TLB entries and restore the original b_addr.
3687  */
3688 void
3689 vunmapbuf(struct buf *bp)
3690 {
3691 	int pidx;
3692 	int npages;
3693 
3694 	GIANT_REQUIRED;
3695 
3696 	if ((bp->b_flags & B_PHYS) == 0)
3697 		panic("vunmapbuf");
3698 
3699 	npages = bp->b_npages;
3700 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3701 		     npages);
3702 	vm_page_lock_queues();
3703 	for (pidx = 0; pidx < npages; pidx++)
3704 		vm_page_unhold(bp->b_pages[pidx]);
3705 	vm_page_unlock_queues();
3706 
3707 	bp->b_data = bp->b_saveaddr;
3708 }
3709 
3710 void
3711 bdone(struct buf *bp)
3712 {
3713 	mtx_lock(&bdonelock);
3714 	bp->b_flags |= B_DONE;
3715 	wakeup(bp);
3716 	mtx_unlock(&bdonelock);
3717 }
3718 
3719 void
3720 bwait(struct buf *bp, u_char pri, const char *wchan)
3721 {
3722 	mtx_lock(&bdonelock);
3723 	while ((bp->b_flags & B_DONE) == 0)
3724 		msleep(bp, &bdonelock, pri, wchan, 0);
3725 	mtx_unlock(&bdonelock);
3726 }
3727 
3728 #include "opt_ddb.h"
3729 #ifdef DDB
3730 #include <ddb/ddb.h>
3731 
3732 /* DDB command to show buffer data */
3733 DB_SHOW_COMMAND(buffer, db_show_buffer)
3734 {
3735 	/* get args */
3736 	struct buf *bp = (struct buf *)addr;
3737 
3738 	if (!have_addr) {
3739 		db_printf("usage: show buffer <addr>\n");
3740 		return;
3741 	}
3742 
3743 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3744 	db_printf(
3745 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3746 	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3747 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3748 	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3749 	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3750 	if (bp->b_npages) {
3751 		int i;
3752 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3753 		for (i = 0; i < bp->b_npages; i++) {
3754 			vm_page_t m;
3755 			m = bp->b_pages[i];
3756 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3757 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3758 			if ((i + 1) < bp->b_npages)
3759 				db_printf(",");
3760 		}
3761 		db_printf("\n");
3762 	}
3763 }
3764 #endif /* DDB */
3765