xref: /freebsd/sys/kern/vfs_bio.c (revision 32ba16b6e6dbfa5e4f536695191a8816bd6a8765)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * this file contains a new buffer I/O scheme implementing a coherent
30  * VM object and buffer cache scheme.  Pains have been taken to make
31  * sure that the performance degradation associated with schemes such
32  * as this is not realized.
33  *
34  * Author:  John S. Dyson
35  * Significant help during the development and debugging phases
36  * had been provided by David Greenman, also of the FreeBSD core team.
37  *
38  * see man buf(9) for more info.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bio.h>
47 #include <sys/conf.h>
48 #include <sys/buf.h>
49 #include <sys/devicestat.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fail.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/proc.h>
60 #include <sys/resourcevar.h>
61 #include <sys/sysctl.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 #include <geom/geom.h>
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_pageout.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_extern.h>
72 #include <vm/vm_map.h>
73 #include "opt_compat.h"
74 #include "opt_directio.h"
75 #include "opt_swap.h"
76 
77 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78 
79 struct	bio_ops bioops;		/* I/O operation notification */
80 
81 struct	buf_ops buf_ops_bio = {
82 	.bop_name	=	"buf_ops_bio",
83 	.bop_write	=	bufwrite,
84 	.bop_strategy	=	bufstrategy,
85 	.bop_sync	=	bufsync,
86 	.bop_bdflush	=	bufbdflush,
87 };
88 
89 /*
90  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92  */
93 struct buf *buf;		/* buffer header pool */
94 
95 static struct proc *bufdaemonproc;
96 
97 static int inmem(struct vnode *vp, daddr_t blkno);
98 static void vm_hold_free_pages(struct buf *bp, int newbsize);
99 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100 		vm_offset_t to);
101 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
102 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
103 		vm_page_t m);
104 static void vfs_drain_busy_pages(struct buf *bp);
105 static void vfs_clean_pages_dirty_buf(struct buf *bp);
106 static void vfs_setdirty_locked_object(struct buf *bp);
107 static void vfs_vmio_release(struct buf *bp);
108 static int vfs_bio_clcheck(struct vnode *vp, int size,
109 		daddr_t lblkno, daddr_t blkno);
110 static int buf_do_flush(struct vnode *vp);
111 static int flushbufqueues(struct vnode *, int, int);
112 static void buf_daemon(void);
113 static void bremfreel(struct buf *bp);
114 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
115     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
116 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
117 #endif
118 
119 int vmiodirenable = TRUE;
120 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
121     "Use the VM system for directory writes");
122 long runningbufspace;
123 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
124     "Amount of presently outstanding async buffer io");
125 static long bufspace;
126 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
127     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
128 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
129     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
130 #else
131 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
132     "Virtual memory used for buffers");
133 #endif
134 static long maxbufspace;
135 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
136     "Maximum allowed value of bufspace (including buf_daemon)");
137 static long bufmallocspace;
138 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
139     "Amount of malloced memory for buffers");
140 static long maxbufmallocspace;
141 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
142     "Maximum amount of malloced memory for buffers");
143 static long lobufspace;
144 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
145     "Minimum amount of buffers we want to have");
146 long hibufspace;
147 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
148     "Maximum allowed value of bufspace (excluding buf_daemon)");
149 static int bufreusecnt;
150 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
151     "Number of times we have reused a buffer");
152 static int buffreekvacnt;
153 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
154     "Number of times we have freed the KVA space from some buffer");
155 static int bufdefragcnt;
156 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
157     "Number of times we have had to repeat buffer allocation to defragment");
158 static long lorunningspace;
159 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
160     "Minimum preferred space used for in-progress I/O");
161 static long hirunningspace;
162 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
163     "Maximum amount of space to use for in-progress I/O");
164 int dirtybufferflushes;
165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
166     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
167 int bdwriteskip;
168 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
169     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
170 int altbufferflushes;
171 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
172     0, "Number of fsync flushes to limit dirty buffers");
173 static int recursiveflushes;
174 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
175     0, "Number of flushes skipped due to being recursive");
176 static int numdirtybuffers;
177 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
178     "Number of buffers that are dirty (has unwritten changes) at the moment");
179 static int lodirtybuffers;
180 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
181     "How many buffers we want to have free before bufdaemon can sleep");
182 static int hidirtybuffers;
183 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
184     "When the number of dirty buffers is considered severe");
185 int dirtybufthresh;
186 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
187     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
188 static int numfreebuffers;
189 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
190     "Number of free buffers");
191 static int lofreebuffers;
192 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
193    "XXX Unused");
194 static int hifreebuffers;
195 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
196    "XXX Complicatedly unused");
197 static int getnewbufcalls;
198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
199    "Number of calls to getnewbuf");
200 static int getnewbufrestarts;
201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
202     "Number of times getnewbuf has had to restart a buffer aquisition");
203 static int flushbufqtarget = 100;
204 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
205     "Amount of work to do in flushbufqueues when helping bufdaemon");
206 static long notbufdflashes;
207 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
208     "Number of dirty buffer flushes done by the bufdaemon helpers");
209 
210 /*
211  * Wakeup point for bufdaemon, as well as indicator of whether it is already
212  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
213  * is idling.
214  */
215 static int bd_request;
216 
217 /*
218  * Request for the buf daemon to write more buffers than is indicated by
219  * lodirtybuf.  This may be necessary to push out excess dependencies or
220  * defragment the address space where a simple count of the number of dirty
221  * buffers is insufficient to characterize the demand for flushing them.
222  */
223 static int bd_speedupreq;
224 
225 /*
226  * This lock synchronizes access to bd_request.
227  */
228 static struct mtx bdlock;
229 
230 /*
231  * bogus page -- for I/O to/from partially complete buffers
232  * this is a temporary solution to the problem, but it is not
233  * really that bad.  it would be better to split the buffer
234  * for input in the case of buffers partially already in memory,
235  * but the code is intricate enough already.
236  */
237 vm_page_t bogus_page;
238 
239 /*
240  * Synchronization (sleep/wakeup) variable for active buffer space requests.
241  * Set when wait starts, cleared prior to wakeup().
242  * Used in runningbufwakeup() and waitrunningbufspace().
243  */
244 static int runningbufreq;
245 
246 /*
247  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
248  * waitrunningbufspace().
249  */
250 static struct mtx rbreqlock;
251 
252 /*
253  * Synchronization (sleep/wakeup) variable for buffer requests.
254  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
255  * by and/or.
256  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
257  * getnewbuf(), and getblk().
258  */
259 static int needsbuffer;
260 
261 /*
262  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
263  */
264 static struct mtx nblock;
265 
266 /*
267  * Definitions for the buffer free lists.
268  */
269 #define BUFFER_QUEUES	6	/* number of free buffer queues */
270 
271 #define QUEUE_NONE	0	/* on no queue */
272 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
273 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
274 #define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
275 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
276 #define QUEUE_EMPTY	5	/* empty buffer headers */
277 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
278 
279 /* Queues for free buffers with various properties */
280 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
281 
282 /* Lock for the bufqueues */
283 static struct mtx bqlock;
284 
285 /*
286  * Single global constant for BUF_WMESG, to avoid getting multiple references.
287  * buf_wmesg is referred from macros.
288  */
289 const char *buf_wmesg = BUF_WMESG;
290 
291 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
292 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
293 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
294 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
295 
296 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
297     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
298 static int
299 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
300 {
301 	long lvalue;
302 	int ivalue;
303 
304 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
305 		return (sysctl_handle_long(oidp, arg1, arg2, req));
306 	lvalue = *(long *)arg1;
307 	if (lvalue > INT_MAX)
308 		/* On overflow, still write out a long to trigger ENOMEM. */
309 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
310 	ivalue = lvalue;
311 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
312 }
313 #endif
314 
315 #ifdef DIRECTIO
316 extern void ffs_rawread_setup(void);
317 #endif /* DIRECTIO */
318 /*
319  *	numdirtywakeup:
320  *
321  *	If someone is blocked due to there being too many dirty buffers,
322  *	and numdirtybuffers is now reasonable, wake them up.
323  */
324 
325 static __inline void
326 numdirtywakeup(int level)
327 {
328 
329 	if (numdirtybuffers <= level) {
330 		mtx_lock(&nblock);
331 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
332 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
333 			wakeup(&needsbuffer);
334 		}
335 		mtx_unlock(&nblock);
336 	}
337 }
338 
339 /*
340  *	bufspacewakeup:
341  *
342  *	Called when buffer space is potentially available for recovery.
343  *	getnewbuf() will block on this flag when it is unable to free
344  *	sufficient buffer space.  Buffer space becomes recoverable when
345  *	bp's get placed back in the queues.
346  */
347 
348 static __inline void
349 bufspacewakeup(void)
350 {
351 
352 	/*
353 	 * If someone is waiting for BUF space, wake them up.  Even
354 	 * though we haven't freed the kva space yet, the waiting
355 	 * process will be able to now.
356 	 */
357 	mtx_lock(&nblock);
358 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
359 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
360 		wakeup(&needsbuffer);
361 	}
362 	mtx_unlock(&nblock);
363 }
364 
365 /*
366  * runningbufwakeup() - in-progress I/O accounting.
367  *
368  */
369 void
370 runningbufwakeup(struct buf *bp)
371 {
372 
373 	if (bp->b_runningbufspace) {
374 		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
375 		bp->b_runningbufspace = 0;
376 		mtx_lock(&rbreqlock);
377 		if (runningbufreq && runningbufspace <= lorunningspace) {
378 			runningbufreq = 0;
379 			wakeup(&runningbufreq);
380 		}
381 		mtx_unlock(&rbreqlock);
382 	}
383 }
384 
385 /*
386  *	bufcountwakeup:
387  *
388  *	Called when a buffer has been added to one of the free queues to
389  *	account for the buffer and to wakeup anyone waiting for free buffers.
390  *	This typically occurs when large amounts of metadata are being handled
391  *	by the buffer cache ( else buffer space runs out first, usually ).
392  */
393 
394 static __inline void
395 bufcountwakeup(struct buf *bp)
396 {
397 	int old;
398 
399 	KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
400 	    ("buf %p already counted as free", bp));
401 	bp->b_vflags |= BV_INFREECNT;
402 	old = atomic_fetchadd_int(&numfreebuffers, 1);
403 	KASSERT(old >= 0 && old < nbuf,
404 	    ("numfreebuffers climbed to %d", old + 1));
405 	mtx_lock(&nblock);
406 	if (needsbuffer) {
407 		needsbuffer &= ~VFS_BIO_NEED_ANY;
408 		if (numfreebuffers >= hifreebuffers)
409 			needsbuffer &= ~VFS_BIO_NEED_FREE;
410 		wakeup(&needsbuffer);
411 	}
412 	mtx_unlock(&nblock);
413 }
414 
415 /*
416  *	waitrunningbufspace()
417  *
418  *	runningbufspace is a measure of the amount of I/O currently
419  *	running.  This routine is used in async-write situations to
420  *	prevent creating huge backups of pending writes to a device.
421  *	Only asynchronous writes are governed by this function.
422  *
423  *	Reads will adjust runningbufspace, but will not block based on it.
424  *	The read load has a side effect of reducing the allowed write load.
425  *
426  *	This does NOT turn an async write into a sync write.  It waits
427  *	for earlier writes to complete and generally returns before the
428  *	caller's write has reached the device.
429  */
430 void
431 waitrunningbufspace(void)
432 {
433 
434 	mtx_lock(&rbreqlock);
435 	while (runningbufspace > hirunningspace) {
436 		++runningbufreq;
437 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
438 	}
439 	mtx_unlock(&rbreqlock);
440 }
441 
442 
443 /*
444  *	vfs_buf_test_cache:
445  *
446  *	Called when a buffer is extended.  This function clears the B_CACHE
447  *	bit if the newly extended portion of the buffer does not contain
448  *	valid data.
449  */
450 static __inline
451 void
452 vfs_buf_test_cache(struct buf *bp,
453 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
454 		  vm_page_t m)
455 {
456 
457 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
458 	if (bp->b_flags & B_CACHE) {
459 		int base = (foff + off) & PAGE_MASK;
460 		if (vm_page_is_valid(m, base, size) == 0)
461 			bp->b_flags &= ~B_CACHE;
462 	}
463 }
464 
465 /* Wake up the buffer daemon if necessary */
466 static __inline
467 void
468 bd_wakeup(int dirtybuflevel)
469 {
470 
471 	mtx_lock(&bdlock);
472 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
473 		bd_request = 1;
474 		wakeup(&bd_request);
475 	}
476 	mtx_unlock(&bdlock);
477 }
478 
479 /*
480  * bd_speedup - speedup the buffer cache flushing code
481  */
482 
483 void
484 bd_speedup(void)
485 {
486 	int needwake;
487 
488 	mtx_lock(&bdlock);
489 	needwake = 0;
490 	if (bd_speedupreq == 0 || bd_request == 0)
491 		needwake = 1;
492 	bd_speedupreq = 1;
493 	bd_request = 1;
494 	if (needwake)
495 		wakeup(&bd_request);
496 	mtx_unlock(&bdlock);
497 }
498 
499 /*
500  * Calculating buffer cache scaling values and reserve space for buffer
501  * headers.  This is called during low level kernel initialization and
502  * may be called more then once.  We CANNOT write to the memory area
503  * being reserved at this time.
504  */
505 caddr_t
506 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
507 {
508 	int tuned_nbuf;
509 	long maxbuf;
510 
511 	/*
512 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
513 	 * PAGE_SIZE is >= 1K)
514 	 */
515 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
516 
517 	/*
518 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
519 	 * For the first 64MB of ram nominally allocate sufficient buffers to
520 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
521 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
522 	 * the buffer cache we limit the eventual kva reservation to
523 	 * maxbcache bytes.
524 	 *
525 	 * factor represents the 1/4 x ram conversion.
526 	 */
527 	if (nbuf == 0) {
528 		int factor = 4 * BKVASIZE / 1024;
529 
530 		nbuf = 50;
531 		if (physmem_est > 4096)
532 			nbuf += min((physmem_est - 4096) / factor,
533 			    65536 / factor);
534 		if (physmem_est > 65536)
535 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
536 
537 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
538 			nbuf = maxbcache / BKVASIZE;
539 		tuned_nbuf = 1;
540 	} else
541 		tuned_nbuf = 0;
542 
543 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
544 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
545 	if (nbuf > maxbuf) {
546 		if (!tuned_nbuf)
547 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
548 			    maxbuf);
549 		nbuf = maxbuf;
550 	}
551 
552 	/*
553 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
554 	 * We have no less then 16 and no more then 256.
555 	 */
556 	nswbuf = max(min(nbuf/4, 256), 16);
557 #ifdef NSWBUF_MIN
558 	if (nswbuf < NSWBUF_MIN)
559 		nswbuf = NSWBUF_MIN;
560 #endif
561 #ifdef DIRECTIO
562 	ffs_rawread_setup();
563 #endif
564 
565 	/*
566 	 * Reserve space for the buffer cache buffers
567 	 */
568 	swbuf = (void *)v;
569 	v = (caddr_t)(swbuf + nswbuf);
570 	buf = (void *)v;
571 	v = (caddr_t)(buf + nbuf);
572 
573 	return(v);
574 }
575 
576 /* Initialize the buffer subsystem.  Called before use of any buffers. */
577 void
578 bufinit(void)
579 {
580 	struct buf *bp;
581 	int i;
582 
583 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
584 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
585 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
586 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
587 
588 	/* next, make a null set of free lists */
589 	for (i = 0; i < BUFFER_QUEUES; i++)
590 		TAILQ_INIT(&bufqueues[i]);
591 
592 	/* finally, initialize each buffer header and stick on empty q */
593 	for (i = 0; i < nbuf; i++) {
594 		bp = &buf[i];
595 		bzero(bp, sizeof *bp);
596 		bp->b_flags = B_INVAL;	/* we're just an empty header */
597 		bp->b_rcred = NOCRED;
598 		bp->b_wcred = NOCRED;
599 		bp->b_qindex = QUEUE_EMPTY;
600 		bp->b_vflags = BV_INFREECNT;	/* buf is counted as free */
601 		bp->b_xflags = 0;
602 		LIST_INIT(&bp->b_dep);
603 		BUF_LOCKINIT(bp);
604 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
605 	}
606 
607 	/*
608 	 * maxbufspace is the absolute maximum amount of buffer space we are
609 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
610 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
611 	 * used by most other processes.  The differential is required to
612 	 * ensure that buf_daemon is able to run when other processes might
613 	 * be blocked waiting for buffer space.
614 	 *
615 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
616 	 * this may result in KVM fragmentation which is not handled optimally
617 	 * by the system.
618 	 */
619 	maxbufspace = (long)nbuf * BKVASIZE;
620 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
621 	lobufspace = hibufspace - MAXBSIZE;
622 
623 	/*
624 	 * Note: The 16 MB upper limit for hirunningspace was chosen
625 	 * arbitrarily and may need further tuning. The lower 1 MB
626 	 * limit is the historical upper limit for hirunningspace.
627 	 */
628 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
629 	    16 * 1024 * 1024), 1024 * 1024);
630 	lorunningspace = roundup(hirunningspace / 2, MAXBSIZE);
631 
632 /*
633  * Limit the amount of malloc memory since it is wired permanently into
634  * the kernel space.  Even though this is accounted for in the buffer
635  * allocation, we don't want the malloced region to grow uncontrolled.
636  * The malloc scheme improves memory utilization significantly on average
637  * (small) directories.
638  */
639 	maxbufmallocspace = hibufspace / 20;
640 
641 /*
642  * Reduce the chance of a deadlock occuring by limiting the number
643  * of delayed-write dirty buffers we allow to stack up.
644  */
645 	hidirtybuffers = nbuf / 4 + 20;
646 	dirtybufthresh = hidirtybuffers * 9 / 10;
647 	numdirtybuffers = 0;
648 /*
649  * To support extreme low-memory systems, make sure hidirtybuffers cannot
650  * eat up all available buffer space.  This occurs when our minimum cannot
651  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
652  * BKVASIZE'd (8K) buffers.
653  */
654 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
655 		hidirtybuffers >>= 1;
656 	}
657 	lodirtybuffers = hidirtybuffers / 2;
658 
659 /*
660  * Try to keep the number of free buffers in the specified range,
661  * and give special processes (e.g. like buf_daemon) access to an
662  * emergency reserve.
663  */
664 	lofreebuffers = nbuf / 18 + 5;
665 	hifreebuffers = 2 * lofreebuffers;
666 	numfreebuffers = nbuf;
667 
668 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
669 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
670 }
671 
672 /*
673  * bfreekva() - free the kva allocation for a buffer.
674  *
675  *	Since this call frees up buffer space, we call bufspacewakeup().
676  */
677 static void
678 bfreekva(struct buf *bp)
679 {
680 
681 	if (bp->b_kvasize) {
682 		atomic_add_int(&buffreekvacnt, 1);
683 		atomic_subtract_long(&bufspace, bp->b_kvasize);
684 		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
685 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
686 		bp->b_kvasize = 0;
687 		bufspacewakeup();
688 	}
689 }
690 
691 /*
692  *	bremfree:
693  *
694  *	Mark the buffer for removal from the appropriate free list in brelse.
695  *
696  */
697 void
698 bremfree(struct buf *bp)
699 {
700 	int old;
701 
702 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
703 	KASSERT((bp->b_flags & B_REMFREE) == 0,
704 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
705 	KASSERT(bp->b_qindex != QUEUE_NONE,
706 	    ("bremfree: buffer %p not on a queue.", bp));
707 	BUF_ASSERT_HELD(bp);
708 
709 	bp->b_flags |= B_REMFREE;
710 	/* Fixup numfreebuffers count.  */
711 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
712 		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
713 		    ("buf %p not counted in numfreebuffers", bp));
714 		bp->b_vflags &= ~BV_INFREECNT;
715 		old = atomic_fetchadd_int(&numfreebuffers, -1);
716 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
717 	}
718 }
719 
720 /*
721  *	bremfreef:
722  *
723  *	Force an immediate removal from a free list.  Used only in nfs when
724  *	it abuses the b_freelist pointer.
725  */
726 void
727 bremfreef(struct buf *bp)
728 {
729 	mtx_lock(&bqlock);
730 	bremfreel(bp);
731 	mtx_unlock(&bqlock);
732 }
733 
734 /*
735  *	bremfreel:
736  *
737  *	Removes a buffer from the free list, must be called with the
738  *	bqlock held.
739  */
740 static void
741 bremfreel(struct buf *bp)
742 {
743 	int old;
744 
745 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
746 	    bp, bp->b_vp, bp->b_flags);
747 	KASSERT(bp->b_qindex != QUEUE_NONE,
748 	    ("bremfreel: buffer %p not on a queue.", bp));
749 	BUF_ASSERT_HELD(bp);
750 	mtx_assert(&bqlock, MA_OWNED);
751 
752 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
753 	bp->b_qindex = QUEUE_NONE;
754 	/*
755 	 * If this was a delayed bremfree() we only need to remove the buffer
756 	 * from the queue and return the stats are already done.
757 	 */
758 	if (bp->b_flags & B_REMFREE) {
759 		bp->b_flags &= ~B_REMFREE;
760 		return;
761 	}
762 	/*
763 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
764 	 * delayed-write, the buffer was free and we must decrement
765 	 * numfreebuffers.
766 	 */
767 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
768 		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
769 		    ("buf %p not counted in numfreebuffers", bp));
770 		bp->b_vflags &= ~BV_INFREECNT;
771 		old = atomic_fetchadd_int(&numfreebuffers, -1);
772 		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
773 	}
774 }
775 
776 
777 /*
778  * Get a buffer with the specified data.  Look in the cache first.  We
779  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
780  * is set, the buffer is valid and we do not have to do anything ( see
781  * getblk() ).  This is really just a special case of breadn().
782  */
783 int
784 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
785     struct buf **bpp)
786 {
787 
788 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
789 }
790 
791 /*
792  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
793  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
794  * the buffer is valid and we do not have to do anything.
795  */
796 void
797 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
798     int cnt, struct ucred * cred)
799 {
800 	struct buf *rabp;
801 	int i;
802 
803 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
804 		if (inmem(vp, *rablkno))
805 			continue;
806 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
807 
808 		if ((rabp->b_flags & B_CACHE) == 0) {
809 			if (!TD_IS_IDLETHREAD(curthread))
810 				curthread->td_ru.ru_inblock++;
811 			rabp->b_flags |= B_ASYNC;
812 			rabp->b_flags &= ~B_INVAL;
813 			rabp->b_ioflags &= ~BIO_ERROR;
814 			rabp->b_iocmd = BIO_READ;
815 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
816 				rabp->b_rcred = crhold(cred);
817 			vfs_busy_pages(rabp, 0);
818 			BUF_KERNPROC(rabp);
819 			rabp->b_iooffset = dbtob(rabp->b_blkno);
820 			bstrategy(rabp);
821 		} else {
822 			brelse(rabp);
823 		}
824 	}
825 }
826 
827 /*
828  * Operates like bread, but also starts asynchronous I/O on
829  * read-ahead blocks.
830  */
831 int
832 breadn(struct vnode * vp, daddr_t blkno, int size,
833     daddr_t * rablkno, int *rabsize,
834     int cnt, struct ucred * cred, struct buf **bpp)
835 {
836 	struct buf *bp;
837 	int rv = 0, readwait = 0;
838 
839 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
840 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
841 
842 	/* if not found in cache, do some I/O */
843 	if ((bp->b_flags & B_CACHE) == 0) {
844 		if (!TD_IS_IDLETHREAD(curthread))
845 			curthread->td_ru.ru_inblock++;
846 		bp->b_iocmd = BIO_READ;
847 		bp->b_flags &= ~B_INVAL;
848 		bp->b_ioflags &= ~BIO_ERROR;
849 		if (bp->b_rcred == NOCRED && cred != NOCRED)
850 			bp->b_rcred = crhold(cred);
851 		vfs_busy_pages(bp, 0);
852 		bp->b_iooffset = dbtob(bp->b_blkno);
853 		bstrategy(bp);
854 		++readwait;
855 	}
856 
857 	breada(vp, rablkno, rabsize, cnt, cred);
858 
859 	if (readwait) {
860 		rv = bufwait(bp);
861 	}
862 	return (rv);
863 }
864 
865 /*
866  * Write, release buffer on completion.  (Done by iodone
867  * if async).  Do not bother writing anything if the buffer
868  * is invalid.
869  *
870  * Note that we set B_CACHE here, indicating that buffer is
871  * fully valid and thus cacheable.  This is true even of NFS
872  * now so we set it generally.  This could be set either here
873  * or in biodone() since the I/O is synchronous.  We put it
874  * here.
875  */
876 int
877 bufwrite(struct buf *bp)
878 {
879 	int oldflags;
880 	struct vnode *vp;
881 	int vp_md;
882 
883 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
884 	if (bp->b_flags & B_INVAL) {
885 		brelse(bp);
886 		return (0);
887 	}
888 
889 	oldflags = bp->b_flags;
890 
891 	BUF_ASSERT_HELD(bp);
892 
893 	if (bp->b_pin_count > 0)
894 		bunpin_wait(bp);
895 
896 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
897 	    ("FFS background buffer should not get here %p", bp));
898 
899 	vp = bp->b_vp;
900 	if (vp)
901 		vp_md = vp->v_vflag & VV_MD;
902 	else
903 		vp_md = 0;
904 
905 	/* Mark the buffer clean */
906 	bundirty(bp);
907 
908 	bp->b_flags &= ~B_DONE;
909 	bp->b_ioflags &= ~BIO_ERROR;
910 	bp->b_flags |= B_CACHE;
911 	bp->b_iocmd = BIO_WRITE;
912 
913 	bufobj_wref(bp->b_bufobj);
914 	vfs_busy_pages(bp, 1);
915 
916 	/*
917 	 * Normal bwrites pipeline writes
918 	 */
919 	bp->b_runningbufspace = bp->b_bufsize;
920 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
921 
922 	if (!TD_IS_IDLETHREAD(curthread))
923 		curthread->td_ru.ru_oublock++;
924 	if (oldflags & B_ASYNC)
925 		BUF_KERNPROC(bp);
926 	bp->b_iooffset = dbtob(bp->b_blkno);
927 	bstrategy(bp);
928 
929 	if ((oldflags & B_ASYNC) == 0) {
930 		int rtval = bufwait(bp);
931 		brelse(bp);
932 		return (rtval);
933 	} else {
934 		/*
935 		 * don't allow the async write to saturate the I/O
936 		 * system.  We will not deadlock here because
937 		 * we are blocking waiting for I/O that is already in-progress
938 		 * to complete. We do not block here if it is the update
939 		 * or syncer daemon trying to clean up as that can lead
940 		 * to deadlock.
941 		 */
942 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
943 			waitrunningbufspace();
944 	}
945 
946 	return (0);
947 }
948 
949 void
950 bufbdflush(struct bufobj *bo, struct buf *bp)
951 {
952 	struct buf *nbp;
953 
954 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
955 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
956 		altbufferflushes++;
957 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
958 		BO_LOCK(bo);
959 		/*
960 		 * Try to find a buffer to flush.
961 		 */
962 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
963 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
964 			    BUF_LOCK(nbp,
965 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
966 				continue;
967 			if (bp == nbp)
968 				panic("bdwrite: found ourselves");
969 			BO_UNLOCK(bo);
970 			/* Don't countdeps with the bo lock held. */
971 			if (buf_countdeps(nbp, 0)) {
972 				BO_LOCK(bo);
973 				BUF_UNLOCK(nbp);
974 				continue;
975 			}
976 			if (nbp->b_flags & B_CLUSTEROK) {
977 				vfs_bio_awrite(nbp);
978 			} else {
979 				bremfree(nbp);
980 				bawrite(nbp);
981 			}
982 			dirtybufferflushes++;
983 			break;
984 		}
985 		if (nbp == NULL)
986 			BO_UNLOCK(bo);
987 	}
988 }
989 
990 /*
991  * Delayed write. (Buffer is marked dirty).  Do not bother writing
992  * anything if the buffer is marked invalid.
993  *
994  * Note that since the buffer must be completely valid, we can safely
995  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
996  * biodone() in order to prevent getblk from writing the buffer
997  * out synchronously.
998  */
999 void
1000 bdwrite(struct buf *bp)
1001 {
1002 	struct thread *td = curthread;
1003 	struct vnode *vp;
1004 	struct bufobj *bo;
1005 
1006 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1007 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1008 	BUF_ASSERT_HELD(bp);
1009 
1010 	if (bp->b_flags & B_INVAL) {
1011 		brelse(bp);
1012 		return;
1013 	}
1014 
1015 	/*
1016 	 * If we have too many dirty buffers, don't create any more.
1017 	 * If we are wildly over our limit, then force a complete
1018 	 * cleanup. Otherwise, just keep the situation from getting
1019 	 * out of control. Note that we have to avoid a recursive
1020 	 * disaster and not try to clean up after our own cleanup!
1021 	 */
1022 	vp = bp->b_vp;
1023 	bo = bp->b_bufobj;
1024 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1025 		td->td_pflags |= TDP_INBDFLUSH;
1026 		BO_BDFLUSH(bo, bp);
1027 		td->td_pflags &= ~TDP_INBDFLUSH;
1028 	} else
1029 		recursiveflushes++;
1030 
1031 	bdirty(bp);
1032 	/*
1033 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1034 	 * true even of NFS now.
1035 	 */
1036 	bp->b_flags |= B_CACHE;
1037 
1038 	/*
1039 	 * This bmap keeps the system from needing to do the bmap later,
1040 	 * perhaps when the system is attempting to do a sync.  Since it
1041 	 * is likely that the indirect block -- or whatever other datastructure
1042 	 * that the filesystem needs is still in memory now, it is a good
1043 	 * thing to do this.  Note also, that if the pageout daemon is
1044 	 * requesting a sync -- there might not be enough memory to do
1045 	 * the bmap then...  So, this is important to do.
1046 	 */
1047 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1048 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1049 	}
1050 
1051 	/*
1052 	 * Set the *dirty* buffer range based upon the VM system dirty
1053 	 * pages.
1054 	 *
1055 	 * Mark the buffer pages as clean.  We need to do this here to
1056 	 * satisfy the vnode_pager and the pageout daemon, so that it
1057 	 * thinks that the pages have been "cleaned".  Note that since
1058 	 * the pages are in a delayed write buffer -- the VFS layer
1059 	 * "will" see that the pages get written out on the next sync,
1060 	 * or perhaps the cluster will be completed.
1061 	 */
1062 	vfs_clean_pages_dirty_buf(bp);
1063 	bqrelse(bp);
1064 
1065 	/*
1066 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1067 	 * buffers (midpoint between our recovery point and our stall
1068 	 * point).
1069 	 */
1070 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1071 
1072 	/*
1073 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1074 	 * due to the softdep code.
1075 	 */
1076 }
1077 
1078 /*
1079  *	bdirty:
1080  *
1081  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1082  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1083  *	itself to properly update it in the dirty/clean lists.  We mark it
1084  *	B_DONE to ensure that any asynchronization of the buffer properly
1085  *	clears B_DONE ( else a panic will occur later ).
1086  *
1087  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1088  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1089  *	should only be called if the buffer is known-good.
1090  *
1091  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1092  *	count.
1093  *
1094  *	The buffer must be on QUEUE_NONE.
1095  */
1096 void
1097 bdirty(struct buf *bp)
1098 {
1099 
1100 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1101 	    bp, bp->b_vp, bp->b_flags);
1102 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1103 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1104 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1105 	BUF_ASSERT_HELD(bp);
1106 	bp->b_flags &= ~(B_RELBUF);
1107 	bp->b_iocmd = BIO_WRITE;
1108 
1109 	if ((bp->b_flags & B_DELWRI) == 0) {
1110 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1111 		reassignbuf(bp);
1112 		atomic_add_int(&numdirtybuffers, 1);
1113 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1114 	}
1115 }
1116 
1117 /*
1118  *	bundirty:
1119  *
1120  *	Clear B_DELWRI for buffer.
1121  *
1122  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1123  *	count.
1124  *
1125  *	The buffer must be on QUEUE_NONE.
1126  */
1127 
1128 void
1129 bundirty(struct buf *bp)
1130 {
1131 
1132 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1133 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1134 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1135 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1136 	BUF_ASSERT_HELD(bp);
1137 
1138 	if (bp->b_flags & B_DELWRI) {
1139 		bp->b_flags &= ~B_DELWRI;
1140 		reassignbuf(bp);
1141 		atomic_subtract_int(&numdirtybuffers, 1);
1142 		numdirtywakeup(lodirtybuffers);
1143 	}
1144 	/*
1145 	 * Since it is now being written, we can clear its deferred write flag.
1146 	 */
1147 	bp->b_flags &= ~B_DEFERRED;
1148 }
1149 
1150 /*
1151  *	bawrite:
1152  *
1153  *	Asynchronous write.  Start output on a buffer, but do not wait for
1154  *	it to complete.  The buffer is released when the output completes.
1155  *
1156  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1157  *	B_INVAL buffers.  Not us.
1158  */
1159 void
1160 bawrite(struct buf *bp)
1161 {
1162 
1163 	bp->b_flags |= B_ASYNC;
1164 	(void) bwrite(bp);
1165 }
1166 
1167 /*
1168  *	bwillwrite:
1169  *
1170  *	Called prior to the locking of any vnodes when we are expecting to
1171  *	write.  We do not want to starve the buffer cache with too many
1172  *	dirty buffers so we block here.  By blocking prior to the locking
1173  *	of any vnodes we attempt to avoid the situation where a locked vnode
1174  *	prevents the various system daemons from flushing related buffers.
1175  */
1176 
1177 void
1178 bwillwrite(void)
1179 {
1180 
1181 	if (numdirtybuffers >= hidirtybuffers) {
1182 		mtx_lock(&nblock);
1183 		while (numdirtybuffers >= hidirtybuffers) {
1184 			bd_wakeup(1);
1185 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1186 			msleep(&needsbuffer, &nblock,
1187 			    (PRIBIO + 4), "flswai", 0);
1188 		}
1189 		mtx_unlock(&nblock);
1190 	}
1191 }
1192 
1193 /*
1194  * Return true if we have too many dirty buffers.
1195  */
1196 int
1197 buf_dirty_count_severe(void)
1198 {
1199 
1200 	return(numdirtybuffers >= hidirtybuffers);
1201 }
1202 
1203 static __noinline int
1204 buf_vm_page_count_severe(void)
1205 {
1206 
1207 	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1208 
1209 	return vm_page_count_severe();
1210 }
1211 
1212 /*
1213  *	brelse:
1214  *
1215  *	Release a busy buffer and, if requested, free its resources.  The
1216  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1217  *	to be accessed later as a cache entity or reused for other purposes.
1218  */
1219 void
1220 brelse(struct buf *bp)
1221 {
1222 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1223 	    bp, bp->b_vp, bp->b_flags);
1224 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1225 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1226 
1227 	if (bp->b_flags & B_MANAGED) {
1228 		bqrelse(bp);
1229 		return;
1230 	}
1231 
1232 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1233 	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1234 		/*
1235 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1236 		 * pages from being scrapped.  If the error is anything
1237 		 * other than an I/O error (EIO), assume that retrying
1238 		 * is futile.
1239 		 */
1240 		bp->b_ioflags &= ~BIO_ERROR;
1241 		bdirty(bp);
1242 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1243 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1244 		/*
1245 		 * Either a failed I/O or we were asked to free or not
1246 		 * cache the buffer.
1247 		 */
1248 		bp->b_flags |= B_INVAL;
1249 		if (!LIST_EMPTY(&bp->b_dep))
1250 			buf_deallocate(bp);
1251 		if (bp->b_flags & B_DELWRI) {
1252 			atomic_subtract_int(&numdirtybuffers, 1);
1253 			numdirtywakeup(lodirtybuffers);
1254 		}
1255 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1256 		if ((bp->b_flags & B_VMIO) == 0) {
1257 			if (bp->b_bufsize)
1258 				allocbuf(bp, 0);
1259 			if (bp->b_vp)
1260 				brelvp(bp);
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1266 	 * is called with B_DELWRI set, the underlying pages may wind up
1267 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1268 	 * because pages associated with a B_DELWRI bp are marked clean.
1269 	 *
1270 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1271 	 * if B_DELWRI is set.
1272 	 *
1273 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1274 	 * on pages to return pages to the VM page queues.
1275 	 */
1276 	if (bp->b_flags & B_DELWRI)
1277 		bp->b_flags &= ~B_RELBUF;
1278 	else if (buf_vm_page_count_severe()) {
1279 		/*
1280 		 * The locking of the BO_LOCK is not necessary since
1281 		 * BKGRDINPROG cannot be set while we hold the buf
1282 		 * lock, it can only be cleared if it is already
1283 		 * pending.
1284 		 */
1285 		if (bp->b_vp) {
1286 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1287 				bp->b_flags |= B_RELBUF;
1288 		} else
1289 			bp->b_flags |= B_RELBUF;
1290 	}
1291 
1292 	/*
1293 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1294 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1295 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1296 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1297 	 *
1298 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1299 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1300 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1301 	 *
1302 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1303 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1304 	 * the commit state and we cannot afford to lose the buffer. If the
1305 	 * buffer has a background write in progress, we need to keep it
1306 	 * around to prevent it from being reconstituted and starting a second
1307 	 * background write.
1308 	 */
1309 	if ((bp->b_flags & B_VMIO)
1310 	    && !(bp->b_vp->v_mount != NULL &&
1311 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1312 		 !vn_isdisk(bp->b_vp, NULL) &&
1313 		 (bp->b_flags & B_DELWRI))
1314 	    ) {
1315 
1316 		int i, j, resid;
1317 		vm_page_t m;
1318 		off_t foff;
1319 		vm_pindex_t poff;
1320 		vm_object_t obj;
1321 
1322 		obj = bp->b_bufobj->bo_object;
1323 
1324 		/*
1325 		 * Get the base offset and length of the buffer.  Note that
1326 		 * in the VMIO case if the buffer block size is not
1327 		 * page-aligned then b_data pointer may not be page-aligned.
1328 		 * But our b_pages[] array *IS* page aligned.
1329 		 *
1330 		 * block sizes less then DEV_BSIZE (usually 512) are not
1331 		 * supported due to the page granularity bits (m->valid,
1332 		 * m->dirty, etc...).
1333 		 *
1334 		 * See man buf(9) for more information
1335 		 */
1336 		resid = bp->b_bufsize;
1337 		foff = bp->b_offset;
1338 		VM_OBJECT_LOCK(obj);
1339 		for (i = 0; i < bp->b_npages; i++) {
1340 			int had_bogus = 0;
1341 
1342 			m = bp->b_pages[i];
1343 
1344 			/*
1345 			 * If we hit a bogus page, fixup *all* the bogus pages
1346 			 * now.
1347 			 */
1348 			if (m == bogus_page) {
1349 				poff = OFF_TO_IDX(bp->b_offset);
1350 				had_bogus = 1;
1351 
1352 				for (j = i; j < bp->b_npages; j++) {
1353 					vm_page_t mtmp;
1354 					mtmp = bp->b_pages[j];
1355 					if (mtmp == bogus_page) {
1356 						mtmp = vm_page_lookup(obj, poff + j);
1357 						if (!mtmp) {
1358 							panic("brelse: page missing\n");
1359 						}
1360 						bp->b_pages[j] = mtmp;
1361 					}
1362 				}
1363 
1364 				if ((bp->b_flags & B_INVAL) == 0) {
1365 					pmap_qenter(
1366 					    trunc_page((vm_offset_t)bp->b_data),
1367 					    bp->b_pages, bp->b_npages);
1368 				}
1369 				m = bp->b_pages[i];
1370 			}
1371 			if ((bp->b_flags & B_NOCACHE) ||
1372 			    (bp->b_ioflags & BIO_ERROR &&
1373 			     bp->b_iocmd == BIO_READ)) {
1374 				int poffset = foff & PAGE_MASK;
1375 				int presid = resid > (PAGE_SIZE - poffset) ?
1376 					(PAGE_SIZE - poffset) : resid;
1377 
1378 				KASSERT(presid >= 0, ("brelse: extra page"));
1379 				vm_page_set_invalid(m, poffset, presid);
1380 				if (had_bogus)
1381 					printf("avoided corruption bug in bogus_page/brelse code\n");
1382 			}
1383 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1384 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1385 		}
1386 		VM_OBJECT_UNLOCK(obj);
1387 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1388 			vfs_vmio_release(bp);
1389 
1390 	} else if (bp->b_flags & B_VMIO) {
1391 
1392 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1393 			vfs_vmio_release(bp);
1394 		}
1395 
1396 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1397 		if (bp->b_bufsize != 0)
1398 			allocbuf(bp, 0);
1399 		if (bp->b_vp != NULL)
1400 			brelvp(bp);
1401 	}
1402 
1403 	if (BUF_LOCKRECURSED(bp)) {
1404 		/* do not release to free list */
1405 		BUF_UNLOCK(bp);
1406 		return;
1407 	}
1408 
1409 	/* enqueue */
1410 	mtx_lock(&bqlock);
1411 	/* Handle delayed bremfree() processing. */
1412 	if (bp->b_flags & B_REMFREE)
1413 		bremfreel(bp);
1414 	if (bp->b_qindex != QUEUE_NONE)
1415 		panic("brelse: free buffer onto another queue???");
1416 
1417 	/*
1418 	 * If the buffer has junk contents signal it and eventually
1419 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1420 	 * doesn't find it.
1421 	 */
1422 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1423 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1424 		bp->b_flags |= B_INVAL;
1425 	if (bp->b_flags & B_INVAL) {
1426 		if (bp->b_flags & B_DELWRI)
1427 			bundirty(bp);
1428 		if (bp->b_vp)
1429 			brelvp(bp);
1430 	}
1431 
1432 	/* buffers with no memory */
1433 	if (bp->b_bufsize == 0) {
1434 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1435 		if (bp->b_vflags & BV_BKGRDINPROG)
1436 			panic("losing buffer 1");
1437 		if (bp->b_kvasize) {
1438 			bp->b_qindex = QUEUE_EMPTYKVA;
1439 		} else {
1440 			bp->b_qindex = QUEUE_EMPTY;
1441 		}
1442 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1443 	/* buffers with junk contents */
1444 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1445 	    (bp->b_ioflags & BIO_ERROR)) {
1446 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1447 		if (bp->b_vflags & BV_BKGRDINPROG)
1448 			panic("losing buffer 2");
1449 		bp->b_qindex = QUEUE_CLEAN;
1450 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1451 	/* remaining buffers */
1452 	} else {
1453 		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1454 		    (B_DELWRI|B_NEEDSGIANT))
1455 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1456 		else if (bp->b_flags & B_DELWRI)
1457 			bp->b_qindex = QUEUE_DIRTY;
1458 		else
1459 			bp->b_qindex = QUEUE_CLEAN;
1460 		if (bp->b_flags & B_AGE)
1461 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1462 		else
1463 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1464 	}
1465 	mtx_unlock(&bqlock);
1466 
1467 	/*
1468 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1469 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1470 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1471 	 * if B_INVAL is set ).
1472 	 */
1473 
1474 	if (!(bp->b_flags & B_DELWRI))
1475 		bufcountwakeup(bp);
1476 
1477 	/*
1478 	 * Something we can maybe free or reuse
1479 	 */
1480 	if (bp->b_bufsize || bp->b_kvasize)
1481 		bufspacewakeup();
1482 
1483 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1484 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1485 		panic("brelse: not dirty");
1486 	/* unlock */
1487 	BUF_UNLOCK(bp);
1488 }
1489 
1490 /*
1491  * Release a buffer back to the appropriate queue but do not try to free
1492  * it.  The buffer is expected to be used again soon.
1493  *
1494  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1495  * biodone() to requeue an async I/O on completion.  It is also used when
1496  * known good buffers need to be requeued but we think we may need the data
1497  * again soon.
1498  *
1499  * XXX we should be able to leave the B_RELBUF hint set on completion.
1500  */
1501 void
1502 bqrelse(struct buf *bp)
1503 {
1504 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1505 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1506 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1507 
1508 	if (BUF_LOCKRECURSED(bp)) {
1509 		/* do not release to free list */
1510 		BUF_UNLOCK(bp);
1511 		return;
1512 	}
1513 
1514 	if (bp->b_flags & B_MANAGED) {
1515 		if (bp->b_flags & B_REMFREE) {
1516 			mtx_lock(&bqlock);
1517 			bremfreel(bp);
1518 			mtx_unlock(&bqlock);
1519 		}
1520 		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1521 		BUF_UNLOCK(bp);
1522 		return;
1523 	}
1524 
1525 	mtx_lock(&bqlock);
1526 	/* Handle delayed bremfree() processing. */
1527 	if (bp->b_flags & B_REMFREE)
1528 		bremfreel(bp);
1529 	if (bp->b_qindex != QUEUE_NONE)
1530 		panic("bqrelse: free buffer onto another queue???");
1531 	/* buffers with stale but valid contents */
1532 	if (bp->b_flags & B_DELWRI) {
1533 		if (bp->b_flags & B_NEEDSGIANT)
1534 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1535 		else
1536 			bp->b_qindex = QUEUE_DIRTY;
1537 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1538 	} else {
1539 		/*
1540 		 * The locking of the BO_LOCK for checking of the
1541 		 * BV_BKGRDINPROG is not necessary since the
1542 		 * BV_BKGRDINPROG cannot be set while we hold the buf
1543 		 * lock, it can only be cleared if it is already
1544 		 * pending.
1545 		 */
1546 		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1547 			bp->b_qindex = QUEUE_CLEAN;
1548 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1549 			    b_freelist);
1550 		} else {
1551 			/*
1552 			 * We are too low on memory, we have to try to free
1553 			 * the buffer (most importantly: the wired pages
1554 			 * making up its backing store) *now*.
1555 			 */
1556 			mtx_unlock(&bqlock);
1557 			brelse(bp);
1558 			return;
1559 		}
1560 	}
1561 	mtx_unlock(&bqlock);
1562 
1563 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1564 		bufcountwakeup(bp);
1565 
1566 	/*
1567 	 * Something we can maybe free or reuse.
1568 	 */
1569 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1570 		bufspacewakeup();
1571 
1572 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1573 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1574 		panic("bqrelse: not dirty");
1575 	/* unlock */
1576 	BUF_UNLOCK(bp);
1577 }
1578 
1579 /* Give pages used by the bp back to the VM system (where possible) */
1580 static void
1581 vfs_vmio_release(struct buf *bp)
1582 {
1583 	int i;
1584 	vm_page_t m;
1585 
1586 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1587 	for (i = 0; i < bp->b_npages; i++) {
1588 		m = bp->b_pages[i];
1589 		bp->b_pages[i] = NULL;
1590 		/*
1591 		 * In order to keep page LRU ordering consistent, put
1592 		 * everything on the inactive queue.
1593 		 */
1594 		vm_page_lock(m);
1595 		vm_page_unwire(m, 0);
1596 		/*
1597 		 * We don't mess with busy pages, it is
1598 		 * the responsibility of the process that
1599 		 * busied the pages to deal with them.
1600 		 */
1601 		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1602 		    m->wire_count == 0) {
1603 			/*
1604 			 * Might as well free the page if we can and it has
1605 			 * no valid data.  We also free the page if the
1606 			 * buffer was used for direct I/O
1607 			 */
1608 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1609 			    m->hold_count == 0) {
1610 				vm_page_free(m);
1611 			} else if (bp->b_flags & B_DIRECT) {
1612 				vm_page_try_to_free(m);
1613 			} else if (buf_vm_page_count_severe()) {
1614 				vm_page_try_to_cache(m);
1615 			}
1616 		}
1617 		vm_page_unlock(m);
1618 	}
1619 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1620 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1621 
1622 	if (bp->b_bufsize) {
1623 		bufspacewakeup();
1624 		bp->b_bufsize = 0;
1625 	}
1626 	bp->b_npages = 0;
1627 	bp->b_flags &= ~B_VMIO;
1628 	if (bp->b_vp)
1629 		brelvp(bp);
1630 }
1631 
1632 /*
1633  * Check to see if a block at a particular lbn is available for a clustered
1634  * write.
1635  */
1636 static int
1637 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1638 {
1639 	struct buf *bpa;
1640 	int match;
1641 
1642 	match = 0;
1643 
1644 	/* If the buf isn't in core skip it */
1645 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1646 		return (0);
1647 
1648 	/* If the buf is busy we don't want to wait for it */
1649 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1650 		return (0);
1651 
1652 	/* Only cluster with valid clusterable delayed write buffers */
1653 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1654 	    (B_DELWRI | B_CLUSTEROK))
1655 		goto done;
1656 
1657 	if (bpa->b_bufsize != size)
1658 		goto done;
1659 
1660 	/*
1661 	 * Check to see if it is in the expected place on disk and that the
1662 	 * block has been mapped.
1663 	 */
1664 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1665 		match = 1;
1666 done:
1667 	BUF_UNLOCK(bpa);
1668 	return (match);
1669 }
1670 
1671 /*
1672  *	vfs_bio_awrite:
1673  *
1674  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1675  *	This is much better then the old way of writing only one buffer at
1676  *	a time.  Note that we may not be presented with the buffers in the
1677  *	correct order, so we search for the cluster in both directions.
1678  */
1679 int
1680 vfs_bio_awrite(struct buf *bp)
1681 {
1682 	struct bufobj *bo;
1683 	int i;
1684 	int j;
1685 	daddr_t lblkno = bp->b_lblkno;
1686 	struct vnode *vp = bp->b_vp;
1687 	int ncl;
1688 	int nwritten;
1689 	int size;
1690 	int maxcl;
1691 
1692 	bo = &vp->v_bufobj;
1693 	/*
1694 	 * right now we support clustered writing only to regular files.  If
1695 	 * we find a clusterable block we could be in the middle of a cluster
1696 	 * rather then at the beginning.
1697 	 */
1698 	if ((vp->v_type == VREG) &&
1699 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1700 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1701 
1702 		size = vp->v_mount->mnt_stat.f_iosize;
1703 		maxcl = MAXPHYS / size;
1704 
1705 		BO_LOCK(bo);
1706 		for (i = 1; i < maxcl; i++)
1707 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1708 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1709 				break;
1710 
1711 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1712 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1713 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1714 				break;
1715 		BO_UNLOCK(bo);
1716 		--j;
1717 		ncl = i + j;
1718 		/*
1719 		 * this is a possible cluster write
1720 		 */
1721 		if (ncl != 1) {
1722 			BUF_UNLOCK(bp);
1723 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1724 			return nwritten;
1725 		}
1726 	}
1727 	bremfree(bp);
1728 	bp->b_flags |= B_ASYNC;
1729 	/*
1730 	 * default (old) behavior, writing out only one block
1731 	 *
1732 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1733 	 */
1734 	nwritten = bp->b_bufsize;
1735 	(void) bwrite(bp);
1736 
1737 	return nwritten;
1738 }
1739 
1740 /*
1741  *	getnewbuf:
1742  *
1743  *	Find and initialize a new buffer header, freeing up existing buffers
1744  *	in the bufqueues as necessary.  The new buffer is returned locked.
1745  *
1746  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1747  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1748  *
1749  *	We block if:
1750  *		We have insufficient buffer headers
1751  *		We have insufficient buffer space
1752  *		buffer_map is too fragmented ( space reservation fails )
1753  *		If we have to flush dirty buffers ( but we try to avoid this )
1754  *
1755  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1756  *	Instead we ask the buf daemon to do it for us.  We attempt to
1757  *	avoid piecemeal wakeups of the pageout daemon.
1758  */
1759 
1760 static struct buf *
1761 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1762     int gbflags)
1763 {
1764 	struct thread *td;
1765 	struct buf *bp;
1766 	struct buf *nbp;
1767 	int defrag = 0;
1768 	int nqindex;
1769 	static int flushingbufs;
1770 
1771 	td = curthread;
1772 	/*
1773 	 * We can't afford to block since we might be holding a vnode lock,
1774 	 * which may prevent system daemons from running.  We deal with
1775 	 * low-memory situations by proactively returning memory and running
1776 	 * async I/O rather then sync I/O.
1777 	 */
1778 	atomic_add_int(&getnewbufcalls, 1);
1779 	atomic_subtract_int(&getnewbufrestarts, 1);
1780 restart:
1781 	atomic_add_int(&getnewbufrestarts, 1);
1782 
1783 	/*
1784 	 * Setup for scan.  If we do not have enough free buffers,
1785 	 * we setup a degenerate case that immediately fails.  Note
1786 	 * that if we are specially marked process, we are allowed to
1787 	 * dip into our reserves.
1788 	 *
1789 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1790 	 *
1791 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1792 	 * However, there are a number of cases (defragging, reusing, ...)
1793 	 * where we cannot backup.
1794 	 */
1795 	mtx_lock(&bqlock);
1796 	nqindex = QUEUE_EMPTYKVA;
1797 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1798 
1799 	if (nbp == NULL) {
1800 		/*
1801 		 * If no EMPTYKVA buffers and we are either
1802 		 * defragging or reusing, locate a CLEAN buffer
1803 		 * to free or reuse.  If bufspace useage is low
1804 		 * skip this step so we can allocate a new buffer.
1805 		 */
1806 		if (defrag || bufspace >= lobufspace) {
1807 			nqindex = QUEUE_CLEAN;
1808 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1809 		}
1810 
1811 		/*
1812 		 * If we could not find or were not allowed to reuse a
1813 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1814 		 * buffer.  We can only use an EMPTY buffer if allocating
1815 		 * its KVA would not otherwise run us out of buffer space.
1816 		 */
1817 		if (nbp == NULL && defrag == 0 &&
1818 		    bufspace + maxsize < hibufspace) {
1819 			nqindex = QUEUE_EMPTY;
1820 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1826 	 * depending.
1827 	 */
1828 
1829 	while ((bp = nbp) != NULL) {
1830 		int qindex = nqindex;
1831 
1832 		/*
1833 		 * Calculate next bp ( we can only use it if we do not block
1834 		 * or do other fancy things ).
1835 		 */
1836 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1837 			switch(qindex) {
1838 			case QUEUE_EMPTY:
1839 				nqindex = QUEUE_EMPTYKVA;
1840 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1841 					break;
1842 				/* FALLTHROUGH */
1843 			case QUEUE_EMPTYKVA:
1844 				nqindex = QUEUE_CLEAN;
1845 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1846 					break;
1847 				/* FALLTHROUGH */
1848 			case QUEUE_CLEAN:
1849 				/*
1850 				 * nbp is NULL.
1851 				 */
1852 				break;
1853 			}
1854 		}
1855 		/*
1856 		 * If we are defragging then we need a buffer with
1857 		 * b_kvasize != 0.  XXX this situation should no longer
1858 		 * occur, if defrag is non-zero the buffer's b_kvasize
1859 		 * should also be non-zero at this point.  XXX
1860 		 */
1861 		if (defrag && bp->b_kvasize == 0) {
1862 			printf("Warning: defrag empty buffer %p\n", bp);
1863 			continue;
1864 		}
1865 
1866 		/*
1867 		 * Start freeing the bp.  This is somewhat involved.  nbp
1868 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1869 		 */
1870 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1871 			continue;
1872 		if (bp->b_vp) {
1873 			BO_LOCK(bp->b_bufobj);
1874 			if (bp->b_vflags & BV_BKGRDINPROG) {
1875 				BO_UNLOCK(bp->b_bufobj);
1876 				BUF_UNLOCK(bp);
1877 				continue;
1878 			}
1879 			BO_UNLOCK(bp->b_bufobj);
1880 		}
1881 		CTR6(KTR_BUF,
1882 		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1883 		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1884 		    bp->b_kvasize, bp->b_bufsize, qindex);
1885 
1886 		/*
1887 		 * Sanity Checks
1888 		 */
1889 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1890 
1891 		/*
1892 		 * Note: we no longer distinguish between VMIO and non-VMIO
1893 		 * buffers.
1894 		 */
1895 
1896 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1897 
1898 		bremfreel(bp);
1899 		mtx_unlock(&bqlock);
1900 
1901 		if (qindex == QUEUE_CLEAN) {
1902 			if (bp->b_flags & B_VMIO) {
1903 				bp->b_flags &= ~B_ASYNC;
1904 				vfs_vmio_release(bp);
1905 			}
1906 			if (bp->b_vp)
1907 				brelvp(bp);
1908 		}
1909 
1910 		/*
1911 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1912 		 * the scan from this point on.
1913 		 *
1914 		 * Get the rest of the buffer freed up.  b_kva* is still
1915 		 * valid after this operation.
1916 		 */
1917 
1918 		if (bp->b_rcred != NOCRED) {
1919 			crfree(bp->b_rcred);
1920 			bp->b_rcred = NOCRED;
1921 		}
1922 		if (bp->b_wcred != NOCRED) {
1923 			crfree(bp->b_wcred);
1924 			bp->b_wcred = NOCRED;
1925 		}
1926 		if (!LIST_EMPTY(&bp->b_dep))
1927 			buf_deallocate(bp);
1928 		if (bp->b_vflags & BV_BKGRDINPROG)
1929 			panic("losing buffer 3");
1930 		KASSERT(bp->b_vp == NULL,
1931 		    ("bp: %p still has vnode %p.  qindex: %d",
1932 		    bp, bp->b_vp, qindex));
1933 		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1934 		   ("bp: %p still on a buffer list. xflags %X",
1935 		    bp, bp->b_xflags));
1936 
1937 		if (bp->b_bufsize)
1938 			allocbuf(bp, 0);
1939 
1940 		bp->b_flags = 0;
1941 		bp->b_ioflags = 0;
1942 		bp->b_xflags = 0;
1943 		KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
1944 		    ("buf %p still counted as free?", bp));
1945 		bp->b_vflags = 0;
1946 		bp->b_vp = NULL;
1947 		bp->b_blkno = bp->b_lblkno = 0;
1948 		bp->b_offset = NOOFFSET;
1949 		bp->b_iodone = 0;
1950 		bp->b_error = 0;
1951 		bp->b_resid = 0;
1952 		bp->b_bcount = 0;
1953 		bp->b_npages = 0;
1954 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1955 		bp->b_bufobj = NULL;
1956 		bp->b_pin_count = 0;
1957 		bp->b_fsprivate1 = NULL;
1958 		bp->b_fsprivate2 = NULL;
1959 		bp->b_fsprivate3 = NULL;
1960 
1961 		LIST_INIT(&bp->b_dep);
1962 
1963 		/*
1964 		 * If we are defragging then free the buffer.
1965 		 */
1966 		if (defrag) {
1967 			bp->b_flags |= B_INVAL;
1968 			bfreekva(bp);
1969 			brelse(bp);
1970 			defrag = 0;
1971 			goto restart;
1972 		}
1973 
1974 		/*
1975 		 * Notify any waiters for the buffer lock about
1976 		 * identity change by freeing the buffer.
1977 		 */
1978 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1979 			bp->b_flags |= B_INVAL;
1980 			bfreekva(bp);
1981 			brelse(bp);
1982 			goto restart;
1983 		}
1984 
1985 		/*
1986 		 * If we are overcomitted then recover the buffer and its
1987 		 * KVM space.  This occurs in rare situations when multiple
1988 		 * processes are blocked in getnewbuf() or allocbuf().
1989 		 */
1990 		if (bufspace >= hibufspace)
1991 			flushingbufs = 1;
1992 		if (flushingbufs && bp->b_kvasize != 0) {
1993 			bp->b_flags |= B_INVAL;
1994 			bfreekva(bp);
1995 			brelse(bp);
1996 			goto restart;
1997 		}
1998 		if (bufspace < lobufspace)
1999 			flushingbufs = 0;
2000 		break;
2001 	}
2002 
2003 	/*
2004 	 * If we exhausted our list, sleep as appropriate.  We may have to
2005 	 * wakeup various daemons and write out some dirty buffers.
2006 	 *
2007 	 * Generally we are sleeping due to insufficient buffer space.
2008 	 */
2009 
2010 	if (bp == NULL) {
2011 		int flags, norunbuf;
2012 		char *waitmsg;
2013 		int fl;
2014 
2015 		if (defrag) {
2016 			flags = VFS_BIO_NEED_BUFSPACE;
2017 			waitmsg = "nbufkv";
2018 		} else if (bufspace >= hibufspace) {
2019 			waitmsg = "nbufbs";
2020 			flags = VFS_BIO_NEED_BUFSPACE;
2021 		} else {
2022 			waitmsg = "newbuf";
2023 			flags = VFS_BIO_NEED_ANY;
2024 		}
2025 		mtx_lock(&nblock);
2026 		needsbuffer |= flags;
2027 		mtx_unlock(&nblock);
2028 		mtx_unlock(&bqlock);
2029 
2030 		bd_speedup();	/* heeeelp */
2031 		if (gbflags & GB_NOWAIT_BD)
2032 			return (NULL);
2033 
2034 		mtx_lock(&nblock);
2035 		while (needsbuffer & flags) {
2036 			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2037 				mtx_unlock(&nblock);
2038 				/*
2039 				 * getblk() is called with a vnode
2040 				 * locked, and some majority of the
2041 				 * dirty buffers may as well belong to
2042 				 * the vnode. Flushing the buffers
2043 				 * there would make a progress that
2044 				 * cannot be achieved by the
2045 				 * buf_daemon, that cannot lock the
2046 				 * vnode.
2047 				 */
2048 				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2049 				    (td->td_pflags & TDP_NORUNNINGBUF);
2050 				/* play bufdaemon */
2051 				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2052 				fl = buf_do_flush(vp);
2053 				td->td_pflags &= norunbuf;
2054 				mtx_lock(&nblock);
2055 				if (fl != 0)
2056 					continue;
2057 				if ((needsbuffer & flags) == 0)
2058 					break;
2059 			}
2060 			if (msleep(&needsbuffer, &nblock,
2061 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2062 				mtx_unlock(&nblock);
2063 				return (NULL);
2064 			}
2065 		}
2066 		mtx_unlock(&nblock);
2067 	} else {
2068 		/*
2069 		 * We finally have a valid bp.  We aren't quite out of the
2070 		 * woods, we still have to reserve kva space.  In order
2071 		 * to keep fragmentation sane we only allocate kva in
2072 		 * BKVASIZE chunks.
2073 		 */
2074 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2075 
2076 		if (maxsize != bp->b_kvasize) {
2077 			vm_offset_t addr = 0;
2078 
2079 			bfreekva(bp);
2080 
2081 			vm_map_lock(buffer_map);
2082 			if (vm_map_findspace(buffer_map,
2083 				vm_map_min(buffer_map), maxsize, &addr)) {
2084 				/*
2085 				 * Uh oh.  Buffer map is to fragmented.  We
2086 				 * must defragment the map.
2087 				 */
2088 				atomic_add_int(&bufdefragcnt, 1);
2089 				vm_map_unlock(buffer_map);
2090 				defrag = 1;
2091 				bp->b_flags |= B_INVAL;
2092 				brelse(bp);
2093 				goto restart;
2094 			}
2095 			if (addr) {
2096 				vm_map_insert(buffer_map, NULL, 0,
2097 					addr, addr + maxsize,
2098 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2099 
2100 				bp->b_kvabase = (caddr_t) addr;
2101 				bp->b_kvasize = maxsize;
2102 				atomic_add_long(&bufspace, bp->b_kvasize);
2103 				atomic_add_int(&bufreusecnt, 1);
2104 			}
2105 			vm_map_unlock(buffer_map);
2106 		}
2107 		bp->b_saveaddr = bp->b_kvabase;
2108 		bp->b_data = bp->b_saveaddr;
2109 	}
2110 	return(bp);
2111 }
2112 
2113 /*
2114  *	buf_daemon:
2115  *
2116  *	buffer flushing daemon.  Buffers are normally flushed by the
2117  *	update daemon but if it cannot keep up this process starts to
2118  *	take the load in an attempt to prevent getnewbuf() from blocking.
2119  */
2120 
2121 static struct kproc_desc buf_kp = {
2122 	"bufdaemon",
2123 	buf_daemon,
2124 	&bufdaemonproc
2125 };
2126 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2127 
2128 static int
2129 buf_do_flush(struct vnode *vp)
2130 {
2131 	int flushed;
2132 
2133 	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2134 	/* The list empty check here is slightly racy */
2135 	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2136 		mtx_lock(&Giant);
2137 		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2138 		mtx_unlock(&Giant);
2139 	}
2140 	if (flushed == 0) {
2141 		/*
2142 		 * Could not find any buffers without rollback
2143 		 * dependencies, so just write the first one
2144 		 * in the hopes of eventually making progress.
2145 		 */
2146 		flushbufqueues(vp, QUEUE_DIRTY, 1);
2147 		if (!TAILQ_EMPTY(
2148 			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2149 			mtx_lock(&Giant);
2150 			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2151 			mtx_unlock(&Giant);
2152 		}
2153 	}
2154 	return (flushed);
2155 }
2156 
2157 static void
2158 buf_daemon()
2159 {
2160 	int lodirtysave;
2161 
2162 	/*
2163 	 * This process needs to be suspended prior to shutdown sync.
2164 	 */
2165 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2166 	    SHUTDOWN_PRI_LAST);
2167 
2168 	/*
2169 	 * This process is allowed to take the buffer cache to the limit
2170 	 */
2171 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2172 	mtx_lock(&bdlock);
2173 	for (;;) {
2174 		bd_request = 0;
2175 		mtx_unlock(&bdlock);
2176 
2177 		kproc_suspend_check(bufdaemonproc);
2178 		lodirtysave = lodirtybuffers;
2179 		if (bd_speedupreq) {
2180 			lodirtybuffers = numdirtybuffers / 2;
2181 			bd_speedupreq = 0;
2182 		}
2183 		/*
2184 		 * Do the flush.  Limit the amount of in-transit I/O we
2185 		 * allow to build up, otherwise we would completely saturate
2186 		 * the I/O system.  Wakeup any waiting processes before we
2187 		 * normally would so they can run in parallel with our drain.
2188 		 */
2189 		while (numdirtybuffers > lodirtybuffers) {
2190 			if (buf_do_flush(NULL) == 0)
2191 				break;
2192 			uio_yield();
2193 		}
2194 		lodirtybuffers = lodirtysave;
2195 
2196 		/*
2197 		 * Only clear bd_request if we have reached our low water
2198 		 * mark.  The buf_daemon normally waits 1 second and
2199 		 * then incrementally flushes any dirty buffers that have
2200 		 * built up, within reason.
2201 		 *
2202 		 * If we were unable to hit our low water mark and couldn't
2203 		 * find any flushable buffers, we sleep half a second.
2204 		 * Otherwise we loop immediately.
2205 		 */
2206 		mtx_lock(&bdlock);
2207 		if (numdirtybuffers <= lodirtybuffers) {
2208 			/*
2209 			 * We reached our low water mark, reset the
2210 			 * request and sleep until we are needed again.
2211 			 * The sleep is just so the suspend code works.
2212 			 */
2213 			bd_request = 0;
2214 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2215 		} else {
2216 			/*
2217 			 * We couldn't find any flushable dirty buffers but
2218 			 * still have too many dirty buffers, we
2219 			 * have to sleep and try again.  (rare)
2220 			 */
2221 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2222 		}
2223 	}
2224 }
2225 
2226 /*
2227  *	flushbufqueues:
2228  *
2229  *	Try to flush a buffer in the dirty queue.  We must be careful to
2230  *	free up B_INVAL buffers instead of write them, which NFS is
2231  *	particularly sensitive to.
2232  */
2233 static int flushwithdeps = 0;
2234 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2235     0, "Number of buffers flushed with dependecies that require rollbacks");
2236 
2237 static int
2238 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2239 {
2240 	struct buf *sentinel;
2241 	struct vnode *vp;
2242 	struct mount *mp;
2243 	struct buf *bp;
2244 	int hasdeps;
2245 	int flushed;
2246 	int target;
2247 
2248 	if (lvp == NULL) {
2249 		target = numdirtybuffers - lodirtybuffers;
2250 		if (flushdeps && target > 2)
2251 			target /= 2;
2252 	} else
2253 		target = flushbufqtarget;
2254 	flushed = 0;
2255 	bp = NULL;
2256 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2257 	sentinel->b_qindex = QUEUE_SENTINEL;
2258 	mtx_lock(&bqlock);
2259 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2260 	while (flushed != target) {
2261 		bp = TAILQ_NEXT(sentinel, b_freelist);
2262 		if (bp != NULL) {
2263 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2264 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2265 			    b_freelist);
2266 		} else
2267 			break;
2268 		/*
2269 		 * Skip sentinels inserted by other invocations of the
2270 		 * flushbufqueues(), taking care to not reorder them.
2271 		 */
2272 		if (bp->b_qindex == QUEUE_SENTINEL)
2273 			continue;
2274 		/*
2275 		 * Only flush the buffers that belong to the
2276 		 * vnode locked by the curthread.
2277 		 */
2278 		if (lvp != NULL && bp->b_vp != lvp)
2279 			continue;
2280 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2281 			continue;
2282 		if (bp->b_pin_count > 0) {
2283 			BUF_UNLOCK(bp);
2284 			continue;
2285 		}
2286 		BO_LOCK(bp->b_bufobj);
2287 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2288 		    (bp->b_flags & B_DELWRI) == 0) {
2289 			BO_UNLOCK(bp->b_bufobj);
2290 			BUF_UNLOCK(bp);
2291 			continue;
2292 		}
2293 		BO_UNLOCK(bp->b_bufobj);
2294 		if (bp->b_flags & B_INVAL) {
2295 			bremfreel(bp);
2296 			mtx_unlock(&bqlock);
2297 			brelse(bp);
2298 			flushed++;
2299 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2300 			mtx_lock(&bqlock);
2301 			continue;
2302 		}
2303 
2304 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2305 			if (flushdeps == 0) {
2306 				BUF_UNLOCK(bp);
2307 				continue;
2308 			}
2309 			hasdeps = 1;
2310 		} else
2311 			hasdeps = 0;
2312 		/*
2313 		 * We must hold the lock on a vnode before writing
2314 		 * one of its buffers. Otherwise we may confuse, or
2315 		 * in the case of a snapshot vnode, deadlock the
2316 		 * system.
2317 		 *
2318 		 * The lock order here is the reverse of the normal
2319 		 * of vnode followed by buf lock.  This is ok because
2320 		 * the NOWAIT will prevent deadlock.
2321 		 */
2322 		vp = bp->b_vp;
2323 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2324 			BUF_UNLOCK(bp);
2325 			continue;
2326 		}
2327 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2328 			mtx_unlock(&bqlock);
2329 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2330 			    bp, bp->b_vp, bp->b_flags);
2331 			if (curproc == bufdaemonproc)
2332 				vfs_bio_awrite(bp);
2333 			else {
2334 				bremfree(bp);
2335 				bwrite(bp);
2336 				notbufdflashes++;
2337 			}
2338 			vn_finished_write(mp);
2339 			VOP_UNLOCK(vp, 0);
2340 			flushwithdeps += hasdeps;
2341 			flushed++;
2342 
2343 			/*
2344 			 * Sleeping on runningbufspace while holding
2345 			 * vnode lock leads to deadlock.
2346 			 */
2347 			if (curproc == bufdaemonproc)
2348 				waitrunningbufspace();
2349 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2350 			mtx_lock(&bqlock);
2351 			continue;
2352 		}
2353 		vn_finished_write(mp);
2354 		BUF_UNLOCK(bp);
2355 	}
2356 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2357 	mtx_unlock(&bqlock);
2358 	free(sentinel, M_TEMP);
2359 	return (flushed);
2360 }
2361 
2362 /*
2363  * Check to see if a block is currently memory resident.
2364  */
2365 struct buf *
2366 incore(struct bufobj *bo, daddr_t blkno)
2367 {
2368 	struct buf *bp;
2369 
2370 	BO_LOCK(bo);
2371 	bp = gbincore(bo, blkno);
2372 	BO_UNLOCK(bo);
2373 	return (bp);
2374 }
2375 
2376 /*
2377  * Returns true if no I/O is needed to access the
2378  * associated VM object.  This is like incore except
2379  * it also hunts around in the VM system for the data.
2380  */
2381 
2382 static int
2383 inmem(struct vnode * vp, daddr_t blkno)
2384 {
2385 	vm_object_t obj;
2386 	vm_offset_t toff, tinc, size;
2387 	vm_page_t m;
2388 	vm_ooffset_t off;
2389 
2390 	ASSERT_VOP_LOCKED(vp, "inmem");
2391 
2392 	if (incore(&vp->v_bufobj, blkno))
2393 		return 1;
2394 	if (vp->v_mount == NULL)
2395 		return 0;
2396 	obj = vp->v_object;
2397 	if (obj == NULL)
2398 		return (0);
2399 
2400 	size = PAGE_SIZE;
2401 	if (size > vp->v_mount->mnt_stat.f_iosize)
2402 		size = vp->v_mount->mnt_stat.f_iosize;
2403 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2404 
2405 	VM_OBJECT_LOCK(obj);
2406 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2407 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2408 		if (!m)
2409 			goto notinmem;
2410 		tinc = size;
2411 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2412 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2413 		if (vm_page_is_valid(m,
2414 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2415 			goto notinmem;
2416 	}
2417 	VM_OBJECT_UNLOCK(obj);
2418 	return 1;
2419 
2420 notinmem:
2421 	VM_OBJECT_UNLOCK(obj);
2422 	return (0);
2423 }
2424 
2425 /*
2426  * Set the dirty range for a buffer based on the status of the dirty
2427  * bits in the pages comprising the buffer.  The range is limited
2428  * to the size of the buffer.
2429  *
2430  * Tell the VM system that the pages associated with this buffer
2431  * are clean.  This is used for delayed writes where the data is
2432  * going to go to disk eventually without additional VM intevention.
2433  *
2434  * Note that while we only really need to clean through to b_bcount, we
2435  * just go ahead and clean through to b_bufsize.
2436  */
2437 static void
2438 vfs_clean_pages_dirty_buf(struct buf *bp)
2439 {
2440 	vm_ooffset_t foff, noff, eoff;
2441 	vm_page_t m;
2442 	int i;
2443 
2444 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2445 		return;
2446 
2447 	foff = bp->b_offset;
2448 	KASSERT(bp->b_offset != NOOFFSET,
2449 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2450 
2451 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2452 	vfs_drain_busy_pages(bp);
2453 	vfs_setdirty_locked_object(bp);
2454 	for (i = 0; i < bp->b_npages; i++) {
2455 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2456 		eoff = noff;
2457 		if (eoff > bp->b_offset + bp->b_bufsize)
2458 			eoff = bp->b_offset + bp->b_bufsize;
2459 		m = bp->b_pages[i];
2460 		vfs_page_set_validclean(bp, foff, m);
2461 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2462 		foff = noff;
2463 	}
2464 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2465 }
2466 
2467 static void
2468 vfs_setdirty_locked_object(struct buf *bp)
2469 {
2470 	vm_object_t object;
2471 	int i;
2472 
2473 	object = bp->b_bufobj->bo_object;
2474 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2475 
2476 	/*
2477 	 * We qualify the scan for modified pages on whether the
2478 	 * object has been flushed yet.
2479 	 */
2480 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2481 		vm_offset_t boffset;
2482 		vm_offset_t eoffset;
2483 
2484 		/*
2485 		 * test the pages to see if they have been modified directly
2486 		 * by users through the VM system.
2487 		 */
2488 		for (i = 0; i < bp->b_npages; i++)
2489 			vm_page_test_dirty(bp->b_pages[i]);
2490 
2491 		/*
2492 		 * Calculate the encompassing dirty range, boffset and eoffset,
2493 		 * (eoffset - boffset) bytes.
2494 		 */
2495 
2496 		for (i = 0; i < bp->b_npages; i++) {
2497 			if (bp->b_pages[i]->dirty)
2498 				break;
2499 		}
2500 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2501 
2502 		for (i = bp->b_npages - 1; i >= 0; --i) {
2503 			if (bp->b_pages[i]->dirty) {
2504 				break;
2505 			}
2506 		}
2507 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2508 
2509 		/*
2510 		 * Fit it to the buffer.
2511 		 */
2512 
2513 		if (eoffset > bp->b_bcount)
2514 			eoffset = bp->b_bcount;
2515 
2516 		/*
2517 		 * If we have a good dirty range, merge with the existing
2518 		 * dirty range.
2519 		 */
2520 
2521 		if (boffset < eoffset) {
2522 			if (bp->b_dirtyoff > boffset)
2523 				bp->b_dirtyoff = boffset;
2524 			if (bp->b_dirtyend < eoffset)
2525 				bp->b_dirtyend = eoffset;
2526 		}
2527 	}
2528 }
2529 
2530 /*
2531  *	getblk:
2532  *
2533  *	Get a block given a specified block and offset into a file/device.
2534  *	The buffers B_DONE bit will be cleared on return, making it almost
2535  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2536  *	return.  The caller should clear B_INVAL prior to initiating a
2537  *	READ.
2538  *
2539  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2540  *	an existing buffer.
2541  *
2542  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2543  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2544  *	and then cleared based on the backing VM.  If the previous buffer is
2545  *	non-0-sized but invalid, B_CACHE will be cleared.
2546  *
2547  *	If getblk() must create a new buffer, the new buffer is returned with
2548  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2549  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2550  *	backing VM.
2551  *
2552  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2553  *	B_CACHE bit is clear.
2554  *
2555  *	What this means, basically, is that the caller should use B_CACHE to
2556  *	determine whether the buffer is fully valid or not and should clear
2557  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2558  *	the buffer by loading its data area with something, the caller needs
2559  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2560  *	the caller should set B_CACHE ( as an optimization ), else the caller
2561  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2562  *	a write attempt or if it was a successfull read.  If the caller
2563  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2564  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2565  */
2566 struct buf *
2567 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2568     int flags)
2569 {
2570 	struct buf *bp;
2571 	struct bufobj *bo;
2572 	int error;
2573 
2574 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2575 	ASSERT_VOP_LOCKED(vp, "getblk");
2576 	if (size > MAXBSIZE)
2577 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2578 
2579 	bo = &vp->v_bufobj;
2580 loop:
2581 	/*
2582 	 * Block if we are low on buffers.   Certain processes are allowed
2583 	 * to completely exhaust the buffer cache.
2584          *
2585          * If this check ever becomes a bottleneck it may be better to
2586          * move it into the else, when gbincore() fails.  At the moment
2587          * it isn't a problem.
2588 	 *
2589 	 * XXX remove if 0 sections (clean this up after its proven)
2590          */
2591 	if (numfreebuffers == 0) {
2592 		if (TD_IS_IDLETHREAD(curthread))
2593 			return NULL;
2594 		mtx_lock(&nblock);
2595 		needsbuffer |= VFS_BIO_NEED_ANY;
2596 		mtx_unlock(&nblock);
2597 	}
2598 
2599 	BO_LOCK(bo);
2600 	bp = gbincore(bo, blkno);
2601 	if (bp != NULL) {
2602 		int lockflags;
2603 		/*
2604 		 * Buffer is in-core.  If the buffer is not busy, it must
2605 		 * be on a queue.
2606 		 */
2607 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2608 
2609 		if (flags & GB_LOCK_NOWAIT)
2610 			lockflags |= LK_NOWAIT;
2611 
2612 		error = BUF_TIMELOCK(bp, lockflags,
2613 		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2614 
2615 		/*
2616 		 * If we slept and got the lock we have to restart in case
2617 		 * the buffer changed identities.
2618 		 */
2619 		if (error == ENOLCK)
2620 			goto loop;
2621 		/* We timed out or were interrupted. */
2622 		else if (error)
2623 			return (NULL);
2624 
2625 		/*
2626 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2627 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2628 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2629 		 * backing VM cache.
2630 		 */
2631 		if (bp->b_flags & B_INVAL)
2632 			bp->b_flags &= ~B_CACHE;
2633 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2634 			bp->b_flags |= B_CACHE;
2635 		bremfree(bp);
2636 
2637 		/*
2638 		 * check for size inconsistancies for non-VMIO case.
2639 		 */
2640 
2641 		if (bp->b_bcount != size) {
2642 			if ((bp->b_flags & B_VMIO) == 0 ||
2643 			    (size > bp->b_kvasize)) {
2644 				if (bp->b_flags & B_DELWRI) {
2645 					/*
2646 					 * If buffer is pinned and caller does
2647 					 * not want sleep  waiting for it to be
2648 					 * unpinned, bail out
2649 					 * */
2650 					if (bp->b_pin_count > 0) {
2651 						if (flags & GB_LOCK_NOWAIT) {
2652 							bqrelse(bp);
2653 							return (NULL);
2654 						} else {
2655 							bunpin_wait(bp);
2656 						}
2657 					}
2658 					bp->b_flags |= B_NOCACHE;
2659 					bwrite(bp);
2660 				} else {
2661 					if (LIST_EMPTY(&bp->b_dep)) {
2662 						bp->b_flags |= B_RELBUF;
2663 						brelse(bp);
2664 					} else {
2665 						bp->b_flags |= B_NOCACHE;
2666 						bwrite(bp);
2667 					}
2668 				}
2669 				goto loop;
2670 			}
2671 		}
2672 
2673 		/*
2674 		 * If the size is inconsistant in the VMIO case, we can resize
2675 		 * the buffer.  This might lead to B_CACHE getting set or
2676 		 * cleared.  If the size has not changed, B_CACHE remains
2677 		 * unchanged from its previous state.
2678 		 */
2679 
2680 		if (bp->b_bcount != size)
2681 			allocbuf(bp, size);
2682 
2683 		KASSERT(bp->b_offset != NOOFFSET,
2684 		    ("getblk: no buffer offset"));
2685 
2686 		/*
2687 		 * A buffer with B_DELWRI set and B_CACHE clear must
2688 		 * be committed before we can return the buffer in
2689 		 * order to prevent the caller from issuing a read
2690 		 * ( due to B_CACHE not being set ) and overwriting
2691 		 * it.
2692 		 *
2693 		 * Most callers, including NFS and FFS, need this to
2694 		 * operate properly either because they assume they
2695 		 * can issue a read if B_CACHE is not set, or because
2696 		 * ( for example ) an uncached B_DELWRI might loop due
2697 		 * to softupdates re-dirtying the buffer.  In the latter
2698 		 * case, B_CACHE is set after the first write completes,
2699 		 * preventing further loops.
2700 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2701 		 * above while extending the buffer, we cannot allow the
2702 		 * buffer to remain with B_CACHE set after the write
2703 		 * completes or it will represent a corrupt state.  To
2704 		 * deal with this we set B_NOCACHE to scrap the buffer
2705 		 * after the write.
2706 		 *
2707 		 * We might be able to do something fancy, like setting
2708 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2709 		 * so the below call doesn't set B_CACHE, but that gets real
2710 		 * confusing.  This is much easier.
2711 		 */
2712 
2713 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2714 			bp->b_flags |= B_NOCACHE;
2715 			bwrite(bp);
2716 			goto loop;
2717 		}
2718 		bp->b_flags &= ~B_DONE;
2719 	} else {
2720 		int bsize, maxsize, vmio;
2721 		off_t offset;
2722 
2723 		/*
2724 		 * Buffer is not in-core, create new buffer.  The buffer
2725 		 * returned by getnewbuf() is locked.  Note that the returned
2726 		 * buffer is also considered valid (not marked B_INVAL).
2727 		 */
2728 		BO_UNLOCK(bo);
2729 		/*
2730 		 * If the user does not want us to create the buffer, bail out
2731 		 * here.
2732 		 */
2733 		if (flags & GB_NOCREAT)
2734 			return NULL;
2735 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2736 		offset = blkno * bsize;
2737 		vmio = vp->v_object != NULL;
2738 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2739 		maxsize = imax(maxsize, bsize);
2740 
2741 		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2742 		if (bp == NULL) {
2743 			if (slpflag || slptimeo)
2744 				return NULL;
2745 			goto loop;
2746 		}
2747 
2748 		/*
2749 		 * This code is used to make sure that a buffer is not
2750 		 * created while the getnewbuf routine is blocked.
2751 		 * This can be a problem whether the vnode is locked or not.
2752 		 * If the buffer is created out from under us, we have to
2753 		 * throw away the one we just created.
2754 		 *
2755 		 * Note: this must occur before we associate the buffer
2756 		 * with the vp especially considering limitations in
2757 		 * the splay tree implementation when dealing with duplicate
2758 		 * lblkno's.
2759 		 */
2760 		BO_LOCK(bo);
2761 		if (gbincore(bo, blkno)) {
2762 			BO_UNLOCK(bo);
2763 			bp->b_flags |= B_INVAL;
2764 			brelse(bp);
2765 			goto loop;
2766 		}
2767 
2768 		/*
2769 		 * Insert the buffer into the hash, so that it can
2770 		 * be found by incore.
2771 		 */
2772 		bp->b_blkno = bp->b_lblkno = blkno;
2773 		bp->b_offset = offset;
2774 		bgetvp(vp, bp);
2775 		BO_UNLOCK(bo);
2776 
2777 		/*
2778 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2779 		 * buffer size starts out as 0, B_CACHE will be set by
2780 		 * allocbuf() for the VMIO case prior to it testing the
2781 		 * backing store for validity.
2782 		 */
2783 
2784 		if (vmio) {
2785 			bp->b_flags |= B_VMIO;
2786 #if defined(VFS_BIO_DEBUG)
2787 			if (vn_canvmio(vp) != TRUE)
2788 				printf("getblk: VMIO on vnode type %d\n",
2789 					vp->v_type);
2790 #endif
2791 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2792 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2793 			    bp, vp->v_object, bp->b_bufobj->bo_object));
2794 		} else {
2795 			bp->b_flags &= ~B_VMIO;
2796 			KASSERT(bp->b_bufobj->bo_object == NULL,
2797 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2798 			    bp, bp->b_bufobj->bo_object));
2799 		}
2800 
2801 		allocbuf(bp, size);
2802 		bp->b_flags &= ~B_DONE;
2803 	}
2804 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2805 	BUF_ASSERT_HELD(bp);
2806 	KASSERT(bp->b_bufobj == bo,
2807 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2808 	return (bp);
2809 }
2810 
2811 /*
2812  * Get an empty, disassociated buffer of given size.  The buffer is initially
2813  * set to B_INVAL.
2814  */
2815 struct buf *
2816 geteblk(int size, int flags)
2817 {
2818 	struct buf *bp;
2819 	int maxsize;
2820 
2821 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2822 	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2823 		if ((flags & GB_NOWAIT_BD) &&
2824 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2825 			return (NULL);
2826 	}
2827 	allocbuf(bp, size);
2828 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2829 	BUF_ASSERT_HELD(bp);
2830 	return (bp);
2831 }
2832 
2833 
2834 /*
2835  * This code constitutes the buffer memory from either anonymous system
2836  * memory (in the case of non-VMIO operations) or from an associated
2837  * VM object (in the case of VMIO operations).  This code is able to
2838  * resize a buffer up or down.
2839  *
2840  * Note that this code is tricky, and has many complications to resolve
2841  * deadlock or inconsistant data situations.  Tread lightly!!!
2842  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2843  * the caller.  Calling this code willy nilly can result in the loss of data.
2844  *
2845  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2846  * B_CACHE for the non-VMIO case.
2847  */
2848 
2849 int
2850 allocbuf(struct buf *bp, int size)
2851 {
2852 	int newbsize, mbsize;
2853 	int i;
2854 
2855 	BUF_ASSERT_HELD(bp);
2856 
2857 	if (bp->b_kvasize < size)
2858 		panic("allocbuf: buffer too small");
2859 
2860 	if ((bp->b_flags & B_VMIO) == 0) {
2861 		caddr_t origbuf;
2862 		int origbufsize;
2863 		/*
2864 		 * Just get anonymous memory from the kernel.  Don't
2865 		 * mess with B_CACHE.
2866 		 */
2867 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2868 		if (bp->b_flags & B_MALLOC)
2869 			newbsize = mbsize;
2870 		else
2871 			newbsize = round_page(size);
2872 
2873 		if (newbsize < bp->b_bufsize) {
2874 			/*
2875 			 * malloced buffers are not shrunk
2876 			 */
2877 			if (bp->b_flags & B_MALLOC) {
2878 				if (newbsize) {
2879 					bp->b_bcount = size;
2880 				} else {
2881 					free(bp->b_data, M_BIOBUF);
2882 					if (bp->b_bufsize) {
2883 						atomic_subtract_long(
2884 						    &bufmallocspace,
2885 						    bp->b_bufsize);
2886 						bufspacewakeup();
2887 						bp->b_bufsize = 0;
2888 					}
2889 					bp->b_saveaddr = bp->b_kvabase;
2890 					bp->b_data = bp->b_saveaddr;
2891 					bp->b_bcount = 0;
2892 					bp->b_flags &= ~B_MALLOC;
2893 				}
2894 				return 1;
2895 			}
2896 			vm_hold_free_pages(bp, newbsize);
2897 		} else if (newbsize > bp->b_bufsize) {
2898 			/*
2899 			 * We only use malloced memory on the first allocation.
2900 			 * and revert to page-allocated memory when the buffer
2901 			 * grows.
2902 			 */
2903 			/*
2904 			 * There is a potential smp race here that could lead
2905 			 * to bufmallocspace slightly passing the max.  It
2906 			 * is probably extremely rare and not worth worrying
2907 			 * over.
2908 			 */
2909 			if ( (bufmallocspace < maxbufmallocspace) &&
2910 				(bp->b_bufsize == 0) &&
2911 				(mbsize <= PAGE_SIZE/2)) {
2912 
2913 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2914 				bp->b_bufsize = mbsize;
2915 				bp->b_bcount = size;
2916 				bp->b_flags |= B_MALLOC;
2917 				atomic_add_long(&bufmallocspace, mbsize);
2918 				return 1;
2919 			}
2920 			origbuf = NULL;
2921 			origbufsize = 0;
2922 			/*
2923 			 * If the buffer is growing on its other-than-first allocation,
2924 			 * then we revert to the page-allocation scheme.
2925 			 */
2926 			if (bp->b_flags & B_MALLOC) {
2927 				origbuf = bp->b_data;
2928 				origbufsize = bp->b_bufsize;
2929 				bp->b_data = bp->b_kvabase;
2930 				if (bp->b_bufsize) {
2931 					atomic_subtract_long(&bufmallocspace,
2932 					    bp->b_bufsize);
2933 					bufspacewakeup();
2934 					bp->b_bufsize = 0;
2935 				}
2936 				bp->b_flags &= ~B_MALLOC;
2937 				newbsize = round_page(newbsize);
2938 			}
2939 			vm_hold_load_pages(
2940 			    bp,
2941 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2942 			    (vm_offset_t) bp->b_data + newbsize);
2943 			if (origbuf) {
2944 				bcopy(origbuf, bp->b_data, origbufsize);
2945 				free(origbuf, M_BIOBUF);
2946 			}
2947 		}
2948 	} else {
2949 		int desiredpages;
2950 
2951 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2952 		desiredpages = (size == 0) ? 0 :
2953 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2954 
2955 		if (bp->b_flags & B_MALLOC)
2956 			panic("allocbuf: VMIO buffer can't be malloced");
2957 		/*
2958 		 * Set B_CACHE initially if buffer is 0 length or will become
2959 		 * 0-length.
2960 		 */
2961 		if (size == 0 || bp->b_bufsize == 0)
2962 			bp->b_flags |= B_CACHE;
2963 
2964 		if (newbsize < bp->b_bufsize) {
2965 			/*
2966 			 * DEV_BSIZE aligned new buffer size is less then the
2967 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2968 			 * if we have to remove any pages.
2969 			 */
2970 			if (desiredpages < bp->b_npages) {
2971 				vm_page_t m;
2972 
2973 				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2974 				for (i = desiredpages; i < bp->b_npages; i++) {
2975 					/*
2976 					 * the page is not freed here -- it
2977 					 * is the responsibility of
2978 					 * vnode_pager_setsize
2979 					 */
2980 					m = bp->b_pages[i];
2981 					KASSERT(m != bogus_page,
2982 					    ("allocbuf: bogus page found"));
2983 					while (vm_page_sleep_if_busy(m, TRUE,
2984 					    "biodep"))
2985 						continue;
2986 
2987 					bp->b_pages[i] = NULL;
2988 					vm_page_lock(m);
2989 					vm_page_unwire(m, 0);
2990 					vm_page_unlock(m);
2991 				}
2992 				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2993 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2994 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2995 				bp->b_npages = desiredpages;
2996 			}
2997 		} else if (size > bp->b_bcount) {
2998 			/*
2999 			 * We are growing the buffer, possibly in a
3000 			 * byte-granular fashion.
3001 			 */
3002 			vm_object_t obj;
3003 			vm_offset_t toff;
3004 			vm_offset_t tinc;
3005 
3006 			/*
3007 			 * Step 1, bring in the VM pages from the object,
3008 			 * allocating them if necessary.  We must clear
3009 			 * B_CACHE if these pages are not valid for the
3010 			 * range covered by the buffer.
3011 			 */
3012 
3013 			obj = bp->b_bufobj->bo_object;
3014 
3015 			VM_OBJECT_LOCK(obj);
3016 			while (bp->b_npages < desiredpages) {
3017 				vm_page_t m;
3018 
3019 				/*
3020 				 * We must allocate system pages since blocking
3021 				 * here could intefere with paging I/O, no
3022 				 * matter which process we are.
3023 				 *
3024 				 * We can only test VPO_BUSY here.  Blocking on
3025 				 * m->busy might lead to a deadlock:
3026 				 *  vm_fault->getpages->cluster_read->allocbuf
3027 				 * Thus, we specify VM_ALLOC_IGN_SBUSY.
3028 				 */
3029 				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3030 				    bp->b_npages, VM_ALLOC_NOBUSY |
3031 				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3032 				    VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
3033 				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3034 				if (m->valid == 0)
3035 					bp->b_flags &= ~B_CACHE;
3036 				bp->b_pages[bp->b_npages] = m;
3037 				++bp->b_npages;
3038 			}
3039 
3040 			/*
3041 			 * Step 2.  We've loaded the pages into the buffer,
3042 			 * we have to figure out if we can still have B_CACHE
3043 			 * set.  Note that B_CACHE is set according to the
3044 			 * byte-granular range ( bcount and size ), new the
3045 			 * aligned range ( newbsize ).
3046 			 *
3047 			 * The VM test is against m->valid, which is DEV_BSIZE
3048 			 * aligned.  Needless to say, the validity of the data
3049 			 * needs to also be DEV_BSIZE aligned.  Note that this
3050 			 * fails with NFS if the server or some other client
3051 			 * extends the file's EOF.  If our buffer is resized,
3052 			 * B_CACHE may remain set! XXX
3053 			 */
3054 
3055 			toff = bp->b_bcount;
3056 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3057 
3058 			while ((bp->b_flags & B_CACHE) && toff < size) {
3059 				vm_pindex_t pi;
3060 
3061 				if (tinc > (size - toff))
3062 					tinc = size - toff;
3063 
3064 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3065 				    PAGE_SHIFT;
3066 
3067 				vfs_buf_test_cache(
3068 				    bp,
3069 				    bp->b_offset,
3070 				    toff,
3071 				    tinc,
3072 				    bp->b_pages[pi]
3073 				);
3074 				toff += tinc;
3075 				tinc = PAGE_SIZE;
3076 			}
3077 			VM_OBJECT_UNLOCK(obj);
3078 
3079 			/*
3080 			 * Step 3, fixup the KVM pmap.  Remember that
3081 			 * bp->b_data is relative to bp->b_offset, but
3082 			 * bp->b_offset may be offset into the first page.
3083 			 */
3084 
3085 			bp->b_data = (caddr_t)
3086 			    trunc_page((vm_offset_t)bp->b_data);
3087 			pmap_qenter(
3088 			    (vm_offset_t)bp->b_data,
3089 			    bp->b_pages,
3090 			    bp->b_npages
3091 			);
3092 
3093 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3094 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3095 		}
3096 	}
3097 	if (newbsize < bp->b_bufsize)
3098 		bufspacewakeup();
3099 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3100 	bp->b_bcount = size;		/* requested buffer size	*/
3101 	return 1;
3102 }
3103 
3104 void
3105 biodone(struct bio *bp)
3106 {
3107 	struct mtx *mtxp;
3108 	void (*done)(struct bio *);
3109 
3110 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3111 	mtx_lock(mtxp);
3112 	bp->bio_flags |= BIO_DONE;
3113 	done = bp->bio_done;
3114 	if (done == NULL)
3115 		wakeup(bp);
3116 	mtx_unlock(mtxp);
3117 	if (done != NULL)
3118 		done(bp);
3119 }
3120 
3121 /*
3122  * Wait for a BIO to finish.
3123  *
3124  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3125  * case is not yet clear.
3126  */
3127 int
3128 biowait(struct bio *bp, const char *wchan)
3129 {
3130 	struct mtx *mtxp;
3131 
3132 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3133 	mtx_lock(mtxp);
3134 	while ((bp->bio_flags & BIO_DONE) == 0)
3135 		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3136 	mtx_unlock(mtxp);
3137 	if (bp->bio_error != 0)
3138 		return (bp->bio_error);
3139 	if (!(bp->bio_flags & BIO_ERROR))
3140 		return (0);
3141 	return (EIO);
3142 }
3143 
3144 void
3145 biofinish(struct bio *bp, struct devstat *stat, int error)
3146 {
3147 
3148 	if (error) {
3149 		bp->bio_error = error;
3150 		bp->bio_flags |= BIO_ERROR;
3151 	}
3152 	if (stat != NULL)
3153 		devstat_end_transaction_bio(stat, bp);
3154 	biodone(bp);
3155 }
3156 
3157 /*
3158  *	bufwait:
3159  *
3160  *	Wait for buffer I/O completion, returning error status.  The buffer
3161  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3162  *	error and cleared.
3163  */
3164 int
3165 bufwait(struct buf *bp)
3166 {
3167 	if (bp->b_iocmd == BIO_READ)
3168 		bwait(bp, PRIBIO, "biord");
3169 	else
3170 		bwait(bp, PRIBIO, "biowr");
3171 	if (bp->b_flags & B_EINTR) {
3172 		bp->b_flags &= ~B_EINTR;
3173 		return (EINTR);
3174 	}
3175 	if (bp->b_ioflags & BIO_ERROR) {
3176 		return (bp->b_error ? bp->b_error : EIO);
3177 	} else {
3178 		return (0);
3179 	}
3180 }
3181 
3182  /*
3183   * Call back function from struct bio back up to struct buf.
3184   */
3185 static void
3186 bufdonebio(struct bio *bip)
3187 {
3188 	struct buf *bp;
3189 
3190 	bp = bip->bio_caller2;
3191 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3192 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3193 	bp->b_ioflags = bip->bio_flags;
3194 	bp->b_error = bip->bio_error;
3195 	if (bp->b_error)
3196 		bp->b_ioflags |= BIO_ERROR;
3197 	bufdone(bp);
3198 	g_destroy_bio(bip);
3199 }
3200 
3201 void
3202 dev_strategy(struct cdev *dev, struct buf *bp)
3203 {
3204 	struct cdevsw *csw;
3205 	struct bio *bip;
3206 
3207 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3208 		panic("b_iocmd botch");
3209 	for (;;) {
3210 		bip = g_new_bio();
3211 		if (bip != NULL)
3212 			break;
3213 		/* Try again later */
3214 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3215 	}
3216 	bip->bio_cmd = bp->b_iocmd;
3217 	bip->bio_offset = bp->b_iooffset;
3218 	bip->bio_length = bp->b_bcount;
3219 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3220 	bip->bio_data = bp->b_data;
3221 	bip->bio_done = bufdonebio;
3222 	bip->bio_caller2 = bp;
3223 	bip->bio_dev = dev;
3224 	KASSERT(dev->si_refcount > 0,
3225 	    ("dev_strategy on un-referenced struct cdev *(%s)",
3226 	    devtoname(dev)));
3227 	csw = dev_refthread(dev);
3228 	if (csw == NULL) {
3229 		g_destroy_bio(bip);
3230 		bp->b_error = ENXIO;
3231 		bp->b_ioflags = BIO_ERROR;
3232 		bufdone(bp);
3233 		return;
3234 	}
3235 	(*csw->d_strategy)(bip);
3236 	dev_relthread(dev);
3237 }
3238 
3239 /*
3240  *	bufdone:
3241  *
3242  *	Finish I/O on a buffer, optionally calling a completion function.
3243  *	This is usually called from an interrupt so process blocking is
3244  *	not allowed.
3245  *
3246  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3247  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3248  *	assuming B_INVAL is clear.
3249  *
3250  *	For the VMIO case, we set B_CACHE if the op was a read and no
3251  *	read error occured, or if the op was a write.  B_CACHE is never
3252  *	set if the buffer is invalid or otherwise uncacheable.
3253  *
3254  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3255  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3256  *	in the biodone routine.
3257  */
3258 void
3259 bufdone(struct buf *bp)
3260 {
3261 	struct bufobj *dropobj;
3262 	void    (*biodone)(struct buf *);
3263 
3264 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3265 	dropobj = NULL;
3266 
3267 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3268 	BUF_ASSERT_HELD(bp);
3269 
3270 	runningbufwakeup(bp);
3271 	if (bp->b_iocmd == BIO_WRITE)
3272 		dropobj = bp->b_bufobj;
3273 	/* call optional completion function if requested */
3274 	if (bp->b_iodone != NULL) {
3275 		biodone = bp->b_iodone;
3276 		bp->b_iodone = NULL;
3277 		(*biodone) (bp);
3278 		if (dropobj)
3279 			bufobj_wdrop(dropobj);
3280 		return;
3281 	}
3282 
3283 	bufdone_finish(bp);
3284 
3285 	if (dropobj)
3286 		bufobj_wdrop(dropobj);
3287 }
3288 
3289 void
3290 bufdone_finish(struct buf *bp)
3291 {
3292 	BUF_ASSERT_HELD(bp);
3293 
3294 	if (!LIST_EMPTY(&bp->b_dep))
3295 		buf_complete(bp);
3296 
3297 	if (bp->b_flags & B_VMIO) {
3298 		int i;
3299 		vm_ooffset_t foff;
3300 		vm_page_t m;
3301 		vm_object_t obj;
3302 		int bogus, iosize;
3303 		struct vnode *vp = bp->b_vp;
3304 
3305 		obj = bp->b_bufobj->bo_object;
3306 
3307 #if defined(VFS_BIO_DEBUG)
3308 		mp_fixme("usecount and vflag accessed without locks.");
3309 		if (vp->v_usecount == 0) {
3310 			panic("biodone: zero vnode ref count");
3311 		}
3312 
3313 		KASSERT(vp->v_object != NULL,
3314 			("biodone: vnode %p has no vm_object", vp));
3315 #endif
3316 
3317 		foff = bp->b_offset;
3318 		KASSERT(bp->b_offset != NOOFFSET,
3319 		    ("biodone: no buffer offset"));
3320 
3321 		VM_OBJECT_LOCK(obj);
3322 #if defined(VFS_BIO_DEBUG)
3323 		if (obj->paging_in_progress < bp->b_npages) {
3324 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3325 			    obj->paging_in_progress, bp->b_npages);
3326 		}
3327 #endif
3328 
3329 		/*
3330 		 * Set B_CACHE if the op was a normal read and no error
3331 		 * occured.  B_CACHE is set for writes in the b*write()
3332 		 * routines.
3333 		 */
3334 		iosize = bp->b_bcount - bp->b_resid;
3335 		if (bp->b_iocmd == BIO_READ &&
3336 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3337 		    !(bp->b_ioflags & BIO_ERROR)) {
3338 			bp->b_flags |= B_CACHE;
3339 		}
3340 		bogus = 0;
3341 		for (i = 0; i < bp->b_npages; i++) {
3342 			int bogusflag = 0;
3343 			int resid;
3344 
3345 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3346 			if (resid > iosize)
3347 				resid = iosize;
3348 
3349 			/*
3350 			 * cleanup bogus pages, restoring the originals
3351 			 */
3352 			m = bp->b_pages[i];
3353 			if (m == bogus_page) {
3354 				bogus = bogusflag = 1;
3355 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3356 				if (m == NULL)
3357 					panic("biodone: page disappeared!");
3358 				bp->b_pages[i] = m;
3359 			}
3360 #if defined(VFS_BIO_DEBUG)
3361 			if (OFF_TO_IDX(foff) != m->pindex) {
3362 				printf(
3363 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3364 				    (intmax_t)foff, (uintmax_t)m->pindex);
3365 			}
3366 #endif
3367 
3368 			/*
3369 			 * In the write case, the valid and clean bits are
3370 			 * already changed correctly ( see bdwrite() ), so we
3371 			 * only need to do this here in the read case.
3372 			 */
3373 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3374 				KASSERT((m->dirty & vm_page_bits(foff &
3375 				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3376 				    " page %p has unexpected dirty bits", m));
3377 				vfs_page_set_valid(bp, foff, m);
3378 			}
3379 
3380 			/*
3381 			 * when debugging new filesystems or buffer I/O methods, this
3382 			 * is the most common error that pops up.  if you see this, you
3383 			 * have not set the page busy flag correctly!!!
3384 			 */
3385 			if (m->busy == 0) {
3386 				printf("biodone: page busy < 0, "
3387 				    "pindex: %d, foff: 0x(%x,%x), "
3388 				    "resid: %d, index: %d\n",
3389 				    (int) m->pindex, (int)(foff >> 32),
3390 						(int) foff & 0xffffffff, resid, i);
3391 				if (!vn_isdisk(vp, NULL))
3392 					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3393 					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3394 					    (intmax_t) bp->b_lblkno,
3395 					    bp->b_flags, bp->b_npages);
3396 				else
3397 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3398 					    (intmax_t) bp->b_lblkno,
3399 					    bp->b_flags, bp->b_npages);
3400 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3401 				    (u_long)m->valid, (u_long)m->dirty,
3402 				    m->wire_count);
3403 				panic("biodone: page busy < 0\n");
3404 			}
3405 			vm_page_io_finish(m);
3406 			vm_object_pip_subtract(obj, 1);
3407 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3408 			iosize -= resid;
3409 		}
3410 		vm_object_pip_wakeupn(obj, 0);
3411 		VM_OBJECT_UNLOCK(obj);
3412 		if (bogus)
3413 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3414 			    bp->b_pages, bp->b_npages);
3415 	}
3416 
3417 	/*
3418 	 * For asynchronous completions, release the buffer now. The brelse
3419 	 * will do a wakeup there if necessary - so no need to do a wakeup
3420 	 * here in the async case. The sync case always needs to do a wakeup.
3421 	 */
3422 
3423 	if (bp->b_flags & B_ASYNC) {
3424 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3425 			brelse(bp);
3426 		else
3427 			bqrelse(bp);
3428 	} else
3429 		bdone(bp);
3430 }
3431 
3432 /*
3433  * This routine is called in lieu of iodone in the case of
3434  * incomplete I/O.  This keeps the busy status for pages
3435  * consistant.
3436  */
3437 void
3438 vfs_unbusy_pages(struct buf *bp)
3439 {
3440 	int i;
3441 	vm_object_t obj;
3442 	vm_page_t m;
3443 
3444 	runningbufwakeup(bp);
3445 	if (!(bp->b_flags & B_VMIO))
3446 		return;
3447 
3448 	obj = bp->b_bufobj->bo_object;
3449 	VM_OBJECT_LOCK(obj);
3450 	for (i = 0; i < bp->b_npages; i++) {
3451 		m = bp->b_pages[i];
3452 		if (m == bogus_page) {
3453 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3454 			if (!m)
3455 				panic("vfs_unbusy_pages: page missing\n");
3456 			bp->b_pages[i] = m;
3457 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3458 			    bp->b_pages, bp->b_npages);
3459 		}
3460 		vm_object_pip_subtract(obj, 1);
3461 		vm_page_io_finish(m);
3462 	}
3463 	vm_object_pip_wakeupn(obj, 0);
3464 	VM_OBJECT_UNLOCK(obj);
3465 }
3466 
3467 /*
3468  * vfs_page_set_valid:
3469  *
3470  *	Set the valid bits in a page based on the supplied offset.   The
3471  *	range is restricted to the buffer's size.
3472  *
3473  *	This routine is typically called after a read completes.
3474  */
3475 static void
3476 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3477 {
3478 	vm_ooffset_t eoff;
3479 
3480 	/*
3481 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3482 	 * page boundary and eoff is not greater than the end of the buffer.
3483 	 * The end of the buffer, in this case, is our file EOF, not the
3484 	 * allocation size of the buffer.
3485 	 */
3486 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3487 	if (eoff > bp->b_offset + bp->b_bcount)
3488 		eoff = bp->b_offset + bp->b_bcount;
3489 
3490 	/*
3491 	 * Set valid range.  This is typically the entire buffer and thus the
3492 	 * entire page.
3493 	 */
3494 	if (eoff > off)
3495 		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3496 }
3497 
3498 /*
3499  * vfs_page_set_validclean:
3500  *
3501  *	Set the valid bits and clear the dirty bits in a page based on the
3502  *	supplied offset.   The range is restricted to the buffer's size.
3503  */
3504 static void
3505 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3506 {
3507 	vm_ooffset_t soff, eoff;
3508 
3509 	/*
3510 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3511 	 * page boundry or cross the end of the buffer.  The end of the
3512 	 * buffer, in this case, is our file EOF, not the allocation size
3513 	 * of the buffer.
3514 	 */
3515 	soff = off;
3516 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3517 	if (eoff > bp->b_offset + bp->b_bcount)
3518 		eoff = bp->b_offset + bp->b_bcount;
3519 
3520 	/*
3521 	 * Set valid range.  This is typically the entire buffer and thus the
3522 	 * entire page.
3523 	 */
3524 	if (eoff > soff) {
3525 		vm_page_set_validclean(
3526 		    m,
3527 		   (vm_offset_t) (soff & PAGE_MASK),
3528 		   (vm_offset_t) (eoff - soff)
3529 		);
3530 	}
3531 }
3532 
3533 /*
3534  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
3535  * any page is busy, drain the flag.
3536  */
3537 static void
3538 vfs_drain_busy_pages(struct buf *bp)
3539 {
3540 	vm_page_t m;
3541 	int i, last_busied;
3542 
3543 	VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
3544 	last_busied = 0;
3545 	for (i = 0; i < bp->b_npages; i++) {
3546 		m = bp->b_pages[i];
3547 		if ((m->oflags & VPO_BUSY) != 0) {
3548 			for (; last_busied < i; last_busied++)
3549 				vm_page_busy(bp->b_pages[last_busied]);
3550 			while ((m->oflags & VPO_BUSY) != 0)
3551 				vm_page_sleep(m, "vbpage");
3552 		}
3553 	}
3554 	for (i = 0; i < last_busied; i++)
3555 		vm_page_wakeup(bp->b_pages[i]);
3556 }
3557 
3558 /*
3559  * This routine is called before a device strategy routine.
3560  * It is used to tell the VM system that paging I/O is in
3561  * progress, and treat the pages associated with the buffer
3562  * almost as being VPO_BUSY.  Also the object paging_in_progress
3563  * flag is handled to make sure that the object doesn't become
3564  * inconsistant.
3565  *
3566  * Since I/O has not been initiated yet, certain buffer flags
3567  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3568  * and should be ignored.
3569  */
3570 void
3571 vfs_busy_pages(struct buf *bp, int clear_modify)
3572 {
3573 	int i, bogus;
3574 	vm_object_t obj;
3575 	vm_ooffset_t foff;
3576 	vm_page_t m;
3577 
3578 	if (!(bp->b_flags & B_VMIO))
3579 		return;
3580 
3581 	obj = bp->b_bufobj->bo_object;
3582 	foff = bp->b_offset;
3583 	KASSERT(bp->b_offset != NOOFFSET,
3584 	    ("vfs_busy_pages: no buffer offset"));
3585 	VM_OBJECT_LOCK(obj);
3586 	vfs_drain_busy_pages(bp);
3587 	if (bp->b_bufsize != 0)
3588 		vfs_setdirty_locked_object(bp);
3589 	bogus = 0;
3590 	for (i = 0; i < bp->b_npages; i++) {
3591 		m = bp->b_pages[i];
3592 
3593 		if ((bp->b_flags & B_CLUSTER) == 0) {
3594 			vm_object_pip_add(obj, 1);
3595 			vm_page_io_start(m);
3596 		}
3597 		/*
3598 		 * When readying a buffer for a read ( i.e
3599 		 * clear_modify == 0 ), it is important to do
3600 		 * bogus_page replacement for valid pages in
3601 		 * partially instantiated buffers.  Partially
3602 		 * instantiated buffers can, in turn, occur when
3603 		 * reconstituting a buffer from its VM backing store
3604 		 * base.  We only have to do this if B_CACHE is
3605 		 * clear ( which causes the I/O to occur in the
3606 		 * first place ).  The replacement prevents the read
3607 		 * I/O from overwriting potentially dirty VM-backed
3608 		 * pages.  XXX bogus page replacement is, uh, bogus.
3609 		 * It may not work properly with small-block devices.
3610 		 * We need to find a better way.
3611 		 */
3612 		if (clear_modify) {
3613 			pmap_remove_write(m);
3614 			vfs_page_set_validclean(bp, foff, m);
3615 		} else if (m->valid == VM_PAGE_BITS_ALL &&
3616 		    (bp->b_flags & B_CACHE) == 0) {
3617 			bp->b_pages[i] = bogus_page;
3618 			bogus++;
3619 		}
3620 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3621 	}
3622 	VM_OBJECT_UNLOCK(obj);
3623 	if (bogus)
3624 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3625 		    bp->b_pages, bp->b_npages);
3626 }
3627 
3628 /*
3629  *	vfs_bio_set_valid:
3630  *
3631  *	Set the range within the buffer to valid.  The range is
3632  *	relative to the beginning of the buffer, b_offset.  Note that
3633  *	b_offset itself may be offset from the beginning of the first
3634  *	page.
3635  */
3636 void
3637 vfs_bio_set_valid(struct buf *bp, int base, int size)
3638 {
3639 	int i, n;
3640 	vm_page_t m;
3641 
3642 	if (!(bp->b_flags & B_VMIO))
3643 		return;
3644 
3645 	/*
3646 	 * Fixup base to be relative to beginning of first page.
3647 	 * Set initial n to be the maximum number of bytes in the
3648 	 * first page that can be validated.
3649 	 */
3650 	base += (bp->b_offset & PAGE_MASK);
3651 	n = PAGE_SIZE - (base & PAGE_MASK);
3652 
3653 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3654 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3655 		m = bp->b_pages[i];
3656 		if (n > size)
3657 			n = size;
3658 		vm_page_set_valid(m, base & PAGE_MASK, n);
3659 		base += n;
3660 		size -= n;
3661 		n = PAGE_SIZE;
3662 	}
3663 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3664 }
3665 
3666 /*
3667  *	vfs_bio_clrbuf:
3668  *
3669  *	If the specified buffer is a non-VMIO buffer, clear the entire
3670  *	buffer.  If the specified buffer is a VMIO buffer, clear and
3671  *	validate only the previously invalid portions of the buffer.
3672  *	This routine essentially fakes an I/O, so we need to clear
3673  *	BIO_ERROR and B_INVAL.
3674  *
3675  *	Note that while we only theoretically need to clear through b_bcount,
3676  *	we go ahead and clear through b_bufsize.
3677  */
3678 void
3679 vfs_bio_clrbuf(struct buf *bp)
3680 {
3681 	int i, j, mask;
3682 	caddr_t sa, ea;
3683 
3684 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3685 		clrbuf(bp);
3686 		return;
3687 	}
3688 	bp->b_flags &= ~B_INVAL;
3689 	bp->b_ioflags &= ~BIO_ERROR;
3690 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3691 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3692 	    (bp->b_offset & PAGE_MASK) == 0) {
3693 		if (bp->b_pages[0] == bogus_page)
3694 			goto unlock;
3695 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3696 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3697 		if ((bp->b_pages[0]->valid & mask) == mask)
3698 			goto unlock;
3699 		if ((bp->b_pages[0]->valid & mask) == 0) {
3700 			bzero(bp->b_data, bp->b_bufsize);
3701 			bp->b_pages[0]->valid |= mask;
3702 			goto unlock;
3703 		}
3704 	}
3705 	ea = sa = bp->b_data;
3706 	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3707 		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3708 		ea = (caddr_t)(vm_offset_t)ulmin(
3709 		    (u_long)(vm_offset_t)ea,
3710 		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3711 		if (bp->b_pages[i] == bogus_page)
3712 			continue;
3713 		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3714 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3715 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3716 		if ((bp->b_pages[i]->valid & mask) == mask)
3717 			continue;
3718 		if ((bp->b_pages[i]->valid & mask) == 0)
3719 			bzero(sa, ea - sa);
3720 		else {
3721 			for (; sa < ea; sa += DEV_BSIZE, j++) {
3722 				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3723 					bzero(sa, DEV_BSIZE);
3724 			}
3725 		}
3726 		bp->b_pages[i]->valid |= mask;
3727 	}
3728 unlock:
3729 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3730 	bp->b_resid = 0;
3731 }
3732 
3733 /*
3734  * vm_hold_load_pages and vm_hold_free_pages get pages into
3735  * a buffers address space.  The pages are anonymous and are
3736  * not associated with a file object.
3737  */
3738 static void
3739 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3740 {
3741 	vm_offset_t pg;
3742 	vm_page_t p;
3743 	int index;
3744 
3745 	to = round_page(to);
3746 	from = round_page(from);
3747 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3748 
3749 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3750 tryagain:
3751 		/*
3752 		 * note: must allocate system pages since blocking here
3753 		 * could interfere with paging I/O, no matter which
3754 		 * process we are.
3755 		 */
3756 		p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
3757 		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3758 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
3759 		if (!p) {
3760 			VM_WAIT;
3761 			goto tryagain;
3762 		}
3763 		pmap_qenter(pg, &p, 1);
3764 		bp->b_pages[index] = p;
3765 	}
3766 	bp->b_npages = index;
3767 }
3768 
3769 /* Return pages associated with this buf to the vm system */
3770 static void
3771 vm_hold_free_pages(struct buf *bp, int newbsize)
3772 {
3773 	vm_offset_t from;
3774 	vm_page_t p;
3775 	int index, newnpages;
3776 
3777 	from = round_page((vm_offset_t)bp->b_data + newbsize);
3778 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3779 	if (bp->b_npages > newnpages)
3780 		pmap_qremove(from, bp->b_npages - newnpages);
3781 	for (index = newnpages; index < bp->b_npages; index++) {
3782 		p = bp->b_pages[index];
3783 		bp->b_pages[index] = NULL;
3784 		if (p->busy != 0)
3785 			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3786 			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
3787 		p->wire_count--;
3788 		vm_page_free(p);
3789 		atomic_subtract_int(&cnt.v_wire_count, 1);
3790 	}
3791 	bp->b_npages = newnpages;
3792 }
3793 
3794 /*
3795  * Map an IO request into kernel virtual address space.
3796  *
3797  * All requests are (re)mapped into kernel VA space.
3798  * Notice that we use b_bufsize for the size of the buffer
3799  * to be mapped.  b_bcount might be modified by the driver.
3800  *
3801  * Note that even if the caller determines that the address space should
3802  * be valid, a race or a smaller-file mapped into a larger space may
3803  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3804  * check the return value.
3805  */
3806 int
3807 vmapbuf(struct buf *bp)
3808 {
3809 	caddr_t addr, kva;
3810 	vm_prot_t prot;
3811 	int pidx, i;
3812 	struct vm_page *m;
3813 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3814 
3815 	if (bp->b_bufsize < 0)
3816 		return (-1);
3817 	prot = VM_PROT_READ;
3818 	if (bp->b_iocmd == BIO_READ)
3819 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3820 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3821 	     addr < bp->b_data + bp->b_bufsize;
3822 	     addr += PAGE_SIZE, pidx++) {
3823 		/*
3824 		 * Do the vm_fault if needed; do the copy-on-write thing
3825 		 * when reading stuff off device into memory.
3826 		 *
3827 		 * NOTE! Must use pmap_extract() because addr may be in
3828 		 * the userland address space, and kextract is only guarenteed
3829 		 * to work for the kernland address space (see: sparc64 port).
3830 		 */
3831 retry:
3832 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3833 		    prot) < 0) {
3834 			for (i = 0; i < pidx; ++i) {
3835 				vm_page_lock(bp->b_pages[i]);
3836 				vm_page_unhold(bp->b_pages[i]);
3837 				vm_page_unlock(bp->b_pages[i]);
3838 				bp->b_pages[i] = NULL;
3839 			}
3840 			return(-1);
3841 		}
3842 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3843 		if (m == NULL)
3844 			goto retry;
3845 		bp->b_pages[pidx] = m;
3846 	}
3847 	if (pidx > btoc(MAXPHYS))
3848 		panic("vmapbuf: mapped more than MAXPHYS");
3849 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3850 
3851 	kva = bp->b_saveaddr;
3852 	bp->b_npages = pidx;
3853 	bp->b_saveaddr = bp->b_data;
3854 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3855 	return(0);
3856 }
3857 
3858 /*
3859  * Free the io map PTEs associated with this IO operation.
3860  * We also invalidate the TLB entries and restore the original b_addr.
3861  */
3862 void
3863 vunmapbuf(struct buf *bp)
3864 {
3865 	int pidx;
3866 	int npages;
3867 
3868 	npages = bp->b_npages;
3869 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3870 	for (pidx = 0; pidx < npages; pidx++) {
3871 		vm_page_lock(bp->b_pages[pidx]);
3872 		vm_page_unhold(bp->b_pages[pidx]);
3873 		vm_page_unlock(bp->b_pages[pidx]);
3874 	}
3875 
3876 	bp->b_data = bp->b_saveaddr;
3877 }
3878 
3879 void
3880 bdone(struct buf *bp)
3881 {
3882 	struct mtx *mtxp;
3883 
3884 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3885 	mtx_lock(mtxp);
3886 	bp->b_flags |= B_DONE;
3887 	wakeup(bp);
3888 	mtx_unlock(mtxp);
3889 }
3890 
3891 void
3892 bwait(struct buf *bp, u_char pri, const char *wchan)
3893 {
3894 	struct mtx *mtxp;
3895 
3896 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3897 	mtx_lock(mtxp);
3898 	while ((bp->b_flags & B_DONE) == 0)
3899 		msleep(bp, mtxp, pri, wchan, 0);
3900 	mtx_unlock(mtxp);
3901 }
3902 
3903 int
3904 bufsync(struct bufobj *bo, int waitfor)
3905 {
3906 
3907 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3908 }
3909 
3910 void
3911 bufstrategy(struct bufobj *bo, struct buf *bp)
3912 {
3913 	int i = 0;
3914 	struct vnode *vp;
3915 
3916 	vp = bp->b_vp;
3917 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3918 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3919 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3920 	i = VOP_STRATEGY(vp, bp);
3921 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3922 }
3923 
3924 void
3925 bufobj_wrefl(struct bufobj *bo)
3926 {
3927 
3928 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3929 	ASSERT_BO_LOCKED(bo);
3930 	bo->bo_numoutput++;
3931 }
3932 
3933 void
3934 bufobj_wref(struct bufobj *bo)
3935 {
3936 
3937 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3938 	BO_LOCK(bo);
3939 	bo->bo_numoutput++;
3940 	BO_UNLOCK(bo);
3941 }
3942 
3943 void
3944 bufobj_wdrop(struct bufobj *bo)
3945 {
3946 
3947 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3948 	BO_LOCK(bo);
3949 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3950 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3951 		bo->bo_flag &= ~BO_WWAIT;
3952 		wakeup(&bo->bo_numoutput);
3953 	}
3954 	BO_UNLOCK(bo);
3955 }
3956 
3957 int
3958 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3959 {
3960 	int error;
3961 
3962 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3963 	ASSERT_BO_LOCKED(bo);
3964 	error = 0;
3965 	while (bo->bo_numoutput) {
3966 		bo->bo_flag |= BO_WWAIT;
3967 		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3968 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3969 		if (error)
3970 			break;
3971 	}
3972 	return (error);
3973 }
3974 
3975 void
3976 bpin(struct buf *bp)
3977 {
3978 	struct mtx *mtxp;
3979 
3980 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3981 	mtx_lock(mtxp);
3982 	bp->b_pin_count++;
3983 	mtx_unlock(mtxp);
3984 }
3985 
3986 void
3987 bunpin(struct buf *bp)
3988 {
3989 	struct mtx *mtxp;
3990 
3991 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3992 	mtx_lock(mtxp);
3993 	if (--bp->b_pin_count == 0)
3994 		wakeup(bp);
3995 	mtx_unlock(mtxp);
3996 }
3997 
3998 void
3999 bunpin_wait(struct buf *bp)
4000 {
4001 	struct mtx *mtxp;
4002 
4003 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4004 	mtx_lock(mtxp);
4005 	while (bp->b_pin_count > 0)
4006 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4007 	mtx_unlock(mtxp);
4008 }
4009 
4010 #include "opt_ddb.h"
4011 #ifdef DDB
4012 #include <ddb/ddb.h>
4013 
4014 /* DDB command to show buffer data */
4015 DB_SHOW_COMMAND(buffer, db_show_buffer)
4016 {
4017 	/* get args */
4018 	struct buf *bp = (struct buf *)addr;
4019 
4020 	if (!have_addr) {
4021 		db_printf("usage: show buffer <addr>\n");
4022 		return;
4023 	}
4024 
4025 	db_printf("buf at %p\n", bp);
4026 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4027 	db_printf(
4028 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4029 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4030 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4031 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4032 	    bp->b_dep.lh_first);
4033 	if (bp->b_npages) {
4034 		int i;
4035 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4036 		for (i = 0; i < bp->b_npages; i++) {
4037 			vm_page_t m;
4038 			m = bp->b_pages[i];
4039 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4040 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4041 			if ((i + 1) < bp->b_npages)
4042 				db_printf(",");
4043 		}
4044 		db_printf("\n");
4045 	}
4046 	db_printf(" ");
4047 	lockmgr_printinfo(&bp->b_lock);
4048 }
4049 
4050 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4051 {
4052 	struct buf *bp;
4053 	int i;
4054 
4055 	for (i = 0; i < nbuf; i++) {
4056 		bp = &buf[i];
4057 		if (BUF_ISLOCKED(bp)) {
4058 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4059 			db_printf("\n");
4060 		}
4061 	}
4062 }
4063 
4064 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4065 {
4066 	struct vnode *vp;
4067 	struct buf *bp;
4068 
4069 	if (!have_addr) {
4070 		db_printf("usage: show vnodebufs <addr>\n");
4071 		return;
4072 	}
4073 	vp = (struct vnode *)addr;
4074 	db_printf("Clean buffers:\n");
4075 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4076 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4077 		db_printf("\n");
4078 	}
4079 	db_printf("Dirty buffers:\n");
4080 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4081 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4082 		db_printf("\n");
4083 	}
4084 }
4085 
4086 DB_COMMAND(countfreebufs, db_coundfreebufs)
4087 {
4088 	struct buf *bp;
4089 	int i, used = 0, nfree = 0;
4090 
4091 	if (have_addr) {
4092 		db_printf("usage: countfreebufs\n");
4093 		return;
4094 	}
4095 
4096 	for (i = 0; i < nbuf; i++) {
4097 		bp = &buf[i];
4098 		if ((bp->b_vflags & BV_INFREECNT) != 0)
4099 			nfree++;
4100 		else
4101 			used++;
4102 	}
4103 
4104 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4105 	    nfree + used);
4106 	db_printf("numfreebuffers is %d\n", numfreebuffers);
4107 }
4108 #endif /* DDB */
4109